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Repeated stressors in adulthood increase the rate
of biological ageing
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Abstract

Background: Individuals of the same age can differ substantially in the degree to which they have accumulated
tissue damage, akin to bodily wear and tear, from past experiences. This accumulated tissue damage reflects the
individual’s biological age and may better predict physiological and behavioural performance than the individual‘s
chronological age. However, at present it remains unclear how to reliably assess biological age in individual
wild vertebrates.

Methods: We exposed hand-raised adult Eurasian blackbirds (Turdus merula) to a combination of repeated immune
and disturbance stressors for over one year to determine the effects of chronic stress on potential biomarkers of
biological ageing including telomere shortening, oxidative stress load, and glucocorticoid hormones. We also
assessed general measures of individual condition including body mass and locomotor activity.

Results: By the end of the experiment, stress-exposed birds showed greater decreases in telomere lengths.
Stress-exposed birds also maintained higher circulating levels of oxidative damage compared with control birds.
Other potential biomarkers such as concentrations of antioxidants and glucocorticoid hormone traits showed
greater resilience and did not differ significantly between treatment groups.

Conclusions: The current data demonstrate that repeated exposure to experimental stressors affects the rate of
biological ageing in adult Eurasian blackbirds. Both telomeres and oxidative damage were affected by repeated
stress exposure and thus can serve as blood-derived biomarkers of biological ageing.
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Introduction
Within populations of wild animals, individuals of the
same age class can show vast variation in physiological
and behavioural performance, as seen in self-maintenance
processes like immune function and DNA repair or the
degree of reproductive investment [1]. Understanding the
causes and consequences of individual variation in behav-
iour and physiology has long been a subject of intensive
research [2], and it has also permeated into the demo-
graphic and medical fields [3,4]. Variation among individ-
uals can arise from differences in genetic quality and
conditions during development, but also from both past
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and current health status and stressful experiences that
may have caused cellular damage akin to bodily wear and
tear. The extent of cellular damage that an individual has
accumulated can affect physiological and behavioural
traits through effects on physical condition, resource
allocation and mortality risk [4-13]. However, although
scientific and popular interest in the genetic, physio-
logical and evolutionary factors underlying an individ-
ual’s biological age has intensified [14-20], it is still
unclear how it can be reliably assessed in wild verte-
brates [20-24].
The mechanisms that underlie ageing (or senescence)

are currently under lively debate [16,18,23,25,26]. One
predominant concept is the oxidative stress theory of
ageing, which assumes that cells continuously generate
endogenous oxygen radicals which, especially when pro-
duced at elevated rates, damage essential molecules such
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as DNA, lipids and proteins [10,14,27-29]. Another popu-
lar concept focuses on the attrition of telomeres [30-34].
Telomeres are repetitive sequences of DNA at the ends of
eukaryote chromosomes that shorten with each replica-
tion event and when reaching a critical length, induce a
permanent arrest in the cell cycle [35,36]. The oxidative
stress theory of ageing and the telomere attrition theory
are mechanistically linked since telomere shortening can
be exacerbated by free radical attack [37]. A third group of
hypotheses, the allostatic load/reactive scope theories
suggest that the adaptive function of the catecholamine
and glucocorticoid hormone systems to cope with dis-
turbances can turn pathophysiological when becoming
chronically over-activated in stressed individuals [38-41].
While these theories are not mutually exclusive and

their proposed mechanisms likely interact in complex
ways [21,22], they suggest potential blood-derived bio-
markers that could serve as indicators of individual
health and cumulative damage in wild populations: mea-
sures of oxidative stress load, telomere dynamics, and
circulating concentrations of glucocorticoid hormones.
While progress is being made in understanding the links
between these markers and biological ageing, most studies
have been limited by concentrating on single variables or
certain physiological systems, or by collecting data cross-
sectionally on a population level. Furthermore, to our
knowledge most work on how stressful experiences in
adulthood affect biomarkers of health and ageing has been
conducted in humans, using correlative rather than ex-
perimental approaches [42]. In non-human vertebrates ex-
perimental studies are increasingly being carried out, but
so far have mostly focused on the effects of stressful expe-
riences early in life (e.g. [43-46]).
To improve our understanding of the factors that

allow the determination of an individual’s accumulated
tissue damage and thus its biological age, we conducted
an experimental study under common garden conditions
on adult Eurasian blackbirds (Turdus merula). To gener-
ate differences in wear-and-tear among adult individuals
with similar ontogenetic experiences (hand-raised birds
kept under standardised conditions from early age on-
ward), we exposed one group of birds to repeated im-
mune and disturbance challenges, while a control group
Figure 1 Timeline of experiment. Treatment types: LPS: LPS injections, C
OX: oxidative stress, HPA: glucocorticoid hormones, CYT: cytokines.
experienced identical conditions but was not subject to
these stressors (Figure 1). Because we did not know the
extent of accumulated tissue damage for each individual
before we began our study, and since organisms in na-
ture are exposed to a variety of stressors, we chose to
apply a combination of the two stressors. In addition,
based on the likely connections among the oxidative
stress, telomere, and allostatic load theories [31], a par-
ticular strength of our approach was to explore all three
of these potential mediators of biological ageing in con-
cert (Figure 1).
Based on the oxidative stress, telomere, and allostatic

load theories and the known relationships among their
peripheral markers, we made the following predictions
for the outcome of our experiment. First, we expected
changes in general indicators of individual condition over
time, such as a decrease in body mass [47] and an increase
in locomotor activity [48]. These two measures are com-
monly used to provide an easy assessment of short-term
changes in individual condition. Second, we expected that
individuals from our stress-exposed group would have
more telomere shortening than control birds by the end
of the experiment. We chose telomere length as a likely
endpoint, because studies in several vertebrate species
including humans have linked both absolute telomere
length as well as telomere shortening rates to individual
life span and disease risk [5,7-9,11,12,49-51]. The im-
pact of stressors on telomeres is thought to be mediated
by pathways involving both glucocorticoid hormones
and oxidative stress [13,26,28,31,46,49,52-55]. Gluco-
corticoid hormones may also increase oxidative stress
and thereby further contribute to telomere shortening
rates [46]. Therefore, since both circulating baseline and
stress-induced glucocorticoid concentrations have been
used traditionally to assess an individual’s responses to
stressors [38,56,57], we thirdly predicted that individuals
from our stress-exposed group would show increased
concentrations of baseline corticosterone (the main gluco-
corticoid in birds), muted peak corticosterone secretion
after disturbance, and a delayed negative feedback (shut-
down of corticosterone secretion once a stressor has
abated). Such traits are typically considered hallmarks of
chronically stressed individuals (e.g., [38,56,57], but see
hron. dist.: chronic disturbance. Biomarker sampling: Tel: telomeres,
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[47]). Fourth, we expected stress-exposed individuals to
display a greater oxidative stress load as oxidative stress
can increase following demanding experiences such as
high physical activity [7,27,58], immune challenges [59-61],
egg production [46,62], or embryonic exposure to stress
hormones [46]. Oxidative stress is thought to affect telo-
mere dynamics on the one hand by directly targeting telo-
meric DNA, which is particularly vulnerable to oxidative
damage [37,63], and on the other hand by damaging tel-
omerase, the enzyme that can rebuild telomeres [24,31,37].
We further predicted that stress-exposed birds will up-
regulate antioxidant defences compared to control birds.
An up-regulation of antioxidant defences may also only
occur initially; as long-term stress exposure may eventually
overwhelm self-maintenance systems.

Results
As a long-term consequence of the treatment, telomere
dynamics of birds from the two groups diverged: while
birds from both treatment groups decreased genome-
wide telomere lengths, stress-exposed birds showed a
stronger decrease in telomere lengths from the begin-
ning to the end of the experiment than control birds
(Figure 2a; all statistical results including notes on trans-
formations are presented in Table 1). All birds decreased
circulating oxidative damage over time (Figure 2b), but
stress-exposed birds showed a less robust decrease than
control birds, thus maintaining comparatively higher
levels of oxidative damage. Plasma non-enzymatic anti-
oxidants decreased (Figure 2c) and glutathione peroxid-
ase concentrations in red blood cells increased over time
(Figure 2d), but there were no differences between groups,
respectively. All birds tended to increase body condition
over time, but there were no group differences (Figure 2e).
However, locomotor activity in the two groups was differ-
entially affected by treatment: control birds decreased
while stress-exposed birds maintained or slightly increased
their activity rates (Figure 2f). We did not detect changes
over time or differences between groups in any measure
of the endocrine stress axis (Figure 2g-k).

Discussion
More rapid decreases in telomere lengths generally indi-
cate a more rapid rate of cellular ageing [30-34]. We found
that chronic stress exposure in hand-raised Eurasian black-
birds resulted in greater telomere loss compared to control
birds, providing experimental evidence that one outcome
of stress exposure in adult blackbirds is an increase in cu-
mulative cellular damage. While we were not able to follow
the survival of our experimental birds, it is possible that
our stress-exposed blackbirds could have suffered a greater
mortality risk. Indeed, previous studies on vertebrate spe-
cies including humans have suggested that individuals
with shorter telomeres or an increased rate of telomere
shortening have shorter life spans [5,7-9,11,12,49-51]. Im-
portantly, while a growing number of studies suggest that
early life stress can hasten telomere loss [43-46], our study
is one of the first experimental tests indicating that stress
in adulthood results in more rapid telomere loss and an
increase in cellular ageing.
Over the course of the current experiment, stress-

exposed birds maintained higher levels of plasma oxida-
tive damage than control birds (Figure 2; Table 1). This
corroborates previous findings in which relationships
between immune challenges, psychological stress and
oxidative damage have been demonstrated [10,28,59-61].
We can currently only speculate as to why there was a
general decrease in plasma levels of oxidative compounds
over time in both groups. It is possible that this decrease
is the result of prolonged captivity (in control birds it was
paralleled by a decrease in locomotor activity). Neverthe-
less, stress-exposed birds showed a significantly smaller
decrease, thus ending up with a higher level of circulat-
ing oxidative compounds than control birds at the end
of the experiment.
We determined circulating concentrations of oxidative

damage and non-enzymatic antioxidants from plasma
while glutathione peroxidase and telomere measures
were obtained from red blood cells. By determining bio-
markers from blood samples we aimed at quantifying
systemic effects of the stressors rather than effects on
specific tissues. Furthermore, this technique enabled us
to repeatedly sample individuals to assess longitudinal
effects of stressful experiences. Plasma and red blood
cells are both components of the same type of connect-
ive tissue and preliminary data show a significant co-
variation of measures derived from blood components
with oxidative processes in other tissues [64]. Also, a co-
variation among oxidative markers of red blood cells
and of plasma similar to those used in the present study
was demonstrated in another songbird species, although
the strength of covariation can change with the intensity
of a challenge [58]. Furthermore, telomere lengths in
blood cells and other tissues are correlated in humans
[65] and birds [66]. Given that both oxidative stress and
telomere measures correlate among tissues, we feel jus-
tified in using markers in blood (cells and plasma) as
proxies for what is happening in the whole organism.
Contrary to our predictions, specific effects of treat-

ment could not be detected in other potential bio-
markers like antioxidants, and all four corticosterone
traits that we assessed (Figure 2; Table 1). There are a
few possible explanations for why our predictions re-
garding these markers were not supported. One possi-
bility is that the benign conditions in captivity might
have mitigated the effects of the stress exposure on these
biomarkers. An alternative explanation could involve the
limited sample sizes, which could have prevented us from



Figure 2 Long-term effects of treatment on potential biomarkers. (a) Telomere length, (b) plasma oxidative damage, (c) plasma non-enzymatic
antioxidant capacity, (d) red blood cell glutathione peroxidase, (e) Scaled Mass Index, (f) locomotor activity, and plasma concentrations of (g) baseline
corticosterone, (h) stress-induced corticosterone, (i) difference in corticosterone between stress-induced levels and concentrations after injection of
dexamethasone (please note that positive values indicate strong (+) negative feedback whereas negative values show weak (−) negative feedback ,
see also arrow), (k) corticosterone after injection of ACTH. Open circles: control group (n = 20), filled circles: stress-exposed group (n = 12). All data are
mean ± 1SEM. Results as derived from LMMs (see text): * interaction time*treament p < 0.05, ^ treatment p < 0.05, # time p < 0.05.
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detecting significant group differences. Indeed, a visual
examination of Figure 2 suggests that both plasma non-
enzymatic antioxidant and red blood cell glutathione
peroxidase concentrations tend to be higher in stress-
exposed compared to control birds, in line with our pre-
diction of an up-regulation of antioxidant processes in
individuals that show higher concentrations of dam-
aging compounds in their plasma. And finally, it is also
possible that some biomarkers indeed were not affected
much by the stress exposure, either because they do not
represent appropriate biomarkers for cumulative tissue
damage or because the organism is resilient and can
cope with the treatment for these specific traits.
Our analyses of the short-term effects of the two

treatment types (Additional file 1: Table S1, Additional
file 2: Table S2) indicated that both treatments (immune
and disturbance challenges) caused significant group di-
vergences in body mass, in plasma oxidative damage and
in cytokines (measured only after immune challenge), but
not in antioxidants or endocrine traits (only measured
after the chronic disturbance treatment). Interestingly,
plasma oxidative damage showed opposite short-term re-
sponses in stress-exposed birds, increasing following LPS
injection (Additional file 1: Table S1) but decreasing fol-
lowing chronic disturbance (Additional file 2: Table S2).
Due to logistical constraints we ended up collecting sam-
ples for plasma oxidative damage following the first injec-
tion of LPS in January 2010, at the beginning of the
experiment (see Figure 1), while plasma oxidative damage
following chronic disturbance were assessed during the last
chronic disturbance period in November 2010 (Additional
file 2: Table S2, Figure 1). While an increase in plasma
oxidative damage following LPS injection is expected
after an activation of the immune system [59-61], a de-
crease following a disturbance stressor is not. However,
this decrease in plasma oxidative damage in stress-
Table 1 Effects of treatment on potential biomarkers

Effect of treat

Genome-wide telomere length (bp) p > 0.28

Plasma oxidative damage (mM H2O2 equivalents) p > 0.2

Plasma non-enzymatic antioxidants (mM HOCl neutralized) p > 0.1

Glutathione peroxidase (U/l hemolysate) p > 0.1

Scaled mass index p > 0.12

Locomotor activity (hops/min.) F(1,32) = 5.18, p

Baseline corticosterone (ng/ml) p > 0.7

Stress-induced corticosterone (ng/ml) p > 0.3

Difference between stress-induced corticosterone and
concentrations after dexamethasone injection (ng/ml)

p > 0.1

Corticosterone after ACTH injection (ng/ml) p > 0.5

Effects of stress-exposure (repeated LPS injections and 10-day chronic disturbance
the beginning and the end of the experiment, as determined from LMM statistics (f
in Figure 2.
exposed birds is actually the result of elevated levels at
the beginning of the chronic disturbance period and a
subsequent decrease to the levels that control birds dis-
played throughout (Additional file 2: Table S2). Hence,
part of this pattern might be explained by stress-exposed
birds having increased levels of oxidative stress at this late
stage of the experiment before the chronic disturbance
started. Why these levels then decreased during the
10 days of disturbance stressor is currently unclear, but
may be related to increased clearance from the circulation
since stress-exposed birds tended to have higher levels of
plasma non-enzymatic antioxidants and red blood cell
glutathione peroxidase than control birds (Additional file
2: Table S2).
Over the course of the year-long experiment, we also

observed changes in general indicators of individual con-
dition. Body mass increased over time, but there were
no discernible differences between the two groups. How-
ever, stress-exposed birds displayed greater locomotor
activity than control birds by the time the experiment
was ended (Figure 2; Table 1). Further experiments are
needed to determine whether increased activity rates are
the end result of exposure to stressors or whether they
also directly contributed to increased oxidative damage
in the stress-exposed group as previously shown in an-
other song bird species ([58]).
Among the strengths of the present study are the ex-

perimental approach but also the repeated assessment of
individuals. Our results confirm that repeated sampling
of focal individuals is important for interpreting studies
on cumulative damage and cellular senescence. In the
present study, many of the potential biomarkers assessed
showed significant changes over time, even in control in-
dividuals (Figure 2). We consider it likely that they chan-
ged as part of the natural ageing process since we aimed
at sampling the birds at the same time of year at the
ment Effect of time Interaction treatment*time

F(1,32) = 28.81, p < 0.0005 F(1,32) = 11.47, p = 0.002

F(1,30.99) = 42.46, p < 0.0005 F(1, 30.99) = 6.84, p = 0.014

F(1,29.75) = 8.49, p = 0.007 p > 0.3

F(1,30.71) = 64.54, p < 0.0005 p > 0.26

F(1,32) = 3.65, p = 0.065 p > 0.7

= 0.03 p > 0.1 F(1,32) = 21.84, p < 0.0005

p > 0.3 p > 0.5

p > 0.4 p > 0.8

p > 0.6 p > 0.7

p > 0.09 p > 0.6

protocols combined) on potential biomarkers (all log-transformed) assessed at
or details see text). Significant effects are highlighted in bold. Data are shown
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beginning and the end of the experiment to control for
any seasonal variation. However, the repeated measures
design allowed us to disentangle effects of time from ef-
fects that were specific to treatment.
Analyses of intra-class correlation coefficients (ICCs;

[67]) of potential biomarkers can provide a measure of
their within-individual repeatability and thus their reli-
ability in indicating an individual’s health. Keeping in
mind the limitations of our data set (limited sample sizes
and number of repeated measurements), ICC analyses
suggested that telomere lengths, scaled mass index and
stress-induced corticosterone concentrations were highly
repeatable traits of individuals (Additional file 3: Table
S3). Plasma oxidative damage and glutathione peroxid-
ase levels also showed significant ICCs, although with
lower coefficients. Hence, since the variables telomere
length and oxidative damage were the ones that showed
significant treatment effects as well as significant repeat-
ability, this suggest that these measures, in particular telo-
mere length, are relevant biomarkers for an individual’s
health and senescence status.

Conclusions
Effects of treatment on telomere dynamics and oxidative
damage were observed in adult, known-age individuals
held under relatively benign conditions in the laboratory
including mild temperatures, absence of predation, and
food ad libitum. Consequences of exposure to stressors
may be more pronounced in free-living individuals that
are exposed to an array of more severe challenges and a
greater limitation of resources than the captive individ-
uals in our study. Other long-term stressors present in
nature, for example social challenges, predation pressure,
infections, parasites, as well as anthropogenic distur-
bances, noise, or pollutants may similarly affect telomere
dynamics and oxidative damage, possibly reducing the
fitness of individuals in the wild. Experimental stress-
exposure resulted in telomere shortening and increased
concentrations of plasma oxidative damage, which to-
gether with the significant repeatability in these measures,
suggest that these traits can serve as biomarkers for health
and senescence in individuals of a passerine bird, and pos-
sibly other taxa as well. Future research will be important
for unravelling the causal connections among the different
biomarkers.

Methods
Study species
The Eurasian blackbirds used for this experiment were
2.5 years old at the start of the experiment (life span in
the wild has been estimated at 1.8-2.8 years, but upon
reaching adulthood, Eurasian blackbirds live can live up
to 17 years [68]). The birds (sample size: 49) were origin-
ally collected in 2007 at an age of 5–11 days from 9 urban
and 9 rural nest (see Additional file 4 for details) and
hand-raised under identical conditions (see [69]). Here we
only analysed data from individuals for which we were
able to obtain data for all biomarkers before and after the
experiment (n = 32, 20 control [11 male, 9 female], 12
stressed [8 male, 4 female] birds). This conservative ap-
proach allowed us to keep the sample size and identity
of birds identical across different types of analyses.
However, analyses of the entire data set (including indi-
viduals for which biomarkers could not be obtained for
all time points) gave similar results. Because of the lim-
ited sample size and the concomitant low power in
complex statistical tests we also refrained from analys-
ing differences in responses to treatment of urban and
rural birds (but see [70]).
Birds were kept in individual recording cages and were

exposed to a simulated local natural photoperiod in
Radolfzell, Germany (see Additional file 4 for details).
Before the experiment started we measured tarsus length
of all birds as a measure of structural size to the nearest
0.1 mm with a dial calliper and body mass with a digital
balance to the nearest 0.1 g. Body mass was assessed re-
peatedly during the experiment, when we caught the birds
for blood sampling. When establishing experimental
groups we made sure that sex and origin were balanced
among control and stress-exposed groups. The stress-
exposed group was exposed to one of two alternating
stress treatments about every 6 weeks (for timeline and se-
quence of treatments see Figure 1): a.) an acute immune
challenge (see below; four times over the course of the ex-
periment), and b.) a chronic stress disturbance regime (see
below; a total of three times; Figure 1).

Stress treatments
We injected a dose of 2.0 μg LPS (Sigma L2880) diluted
in phosphate-buffered saline (PBS) per gram body mass
into the breast muscle (see Additional file 4 for details).
Control birds were injected with PBS only (but only for
the first two periods when cytokine concentrations after
injection were compared between treatment groups).
The concentration of LPS used successfully induces an
acute phase response including fever and sickness be-
haviour in other songbird species [71,72]. For verifica-
tion of LPS injections on cytokine concentrations in this
study see Additional file 1: Table S1.
Our chronic stress disturbance regime represented a

milder version of existing chronic stress protocols for
small passerines (i.e. fewer disturbances per day and
fewer days with disturbances than in [73,74]). Every day,
for 10 consecutive days, we applied each of the following
four treatments to birds in the stressed group, in a ran-
dom order and at random times, but always during day-
light hours: 30 min of chasing (waving a catching net
with a yellow plastic bag attached in front of and over
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the top of the cage for a conspicuous and noisy disturb-
ance), 30 min of crowding (adding 2–3 other birds to a
single cage), 60 min of restraint (putting an individual
into a cloth bag) and 60 min of loud radio playing in the
room. We used this protocol in trying to avoid habitu-
ation to a single stressor.

Biomarkers
In total, stress-exposed birds were subject to 4 immune
challenges and 3 chronic disturbance stress periods dur-
ing the year-long experiment. All control and stress-
exposed birds were sampled for biomarkers at the same
time periods (see Figure 1). Blood samples were col-
lected from the wing vein in heparinised capillary tubes
and stored on ice until centrifugation. The plasma frac-
tion was frozen for later hormone and oxidative stress
analyses, the red blood cells either stored in cryopro-
tectant buffer for telomere analyses or frozen and
stored at −80°C for glutathione peroxidase analyses (see
Additional file 4 for details and sampling times). To de-
termine the long-term effects of treatment, we mea-
sured the oxidative status of plasma and red blood cells
at the beginning (Dec 2009) and at the end of the ex-
periment (Jan 2011, Figure 1). To verify the efficacy of
our treatments and to confirm that our treatments were
capable of inducing changes in oxidative status, blood
samples were collected in October 2010 to assess the
short-term effects of LPS injection on oxidative status,
and in November 2010 samples were collected to assess
the short-term effects of the chronic stress protocol.
Plasma oxidative damage was determined using the

d-ROMs test (Diacron International, Grosseto, Italy).
This assay mostly measures oxidative damage compounds
generated early in the oxidative cascade (i.e., hydroperox-
ides); these compounds are precursors of several end-
products of lipid peroxidation, such as malondialdehyde,
hydroxynonenal and isoprostanes. The reaction of a dilu-
tion series of cumene hydroperoxide with the d-ROM re-
agents was highly linear (range: 0 to 4.5 μM, R2 =
0.9996; physiological values in vertebrates). The OXY-
Adsorbent test (Diacron International) was used to
quantify the ability of plasma non-enzymatic antioxi-
dant compounds (vitamins, carotenoids, uric acid, thiol
proteins) to react in vitro with HOCl (oxidant of patho-
logic relevance in biological systems). The concentra-
tion of glutathione peroxidase in red blood cells was
quantified using the Ransel assay (Randox Laboratories,
Crumlin, UK). For further details on all procedures in-
cluding assay quality see Additional file 4.
Total locomotor activity of individual birds was re-

corded continuously and binned in two-minute-intervals
using passive infrared motion detectors (see Additional
file 4 for more details). For each individual bird, we calcu-
lated mean activity over five complete days during the
same periods (20-24th Jan) at the beginning (2010) and
the end of the experiment (2011). Such averaging of activ-
ity rates was done to limit any unexpected differences in
circadian variations in locomotor activity among individ-
uals and between groups. Comparing the activity levels
between the two groups at the same time of year allowed
us to distinguish whether differences in individual activity
were due to treatment versus age effects while controlling
for possible seasonal changes in activity.
Telomeres were measured with the Telomere Restriction

Fragment (TRF) assay and the procedure was carried out on
whole blood as in previous studies [46], see Additional file 4
for more details, including assay quality). Leukocytes ac-
count for less than 0.2% of the blood volume in birds, and
so TRF measurements largely reflect erythrocyte telomeres.
Our protocol for the assessment of the functioning of

the endocrine stress axis was modified from existing
protocols [73,75,76]. We conducted the stress axis as-
sessment on a subset of individuals from both groups
each day, sampling as many individuals as was feasible
within three minutes of entering the room. Remaining
individuals were sampled on consecutive days in an
identical manner, with sample collection of the entire
study population being completed within a total of 3–4
days for each sampling period (always changing the se-
quence of sampled individuals between each sampling
period). Samples (100 μl blood) for baseline corticosterone
concentrations (BaseCort) were always taken within 3 min
of entering the experimental room. Stress-induced sam-
ples (100 μl blood, StressCort) were taken after 30 min of
restraint in individual cloth bags. Birds then were injected
intramuscularly with a dose of 200 μg/kg dexamethasone
(DEX; stock solution 4 mg/ml, Bela-Pharm, Germany)
dissolved in 0.9% saline (Braun), to induce negative feed-
back and a concomitant reduction in plasma Cort concen-
trations. Blood samples were taken 90 minutes following
injection with DEX (DEXCort, calculated as [StressCort -
corticosterone concentrations after DEX injection] to
determine the strength of negative feedback; please note
that due to this calculation positive values indicate
strong negative feedback while negative values indicate
that corticosterone concentrations after DEX injections
were actually higher than after StressCort). Following
this sample, we injected the individuals intramuscularly
with a dose of 100 IU/kg of adrenocorticotropic hor-
mone (ACTH; Sigma-Aldrich) to assess the maximal
capacity of the adrenal gland to secrete corticosterone.
A final blood sample was taken 30 min following
ACTH injection (ACTHCort). Following this final
blood sample, all birds were returned to their home
cages. We determined plasma hormone concentrations
using radioimmunoassays (see [77], following a double
ether extraction of all samples (see Additional file 4 for
more details including assay quality).
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Statistics
Body condition was calculated using the Scaled Mass Index
[78]. Data were tested for normal distribution and homo-
geneity of variances using a combination of Kolmogorov-
Smirnov and Levene tests as well as visual observations of
histograms of the models’ residuals. Data were then trans-
formed (as indicated in the Results section) appropriately
before statistical analysis.
Short-term effects of the two treatment types on po-

tential biomarkers were analysed separately (for detailed
statistical methods and results see Additional file 4) and
for reasons of divergent sample sizes and sampling times
could not be included with analyses of long-term effects.
To analyse the long-term effects of the treatment, we

compared repeated measurements of individuals from our
two groups taken at the beginning with the ones taken at
the end of the experiment. By analysing samples taken
1 year apart from each other we could eliminate possible
seasonal variations) in telomeres, body mass, oxidative sta-
tus, and stress hormones. We used Linear Mixed Models
(LMMs, using random slopes and random intercepts if
those improved the model fit) as described above, always
including treatment, time, the interaction of treatment
with ‘time’ as fixed factors and individual ID, as well as ID
nested within nest ID as random variables. The variable
‘sex’ and the interactions of ‘sex*time’, ‘sex*group’ and
‘sex*time*group’ were first included but then removed
from the models, as they did not explain a significant
proportion of the variation.
All statistics were done in SPSS v 21.0 (Chicago). Data

are publically available at the Dryad data repository
(https://datadryad.org).

Additional files

Additional file 1: Table S1. Efficacy of the immune challenge.
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