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Abstract

We apply the nonlinear Fourier analysis developed by Callebaut [1] to an
infinite homogeneous plasma calculating many higher order terms (computer
algebra) and obtaining in this way some analytic expressions. (a) For cold
plasma: the maximum amplitude is 2/e (i.e., 73% of ng) of the initial density n,
otherwise the series diverges. For exponentials (sum of two waves) the
maximum amplitude is halved, i.e ny/e. (b) For plasma with electron pressure,
the radius of convergence decreases as the ratio of k>v2_(1 + I'_)/w? increases
(I'_ is the polytropic exponent; w_ is the plasma angular frequency for
electrons; k is the wave number; v,_ is the sound velocity for the electrons).
(c) Suggestions for experimental verification are made. (d) In the limit of sound
waves (no plasma) the radius of convergence is zero. Nevertheless the correct
dispersion relation is obtained. A direct analysis confirmed these results for
sound waves. (e) The cases where the method fails are indicated. (f) Plasma
where both ions and electrons may move, are briefly considered (relevant for
comet tails, fullerenes and electron—positron plasmas).

1. Introduction

In the previous decades a lot of work on nonlinear theory
of plasma waves and instabilities has been done. We may
mention the papers with the exact solutions by Malfliet
et al. [2], Hereman et al. [3], Verheest et al. [4] on solitary
waves and those of Khater et al. [5] on Bécklund
transformations, on the AKNS system and the Painlevé
analysis. Recently Amiranashvili et al. [6] gave some exact
solutions for standing waves in bounded plasmas without
using the solitary wave theory but with some boundary
conditions. Such solutions may be quite interesting in
themselves and very useful to verify numerical calculations.
Callebaut and Tsintsadze, e.g., neglecting some higher
order terms, dealt with the nonlinear bunching of Alfvén
waves [7]. In fact, except for the approaches leading to
solitary wave solutions, the nonlinear methods usually
yield approximations and usually one has barely an idea
how long these are valid in the behavior of the plasma. The
present approach exploits the Fourier analysis for non-
linear systems. It is rather different from the approaches
just mentioned as it allows some insight in the convergence.
Moreover, it gives useful results for the many cases where
one can not find a closed form for the solitary waves.
The set of (partial differential) equations (e.g., equations
(1), (2) and (3)), together with some initial and/or
boundary conditions, defines a set of functions (which
are, of course, interrelated). From Fourier theory it is
known that if a periodic function is continuous from —oo
to +oo and has a derivative which is piecewise monotonous
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and continuous, then the function may be developed in a
Fourier series which is absolutely and uniformly conver-
gent in any interval. (Some conditions like those of
Dirichlet, are even more general). In our work we deal
with the single variable x(=w¢+ k-r), which is the
combination of four independent variables, i.e., the angular
frequency (w = 27v, v = frequency), the time (¢), the wave
vector (k) and space (r). Thus the conditions have to be
satisfied for the function(s) of this combined variable. In
particular the function should be periodic in wf and in & - r.
However, an exponential growth is easily accommodated
like the periodic situations as was the case in [1]. Hence
under rather general conditions it is possible to expand the
functions defined by the set of equations. When will this
break down? e.g., when the series diverges, i.e., physically
speaking, when instability develops or when an infinite
amount of energy has been made available (either injected
externally or freed by the system itself from, e.g., its
potential energy). The convergence of the series puts
conditions on the linear theory, mainly on its amplitude.
In fact a linearized theory can never determine its own
limitations: that has to be done by the nonlinear analysis.
In the previous works [1] it turned out that some
experimental situations, in particular the oscillation and
instabilities of a liquid jet, could be explained very well by
this method. Moreover, some cases appeared where the
nonlinear theory showed that the linear theory was good
even up to breakdown of the configuration [1]. It may be
noted that [1] was more general as the four variables were
treated independently and not combined into the single
variable yx; moreover [l] dealt with instability too.
However, for the problem at hand (no boundaries, plasma
waves) this is rather irrelevant.

Another breakdown of the method may occur, e.g.,
when the function(s) is (are) not periodic. (Nevertheless
instabilities may be included, but they are not relevant in
the present paper). However, in the linear perturbation
theory one works usually with a periodic perturbation and
this generates naturally higher order terms which are
periodic too as is obvious, e.g., in our present work and in
the work of Callebaut, e.g. [1,8]. For a non-periodic
solution one has to take a wholly different start in the
linear theory, e.g., by using a series in ¢ and/or x, y, z, or
some adequate combination of those, or if nevertheless a
periodic or exponential start is used as first order term, to
adapt profoundly the nonlinear terms. Such nonlinear
approaches have been elaborated in various ways in the
literature, see e.g. [2-5, 7]. Those methods are indicated in
the cases that the nonlinear Fourier analysis is not
adequate, e.g., when considering sound waves (Section 3.2).
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8 D. K. Callebaut and G. K. Karugila

The plan of the paper is as follows: In Section 2, we give
the basis, from which we formulate a model, state the basic
equations and consider the equilibrium case. In Section 3
we study the unmagnetized plasma for which the ion
particle density is not perturbed. We therefore break this
section into three subsections, namely cold plasma, sound
waves and plasma with pressure of electrons. In each
subsection, we first reduce the system of partial differential
equations to one equation, using at least two different
procedures. This is followed by a perturbation analysis,
from which we calculate several coefficients to higher
orders and in some cases, obtain analytic expressions. In
Section 4 the case of unmagnetized plasma with perturbed
ion particle density is investigated. Here we reduce the
system of equations to two partial differential equations
from which we determine the coefficients up to order five.
Some attention is given to electron—positron plasma.
Finally the paper ends with a conclusion in Section 5.

We have elaborated various alternative procedures for
simple cases like cold plasma and sound waves. The
reasons for this are:

(a) some procedures seemed to lead to contradictions
unless extreme care was applied,

to find out which procedure was the simplest and the
safest, and

(c) sound waves are baffling because of zero convergence.

(®)

2. Basis
2.1. Model

We consider a fully ionized plasma in a medium infinite in
all directions (no boundary conditions) and at rest, i.e., we
consider an equilibrium configuration in which perturba-
tions (not necessarily small ones) are generated. The
particles are ionized only once and no source terms are
considered (no particle creation or recombination). Vis-
cosity, resistivity, gravitation and the magnetic contribu-
tion are neglected.

2.2. Basic equations

The basic equations are the continuity equations for the
charge and for the matter, the equations of motion, the
Poisson equation and the polytropic equation. Thus, if
there is only one kind of positive ions present, the basic
system of equations is written [9]

ong + div(ngvy) =0, (1
nymy ddL;E = —Vp Feny Vo, (2)
Ap=e(n_ —ny)/e, (3)
p=pi+p, )
P = Ki(no)™, ()

where n, and n_ are the respective densities of the positive
and negative particles, v_ and v, are the fluid velocities of
electrons and ions respectively, e = 1.6 x 107" C and —e
are the respective charges of the positive ion (with mass
my = 1.67 x 10727 kg for proton) and the negative ion,
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usually the electron (with mass m_ = 0.91 x 1073kg), ¢
the electrical potential, p the total pressure, p, and p_ are
partial pressures of the ions and electrons respectively, ¢ is
the permittivity, which for vacuum is 8.85 x 10712 C/Vm
and K., K_, I'y and I'_ are constants. The indices + and
— are used systematically for positive particles (usually
ions; in some cases positrons) and negative particles
(usually electrons).

2.3. Equilibrium

At equilibrium, plasma is at rest. Thus using a subscript
zero for indicating quantities at equilibrium, we put
vio = v_o = vo = 0. Plugging these into our basic system
of equations, we see that nig, pp and pyo are constants
which are independent of time and space. Quasi-neutrality
(nyo = n—o = ng) follows from equilibrium.

3. Plasma with unperturbed ion density

Usually ions are much heavier than electrons. The
customary assumption is that ions are not moving (in
comparison to the electrons). The generalization to
perturbed ion density, which is necessary for certain
plasmas, will be considered in Section 4. Hence introducing
the approximation ny = ny, meaning that the ion density is
unperturbed, one may consider the following cases:

3.1. Cold plasma

Here we suppose that the kinetic motion of the charged
particles is negligible and thus the temperature is low
enough to be approximated by zero in consideration with
other effects (in the present case electric ones). Hence our
basic system of equations is reduced to

omn_ +div(n_v_) =0, (6)
n_m_ ddL; = en_Vo, (7)
Ag = e(n- —no)/e. ()

Assume that the phase velocity of the wave (i.e., w/k) is the
same for all terms. Physically speaking there is no
dispersion between the terms of one family generated by
a solution of the linearized equation as far as the phase
velocity is concerned (All phases travel with the same
speed, nothing is said about the group velocity). This
assumption is very plausible as the linearized solution
generates in the nonlinear equations higher orders with a
multiple of x = wt + k - r. (In fact these are integer multi-
ples, which makes the full solution actually periodic if the
first order term is periodic, which is often the case;
moreover instabilities may easily be accommodated).
Clearly we restrict ourselves to one x and its multiples,
which form a family. If in the initial perturbation two x’s
occur, not multiples of each other, then each one will have
its own family with its proper x and moreover interference
terms will occur. We then restrict our analysis here to the
case that quantities are functions of x alone. This makes it
possible to write 9.X = wdy X = wX and VX =ki X =
kX', where the accent means derivative with respect to x

© Physica Scripta 2003



Nonlinear Fourier Analysis for Unmagnetized Plasma Waves 9

and X stands for n_, v_ or ¢. Applying these to Egs, (6)—(8)
we have

on’_+k-(n_v_) =0, )
m_(w+v_-kWw_ =eky, (10)
k" = e(n_ —ng)/e. (11)

We then eliminate v_ and ¢ from (9)—(11) in order to
reduce the system to a single equation as follows: Integrate
(9) to obtain

(w+k-v_)n_=e_. (12)

€_ is a constant. Using equilibrium quantities we have

€_= wny. (13)
Substituting this into (9) yields
kv =—wnon' /n (14)

which is then plugged into (10) (taken with dot product
with k) to obtain

¢ = —(m_w’nin’)/(ek’n’). (15)
We then finish our process of reducing the system to a
single equation by using one of the following procedures:

Procedure 1: (Reduction to nonlinear differential equation
of first order).

Multiply ¢' on both sides of Eq. (11) and then integrate
to have

/. 2€ 7
¢*+ c1= o2 /(”— —no)¢ dx,

which yields, after substituting (15) into it, the following
equation:

(16)

2.2 7\ 2 2.2
m_w nsn m_wn
01— 0
————— | + Ci1= —5—(2n_ — ny).
< ek’n® ) ek*n? ( )

We then determine C; by substituting the lowest order of
n_ into this equation. Hence, Eq. (16) becomes

(17)

where w? = ¢?ny/(m_e¢) is the square of the electron plasma
frequency. Taking square roots on both sides we have

[ o2

—w

=% [——n- - no)n’..
w’ng

Due to reasons to be pointed out later, we will reject an
equation involving a negative sign in front of the square
root. As we will use complex values for n_ the — sign under
the square root is harmless.

n? = —o? (n_ —no)’n* /(w'ny),

2

(18)

Procedure 2: (Reduction to nonlinear differential equation
of second order).

© Physica Scripta 2003

Differentiate (15) with respect to x to obtain

¢ =m_w’nj(3n% —n_n")/(ek’n*). (19)
Substituting (19) into (11) and rearranging we have
2 4
3% —n_n + % S g —ny =0, (20)
w’ny

Procedure 3: (Reduction to a fully integrated equation).
Equation (18) may be integrated by using the method of
separation of variables to give:

I 1 i
—21n(1—@>+ + o -2,
ng n_ n_ny wng

However the determination of the constant C, requires
care. Putting n_ = ng yields —oo for In(1 — ny/n_). Hence
to fix C, we have to include the first order perturbation, see
(26):

20

Linearizing yields

1 2n_ - ixw—
—2(1— ‘ 1+1n”—‘>+ o -2,
I’ZO no no wno

(22)

Putting (25) (see below) into (22) and simplifying yields
for the zero order terms

InA_+ 1+ G ny +ix(1 — (0 /) =0,

which is an expression involving real and imaginary parts.
The real part fixes Cp, i.e., Cr= —(1 +lnA_)/n%, and the
imaginary part gives, if and only if x # 0, the well-known
dispersion relation relation for cold plasma:

w=w_. (23)
Equation (21) therefore becomes
(1= (no/n_)) " = A_ '™, (24)

which is our fully integrated equation. This shows that
n_/ng is a function of exp iy, thus a series in exp iy is
indicated, see (26) below.

Comment: Ultimately all four nonlinear equations (17),
(18), (20) and (24) have to be equivalent (taking into
account initial conditions). Equations (17) and (18) are
differential equations of first order, Eq. (20) is of second
order and Eq. (24) is fully integrated. It is our purpose to
show that they lead indeed to the same results, using
utmost care, and to find out which procedure is the easiest
for future use.

3.1.1. Analysis of perturbation using exponentials

(I)  Particle density. As we explained above, after
equation (8), the solution will usually be periodic if the
solution of the linearized equation is periodic, which is the
commonly accepted situation for this kind of plasma
waves. We also know that it is possible for a periodic
motion to be decomposed by Fourier analysis into a
superposition of sinusoidal oscillations with different
wavelengths and frequencies. If the oscillation amplitude

Physica Scripta 68



10 D. K. Callebaut and G. K. Karugila

is small, then the waveform may be approximated as
sinusoidal and one may work with only one component.
Hence we let a single Fourier term (cf. the explanation given
before Eq. (9)) to be our first order perturbation and we put

n_y = A_ny e, (25)
where A_ is the initial amplitude of the first order
perturbation (relative to the equilibrium density). Later
on, the upper limit of 4_ or radius of convergence of the
series will be determined; this is the maximum value of 4_
for which our series development can be valid. The general
form of the particle density associated with the first order
term (25) can, in view of our considerations, be written as

n=ng+n_;+n_o+---=ng Zd—mz‘f_ ehx, (26)
N

where a_g, = a_;, = 1. Notice that we have used here p as
one of the subscripts. In this notation it is not a function.
Hence from now on-wards, all po’s, v’s, ¢’s and f’s appearing
in the subscripts, should be considered as symbols and not
as functions. They are used in the subscripts just to indicate
the quantities to which the coefficient belongs. For
example, a_;, is the coefficient in the first order term of
the negative (normally electrons) particle density expres-
sion (cold plasma case) and c_j,, is the coefficient in the first
order term of the negative particle density expression which
will be considered in section 4. The values of a_y,, where
s=2,3,..., are determined by solving either one of Egs.
(17), (18), (20) or (24) as illustrated below:

Determination of a_y,’s using Eq. (18)

1. Substitute n =ny +n_; = ny(l + A_ e'*) into (18), lin-
earize and rearrange to get (23). Note that we have
rejected the solution with — sign,

w=—w_n, 27

which is false because it contradicts (23). This false

result was probably introduced when we multiplied Eq.

(11) by ¢’ in procedure 1 above. Thus, we reject in Eq.

(18) the negative sign in front of the square root. We

have a confirmation for this rejection in the next step.
2. We then use (26) (up to order two) in (18) to obtain

1+ 20 0,4 €% = £(1 + (2 + a_p,)A_ €¥). (28)

If the right-hand side of (28) has a + sign, then a_,, = 2.

Table 1. Table showing, for cold plasma case, values of the first ten dimensionless coefficients (i.e., a_g,, a_1p, . .

On the other hand, if the right-hand side has a — sign,
a_y, =—=2(14+ A_exp (ix))/(3A_exp (ix)). We reject
this since it depends on x. We therefore take a_,, =2
because it is a constant independent of x. Following these
steps, we wrote a program in mathematica [10] to solve
for the remaining values of a_;,. In Table I we show some
of the obtained values of a_s,. Examining these values
very closely, we infer the following analytic expression

a_gp =5"/s! (29)
Putting (29) into (26) we get
N s '
n_=nl 1+ Z: gAn e, (30)
s=

which converges when |4_| < 1/e, according to d’Alem-
bert ratio test [11, p. 45].

Determination of a_y,’s using Eq. (17), Eq. (20) or Eq.
(24):

Here the previous result is confirmed. However equation
(20) produced results faster than the other equations, thus
we conclude that the procedure using the differential
equation of the highest order is quicker and shorter than
the other two.

(IT)  Velocity. The velocity terms are investigated by
solving Eq. (12) as elaborated below:

Substituting for n_ and v_ in (12) where v_, in agreement
with the series for n_, reads:

k .
Vo=V Vo= % Za_st'i e (31)

with constants a_g, to be determined. In Table I, we show
the first ten values of a_,,. From these values, we inferred
the analytic expression

a_gy = —ss_lv(/,/s!,

where v, = w/k has the dimensions of velocity. We then
put this into (31) and tested for convergence using
d’Alembert’s test. We found out that, the series is
convergent when |4_| <e~!, in harmony with the con-
vergence of the series for the particle density.

.y a,lop) in

the density expression. It also shows the values of the first ten coefficients in the velocity expression (i.e.,

A_gy, A—ly, . .., A_10y, N units v, = ©/k) and those of the potential expression (i.e., a_og, a—1g, - - ., a_10¢, iN UNILS eng/k%e).

K 0 1 2 3 4 5 6 7 8 9 10

“ | | ) 9 32 625 324 117649 131072 4782969 1562500
- 2 3 24 5 720 315 4480 567

. 0 . X 3 8 125 54 16807 16384 531441 156250
- 2 3 24 5 720 315 4480 567

u 0 - N _l _% _g _2 _2401 _2048 _59049 _ 15625
e 2 2 3 24 5 720 315 4480 567

Physica Scripta 68
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Nonlinear Fourier Analysis for Unmagnetized Plasma Waves 11

(IT)  Potential.
to get

Here we integrate (15) with respect to x

o+ C3= m_w’n/(2ek*n*). (32)

By substituting the lowest order quantities into this we
determine C3 and hence Eq. (32) becomes
¢ = m_w*(ny — n*)/(2ek*n*). (33)

In view of the Fourier analysis for n_ we take
0= a A &
s

Then, we substitute this into (33) and solve for a_y, to
obtain the results shown in Table I. From these results, we
infer the following general expression:

(34)

$72 eny

. 35
sl k2e (3)

A_yp = —

This has the dimensions of an electric potential.

As in the previous analysis, the series in (34) with (35)
converges when |4_| <e~! in harmony with the conver-
gence of the series for the particle density and the velocity.

3.1.2. Graphical results

Convergence
The analytical results shows that our series will only
converge if |4_| < 1/e. In order to visualize this we sketch

A_=0.3 ($=7000)
11—

e
W, Ns oY

v/\/\/\/\/\/\/\/\
-0.2 -0.1 §iI" 0.1 0.2

some graphs involving A4_ > 1/e (divergence case)
and some involving |A_| < 1/e (convergence case),
see Fig. 1.

From the graphs we note that when |4_| < 1/e, the
minimum points for n_ in the graphs never go below zero
(based on the result of up to order 7000). But for the
cases where A_ > 1/e, some points are below zero.
Negative density is excluded because of the conservation
of particles and charge and because of the positive
uniform background. We therefore conclude that, if at
least one of the minimum points is negative, then the
series is invalid or divergent for all values greater or equal
to the chosen A_. But if all the minimum points for n_
are positive then the series is convergent for A_ equal or
less than the selected value. It is nice to see that these
numerical observations coincide with the result of the
analytic considerations.

We note that for a cold plasma the convergence is
independent of &, in contrast to the situation with pressure
or the cases treated by Callebaut [1,8].

Conservation of particles

We also calculated the area under the curve of n_ — nyg
against x (only real values of n_ in (26) are being
considered) and found out that for the first order case,
the area is zero. When higher orders are included in the
series, the area obtained ranged between 1 x 107'# and
1 x 107'%. This shows that the number of particles is
conserved within the computational error.

A=0.368 (S=5000)
n-

N WUl

123456)(

Fig. 1. Graphs of x(= wt + k - r) against n_ (particle density) for various values of the amplitude 4_ and S (the number of terms taken into account)
with ng (the particle density at equilibrium) being scaled to one. For divergent series (i.e., when the series involves A_ greater or approximately equal to
e~!) the graphs give some negative values in n_, which is physically prohibited. But for the convergent series (e.g., when A_ = 0.3 or any value less than
e~ 1), all values of n_ (in the graphs) are always positive (based on the numerical calculations up to order 7000). Once the limit of convergence is exceeded
divergency occurs using few terms: for the limiting case (A_ = 0.368) one needs a lot of terms to have a negative n_ (illustrated by S = 5000), while for
A_ = 0.37 three hundred terms are largely sufficient and for 4_ = 0.4 fifteen terms are sufficient. This suggests a method to determine the convergence

limits in Table IV.

© Physica Scripta 2003
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12 D. K. Callebaut and G. K. Karugila

3.1.3. Energy

Here we consider the convergence of the series for potential
energy density (pe = e(ny — n_)p), kinetic energy density
(ke =0.5m_n_v?), energy density (ie., pe+ ke),
fozn (pe x pe)dy, | foz " (ke x ke)dyx and fozn (energy x energy)
dx, where pe, ke and energy are the complex conjugates.
Each of these series converges with |4_| < 1/e. One
can generally show this by considering two series
a=mA_+wA* + A3+ +a, 47 +... and b=
biA_ +byA> +b3A> +--- + b, A" + --- which have prop-
erties that a,,,/a, =e+x«, and b, /b, = e £ T, respec-
tively. Here «, and 7, are small quantities converging to
zero when n— oco. From a,,/a, =e=+«, one gets
ay = al(e + IC]), as = az(e + IQ) = a1(€ + K])((? + Kz) and so
on. Similarly for b,,;. We then take the product of the
series @ and b. From the product, we divide the term
involving 4% by that involving 4% to get

A_[2e + (peanuts)].

If we divide terms involving 4% by the one involving 43
we obtain

y 3¢? + e(peanuts)
“\ 2e £ (peanuts) /°

Again dividing terms involving 4” by those containing
A" we get

y (n — 1)e" 2 & e(peanuts)
- ((n —2)e"3 £+ e(peanuts)>'

In the limit this gives e 4_ which implies that, for our series
to converge it is required that |4_| < 1/e, just like the cases
considered previously.

For visualization purposes, we calculated pe, ke and
energy for some A_ when x = 0. We summarize the result
in Table II. From the table we see that the virial theorem
(2ke = pe) is approximately satisfied especially when
A_ < 0.1 as it should as the deviation from equilibrium is
smaller when A4_ is small. With this result and the
convergence of the series considered before, we conclude
here that the expressions for the particle density, velocity
and electrical potential verify the energy conservation law.

3.1.4. Discussion

e In Section 3.1 we considered three procedures, counting
Eqgs. (17) and (18) as belonging to the same procedure, in

Table I1. Table showing various values of energy densities
(in units m_now’A2 /k>) for various values of A_. The
energies increase steadily with the amplitude, and approach
infinity when A_ approaches e~'. (Cold plasma case.)

A_ Potential energy Kinetic energy Total energy
0.001 1.0025 0.5015 1.5040
0.01 1.0256 0.5154 1.5410
0.1 1.3294 0.704 2.0335
0.2 1.9730 1.13335 3.1063
0.25 2.6122 1.5903 4.2024
0.3 3.9366 2.6060 6.5426
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order to complete the reduction process of our system.
Of the three procedures one notes that procedure 2 is
shorter, simpler and safer than the other two. This means
that a second order equation is easier to handle than an
equivalent first order one or a fully integrated one. To
some extent we may understand this because a higher
order differential equation is usually more condensed
than any of its integrated forms. Nevertheless it is
surprising as one might have hoped that a fully
integrated expression would yield quickly the required
series. However it is a lucky aspect as for more
complicated equations it may be very difficult to obtain
integrated forms.

e We see in our analysis that, the series yields results and
converges but only for amplitudes which involve less
than 37% of the equilibrium density. This is seriously
different, but not too drastic, from the case of
incompressible media treated in [1] where the method
was well suited up to large amplitudes and agreed with
experiments. However, in the case in [1] the coefficients
depended on k and for k — 0 the coefficients became
very large.

e A sketch of (w, k) graph for equation (23) is a straight
line passing through (0, w_) and parallel to k. This means
o does not depend on k. Hence the group velocity dw/dk
is zero, implying that cold plasma oscillations are not
propagating as is well known. This is so because we
neglected the kinetic motions of the charged particles.

e From the graphical results of Section 3.1.2 we noted that,
there is an agreement between the results and the issues of
convergence and divergence. This coincidence encourages
us therefore to use the graphical procedure in approx-
imating the radius of convergence in the situations where
it is difficult to determine such a value analytically.

e It is suggested that the convergence should be checked
experimentally: e.g., by inducing externally applied
waves with large amplitudes in the plasma.

3.1.5. Analysis of perturbation using cosines

Here we address the question: what happens if we use
cosines (or sines) instead of exponentials?

In Section 3.1.1 we noted that using Eq. (20), one gets
results much faster than when one uses Egs. (17), (18), or
(24). We therefore, use (20) in the determination of various
coefficients when (26) is replaced by

n_=nyp+n_1+n_p,+---

S+1 S

=ng+ Z Znoa,s,,-pAi cos (i), (36)
i=1 s=i

where S goes to infinity and a_,;, are constants to be
determined. With the help of the mathematica program we
obtained results given in Table III. The first value in Table
III (i.e., a_y,1,) must be different from zero otherwise we
will have no perturbation. We therefore put a_;;, = 1 and
from the linearized case one obtains (23). Proceeding with
calculations involving higher orders, we found that all
a_g1,’s are arbitrary constants. Hence they are not linked
to the first order term under consideration and we have to
put all a_g,’s (where s =2, 3,...) equal to zero.
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Table II1. Table showing the coefficients of AScos(lx) in the
series for (a) electron density (i.e., a_s1,) with 1 and s taking
values from 1-5, (b) velocity (i.e., a_q 1y in units o/k) and (c)
potential (i.e., a_g |, in units eny/k*c). (Cold plasma case.)

K 1 2 3 4 5
afs.lp 1 0 O 0 0
-1
a_s2p 1 0 T 0
9 =27
s 5 0 8
4
a_g4p 3 0
625
astp 384
-1
a_g1y -1 0 Z 0 9—67
-1 11
[ 7 0 ﬁ 0
-3 51
a—s3y ? 0 @
—1
A_g 4y T 0
—125
i ‘ ED
3 —15
a_s1q —1 0 3 0 e
-1 19
a_gp vy 0 T 0
—1 27
=30 B 0 28
—1
a_s.49 E 0
=25
s B

The results in Table III were then compared with results
given in Table I. Doing so one notes that the coefficients
a_y ¢ (with fhere standing for either p, v or ¢) are related to
a_g through a formula

st

T (37)

A—s sf =

For other values (non-diagonal ones) in Table III, one may
infer some general formulae for example a_;, >y =
—[(s —2)" (s = 3)/[25(s — DI(s — 4], with s =4,5-- .

Checking for convergence of (36) with (37) (putting
f = p), one finds that the series converges with |[4_| < 2/e.
The same applies when f is replaced by v or ¢. In fact
e’X = cossy +isinsy consists physically of a sum of two
waves. Using only one (say the cosine, for example) reduces
the wave and its energy by a factor two, thus allowing the
amplitude to be doubled. As in experiments one deals
rather with a sinusoidal wave and not an exponential one,
we have 2/e as the practical limit of convergence for |A]|.
This amounts to amplitudes up to 72% of the initial
density. Experimental verification is solicited.
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3.2. Sound waves

Sound waves are described here by

9;p + div(pv) = 0, (38)
dv
——_V
P 2 (39)
p=Kp", (40)

where p is the density of the medium. As in Section 3.1, all
quantities are taken here to be functions of y alone. Hence
the above system is reduced to

(0’ p§ — K*TKp™ ) p' =0 41)
which implies that either

p =0 (= pis a constant) (42)
or

o’ 0f = K*TKp". (43)

Expression (42) would require that our system is incom-
pressible, prohibiting sound waves (i.e., requiring the
amplitude to be vanishingly small). Equation (43) (which
yields the dispersion relation for sound waves when p = pg
is substituted) requires o to be constant too, unless
I'=—1. The case I' =—1 has no physical sense but
when we use it in the Egs. (38)—(40) it turns out that p again
has to be constant. Clearly in all cases the radius of
convergence is zero. For more insight we analyze Eqs. (38)—
(40) after substituting various orders.

3.2.1. Attempt with series development

In this part we consider again Eqs. (38)—(40) and analyze
them after substituting quantities from various orders.

First order

Clearly pp and py are constant with respect to space and
time. Hence putting p = po + p1,p = po+p1 and v =y,
into the system (38)—(40) and simplifying we get

0p1 = —poV - vy, (44)
pod v = —v2Vpy. (45)
Taking the divergence on (45) we have

Pod(V - v1) = —v; Api, (46)

since 9, and V can commute. Substituting (44) into (46) we
get

(&, —v:A)p; = 0. (47)
We then let
p=potptpto =Y poaA e, (48)
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14 D. K. Callebaut and G. K. Karugila

where oy = oy = 1. Substituting this into (47) leads to the
dispersion relation for sound waves:

o® =kK*TKph = = k2. (49)
For p; and v; we find
pr=vip1 = viApy e (50)
and
v = —kod e’ /k> = —kvipi/(wpo). (51)

Second order
Expanding and neglecting all quantities involving orders
higher than two and eliminating v, yields

(@, —v:A)pa = —[(3p1)(V - v1) + p13,(V - v1)
+ (@v1)(Vo1) +vi - V(3,00)] + poV(v1 - V1)
V?(F - 5
+ (Vp)ovi + p1 Vo + T Apy. (52)
Putting (51) into (52) shows that p, has to be of the form
ozz,o% /po with a, a dimensionless constant. This yields

arpH(@? — k) = pllo?® + K2vi (T —1)/2].

Since @? — v2k? is zero we must have I' = —1, which is
physically meaningless, or «, has to be infinite, which just
means that the series diverges for any amplitude. Mathe-
matically the problem may be avoided by adding a factor x
(or ¢ or r) in the expression for p,, but this leads to diverging
amplitudes and has physically a very limited value.

From the analysis above it is clear that, for pure sound
waves (no electromagnetic interaction) the series either
diverges (meaning that instability has to occur or one of the
assumptions is wrong) or gives results which are physically
meaningless. However sound waves do exist. This moti-
vates us to investigate further the sound wave problem in
question. We therefore generalize the above approach so as
to have more insight about our method and the problem
itself.

3.2.2. A more general approach

Eliminating p between (39) and (40) yields
v+ (- Vyv=—KI'p! 2Vp. (53)

Let p=po+¢eo1 + &0+ p3+--- and v =ev; + &2vy +
e3v3 4 - -, where ¢ is now a small arbitrary constant.

First order
For the first order we have

9,01 + div(por)) =0 (54)
and
3y = —KIpl=Vp. (55)
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Elimination of v, yields the wave equation given in (47).
This has a general solution which can be written as the sum
of eight terms of the type

p1 = f(0),

with w/k = vy by definition and f an arbitrary function.
Substituting this into (55) yields

dv1 = —vikf'/ po. (56)
Integrating (56) with respect to ¢ we get
v = —vikf/(wpo) + C(r). (57)

We may put C(r) = 0 since for vanishing f we must have
vanishing v;.

Second order
Here we obtain upon substituting (54) and (55):

302+ poVr2 + p1Vvi + v Vp =0 (58)
and
>
v I -2,V
By 4 v1 - oy — __x[vpﬁw} (59)
Lo Lo

Taking the divergence of (59) and substituting (58) into the
new expression in order to get rid of v, yielding

(R —2A)py = vA(I"=2) (Vp1 - Voi + p1Apr)
111 s -
Lo

+ po(Vvy - Vvp + w1 Avy) — 9(p1 Vvi + v Vo). (60)

For illustration purposes, we consider the following two
cases

(a) Let f=e'x. Putting this into (57) and then combining
the obtained equation with (60) to have

(@ — v A)pr = Cp /2

where C, = —[2k*v}(I" + 1)]/po. In a general way the
solution of a differential equation of this type (i.e.,
with differentials on the left-hand side and a given
function on the right-hand side) consists of the sum of
two parts: one part is a solution of the equation
without the right-hand side (omitting the given
function), the other part is a particular solution with
the right-hand side (note: any particular solution will
do!). The general solution of the left-hand side is
(restricting k - r to kx)

Sr(wt + kx) + f_(wt — kx)

with f and f_ arbitrary functions of their argument.
However the solution without right-hand side has
nothing to do with the first order solution under
consideration, so we drop it. For a particular solution
with right-hand side one has usually to take a function
like the one on the right-hand side. However here f on
the right-hand side satisfies the left-hand side (this is
called “‘absorption”) and one has to adapt a function
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with a supplementary factor. Hence we find that
0) = Chl e2i(a)t+kx)/(4iw)

is a particular solution (a similar solution with x in
front of the exponential is a particular solution too: the
difference between both particular solutions belongs to
the solutions of the left-hand side.) This is the relevant
solution for our nonlinear analysis. However it is no
more periodic. We may construct higher order terms
(involving higher powers of ¢ or x), but clearly the
solution will have limited application: for large ¢ the
oscillations become very wild. To avoid this one often
uses an adapted w/ which is shifted somewhat from w,
for the second order term. However, it is clear that this
again means that the solution is not really periodic
although the first order term is periodic. In either of
those procedures the convergence or the range of
application is not clear, cf. the introduction.

Let /= (wt+ kx)*, where s =1,2,.... Using this in
(60) gives

(b)

(% = viA)po = Cy f2I.

where C, = k*>v}(I" + 1)s(2s — 1)/po. In a similar way
as for case (a), we find the particular solution:

02 = Cyt(wt + kx5 /2w(3 4 2/s)).

The solution is no more dependent on x alone but
separately on ¢ as well. Again in higher order terms powers
of ¢t (or x) may occur. However the situation is quite
different from the previous one: indeed here the first order
solution was not a periodic function, rather a kind of
traveling wave. However the nonlinear terms alter this
character.

In our analysis of sound waves the phase velocity is
constant and the dispersion relation gives a straight line
through the origin. Hence w/k = nw/nk for all (w, k), n
arbitrary. This makes (9% — v2A) = 0 for all (w, k) and all n.
However, the right-hand side, although differing from case
to case depending on the choice of f, is different from zero
and thus would require infinite coefficients on the left-hand
side.

3.3. Plasma with pressure of electrons

Here we assume that the kinetic motion of electrons is not
negligible and thus the pressure of electrons is present.
Hence our basic system of equations becomes Eqgs. (6), (8)
together with

n_m_ %_ — —Vp_ +en_Vo, (61)
and
po =K n'-. (62)
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3.3.1. Elimination

We once more let all quantities be functions of x alone.
Hence as we did previously in Section 3.1, we reduce the
above system to

m_(k*v2_n-+1 — ?nf~")nr_

en3. kznon_l

¢ = : (63)

where 2 —K_F_ngjl/m_ is the sound velocity of

electrons. Equation (63) is the same as (15) with the
exception of the pressure term added. Hence we complete

the reduction process as follows:

Procedure I: (Reduction to nonlinear differential equation
of first order).

Here we repeat procedure 1 of Section 3.1, using
however ¢ from (63) to obtain

2
51— 22\ » 2 2 4 2
— g —® no) n* 4+ o w-n (n- — ny)

2022 [Fonl"Y i — ng) — (n"- — ) )]

I (I'- — n{~k=2n=5

(64)

This is the equation to be used in one of the mathematica
programs in order to determine b_;,’s as we shall see later.
For the potential we first integrate (63) with respect to x to
get

o+ C

m_ny |: kzvffnf*“ w2n0:| (65)

= ekinZ (I'- — Dny~ + 2

We then determine C by substituting n_ = ny and ¢y =0
into (65). Hence

2 (,M-—1 r_—1 2
m_|vi_(n_—"" —n,
(p:—2 S( OF7)+—w2(né_n27) .
ek* | k=X(I— — g~ 2nZ

(66)

Procedure 2: (Reduction to nonlinear differential equation
of second order).

Differentiate (63) with respect to x and substitute into
(11) to get

22 (I — 2yl =+
( - - +3 &’ng |1

1‘7 —
ny

k2V52'7n17’,+l 2 ”
+ — . Ny |n_n_ =
ny-

This may be used equally well as (64) in the determination
of n_. In fact it turns out to be simpler than Eq. (64).

w? (n_ — ng) 67)

2,4
nghz

3.3.2. Dispersion Relation
Here we let

N
no=no+n_y 4=y nob_gA° e, (68)
s=0
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16 D. K. Callebaut and G. K. Karugila

where N goes to infinity, b_o, = 1 = b_;, and the remain-
ing coefficients, b_;,, are to be determined. Hence, putting
(68) into (67) and linearizing yields

o’ = + K v?_, (69)

which is the (Langmuir) dispersion relation for electron
plasma waves [9, p.146]. Note that Eq. (69) is slightly more
general than the usual Langmuir equation as it uses I"_
instead of y_, the ratio of specific heats.

Solving (64) with (68) having N =2, we obtain (69)
together with

ot = kv (70)

We reject this since it contradicts (69) (cf. Section 3.1.1).

3.3.3. Analysis of perturbation when exponentials are used

We solved Eq. (67) (with »’ being replaced by (69)) up to
order fifteen and determined b_,’s. Similarly we evaluated
the constants b_g, and b_,, for the velocity and potential.
See appendix I for the first five coefficients. Identical results
are obtained if one solves (64), however with more effort.

Comments on the convergence

Figure 2 gives (w, k) graphs for the dispersion relations for
cold plasma and for plasma with electron pressure together
with the oblique asymptote (dispersion relation for sound
waves). Let k,, be the value of the wavenumber at the point
of intersection of graphs for Egs. (23) and that of the
oblique asymptote. If k& <« k,, (long wavelengths), then
electric forces dominate and the plasma frequency w_ of
the electrons is a fair approximation. This is due to the fact
that the electrostatic potential has a long range and hence
becomes relatively more important for longer wavelengths
than the pressure variations. When k > k,, (short wave-
lengths), then the approximation for the sound waves
dominated and the convergence decreases. If k = k,,,, then
we have the wavenumber at the approximated point of
transition between the cold plasma region and the sound

w
4

2
w'= W + kP2

Fig. 2. (w, k) graphs for the dispersion relations for cold plasma, sound
waves and plasma with electron pressure. (We sketched mainly one branch
because +k are not really distinct). The straight lines passing through the
origin correspond to pure sound waves and are the asymptotes of a
hyperbola. For comparison purposes, this figure gives also the graphs of
o? =20* and w? = 2k? vsz_, which were obtained when an electron—

positron plasma case was considered.
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dominated region. The expression for k, can be deter-
mined as follows:
First put p_g = nokpT_. Hence

w_ no
— = |—
Voo el _kpT_

From our results in Appendix I we note that the
coefficients of the higher order terms are polynomials
in the parameter wgo = (1+ I )k*? jo? =k T_(1+
')A , where A% =eK_ n [(eny)”. (Note that, if
I'_=y_ then A} =, ., which is the square of the
Debye length). The parameter wg is a measure of the
relative importance of the pressure and the electric action.
Moreover the convergence depends now on k, in contrast
to the cold plasma case. Substituting Eq. (71) into this
parameter, we obtain

km = (7 1 )

wo = (I'- + 1) (k/kn)*. (72)

To fix the ideas, we take I'_ = y_ = 5/3 (monoatomic).
For wo = 1/2 (i.e., k = v/3k,,/4) we find graphically that
|A_| < 0.775 ¢! for convergence (based on the terms up to
fifteenth order). This may be compared with |4_| < e~! for
cold plasma (wp =0). Other results for the cases
k <« ky, k =k, and k > k,, are summarized in Table IV.
Hence inclusion of the electron motion makes the conver-
gence slower and the domain of convergence smaller. The
more the w, k curve approaches the straight line asymptote
of sound waves, the worse the convergence.

Again experimental verifications using externally applied
waves of various frequency are proposed.

It may be noted that if the incompressibility increases
(thus I'_ increases) wg increases and thus the convergence
decreases. This is physically understandable as the pressure
increases (relative to the electric forces) the convergence
decreases. This is in agreement with the fact that cold
plasma waves have a fair convergence while sound waves
have no convergence at all.

3.3.4. Analysis of perturbation when cosines are used

Here we substitute Eq. (36) (with “a” being replaced by
“b) into Eq. (67) and solve for the required coefficients

Table IV. Some values of the maximum allowed |A_| to have
convergence in various cases of k, where wg=(1+T_)
k*v2 Jo* andky = o_/vs_. (Plasma with electron pressure.)

0Q k [A-]
0 0(vs— =0 or k,, = o0) <e!
1 3
k < ko 5 %km <0.775¢"!
| RErS <0612¢!
22
8
k =k 3 km <0353 ¢!
8 3k <0.163 ¢!
k> ko, 800 1043k <0.0019 ¢!
8000 104/30k,, < 0.00019 ¢!
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with the assistance of mathematica up to order seven.
Comparing these values with those of Appendix 1.1 we
infer the formula

bfs,sp = bfsp/25_1~

It is again possible to infer general formulae for the
remaining values as well as for those in velocity and
potential. Due to the factor 2°~! in the denominator the
convergence is granted up to amplitudes twice as large as in
the case of exponentials. In fact exponentials correspond to
two waves (or doubling the amplitude). However, in
experiments one has to think in terms of sinusoidal
waves. Cf. Section 3.1.5.

4. Plasma with perturbed ion density

We consider the case in which both ions and electrons may
move. Hence our basic system of equations here is made up
of Egs. (1)—(5).

4.1. Approach I: Reduction to nonlinear differential
equations of first order

Following the procedure illustrated in the previous
sections, we put our basic system of equations into the
following form:

(w+k-voly +nik-v, =0, (73)
myng(w~+ vy k)W, = —kp' Feniky, (74)
K¢ =e(n_ —ny)/e, (75)
pe = Kun'>, (76)
p=p++p-. (77)

We then reduce our system of equations by eliminating

velocities, pressures and potentials as follows:
First integrate (73) to obtain

(w+k-vi)ny =€1= w ny. (78)

Then rearrange the equations obtained after substituting
(78) into (73) to have

kv, = —a)non’i/ni. (79)
Multiply k on both sides of (74) and substitute (79) to get

2

miw nénﬁr/nfL = k(Y + ensi¢), (80)

and

m_w*min’ n* =P —en_¢). (81)

Subtracting (81) from (80) we have

w’'ng (m;f £ m,f) = el*(ny +n_)¢/ (82)
i -
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while summing them (i.e., (81) and (80)), after substituting
for p, yields

m_n’_

k2 2

2.0 /
w°ng (ern+
ny

) —e(ny —n_)¢

n
= 2(F+K+n£*_ln/+ + F,K,nf*_lnL). (83)

Integrating (75) with respect to x and then substituting in
(82) and (83) we have respectively

2
a)zn(z) m+n’Jr m_n’_
ek*(ny +n_)\_ n’ nZ

_ 20’13 [(n- —ny) (myn', _m_n_ dy
ke ) (ny+n_)\ n? nZ '

(34)
and

1 ’nd (myn, N m_n’_
e(ny —n_)| k? n n2

2
—2<F+K+n£*_ln/+ + F,K,nf*_ln’_)]}

4 /’a)zné m+n/++m_n’_
T k2 22\ nk n2

- I“Jr1<+n£*_lnjr - F_K_nf*_lnl] dx},

(85)

The integration constants have been put equal to zero as
required when we substitute n, = n_ = ny. Using mathe-
matica program, we solved (84) and (85) with c_g, =
c_1p=1and

N
ne=ng Y cipd® e (86)
s=0

where N goes to infinity. In first order we obtain
respectively

m_ (w* =2k
o= (2 7
and
m_ (w* —2w* m_
CHp = (wz—Zwi) and ¢y, = m, (88)

where v2, = Ky [yn ' /my. and ? = e?ng/(emy). Equa-
ting (87) with (88) we get

ot — a)z(w%r +w? + kzv_i + kzvf+
+ 21{2(113_603L + v§+a)2_) =0 (89)

and

o' =K +vi,). (90)

The latter we normally reject (cf. Egs. (27), (28) and (70) ).
However, if electrons and positive particles move together
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this equation may exceptionally be valid (cf. electron—
positron plasma below) because it is then included in (89).

4.2. Approach II: Reduction to nonlinear differential
equations of second order

In the previous approach, ¢ was eliminated from the
equation obtained after integrating (75) by the substitution
of Egs. (82) and (83) into it to obtain respectively two
equations. Here we eliminate ¢ from (75) by differentiating
(82) and (83) with respect to x and then substituting the
results respectively into Eq. (75) to obtain

myn,  m_n
o, + n’)(— e ) +(ny +n-)
+ —_

7" 2 " 2
nj _ 2n+ _ n__ 2n~

XM\ 2 3 m-\-3 3
ny n; n- n’.

A0 —m )+ n)

= 91
sw’ng ©n
and
mon'.  m_n
on(n — ”D[( +2 -+ 2 _)
ni n

—21(2(1“+K+n£+71n’+ + F_K_nf"lnL)]
n// 2n/2
+ o’ (ny — n_)|:mJr (n—;r — ;r)

+ 5
N n’ 2
m7 R
nz  n

— 2T K (Mg — Dk 720 -l

—MH1K4U;—UM—%Q+M—M”}

=— (- noy. 92)
As is the case for approach I, the two equations are then
solved simultaneously to obtain the coefficients ci,, with
s=1,2...N. For the first order, one respectively recovers
(87) and (88) without the second ¢, (i.e., cy1, = m_/my).
Hence, one obtains the dispersion relation (89) without the
usually rejected Eq. (90). In Appendix I we briefly give the
expressions of the coefficients up to order two only since
they are very long. However, we give them up to order five
for the electron—positron plasma.

Brief discussion on the dispersion relation

1. Cold plasma
If T, ~0~ T_, then v,_ ~ 0 =~ v,y and (89) becomes a
quadratic equation o' — w*(w} + ®>) =0 with roots
@’ = 0 (trivial solution) and

o' = o) + o =0}, (93)

Equation (93) tells us that both electrons and ions are
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oscillating around their equilibrium positions with
frequency w,, without propagating. The results obtained
here are the same as those for k ~ 0.

. Tons stand still

Substituting w, =0 = vg, into (89) one recovers the
dispersion relation (69) obtained when ions are not
moving (together with the trivial solution @ = 0).

. Dust plasma and bucky balls

Similarly putting w_ =0 =v,_ into (89) yields the
trivial solution (w® = 0) and the dispersion relation for
the case when the negative particles stand still:

O = R K, (94)

This is the case when the mass of the negative particles is
much higher than the ion mass. This was long considered as
an unphysical situation. However, in the tails of comets and
in the interplanetary space e.g., the dust particles are
sometimes negatively charged due to electrons which are
attached to them. Those dust particles may easily have
masses of 10% a.m.u and accumulate hundreds or thousands
of electrons [12].

In the laboratory this situation may, e.g., occur using
bucky balls or fullerenes, i.e., carbon sixty (or seventy, ...)
which are constituted by 60 carbon atoms. Hence their mass
is 720 amu (respectively 840 amu for 70 carbon atoms). The
fullerenes have the property that they may attach an electron
so that they become negatively charged. The frequencies are
of course much lower than for an “ordinary plasma” [13].

. Electron—positron plasma

Again the interest in this exotic plasma dates from the last
decennium. Photons with energy higher than 1 MeV may
disintegrate in an electron and a positron (rest energy
511keV). Around pulsars one may have a plasma of
extremely high temperature (over 10'°K), which allows
the photons to disintegrate. As the density of photons is
extremely high the density of electrons and positrons is
extremely high as well (the density is in the range of
1032 m~3) [14,15]. For an electron-positron plasma we
have m_ = my and thus w_ = w,. Substituting this in
(89) yields w* = 2w* together with w* = k*(v2_ +v2)).
This result is surprising: the electric waves and the
pressure waves are decoupled and exist each on their
own. We may interpret this physically as follows:

(a) For the equation w? = 2w?.

The electron and the positron oscillate symmetrically
around the equilibrium situation. As a positron moving to
the right is electrically the same as an electron moving to the
left, the situation is electrically the same as if twice as many
electrons are oscillating which explains the factor 2. The
associated pressure waves however cancel each otherleaving
the total pressure unaltered, so that this dispersion relation
does not depend on v2_ or v, . However, the higher order
coefficients do depend on the sound velocity (see Appendix
IT), which is surprising. In fact this feature happens because
theeven coefficients are the same for electrons and positrons,
while the odd coefficients are opposite. Hence from second
order on variations in the total density happen.
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(b) For the equation w® = kK*(v2_ +v2,).

The electrons and the positrons move together, hence no
electric perturbation occurs and only terms correspond-
ing to the pressure wave occur. Note that the
temperature of the positrons does not have to be
equal to the one of the electrons.

An estimate of the ratio of both frequencies, provided
the temperatures are assumed to be the same, is given by

w_ e no
kve  k\elkgT’
With g = 10 m—3 and 7= 10'° K we find w_/(kv,_) =
10°/k. Hence both frequencies are comparable for
wavelengths of about 10~%m, for larger wavelengths
the plasma frequency is the larger one.

(c) Graphical representation.

Sketching the graphs of @’ = 2w? and @’ = 2k*v>_ on
the same graph (see Figure 2), one obviously sees that
they meet at the point (w,, k), where k,, is given by
(71) and w,, is the the value of the frequency when
k=ky=(Ap- \/ﬁ)fl. It is also interesting to see that,
at the same point, the two graphs cross the graph of
’ = @’ +k*v>_, which was considered previously in
section 3.3. This gives the parameter k,, a much stronger
basis as it can be used for comparison purposes.

5. Conclusion

In this study we have considered perturbations of ideal
unmagnetized plasmas which were represented by systems of
nonlinear partial differential equations. We reduced each
system to a single nonlinear equation in one unknown, the
combined variable x = wt — k-r. The reduction process
was done using either the first or the second or the third
procedure. These procedures reduce the system respectively
to a first and a second order differential equation and a fully
integrated equation. Of the three procedures, the second one
is simpler and faster than the others. Thus it turns out that
the higher the order of the reduced differential equation, the
simpler the way to solve the Fourier analysis, contrary to
our original expectations. The higher orders were obtained
using mathematica. The solution is expressed in terms of the
following  parameters: the equilibrium  quantities
(wx, vsx, Iy, ng), the amplitude of the linearized solution
(A_), and the wave parameters (o, k).

Callebaut’s method of Fourier analysis was used, i.e.,
only one family of (w, k) is considered (i.e., one linear term
and all its related higher order terms). If two or more (w, k)
are considered (with different phase velocity) then inter-
ference terms between the families are needed in addition.

In cold plasma we noted that, the series in exponentials
converges with amplitudes less than e~! of the initial density.
However with sinusoidal waves, corresponding to experi-
mental situations, this amplitude is doubled, i.e., up to 78% of
the initial density. In sound waves, the series did not converge
at all. The nonlinear approach does not work for sound
waves. This is due to the fact that the dispersion relation
yields a straight line through the origin (w = vyk) so that
(2% —v2A) is always zero for all (w, k) and all p: to compen-
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sate this the coefficient is required to be infinite and thus there
can be no convergence. For the case of plasma with electronic
pressure, the series converged with amplitudes smaller than 1/
e for exponentials (respectively smaller than 2/e for sinusoidal
waves). As the natural oscillations have a very limited
amplitude (the total thermal energy is an upper bound;
making use of table II we have estimated that the amplitude
A_ for oscillations based on spontaneous fluctuations should
be at most 1073) one should use very strong external fields to
verify these results experimentally in a plasma.

We have elaborated some nonlinear terms for the case
when both the electron and ion pressure are taken into
account. This is relevant in particular for certain exotic
plasmas which are studied since last decennium: comet
tails, fullerenes and electron—positron plasmas. In fact the
electron—positron plasma will be considered fully in a
forthcoming paper including the magnetic contribution. In
addition we have derived and commented on the dispersion
relations of various waves and approximations.
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APPENDICES

I. Coefficients of the higher order terms for the case of
plasma with pressure of electrons

In this appendix we give some of the results obtained
for particle density, velocity and potential with wgo =
(1 + Tk Jo* =K*T_(1+T')A3_, where A} =
eK_nj~/e*nj. We calculated the coefficients up to order
15, but give only the first five here.

I.1. Coefficients in the particle density of n/ny (normalized
particle-density)

bflp =1,

2
b—zp - 2 +_a)99
3

9 3 27
b, :§+Zw§2 + <—+

32 28 SI_
b_4p =?+ﬁw39 +w§2<6+T>

N 194+1111+2r2_
wol 22 = 2 o
2\ 15 9 45 )
5 _ 625 +2075w4 L 2425  575I_
TP T4 129602 T2\ 216 T 432
W2 18385  8975I_ 17951
2\ 576 1728 6912
N 6395 N 265 20517 N 53
“2\ 144 T 48 576 ' 576 )
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1.2. Coefficients in the velocity
b—lv = 17

(in units —w/k)

2w
bfz\,v=1+TQ,
po 3, (49,3 +3w§2
=27\ 24" 16 )T s
p. 8, (31 6Ir e
=37 %60 T2 T a5 )02

28w?2

(B35
1879 J¥eT 7

5 125 10441 N 26— 7692 N 53
5y = ——— )
YT g 720 9 2880 ' 576 )¢
L (9217 6623T- 179512 2
576 1728 6912 ) ¢
N 587 N 575\ 5 N 2075w},
72 432 )Y 1296

1.3. Coefficients in the potential (in units —enqy/k’s).

b—lgozl,
1l w
b—2¢:§+?~(2,
1 3 I w?,
b—3¢—2+<8+48>w9+12’
ho 2. 97+1111+r2_
=37 \120 " 144 " 360)“7
35\ , T
+<§+m)% 108
ho 25, 1279+531*_+41FEJr rl
=0 =247\ 720 " 240 " 2880 " 2880)“7
N 3677+359F_+359F2_ 5
2880 " 1728 ' 34560 )2

(9 B 3+83w‘}2
216 " 432 )¥? T 1296

II. The coefficients when both ions and electrons are moving

In this appendix we give the coefficients (up to second
order terms) in the expressions of the particle densities
when both ions and electrons in the plasma are moving. We
put c_i, = 1. (In the case that the negative particles have a
much larger mass than the ions (comet—tail particles,
fullerenes) and that one considers the limit that they are
standing still, then one has to put c_j, =0 and ¢4, = 1)
with the following solution of the dispersion relation (89)

Physica Scripta 68

(+ sign in front of the square root)

1
o =3 {wi + ol + RO+,
+([02 + @+ RO P,

82 (@ + v )}%} (95)

s+

and obtained:

W (0 — kD)

Cilp = ,
e @ (—? + @l + k22,
v, + 20)3_11/2
C2p = T,
&) + 20> Py
Cy2p = T
where

Wy = ot (@’ (ch1p — 1)7 + 2[00 + (- — 1)V2])

— 4w’ (14 T e,

W, =207 (-2 + KX (1 — F_)vi +2k*v,]
+ @2 203 (=1 + cy1p) + 2K7VE,

+ Gy’ + =3+ TV

Y3 = 2a)i{w2(a)2_ + wi) — 2k2(a)3_v§_ + o v§+
+ 40’ [—0® + KO + V2,
@) = —4k*&*(1 + I )2 v: + o (@i (cq1p — 1)

+20% [0’ + KAy — v, 1),

&) = a)i[a)2 + 2a)20+1p + k(- =3

N

— 2011/)(0)2 — kzvg_)]

+20° 207 + P2 + (1= Tovi, ),

@3 = 207 (02 (0 — 2k*V2))
+ o (0 — 2k2v§)
+ d0*(—a? + kzvz_s + kzvﬁ)).

Note that putting the mass of the negative particles infinite
would yield ¢y, infinite. Clearly for that case one has to
put ¢c_;,=0 and cyi, =1 and make the required
interchanges in the formulae.

When one investigates the case of electron-positron
plasma (w; = w_), with the temperature of electrons
assumed to be equal to that of the positrons (implying
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that ', =I_ and v’ =»y>) then one obtains the

following results, taking @ = 2&? and c_j, = 1:

Cilp = -1,

3w + k2(1", — l)v%_

C2p = 3 (a)z, — kzvf,,) s
o 450% + 3k (=1 4+ 702
£ =F 162 — k22 )
! (255 &°
Cidp =— % w
T A3 — k22 ) -
+IP[=345 420 (125 4+ (12 4+ )] v
+ KT + T (=254 + T (51 + 8T )] v
—KS(=1+ T )(=3+T_(49+4r_ ) },
1
Ct5p =

245250°
T 3042 — k2 ) -

— 5k*[4959 — 2I"_(2879 422" _(12 4 I"_))]* v*_
+ SK*[591 — (4940 — I'_(1413 + 176 _))]w* v}

— 5k°[9 — " (238 — '_(1281 + 88 _ )P }.

However, the detailed electron—positron plasma will be
considered in a forthcoming paper including the magnetic
terms in the basic equations. On the other hand, if the o?
used was the one involving the minus sign in front of the
square root given in relation (95), one would have obtained
c_sp’s which gives infinity when the electron—positron
plasma case is considered. This implies that our expression
for the particle density becomes divergent. In fact this
corresponds to the case of sound waves (see section 3.2)
and our nonlinear Fourier analysis using x is not suitable
then. However, when the electron and ion masses are
different this divergency does not occur.
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