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Abstract 14 

Hyperspectral imaging (HSI) can acquire data in two modes: imaging and spectroscopy, 15 

revealing the spatially-resolved spectral properties of materials. Traditional HSI processing in 16 

the close-range domain primarily focuses on the spectral information with minimal utilisation 17 

of the spatial information present in the data. The present work describes a methodology for 18 

utilising the spatial information present in HSI data to improve classification modelling over 19 

that achievable with spectral information alone. The methodology has been evaluated using 20 

near infrared (NIR) HSI data of sixteen green tea products from seven different countries. 21 
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The methodology involves selecting and sharpening an image plane to enhance the textural 22 

details. The textural information is then extracted from the statistical properties of the grey 23 

level co-occurrence matrix (GLCM) of the sharpened image plane using a moving window 24 

operation. Finally, the textural properties are combined with the spectral information using 25 

one of the three different levels of data fusion, i.e. raw data level, feature level and decision 26 

level. Raw data-level fusion involved concatenating the spectral and textural data before 27 

performing the classification task. The feature-level fusion involved performing principal 28 

component analysis (PCA) on spectral and textural information and combining the PC scores 29 

obtained prior to performing classification. Decision-level fusion involved a majority voting 30 

scheme to enhance the final classification maps. All the classification tasks were performed 31 

using multi-class support vector machine (SVM) models. The results showed that combining 32 

the textural and spectral information during modelling resulted in improved classification of 33 

the sixteen green tea products compared to models built using spectral or textural information 34 

alone.  35 

Keywords: chemical imaging; texture; support vector machine (SVM); grey level co-36 

occurrence matrix (GLCM); data fusion; green tea. 37 

1. Introduction 38 

Computer vision and image processing have benefited from the exploration of spatially-39 

resolved physical properties of materials in analytical chemistry [1]. The combination of 40 

imaging with spectroscopy, known as hyperspectral imaging (HSI), has complemented 41 

imaging by allowing simultaneous exploration of spatial and spectral properties of materials 42 

in a fast and non-destructive way. Although HSI was primarily developed for remote sensing 43 

[2], it is now a well-established technique in close-range laboratory settings [3, 4, 5, 6]. HSI 44 
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has been used for the study of a wide range of food products such as wheat flour [7], olive oil 45 

[8], herbal tea [9], seeds [10], coffee [11], beans [12] and many more [13]. 46 

The information generated by HSI takes the form of hypercubes where the first two 47 

dimensions represent the spatial information of the imaged scene and the third dimension 48 

adds the spectral information to the pixels [12]. The extraction of meaningful information 49 

from the hypercube requires advanced pattern recognition and data modelling. Although, HSI 50 

data is rich in information, not all the information present is needed to perform the data 51 

modelling. The traditional HSI processing approach includes selection of the region of 52 

interest (ROI) over the image plane to extract the relevant spectra. The selected spectra are 53 

then used to perform different types of modelling such as data visualisation, regression, and 54 

classification. The models developed are used to predict the scores for each pixel to represent 55 

prediction or classification maps [14]. This modelling approach aids in visualising the spatial 56 

distribution of the predicted values or classes. However, the complementary information 57 

present in the spatial domain, e.g., texture, is not generally used in the construction of 58 

calibration models based on spectra [15]. In the predecessor of close-range HSI, i.e. remote 59 

sensing, the importance of information present in the spatial domain of HSI is well realised. 60 

In particular, utilising the spatial information to improve classification modelling is widely 61 

employed [16]. The spatial information can be used either pre or post-classification 62 

modelling to improve the classification accuracies and classification maps.  63 

There are some extra benefits to the application of HSI in close-range settings, compared to 64 

the remote-sensing domain, which further motivates the use of spatial information. One of the 65 

benefits is the high spatial resolution of the images, which reduces the number of mixed 66 

pixels in the imaged scene leading to improved image quality. The other is the artificial dark-67 

field illumination used to enhance the contrast of regions where illumination interferes with 68 

the edges, scratches, imprints, slots and elevations over the imaging scene, leading to detailed 69 
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information about the physical features of samples [17]. The spatial information that is 70 

primarily of interest in the case of close-range HSI is textural. Texture can be understood as a 71 

quantitative measure of the arrangement of intensities in a region [18]. Therefore, it is 72 

necessary to calculate texture from statistical analysis of an image plane. There are different 73 

ways of extracting textural information from an image plane. Estimating the grey level co-74 

occurrence matrices (GLCMs) has gained widespread interest in the close-range HSI 75 

processing domain [19, 20, 21, 22, 23, 24, 25]. A reason for its popularity is that the 76 

statistical properties extracted from GLCMs can be used to represent, compare and classify 77 

texture. Since the GLCM-based texture calculation can only be performed on a 78 

monochromatic image, an image at a single wavelength is usually selected from the HS 79 

image and subjected to GLCM analysis [20, 24]. Furthermore, utilising textural information 80 

in conjunction with spectral information can be realised in a data fusion approach to combine 81 

the two types of information at three different levels, i.e., low, middle and high. The low-82 

level data fusion of spectral and textural information utilises the spectral and textural data in 83 

raw form and performs concatenation of the data matrices before the data modelling. Mid-84 

level fusion involves doing some feature transformation prior to performing the fusion such 85 

as utilising principal component analysis (PCA) to capture the most important variation in the 86 

feature vector and later concatenating the scores obtained for the corresponding features. 87 

High-level involves decision-level fusion where the output from different models is usually 88 

fused based on some decision criteria to enhance the final output such as classification maps.  89 

The aim of this work is to present a methodology for fusing spectral and textural information 90 

to improve the modelling of near-infrared (NIR) HSI data. To demonstrate the potential of 91 

fusing textural and spectral information, the classification of sixteen green tea products from 92 

seven different countries was considered. High-quality green tea products are mainly 93 

characterised by the flavour that they impart, which involves two primary sensory 94 
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perceptions, i.e. taste and aroma. The distinct taste and aroma of any tea product are derived 95 

from its geographical origin as they are unique to the climate and soil conditions in which the 96 

plants were grown. Typically, discrimination of green tea products via sensory analysis is 97 

performed using an expert human panel. Sensory analysis involves assessment of tea 98 

products in leaf and/or extracted liquor form on the basis of appearance, colour, aroma and 99 

taste, along with the overall quality of the samples. However, distinguishing tea products 100 

based on sensory analysis is a time-consuming and expensive task as it requires an expert 101 

human panel. Furthermore, sensory analysis is subjective, and it can be inconsistent and 102 

unpredictable owing to physiological and psychological differences between tasters [26]. One 103 

more limitation is that the expert panel cannot be used as an on-line technique for grading of 104 

tea products [27]. In recent years, different analytical techniques have been explored for 105 

assessment of tea products of which HSI is one. NIR HSI, in comparison to visible HSI, 106 

provides access to the chemical information present in samples. NIR HSI has recently been 107 

used to discriminate between different types of tea products [28], although only the spectral 108 

information was used to build the classification models. However, leaf tea products also have 109 

a rich amount of textural detail present in their leaves; such textural information has 110 

previously been used to classify tea products [17, 29]. However, utilising texture alone is not 111 

a robust modelling solution as textural properties are affected by variations in illumination 112 

intensity [30]. Therefore, in this work, we utilise the textural information as supplementary 113 

information to enhance NIR spectroscopy-based classification of green tea products.  114 

2. Material and methods 115 

2.1. Samples  116 
Sixteen green tea samples, differing in geographical origin, were sourced in loose-leaf form 117 

from Unilever R&D, Colworth Science Park, United Kingdom. All the samples were 118 

provided in sealed packaging and were stored at ambient temperature until analysis. All 119 
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samples were green in colour and exhibited some textural differences owing to variations in 120 

the shape and size of the leaves. The sixteen samples originated from seven different 121 

countries: Argentina (one), South India (five), Sri Lanka (two), China (two), Japan (two), 122 

Kenya (three) and Sumatra (one). Imaging experiments were performed by presenting the 123 

sample in a circular black plastic cap (diameter = 3.3 cm, depth = 1.3 cm). The sixteen tea 124 

samples were each analysed in a different cap to avoid any cross-contamination. 125 

2.2. Hyperspectral imaging measurements  126 
Imaging was performed with a push-broom line scan NIR HSI camera (Model name: RED 127 

EYE 1.7) from INNO-SPEC (Nurnberg, Germany). The camera has an InGaAs sensor and 128 

generates a spatial map of 320 x 256 pixels, and has pixel dimensions of 30 x 30 µm2. Images 129 

were acquired over the spectral range of 950 – 1765 nm with a spectral resolution of 3.2 nm. 130 

Two halogen light sources, each with a power of 50 W, were used to illuminate the samples. 131 

For image acquisition, the sixteen tea samples were placed on the translation stage, which 132 

was controlled via an independent stage motor system (Zolix TSA 200 BF). The speed of the 133 

translation stage, 2.5 mm s-1, was optimised using a checkerboard to avoid any distortion in 134 

the shape of the image arising from the overlapping of spectral and spatial information. The 135 

distance from the lens to the translation stage was 15 cm. Prior to acquisition of an image, a 136 

set of white (Spectralon diffuse reflectance standard) and dark references were recorded for 137 

radiometric calibration. Each image comprised more than 2000 pixels (spectra) per individual 138 

green tea sample and was acquired using an integration time of 300 ms. 139 

2.3. Data analysis� 140 

2.3.1. Image pre-processing  141 
Variations in signal arising from illumination intensity, the detector sensitivity and the 142 

transmission properties of the optics were corrected by radiometric calibration utilising dark 143 

and white reference images. The correction was performed for every pixel in the HS image 144 

according to equation (1):  145 
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where, IR is the calibrated reflectance, Iraw is the raw intensity measured from the test sample, 147 

Idark is the intensity of the dark response, Iwhite is the intensity of the uniform white reference, 148 

and i and j are spatial coordinates and k is the wavelength of the image. The spectral range of 149 

the hypercube was reduced from 950 – 1765 nm to 967.11 – 1700 nm to remove noise. A 150 

moving window Savitzky-Golay (SAVGOL) filter [31] (15-point width and second order 151 

polynomial) was applied to each pixel of the image to remove random noise, e.g. spikes, from 152 

spectra. Further, to reduce light scattering effects arising from inhomogeneity of the sample 153 

surface, the spectra were normalised using the standard normal variate (SNV) [32]. 154 

Smoothing and normalisation were performed using the savgol and snv functions, 155 

respectively, from PLS_Toolbox (version 8.11, Eigenvector Research Inc., USA). 156 

2.3.2. Texture estimation 157 
2.3.2.1. Selection of image plane 158 
Textural analysis requires a single image plane to enable extraction of the GLCM properties. 159 

Since some spectral bands are noisy compared to others in HSI, the best image plane can be 160 

chosen on the basis of two different image quality parameters: the peak signal-to-noise ratio 161 

(PSNR) and the structural similarity index measure (SSIM). The PSNR and SSIM were 162 

calculated with respect to the mean image plane (reference image), obtained from averaging 163 

the intensities of pixels along the spectral dimension. The PSNR can be calculated using 164 

equation (2):  165 

 166 

���� = 10	��� !(
"#$�%$&'

()*
)  (2) 167 

 168 
where peakval is either specified by the user or selected from a range that is dependent on the 169 

image datatype (e.g. 255 for a uint8 image) and MSE is the mean square error between the 170 

chosen image plane and the reference image. 171 
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The SSIM [33] is based on the computation of three terms, namely the luminance term (l), 172 

the contrast term (c) and the structural term (s). The overall index is a multiplicative 173 

combination of the three terms calculated by equation (3): 174 

 175 
���+(,, -) = 	 [�(,, -)]$. [1(,, -)]2 . [3(,, -)]4 (3) 176 

where 177 
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 180 
and µx and µy are the local means, and σx and σy are the standard deviations of images x 181 

(reference image) and y (chosen image plane), respectively, σxy is the cross-covariance for 182 

images x and y, >, ?	and	C are exponent terms, which were set to 1, and C1 = (k1L)2, C2 = 183 

(k2L)2 and C3 = C2/2 where k1 = 0.01, k2 = 0.03 and L = 255. The best image plane was 184 

selected based on the maximum PSNR and SSIM.  185 

 186 
2.3.2.2. Sharpening of the image plane 187 
The raw HS images obtained had soft edges owing to the limited focus and/or low spatial 188 

resolution of the camera resulting in low contrast between adjacent pixel intensities. 189 

Therefore, the image plane was sharpened to enhance the textural details. The enhanced 190 

textural details obtained with sharpening should result in more accurate calculation of the 191 

GLCM properties. Typically, the aim of sharpening is to increase the contrast along the edges 192 

where different colours meet. In the present work, the unsharp masking technique was used 193 

to perform image sharpening. This technique sharpens the image by first estimating a 194 

“blurred” negative image mask from the original image, which is then subtracted from the 195 

original image creating an image that is less blurry than the original [34]. Textural analysis 196 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

was then performed on the sharpened image via estimation of the statistical properties of the 197 

GLCM.  198 

 199 
2.3.2.3. Estimating GLCM properties 200 
 201 

Figure 1:  Schematic of the window operation performed for extracting textural features. 202 

The textural information of the image has variations in the greyscale as a function of spatial 203 

position. Different pixels in the image share spatial relationships in terms of greyscale 204 

intensities, which is spatial correlation. A common method to represent the relationship 205 

between greyscale pixels is via GLCMs [19, 20, 21, 22, 23, 24, 25]. The GLCM aims to 206 

describe the textural information present in the image by defining how often pairs of pixels 207 

with a specific value and spatial relationship occur in an image. The GLCM is a square 208 

matrix whose elements represent the probabilities of a pixel being at a distance from another 209 

pixel with a fixed spatial relationship. These values of the elements represent the conditional 210 

probabilities of all pairwise combinations of greyscale levels in the spatial window. Statistical 211 

measures can further be applied to these conditional probabilities to generate the textural 212 

properties. In the present work, twenty different statistical measures were estimated resulting 213 

in twenty different textural information maps. The twenty statistical properties considered 214 

were the correlation, autocorrelation, contrast, cluster prominence, cluster shade, 215 

dissimilarity, energy, entropy, homogeneity, variance, sum average, sum variance, sum 216 

entropy, difference variance, difference entropy, two information measures of correlation, 217 

inverse moment difference, inverse difference normalised and inverse difference moment 218 

normalised. Further information on the use of statistical metrics for estimating textural 219 

properties can be found in [35, 36, 37]. In the present work, the GLCM estimation was 220 

performed utilising the “graycomatrix” command in Matlab (R2016b, Mathworks, USA). A 221 

square window with a size of 11 x 11 pixels2, which was moved over the image plane (see 222 
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Figure 1), was used for the GLCM estimation. The window size was selected based on the 223 

number of pixels required to cover the largest tea leaves, and was an odd number to give 224 

equal coverage of the pixels around the centre pixel. In this process, the greyscale intensity of 225 

the centre pixel was replaced with the estimated textural property of the GLCM. To make the 226 

GLCM uniform around the exterior area of the sample, a patch mask was defined, which 227 

included replacing the individual pixel intensity values by their mean intensities. Textural 228 

analysis resulted in the calculation of 20 image planes corresponding to the 20 statistical 229 

metrics given above; all 20 textural image planes were used in subsequent analysis. 230 

2.3.3. Feature transformation with PCA 231 
In the present work, two PCA models were built to transform the spectral and textural 232 

information separately. The number of principal components was selected such that >99% of 233 

the variance in the data was retained. The PCA decomposition was performed in Matlab 234 

utilising the PLS_Toolbox.  235 

2.3.4. Data fusion scheme 236 
 237 

 238 

Figure 2: Schematic for raw data-level and feature-level fusion. 239 

Once the 20 textural features were obtained from the data, the fusion of textural information 240 

with the spectral information was performed. The scheme for raw data-level and feature-level 241 

fusion is depicted in Figure 2. Raw data-level fusion was performed by concatenating the 242 

texture with the spectral information. In the case of feature-level fusion, two separate PCA 243 

models were constructed to extract the relevant features from the spectral and textural cubes. 244 

The extracted features were then concatenated before performing the classification 245 

modelling. In the case of decision-level fusion, all the classification maps obtained from raw- 246 

and feature-level data fusion were used within a majority voting scheme and the final 247 
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classification map was updated.  248 

2.3.5. Classification with support vector machines  249 
In the chemometrics domain, there are different methods to perform the classification of 250 

spectral features [38]. However, in the image processing domain the support vector machine 251 

(SVM) has gained popularity for the classification of fused spectral and textural information 252 

[39]. Classification of the 16 green tea products was performed using multi-class error 253 

correcting output code (ECOC) models containing SVM binary learners, using a one-versus-254 

one coding design. High dimensional mapping of the data was performed using a quadratic 255 

kernel. For every green tea sample, spectra and/or textural information were extracted from 256 

400 pixels, selected at random from the image, leading to 6400 pixels in total for the 257 

calibration of the classification models. The models were cross-validated with the 10-fold 258 

cross-validation method. This whole calibration procedure was performed with 100 iterations 259 

with the mean validation accuracy and standard deviation recorded. The trained classifiers 260 

were later used to generate the classification maps for the tea samples contained in the image, 261 

which comprised more than 2000 pixels per sample. The ECOC-SVM models were 262 

implemented in Matlab using the Statistics and Machine Learning Toolbox (R2016b). 263 

 264 

3. Results 265 

 266 
 267 

Figure 3: Criteria used for selection of the best image plane on which to perform sharpening and textural analysis: a) SSIM 268 
and b) PSNR for all image planes in the range 967.11 – 1700 nm. 269 

Figure 3 presents the SSIM and PSNR obtained for each HSI image plane in the range 967.11 270 

– 1700 nm. It can be seen in Figure 3(a), that the SSIM value was highest for the image plane 271 

at 1381 nm. The higher the SSIM value, the more similar the image of interest is to the 272 
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reference image. For example, an SSIM value of one signifies that the image is exactly the 273 

same as the reference image, whereas, a SSIM value of zero indicates that there is no 274 

similarity between the image plane and the reference image. In Figure 3(b), it can be seen 275 

that the image plane at 1381 nm also has the highest PSNR value. A high PSNR value 276 

indicates that there is more information present (relative to the noise) in the image plane at 277 

1381 nm compared to image planes at other wavelengths. The image plane corresponding to 278 

1381 nm is presented in Figure 4(a). Figure 4(b) presents the same image plane after 279 

sharpening. It can be seen that before sharpening, the image plane is blurred, however, this is 280 

reduced after sharpening and the textural details are more evident. 281 

 282 
 283 

Figure 4: Greyscale images produced using the image plane at 1381 nm (a) without and (b) with sharpening. 284 

 285 
 286 

 287 
Figure 5: Mean classification accuracies (in percent) of the 16 green tea products obtained for the calibration samples 288 
(pixels) using models built with raw data and PCA features. In both cases, models were built using spectral information 289 

alone, textural information alone and fused spectral and textural information. The error bars denote ± 1 standard deviation 290 
(n = 100). 291 

Figure 5 presents the mean classification accuracies of the 16 green tea products obtained for 292 

the calibration samples (pixels) using multi-class SVM models developed with spectral and 293 

textural information. The accuracies are presented as the mean ± one standard deviation for 294 

100 iterations. Confusion matrices showing classification accuracies for individual classes 295 

obtained using raw data and feature-level SVM models are given in Figures S1 and S2, 296 

respectively, of the Supplementary Material. It can be seen from Figure 5 that the models 297 

built with the spectral information alone were more accurate than those constructed using 298 

only textural information. Combining textural information with spectral information resulted 299 

in an improvement in the model accuracy. Improvements were observed for both raw data-300 

level fusion as well as feature-level fusion. The model accuracy for fusion of data at the raw 301 
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level was higher compared than that at the feature level. It could be that the features extracted 302 

using PCA contain less information than the raw data. The features were selected so as to 303 

retain 99% of the variance in the data whereas the raw data retains all of the information. and 304 

therefore, this could account for the higher accuracy of the raw data models. Use of 305 

supervised feature selection algorithms such as partial least squares discriminant analysis 306 

(PLS-DA) could improve the performance of the feature-level models. 307 

 308 
Figure 6: Classification maps for the 16 green tea products obtained from SVM modelling of (a). raw spectral information, 309 

(b). raw textural information, and (c). concatenated raw spectral and textural information. 310 

 311 
 312 

Figure 7: Classification maps for the 16 green tea products obtained from SVM modelling of (a). PCA features extracted 313 
from spectral information, (b). PCA features extracted from textural information, and (c). concatenated PCA features from 314 

spectral and textural information. 315 

 316 
 317 

Figure 8: Classification maps for the 16 green tea products obtained from decision-level data fusion, using a majority voting 318 
scheme, of the six classification maps obtained from SVM modelling of spectral information, textural information, and 319 

spectral and textural information using raw data (Figure 6) and PCA features (Figure 7). 320 

 321 
Figure 6 and Figure 7 presents the classification maps for the 16 green tea products obtained 322 

from application of the raw data and feature-level SVM models, respectively, to the complete 323 

image. Every circular object in the classification maps is a different green tea sample, 324 

comprising more than 2000 pixels per sample, and the different colours reflect different 325 

classes. In Figure 6, the three classification maps were obtained from three different SVM 326 

models built using raw spectral data (Figure 6a), raw textural data (Figure 6b) and 327 

concatenated raw spectral and textural data (Figure 6c). Similarly, in Figure 7 the three 328 

classification maps were obtained from three different SVM models built using the scores 329 

obtained from PCA of spectral data (Figure 7a), the scores obtained from PCA of textural 330 

data (Figure 7b) and the concatenated scores obtained from separate PCA models of spectral 331 

and textural data (Figure 7c). Figure 8 provides the output of a majority voting scheme 332 

performed on all six classification maps, i.e., three from the raw data (Figure 6) and three 333 
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from the extracted features (Figure 7). Majority voting was performed by assigning the pixel 334 

value to the class that occurred most frequently in all six classification maps. It can be seen 335 

from visual inspection of Figures 6, 7 and 8 that improved classification maps (i.e. an 336 

increase in the number of pixels inside the circular area belonging to the same class) were 337 

obtained for models built using fused spectral and textural information. This improvement 338 

can be quantified by calculating the percentage of correctly classified pixels as shown in 339 

Figure 9. It can be seen that the highest values were obtained for models built using raw data-340 

level fusion (~84%), followed by decision-level fusion (~83%), with the least number of 341 

correctly classified pixels obtained using feature-level data fusion (~78%). Fusion of spectral 342 

and textural information at all levels (raw, feature and decision) gave improved model 343 

accuracies compared to spectral or textural information alone at the relevant level (i.e. raw or 344 

PCA features) leading to an improvement in the classification maps. These results are 345 

consistent with HSI studies of meat products [20, 21, 23, 24, 25] where improved 346 

classification or property prediction was obtained with models built using both spectral and 347 

textural information. 348 

 349 

 350 
 351 

 352 
Figure 9: Percentage of pixels correctly identified in the classification maps for the 16 green tea products obtained using six 353 

different SVM models and decision-level fusion by majority voting. 354 

4. Conclusions 355 

The spectral and spatial domains of HSI generate complementary information, and 356 

synergistic processing of the information can lead to enhanced classification model 357 

accuracies and improved classification maps. The present work fused spectral and textural 358 

data at three different levels to demonstrate the usefulness of textural information in HSI for 359 

classification of green teas. The highest classification accuracy (97.30 ± 0.12% for the 360 
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calibration samples) was obtained using the raw data-level fusion, which was superior to that 361 

obtained for feature-level data fusion. In this case, feature extraction resulted in information 362 

loss. However, use of supervised feature selection methods, such as PLS-DA, could improve 363 

the performance of the feature-level models. Decision-level fusion provided classification 364 

maps of comparable quality to those obtained using raw data-level fusion. In conclusion, the 365 

extracted textural information is always complementary as it can support the development of 366 

enhanced understanding of the samples and further model improvement. However, it should 367 

be noted that the decision to use the textural information in data modelling has to be based on 368 

the samples imaged, as samples with high textural information can contribute positively to 369 

model improvement whereas model with no such textural details will merely increase the 370 

computation load. Therefore, the methodology developed will be useful in the assessment of 371 

a variety of food products (e.g., tea, spices, meat and fruit) where consideration of both 372 

spectral and textural information is required for, e.g., quality control and counterfeit 373 

detection.  374 
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Figure 1 : Schematic of the window operation performed for extracting textural features. 506 
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Figure 2: Schematic for raw data-level and feature-level fusion. 522 
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 532 

(a)                                                                           (b) 533 

Figure 3 : Criteria used for selection of the best image plane on which to perform sharpening 534 
and textural analysis: a) SSIM and b) PSNR for all image planes in the range 967.11 – 1700 535 
nm. 536 

 537 

 538 

 539 

Figure 4 : Greyscale images produced using the image plane at 1381 nm (a) without and (b) 540 
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with sharpening. 541 

 542 

 543 
Figure 5 : Mean classification accuracies (in percent) of the 16 green tea products obtained 544 
for the calibration samples (pixels) using models built with raw data and PCA features. In 545 
both cases, models were built using spectral information alone, textural information alone 546 
and fused spectral and textural information. The error bars denote ± 1 standard deviation (n = 547 
100). 548 
 549 

 550 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 551 
 552 

Figure 6 : Classification maps for the 16 green tea products obtained from SVM modelling of 553 
(a). raw spectral information, (b). raw textural information, and (c). concatenated raw spectral 554 
and textural information. 555 
 556 

 557 

 558 
 559 
Figure 7 : Classification maps for the 16 green tea products obtained from SVM modelling of 560 
(a). PCA features extracted from spectral information, (b). PCA features extracted from 561 
textural information, and (c). concatenated PCA features from spectral and textural 562 
information. 563 
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 565 
 566 

Figure 8 : Classification maps for the 16 green tea products obtained from decision-level data 567 
fusion, using a majority voting scheme, of the six classification maps obtained from SVM 568 
modelling of spectral information, textural information, and spectral and textural information 569 
using raw data (Figure 6) and PCA features (Figure 7). 570 
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 571 
 572 
Figure 9 : Percentage of pixels correctly identified in the classification maps for the 16 green 573 
tea products obtained using six different SVM models and decision-level fusion by majority 574 
voting. 575 
 576 
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Figure 1 : Schematic of the window operation performed for extracting textural features. 
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Figure 2: Schematic for raw data-level and feature-level fusion. 
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(a)                                                                           (b) 

Figure 3 : Criteria used for selection of the best image plane on which to perform sharpening 

and textural analysis: a) SSIM and b) PSNR for all image planes in the range 967.11 – 1700 

nm. 
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Figure 4 : Greyscale images produced using the image plane at 1381 nm (a) without and (b) 

with sharpening. 
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Figure 5 : Mean classification accuracies (in percent) of the 16 green tea products obtained 
for the calibration samples (pixels) using models built with raw data and PCA features. In 
both cases, models were built using spectral information alone, textural information alone 
and fused spectral and textural information. The error bars denote ± 1 standard deviation (n = 
100). 
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Figure 6 : Classification maps for the 16 green tea products obtained from SVM modelling of 
(a). raw spectral information, (b). raw textural information, and (c). concatenated raw spectral 
and textural information. 
 

 

 

 
 

Figure 7 : Classification maps for the 16 green tea products obtained from SVM modelling of 
(a). PCA features extracted from spectral information, (b). PCA features extracted from 
textural information, and (c). concatenated PCA features from spectral and textural 
information. 
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Figure 8 : Classification maps for the 16 green tea products obtained from decision-level data 
fusion, using a majority voting scheme, of the six classification maps obtained from SVM 
modelling of spectral information, textural information, and spectral and textural information 
using raw data (Figure 6) and PCA features (Figure 7). 
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Figure 9 : Percentage of pixels correctly identified in the classification maps for the 16 green 
tea products obtained using six different SVM models and decision-level fusion by majority 
voting. 
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Research highlights 

 

• Green tea products were analysed by near infrared hyperspectral imaging 

• Textural information was extracted from the grey level co-occurrence matrix 

• Textural properties were fused with near-infrared spectral information 

• Data fusion improved the classification accuracy for green tea products 


