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1. Introduction

Organohalogenated contaminants (OHCs) are a divesg of chemicals that have been
used in lubricants, pesticides, flame retardants sanface treatments (Mackay et al., 2006).
OHCs include legacy compounds such as polychla&thdtiphenyls (PCBs), as well as
emerging compounds such as per- and polyfluoroatitppstances (PFASSs). By being
resistant to chemical and biological degradatioHOS persist in the environment (Muir and
de Wit, 2010; UNEP, 2009). While most legacy OH@s lgpophilic, the emerging PFASs
are amphipathic due to hydrophilic functional grewmd different chemical structures (Lau
et al., 2007). Even so, the physicochemical progednd persistency of both legacy OHCs
and PFASs result in high potentials for bioaccutmtaand biomagnification through food
chains (Borga et al., 2004; Kelly et al., 2009).eTtoncentrations of OHCs can show
significant temporal and spatial variations boththe environment and wildlife (Faxneld et
al., 2016; Helgason et al., 2008; Hung et al., 20Merda et al., 2016). Most of these
variations are due to changes in production andofigke compounds (Hung et al., 2016;
Wang et al., 2014). However, environmental and dgjiglal factors can also contribute
significantly to the observed variations (Bourgesiral., 2013; Bustnes et al., 2015; Leat et

al., 2011).

The white-tailed eagle Haliaeetus albicilla occupies a high trophic level and can
accumulate a wide range of OHCs, even at an egdy(Bustnes et al., 2013; Eulaers et al.,
2014; Loseth et al.,, 2019; Sletten et al., 2016¢sthhgs are exposed to maternally
transferred OHCs during development in the eggriElaket al., 2016; NordI6f et al., 2010;
Nygard and Polder, 2012) and the exposure contiaftes hatching through their dietary
intake (Bourgeon et al., 2013). Adult white-tailedgles are mostly resident within their

breeding areas (Willgohs, 1984), thus the contamtibairdens of their eggs and nestlings
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reflect contaminant levels in local prey. This nmakehite-tailed eagle nestlings good

sentinels of local environmental pollution (Helandeal., 2008; Olsson et al., 2000).

The diet of the white-tailed eagle consists mawflyerrestrial and marine carrion, fish and
seabirds (Koivusaari et al., 1976; NadjafzadeH.e2@16; Willgohs, 1984), which may have
accumulated high concentrations of OHCs. As theé idi@ major source of OHC exposure
following hatching, stable isotopes of nitrogefl) and carbond:>C) are often applied as
dietary proxies to investigate the nestlings’ trhopposition and dietary carbon source,
respectively (Fry, 2006; Inger and Bearhop, 2008djsfzadeh et al., 2016). The ratio’oX

to 1N increases by about 2-5 %o per trophic level adigeer nitrogen isotopes are excreted
through nitrogenous waste products. The ratib’@fto °C can also increase with increasing
trophic level, though it is mostly used to distiljubetween marine and terrestrial dietary
carbon sources. Terrestrial primary producers Hawer 5°C values compared to marine
ones. This is reflected in the tissues of theirscomers and persists at higher trophic levels
within the food chain (Fry, 2006; Inger and Bearh@@08; Kelly, 2000). Keratinized
matrices, such as feathers, are metabolically iager their growth and can preserve the
stable isotopes deposited into the matrix durisggitowth (Inger and Bearhop, 2008). A
homogenate of nestling feathers can therefore geowiformation about their diet during the

growth period of the feathers (Bearhop et al., 2002

As many OHCs have been shown to interfere with johygical processes linked to

development and growth (Cassone et al., 2012; deretsal., 2010; Ngst et al., 2012), there
is special concern about levels and effects ofetlt@snpounds in young developing birds. As
nestlings develop and grow, their maternally tranmsfd contaminants are significantly
diluted by their growth (Bourgeon et al., 2013; Bies et al., 2013). However, nestlings are
also exposed to OHCs through their diet and plasomaentrations of compounds with high

ability for bioaccumulation may increase as thetlmgs reach their adult body size at

2
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fledging (Borga et al., 2004; Bustnes et al., 201R)eviously, only few studies have
accounted for age and growth when investigating ®Hnestlings (Bourgeon et al., 2013;
Bustnes et al., 2013; Dauwe et al., 2006; Olssa@t. e2000). In the present study, we aimed
to investigate variations of OHC concentrationplasma from white-tailed eagle nestlings
sampled from two locations in two consecutive ye&scondly, we aimed to explore if
variation in dietary proxiesst°C andd*N) and biological variables (such as body mass or
age of the nestlings) could account for parts ef spatial and temporal variation of these
OHCs. As the diet is the major source of OHCs, wmeeted to find a strong influence of the
dietary proxies presenting increased plasma OHQh imicreasingd™N (higher trophic
position) and increasing>C (more marine prey). Thus, we also expected td §ome
variation in OHCs in nestlings from the two locasoas habitat differences may also
influence the diversity of prey species at the texcations. No differences were expected
between the two sampling years, as to the authaos/ledge there are no local sources of
OHCs at the two locations. We also expected to Hiigther concentrations in plasma of older

and/or larger nestlings as OHCs have a high patieiioti bioaccumulation.

2. Materials and methods

The plasma OHC concentrations of the individual GH@ve been published previously
(Lgseth et al., 2019, supplementary informatiom),ai study where three non-invasive
matrices (plasma, feathers and preen oil) fromevtatied eagle nestlings were compared for
legacy and emerging contaminants. In the curramysthowever, we present unpublished
data on stable isotopes and age to explain vamiatidhe plasma concentrations X®CBs,

>OCPsXPBDEs an®PFASs.

2.1. Field sampling
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The study was conducted on 70 white-tailed eagl&tlings from two archipelagos in
Norway, Smgla (63.3-63.5°N; 7.8-8.2°E) and Steiff&h7-67.9°N; 14.6-14.8°E), during the
breeding seasons of 2015 and 2016 (Figure 1). Wwplsd 35 nestlings both from Smgla
(2015:n = 13, 2016 = 22) and Steigen (2015:= 14, 2016n = 21) during June-July of
these two years (see supplementary information Table S1 for details). Sex determination
was based upon morphometric measurements (Helatdak, 2007), while the age was
estimated from the tail feather length. The taditfeer emerges at day 30 and grows with 4.95
+ 0.02 (mean = SE) mm per day (Pers. comm. Tomdggard). Wing length has previously
been used to estimate age in Swedish white-tadgteeanestlings (Helander et al., 2007) and
in our study wing and tail feather length were sglg correlatedrio = 0.94,p < 0.01). All
nestlings were sampled for body feathers and bésodlescribed in Lagseth et al. (2019). Body
feathers were gently pulled from the dorsal regamal stored in polyethylene zipper bags
(VWR, USA) at -20°C. A blood sample of 8 mL wasleoted in heparinised vacutainers
through brachial venepuncture. The blood samples wentrifuged at 869 and plasma was
transferred into cryogenic tubes (Nalgene®, USAJ atored at -20 °C. The sampling was
approved by the Norwegian Food Safety Authority {iN&ynet; 2015/6432 and 2016/8709)
and the handling of the birds were in accordandd whe regulations of the Norwegian

Animal Welfare Act.
2.2. Stable isotope analyses

We analysed stable isotopes in the body feathengshwwere still growing at the time of
sampling and thus connected to the blood circutatib the calami. The analysis for bulk
feather stable carboh*C and**C) and nitrogen isotope&*! and*°N) was performed at the
MARE Centre of the University of Liege, Belgium.e@h stainless steel and glass tools were
used to remove the calami and for washing and nguttif the feathers. The tools were

thoroughly rinsed with acetone between individukksathers were washed in Milli-Q water

4
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as previously described in Lgseth et al. (2019)etnove dust and particles from feathers
prior to analysis. A subsample of homogenised @ddrather material (mean = SD: 1.55 +
0.37 mg) was wrapped into a tin combustion cup amalysed for its elemental and isotopic
composition using a vario MICRO cube elemental ys&l (Elementar Analysen systeme
GmBH, Hanau, Germany) coupled to an IsoPrimel10Grapsctrometer (Isoprime, Cheadle,
United Kingdom). The reported stable carbon anhgén isotope values are expressed as
(%0) relative to the international reference staddaVienna PeeDee Belemnite and
atmospheric nitrogen, respectively. An internalerehce material (i.e., glycine) was

measured for every tenth sample and revealed areaispn (1 SD) of 0.23 and 0.16 %o for

o13C anddo™N, respectively.
2.3. Chemical analyses

The targeted compounds for the analyses were polycated biphenyls (PCB; IUPAC
congeners 28, 49, 52, 74, 95, 99, 101, 105, 118, 138, 149, 153, 156, 170, 171, 177, 180,
183, 187, 194, 206 and 209) and organochlorinategstiggdes (OCPs;
dichlorodiphenyltrichloroethanepp’-DDT), p,p’-dichlorodiphenyldichloroethylenepp’-
DDE), three isomers of hexachlorocyclohexame, (3-, and y-HCH), chlordanes axy
chlordane (OxC)cis-nonachlor (CN) andransnonachlor (TN)) and hexachlorobenzene
(HCB)). The targeted legacy flame retardants werglgpominated diphenyl ether (PBDE)
congeners; BDE 28, 47, 99, 100, 153, 154 and 188.targeted perfluoroalkyl substances
(PFASs) were perfluorobutanoic acid (PFBA), penfapentanoic acid (PFPeA),
perfluorohexanoic acid (PFHxA), perfluoroheptanamd (PFHpA), perfluorooctanoic acid
(PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDcA),
perfluoroundecanoic acid (PFUNnA), perfluorododedcaacid (PFDoA), perfluorotridecanoic
acid (PFTrA), perfluorotetradecanoic acid (PFTepgrfluorooctanesulfonamide (PFOSA),

perfluorobutane sulfonate (PFBA), perfluoropentaswdfonate (PFPS), perfluorohexane

5
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sulfonate (PFHxS), perfluoroheptane sulfonate (PF&HHInear and branched perfluorooctane

sulfonate (Lin-PFOS and Br-PFOS) and perfluoronersuifonate (PFNS).

Procedures used for the extraction and quantifindtave been described in detail by Lagseth
et al. (2019). In brief, PCBs, OCPs and PBDEs wexwacted from plasma using
hexane:dichloromethane (DCM, 1:1, v:v) and fraciiion was performed on Supelclédn
ENVI Florisil cartridges (500 mg, 3 mL, Supelco® &ytical). The compounds were eluted
with n-hexane:DCM and quantified according to Eulaersaket(2011a). PFASs were
extracted with methanol using the Powley methodw{Ep et al., 2005) and quantified
according to Herzke et al. (2009). Internal stadglaand their recoveries are listed in Sl
(Table S2 and S3) and ranged from 30 — 118 % f@¥&1 — 90 % for OCPs, 74 — 97 % for
PBDEs, and 59 — 101 % for PFASSs. For every terdBrph sample, a procedural blank was
analysed to control for background contaminatiow. dontrol the performance of the
analytical method of the PCB, OCP and PBDE exivacta human plasma sample from the
Arctic Monitoring and Assessment Programme intenfatory exercise was analysed for
every 28' sample. For PFAS extractions, a commercially abéél human plasma sample
(NIST SRM 1957, USA) was analysed for every terimgle. No background contamination
was encountered in the blanks for any of the aedly&-ASs. For legacy POPs not detectable
in the blanks, the limits of quantification (LOQskre set to ten times the signal-to-noise
ratio of sample runs or were calculated as thraedithe standard deviation of the procedural
blanks for each compound. For PFASSs, the LOQs wel®ulated as three times the signal-
to-noise ratio of the procedural blanks for eactmgound. The LOQs for all compounds are
available in the SI (Tables S4-S6). Concentratiohall compounds are given on a wet

weight basis.

2.4. Statistical analyses
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The statistical analyses were performed using B.4:2, R Development Core Team, 2008).
The compounds that could be quantified in more B@86 of the samples within each year
and location were 14 PCB congeners (CB 99, 101, 108, 138, 153, 156, 170, 171, 177,
180, 183, 187 and 194), seven OCPs (OxC, TN, gN;DDE, p,p-DDT, HCB andp-
HCH), five PBDE congeners (BDE 47, 99, 100, 153 &Bd) and eight PFASs (Br-PFQOS,
Lin-PFOS, PFOA, PFNA, PFDcA, PFUnA, PFDoA and PRJr(Table 1 and Table S7).
Data below the limit of quantification (LOQ) weraibstituted with LOQ * detection
frequency (Voorspoels et al., 2002) for each compotrofiles of the compounds included
in the statistical analyses are available in Figbte Due to the structure of the data, with two
to three chicks in some nests, only statisticatBem thenlme Linear and nonlinear mixed
effect models package (Pinheiro et al.,, 2018) wapplied and nest identity was always
included as a random variable to avoid pseudoraphic of nestlings within nests. Statistical

significance was assumedoat 0.05.

Due to collinearity between compounds within eachtaminant group (Table S8 and S9),
compounds were summed)(per group ¥14PCBs,X;0CPs,XsPBDEs andZsPFASS) for
statistical modelling. All variables were investig@ for influential outliers, normality and
homoscedasticity (Zuur et al., 2010). Variableg thare not normally distributed were log
transformed to meet criteria of parametric staistifo ensure normality of the residuals of
the model, two outliers were removed from the OC&defling. These outliers were two
young individuals sampled in Steigen in 2015 (4an@ 52.4 days old) which also had the

highest plasma concentrations of OCPs (46.3 aririffmL, respectively).

Age was included as an explanatory variable, inkstédbody mass or body condition due to
multicollinearity. It is important to note that daoestling was only sampled once and to
investigate the true variation with increasing ages preferred to sample the same

individuals repeatedly. A detailed description bk tcalculation of body condition and

7
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correlations between age, body mass and body comaian be found in the SI. Body mass,
size and age are all correlated when the nestirggrowing, but body mass may show large
variations between sexes and on an individual lduel to different climates, habitats, diets
and parental experience. Age presents a more stab&ble as it, on an individual level, can

only increase, regardless of sex and diet.

Correlations between lg@ contaminant groups, agé->C andd™N were investigated using
Pearson correlation coefficient test. A strong elation was detected betwe&fiN ands**C
(r70=0.76,p < 0.01, Figure S3), but both variables were inetuth the first model selection
as they represent trophic position and dietary a@murespectively. To investigate temporal
and spatial variation of,4PCBs,%;0CPs,2sPBDEs,ZsPFASs, age¢™*C ands™N, linear
mixed effect analyses of variance (Lme-Anovas) wagpplied with location, year and the
interaction between location and year as explapatarables (Table S10). Tukey’s honestly
significant difference (HSD) post hoc test was &uplto investigate differences in age

between locations and years.

To investigate how age and the dietary proxies omatribute to the observed temporal and
spatial variation, we performed linear mixed effemdels for each compound group. The
initial full model included location, year, the émaction between location and year, aga\l
andd™C. The most parsimonious models were selected usiaikes Information Criterion
for small sample sizes (AICc). Each model was a®lyfor variance inflation factors (VIF)
with a threshold of VIF < 3 to identify problems tiicollinearity among explanatory
variables (Zuur et al., 2009, 2010). The modelctizla showed that the effect 6©°N was
only significant with the presence &FC in the model, and VIF values f6f°N were over 3
for some of the models. This may be due to theifsignt correlation detected between the
two stable isotopes. For the final model selectiva,therefore chose to include orf{’C,

age, location, year and the interaction betweemtioc and year. Model selection was

8



197  performed on models fitted with maximum likeliho@dL), while parameters were estimated
198  using restricted maximum likelihood (REML). Modelith AAICc < 2 are discussed below.
199  In addition to AICc, marginal pseudd*RR2,; explaining the variation of the fixed factors)
200 and conditional pseudo?RR2; explaining the variation of both fixed and randéawtors)

201  were extracted according to Nakagawa and Schie(26ét3).

202 3. Results and discussion

203 3.1. Organohalogenated contaminants

204  The compound groups found with the highest mediah weight concentrations in plasma
205 were PFASs > PCBs > OCPs > PBDEs. Within each camghgroup, the compounds with
206 the highest concentrations were linear PFOS (3.88.85 ng/mL), CB 153 (0.21 — 26.27
207 ng/mL), p,p-DDE (0.48 — 47.61 ng/mL) and BDE 47 (0.01 — 1.8fmL), respectively
208 (Table S7). The concentrations Bf4PCBs, £;0CPs, 2sPBDEs andXsPFASs (Table 1,
209  Figure S2A) were lower than or within the same eaafjthose previously reported in plasma
210 from white-tailed eagle nestlings from Norway (Bwes et al., 2013; Eulaers et al., 2011a,

211 2011b, 2013, 2014; Gomez-Ramirez et al., 2017).
212 3.2. Nestling age and dietary proxies

213  The age span of the nestlings varied significab#fween locations and years, although the
214  nestlings were sampled within the same two calend®ks each year (Table 1, Figure S2B).
215 In 2015, the nestlings from Smgla were on averdyeagys old, which was 15 days older
216 than those from Steigen (z = 3fb< 0.01). The Smgla nestlings sampled in 2015 ke

217 13 days older than those sampled at Smgla andeBteai?016 (z = 3.2 — 3.4,< 0.01, Table
218 S10). In 2016, there were no significant age diffiees between the nestlings sampled at

219 Smgla and Steigen. We also found significantly &igh®N and¢*°C, as well as narrower
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dietary niches, in nestlings from 2015 than in imeg$ from 2016 (fz,44)= 8.8 and 4.9p <
0.01, respectively, Figure S3, Table 1). The resalso showed that the nestlings from
Steigen fed on a diet more enrichedIN than those from Smala (R4 = 15.7,p < 0.01,
Figure S3), indicating that the Steigen nestlings/have been feeding on a higher trophic
position. The temporal variation found for bothld¢aisotopes may indicate a slight change
in prey species between the two years at bothitmtatWithin both years, some birds from
Smgla and Steigen had’C values lower than -20 %. which can indicate infice of more
terrestrial prey in their diet (Fry, 2006). This sveoherent with the observed prey remains
around their nests, which, besides from fish amdbisds, consisted of terrestrial species such
as greylag gooseA(ser anser hare Lepus timidusand hedgehog€(inaceus europaelis
The interannual dietary changes reported here a@reimcommon for opportunistic feeders
such as white-tailed eagles (Inger and Bearhop8R@3 it can correspond to variations in

availability of prey species (Nadjafzadeh et &01@).
3.3.  Model selection to best explain OHC variation

The model selection confirmed age and diet as itapbmpredictors for the temporal and

spatial variation of legacy OHCs observed in th@ahanalyses (Table S10) as they were
included in all the most parsimonious models forBBCOCPs and PBDEs (Table 2, see
Table S11 - S13 for all competing models). For P&A® the other hand, only age was
selected as an important predictor for the obseteeyboral and spatial variation (Table S10)
as it was included in all the most parsimonious et®dor PFASs variation (Table 2, see
Table S14 for all competing models). It is impottém note that these results are statistical
models which estimates the OHC variation and ineortb investigate the true OHCs

variation with increasing age, repeated samplingesessary.

3.3.1 Legacy OHC variation

10
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Contrary to our hypothesis, the models fi;PCBs, £;OCPs andXsPBDEs indicated
significantly lower concentrations of legacy OH@solder nestlings and in nestlings with a
diet more enriched if’C (i.e. more marine prey; Figure 2). Some of thesmlels also
included location, year and the interaction betwieeation and year, which contributed to a
better fit of the model. The results of the Ime-Aashowed significant temporal and spatial
variation in PCB, OCP and PBDE levels (Table Sh@ever when we accounted for age
and diet in the model selection, the temporal gradial variations for PCBs and PBDEs were
not significant anymore (Table 2). It was only BfOCPs that the estimates indicated
significantly higher concentrations in nestlingsnfr Steigen than those from Smgfa<
0.01), as well as significantly higher concentnatin nestlings from Steigen in 2015 than in
2016 p = 0.03). In contrast to what was observed3dpiPCBs andsPBDEs, the effect of
age was not statistically significant f&,OCPs f; = 0.012,p = 0.07). However, it is
important to mention that for these models two lté tyoungest and most contaminated
individuals were excluded from the analyses to ensormality of the residuals, and that the
inclusion of these outliers resulted in a signfificaffect of age ox;OCPs (1 = 0.018,p =
0.03). This should therefore be considered in titerpretation of the estimates of @ CP

models.
3.3.1.1 Influence of age

The inverse relationship between plasma legacy @bientrations and age at sampling
found in the present study was in accordance wehipus reports for CB 153 amdp’-DDE
in plasma of white-tailed eagle nestlings (Bustaesal., 2013), plasma levels of PCBs and
PBDEs in great titFarus majoy nestlings (Dauwe et al., 2006) and liver concarmns of
PCBs,p,p’-DDE and HCB in European shaghalacrocorax aristotelisnestlings (Jenssen et
al., 2010; Murvoll et al., 2006). In contrast, &ypus study on white-tailed eagle nestlings

did not find decreased PCB pyp’-DDE concentrations in plasma of older nestlings$on

11
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et al., 2000), neither did a study of PBDEs in plasof bald eagle Haliaeetus
leucocephalusnestlings (Guo et al., 2018). The nestlings fribr@ present study were on
average 69 days old (range: 44 — 87 days old),ewhibst of the nestlings from Olsson et al.
(2000) were less than 57 days old (range: < 36 ddys old). The nestlings investigated in
Guo et al. (2018) were on average 46 days old ¢aB§ — 56 days old). The significant
effect of age in the present study may be duedaaytkater age span, larger sample size and
homogenous age classes of the nestlings. Thusyiajomore time for growth dilution or
changes in metabolic capability/excretion in oldeestlings and a higher statistical

probability to detect such changes.

Even though nestlings are continuously exposed HC®through their diet, a study on
experimental feeding of great skua chicksefcorarius skuafound that their contaminant
load was more influenced by maternal than tropraogfer regardless of diet (Bourgeon et
al., 2013). A study of paired egg and plasma sasnpfebald eagles from the Great Lakes
between 2000 and 2012 found that egg concentratibR8DES were over 30 times higher
than the plasma concentrations of nestlings fromsdime nests (Guo et al., 2018). Nygard
and Polder (2012) also found very high concentngtiof PCBs (mean: 2839 ng/g fresh
weight (fw)) andp,p’-DDE (mean: 950 ng/dw) in white-tailed eagle eggs sampled in
Norway between 2005 and 2010. Although egg andn@asoncentrations cannot be directly
compared, these reported concentrations were deveids higher than the plasma
concentrations found in the present study. As catnagons in plasma reflect internal
concentrations in the nestling, we propose thatdiereasing legacy OHC concentrations
with increasing age may be due to growth dilutidn noaternally derived compounds

deposited with high concentrations in the eggs.

3.3.1.2 Influence of diet
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Our results also indicated decreashigPCBs,X7;0CPs andsPBDEs concentrations with
increasings™C, which corresponds with previous reports of deses in CB 153),p’-DDE

and HCB in white-tailed eagle nestlings with dietsre enriched in°C (Bustnes et al.,
2013). Bustnes et al. (2013) explained this retetigp by the depletetfC levels found in
lipids compared to proteins (Post et al., 2007) andgested that the diet of the more
contaminated nestlings may have contained mord-fiph prey, such as gulld dridae),
which may also have contained higher concentradtsomagnifying OHCs (Bustnes et al.,
2013). Surprisingly, the more contaminated nestlifrgm Smgla were feeding on a lower
trophic position (depleted itPN) and terrestrial prey remains surrounding theistrwhich
were located more inland on the island. The comtanti concentrations in these nestlings
may therefore have been highly influenced by malgrrderived OHCs (Bourgeon et al.,
2013). White-tailed eagles have been reported &am@h their diet in the winter according to
the availability of prey species (Willgohs, 198#)is therefore possible that the mothers of
these nestlings have fed on a diet more enrichégids, containing higher concentrations of
OHCs, during the winter months and before egg yBuch seasonal dietary changes of the
mothers may influence the concentrations of legae\Cs in their eggs and subsequently in
their nestlings (Bourgeon et al., 2013). In cortiratable isotopes deposited in the keratin in
nestling feathers originate mostly from their caetd not from maternal transfer (Bearhop et
al., 2002). Although we cannot be certain whetliehsa dietary change has taken place, one
should always keep in mind that the stable isot@medysed in feathers only reflect the diet

in the period during which they were grown (Bearkogl., 2002).

A study on bald eagle nestlings also found #i3€ was generally a better predictor of legacy
OHC concentrations thail°N in eagles from marine environments, even whervtioestable
isotope ratios were correlated (Elliott et al., 20IThis was confirmed by the results in the

current study as the final model selection didinoludes™N and no significant correlations
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were found between'N and the OHC groups. However, significant positieerelations
betweens™N or trophic level and several legacy POPs have lieend in previous studies
on both white-tailed eagle (Bustnes et al., 2013aé&rs et al., 2013, 2014) and bald eagle

nestlings (Elliott et al., 2015).
3.3.2. PFAS variation

Contrary to the legacy OHCs models, the model®fohSs indicated no significant effect of
5C on PFAS concentrations in plasma and the mostimpanious model included age,
location and year (Table 2, Figure 3). These resukre not unexpected as PFASs, have
different physicochemical properties than legacyG3Hand may therefore have different

exposure routes and toxicokinetics (Lau et al.,7200
3.3.2.1 Influence of age

Interestingly, we found opposite age-related effédot PFASs compared to PCBs, OCPs and
PBDEs. This confirms our initial hypothesis thatder nestlings have higher plasma
concentrations than younger nestlings. Similar éases with age have previously been
reported for PFOS in white-tailed eagle nestlingastnes et al., 2013) and for PFNA and
PFUNA in bald eagle nestlings (Route et al., 20lMontrast to the legacy OHCs, the PFAS
concentrations in the present study were similathtise found in Norwegian white-tailed
eagle eggs sampled between 2005 and 2010 (me&wné/s. fw; Nygard and Polder, 2012).
Concentrations of maternally deposited compoundsdiluted in nestlings during growth
regardless of their physicochemical properties (Bes et al., 2013). Although egg and
plasma concentrations cannot be directly compatieese results and the higher PFAS
concentrations found in older nestlings suggestgimoous dietary intake as an important

PFASSs source in the present study, rather thanrnateansfer.
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3.3.2.2 Spatial variation

The model estimates also indicated significantigher PFAS concentrations in nestlings
from Steigen than in those from Smgla (Tablg 2, 0.01). At the same time, significantly
higher 8*°N were detected in nestlings from Steigen thanlingstfrom Smgla as well as
significant correlations between PFAS concentratiandd™C (r;o = 0.25,p = 0.03) and
O™N (r70 = 0.44,p < 0.01). Thus, we cannot exclude trophic posiisran important factor
influencing this PFAS variation. Nevertheless, Himsence of stable isotopes in the most
parsimonious PFAS models corresponds with previepsrts in plasma from Norwegian
white-tailed eagle nestlings (Bustnes et al., 20@8mez-Ramirez et al., 2017) and several
seabirds (Gebbink et al., 2011; Haukas et al., 2003t et al., 2013; Miller et al., 2015;

Vicente et al., 2015).
3.3.2.3 Temporal variation

The model also indicated significantly higher PFé@centrations in nestlings sampled in
2015 than in 2016, at both locations (Tablep2< 0.01). This interannual variation
corresponds with a previous study on white-tailemle nestlings from Troms and
Vesteralen, Norway in 2011 and 2012 (Sletten et 2016). The authors of that study
suggested dietary differences as the main reasomh& variation (Sletten et al., 2016),
which corresponds with the present study as weddsected significant differences in stable
isotopes between years. Interestingly, the diffeedmetween 2015 and 2016 in PFAS plasma
concentrations in the present study also correspoevith reports on PFASs in air, where
higher concentrations of several PFASs were fourdrae monitoring stations in Norway in
2015 compared to 2016 (Bohlin-Nizzetto et al., 2@3ahlin-Nizzetto and Aas, 2016). Thus,
yearly differences in long range transport of PFARd its precursors may play a role, as

they can be subsequently taken up into the food (k#sude et al., 2011) and their top
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predators (Bustnes et al., 2015). To our knowletlyggre are no significant PFAS sources at
the two locations that may influence PFASs conegiatns in the white-tailed eagle nestlings.
However, due to the significantly higher stabletege values in nestlings from 2015 and
correlation betweew™N values and PFAS concentrations, we suggest a ipatin of

PFAS exposure from long range transport and dietanyces as important factors explaining

this temporal variation.

4. Conclusions

In the present study, we report age as one of th&t important predictors for spatial and
temporal variation of OHCs in plasma from whitdddi eagle nestlings from Smgla and
Steigen, Norway. It is important to note that tresthngs in the present study were only
sampled once, and that the models were based oltsré®m nestlings ranging from 44 to
87 days old. Our results indicated lower plasmeceantrations of PCBs, OCPs and PBDEs,
and higher concentrations of PFASs in nestlingspsaginat an older age. The variations of
PCBs, OCPs and PBDEs were also significantly erpthiby the dietary carbon source
(6™C), indicating that nestlings feeding on diets emed in*C, such as marine or lipid rich
prey, had lower plasma concentrations of these oomgs. The stable isotope ratio of
nitrogen §°N) indicated that nestlings from Steigen were fegdit a higher trophic position
than those from Smgla, although it was of less mamce in explaining the OHC variations.
We also found higher stable isotope ratios in meglsampled in 2015 compared to 2016
which may suggest dietary differences. The presardy demonstrates the importance of
taking age into consideration when investigating @ldoncentrations in bird of prey
nestlings, regardless of the sample matrix (asngtroorrelations were found between
concentrations of PCBs, OCPs and PBDEs in featiplmsma and preen oil; see Lgseth et

al., 2019). Our results also indicate that diet roamtribute to variations in plasma OHC
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389  concentrations, especially for PCBs, OCPs and PBiIDEspportunistic birds such as the

390 white-tailed eagle.
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Table 1: Median, min and max values of stable isotopes fbmdy feathers, age and sum of PCBs, OCPs, PBDE®BAGs detected in plasma of white-tailed eagle
nestlings sampled in Smgla and Steigen (Norwagpitb and 2016. A full list of concentration datatiee individual compounds can be found in Lasétl.g2019).

Smgla Steigen
2015 2016 2015 2016
n=13 n=22 n=14 n=21
unit median min max median Min max median min ma; median min max

s&C %o -18.56 -20.82 -17.15 -19.02 -20.79 -17.15 -68.6 -19.24 -17.73 -19.11 -20.34 -18.33
=N %o +13.82 +12.45 +15.07 +13.39 +11.54 +15.28 +44.5 +13.89 +15.17 +13.96 +13.43 +14.73
Age days 80.51 64.75 87.37 66.77 52.22 81.92 64.65 44.34 84.75 70.61 50.40 81.92
¥..PCBS ng/mL 2.00 0.82 8.47 4.86 1.86 34.52 5.12 2.95 H9.p 5.79 1.58 35.92
¥,0CP$ ng/mL 2.01 0.89 6.28 2.75 1.05 15.33 4.75 2.80 %21l 5.79 1.31 12.96
*sPBDES ng/mL 0.10 0.06 0.46 0.16 0.05 1.51 0.34 0.1 264 .230 0.03 0.73
TsPFASS ng/mL 25.69 10.29 46.65 9.18 4.58 13.2p 31.80 18.3652.94 12.76 7.21 32.90

75.4PCBs: CB 99, 101, 105, 118, 138, 153, 156, 170, 171, 180, 183, 187 and 194
b5,0CPs: OXC, TN, CNp,p™-DDE, p,p-DDT, HCB andg-HCH
°3sPBDESs: BDE 47, 99, 100, 153 and 154

95gPFASs: Br-PFOS, Lin-PFOS, PFOA, PFNA, PFDcA, PFURBDOA and PFTriA



Table 2: Model estimates from the most parsimonious modefdCc < 2) explaining the variation af;,PCBs,2;0CPs X;PBDEs andgPFASs in plasma of white-tailed
eagle nestlingsn(= 70) from Smgla and Steigen. The table inclublesiodel intercepy(), model estimategsy), significance valuespj, and marginal pseudo?RR%,) and
conditional pseudo-R(R2). The year variable (Yr) represents 2016 and lopatiariable (Loc) represents Steigen. Beta estsnfatbow the order of the factors in the
models. Statistical significance € 0.05) is marked with *.

Compound | Explanatory variables Bo ' B> B3 B ps | p-values AAICc R?, R?

group

*.,PCBs ~age $C + Loc -3.07 | -0.03 | -0.36 | 0.43 <0.01*; 0.01*; 0.08 0.00 0.28 | 0.89
~ age +°C -2.61 |-0.03 | -0.35 <0.01*; 0.01* 0.81 0.22 |0.89
~age ©'°C + Loc + Yr + Loc:Yr | -3.66 | -0.03 |-0.35 | 1.03 | 0.57 |-0.95 | 0.01* 0.02*; 0.01*; 0.12;0.06 | 1.03 0.34 |0.89

¥,0CP4 ~age ©°C + Loc + Yr + Loc:Yr | -5.00 | -0.01 |-0.36 [ 0.91 [0.13 |-0.80 | 0.07; <0.01* <0.01%; 0.62: 0.03* 0.00 0.37 | 0091
~6%C + Loc + Yr + Loc:Yr -5.71 |-0.35 | 1.07 | 0.28 | -0.98 <0.01*; <0.01*; 0.23; <0.01* 0.15 0.37 | 0.88

>-PBDEs ~age $°C -6.71 | -0.03 | -0.38 <0.01*; <0.01* 0.00 0.22 |0.86
~age ©'°C + Loc + Yr + Loc:Yr | -8.39 | -0.02 |-0.43 | 0.87 | 0.14 |-0.86 | 0.02*; <0.01* 0.03* 0.70; 0.08 | 0.46 0.32 | 0.86
~ age ©'°C + Loc -7.07 | -0.03 | -0.38 | 0.31 <0.01*; <0.01*; 0.19 0.54 0.25 | 0.86
~ age +0°C + Yr -7.28 | -0.03 | -0.43 | -0.31 <0.01*; <0.01*; 0.23 0.83 0.23 | 0.86
~age ©'°%C + Loc + Yr -7.65 | -0.03 | -0.43 | 0.31 |-0.31 <0.01* <0.01*; 0.19; 0.22 1.34 0.27 | 0.86

TsPFASs ~age + Loc + Yr 1.66] 002 054 -0.80 <9.80.01%; <0.01* 0.00 0.73 | 0.93

& Two outliers were removed from these models,68.
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Figure 1: Map of Norway (A) showing the two white-tailed eagdopulations in the study, Smgla (B) and
Steigen (C). Nests sampled in 2015 are indicatedroles and 2016 by triangles, at both locations.

Figure 1: The most parsimonious model for variationXfPCBs concentrations (logng/mL) in plasma of

white-tailed eagle nestlings from Smgla and Steigee Table 2). The individual observations arsgmed as

dots in the figure. The line and confidence intépr@sent the model which estimates a significauréase in

¥.4/PCB levels with increasing agp € 0.01) and increasing’>C values j§ = 0.01) in the nestlings’ feathers.
The model also included location, however the ¢ffeas not statistically significanp(= 0.08) and therefore
not presented here.

Figure 2: The most parsimonious model for variation3aPFASs concentration (lggig/mL) in plasma of
white-tailed eagle nestlings from Smgla and Steigdorway (see Table 2). The individual observatians
presented as dots in the figure. The line and denfie interval present the model which estimateim@ease
in ZgPFAS levels with increasing age € 0.01) and shows significant differences betwgsars p < 0.01) and
locations p < 0.01).
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Highlights:

» Significant temporal and spatial variations were found for all compound groups

* Agewasthe most important predictor for contaminant variation in nestling plasma
» Concentrations of legacy PCBs, OCPs and PBDEs decreased with age

» Concentrations of PFASs increased with age

.« oC significantly predicted the variation of legacy PCBs, OCPs and PBDES



