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Abstract

Hyperspectral imaging (HSI) can acquire data in twodes: imaging and spectroscopy,
revealing the spatially-resolved spectral propsrtiematerials. Traditional HSI processing in
the close-range domain primarily focuses on thetsgleinformation with minimal utilisation

of the spatial information present in the data. phesent work describes a methodology for
utilising the spatial information present in HSkaléo improve classification modelling over
that achievable with spectral information alonee Thethodology has been evaluated using

near infrared (NIR) HSI data of sixteen green teadpcts from seven different countries.



22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

The methodology involves selecting and sharpenmgrage plane to enhance the textural
details. The textural information is then extracteain the statistical properties of the grey
level co-occurrence matrix (GLCM) of the sharpeimadge plane using a moving window
operation. Finally, the textural properties are borad with the spectral information using
one of the three different levels of data fusioe, raw data level, feature level and decision
level. Raw data-level fusion involved concatenatthg spectral and textural data before
performing the classification task. The featureelefusion involved performing principal
component analysis (PCA) on spectral and textafarmation and combining the PC scores
obtained prior to performing classification. Deorsilevel fusion involved a majority voting
scheme to enhance the final classification mapisthl classification tasks were performed
using multi-class support vector machine (SVM) nisd&he results showed that combining
the textural and spectral information during madegliresulted in improved classification of
the sixteen green tea products compared to modétauking spectral or textural information

alone.

Keywords: chemical imaging; texture; support vector machi®eéNl); grey level co-

occurrence matrix (GLCM); data fusion; green tea.

1. Introduction

Computer vision and image processing have benefitat the exploration of spatially-
resolved physical properties of materials in anedytchemistry [1]. The combination of
imaging with spectroscopy, known as hyperspectnahging (HSI), has complemented
imaging by allowing simultaneous exploration of tigdaand spectral properties of materials
in a fast and non-destructive way. Although HSI wemarily developed for remote sensing

[2], it is now a well-established technique in @daange laboratory settings [3, 4, 5, 6]. HSI
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has been used for the study of a wide range of fwoducts such as wheat flour [7], olive oil
[8], herbal tea [9], seeds [10], coffee [11], befr’y and many more [13].

The information generated by HSI takes the formhgpercubes where the first two
dimensions represent the spatial information of ithaged scene and the third dimension
adds the spectral information to the pixels [12jeTextraction of meaningful information
from the hypercube requires advanced pattern rettogand data modelling. Although, HSI
data is rich in information, not all the informatigresent is needed to perform the data
modelling. The traditional HSI processing approactludes selection of the region of
interest (ROI) over the image plane to extractrilevant spectra. The selected spectra are
then used to perform different types of modellingts as data visualisation, regression, and
classification. The models developed are usedddigtrthe scores for each pixel to represent
prediction or classification maps [14]. This moaeglapproach aids in visualising the spatial
distribution of the predicted values or classesweleer, the complementary information
present in the spatial domain, e.g., texture, it generally used in the construction of
calibration models based on spectra [15]. In thel@pcessor of close-range HSI, i.e. remote
sensing, the importance of information presenta gpatial domain of HSI is well realised.
In particular, utilising the spatial information bmprove classification modelling is widely
employed [16]. The spatial information can be usather pre or post-classification
modelling to improve the classification accura@es classification maps.

There are some extra benefits to the applicatioHSJIf in close-range settings, compared to
the remote-sensing domain, which further motivéitesuse of spatial information. One of the
benefits is the high spatial resolution of the iesmgwhich reduces the number of mixed
pixels in the imaged scene leading to improved engqugality. The other is the artificial dark-
field illumination used to enhance the contrastegfions where illumination interferes with

the edges, scratches, imprints, slots and elevsatwar the imaging scene, leading to detailed
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information about the physical features of samglegd. The spatial information that is
primarily of interest in the case of close-rangd i4Sextural. Texture can be understood as a
guantitative measure of the arrangement of intessiin a region [18]. Therefore, it is
necessary to calculate texture from statisticalysmaof an image plane. There are different
ways of extracting textural information from an geaplane. Estimating the grey level co-
occurrence matrices (GLCMs) has gained widesprederast in the close-range HSI
processing domain [19, 20, 21, 22, 23, 24, 25].eAson for its popularity is that the
statistical properties extracted from GLCMs canubed to represent, compare and classify
texture. Since the GLCM-based texture calculaticem conly be performed on a
monochromatic image, an image at a single wavdtemgytusually selected from the HS
image and subjected to GLCM analysis [20, 24]. lkemhore, utilising textural information
in conjunction with spectral information can belis=d in a data fusion approach to combine
the two types of information at three differentdisy i.e., low, middle and high. The low-
level data fusion of spectral and textural infonmatutilises the spectral and textural data in
raw form and performs concatenation of the datarioest before the data modelling. Mid-
level fusion involves doing some feature transfdramaprior to performing the fusion such
as utilising principal component analysis (PCALapture the most important variation in the
feature vector and later concatenating the scob¢sireed for the corresponding features.
High-level involves decision-level fusion where thetput from different models is usually
fused based on some decision criteria to enharcknil output such as classification maps.
The aim of this work is to present a methodologyfising spectral and textural information
to improve the modelling of near-infrared (NIR) H&ta. To demonstrate the potential of
fusing textural and spectral information, the diesstion of sixteen green tea products from
seven different countries was considered. Highigualreen tea products are mainly

characterised by the flavour that they impart, Wwhimvolves two primary sensory
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perceptions, i.e. taste and aroma. The distinte tasd aroma of any tea product are derived
from its geographical origin as they are uniquéclimate and soil conditions in which the
plants were grown. Typically, discrimination of gretea products via sensory analysis is
performed using an expert human panel. Sensoryysisalnvolves assessment of tea
products in leaf and/or extracted liquor form ome thasis of appearance, colour, aroma and
taste, along with the overall quality of the samplelowever, distinguishing tea products
based on sensory analysis is a time-consuming &pensive task as it requires an expert
human panel. Furthermore, sensory analysis is ctiNge and it can be inconsistent and
unpredictable owing to physiological and psychataydifferences between tasters [26]. One
more limitation is that the expert panel cannoubed as an on-line technique for grading of
tea products [27]. In recent years, different atedy techniques have been explored for
assessment of tea products of which HSI is one. N8, in comparison to visible HSI,
provides access to the chemical information presesamples. NIR HSI has recently been
used to discriminate between different types ofpemducts [28], although only the spectral
information was used to build the classificationd®ls. However, leaf tea products also have
a rich amount of textural detail present in thesaves; such textural information has
previously been used to classify tea products 297, However, utilising texture alone is not
a robust modelling solution as textural properaes affected by variations in illumination
intensity [30]. Therefore, in this work, we utilisiee textural information as supplementary

information to enhance NIR spectroscopy-based iflzestson of green tea products.

2. Material and methods

2.1. Samples
Sixteen green tea samples, differing in geograplaiggin, were sourced in loose-leaf form

from Unilever R&D, Colworth Science Park, United ngdom. All the samples were

provided in sealed packaging and were stored atiearnibemperature until analysis. All
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samples were green in colour and exhibited someraxdifferences owing to variations in
the shape and size of the leaves. The sixteen sangiginated from seven different
countries: Argentina (one), South India (five), &anka (two), China (two), Japan (two),
Kenya (three) and Sumatra (one). Imaging experisnamre performed by presenting the
sample in a circular black plastic cap (diamete3.3cm, depth = 1.3 cm). The sixteen tea
samples were each analysed in a different capdim @ny cross-contamination.

2.2. Hyperspectral imaging measurements

Imaging was performed with a push-broom line scdR NSI cameraflodel name: RED
EYE 1.7) from INNO-SPEC (Nurnberg, Germany). Thenesaa has an InGaAs sensor and
generates a spatial map of 320 x 256 pixels, angpba| dimensions of 30 x 30m°. Images
were acquired over the spectral range of 950 — hindsvith a spectral resolution of 3.2 nm.
Two halogen light sources, each with a power ofABOvere used to illuminate the samples.
For image acquisition, the sixteen tea samples wkxeed on the translation stage, which
was controlled via an independent stage motor sy§Z®lix TSA 200 BF). The speed of the
translation stage, 2.5 mnT,swas optimised using a checkerboard to avoid astprtion in
the shape of the image arising from the overlappingpectral and spatial information. The
distance from the lens to the translation stage 1asm. Prior to acquisition of an image, a
set of white (Spectralon diffuse reflectance statidand dark references were recorded for
radiometric calibration. Each image comprised mbas 2000 pixels (spectra) per individual

green tea sample and was acquired using an integtane of 300 ms.

2.3. Data analysis(]

2.3.1. Image pre-processing
Variations in signal arising from illumination imisity, the detector sensitivity and the

transmission properties of the optics were corcebie radiometric calibration utilising dark
and white reference images. The correction wasopedd for every pixel in the HS image

according to equation (1):
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Law(i,jk)~dark(i,jk) (1)
Iwhite(ijk)~Idark(i,jk)

@i jy =

where, |l is the calibrated reflectande,, is the raw intensity measured from the test sample,
lsark IS the intensity of the dark respongg;.. is the intensity of the uniform white reference,
andi andj are spatial coordinates akds the wavelength of the image. The spectral rarige
the hypercube was reduced from 950 — 1765 nm t01267 1700 nm to remove noise. A
moving window Savitzky-Golay (SAVGOL) filter [31]16-point width and second order
polynomial) was applied to each pixel of the imt@geemove random noise, e.g. spikes, from
spectra. Further, to reduce light scattering effectsing from inhomogeneity of the sample
surface, the spectra were normalised using thedatdnnormal variate (SNV) [32].
Smoothing and normalisation were performed using $hvgol and snv functions,
respectively, from PLS_Toolbox (version 8.11, Engertor Research Inc., USA).

2.3.2. Texture estimation

2.3.2.1. Selection of image plane
Textural analysis requires a single image planentable extraction of the GLCM properties.

Since some spectral bands are noisy compared éosoithh HSI, the best image plane can be
chosen on the basis of two different image qualdayameters: the peak signal-to-noise ratio
(PSNR) and the structural similarity index meas(88IM). The PSNR and SSIM were
calculated with respect to the mean image plarfer@ece image), obtained from averaging
the intensities of pixels along the spectral dinemsThe PSNR can be calculated using
equation (2):

2
PSNR = 10 logy,(*=o0) ()

wherepeakval is either specified by the user or selected frarmnge that is dependent on the
image datatype (e.g. 255 for a uint8 image) IS is the mean square errbetween the

chosen image plane and the reference image.
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The SSIM [33] is based on the computation of thierens, namely the luminance terf), (
the contrast termcj and the structural terms)( The overall index is a multiplicative

combination of the three terms calculated by equa({3):

SSIM(x,y) = [1(x, )] [c(x, MIE. [s(x, ] (3)

where

] _ 24xpy + G

(x) Y) - 2 + 2 + C
Ux :uy 2

20,0, + C,
ctry) = 0% +0f+C,

Oxy + C3

s(x,y) = xy—c

0x0y + (3

and ux andyy are the local means, amg and o, are the standard deviations of images
(reference image) ang (chosen image plane), respectivady, is the cross-covariance for
imagesx andy, «, 8 and y are exponent terms, which were set to 1, @nd (kiL)? C, =
(koL)? and C; = C,/2 wherek; = 0.01,k, = 0.03 andL = 255. The best image plane was

selected based on the maximum PSNR and SSIM.

2.3.2.2. Sharpening of the image plane
The raw HS images obtained had soft edges owirthddimited focus and/or low spatial

resolution of the camera resulting in low contrbgtween adjacent pixel intensities.
Therefore, the image plane was sharpened to enfhtheceextural details. The enhanced
textural details obtained with sharpening shoulsltein more accurate calculation of the
GLCM properties. Typically, the aim of sharpenisgo increase the contrast along the edges
where different colours meet. In the present wthk, unsharp masking technique was used
to perform image sharpening. This technique sharpbe image by first estimating a
“blurred’ negative image mask from the original image, whghhen subtracted from the

original image creating an image that is less pltihhan the original [34]. Textural analysis
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was then performed on the sharpened image via &stimof the statistical properties of the

GLCM.

2.3.2.3. Estimating GLCM properties

Figure 1: Schematic of the window operation performed for extracting textural features.

The textural information of the image has variagiom the greyscale as a function of spatial
position. Different pixels in the image share spatelationships in terms of greyscale
intensities, which is spatial correlation. A commorethod to represent the relationship
between greyscale pixels is via GLCMs [19, 20, 24, 23, 24, 25]. The GLCM aims to
describe the textural information present in thege by defining how often pairs of pixels
with a specific value and spatial relationship actuan image. The GLCM is a square
matrix whose elements represent the probabilities mxel being at a distance from another
pixel with a fixed spatial relationship. These \edwf the elements represent the conditional
probabilities of all pairwise combinations of gregke levels in the spatial window. Statistical
measures can further be applied to these conditimmmdabilities to generate the textural
properties. In the present work, twenty differaatistical measures were estimated resulting
in twenty different textural information maps. Theenty statistical properties considered
were the correlation, autocorrelation, contrastuster prominence, cluster shade,
dissimilarity, energy, entropy, homogeneity, vac@nsum average, sum variance, sum
entropy, difference variance, difference entropyp tinformation measures of correlation,
inverse moment difference, inverse difference ndised and inverse difference moment
normalised. Further information on the use of stat@l metrics for estimating textural
properties can be found in [35, 36, 37]. In thespreé work, the GLCM estimation was
performed utilising the “graycomatrix” command inaNab (R2016b, Mathworks, USA). A

square window with a size of 11 x 11 piXelahich was moved over the image plane (see
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Figure 1), was used for the GLCM estimation. Thadew size was selected based on the
number of pixels required to cover the largestlézeves, and was an odd number to give
equal coverage of the pixels around the centrd.dixé¢his process, the greyscale intensity of
the centre pixel was replaced with the estimatetlital property of the GLCM. To make the

GLCM uniform around the exterior area of the samplgpatch mask was defined, which

included replacing the individual pixel intensitalues by their mean intensities. Textural
analysis resulted in the calculation of 20 imaganpt corresponding to the 20 statistical

metrics given above; all 20 textural image planesawsed in subsequent analysis.

2.3.3. Feature transformation with PCA
In the present work, two PCA models were built tansform the spectral and textural

information separately. The number of principal poments was selected such that >99% of
the variance in the data was retained. The PCA rdposition was performed in Matlab

utilising the PLS_Toolbox.

2.3.4. Data fusion scheme

Figure 2: Schematic for raw data-level and feature-level fusion.

Once the 20 textural features were obtained froendtita, the fusion of textural information

with the spectral information was performed. Thieesue for raw data-level and feature-level
fusion is depicted in Figure 2. Raw data-level dusivas performed by concatenating the
texture with the spectral information. In the cadédeature-level fusion, two separate PCA
models were constructed to extract the relevantfea from the spectral and textural cubes.
The extracted features were then concatenated ebeb@rforming the classification

modelling. In the case of decision-level fusion tla classification maps obtained from raw-

and feature-level data fusion were used within goritg voting scheme and the final
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classification map was updated.

2.3.5. Classification with support vector machines

In the chemometrics domain, there are differenthods to perform the classification of
spectral features [38]. However, in the image pseirey domain the support vector machine
(SVM) has gained popularity for the classificatioinfused spectral and textural information
[39]. Classification of the 16 green tea productaswperformed using multi-class error
correcting output code (ECOC) models containing ShiNary learners, using a one-versus-
one coding design. High dimensional mapping ofdhta was performed using a quadratic
kernel. For every green tea sample, spectra ameitural information were extracted from
400 pixels, selected at random from the image,ihgado 6400 pixels in total for the
calibration of the classification models. The madelere cross-validated with the 10-fold
cross-validation method. This whole calibrationqa@ure was performed with 100 iterations
with the mean validation accuracy and standardadiewvi recorded. The trained classifiers
were later used to generate the classification rfaphe tea samples contained in the image,
which comprised more than 2000 pixels per samplee ECOC-SVM models were

implemented in Matlab using the Statistics and Ntaelh.earning ToolboXR2016b).

3. Results

Figure 3: Criteria used for selection of the best image plane on which to perform sharpening and textural analysis: a) SSIM
and b) PSNR for all image planes in the range 967.11 — 1700 nm.

Figure 3 presents the SSIM and PSNR obtained fdr B&I image plane in the range 967.11
— 1700 nm. It can be seen in Figure 3(a), thaBBM value was highest for the image plane

at 1381 nm. The higher the SSIM value, the moralainthe image of interest is to the
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reference image. For example, an SSIM value of sigifies that the image is exactly the
same as the reference image, whereas, a SSIM whlzero indicates that there is no
similarity between the image plane and the refarantage. In Figure 3(b), it can be seen
that the image plane at 1381 nm also has the high®hlR value. A high PSNR value
indicates that there is more information preseelafive to the noise) in the image plane at
1381 nm compared to image planes at other wavdisngihe image plane corresponding to
1381 nm is presented in Figure 4(a). Figure 4(®sents the same image plane after
sharpening. It can be seen that before sharpetiiagmage plane is blurred, however, this is

reduced after sharpening and the textural deteglsr@re evident.

Figure 4: Greyscale images produced using the image plane at 1381 nm (a) without and (b) with sharpening.

Figure 5: Mean classification accuracies (in percent) of the 16 green tea products obtained for the calibration samples
(pixels) using models built with raw data and PCA features. In both cases, models were built using spectral information
alone, textural information alone and fused spectral and textural information. The error bars denote + 1 standard deviation
(n = 100).

Figure 5 presents the mean classification accisadi¢he 16 green tea products obtained for
the calibration samples (pixels) using multi-cl&#8M models developed with spectral and
textural information. The accuracies are preseagethe mean + one standard deviation for
100 iterations. Confusion matrices showing clasaifon accuracies for individual classes
obtained using raw data and feature-level SVM n®d@egk given in Figures S1 and S2,
respectively, of the Supplementary Material. It d@nseen from Figure 5 that the models
built with the spectral information alone were mamerurate than those constructed using
only textural information. Combining textural infoation with spectral information resulted

in an improvement in the model accuracy. Improvel@ere observed for both raw data-

level fusion as well as feature-level fusion. Thedel accuracy for fusion of data at the raw



302 level was higher compared than that at the fedéwed. It could be that the features extracted
303 using PCA contain less information than the rawvadahe features were selected so as to
304 retain 99% of the variance in the data whereaséaivedata retains all of the information. and
305 therefore, this could account for the higher accyraf the raw data models. Use of
306 supervised feature selection algorithms such asapdeast squares discriminant analysis

307 (PLS-DA) could improve the performance of the featlevel models.

308

309 Figure 6: Classification maps for the 16 green tea products obtained from SVM modelling of (a). raw spectral information,
310 (b). raw textural information, and (c). concatenated raw spectral and textural information.

311

312

313 Figure 7: Classification maps for the 16 green tea products obtained from SVM modelling of (a). PCA features extracted
314 from spectral information, (b). PCA features extracted from textural information, and (c). concatenated PCA features from
315 spectral and textural information.

316

317

318 Figure 8: Classification maps for the 16 green tea products obtained from decision-level data fusion, using a majority voting
319 scheme, of the six classification maps obtained from SVM modelling of spectral information, textural information, and
320 spectral and textural information using raw data (Figure 6) and PCA features (Figure 7).

321

322 Figure 6 and Figure 7 presents the classificatiapsifor the 16 green tea products obtained
323 from application of the raw data and feature-1&&¢M models, respectively, to the complete
324 image. Every circular object in the classificatioraps is a different green tea sample,
325 comprising more than 2000 pixels per sample, amddifferent colours reflect different
326 classes. In Figure 6, the three classification mage obtained from three different SVM
327 models built using raw spectral data (Figure 6@\ rtextural data (Figure 6b) and
328 concatenated raw spectral and textural data (Figeje Similarly, in Figure 7 the three
329 classification maps were obtained from three daifiérSVM models built using the scores
330 obtained from PCA of spectral data (Figure 7a), dberes obtained from PCA of textural
331 data (Figure 7b) and the concatenated scores elt&iom separate PCA models of spectral
332 and textural data (Figure 7c). Figure 8 provides ¢lutput of a majority voting scheme

333 performed on all six classification maps, i.e.ethifrom the raw data (Figure 6) and three
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from the extracted features (Figure 7). Majoritying was performed by assigning the pixel
value to the class that occurred most frequentlgllisix classification maps. It can be seen
from visual inspection of Figures 6, 7 and 8 thapioved classification maps (i.e. an
increase in the number of pixels inside the cincal@a belonging to the same class) were
obtained for models built using fused spectral taxdural information. This improvement
can be quantified by calculating the percentageasfectly classified pixels as shown in
Figure 9. It can be seen that the highest values wletained for models built using raw data-
level fusion (~84%), followed by decision-level s (~83%), with the least number of
correctly classified pixels obtained using featleneel data fusion (~78%). Fusion of spectral
and textural information at all levels (raw, fea&uand decision) gave improved model
accuracies compared to spectral or textural infionalone at the relevant level (i.e. raw or
PCA features) leading to an improvement in the sili@stion maps. These results are
consistent with HSI studies of meat products [2Q, 23, 24, 25] where improved
classification or property prediction was obtaivgith models built using both spectral and

textural information.

Figure 9: Percentage of pixels correctly identified in the classification maps for the 16 green tea products obtained using six
different SVM models and decision-level fusion by majority voting.

4. Conclusions

The spectral and spatial domains of HSI generatmptamentary information, and

synergistic processing of the information can lgad enhanced classification model
accuracies and improved classification maps. Tlesgmt work fused spectral and textural
data at three different levels to demonstrate gefulness of textural information in HSI for

classification of green teas. The highest clasdifhm accuracy (97.30 + 0.12% for the
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calibration samples) was obtained using the raw-tatel fusion, which was superior to that
obtained for feature-level data fusion. In thisesdeature extraction resulted in information
loss. However, use of supervised feature seleehiethods, such as PLS-DA, could improve
the performance of the feature-level models. Deni$evel fusion provided classification
maps of comparable quality to those obtained usamgdata-level fusion. In conclusion, the
extracted textural information is always complenaentas it can support the development of
enhanced understanding of the samples and furtbdelnimprovement. However, it should
be noted that the decision to use the texturarm&bion in data modelling has to be based on
the samples imaged, as samples with high textafaimation can contribute positively to
model improvement whereas model with no such tektdetails will merely increase the
computation load. Therefore, the methodology deyedowill be useful in the assessment of
a variety of food products (e.g., tea, spices, nazat fruit) where consideration of both
spectral and textural information is required ferg., quality control and counterfeit

detection.
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Figure 1 : Schematic of the window operation perfed for extracting textural features.
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Figure 4 : Greyscale images produced using theempéne at 1381 nm (a) without and (b)
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Figure 6 : Classification maps for the 16 greenpealucts obtained from SVM modelling of
(a). raw spectral information, (b). raw texturdbirmation, and (c). concatenated raw spectral
and textural information.
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Research highlights

* Green tea products were analysed by near infrared hyperspectral imaging

* Textural information was extracted from the grey level co-occurrence matrix
e Textural properties were fused with near-infrared spectral information

e Data fusion improved the classification accuracy for green tea products



