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From storage to shipment: �e e�ect of ignoring
inventory when planning routes

Florian Arnold 1a, Kenneth Sörensena

aUniversity of Antwerp, Departement of Engineering Management,
ANT/OR - Operations Research Group

Abstract

Routing problems have been widely studied, yet, the interdependences between
routing and inventory levels at the supplier are not well-explored. In reality,
the optimal distribution of di�erent goods from potentially multiple depots to
customers depends on the inventory levels in the depots. Customers can only
be served if su�cient inventory of the demanded product is available. In this
paper, we present a model and a corresponding heuristic to capture inventory
constraints in routing problems with multiple depots (MPMDVRPI). As the main
contribution, we study the e�ect that di�erent inventory levels have on the qual-
ity of the respective distribution routes. Depending on the number of depots
and products, we observe cost increases of the routing between 4% and 30% if
inventory levels are sparse. Furthermore, we �nd that a di�erent allocation of
inventory to depots can a�ect the routing costs by up to 9%.

Keywords: multi-depot vehicle routing problem, multi-product, inventory
management, inventory allocation, metaheuristics

1. Introduction

�e Vehicle Routing problem (VRP) is one of the most studied problems in
the �eld of Operations Research. �is can be a�ributed to its complexity, gener-
ality and practical relevance. Many logistic systems involve the task of planning
deliveries from a source (also called depot) to destination points (also called cus-
tomers), and thereby to solve a VRP to minimize a certain objective (e.g. travel

1corresponding author. Email: �orian.arnold@uantwerpen.be
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time, cost, or externalities). In practice, the deliveries are o�en made from di�er-
ent depots. �e resulting problem has been studied as the multi-depot routing
problem (MDVRP) (Montoya-Torres et al., 2015). In this problem, one has to solve
the allocation task which customer should be supplied by which depot, as well
as to plan the delivery routes. Naturally, a customer can only be supplied from
a depot that has the demanded products on stock. �erefore, it might happen
that a customer’s demand has to be satis�ed from a far-away depot, if closer de-
pots do not have su�cient inventory. Inventory levels can thus a�ect delivery
routes. �ese interdependencies become more complex if we consider di�erent
products, rather than one generic product like in most routing problems.

Take the example of a large mail order company with a complex distribution
infrastructure, like Amazon, shipping many product, e.g. �ashlights and ba�er-
ies, from many depots. Most customers will buy ba�eries and �ashlights in a
bundle, so it makes sense to store both products in the same depots; otherwise
the customer needs to be supplied by two di�erent depots which results in less
e�cient delivery routes. However, in which depots should the products be stored
and how much? Is it necessary to store all products in su�cient quantity (what-
ever this is) in all depots? �is would certainly result in optimal delivery routing
decisions, but on the downside, it might result in overwhelming inventory hold-
ing costs. �is perspective cannot be ignored, considering that approximately
33 % of logistics costs can be a�ributed to holding inventory (Wilson, 2006). On
the other hand, an optimal inventory management plan (with minimized hold-
ing costs) might lead to expensive delivery routes, because customers potentially
have to be delivered from far-away depots.

�ese questions relate to di�erent topics in the �eld of logistic optimization.
�e problem of inventory allocation tries to put the right amount of inventory at
the right location (Federgruen and Zipkin, 1984). However, this perspective sim-
pli�es the distribution activities, which are optimised with MDVRPs (Montoya-
Torres et al., 2015). Reversely, routing problems usually consider inventory as a
black box, implicitly assuming that products are available in su�cient quantities.
An exception is the class of inventory–routing problems (Moin and Salhi, 2007),
which studies vendor-managed inventory, but does not consider inventory levels
at the supplier’s warehouses. �us, there seems to be a lack of �ndings about the
interdependencies between decisions on the inventory and on the distribution
level. Considering the possible bene�ts of an integrated decision-making along
the logistic chain (Reimann et al., 2014; Chandra and Fisher, 1994), quantitative
studies on the interplay between decision levels are necessary.

In this paper, we will remove the inventory black-box assumption in general
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routing problems and account for the following:

• Multiple products are distinguished and stored in multiple depots.

• Customers can only be served from a depot, if the demanded products are
stocked and available in su�cient quantity.

We incorporate inventory levels for multiple products in MDVRPs and formu-
late a novel mathematical optimization problem: the multi-product multi-depot
vehicle routing problem with inventory restrictions. To solve the resulting dis-
tribution problem we develop an e�cient heuristic. Hereby, we do no optimise
inventory levels, or the allocation of inventory, but rather optimise the routing
that results from a given inventory situation. �us, we embed inventory levels as
a restriction in the planning problem. As the main contribution of this paper, we
conduct a simulation study with the goal to investigate the e�ects of di�erent in-
ventory levels on routing costs. In the lines of (Salhi and Rand, 1989), where the
authors quantify the e�ect of ignoring distribution planning in strategic facility
location decisions, we investigate

• How do routing costs change if inventory levels are considered?

• How does the number of depots and products a�ect this relation?

�e paper is structured as follows. In Section 2 we introduce the planning
problem, and in Section 3 we present an e�ective heuristic to solve it. Our exper-
imental setup and motivation is outlined in Section 4. Finally, Section 5 discusses
the most important �ndings and Section 6 summarizes our contributions.

2. Problem Description

We extend the basic MDVRP (Montoya-Torres et al., 2015) by introducing
inventory levels at the depots and distinguishing between di�erent products.
�e resulting problem is called the multi-product multi-depot vehicle routing
problem with inventory restrictions (MPMDVRPI). �e MPMDVRPI is de�ned
as follows: given a set of customers with known demands (for several products),
given several depots, each with their stock levels de�ned, �nd the lowest-cost
routes (starting and ending at one of the depots) for a �eet of vehicles such that
all demands are satis�ed, the capacities of the vehicles are not exceeded, and
the total demand for each product served from each depot does not exceed the
inventory of that product at the depot. �e integration of inventory levels and
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the consideration of di�erent products in the MDVRP is modelled by additional
constraints.

More formally, let us consider a routing problem with N customers. Each
customer i ∈ {1, . . . ,N } has a demand dip for each product p ∈ {1, . . . , P },
which might potentially be 0. �e demand can be supplied from any depot
j ∈ {1, . . . ,M }, but only if depot j has su�cient inventory level Ijp to cover the
customer’s demand for product p. We denote the allocation of customers to de-
pots by xij , which is 1 if customer i is supplied by depot j and else 0. With these
variables we could model the inventory constraint as follows:

N∑
i=1

dipxij ≤ Ijp ∀j = 1 . . .M , p = 1 . . . P (1)

However, it might happen that a customer orders two products p1 and p2,
and no depot has su�cient inventory to deliver both products simultaneously.
In this case, the customer needs to be supplied by two di�erent depots, e.g., p1 is
delivered by depotd1 andp2 byd2. Routing problems rarely model this possibility
of visiting a customer more than once. We model it by allocating a customer’s
demand to a depot, rather than the customer itself. More speci�cally, let xijp
denote whether the demand of customer i for product p is satis�ed by depot j,
then

N∑
i=1

dipxijp ≤ Ijp ∀j = 1 . . .M , p = 1 . . . P . (2)

Hereby, a customer’s demand for one speci�c product is satis�ed by one tour
only, and cannot be split among depots. Additionally, we require that the in-
ventory levels are su�cient to satisfy all demands. As in the MDVRP we look
for routes that minimize the total distance traveled. �ereby, as in traditional
routing problems, each vehicle starts and ends its delivery routes at the same de-
pot, and has a certain capacity limit. �e complete mixed-integer programming
problem can be found in the appendix.
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3. Design of a heuristic for the MPMDVRPI

�e MPMDVRPI is a special case of the MDVRP, and, thus, it is an NP-hard
problem for which commercial MIP solvers can �nd the optimal solution only
for small instances within a reasonable time. In the last decades, heuristics have
been proven to be a more tractable approach to obtain high-quality solutions
for instances of realistic size (Laporte, 2009). �erefore, we introduce a heuristic
which can solve MPMDVRPI instances in a short time. �e heuristic extends a
previously-developed algorithm for the MDVRP.

3.1. A heuristic for the MDVRP
In the following, we present a brief outline of our MDVRP heuristic, and for

more details we refer the interested reader to (Arnold and Sörensen, 2016). �e
heuristic is based upon variable neighborhood search (VNS) (Mladenović and
Hansen, 1997), one of the most successful metaheuristic frameworks for various
types of routing problems (Sörensen et al., 2008). A VNS alternates between a
local search stage and a perturbation stage.

In the local search stage, di�erent local search operators are called iteratively.
�ese operators try to improve the current solution by triggering small local
changes (e.g., change the route position of a customer or swap two customers).
We use an ejection chain (Glover, 1996), the CROSS-exchange operator (Taillard
et al., 1997), and the Lin-Kernighan heuristic (Lin and Kernighan, 1973) as local
search operators. While the �rst two operators look for changes between routes,
the la�er one tries to keep routes optimal in themselves.

Our perturbation stage introduces small but controlled – or guided – changes
to the current solution. �is concept is based on guided local search (GLS) (Voudouris
and Tsang, 2003). GLS tries to remove those edges in a solution that are class�ed
as ‘bad’, by adding penalties to their cost value. A self-evident idea is to penalize
the longest edges as in (Mester and Bräysy, 2007). In a data-mining study (?) we
investigated other characteristics of ‘bad’ edges and condensed the results in a
penalty-function that measures that ‘badness’ of each edge. �e edge with the
highest function value is penalized and potentially removed in the succeeding lo-
cal search stage. �ese two steps of local search and edge penalization are then
iterated thousands of times.

An outline of the heuristic is presented in Algorithm 1. It performs compara-
ble to the best heuristics in literature for a wide range of benchmark instances.
More speci�cally, it solves the MDVRP instance benchmark from Cordeau with
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an average gap to the best known solutions of 0.28 % in less than a minute com-
putation time.

Algorithm 1 Outline of the MDVRP heuristic
1: Solution S ← Clark-Wright
2: while not stopping condition do
3: Local search:
4: while improvements found do
5: S ← Ejection chain
6: S ← Lin-Kernighan
7: S ← CROSS-exchange
8: S ← Lin-Kernighan
9: end while

10: Perturbation:
11: Penalize edge in S with highest value in penalty function
12: end while

3.2. Extension of MDVRP to MPMDVRPI
We integrate inventory levels and product distinction into the heuristic above.

�e simplicity of the heuristic design allows to incorporate these additional re-
strictions with only a few adaptations.

�e starting solution is generated in a greedy fashion, by �rstly allocating
customers to depots and then computing routes with the Clark and Wright heuris-
tic. For each customer we compute the di�erence between the distances to the
second-closest and the closest depot, and store these potential savings in a list.
We sort the list in descending order, and starting from the top, iteratively allocate
a customer to its closest depot, if it still has su�cient inventory. Otherwise, we
recompute all savings as the di�erence in the distances between the two closest
depots with su�cient inventory, and reinserted them into the list. In this way
we allocate each customer to a depot. �is approach, also called regret heuristic,
minimizes the opportunity cost that result when the closest depot does not have
su�cient inventory to serve the customer. Finally, we compute, for each depot
separately, initial routes with the Clark and Wright heuristic.

Multiple products are distinguished by assigning a demand value for each
customer and product. �e used capacity of a vehicle is then computed by ag-
gregating the demand per product over all visited customers. If a customer has
demand for more than one product, he might be delivered by two di�erent depots
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as noted above. We handle this special case by de�ning a new customer for each
additional ordered product, e.g. if a customer demands two products, we split it
into two customers (with the same location) that both order one product. Even
though this approach might increase the number of customers and, therefore,
the problem complexity, it can be readily applied in the heuristic above.

Likewise, we consider inventory restrictions by assigning inventory levels
to each depot. �e restrictions themselves are validated within the local search
operators. Our heuristic maintains feasible solutions at each stage of the search,
and the local search operators only execute those changes that satisfy all restric-
tions. For each depot and product, we keep track of the sum of demand over all
customers that are assigned to routes from this depot. �us, at each stage of the
heuristic we know how much inventory is available in each depot. Only then
can customers from other depots be relocated or swapped into a route from this
depot, if there is still su�cient inventory available.

4. Experimental setup

�e motivation behind the following analysis is that the theoretical best rout-
ing plan is not always feasible in practice when considering inventory levels.
Given multiple depots and multiple products, inventory can be either sparse or
badly allocated and, thus, result in non-optimal routing decisions. �erefore, our
hypothesis is that tighter inventory constraints (we will de�ne below what we
mean with this) worsen the quality of the routing. �e goal of our analysis is
to quantify these dependencies. Firstly, we motivate why non-optimal inventory
levels can occur in practice, and then we describe our methodological design. We
use the term ‘non-optimal inventory levels’ in the sense that they do not allow
optimal delivery routes.

4.1. Practical reasons for non-optimal inventory levels
Traditionally, inventory management and distribution planning are two in-

dependent problems in logistic optimisation. With vertical supply chain inte-
gration on the rise, the interdependencies between both entities are increasingly
more explored. In practice however, inventory levels might still interfere with
the realization of optimal distribution plans for the following reason.

• Inventory and distribution are planned independently of each other, or
there is a lack of information exchange between both planning levels. �is
happens when the logistic chain is not su�ciently vertically integrated.
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• Inventory planning is usually a tactical decision that is taken over a period
of several days or weeks. In contrast, distribution decisions are operational
and taken on a day-by-day basis. Synchronization between both decision
levels can therefore be di�cult, since the inventory plan needs to anticipate
the demand and distribution for a longer time period.

• Inventory levels �uctuate and are generally not accurately predictable. Lead
times are usually stochastic, customers can cancel or change orders and
products can break and spoil. �ese dynamic components make it di�cult
to optimise inventory levels on their own, let alone the synchronization
with distribution.

• Inventory holding is expensive (capital lockup, storage costs, costs of spoilage,
depot costs,. . . ). �us, even though most companies keep a safety stock, the
amount of stored inventory will be kept at a minimum.

• Not all products might be stored in all depots, for instance, because of
special storage conditions for a product. We will investigate related e�ects
in Section 5.2.

In summary, inventory plans might not always be synchronized with antic-
ipated distribution plans, and even if they are, inventory levels are usually low
and subject to stochastic e�ects. Consequently, it might not always be possible
to select the best routing plan since it is infeasible with respect to the available
inventory in the depots.

4.2. Experimental setup
We conduct a simulation study with the goal to quantify the e�ect that in-

ventory restrictions have on routing costs. �e outline of the study is as follows:
(1) we generate random MPMDVRPI instances, (2) for each instance we vary in-
ventory levels, and (3) compute high-quality routing solutions. By comparing
the results for di�erent inventory levels per instance we can then derive inter-
dependencies between routing and inventory levels.

We conduct di�erent experiments in which we vary the number of depots
M ∈ {2, 3, 4} and products P ∈ {1, 2, 3}. In each experiment we generate 100
MPMDVRPI instances with with N = 80 customers (this is small enough to be
computational feasible and large enough to be realistic). Both customers and
depots are located randomly on a squared plane. We set the capacity limit of
vehicles in such a way that a solution has 9 routes on average. For each customer
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Figure 1: Solutions for MPMDVRPI instances with di�erent inventory allocation. (le�-
hand-side) Inventory levels allow an almost optimal routing solution. (right-hand-side)
Inventory allocation results in non-optimal routes.

i we assign a random demand dip = {1, . . . , 10} for one or two products p; In the
case P = 1 we can only assign demand for a single product, whereas in the cases
P = 2 and P = 3 we assume that 50% of the customers have demand for a single
random product and 50% for two random products.

�e inventory levels in the depots can be varied in two ways. We can vary
the total amount of inventory available in all depots I

д
p =

∑
j Ijp (global con-

straint), and we can vary how this total amount is allocated amongst the depots,
by changing Ijp (local constraint). Both changes a�ect the routing solutions. If
there is more inventory globally available, the routing solutions should be bet-
ter, however, if the available inventory is not well-allocated (e.g. in the extreme
case that one depot has all inventory), the solutions become worse. Fig. 1 visu-
alizes this interaction. On the other hand, if inventory is optimally allocated, i.e.
according to the optimal routing solution, inventory levels only need to cover
customer demand. We want to remark again that we do not optimise inventory
allocation, but rather study the e�ect that a di�erent allocation has on routing
costs.

More formally, let Dp =
∑N

i=1 dip be the sum of demand over all customers for
a certain product p. If Iдp = Dp for all products p, then the available inventory
is just su�cient to satisfy the demand, and if Iдp > Dp we have some inventory
to spare. In the experiments we investigate Dp ≤ I

д
p ≤ 2Dp (global constraint).

For the allocation of inventory to depots (local constraint) we consider three
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Figure 2: Example of the e�ect of not storing all products in all depots. (le�-hand-side)
�ree products are delivered from three di�erent depots. (right-hand-side) Each depot stocks
all products.

scenarios. (1) In the �rst scenario, the inventory is allocated equally, i.e. Ijp =
I
д
p
M .

In the other scenarios, we consider a be�er and a worse allocation. For each depot
j, we count the number of customers cj who are closer to this depot than to any
other. (2) In the be�er allocation scenario, we set Ijp =

c j I
д
p

N , so the inventory
levels increase linearly with the number of closest customers. (3) Likewise, in
the worse allocation scenario we inverse this value, so that the inventory level
in a depot decreases if it has more closer customers.

Note that these allocation scenarios imply that all products are stocked in
all depots. Moreover, all products are allocated amongst the depots according
to the same distribution, i.e. each depot stocks the same percentage of the total
amount of each product. We have explained above that this assumption does
not necessarily hold, and, thus, in a second set of experiments we consider the
scenario that not all products are available in all depots. Fig. 2 illustrates an
example.

In summary, our methodological approach is the following. For each exper-
imental setup, de�ned by the number of depots and products, we generate 100
random instances. For each instance, we generate 15 di�erent inventory sce-
narios (�ve di�erent global inventory levels from Dp to 2Dp , paired with three
allocation scenarios). Finally, for each inventory scenario we compute a routing
solution sI with the heuristic described in Section 3. Additionally, we compute a
(optimal) routing solution sO in which inventory constraints are neglected, and
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Figure 3: Impact of di�erent inventory levels on routing costs for di�erent number of depots
and products.

which should therefore be always equally good or be�er. We then compute for
each inventory scenario the additional routing costs s I

sO
with respect to the un-

restricted solution, and average this cost increase over all 100 instances.

5. Experimental Results

5.1. All depots stock all products
�e results are visualized in nine graphs in Fig. 3. Each graph presents one

experimental setup in terms of the number of depots and products. While the
horizontal axis depicts the amount of globally available inventory Iд, the vertical
axis highlights the average cost increase with respect to the non-restricted solu-
tions. Note that for all products the ratio I

д
p
Dp

is always the same, and, hence, we
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drop the index p and simply write Iд . Each line presents a di�erent allocation
scenario. �e thick line depicts the equal-allocation scenario, whereas the lines
above and below present the worse and be�er allocation scenario, respectively.
�e corridor between the be�er and worse allocation scenario re�ect the impact
– or sensitivity – of inventory allocation on routing costs. We can make three
major observations from these results:

(1) If there is su�cient inventory globally available, inventory constraints
have only a minor impact on routing costs, independent of the allocation sce-
nario. However, if the global inventory levels fall below a certain threshold, the
additional routing costs increase signi�cantly. �is threshold seems to be around
I
д
p = 1.2Dp and can be observed in all experimental setups, i.e. the number of

products and depots. Hereby, the experimental setup moderates the magnitude
of the increase in additional routing costs, which reach between 4% and 33% for
I
д
p = Dp .

(2) With more depots, inventory constraints have a higher impact on routing
solutions. More precisely, the additional routing costs due to inventory con-
straints in MPMDVRPIs are higher, if the problem considers more depots. In-
tuitively, with more depots available inventory becomes more sca�ered, i.e. all
depots stock a li�le of everything. �is sca�ering of inventory results in a more
in�exible routing, since not all depots have su�cient inventory to realize the
most cost-e�cient routes.

(3) Analogous to the previous observation, inventory constraints also have
a higher impact on routing if more products are considered. �e possible ex-
planation is also quite similar. With more considered products, the number of
inventory constraints grows as well (one for each product and depot). Overall,
the problem becomes constrained and, thus, solutions tend to become worse.

(4) �e way that globally available inventory is allocated among the depots
impacts the increase in routing costs by up to 9%. More precisely, for Iдp = Dp the
cost increase in the worse allocation scenario is between 4% (one product, two
depots) and 9% (two products, three depots) higher than in the be�er allocation
scenario. Surprisingly, this di�erence in cost increases is quite stable for higher
values Iдp > Dp . In other words, the width of the ‘cost increase corridor’ in the
graphs remains relatively constant.

�e main implication of these results is that routing costs increase signi�-
cantly, if inventory is sparse and not well-allocated. A possible quick �x to this
problem is to simply store more inventory in the depots. However, higher in-
ventory levels come at the expense of higher holding costs, even if they might
result in be�er routing decisions. �is results in a trade-o� between inventory
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Figure 4: Routing and inventory holding costs as a function of global inventory I
д
p for

M = 3 and P = 2 (le�-hand-side), as well as the sum of both costs (right-hand-side).

and routing costs.
We analyse this cost trade-o� using the example of the setup three depots

and two products. Assuming that holding costs decrease linearly in the amount
of stored inventory, we can compute the sum of storage and routing costs as a
function of available inventory and in dependece of allocation. �e results of
such a hypothetical computation are visualized in Fig. 4.

�e joint costs of distribution and inventory processes could then be mini-
mized, by choosing those global inventory levels that minimize this function for a
certain allocation scenario. However, the exact inventory levels, and thereby the
allocation, are di�cult to forecast due to stochastic e�ects. One could account
for this uncertainty by weighting the cost values for certain inventory levels
with the likelihood that this inventory levels occur. �is example should illus-
trate that inventory and routing decisions are heavily intertwined and require a
careful analysis.

5.2. Not all depots stock all products
In Section 5.1 we assumed that each depot has all products in stock. With the

following analysis we investigates the e�ects in case that this assumption does
not hold. Practical reasons for why a certain depot does not stock all o�ered
products are the following:
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Figure 5: Additional routing costs when not all of the three products are stocked in all
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1) Certain products require specialized storage conditions. For instance, many
food products need to be cooled and require a cooling box, and building
material such as poles might require long corridors. �us, products can
only be stored in a depot that meets the requirements.

2) It might be cheaper to stock only certain products in some depots, for in-
stance because of supply costs or storage planning.

More formally, let sj denote the number of products that are stocked in depot
j. If sj = P for all depots j, then we have the same design as in Section 5.1. We
analyse the e�ect of se�ing sj < P for one or more depots, choosing P = 3.
�us, one experimental setup is de�ned by a tuple (s1, s2, . . . , sM ) where each
depot j is assigned sj random products (under the condition that each product is
stocked at least once). For each tuple we compute the additional routing costs for
various global inventory levels as above, and, for simplicity, we only consider the
allocation scenario where each product is distributed equally among all depots
that stock it. We consider the tuples (1,3,3,. . . ), i.e. one depot stocks only one
random product and the other depots stock all products, (2,3,3,. . . ), and (2,2,. . . )
and compare it with the case in Section 5.1 (3,3,. . . ).
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Fig. 5 depicts the results. If only one depot does not stock all products, the
additional cost increase due to inventory constraints is about 7% (4 depots) to
16% (2 depots) higher, independent of the amount of global inventory. Hereby, it
does not ma�er much, whether the depot’s stock is missing one or two products.
Finally, we observe a drastic increase in additional costs if all depots are not
stocking all products, reaching additional costs of 50% and more.

6. Conclusions and future research

In this paper we extended the classical MDVRP to consider multiple prod-
ucts and inventory limitations and formulated the resulting planning problem
MPMDVRPI. We further introduced an e�ective heuristic to solve instances of
this problem type. At the heart of this work, we analysed the impact that di�er-
ent inventory constraints have on routing costs. Depending on the number of
considered products and depots, we observed cost increases in routing between
4% and 30%. Hereby, both the amount of inventory that is available globally as
well as its allocation to the depots play a crucial role. Especially when inventory
is sparse or badly allocated do inventory levels a�ect routing costs signi�cantly.
In our experiments, di�erences in allocation amounted to up to 9% in additional
routing costs. Finally, we found that routing costs increase drastically by up to
60% if not all products are stocked in all depots.

�e experiments are meant to produce generalizable results in the sense that
we averaged over many di�erent instances, rather than investigating a partic-
ular case study. Naturally, given a particular case study, these numbers might
not hold anymore, however, our results give some intuition as to how inventory
constraints impact routing plans in general. Furthermore, we assumed that all
considered products are demanded in equal measure. In reality, this assump-
tion might not hold, and it might be interesting to investigate whether di�erent
e�ects can be observed when, for instance, one product is rarely asked for.

In conclusion, these results are some of the �rst to shed light on the inter-
dependencies between inventory management and distribution activities. �ey
can be used to further develop insights into optimal vertically-integrated logistic
chains. In this respect, one of the most interesting questions is as to how inven-
tory processes and routing can be optimised jointly. �e presented work lays the
foundation by quantifying the e�ects that a certain inventory situation has on
routing. A next step could be to shi� the focus towards the inventory level, and
optimise inventory decisions (restock policy, safety stocks,. . . ) in such a way that
the costs of both inventory and corresponding routing is minimal.
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Éric Taillard, Philippe Badeau, Michel Gendreau, François Guertin, and Jean-Yves
Potvin. A tabu search heuristic for the vehicle routing problem with so� time
windows. Transportation science, 31(2):170–186, 1997.

Christos Voudouris and Edward PK Tsang. Guided local search. Springer, 2003.

R Wilson. 17th annual state of logistics report. Council of Supply Chain Manage-
ment Professionals, 17(1), 2006.

17



Vc {v1,v2, …,vN }: Set of customers
Vd {vN+1,vN+2, …,vN+M }: Set of depots
V Vc

⋃
Vd : Set of nodes

P {p1,p2, …,pP }: Set of products
K Number of vehicles
C Capacity limit of each vehicle
dip Demand of customer i for product p
Ijp Inventory level of product p at depot j
cij Travel cost between vertex i and vertex j (symmetric)

xijk =

{
1 if a visit to vertex i is followed by a visit to vertex j in the tour of vehicle k
0 otherwise

sikp =

{
1 if vehicle k delivers product p to customer i
0 otherwise

ajk =

{
1 if vehicle k is allocated to depot j
0 otherwise
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min


N+M∑
i=1

N+M∑
j=1

K∑
k=1

cijxijk


(.1)

Subject to
1.) Tour continuation
N+M∑
i=1

ximk =

N+M∑
j=1

xmjk ∀m = 1 . . .N +M ,∀k = 1 . . .K

(.2)
2.) Tours start and end at a depot
N+M∑
i=N+1

N∑
j=1

xijk = 1 ∀k = 1 . . .K

(.3)
N∑
i=1

N+M∑
j=N+1

xijk = 1 ∀k = 1 . . .K

(.4)
3.) Synchronization of decision variables
N∑
i=1

xijk = ajk ∀j = N . . .N +M ,k = 1 . . .K

(.5)
P∑

p=1
sikp ≤ P

N+M∑
j=1

xjik ∀i = 1 . . .N ,k = 1 . . .K

(.6)
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P∑
p=1

sikp ≥
N+M∑
j=1

xjik ∀i = 1 . . .N ,k = 1 . . .K (.7)

Idip>0 =
K∑
k=1

sikp ∀i = 1 . . . ,N ,p = 1 . . . P (.8)

4.) Vehicle capacity constraint
N∑
i=1

P∑
p=1

dipsikp ≤ C ∀k = 1 . . .K (.9)

5.) Inventory restrictions
K∑
k=1

ajk

N∑
i=1

dipsikp ≤ Ijp ∀j = N + 1 . . .N +M ,p = 1 . . . P (.10)

xijk , sikp ,ajk ∈ {0, 1} (.11)
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