Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation

Reference:
Zhang Fei, Vanmeensel Kim, Batuk Maria, Hadermann Joke, Inokoshi Masanao, Van Meerbeek Bart, Naert Ignace, Vleugels Jef. - Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation
DOI: http://dx.doi.org/doi:10.1016/j.actbio.2015.01.037
Handle: http://hdl.handle.net/10067/1244210151162165141
Highly-translucent, Strong and Aging-resistant 3Y-TZP ceramics for Dental Restoration by Grain Boundary Segregation

Fei Zhanga, Kim Vanmeensela, Maria Batukb, Joke Hadermannb, Masanao Inokoshic, Bart Van Meerbeekc, Ignace Naertc, Jef Vleugelsa

a Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg, 44, B-3001 Heverlee, Belgium

b Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

c KU Leuven BIOMAT, Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Kapucijnenvoer, 7, blok a, B-3000 Leuven, Belgium

*Corresponding author. Tel.: +32 16 37 77 38.
E-mail address: fei.zhang@mtm.kuleuven.be (F. Zhang)

Abstract

Latest trends in dental restorative ceramics involve the development of full-contour 3Y-TZP ceramics which can avoid chipping of veneering porcelains. Amongst the challenges are the low translucency and the hydrothermal stability of 3Y-TZP ceramics. In this work, different trivalent oxides (Al\textsubscript{2}O\textsubscript{3}, Sc\textsubscript{2}O\textsubscript{3}, Nd\textsubscript{2}O\textsubscript{3} and La\textsubscript{2}O\textsubscript{3}) were selected to dope 3Y-TZP ceramics. Results show that dopant segregation was a key factor to design hydrothermally stable and high-translucent 3Y-TZP ceramics and the cation dopant radius could be used as a controlling parameter. A large trivalent dopant, oversized as compared to Zr4+, exhibiting strong segregation at the ZrO\textsubscript{2} grain boundary was preferred. The introduction of 0.2 mol\% La\textsubscript{2}O\textsubscript{3} in conventional 0.1-0.25 wt.% Al\textsubscript{2}O\textsubscript{3}-doped 3Y-TZP resulted in an excellent combination of high translucency and superior hydrothermal stability, while retaining the excellent mechanical properties.

Keyword: Ceramic structure; Dental restorative material; Zirconia; Aging; Translucency
1. Introduction

The increased aesthetic demands of patients for both anterior and posterior teeth are driving the development of dental restorative materials from traditional porcelain-fused-to-metal (PFM) to all-ceramic restorations [1, 2]. Yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramics, commonly containing 3 mol% yttria, have been widely accepted as a promising material for fabricating dental crowns and fixed dental prostheses (FDP) because of their superior biocompatibility [3], excellent mechanical properties and high aesthetic potential [4-6]. The brittleness of most dental restorative ceramics limited their use only for small anterior restorations [1]. 3Y-TZP ceramics are tough and strong, allowing the fabrication of larger all-ceramic restorations and in the highly-loaded molar area [4, 7, 8], which is mainly due to the transformation toughening effect of submicrometer sized tetragonal zirconia [9, 10].

However, 3Y-TZP ceramics suffer from low-temperature degradation (LTD), i.e. the spontaneous transformation of the tetragonal to monoclinic ZrO$_2$ phase in the presence of water (hydrothermal aging) [11, 12]. Hydrothermal aging can result in enhanced wear rates with the release of small zirconia particles in the surrounding environment, roughening of the surface finish, aesthetic degradation, loss of mechanical properties and even catastrophic failure [12-14]. Long-term stability of Y-TZP ceramics is therefore crucial for biomaterial applications.

Adding a small amount of alumina has proven to be effective in increasing the aging resistance of 3Y-TZP ceramics [15]. 0.25 wt.% alumina was normally added, but lower amounts of alumina (to 0.1 or 0.05 wt.%) are used in the new generations of high-translucent 3Y-TZP ceramics [5, 16].

The low translucency of conventional 3Y-TZP ceramics is its major drawback to mimic the optical properties of natural tooth enamel [17, 18]. An esthetic porcelain veneer is therefore needed to cover the opaque zirconia. However, chipping or de-bonding of the veneering porcelain from the zirconia
framework is commonly reported in clinics [14, 19]. Although fracture of the strong zirconia substructure is rarely reported, the contribution of strong core materials to the performance of all-ceramics restorations was obviously offset by the veneering fractures [20]. Therefore, high-translucent Y-TZP ceramics are becoming popular in restorative dentistry in order to make full-contour zirconia restorations without the need for aesthetic veneering porcelain [21-23].

Although lowering the amount of alumina addition from 0.25 to 0.1 or 0.05 wt% can increase the translucency, the hydrothermal stability is simultaneously lowered [16, 24]. Moreover, hydrothermal aging of full-contour Y-TZP restorations could be more crucial, since they are in direct contact with the oral fluid. On the other hand, another strategy of increasing the yttria content and introducing cubic phase zirconia was also used to improve the translucency of Y-TZP ceramics [5, 16, 25]. Aging-resistant Y-TZP ceramics can be obtained, but this strategy sacrifices their excellent flexural strength and fracture toughness due to the partial loss of the transformation toughening effect of tetragonal zirconia [5, 26].

Therefore, the aim of this work was to design hydrothermally stable and high-translucent 3Y-TZP ceramics while retaining their inherent excellent mechanical properties.

The macroscopic properties of polycrystalline materials depend on the grain size and the atomic structure and chemistry of the grain boundaries. As a birefringent material, the optical properties of Y-TZPs are strongly influenced by the structure of the grain boundaries [27]. The chemistry of the zirconia grain boundary was reported to be critical for the aging behavior of Y-TZP ceramics [28-30]. Furthermore, the phase composition [31] and grain size [32] of Y-TZP ceramics are controlled by the grain boundary structure, which in turn influences the translucency [5, 33], aging behavior [13] and mechanical properties [34]. Therefore, in this work, we explored the strategy of controlling the
composition of the zirconia grain boundaries at the nanometer level using the atomic radius of an additional dopant oxide as a grain boundary engineering tool.

2. Materials and methods

2.1. Material preparation

Pure tetragonal zirconia was doped with trivalent oxides having a different cation radius Al^{3+} (53.5 pm) $< \text{Zr}^{4+}$ (84.0 pm) $< \text{Sc}^{3+}$ (87.0 pm) $< \text{Y}^{3+}$ (101.9 pm) $< \text{Nd}^{3+}$ (110.9 pm) $< \text{La}^{3+}$ (116.0 pm) [35]. Formulations were made with each of the trivalent oxides (Nd_2O_3 (Chempur, purity of 99.9%), La_2O_3 (Chempur, purity of 99.99%), Sc_2O_3 (abcr GmbH & Co. KG, purity of 99.9%), Al_2O_3 (TM-DAR, purity of 99.99%) by mixing with tetragonal ZrO$_2$ nanopowder (grade TZ-3Y, Tosoh, Japan) on a multidirectional mixer (Turbula type T2C, Basel, Switzerland) for 24 h in ethanol using 5 mm Y-TZP milling balls. The mol% was indicated in the nomenclature except for the Al_2O_3 dopant which was indicated in wt.% (for example 3Y-0.1La means 3 mol% Y_2O_3 and 0.1 mol% La_2O_3, 3Y-0.25Al means 3 mol% Y_2O_3 and 0.25 wt.% Al_2O_3).

The mixed suspension was further processed by bead milling (DISPERMAT®SL, Germany) for 3 h at 5000 rpm using 1 mm ZrO$_2$ beads (grade TZ-3Y, Tosoh, Japan). A reference tetragonal zirconia powder with 0.25 wt.% alumina (grade TZ-3Y-E, Tosoh, Japan) was mixed and bead milled for comparison. Alumina-free 3Y-TZP was made from Tosoh TZ-3Y (grade TZ-3Y, Tosoh, Japan) as a reference material for the translucency measurement. All powders were cold isostatically pressed at 250 MPa for 1 minute and pressureless sintered in air at 1450°C or 1500°C for 2 h. The density of the sintered ceramics was measured according to the Archimedes principle in ethanol.

2.2. Microstructural characterizations

Scanning electron microscopy (SEM, XL-30FEG, FEI, Eindhoven, The Netherlands) was used to characterize the microstructure on polished thermally etched (1250°C for 25 min in air) and Pt-coated
surfaces. The grain size was measured on SEM micrographs using IMAGE-PRO software according to the linear intercept method. At least 1000 grains were counted, and the average results (± standard deviation) were reported without any correction. ANOVA and unpaired two sample t-tests were performed using statistical analysis software (Minitab® 16.2.1, Pennsylvania, USA) to identify significant differences in the mean values between different samples.

Transmission electron microscopy (TEM) analysis was performed to examine the distribution of dopant cations (La$^{3+}$, Nd$^{3+}$, Al$^{3+}$ or Sc$^{3+}$), Y$^{3+}$ and Zr$^{4+}$ around the grain boundaries. Electron transparent samples were prepared by ion-milling with an Ion Slicer (EM-09100IS, Jeol, Japan). High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images and energy-dispersive spectroscopy (STEM-EDS) elemental maps were obtained on a FEI Titan 60-300 “cubed” transmission electron microscope operated at 200 kV. 5-7 grain boundaries in each ceramic were analysed. Quantitative elemental mappings were acquired to calculate the element concentration profile across the grain boundary using ESPRIT 1.9 software.

2.3. Assessment of aging kinetics

In vitro accelerated hydrothermal experiments were used to age the ceramics. Double-side mirror polished specimens were autoclaved at 134°C and 0.2 MPa in water vapour. The amount of tetragonal to monoclinic phase transformation was determined by X-ray diffraction (XRD, 3003-TT, Seifert, Ahrensburg, Germany) using Cu-K$_\alpha$ radiation at 40 kV and 40 mA. XRD patterns were recorded in the range of 27-33° (2θ) by θ-2θ mode with a scan speed of 2 s/step and a scan size of 0.02° (the X-ray penetration depth was calculated to be 7.5 µm (Cu-K$_\alpha$ with 98% absorption)). The monoclinic phase content (V_m) was calculated according to the formula of Garvie et al. [36] and Toraya et al. [37].

\[
V_m = \frac{1.311 \times (I_m^{-111} + I_m^{111})}{1.311 \times (I_m^{-111} + I_m^{111}) + I_t^{010}} \tag{1}
\]
With \(I \), the intensity of monoclinic (-111 and 111) and tetragonal (101) phase peaks indicated by the subscripts \(m \) and \(t \).

The monoclinic phase content was plotted as a function of aging time to indicate the aging kinetics. For each curve, at least 3 specimens (6 exposed surfaces) were tested and the average result was reported. Note that, at 0 h of aging, XRD patterns were recorded in the range of 20-90° (2\(\theta \)) to identify the phase composition of non-aged specimen.

Furthermore, in order to compare the aging kinetics of different ceramics, the aging kinetics were rationalized by fitting the transformation curves with the Mehl–Avrami–Johnson (JMA) equation, as follows [11]:

\[
\frac{V_m}{V_{ms}} = 1 - \exp(-(bt)^n)
\]

(2)

where \(V_m \) is the monoclinic phase content, \(V_{ms} \) the monoclinic zirconia content saturation level, \(b \) (h\(^{-1}\)) the parameter describing the effective kinetics of the tetragonal to monoclinic phase transformation during the aging process [11, 38], and \(n \) the parameter related to the geometry of the transformation [39].

Moreover, the transformation propagation was investigated on polished cross-sections by SEM.

2.4. Characterization of mechanical properties

The hardness and fracture toughness were measured by the indentation method using a Vickers microhardness tester (Model FV-700, Future-Tech Corp., Tokyo, Japan) with a load of 98 N, and the indentation toughness of all ceramics was calculated according to the Anstis equation [40] with an E-modulus value of 210 GPa. Ten indentations were applied for each ceramic grade.
The four-point bending strength was measured on 45×4×3 mm³ test bars (10 bars for each material). Bending bars were prepared according to ISO 13356 [41] and ISO 6872 [42] but without 45° edge chamfer.

2.5. Translucency measurement

Six disk-shaped 15 mm diameter 3Y-TZP specimens of each composition were prepared for translucency measurements. The discs were ground plan parallel to a thickness of 0.5 mm and polished with wet 3 μm-grit diamond lapping film. The final thickness was controlled during the polishing process with a digital micrometre (accuracy of 0.001 mm). After polishing, the surface roughness was measured with a surface profiler (Talysurf-120L, Taylor Hobson) to ensure an identical roughness level for all ceramic grades.

A dental spectrophotometer (SpectroShade™ MICRO, MHT Optic Research, Niederhasli, Switzerland) with a calibration plate was used to record the CIELAB coordinates (L*, a* and b*) of the ceramic discs. A layer of vaseline was put in-between the specimen and the background for better optical contact.

The translucency parameter (TP) was determined by calculating the colour difference between the same specimen against black and white backgrounds, according to the following equation [43]:

\[
TP = \sqrt{(L_B^* - L_W^*)^2 + (a_B^* - a_W^*)^2 + (b_B^* - b_W^*)^2}
\]

where the subscripts B and W refer to the colour coordinates over black and white backgrounds, respectively. A higher TP value indicates a higher translucency.

The contrast ratio (CR) is also commonly used to indicate the translucency of ceramics in the dental community. The CR is defined as the ratio of illuminance (Y) of the test material placed on a black (Y_b)
and a white (Y_w) background. The value of Y was calculated with the L^* value measured with the spectrophotometer, as follows [43]:

$$Y = \left(\frac{L^* + 16}{116}\right)^3 \times Y_n$$ \hspace{1cm} (3)

For simulated object colours, the specified white stimulus normally chosen is one that has the appearance of a perfect reflecting diffuser, normalized by a common factor so that Y_n is equal to 100 [44]. CR is 0.0 for a transparent material and 1.0 for a totally opaque material. The CR value linearly correlates with the TP value [43].

3. Results and discussion

3.1. Influence of the cation radius on the aging kinetics of 3Y-TZP

Trivalent oxides (Al$_2$O$_3$, Sc$_2$O$_3$, Nd$_2$O$_3$ and La$_2$O$_3$) were selected to dope 3Y-TZP ceramics with a different cation radius Al^{3+} (53.5 pm) $<$ Zr^{4+} (84.0 pm) \sim Sc^{3+} (87.0 pm) $<$ Y^{3+} (101.9 pm) $<$ Nd^{3+} (110.9 pm) $<$ La^{3+} (116.0 pm) [35]. Note that only a small amount of dopant was added to the 3Y-TZP ceramic to retain the tetragonal zirconia phase for the benefit of active transformation toughening.

Fig. 1a shows the monoclinic phase content as a function of aging time on a logarithmic time scale, revealing that the hydrothermal stability of 3Y-TZP ceramics is strongly influenced by the cation type. Sc$_2$O$_3$-doped 3Y-TZP degraded fastest, although the ionic radius of Sc$^{3+}$ was neither the largest nor the smallest. Characterization of the local chemistry of the zirconia grain boundaries (Fig. 1b) showed that Al$^{3+}$, Nd$^{3+}$ and La$^{3+}$ segregated to the outer 5 nm of the ZrO$_2$ grains, whereas Sc$^{3+}$ did not. Therefore, dopant cation segregation to the grain boundaries play a key role in retarding the aging rate of 3Y-TZP ceramics, which strongly supports earlier statements about the favorable effects of different dopants (including Al$_2$O$_3$, La$_2$O$_3$, MgO and GeO$_2$) [28, 29, 45]. Divalent and trivalent oxides were reported to be able to segregate to the zirconia grain boundaries in Y-TZP ceramics [32], while it is shown here
that the cation radius was critical as well. A significant driving force for the segregation can be the large size mismatch between the dopant and host cations [46]. Since the mismatch between Sc$^{3+}$ (87.0 pm) and Zr$^{4+}$ (84.0 pm) is small, Sc$^{3+}$ did not segregate at the ZrO$_2$ grain boundary but homogeneously dispersed throughout the zirconia grains. The absence of segregation in Sc$_2$O$_3$-doped zirconia is also consistent with the low solution energy of incorporating Sc$_2$O$_3$ into a ZrO$_2$ lattice [47, 48]. La$^{3+}$ and Nd$^{3+}$ are substantially larger than Zr$^{4+}$ explaining the segregation. The solubility of Al$_2$O$_3$ in zirconia is low at room temperature, resulting in the segregation of Al$^{3+}$ during cooling from the sintering temperature [47].

More importantly, Fig.1a shows that the hydrothermal stability increased with increasing dopant cation radii (La$^{3+} >$ Nd$^{3+} >$ Al$^{3+}$), even though La$^{3+}$, Nd$^{3+}$ and Al$^{3+}$ all segregated at the zirconia grain boundary (Fig.1b). This difference should originate from a different diffusivity of water species into the lattice via oxygen vacancies and a different zirconia grain size. The filling of oxygen vacancies by “water-derived species” (probably in the form of OH$^-$) at the grain boundary is believed to trigger the hydrothermal aging of Y-TZP ceramics [30, 49]. The segregated trivalent cations (M'_Zr) bind the oxygen vacancies (V'_o) [47, 48] at the grain boundary and strongly interrupt the annihilation of oxygen vacancies. It can therefore be expected that the aging kinetics depend on the binding energy of defect clusters [$M'_Zr \cdot V'_o$] which in turn depend on the dopant cation radius [47, 48]. According to atomistic simulations, the binding energy is minimal for [$Sc'_Zr \cdot V'_o$] and increases as the dopant cation size increases for oversized trivalent dopants (i.e. larger than Sc$^{3+}$) or as the dopant cation size decreases for undersized trivalent dopants [47, 48]. In order to retard the aging kinetics, larger oversized dopant cations (such as La$^{3+}$) and smaller undersized dopant cations (such as Al$^{3+}$) are thus preferred due to the stronger bonding of the oxygen vacancy. Furthermore, larger oversized cations are more preferred because of their grain growth inhibiting effect on tetragonal zirconia [32] and concomitant higher degradation resistance. The grain boundary mobility depends on the diffusivity and the segregation of
impurities at the grain boundary [32]. When La$^{3+}$, Nd$^{3+}$ and Al$^{3+}$ segregated at the zirconia grain boundary, the grain boundary diffusivity decreased as the dopant radius increased [32]. Therefore, the grain size of the La$_2$O$_3$-doped 3Y-TZP was the smallest (213 ± 90 nm), followed by that of Nd$_2$O$_3$-(252 ± 111 nm) and Al$_2$O$_3$-(305 ± 127 nm) doped 3Y-TZP (Fig. 1c, differences between each other are all significant with P < 0.001 (ANOVA and t-test)). The smaller grain size resulted in a most stable La$_2$O$_3$-doped 3Y-TZP. In addition, a smaller grain size was expected to be beneficial for the higher translucency of fully dense TZP ceramics [5, 27], a smaller critical flaw size and concomitantly higher strength [50]. La$_2$O$_3$ therefore appeared to be the most potent dopant, motivating to examine the effect of La$_2$O$_3$ concentration.

3.2. Optimum amount of La$_2$O$_3$ dopant

The addition of 0.2-0.4 mol% La$_2$O$_3$ led to the highest ageing resistance of the 3Y-TZP ceramics and the zirconia grain size was smallest at 0.4 mol% La$_2$O$_3$ addition (Table 1). The hydrothermal stability of 3Y-TZP increased when the amount of La$_2$O$_3$ increased from 0.02 to 0.4 mol% but decreased when the amount of La$_2$O$_3$ was further increased (Fig. 2a and see also the value of the ageing kinetic parameter b in Table 1). A secondary La$_2$Zr$_2$O$_7$ phase precipitated at La$_2$O$_3$ contents ≥ 1 mol% (Fig. 2b). This secondary phase can enhance the aging of Y-TZP ceramics due to the accompanied volume expansion [51], and can also deteriorate the translucency of Y-TZP ceramics as a light scattering source.

Current results described above and a previous study about the amount of alumina addition [52] showed that not only the type of dopant but also the amount of dopant were critical for designing aging-resistant 3Y-TZP ceramics. Only the segregation of trivalent cations at the zirconia grain boundaries was effective to retard the degradation of Y-TZPs, so the optimum amount of dopant addition should be the maximum amount of dopant that can be dissolved at the zirconia grain boundaries after cooling without precipitation of secondary phases.
On the other hand, the challenge for La$_2$O$_3$-doped 3Y-TZP is densification. A density of ≥ 6.00 g/cm3 is required for the application of 3Y-TZP as a load-bearing biomaterial [41]. However, all La$_2$O$_3$-doped 3Y-TZP, even with a very low dopant content of 0.02 mol%, were not fully densified after pressureless sintering at 1500 °C for 2 h (Table 1). Residual porosity was clearly observed on SEM images of polished cross-sections, resulting in a reduced hardness (Table 1). The residual porosity can also significantly deteriorate the translucency of Y-TZP [5, 33]. Therefore, co-doping of La$_2$O$_3$ and Al$_2$O$_3$ was a final option, since alumina is a commonly used sintering aid in 3Y-TZP ceramics. 3Y-TZPs with the addition of 0.1-0.4 mol% La$_2$O$_3$ and 0.1-0.25 wt% Al$_2$O$_3$ could indeed be fully densified when sintered for 2 h at 1450 or 1500 °C.

3.3. La$_2$O$_3$ and Al$_2$O$_3$ co-doping in 3Y-TZP

Eventually, 0.2 mol% La$_2$O$_3$ and 0.1-0.25 wt% Al$_2$O$_3$ co-doped 3Y-TZP showed an excellent combination of long-term hydrothermal stability (Fig. 3a and Fig. 3b), translucency (Fig. 3d and Table 2), and good mechanical properties (Fig. 3e and Table 3), when compared to 3Y-E (0.25Al) processed from the most commonly used zirconia powder grade (Tosoh TZ-3Y-E, E means 0.25 wt% alumina) for dental applications.

The translucency of 3Y-0.2La-0.25Al and 3Y-0.2La-0.1Al was much higher than that of 3Y-E (0.25Al), even though the amount of alumina in 3Y-0.2La-0.25Al was the same as in 3Y-E (0.25Al). The translucency of 3Y-0.2La-0.25Al and 3Y-0.2La-0.1Al was even higher than for alumina-free 3Y-TZP ceramics (Ref. 3Y). The highest translucency parameter, 22.6 for 0.5 mm thick discs, measured for 3Y-0.2La-0.1Al was about 42% higher than for the conventional 3Y-E ceramic. This benefits from the combined effects of high density, the absence of secondary phases, smaller porosity and less birefringence at the grain boundaries in 3Y-0.2La-0.25Al and 3Y-0.2La-0.1Al.
Secondary phase alumina particles were clearly observed in the 3Y-E (0.25Al) ceramic (Fig. 3c), which strongly scattered the incoming light since the refractory index of alumina and zirconia is different [16, 53]. However, when La₂O₃ and Al₂O₃ are co-doped, the 0.2 mol% La₂O₃ dopant completely dissolved in the zirconia grains without secondary phase precipitation. SEM images confirmed that 3Y-0.2La-0.1Al was free of secondary phases, whereas 3Y-0.1La-0.25Al contained a very small amount of alumina grains (Fig. 3c). Moreover, a finer microstructure was obtained by La₂O₃ doping (Fig. 3c, Table 3, P < 0.001 (t-test with reference 3Y-E)), which should improve the optical transmission due to a smaller porosity [33, 54], a narrow grain boundary width and a high in-line transmission [5, 27, 54]. Although porosity was scarcely observed in all 3Y-TZP ceramics compared in Fig. 3c, it has been reported that even a very small amount of porosity influences the translucency. Furthermore, residual porosity (not only the amount of porosity but also the size of porosity) are even more important than grain boundaries [33]. Last but not least, larger trivalent dopants prefer an 8-fold oxygen coordination, enhancing the adoption of a cubic zirconia symmetry [47, 55]. Since cubic zirconia is optical isotropic, it is possible that the La³⁺-doped ZrO₂ grain boundary has a reduced birefringence effect.

Significantly, unlike the approach of lowering the alumina content or increasing the yttria content, the strategy of introducing La₂O₃ dopant allowed the combination of superior aging resistance and mechanical property while obtaining a higher translucency. Fig. 3a shows that 3Y-0.2La-0.1Al and 3Y-0.2La-0.25Al degraded slower than 3Y-E when sintered at 1450-1500 °C (the optimal sintering temperature for this powder). In particular, 3Y-0.2La-0.1Al and 3Y-0.2La-0.25Al did not show any phase transformation up to 120 h of hydrothermal treatment at 134 °C when sintered at 1450 °C. Although 3Y-0.2La-0.1Al degraded faster than 3Y-0.2La-0.25Al, it degraded slower than 3Y-E (0.25Al) (the depth of transformation in Fig. 3b confirmed this result). Furthermore, the fracture toughness, hardness and flexural strength of 3Y-0.2La-0.1Al and 3Y-0.2La-0.25Al was comparable to
that of 3Y-E (Table 3) because we maintained the sub-micrometer sized grains in all 3Y-TZP ceramics with tetragonal phase crystallography (Fig. 2b). A previous study confirms the finding that co-doping of 3Y-TZP with a small amount of alumina and lanthania can dramatically retard its aging rate without any loss of fracture toughness, and the segregation of Al$^{3+}$ and La$^{3+}$ fundamentally changed the transformation kinetics from nucleation-driven to growth-driven [29]. In the present study, a higher translucency was found to be an additional favorable effect of La$_2$O$_3$ addition (optimum 0.2 mol%) for restorative 3Y-TZP ceramics.

4. Conclusion

In summary, dopant segregation was found to be a key factor to design hydrothermally stable and high-translucent 3Y-TZP ceramics and the cation dopant radius could be used as a controlling parameter. A large trivalent dopant, oversized as compared to Zr$^{4+}$, exhibiting strong segregation at the ZrO$_2$ grain boundary was preferred. The introduction of 0.2 mol% La$_2$O$_3$ in conventional Al$_2$O$_3$-doped 3Y-TZP resulted in a unique combination of high translucency (42% increase compared to conventional 0.25 wt.% alumina-doped 3Y-TZP) and superior hydrothermal stability (no transformation up to 120 h of hydrothermal aging at 134 °C), while maintaining the excellent mechanical properties.

Acknowledgements

We acknowledge the Research Fund of KU Leuven under project 0T/10/052 and the Fund for Scientific Research Flanders (FWO-Vlaanderen) under grant G.0431.10N. We thank M. Peumans and P. Pongprueksa for the translucency measurement, W. Veulemans for the flexural strength sample preparation, and J.W. Seo (MTM), S. Kuypers (JEOL) and Y. Ohnishi (JEOL) for the Al element STEM-EDS map (Fig. 1b-3Y-0.25Al).

Reference

Graphic abstract:
Figures:

Figure 1. Comparison of 3Y-TZPs doped with different trivalent oxides, sintered for 2 h at 1500 °C: (a), Aging resistance, monoclinic phase content formed during accelerated aging at 134 °C as a function of the aging time. 0.2 mol% (left panel) or 0.4 mol% (right panel) Sc₂O₃, Nd₂O₃ and La₂O₃ were added to 3Y-TZP, and 0.25 wt% (0.3 mol%) Al₂O₃ was added for a direct comparison with commercial grade ceramics. Values of the ageing kinetic parameter b (h⁻¹) from JMA fitting are shown on the aging curves. (b), HAADF-STEM images, corresponding dopant STEM-EDS element maps, and elemental distribution profiles across the grain boundaries. (c), SEM images showing the grain size of the tetragonal zirconia doped with different trivalent dopants (scale bar 1 µm).
Figure 2. (a), Surface monoclinic phase transformation of 0.02-5 mol% La$_2$O$_3$-doped 3Y-TZPs sintered for 2 h at 1500 °C after 300 h accelerated aging at 134 °C. The transformation rate decreased when the amount of La$_2$O$_3$ increased from 0.02 to 0.4 mol% (left) but increased when the amount of La$_2$O$_3$ was further increased (right). (b), Representative XRD patterns of non-aged 3Y-TZP doped with 0.02-5 mol% La$_2$O$_3$. A secondary La$_2$Zr$_2$O$_7$ phase was observed at > 1 mol % La$_2$O$_3$ doping.
Figure 3. Comparison of 3Y-TZPs doped with La$_2$O$_3$ and Al$_2$O$_3$ and a reference 3Y-E (0.25Al) ceramic: (a), Aging resistance. The monoclinic phase content formed during accelerated aging at 134 °C are plotted as a function of the aging time for the ceramics sintered at 1450 and 1500 °C; (b), Cross-sectional SEM images of La$_2$O$_3$ and Al$_2$O$_3$ co-doped 3Y-TZPs with ref. 3Y and 3Y-E (0.25Al) ceramics (sintered at 1450°C without further surface treatment after the sintering process) after 500 h accelerated aging in steam at 134°C. The transformation depth in 3Y, 3Y-E, 3Y-0.2La-0.1Al and 3Y-0.2La-0.25Al was ≥43 µm, ~35 µm, <3 µm and <2 µm respectively. The photographs in the insets show that the surface of Ref. 3Y was delaminated; (c), Microstructures of the ceramics sintered at 1500 °C, showing the sources of light scattering and the tetragonal zirconia grain size; (d), Translucency parameter of the ceramics sintered at 1500 °C; (e), 4-point bending strength.
Table 1. Grain size, density, Vickers hardness, toughness and aging kinetic parameter b at 134°C for La$_2$O$_3$-doped 3Y-TZPs with a La$_2$O$_3$ content from 0.02 to 5 mol%. V_{ms} is the monoclinic zirconia phase saturation level used in JMA fitting.

<table>
<thead>
<tr>
<th>1500 °C, 2h</th>
<th>Grain size (nm)</th>
<th>Density (g/cm3)</th>
<th>Toughness (MPa·m$^{1/2}$)</th>
<th>Hardness (kg/mm2)</th>
<th>Aging kinetics V_{ms} (%)</th>
<th>Aging kinetics b (h$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Y-0.02La</td>
<td>244 ± 112</td>
<td>5.93 ± 0.004</td>
<td>3.7 ± 0.1</td>
<td>1156 ± 31</td>
<td>88</td>
<td>0.082</td>
</tr>
<tr>
<td>3Y-0.1La</td>
<td>227 ± 102</td>
<td>5.95 ± 0.01</td>
<td>3.6 ± 0.1</td>
<td>1203 ± 27</td>
<td>87</td>
<td>0.038</td>
</tr>
<tr>
<td>3Y-0.2La</td>
<td>227 ± 98</td>
<td>5.92 ± 0.01</td>
<td>3.8 ± 0.1</td>
<td>1178 ± 30</td>
<td>85</td>
<td>0.019</td>
</tr>
<tr>
<td>3Y-0.4La</td>
<td>213 ± 90</td>
<td>5.91 ± 0.02</td>
<td>3.5 ± 0.2</td>
<td>1128 ± 39</td>
<td>81</td>
<td>0.017</td>
</tr>
<tr>
<td>3Y-0.6La</td>
<td>226 ± 90</td>
<td>5.79 ± 0.03</td>
<td>3.8 ± 0.3</td>
<td>954 ± 33</td>
<td>77</td>
<td>0.023</td>
</tr>
<tr>
<td>3Y-1La</td>
<td>232 ± 103</td>
<td>5.77 ± 0.02</td>
<td>3.6 ± 0.1</td>
<td>1079 ± 49</td>
<td>74</td>
<td>0.090</td>
</tr>
<tr>
<td>3Y-2La</td>
<td>224 ± 98</td>
<td>5.71 ± 0.02</td>
<td>4.0 ± 0.4</td>
<td>932 ± 43</td>
<td>74</td>
<td>0.057</td>
</tr>
<tr>
<td>3Y-3La</td>
<td>221 ± 99</td>
<td>5.60 ± 0.03</td>
<td>4.3 ± 0.2</td>
<td>833 ± 41</td>
<td>74</td>
<td>0.040</td>
</tr>
<tr>
<td>3Y-4La</td>
<td>252 ± 135</td>
<td>5.52 ± 0.04</td>
<td>3.6 ± 0.2</td>
<td>847 ± 32</td>
<td>74</td>
<td>0.061</td>
</tr>
<tr>
<td>3Y-5La</td>
<td>235 ± 115</td>
<td>5.43 ± 0.05</td>
<td>/</td>
<td>424 ± 25</td>
<td>74</td>
<td>0.046</td>
</tr>
</tbody>
</table>

Table 2. Comparison of the ceramic translucency parameter (TP), contrast ratio (CR), roughness and thickness of 3Y-0.2La-0.1Al and 3Y-0.2La-0.25Al with Ref. 3Y and Ref. 3Y-E.

<table>
<thead>
<tr>
<th>transluency parameter/TP</th>
<th>3Y</th>
<th>3Y-E</th>
<th>3Y-0.2La-0.25Al</th>
<th>3Y-0.2La-0.1Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translucency parameter/TP</td>
<td>19.5 ± 0.5</td>
<td>15.9 ± 0.3</td>
<td>20.9 ± 0.5</td>
<td>22.6 ± 0.6</td>
</tr>
<tr>
<td>Contrast ratio /CR</td>
<td>0.54 ± 0.01</td>
<td>0.61 ± 0.01</td>
<td>0.48 ± 0.01</td>
<td>0.52 ± 0.01</td>
</tr>
<tr>
<td>Thickness (mm)</td>
<td>0.51 ± 0.01</td>
<td>0.53 ± 0.01</td>
<td>0.53 ± 0.01</td>
<td>0.53 ± 0.01</td>
</tr>
<tr>
<td>Roughness Ra (nm)</td>
<td>8 ± 1</td>
<td>7 ± 1</td>
<td>10 ± 2</td>
<td>8 ± 2</td>
</tr>
</tbody>
</table>

Table 3. Grain size, density and mechanical properties of La$_2$O$_3$ and Al$_2$O$_3$ co-doped 3Y-TZPs compared with the widely used Tosoh TZ-3Y-E based 3Y-TZP (3Y-E).

<table>
<thead>
<tr>
<th>Ceramic</th>
<th>Sintering (°C)</th>
<th>Grain size of ZrO$_2$ (nm)</th>
<th>Density (g/cm3)</th>
<th>Toughness (MPa·m$^{1/2}$)</th>
<th>Hardness (kg/mm2)</th>
<th>4-point bending strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Y-E (0.25Al) reference</td>
<td>1500</td>
<td>305 ± 127</td>
<td>6.04 ± 0.01</td>
<td>3.4 ± 0.1</td>
<td>1322 ± 8</td>
<td>648 ± 36</td>
</tr>
<tr>
<td>3Y-0.2La-0.25Al</td>
<td>1500</td>
<td>266 ± 118</td>
<td>6.04 ± 0.01</td>
<td>3.4 ± 0.1</td>
<td>1304 ± 17</td>
<td>651 ± 77</td>
</tr>
<tr>
<td>3Y-0.2La-0.1Al</td>
<td>1500</td>
<td>254 ± 106</td>
<td>6.03 ± 0.01</td>
<td>3.3 ± 0.1</td>
<td>1347 ± 13</td>
<td>730 ± 111</td>
</tr>
</tbody>
</table>

“±” is standard deviation in all the tables.