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We evaluate the transmission through magnetic barriers in graphene-based nanostructures. Several particular
cases are considered: a magnetic step, single and double barriers, and �-function barriers. A separate class of
magnetic-barrier structures are those with inhomogeneous magnetic-field profiles, such that the average mag-
netic field vanishes, which can be realized by nanostructured ferromagnetic stripes placed on top of the
graphene layer. Quantum bound states that are localized near or in the barrier are predicted for a magnetic step
and some structures with finite-width barriers but none for �-function barriers. When a bound state is localized
close to the barrier edge, it has a nonzero velocity parallel to this edge. The transmission depends strongly on
the direction of the incident electron or hole wave vector and gives the possibility to construct a direction-
dependent wave vector filter. In general, the resonant structure of the transmission is significantly more
pronounced for �Dirac� electrons with linear spectrum than for the usual electrons with a parabolic spectrum.
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I. INTRODUCTION

The recent realization of stable single-layer carbon crys-
tals, called graphene, as well as that of multilayer graphene
has led to an intensive investigation of graphene’s electronic
properties.1,2 Charge carriers in a wide single-layer graphene
behave like “relativistic” chiral massless particles with a
“light speed” equal to the Fermi velocity and possess a gap-
less linear spectrum close to the K and K� points.1,3 One
major consequence is that single-layer graphene displays an
unconventional quantum Hall effect �QHE�, in which the
plateaus occur4 at half-integer multiples of 4e2 /h. An equally
unconventional QHE occurs in bilayer graphene.5 Another
one is the perfect transmission through arbitrarily high and
wide barriers, referred to as Klein tunneling.6–9 These prop-
erties and the submicron long mean-free paths1 may have
important consequences for the design of graphene-based de-
vices �see Ref. 10 for recent reviews�.

To circumvent the Klein tunneling and produce confined
graphene-based structures, pertinent, e.g., to quantum com-
puting and the design of devices in general, various schemes
have been proposed: single-layer graphene strips,11 gated
nanoribbons,12 gated and/or doped bilayers,9,13 etc. Another
approach exploits the inherently two-dimensional �2D� mo-
tion through magnetic barriers initiated in Ref. 14 and re-
cently applied to graphene, with a single magnetic barrier, in
Ref. 15 and double barrier in Ref. 16. Here, using a consid-
erable experience we acquired on motion through inhomoge-
neous magnetic fields17 B, we build on and significantly ex-
tend the latter approach by considering double and multiple
magnetic barriers, �-function barriers, and barriers with a
magnetic-field profile in which B is reversed once or a few
times within the same structure. The latter magnetic profile
can be realized by ferromagnetic stripes14 put on top of the
graphene layer. Recently,18 edge states were studied in
graphene in a nonuniform magnetic field.

The paper is organized as follows. In Sec. II we evaluate
the energy spectrum of a 2D graphene layer in a homoge-

neous magnetic field and give the formula for the ballistic
conductance. In Sec. III we evaluate the spectrum pertinent
to a magnetic step and the electron velocity parallel to it. In
Sec. IV we evaluate the transmission through single and
double magnetic barriers, and in Sec. V that through com-
plex structures with vanishing average magnetic field as well
as various �-function barriers. We make concluding remarks
in Sec. VI.

II. BASIC FORMALISM

A. Homogenous magnetic field

An electron in a single graphene layer, in the presence of
perpendicular magnetic field B�x�, which may vary along the
x direction, is described by the Hamiltonian

H0 = vF� · �p + eA�x�� , �1�

where p is the momentum operator, vF is the Fermi velocity,
and A�x� is the vector potential. Here we first present results
for a homogeneous magnetic field B0, with A�x�
= �0,B0x ,0�, and will contrast them later with those for in-
homogeneous magnetic fields. To simplify the notation we
introduce the dimensionless units: �B= �� /eB0�1/2 , B�x�
→B0B�x� , A�x�→B0�BA�x� , t→ t�B /vF , r�→�Br� , v�
→vFv� , E→E0E , E0=�vF /�B. In these units Eq. �1� is
written explicitly as

H = − i� 0 �x − i�y + x

�x + i�y − x 0
� . �2�

Then the equation H��x ,y�=E��x ,y� admits solutions

��x,y� = ��I�x,y�
�II�x,y�

� , �3�

with �I�x ,y� and �II�x ,y� obeying the coupled equations,

i��/�x − i � /�y + x��II + E�I = 0, �4a�
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i��/�x + i � /�y − x��I + E�II = 0. �4b�

Due to the translational invariance along the y direction, we
assume solutions of the form ��x ,y�
=exp�ikyy��a�x� , b�x��T, T denoting the transpose of the
row vector. Then Eqs. �4a� and �4b� take the form

− i�d/dx + �ky + x��b = Ea , �5a�

− i�d/dx − �ky + x��a = Eb . �5b�

Operating on Eqs. �5a� and �5b� with −i�d /dx− �ky +x�� gives

�d2/dx2 − �ky + x�2 � 1 + E2�c� = 0, �6�

where c−=a and c+=b. The solution of Eq. �6� are the well-
known Hermite polynomials H�x�. For c−=a the wave func-
tion is a�x�=exp�−z2 /4�HE2/2−1�x+ky� and the energy spec-
trum is

En = � �2�n + 1� . �7�

Repeating this procedure for c+=b gives b�x�=exp�
−z2 /4�HE2/2�x+ky� with spectrum

En = � �2n . �8�

Notice the difference of these spectra from the one for the
usual electrons En=��c�n+1 /2�. The solution of Eq. �6� can
also be written as a linear combination of the Weber func-
tions Dp�z� and Dp−1�z� with z=�2�x+ky�; as such it is more
suitable for the case of inhomogeneous magnetic fields and
will be used in Secs. III and IV.

B. Conductance

We will also calculate the conductance G for various
magnetic-barrier structures by introducing it as the electron
flow averaged over half the Fermi surface,14

G = G0�
−	/2

	/2

T�EF,EF sin 
�cos 
 d
 . �9�

Here 
 is the angle of incidence relative to the x direction,
and G0=2e2EF� / �	h�. For electrons with parabolic spectrum
EF sin 
 should be replaced by �EF sin 
 and G0
=e2mvF� /�2, where � is the length of the structure along the
y direction and vF the Fermi velocity. T�x ,y� is the transmis-
sion through the studied structure.

III. MAGNETIC FIELD STEP

A. General case

We consider a region x�0, in which there is no magnetic
field followed by one x�0 in which there is a constant mag-
netic field B. This is formally described by

B�x� = B
�x� �10�

and was previously studied in Ref. 15. For completeness we
repeat the essential steps to find bound states close to the
magnetic-field step. In Sec. II we obtained the electron wave
function in a constant magnetic field for x�0. We have to

match this wave function with that of a free electron for x
�0.

For a free electron the term +x in Eqs. �5a� and �5b� is
absent and the wave-function components a and b obey

Ea + i�d/dx + ky�b = 0, �11a�

i�d/dx − ky�a + Eb = 0. �11b�

Assuming exponential solutions a, b�eikxx Eqs. �11a� and
�11b� become two linear algebraic equations. Equating to
zero the determinant of their coefficients gives

E2 = kx
2 + ky

2, �12�

with kx� iky = �kx
2+ky

2�1/2exp��i��=E exp��i��. For E2−ky
2

�0 the general solution is

a�x� = feikxx + ge−ikxx, �13a�

b�x� = feikxx+i� − ge−ikxx−i�, �13b�

while for E2−ky
2�0, the solution is

a�x� = S+fekxx + S−ge−kxx, �14a�

b�x� = fekxx + ge−kxx, �14b�

with S�=−i��kx+ky� /E.
To properly match the solution for x�0 to that for x�0

at the step, we write the solutions for x�0 as a linear com-
bination of Weber functions Dp�x� and Dp−1�x�. With p
=E2 /2 and z=�2�x+ky�, this gives

b = CDp�z� , �15a�

a = − iC�E/�2�Dp−1�z� . �15b�

Here C is a constant. Then matching the wave functions at
x=0 gives

f − CDp−1��2ky� = 0, �16�

S+f + iC�E/�2�Dp��2ky� = 0. �17�

Setting to zero the determinant of the coefficients gives the
spectrum E as a function of ky by solving

��2�kx + ky�/E�Dp��2ky� = EDp−1��2ky� . �18�

Numerical results are shown in Fig. 1�a� and are identical to
those of Ref. 15, except for the n=0 level �E=0�, which was
absent in Ref. 15. Note that we have an infinite number of
bound states labeled by the Landau-level index n in the B
�0 region. For ky �−1 /�B the center of the electron orbit
	x
=−ky is located deep in the magnetic region �B�0� and
the electron feels a homogeneous magnetic field. Then the
bound state corresponds to the Landau level with energy E
= ��2n. On the other hand, for ky�B→0 the spectrum ap-
proaches the free-electron spectrum in graphene, shown by
the dashed orange line, since the center of the orbit comes
closer and closer to the B=0 region. This corresponds to the
standard electron case discussed in Ref. 14 with the line E
= ��vFky replaced by the free-electron parabola.
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B. Zero energy problem

The case E=0 cannot be treated as outlined above and
therefore was missed in Ref. 14. We assume E=0 in Eqs.
�5a� and �5b� and check if a bound state exists. Integrating
these first-order differential equations gives

a = C1e�x + ky�2/2, b = C2e−�x + ky�2/2. �19�

The solution for b is acceptable: it vanishes for x→ +�, and
consequently, it is the wave function of a bound state. The
solution for a is not acceptable as it is not confined and
therefore C1=0. For x�0 the resulting eigenfunction corre-
sponding to the zero Landau level reads

� = eikyye−�x + ky�2/2�0

1
� , �20�

and the corresponding eigenvalue is E=0.
Let us consider the x�0 region where B=0. The spec-

trum of a free electron is continuous with a peculiar point
E=0 also called the Dirac point. This becomes important
when we construct bound-state eigenfunctions in magnetic-
barrier structures. That is why we consider this eigenfunction
in more detail below. Inserting E=0 and a and b�eikxx in
Eqs. �11a� and �11b� we obtain

�kx − iky�b = 0, �21a�

�kx + iky�a = 0. �21b�

A homogeneous wave function is obtained only if the mo-
mentum is zero, that is, only for kx=ky =0. Then the wave-
function components can have any value. However, if we are
looking for a wave function only in some part of the xy
plane, say, in the region x�0, one more solution is possible,
namely, one for a=0 and b�0. Then Eq. �21a� gives kx
= iky. Thus, for ky �0 we have

� = eikyye�ky�x�0

1
� . �22�

This is exactly what we need for matching it with the func-
tion �20� in the magnetic-field region �x�0�. As Eqs. �20�
and �22� have only a single b component, the boundary con-
dition can be satisfied by just choosing a proper coefficient.
Thus, we have a bound state with zero energy as long as the
momentum ky is negative. When ky vanishes, kx is not posi-
tive any more: this means that an electron can escape to −�
and the bound state disappears. Numerical results for the
wave function are given in Fig. 1�b� and show clearly the
increased leakage of the electron wave function into the
magnetic-barrier region for −ky→0.

C. Electron velocity

The bound states discussed above are bound only in the
direction perpendicular to the magnetic step, i.e., they are
localized close to the step but the electron �or hole� may
propagate along the magnetic step, i.e., along the y direction.
Below we evaluate the average velocity along the magnetic
step vn�ky�. We operate on Eqs. �5a� and �5b� for x�0 and on
Eqs. �11a� and �11b� for x�0, with � /�ky and integrate over
x. The result is

− ia�b = a�a��E/�ky� , �23a�

ib�a = b�b��E/�ky� �23b�

and gives

vn�ky� = �E/�ky = �
−�

+�

dxjy�x� , �24�

where jy =−i�a�b−b�a�. Numerical results for vn�ky� are
shown in Fig. 2 for various bound states. Notice that the

FIG. 1. �Color online� �a� Bound states energy spectrum vs the
wave-vector component �ky� parallel to the magnetic step. The or-
ange dashed line is the free-electron spectrum E= ��vFky. The
upper inset shows a zoom of the n=1 state near E=ky��F. The
lower inset shows the magnetic-field and vector potential profiles.
�b� Wave function b�x� for the E=0 level for different values of the
momentum ky.
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electron and hole bound states have opposite velocities and
consequently the direction of their current flow is the same.
At the ky value for which the bound state disappears the
carrier attains the Fermi velocity, i.e., the velocity of an un-
bound particle in graphene.

IV. SIMPLE BARRIER STRUCTURES

A. Single barrier

We consider a magnetic barrier in the region −d /2�x
�d /2, as shown in the inset of Fig. 4. For x�d /2, −d /2
�x�d /2, and x�d /2, the Hamiltonian is given by Eq. �2�
with the upper �lower� off-diagonal elements shifted, respec-
tively, by −d /2 �d /2�, x �−x�, and d /2 �−d /2�. Proceeding as
in Sec. II we obtain for x�d /2

�d2/dx2 − q−
2 + E2�c = 0, �25�

where q−=ky −d /2 and c=a and b. By setting kx
2=E2−q−

2 and
tan 
1=q− /kx, the solution for � is

�1 = � eikxx + re−ikxx

eikxx+i
1 − re−ikxx−i
1
� . �26�

For −d /2�x�d /2 we have again Eq. �6�. The correspond-
ing solution is a linear combination of Weber functions,

�2 = � C1Dp−1�z� + C2Dp−1�− z�

�i�2/E��C1Dp�z� − C2Dp�− z��
� , �27�

where z=�2�x+ky� and p=E2 /2. Finally, for x�d /2 we de-
fine tan 
2=q+ /k2, q+=ky +d /2, and kx�

2=E2−q+
2. Then the

wave function takes the form

�3 = . � teikx�x

teikx�x+i
2
� . �28�

Matching the solutions and the flux at x=−d /2 and x=d /2
gives the transmission probability T. Setting �1=e−ikxd/2, �2
=eikxd/2, �3=D�p−1,�2q−�, �4=D�p−1,−�2q−�, �1
= �i�2 /E�D�p ,�2q−�, �2= �i�2 /E�D�p ,−�2q−�, �1=D�p
−1,�2q+�, �2=D�p−1,−�2q+�, �1= �i�2 /E�D�p ,�2q+�, �2

= �i�2 /E�D�p ,−�2q+�, and �3=eikx�d/2, the result for t is

t =
2��2�1 + �1�2��1 cos 
1

�3�f+g+ − f−g−�
, �29�

where f+=�2+�2 exp i
2 , f−=�1−�1 exp i
2g+=�1
+�3 exp− i
1, and g−=�2−�4e exp− i
1. Then

T = �kx�/kx��t�2, �30�

where the factor kx� /kx is due to current conservation. From
kx= �E2− �ky −d /2�2�1/2 we have the range of ky values −E
+d /2�ky �E+d /2, and from kx�= �E2− �ky +d /2�2�1/2, the
range −E−d /2�ky �E−d /2. This means that the acceptable
range of ky values, for which the transmission result �30�
holds, is

− E + d/2 � ky � E − d/2. �31�

Since ky =E sin 
1+d /2=E sin 
2−d /2, Eq. �31� gives the
ranges for the angles 
1 and 
2, shown in Fig. 3,

− 1 � sin 
1 � 1 − d/E , �32a�

FIG. 2. �Color online� Average electron �E�0� and hole �E
�0� velocities along the magnetic step. The different bound states
are labeled by the Landau-level index n.

p/2 p/2

0 0

f
1 2

-p/2 -p/2

f

FIG. 3. Schematics for the ranges of the possible angles of in-
cidence 
1 and angles of exit 
2 for which electrons are able to
propagate through the magnetic barrier.

B(x) A(x)

-d/2 d/2

y

FIG. 4. �Color online� Contour plot of the transmission T
through a magnetic barrier of width d= lB. The inset shows the
corresponding magnetic-field and vector potential profiles.
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− 1 + d/E � sin 
2 � 1. �32b�

These ranges depend on d /E. The transmission is nonzero
only for 
1 and 
2 in these ranges and vanishes for d�2E.
For standard electrons Eq. �32a� and �32b� holds but with
d /E replaced by d / �2E�1/2.

A contour plot of the transmission coefficient is shown in
Fig. 4 for a magnetic barrier with width d= lB. Note that the
transmission coefficient depends not only on the value of the
momentum perpendicular to the magnetic barrier but also on
the carrier momentum parallel to it. The boundary of the T
=0 region is well approximated by the classical result: ky
=kx

2 /2d. The angular dependence of T is made more clear in

Fig. 5 where it is shown for different angles of incidence.
The spectrum of bound states is determined by

F−�q−�G+�− q+� − F+�q+�G−�− q−� = 0, �33�

with F��z�=Dp−1�z�− �i�2 /ES��Dp�z�, G��z�=Dp−1�z�
+ �i�2 /ES��Dp�z�, and S�= �i /E��q−� �q−

2 −E2�1/2�. The dis-
persion relation �33� for d=5�B is shown in Fig. 6 as a func-
tion of ky. For ky �0 the bound states are localized near the
x�−d /2 edge while for ky �0 they are localized near the
x�d /2 edge. There are seven bound states in Fig. 6 delim-
ited by the free-electron spectrum E= ��vFky �blue dashed
lines�. Notice that those for n�0 have a nonzero velocity for
energies different from the Landau levels E= ��2nE0. The
number of bound states n decreases with the width of the
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FIG. 5. �Color online� �a� Angular depen-
dence of the transmission through a barrier of
width d= lB for different values of the electron
energy. �b� As in �a� for an electron with energy
E=3.5E0 and different barrier widths.
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FIG. 6. �Color online� Energy spectrum E of the bound states as
a function of ky for a magnetic barrier of width d=5lB. Inset:
magnetic-field and vector potential profiles.
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FIG. 7. �Color online� Contour plot of the transmission T
through a double magnetic barrier with d= lB and L=3lB. The inset
shows the magnetic-field and vector potential profiles.
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barrier but it is independent of its height. For d�1.3 �B only
the E=0 level is left as bound state.

B. Double barrier

We consider now a resonant tunneling structure, i.e., a
double magnetic barrier shown in the inset of Fig. 7. The
vector potential is given by

A =

0, x � − L/2 − d

1/d�x + �L/2 + d�� , − L/2 − d � x � − L/2
1, − L/2 � x � L/2
1/d�x − �L/2 − d�� , L/2 � x � L/2 + d

2, x � L/2 + d
� .

�34�

Using Eq. �1� the procedure of Sec. IV A is repeated in a
straightforward manner and the transfer-matrix technique
gives the transmission probability. The resulting expressions
are very lengthy; here we will give only the numerical re-
sults. In Fig. 7 we show a contour plot of the transmission
probability as a function of kx and ky. As compared to a
single barrier �see Fig. 4�, the transmission exhibits a more
pronounced structure. This is made clear in Fig. 8 upon com-
paring the inset with the main figure. The double barrier
exhibits clear resonances that are absent in the single barrier.
Notice that for electrons with a parabolic spectrum the reso-
nances occur at different values of kx and are much weaker.
The transmission depends strongly on the angle of incidence
as made explicit in Fig. 9. In Fig. 9�a� we considered d= lB
and L=2lB and changed the energy while in Fig. 9�b� we
fixed the energy E=3E0 and the distance between two barri-
ers L=2lB and changed the length of the barrier.

C. Structures with ŠB‹=0

In line with previous studies for standard electrons17 and
in search for more pronounced resonances, below we con-
sider complex graphene structures with 	B
=0 and compare
their transmission probability and conductance with those for
standard electrons with a parabolic energy spectrum. In Fig.
10 we show a contour plot of the transmission probability for
the complex structure shown in its inset. Such a magnetic-
field profile is a simple model for a strip magnetized perpen-
dicular to the graphene14 layer. Compared to the single-
barrier structure of Fig. 4, the transmission is now symmetric
with respect to ky→−ky and exhibits a resonance behavior.
When the strip is magnetized parallel to the layer but perpen-

FIG. 8. �Color online� Transmission T through a double mag-
netic barrier for Dirac electrons �dashed red curve� and standard
electrons �solid black curve� with d= lB and L=3lB. The upper inset
shows the corresponding results for a single magnetic barrier.
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FIG. 9. �Color online� �a� Angular depen-
dence of the transmission through a double mag-
netic barrier for d= lB, L=2lB, and different elec-
tron energies. �b� As in �a� for E=3E0, L=2lB,
and different values of d.
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dicular to the magnetic strip, the magnetic-field profile can
be modeled by that given in the inset of Fig. 11. The corre-
sponding contour plot of the transmission probability is
shown in Fig. 11 for d= lB.

Next we will use the above units to construct new reso-
nant tunneling structures. In Fig. 12 we use the complex unit
of Fig. 10 to build the structure with the field and corre-
sponding vector potential profiles shown in its inset. The
transmission exhibits strong resonances that are shown more
clearly in Fig. 13. The resonances are more pronounced for
Dirac electrons than for the usual electrons. Another resonant
structure we can build with the unit of Fig. 11 is shown in the
inset of Fig. 14. The corresponding contour plot of the trans-
mission is shown in Fig. 14; it exhibits strong resonances
along kx and to a lesser extent along ky. A comparison with
standard electrons is made in Fig. 15. Notice the much more
pronounced resonances for massless Dirac electrons in Figs.
13 and 15 despite the similarity of Figs. 12 and 14 to Fig. 5
of Ref. 14. In fact, the perfect transmission regions in Figs.
12 and 14 are much narrower than those in Fig. 5 of Ref. 14.

We have also calculated the conductance G for these two
structures, using Eq. �9�, and compared it with that for stan-

dard electrons. In Figs. 16�a� and 16�b� we plot G as a func-
tion of the energy. The conductance is a quantity easier to
measure than the momentum-dependent transmission coeffi-
cient. The resonances in G, similar to those in the transmis-
sion, are more pronounced for Dirac electrons than for the
usual electrons.

D. Delta-function magnetic barriers

Analytical results for the transmission coefficient can be
obtained if we consider �-function barriers.19 Below we give
the main results for single and double barriers. For a single
magnetic �-function barrier, we have B�x�=B0lB��x�; the
corresponding vector potential is A�x�=B0lB���x�−��−x�� /2,
where ��x� is the step function. For the chosen gauge ky is a
constant of motion and the wave function has the form
��x ,y�=eikyy��x�.

In the dimensionless units of Sec. II the solution of the
Schrödinger equation for a standard electron is

B(x)
A(x)

dL

y

FIG. 10. �Color online� Contour plot of the transmission T
through a complex magnetic-barrier structure, shown in the inset,
with 	B
=0, well width d= lB, and barrier width L=2lB.

A(x)

B(x)

d

y

FIG. 11. �Color online� Contour plot of the transmission T
through a complex magnetic-barrier structure �see inset� with 	B

=0 and barrier and/or well width d= lB.

FIG. 12. �Color online� Contour plot of the transmission T
through the complex structure shown the inset with 	B
=0, barrier
width d= lB, and well width L=3lB.

FIG. 13. �Color online� Transmission probability for a Dirac
electron and a standard electron. The two-unit structure shown in
the lower inset has d= lB and L=3lB. The upper inset shows the
corresponding result through a single unit.
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��x� = �eikxx + re−ikxx x � 0

teikx�x x � 0.� �35�

This results in the transmission probability

T = �t�2�kx�/kx� , �36�

where t=2kx / �kx�+kx� and kx�= �2E+ �ky +1�2�1/2. Numerical
results for T are shown in Fig. 17�a�.

For a Dirac electron the Hamiltonian is given by Eq. �2�
with the upper �lower� off-diagonal elements shifted, respec-
tively, by A�x� and −A�x�. Looking again for solutions in the
form of Eq. �3� we obtain

− i�d/dx + �ky + A�x���b = Ea , �37a�

− i�d/dx − �ky + A�x���a = Eb . �37b�

For x�0 and E2−ky
2�0 the solution for a and b is

a�x� = eikxx + re−ikxx,b�x� = eikxx+i
 − re−ikxx−i
, �38�

where tan 
=ky /kx. For x�0 the result is

a�x� = teikx�x,b�x� = teikx�x+i�. �39�

With tan �= �ky +1� /kx� the transmission coefficient is

t = 2 cos�
�/�ei� + e−i
� . �40�

where E= � �kx�
2+ �ky +1�2�1/2. Then the continuity of the

wave function gives the transmission probability

T = �kx�/kx��t�2. �41�

A contour plot of this transmission probability is shown in
Fig. 17�b�. Notice that Dirac electrons have a smaller win-
dow for T�1 transmission as compared to the standard elec-
trons. There are no qualitative differences between the results
for a �-function barrier �Fig. 17�b�� and those for a barrier of
finite width �Fig. 4�.

We know that a �-function potential well has one bound
state. Let us investigate if a �-function magnetic barrier has
any bound state. If it does, it is expected to occur for ky

2

�E2. For x�0 the wave function is

��x� � eikyyekxx� 1

�− i/E��kx − ky
−�
� , �42�

while for x�0 there is a constant vector potential; with ky
�

=ky �1 /2 the wave function is

A(x)

B(x)

d

L

y

FIG. 14. �Color online� Contour plot of the transmission through
a two-unit resonant structure with 	B
=0, d=0.5lB, and L=3lB. The
single unit is shown in Fig. 11.

FIG. 15. �Color online� Transmission probability for a Dirac
electron and a standard electron. The structure shown in the upper
inset has d= lB and L=3lB. The lower inset shows the corresponding
transmission through a single unit.

FIG. 16. �Color online� A comparison of the conductance
through two complex barrier structures, shown in the insets, for
Dirac electrons �E0=�vF /�B� and standard electrons �E0=��c�.
The structures are characterized by d= lB and L=3lB.
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��x� � eikyye−kx�x� 1

�i/E��kx� + ky
+�
� . �43�

Matching the wave functions at x=0 we obtain

��ky
+�2 − E2�1/2 + ��ky

−�2 − E2�1/2 + 1 = 0. �44�

This equation cannot be satisfied and therefore a magnetic
�-function barrier does not have any bound states. We now
consider the special case E=0. For x�0 Eqs. �5a� and �5b�
give �d−=b ,d+=a�,

�kx � iky
−�d� = 0, �45�

The wave function with a=0,b�0 is

�I � eikyye−ky
−x�0

1
� . �46�

For x�0 Eq. �46� can be a solution if ky
−�0. In the region

x�0 Eqs. �5a� and �5b� become

�kx� � iky
+�d� = 0. �47�

The corresponding wave function is

�II � eikyye−ky
+x�0

1
� . �48�

In order to have a proper solution for x�0 it is convenient to
choose ky

+�0. Thus we have a line of bound states with E
=0 and −1 /2�ky �1 /2.

For a resonant tunneling structure, consisting of two
�-function magnetic barriers, we can combine the results for
two single barriers and obtain the transmission through the
structure. Solving H�=E� we obtain

A�x,y� = 
eikxx+ikyy + re−ikxx+ikyy x � − L/2

aeikx�x+ikyy + be−ikx�x+ikyy �x� � L/2

teikxx+ikyy x � L/2
� , �49�

(a)

(b)

y
y

FIG. 17. �Color online� Contour plot of the transmission prob-
ability through a magnetic �-function barrier for �a� a standard elec-
tron and �b� a Dirac electron.

A(x)

- L/2

L/2

B(x)

- L/2 L/2

y

FIG. 18. �Color online� Contour plot of the transmission prob-
ability through two opposite �-function barriers, see inset, with
L=4lB.

FIG. 19. �Color online� �a� The conductance
through one �-function barrier with L=4lB for a
Dirac electron �solid red curve� and a standard
electron �dashed black curve� with E0=��c. �b�
As in �a� but for two �-function barriers with the
magnetic field in the same direction.
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B�x,y� = 
eikxx+ikyy+i
 − re−ikxx+ikyy−i
 x � − L/2

aeikx�x+ikyy+i� − be−ikx�x+ikyy−i� �x� � L/2

teikxx+ikyy+i
 x � L/2
� .

�50�

Matching the solutions at −L /2 and L /2 gives

t =
2 cos 
 cos �e−ikxL

e−ikx�L�cos�� + 
� + 1� + eikx�L�cos�� − 
� − 1�
. �51�

Here kx= �E2−ky
2�1/2, kx�= �E2− �ky +1�2�1/2, tan 
=ky /kx, and

tan �= �ky +1� /kx�. A contour plot of the transmission prob-
ability, through two opposite �-function barriers, is shown in
Fig. 18. The transmission exhibits a clear resonant behavior
which has a qualitatively different �ky ,kx� dependence than
that of the resonant structures shown in Figs. 18, 12, and 14.
When we interchange the sign of the two barriers, i.e., B→
−B, we obtain the same transmission with ky→−ky.

For two successive �-function barriers with the magnetic
field in the same direction, we obtain ���=��kx�L�

t =
2 cos 
 cos �e−i�kx+kx��L/2

ei� cos��−� + e−i
 cos��+� − �1 + ei��−
��i sin kx�L
.

�52�

Here kx�= �E2− �ky +2�2�1/2 and tan �= �ky +2� /kx�. A con-
tour plot of the transmission is shown in Fig. 20 and the
conductance in Fig. 19�b�. The transmission in Fig. 20 has
some similarity with the finite-width barrier result shown in
Fig. 7; the difference here is that resonances are more pro-
nounced and their number is increased.

V. CONCLUDING REMARKS

We evaluated the transmission through various magnetic-
barrier nanostructures based on graphene. In particular, we
treated in detail a magnetic step, single and double regular or
�-function barriers, as well as complex structures with inho-
mogeneous magnetic-field profiles but such that the average
magnetic field vanishes.

We obtained bound states that are localized near the mag-
netic step or the edges of the regular barriers but not for
�-function barriers. Our results agree with the limited ones,
for a single barrier in Ref. 15 and a step in Ref. 15, but
importantly they differ in the E=0 bound state which was
not obtained in Ref. 15. In addition, we showed that the
transmission exhibits a strong dependence on the direction of
the incident electron or hole wave vector. In general, the
resonant structure of the transmission is significantly more
pronounced for Dirac electrons with linear spectrum than for
those with a parabolic spectrum. Moreover, the transmission
through the complex structures of Sec. V shows a much
more pronounced resonance than that through single or
double barriers. To our knowledge these results are new.

An important feature of the transmission results is their
dependence on the angle of incidence as shown in several

figures and highlighted in Ref. 15 for a single barrier: the
transmission is finite only in a certain range of angles of
incidence, shown for a single barrier schematically in Fig. 3
and more explicitly in Fig. 5. One can further modify the
angular dependence of the transmission with double barriers
�cf. Fig. 9�. The main parameters that control this angular
dependence are the width of the barriers and/or wells and the
energy of the incident electrons.

A further aspect of our results for graphene-based nano-
structures, involving electrons with a nearly linear spectrum,
is their contrast with those for standard electrons character-
ized by a parabolic spectrum14 �see Figs. 8, 13, 15, 16, and
19�. We saw a marked difference not only in the transmission
but also in its average over half the Fermi surface, that is, the
conductance given by Eq. �9� �see Figs. 16 and 19�. The
resonant behavior, especially for double barriers, is signifi-
cantly more pronounced for electrons with a nearly linear
spectrum. The behavior of the conductance shown in Fig. 19,
for a linear spectrum, is similar to that through a double
barrier created by two ferromagnetic stripes placed above a
graphene layer.20

Given the rapid progress in the field and the quest for
carbon-based nanostructure devices, we expect that the pre-
dictions and/or findings of this paper will be tested experi-
mentally in the near future. We defer to future work the
influence of spin and spin-orbit interaction in transport
through these or similar graphene nanostructures.
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B(x) A(x)

-L/2 L/2

y

FIG. 20. �Color online� Contour plot of the transmission prob-
ability for two �-function barriers in the same direction with L
=4lB. The inset shows the magnetic-field and vector potential
profiles.
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