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Abstract

We describe diffractive deep inelastic scattering in terms of diffractive parton distributions. We
investigate these distributions in a Hamiltonian formulation that emphasizes the space-time picture
of diffraction scattering. For hadronic systems with small transverse size, diffraction occurs
predominantly at short distances and the diffractive parton distributions can be studied by
perturbative methods. For realistic, large-size systems we discuss the possibility that diffractive
parton distributions are controlled essentially by semihard physics at a scale of non-perturbative
origin of the order of a GeV. We find that this possibility accounts for two important qualitative
aspects of the diffractive data from HERA: the flat behavior in b and the delay in the fall-off with
Q2. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

In hadron–hadron scattering, a substantial fraction of the events are diffractive: one
or both of the initial hadrons emerges with small transverse momentum in the final state,
having lost only a small fraction of its energy. Assuming that quantum chromodynamics
is the theory of the strong interactions, one expects that diffractive scattering is due to
the exchange of gluons. Since gluons are pointlike objects, the gluon exchange picture
suggests the possibility of hard diffractive scattering, in which exchanged gluons
moving in opposite directions participate in a hard process such as jet production, with a
transferred-momentum scale much larger than L . Similarly, in lepton–hadronQCD

scattering it should be possible to have a hard process, deep inelastic scattering, in which
the incoming hadron is diffractively scattered. These possibilities were suggested in

w x w x1985 by Ingelman and Schlein 1 . Experimental data from both hadron–hadron 2–7
w xand lepton–hadron 8–18 colliders have confirmed the existence of hard diffractive

scattering.
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Since hard diffractive scattering contains a hard subprocess, one may ask whether the
QCD factorization theorem that holds for inclusive hard scattering works also for
diffractive hard scattering. Investigation of this question indicates that factorization does
not hold for diffractive hard processes when there are two hadrons in the initial state. In
inclusiÕe hard scattering there are contributions from particular final states that would
break factorization, but these contributions cancel because of the unitarity of the

w xscattering matrix when one sums over all final states 19 . If only diffractive final states
w xare allowed, this cancellation is spoiled 20–22 . However, factorization does hold for

diffractive deep inelastic scattering, in which there is only one hadron in the initial state
w x22–24 . It is diffractive deep inelastic scattering that is of concern in this paper.

In diffractive deep inelastic scattering, one can measure the diffractive structure
diffŽ 2 . w x 2function dF x,Q , x ,t r dx dt , where Q and x are as usual the photon virtuality2 P P

and the Bjorken variable of deep inelastic scattering, x is the fractional loss ofP

longitudinal momentum by the diffracted hadron, and t is the invariant momentum
transfer from the diffracted hadron. This structure function is often called F DŽ4.. The2

factorization theorem allows us to write

dF diff x ,Q2 , x ,t df diff j , x ,t ,mŽ .Ž .2 P ar A P 2 2ˆs dj F xrj ,Q rm . 1.1Ž .Ž .Ý H adx dt dx dtP Pa

ˆThe function F is the hard scattering function, calculable in perturbation theory. It isa

the same hard scattering function as in inclusive deep inelastic scattering. The function
diff w x Ž .df r dx dt in Eq. 1.1 is the diffractive parton distribution, containing the longar A P

distance physics. It is interpreted as the probability to find a parton of type a in a hadron
of type A carrying momentum fraction j and, at the same time, to find that the hadron
appears in the final state carrying a fraction 1yx of its longitudinal momentum,P

having been scattered with an invariant momentum transfer t. Both the hard scattering
ˆ diff w xfunction F and the diffractive parton distribution functions df r dx dt depend on aar A P

factorization scale m. The m dependence of the distribution functions is given by the
usual renormalization group evolution equation,

E df diff j , x ,t ,m df X
diff jrj

X , x ,t ,mŽ . Ž .ar A P a r A PX X
Xs dj K j ,m ,Ž .Ý H aa2 dx dt dx dtE lnm P Pa

1.2Ž .
X Ž .where the kernel K has a perturbative expansion in powers of a m . The diffractiveaa s

parton distributions are defined as certain matrix elements of quark and gluon field
Ž .operators, analogously to the definition of the ordinary inclusive parton distributions

w x23 . We will discuss these definitions later in the paper.
Our purpose in this paper is to investigate the diffractive parton distribution func-

w xtions, expanding on the analysis reported in Ref. 25 . We are interested in the leading
behavior of these functions when x <1. In the language of Regge theory, thisP

corresponds to looking in the region where the pomeron is dominant over other Regge
poles. Although the evolution equation for the diffractive parton distribution functions is
the same as that of the inclusive parton distribution functions, their behavior at a fixed
scale m that serves as the starting point for evolution may be very different from the0

behavior of the inclusive functions. The different phenomenology that characterizes
diffractive versus inclusive deep inelastic scattering depends entirely on this.
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Of course, the diffractive parton distributions in a proton at the scale m are not0

perturbatively calculable. Notice that the problem lies with the large transverse size of
the proton. Suppose one had a hadron of a size 1rM that is small compared to 1rL .QCD

Then one could compute diffractive parton distributions as a perturbation expansion. In
this paper, we first consider diffraction of small-size hadronic systems. We study this in
detail. Then, we discuss how the picture of diffraction changes as we let the size
increase. This involves non-perturbative dynamics. We explore whether one may extract
Ž .at least, qualitative information on the diffractive parton distributions for a large-size
system by supplementing the computation at a much smaller size scale with a hypothesis
on the infrared behavior of the diffraction process.

As a simple case of a small-size hadronic system, we consider a diquark system
produced by a color-singlet current that couples only to heavy quarks of mass M4

L . This system gets diffracted and acts as a color source with small radius of orderQCD

1rM. In this case, the perturbation expansion for the leading 1rx ™` terms in theP

diffractive parton distributions begins at order a 4. Although this is a rather high order ofs

perturbation theory, we find that the result has quite a simple structure and can be
expressed in terms of integrals that can be evaluated numerically.

One can view the problem that we address as being that of diffractive deep inelastic
scattering at scale Q from a hadron of size 1rM with QRM and x <1. There areP

two main ingredients in our analysis.
Ž .The first ingredient has already been introduced: the factorization formula 1.1 .

Using factorization, we are led to analyze the diffractive parton distribution functions,
diff Žwhich are simpler than F . This ingredient is especially important because as we will2

. diffsee the diffractive gluon distribution makes an important contribution to F , but this2

contribution is not so easy to analyze systematically without the use of the factorization
formula.

The second ingredient is the physical picture that, in a suitable reference frame, the
partons that are ‘‘measured’’ in the process are created by the measurement operator
outside of the hadron and, much later, interact with the hadron. This picture, called the

w x‘‘aligned jet’’ model by Bjorken 26–28 , applies when x <1. We will see that itP

emerges most naturally when one works in configuration space using light cone
coordinates

x 0 "x 3
"x s . 1.3Ž .'2

The calculation becomes particularly transparent when one uses a Hamiltonian formula-
tion in which the theory is quantized on planes of equal xy. We will see how this works
in Section 3.

The plan of the paper is as follows. In Section 2 we review the operator definitions
for diffractive parton distributions and describe their structure at large 1rx . In SectionP

3 we show how to compute these distributions in the light cone Hamiltonian formulation
of the theory. In Section 4 we present general properties and numerical results for the
distributions. In Section 5 we comment on their evolution and the structure of ultraviolet
divergences. In Section 6 we discuss the relation of the previous calculations with the
phenomenology of diffractive deep inelastic scattering at HERA. We give conclusions in
Section 7. In Appendices A–D we give calculational details on certain operator matrix
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elements, we outline the main steps of the covariant formulation alternative to the one
presented in the text, and we collect some integrals.

2. Basic definitions and approximations

In this section we outline the parts of our analysis that bear on the general structure of
the result. We begin with the operator definitions of the diffractive parton distributions.
Then we describe how the diffractive parton distributions break into a convolution of a
part associated with these operators and a part associated with the wave function of the
incoming state.

2.1. Operator definitions

Let us briefly recall the definition of the diffractive parton distributions in terms of
w x w xmatrix elements of bilocal field operators 23 . This is the same definition 29,30 as for

inclusive parton distributions except that one requires that the final state include the
Ž . Ž X X .diffractively scattered hadron. Let p ,s and p ,s denote the momentum and spinA A A A

of the incident and the diffracted hadron. Let us adopt the standard notation b x for theP

hadron momentum fraction carried by the parton. For gluons one has

d f diff b x , x ,t ,mŽ .g r A P P

dx dtP

1 1 1 q y qjy i b x p yP A X X˜² < < :s dy e p ,s F 0 p ,s ; XŽ .Ý ÝH A A a A Aq2 2pb x p 216 p XP A s X , sA A

=
qjyX X ˜² < < :p ,s ; X F 0, y ,0 p ,s , 2.1Ž . Ž .A A a A A

˜ y qnŽ .where there is an implicit sum over js1,2 and where F 0, y ,0 is the field strengtha

operator modified by multiplication by an exponential of a line integral of the vector
potential:

qj qjF̃ y sE y F y , 2.2Ž . Ž . Ž . Ž .aba b

where1

`
y q q yE y sPPexp yig dx A y , x ,y t . 2.3Ž . Ž . Ž .H c cž /yy

Ž .The symbol PP denotes path ordering of the exponential. The matrices t in Eq. 2.3 arec
Ž . Ž .the generators of the adjoint representation of SU 3 , t syif .c b d cb d

Ž .The field operators in Eq. 2.1 are evaluated at points separated by lightlike
distances. There are ultraviolet divergences from the operator products. It is understood
that these are renormalized at the scale m using the MS prescription.

1 w xHere the sign in the exponent is opposite to that in Refs. 25,29 . The sign choice depends on the
convention for the sign of g. Here we choose the sign of g so that D sE q igAa t .m m m a
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˜qjw xFor purposes of computations, there is a more useful way 29 to write F . Starting
with

q qqj j jq jF̃ y sE y E A y yE A y q igA y A y t , 2.4Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .aba b b c d c b d

we have

qqj j jqF̃ y sE E y A y y igE y A y t A yŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž .ab aba b c c db d

q q jjyE y E A y q igE y A y A y t . 2.5Ž . Ž . Ž . Ž . Ž . Ž . Ž .ab abb c d c b d

Ž .The second and fourth terms cancel. Furthermore, inside the integration in Eq. 2.1 ,
EqsErE xy becomes yib x pq:P A

qqj jq jF̃ y ™E y yib x p A y yE A y . 2.6Ž . Ž . Ž . Ž . Ž .aba P A b b

This form is useful because it does not have an A=A term and it does not have a
y Ž Ž . qErE x . In the complex conjugate matrix element in Eq. 2.1 , the yib x p becomesP A

q .qib x p .P A

For quarks of type j one has

d f diff b x , x ,t ,m 1 1 1Ž . q yjr A P P y i b x p yP As dy eÝHq2dx dt 2pb x p 216 pP P A sA

b x pq
P A q˜ X X² < < := p ,s C 0 p ,s ; X gŽ .Ý A A A A2XX , sA

X X ˜ y² < < := p ,s ; X C 0, y ,0 p ,s , 2.7Ž . Ž .A A A A

where

C̃ y sE y C y . 2.8Ž . Ž . Ž . Ž .j j

Ž . Ž .Here E y is given by Eq. 2.3 with, now, the matrices t being the generators of thec
Ž .fundamental representation of SU 3 .

2.2. General structure at large 1rxP

As discussed in Section 1, the scattering process we consider is initiated by a
color-singlet current. We specialize the definitions of the previous subsection to the case
in which the incident hadron A is a special photon that couples to a heavy quark-anti-
quark pair of mass M. This pair couples again to the diffractively scattered photon in the
final state.

In the discussion that follows, we use the same method for the diffractive quark
distribution and the diffractive gluon distribution. For the sake of definiteness, we
present the discussion in the case of the diffractive gluon distribution. At the end of
Section 3 we will give the extension of the results to the case of the quark.

We consider the limiting 1rx ™` behavior of graphs for the diffractive gluonP

distribution. We shall find contributions proportional to xy2 at fixed b. At higherP
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Fig. 1. A particular graph that contributes to the diffractive gluon distribution.

orders in perturbation theory, the xy2 would be supplemented by logarithms of x . InP P

this paper we will limit ourselves to considering the graphs at the lowest order of
perturbation theory for which xy2 behavior emerges.P

What are the lowest order graphs that can give xy2 behavior? Note that there mustP

be at least one gluon in the final state in order to balance the color of the operator that
measures the gluon distribution. We find that with exactly one gluon in the final state
there are xy2 contributions at order a 4. An example of a contributing graph is shown inP s

Fig. 1. Note that there are graphs that contribute to the diffractive gluon distribution at
one lower order of perturbation theory, but they yield fewer powers of 1rx . Thus weP

consider a 4 contributions.s

We write the hadron momenta as

q2
m q m q

Xp s p ,0,0 , p s 1yx p , ,yq . 2.9Ž . Ž .Ž .A A A P A qž /2 1yx pŽ .P A

Thus the momentum transfer is2

q2
m m m q

Xq 'p yp s x p ,y ,q . 2.10Ž .A A P A qž /2 1yx pŽ .P A

m 2 Ž .The invariant momentum transfer is t'q q syq r 1yx . Since we are interestedm P

in the x ™0 limit, we use the approximation tfyq2. We suppose that q2 QM 2.P

It is useful to work in a frame in which pq;M, so that the initial hadron isA

approximately at rest.
We have a final state particle with momentum

k2
m yk s ,k ,k . 2.11Ž .yž /2k

2 Note that in our notation, q m is not the virtual photon momentum associated with deep inelastic scattering
Ž .in Eq. 1.1 , as is common in the literature. This should cause no confusion since in this section there is no

virtual photon.
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Since plus momentum qqsx pq is delivered from the scattered hadron and plusP A

momentum b x pq is removed by the measurement operator, plus momentumP A

k2
qs 1yb x p 2.12Ž . Ž .P Ay2k

Žremains for the final state particle. Let us assume as we will find, self-consistently, in
. 2 2this calculation that there are no important integration regions with k <M or with

k2
4M 2. That is, k2 ;M 2 in the integration regions that give leading contributions.

Then ky must be large, kyRMrx . The observation that the final state parton hasP

large minus momentum is crucial to the calculation.
Our analysis is simplified if we choose a physical gauge. Since the gluon in the final

w x ystate has large minus momentum, it is natural 31 to use the null-plane gauge A s0.
Ž .We make a few remarks on the calculation in Feynman gauge in Appendix C.

We have seen that the final state hadron has a minus component of momentum of
order M while the final state parton has minus momentum of order Mrx 4M. For theP

virtual particles, we divide the integration over minus momenta into regions lly;M
and lly

4M. In a general Feynman graph it is far from easy to make this division, but
at order a 4 the situation turns out to be quite simple.s

In particular, the heavy quarks in our model hadron must have lly;M. In order to
Ž .leave the hadron in a color singlet state, two gluons at least must attach to the heavy

quarks. In order that the intermediate heavy quark lines not be far off shell, the minus
momentum delivered by each of these gluons must not be large. Finally, the only sink
for the large minus momentum carried by the final state gluon is the vertex representing

˜nq ythe measurement operator F , which can absorb large ll since it is evaluated at a
fixed value of plus position, xqs0. With a little thought, one realizes that all of the
remaining internal propagator lines must carry large minus momentum.

We are thus led to the picture shown in Fig. 2. In the lower subgraph, all loop
momenta have lly;M. In the upper subgraph, all loop momenta have lly

4M. Two
gluon lines with lly;M communicate between the two subgraphs. An example of a
graph that contributes to Fig. 2 is shown in Fig. 1.

Fig. 2. Structure of the diffractive gluon distribution. In the amplitude, two gluons are exchanged, one gluon is
absorbed by the measurement operator, and one gluon is emitted into the final state. The subgraphs u and L
are evaluated at lowest order of perturbation theory.
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Ž .The definition 2.1 together with the structure represented by Fig. 2 lead to the
following expression for the diffractive gluon distribution:

df diff b x , x ,q2 , MŽ .g r A P P

dx dtP

1 1 1 d4s d4sX d2 k dkq

s Ý H H Hq2 4 4 3 q
X2pb x p 216p 2p 2p 2p 2kŽ . Ž . Ž .P A ´ ´

ab gdX† q q=Tr u k ,q ,s u k ,q ,s 2p d k y 1yb x pŽ . Ž . Ž . Ž .Ž .� 4ab cd0 0 P A

1 yiD sX yiD qqsX iD s iD qqsŽ . Ž . Ž . Ž .am bn gr ds

=
X 2 2 2 2X4 s y ie s q ieqqs y ie qqs q ieŽ . Ž .

mn rsX X X=L q ,s ,´ ,´ L q ,s,´ ,´ . 2.13Ž . Ž . Ž .ab cd0 0

Ž . Ž q Ž . q. yHere the 2p d k y 1yb x p results from performing the integration over y inP A
Ž .Eq. 2.1 . We note immediately that the integration over the plus momentum of the final

state gluon gives

dkq 1
q q2p d k y 1yb x p s . 2.14Ž . Ž . Ž .Ž .H P Aq q2p 2k 2 1yb x pŽ . Ž . P A

The functions u and L are the amputated Green functions represented in Fig. 2. The0 0

subscripts 0 distinguish these functions from simpler functions u and L that are defined
Ž .below in terms of u and L and appear in the final formula 2.20 for the diffractive0 0

gluon distribution. The function u carries two transverse vector indices that are not0
qj Ž .shown. One is the index j carried by the operator F in Eq. 2.1 , the other is thea

transverse polarization index of the final state gluon. It also carries two color indices: the
qj � † 4color index a of F and the color index of the final state gluon. The notation Tr u ua 0 0

denotes a summation over these polarization and color indices. The indices carried by u0

that are displayed are the color and polarization indices for the exchanged gluons. The
counting factor 1r4 associated with the gluon exchange accounts for the two ways for
attaching the labels sX and qqsX to the two gluons to the right of the final state cut and
the two ways for attaching the labels s and qqs to the two gluons to the left of the

Ž . w 2 xfinal state cut. The notation iD ll r ll q ie denotes the propagator of a gluon inmn

null-plane gauge. The Green functions L depend on the transverse polarization vectors0

´ and ´
X of the initial and final state photons, respectively. There is a sum over the two

choices for each of these polarizations.
Ž .We can now make a number of approximations that simplify Eq. 2.13 . These

approximations will be discussed again in the following section, but we outline them
Ž .here in order to exhibit their effect on the overall structure of Eq. 2.13 .

First, consider the momenta s, qys, sX, and qqsX of the exchanged gluons. We
< < Žhave taken q QM. Let us assume that as we will find, self-consistently, in this

. < < < X <calculation that s and s are of order M in the integration region that gives the leading
contributions. Now sq must be of order M 2rky, where ky is the minus momentum of
the final state gluon, in order that the gluons in the upper subgraph are not too far off
shell. As we have just seen, ky;Mrx , so sq;x M. On the other hand, sy must beP P
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of order M 2rpq;M in order that the partons in the lower subgraph are not too far offA

shell. Thus sqsy;x M 2
<s2. For this reason, the propagator for the exchanged gluonP

with momentum s is iD rs s m fyiD rs2. A similar power counting shows that onlygr m gr

the transverse part of the momentum in each of the other exchanged gluon propagators
contributes in the 1rx ™` limit.P

Second, sq, sXq and qq, being of order x M, are negligible compared to the plusP

momenta in the subgraphs L . Thus we replace sq, sXq and qq by 0 in the subgraphs0

L . Then the integrations over sq and sXq can be associated with the upper subgraphs0

u . Similarly, sy, sXy, and qy, being of order M, are negligible compared to the minus0

momenta in the subgraphs u , which are of order Mrx . Thus we replace sy, sXy, and0 P

qy by 0 in the subgraphs u. Then the integrations over sy and sXy can be associated
with the lower subgraphs L .0

1w xThird, the lower subgraphs in Fig. 2 are proportional to color matrices Tr t t s d .a b ab2

Thus we can replace
rsXL q ,s,´ ,´Ž . ee0rsXL q ,s,´ ,´ ™d . 2.15Ž . Ž .cd0 cd 2N y1c

Fourth, we will find that in the end only the g parts of the propagators of themn

exchanged gluons count. Then the Lorentz index structure in Fig. 2 is ugdL . Since the0 0gd

partons in the upper subgraphs have very large minus momenta, this becomes approxi-
mately uyyLqq.0 0

Ž .With these changes, Eq. 2.13 becomes

df diff b x , x ,q2 , MŽ .g r A P P

dx dtP

1 1 1 d2 s d2 sX d2 k
s Ý H H H2 2 2 2 22 q X264p 2p 2p 2p4pb 1yb x p Ž . Ž . Ž .Ž . Ž . ´ ´P A

dsXq dsq
yy yyX†=Tr u k ,q ,s u k ,q ,sŽ . Ž .H Haa cc0 0½ 5ž / ž /2p 2p

qqXX Xy1 1 1 1 ds L q ,s ,´ ,´Ž . bb0
= HX2 2 2 2 2X ž /2ps s N y1qqs qqsŽ . Ž . c

qqXyds L q ,s,´ ,´Ž . dd0
= . 2.16Ž .H 2ž /2p N y1c

Let us define simplified functions L and u by
qqXyds L q ,s,´ ,´Ž . bb0 Xqsp L q,s,´ ,´ 2.17Ž . Ž .H A22p N y1c

and

dsq
yy 2u k ,q ,s s1 C g u b ,k,q,s , 2.18Ž . Ž . Ž .H aa0 A s2p
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Ž .where 1 is a unit matrix in color space. We insert these definitions into Eq. 2.16 and
use

Tr 1sN 2 y1. 2.19Ž .c

� † 4This leaves a factor Tr u u in which the trace is now over transverse polarization
indices but not color. These changes give

df diff b x , x ,q2 , MŽ .g r A P P

dx dtP

1 C 2 N 2 y1 g 4 1 d2 s d2 sX d2 kŽ .A c s
s Ý H H H2 2 2 2 2

X264p 4pb 1yb xŽ . 2p 2p 2pŽ . Ž . Ž .P ´ ´

=
1 1 1 1

X†Tr u b ,k,q,s u b ,k,q,s� 4Ž . Ž .
X2 2 2 2Xs sqqs qqsŽ . Ž .

=L q,sX ,´ ,´ X L q,s,´ ,´ X . 2.20Ž . Ž . Ž .
Ž .This formula gives the basic structure of the answer for the matrix element 2.1 . We

will now examine this in detail.

3. Diffractive parton distributions and null-plane field theory

In this section we use the formulation of QCD quantized on planes of equal light
cone coordinates to analyze the structure depicted in Fig. 2. In doing so, we will derive
explicit expressions for the subgraphs u and L. This style of analysis is perhaps less
familiar than the approach using covariant Feynman graphs in Feynman gauge, but it
expresses the physics of the process in configuration space in a more transparent
fashion. For those readers who prefer a standard covariant calculation, we present some
of the essential steps in such a calculation in Appendix C. We carry out the calculation
of this section for the specific case of the diffractive gluon distribution. Then, in
Subsection 3.4, we assemble the complete result for both the gluon and quark distribu-
tions.

3.1. The upper subgraph

Ž . Ž .Consider the function u b ,k,q,s that appears in Eq. 2.20 and is represented by the
upper subgraph in Fig. 2. The partons in u move with very large minus momentum
through the gluon field that accompanies the heavy quark state that is approximately at
rest. Our analysis is designed to draw the consequences of this, concentrating on the
development of the states in space and time.

3.1.1. External field to represent the exchanged gluons
It is convenient to replace the gluons coming from the lower subgraph by an external

mŽ .color field AA x . We thus consider the matrix element

q y qjy i b x p y yP A ˜² < < :MMs dy e k ,s F 0, y ,0 0 . 3.1Ž . Ž .H AAa
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˜qj Ž .Here F is the measurement operator 2.6 for the gluon distribution function and k,s
are the momentum and spin of the final state gluon. The matrix element is evaluated in
the presence of an external color field AA. We expand MM in perturbation theory and
extract the term MM proportional to two powers of g AA and zero additional powers of0,2 s

Ž .g . The coefficient in this term is the Green function u in Eq. 2.13 :s 0

MM0,2

1 d4s d4q
gdc d q q˜ ˜s AA ys AA qqs 2pd q yx p u k ,q ,s .Ž . Ž . Ž .Ž .H H cdg d P A 04 42 2p 2pŽ . Ž .

3.2Ž .
˜Here AA is the Fourier transform of AA:

˜m i kP x mAA k s dx e AA x . 3.3Ž . Ž . Ž .Ha a

Since AA represents the gluons exchanged with the lower state and these gluons are in
Ž Ž ..a color singlet state cf. Eq. 2.15 , we will replace

1
c d e e˜ ˜ ˜ ˜AA ys AA qqs ™d AA ys AA qqs . 3.4Ž . Ž . Ž . Ž . Ž .g d cd g d2N y1C

Ž .After making this replacement, the arguments that led to Eq. 2.16 lead us to anticipate
that MM becomes much simpler in the 1rx ™` limit, taking the form0,2 P

1 d2 s d2 q dsy dqy 1
cq y˜MM f AA 0,ys ,ysŽ .H H H H0,2 2 2 22 2p 2p N y12p 2pŽ . Ž . c

=
dsq

yycq y y q qÃA 0,q qs ,qqs u k ; x p ,0,q;s ,0,s . 3.5Ž . Ž .Ž .H 0 P A aa2p

Ž . Ž .Using 2.18 , we identify the function u that appears in the final formula 2.20 for the
diffractive gluon distribution. Thus

1 d2 s d2 q dsy dqy 1
cq y˜MM f AA 0,ys ,ysŽ .H H H H0,2 2 2 22 2p 2p N y12p 2pŽ . Ž . c

= ˜cq y y 2AA 0,q qs ,qqs 1 C g u b ,k,q,s . 3.6Ž . Ž . Ž .A s

where 1 is a unit matrix in color space. Our aim in this section is to calculate MM in the0,2
Ž . Ž .1rx ™` limit, then to use Eq. 3.6 to extract u b ,k,q,s .P

In order to better illustrate the physical principles involved and to give some
indication of how the present calculation would work at higher orders, it is useful to
generalize the problem that we attack. Let us therefore consider a matrix element

q y qjy i b x p y yP A ˜² < < :MMs dy e k ,s , . . . ,k ,s F 0, y ,0 0 . 3.7Ž . Ž .H AA1 1 N N a

Here k ,s are the momenta and spins of one or possibly more final state partons, withi i

ky;Mrx . The matrix element is evaluated in full QCD in the presence of an externali P

color field AA considered at all orders of perturbation theory. As x ™0, the momentaP
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ky become large. On the other hand, the external field AA stays fixed. That is to say, thei

minus momenta of the quantum particles become large while the minus momenta of the
gluons in the field produced by the diffracted hadron stay of order M.

3.1.2. The eikonal line
˜qj Ž .The operator F in Eq. 2.6 contains the exponential of a line integral of the color

vector potential, which now includes both the quantum potential A and the external
potential AA,

`
y y q y q yE 0, y ,0 sexp yig dx A 0, x ,0 qAA 0, x ,0 t . 3.8Ž . Ž . Ž . Ž .H c c cž /yy

This eikonal line operator produces the same effect as if there were a special color octet
particle, EE, with a propagator

i
3.9Ž .qll q ie

and an interaction vertex with the color field

yigt n m 3.10Ž .c

with nPeseq. We can build such a particle into the theory. Let the particle be created
†Ž y. Ž y.with an operator Q y and destroyed with an operator Q y . The commutationa a

w Ž y. †Ž y.xrelation is Q y ,Q y sd . The actiona b ab

q` d
y † y q y q y ydx Q x i d yg A 0, x ,0 qAA 0, x ,0 t Q xŽ . Ž . Ž . Ž . Ž .H b b a c c c ab aydxy`

3.11Ž .

will produce the desired propagator and vertices. We need a notation for the states. We
†Ž . < : < :use Q 0 0 s EE,b andb

† < : < :Q 0 k ,s , . . . ,k ,s s k ,s , . . . ,k ,s ,EE ,b . 3.12Ž . Ž .b 1 1 N N 1 1 N N

˜qjThus we can replace the operator F by

Q† yy OO j 0, yy,0 , 3.13Ž . Ž . Ž .a a

Ž .where, using Eq. 2.6 ,
qjj q jOO y syib x p A y yE A y . 3.14Ž . Ž . Ž . Ž .a P A a a

When making this replacement, we include the EE particle in the final state and add the
Ž .extra action 3.11 to the action for QCD in an external color field.

In subsequent equations, we do not explicitly indicate the color index, b, for the
†Ž y. jŽ y . †Ž y. jŽ y .special eikonal particle and we write Q y OO 0, y ,0 for Q y OO 0, y ,0 .a a

Indeed, the color indices for all of the partons are also left implicit.
Note that treating the eikonal factor as being produced by a quantum particle with

special properties is more than just a technical trick. In the experimental determination
of the gluon distribution, there is a short distance interaction that scatters a gluon

y Žconstituent of the hadron and produces a system of jets with very large ll . This applies
.for either the inclusive or the diffractive F , for x ;1 or x <1. If the color field of2 P P
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the hadron is too soft to resolve the internal structure of the jet system, then the jet
system looks like a color octet particle with infinite lly. We approximate

i i
y m myig t 2 ll n q . . . ™ yig t n 3.15Ž . Ž . Ž . Ž .c cqq y 2 ll q ie2 ll ll y ll q ieT

and arrive at the interactions of the special eikonal particle. This idealization is
w xincorporated into the definition 23,29 of the MS gluon distribution function. Deviations

from the idealization are accounted for in the perturbative calculation of the hard
scattering matrix elements for the physical process.

3.1.3. Taking the high energy limit
Our problem is now to find the limiting behavior of

y i b xP pA
qyy² < † y j y < :MMs dy e k ,s , . . . ,k ,s ,EE Q y OO 0, y ,0 0 3.16Ž . Ž . Ž .H AA1 1 N N

when 1rx ™` and all of the ky tend to infinity like Mrx . We analyze this problemP i P

using approximations suggested by the ‘‘aligned jet’’ picture of small x deep inelastic
w xscattering 26–28 . Similar problems have been addressed in many papers over the past
Ž w x. w xfew years see, for instance, Refs. 32–40 ; the treatment in Refs. 36–38 is especially

close to that given below. Here we note that essentially the same problem was solved in
w xRef. 41 , in which the authors addressed deep inelastic scattering producing a mm pair

Ž . yin an external U 1 field in the high energy limit k ™`. We simply adapt the treatmenti
w xof 41 into the problem at hand.

w xOur analysis of MM is based on null-plane-quantized field theory, as in Ref. 41 .
y 0 3 'Ž Ž .However, we use the theory quantized on planes of equal x ' x yx r 2 instead

0 3 'Ž . w xof planes of equal x qx r 2 used in Ref. 41 . This is appropriate to a system with
.large minus momentum. In this formulation of the theory, the role of the Hamiltonian is

played by Pq, which is the generator of translations in xy. We refer to this operator as
H. In the problem at hand, H is the generator of xy translations in full QCD in the
presence of the external color field AA. To start, let us change to the interaction picture
based on full QCD without the external field as the base Hamiltonian H and the0

interaction with the external field as the perturbation V. In this picture, we write MM as

q yy i b x p y y † y j yP A ² <MMs dy e k ,s , . . . ,k ,s ,EE U `, y Q y OO 0, y ,0Ž . Ž . Ž .H 1 1 N N I

= y < :U y ,y` 0 . 3.17Ž . Ž .
Here a subscript I on an operator denotes the operator in the interaction picture
specified above. The evolution operator U is

t2 y yU t ,t sT exp yi dz V z . 3.18Ž . Ž . Ž .H2 1 Iž /
t1

Now, within the approximations used here, the interaction V does not produce soft
< : Žparton pairs from the vacuum and thus V 0 f0. We discuss the approximations and
. Ž y .their validity at the end of this subsection. Thus, we can replace U y ,y` by 1:

q yy i b x p y y † y j yP A ² < < :MMs dy e k ,s , . . . ,k ,s ,EE U `, y Q y OO 0, y ,0 0 .Ž . Ž . Ž .H 1 1 N N I

3.19Ž .
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Ž y. ySince V z vanishes when AAs0, it is substantially non-zero only for z ;1rM.I
Ž .That is, the exchanged gluons carry plus momenta of order M. On the other hand, the

Ž . < y< Ž .integral in 3.19 extends over a much larger range, y ;1r x M . Thus most of theP

contribution to MM comes from the regions yy
41rM and yy

<y1rM. In the region
y Ž y. Ž . yy <y1rM, we can approximate U `, y by U `,y` . In the region y 41rM,

Ž y.we can approximate U `, y by 1. Then
0 q yy i b x p y † y j yP A ² < < :MMf dy e k ,s , . . . ,k ,s ,EE U `,y` Q y OO 0, y ,0 0Ž . Ž . Ž .H 1 1 N N I

y`

` q yy i b x p y † y j yP A ² < < :q dy e k ,s , . . . ,k ,s ,EE Q y OO 0, y ,0 0 , 3.20Ž . Ž . Ž .H 1 1 N N I
0

where we are allowed to set the integration endpoints to zero instead of, say, "1rM
because the difference is of order x compared to the integral. Now, adding andP

subtracting a term in the integral over yy-0, we obtain
0 q yy i b x p yP AMMf dy eH

y`

† y j y² < < := k ,s , . . . ,k ,s ,EE U `,y` y1 Q y OO 0, y ,0 0Ž . Ž . Ž .1 1 N N I

` q yy i b x p y † y j yP A ² < < :q dy e k ,s , . . . ,k ,s ,EE Q y OO 0, y ,0 0 .Ž . Ž .H 1 1 N N I
y`

3.21Ž .
The second term here is proportional to

d b x pqq kq , 3.22Ž .Ž .ÝP A i

which vanishes because all of the terms in the argument of the delta function are
positive. Thus

0 q yy i b x p yP A ² <MMs dy e k ,s , . . . ,k ,s ,EE U `,y` y1Ž .H 1 1 N N
y`

= † y j y < :Q y OO 0, y ,0 0 = 1qOO x . 3.23Ž . Ž . Ž . Ž .Ž .PI

Ž . †We can understand Eq. 3.23 as follows. First, the operator Q OO creates a gluon and
one of the special eikonal particles. Then this state evolves according to QCD, possibly
evolving into a system with more partons. Since it has very large momentum in the

y Žminus direction, its evolution in y is slow except for the inevitable ultraviolet
. yrenormalizations . At y f0, this system of quarks and gluons passes through the

external field. After that, it continues its slow evolution.
Ž w xWith a straightforward derivation which is given in Ref. 41 in the case of abelian

.gauge theory , one finds that in the high energy limit the interaction with the external
w xfield becomes a very simple operator, which, following Ref. 41 , we denote by F,

U `,y` fF. 3.24Ž . Ž .
The action of F is simply to produce an eikonal phase for each parton while leaving its
minus momentum and its transverse position unchanged. If the parton is at transverse
position b when it passes through the external field, then the phase is

q`
y q yF b 'PP exp yig dz AA 0, z ,b t . 3.25Ž . Ž . Ž .H a a½ 5

y`



( )F. Hautmann et al.rNuclear Physics B 563 1999 153–199 167

Ž .Here the color matrices t are the generators of SU 3 in the representation appropriatea

to the color of the parton and the PP indicates path ordering of the color matrices. In the
Ž .case of the special eikonal particle, bs0. Then Eq. 3.23 becomes

0 q yy i b x p y † y j yP A ² < < :w xMMs dy e k ,s , . . . ,k ,s ,EE Fy1 Q y OO 0, y ,0 0Ž . Ž .H 1 1 N N I
y`

= 1qOO x . 3.26Ž . Ž .Ž .P

Ž .The approximation 3.24 is, in essence, very simple. For a scalar parton with large
minus momentum ky that absorbs a soft gluon with momentum q, the approximation is

i i i
m y q qyig 2k ´ f yig 2k ´ s yig ´ .Ž . Ž .Ž .m y q q2 2k q q ie q q iekqq q ieŽ .

3.27Ž .

For partons with spin 1r2 and 1 the diagrammatic derivation is similar, but with a little
work required to deal with the numerator structure. There is, however, a substantial
difficulty that is related to the question of which gluons are soft and which are large ky

partons. For us, the external field represents the soft gluons and the partons all have
large ky. However, really a soft external gluon can produce multiple soft quantum
gluons with an interaction that does not have the eikonal form. The soft quantum gluons

y Žcan interact somewhere else with the large k partons with interactions that do have
.the eikonal form . Thus the present derivation works only when such interactions among

soft gluons are neglected. The present derivation also neglects interactions with large
transverse momentum quanta that affect ultraviolet renormalization. Fortunately, in our
application we extract a result at the lowest non-trivial order of perturbation theory,
where none of these complications arise.

3.1.4. The operator F
Let us specify in more detail the matrix elements of the operator F between parton

states. First of all, there are separate factors for each parton:

² < < X X :k ,s , . . . ,k ,s ,EE F p ,s , . . . , p ,s ,EE1 1 N N 1 1 N N

² < < X : ² < < X :² < < :s k ,s F p ,s . . . k ,s F p ,s EE F EE qpermutations, 3.28Ž .1 1 1 1 N N N N

where the notation ‘‘q permutations’’ indicates that we should match identical partons
in all possible ways. For a single parton state specified at time xys0 by its momentum

Ž y .ks k ,k and null-plane helicity s, we have
X y y y ˜² < < : Xk ,s F p ,s sd 2p 2k d k yp F pyk , 3.29Ž . Ž . Ž . Ž .ss

˜Ž . Ž . Ž .where F pyk is the Fourier transform of F p defined in Eq. 3.25 :

˜ iŽpyk .PbF pyk s db e F b . 3.30Ž . Ž . Ž .H
For the special particle EE we have

² < < :EE F EE sF 0 , 3.31Ž . Ž .
thus giving us back the eikonal phase factor that was part of the definition of the
measurement operator, with the lower limit on the yy integration approximated by y`.



( )F. Hautmann et al.rNuclear Physics B 563 1999 153–199168

3.1.5. The Born approximation
We now revert to the lowest order of perturbation theory at which a leading

1rx ™` contribution is obtained. We take the order g 2 contribution to Fy1. For theP

evolution of the partonic state between time yy and time zero, and then from time zero
to the final state at xy™` we take order zero of QCD perturbation theory. Then there
is but one gluon in the final state and we have

dpy
0 q y y3 Xy i b x p y 2P A 2² < < :w xMM s dy e 2p d p k ,s,EE Fy1 p ,s ,EEŽ . gÝH H H0,2 y

X2 py` s

= q y ² X < † j < :exp ip y p ,s ,EE Q 0 OO 0,0,0 0 , 3.32Ž . Ž . Ž . Ž .
where the subscript g 2 reminds us that we are to use the g 2 term in the expansion of
w x qFy1 and where p is the free particle plus momentum,

p2
qp s . 3.33Ž .y2 p

w x Ž . Ž .For the matrix element of Fy1 we have, using Eqs. 3.29 and 3.31 ,
X y y y ˜2² < < : Xw xk ,s,EE Fy1 p ,s ,EE sd 2p 2 p d k yp F kyp F 0 .Ž . Ž . Ž . Ž . 2g ss g

3.34Ž .
Also, we perform the yy integration to produce an energy denominator. Then

2d p yi
y j˜ ² < < :MM s F kyp F 0 k ,p,s OO 0,0,0 0 .Ž . Ž . Ž .2H0,2 2 q 2 yg b x p qp r 2kŽ .2pŽ . P A

3.35Ž .
It will be useful at this point to adopt the notation

² y < j < :k ,p;i OO 0 0Ž .
jic k,p s i . 3.36Ž . Ž .q 2 yb x p qp r 2kŽ .P A

Here c represents the wave function of the gluon state just before it interacts with the
external field. In c , p is the transverse momentum of the gluon in the intermediate state

Ž Ž ..and i is its transverse polarization is 1,2 . Since the minus momentum of this gluon
has been set to the minus momentum of the final state gluon, we have

k2
yk s . 3.37Ž .q2 1yb x pŽ . P A

Thus
2d p

js˜MM sy F kyp F 0 c k,p . 3.38Ž . Ž . Ž . Ž .2H0,2 2 g2pŽ .

3.1.6. EÕaluation of c

Ž . Ž .With the replacement in Eq. 3.37 , Eq. 3.36 reads
2 ² y < j < :k k ,p;s OO 0 0Ž .

jsc k,p s i . 3.39Ž . Ž .q 2 2x p b k q 1yb pŽ .P A
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To complete the evaluation of c , we need to evaluate the operator matrix element

² y < j < :k ,p,s,b OO 0 0 , 3.40Ž . Ž .a

Ž . jŽ .where, here, we have made the color indices a,b explicit. Using Eq. 3.14 , OO y s
q Ž . j j Ž .qyib x p A y yE A y , we obtainP A a a

² y < j < : q j y j q yk ,p,s,b OO 0 0 syi d b x p e k ,p,s qp e k ,p,s . 3.41Ž . Ž . Ž . Ž .Ž .a ab P A

The polarization vectors, for transverse polarization ss1,2, are those appropriate to
Ays0 gauge:

1 2 1yb x pqŽ . P Aj y js q y s se k ,p,s sd , e k ,p,s s p s p . 3.42Ž . Ž . Ž .y 2k k

Thus

2 1yb x pqŽ . P Ay j q js j s² < < :k ,p,s OO 0 0 syi b x p d q p pŽ . P A 2ž /k

x pq
P A 2 js j ssyi b k d q2 1yb p p . 3.43Ž . Ž .Ž .2k

Ž .Inserting this result into Eq. 3.39 , we have

b k2d js q2 1yb p jp sŽ .
jsc k,p s . 3.44Ž . Ž .2 2b k q 1yb pŽ .

3.1.7. Expansion in powers of the external field
˜Ž . Ž . Ž .We now expand the eikonal phase factor F kyp F 0 in Eq. 3.38 , picking out the

contribution proportional to two powers of the external field. We choose to call the
momentum labels of the fields qqs and ys, and we symmetrize over which label
belongs to which field. This gives

g 2 d4q d4s
q q˜ ˜MM s AA qqs AA ysŽ . Ž .H H0,2 b a4 42 2p 2pŽ . Ž .

it t it ta b b a q= c k,k q 2pd qŽ . Ž .js q q½ s q ie ys q ie

it t it tb a a b qqc k,kyq q 2pd qŽ . Ž .js q qs q ie ys q ie

yc k,kqs t t 2pd qqqsq 2pd sqŽ . Ž . Ž .js b a

yc k,kyqys t t 2pd qqqsq 2pd sq . 3.45Ž . Ž . Ž . Ž .4js a b

w q xNote the denominators 1r "s q ie , which arise from the path ordering instruction in
Ž .Eq. 3.25 . For instance,

iq q y q yy y y y yiŽq qs . x i s y qdx dy u y )x e e s2pd q . 3.46Ž . Ž . Ž .H H qs q ie
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3.1.8. Color singlet simplification
Ž .We can simplify the result in Eq. 3.45 if we recall that in our problem we are to
˜q ˜qŽ . Ž .replace the classical field product AA qqs AA ys by the corresponding matrixb a

element of the quantum fields. In this matrix element, the color field is in a color singlet
configuration, since it results from the scattering of a meson that starts in a color singlet
state and ends in a color singlet state. Thus we are entitled to make the replacement
Ž .3.4 ,

1
q q q q˜ ˜ ˜ ˜AA AA ™d AA AA . 3.47Ž .b a b a c c2N y1C

Then we can evaluate

t t d sC 'N 3.48Ž .a b b a A C

Ž .since the generator matrices t are in the adjoint representation of SU 3 . This providesa

a great simplification because

i i
qq s2pd s . 3.49Ž . Ž .q qs q ie ys q ie

Thus

g 2 C dqyd 2 q dsyd 2 ss A q y y q y˜ ˜MM s AA 0,q qs ,qqs AA 0,ys ,ysŽ . Ž .H H0,2 c c2 3 32 N y1 2p 2pŽ . Ž .C

= c k,k qc k,kyq yc k,kqs yc k,kyqys . 3.50Ž . Ž . Ž . Ž . Ž .� 4js js js js

Ž .This result has the form anticipated in Eq. 3.6 . We are thus able to extract the
Ž .function u b ,k,q,s . We have

u b ,k,q,s sc k,k qc k,kyq yc k,kqs yc k,kyqys . 3.51Ž . Ž . Ž . Ž . Ž . Ž .

Ž . Ž .Here c is given in Eq. 3.44 . Our evaluation of u b ,k,q,s is thus complete.

3.2. The exchanged gluons

Each of the exchanged gluons appears between the upper subgraph u, in which the
partons have large momentum in the minus direction, and the subgraph L, in which the
momentum components in the plus direction and in the minus direction are of the same
order. The factor for one of the gluons is, in an obvious notation,

i l mÕ qÕ mln nm nUU yg q LL , 3.52Ž .m nq y 2 ž /lPÕ2 l l y l

where we have denoted the gluon momentum, either q m qs m or ys m, by l m. Here
m Ž . y m yÕ s 1,0,0 so that ÕP ls l . The vector Õ appears because we are using A s0

gauge.
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In going to the high energy limit, we have already made some replacements that
Ž . Ž .simplify Eq. 3.52 . First, according to Eq. 3.50 , only the plus component of the

Ž .external field appears. Thus the factor 3.52 becomes

i lqÕ qÕqln ny q nUU yg q LL . 3.53Ž .nq y 2 ž /lPÕ2 l l y l

Ž . qSecond, in Eq. 3.50 , our exchanged gluon fields are evaluated with l s0. Thus Eq.
Ž .3.52 becomes

i Õqlny q nUU yg q LL . 3.54Ž .n2 ž /lPÕyl

We can make one more simplification. Because of gauge invariance, when we sum over
all ways of attaching our gluon to the quarks in the lower subgraph, we can drop the

n Žterm proportional to l LL . Here we use the fact that the two gluons must be in a netn

.color singlet state, so that we effectively have abelian Ward identities. Thus, our factor
Ž .3.52 finally becomes

i
y qUU LL . 3.55Ž .2l

Ž .This result is built into Eq. 2.20 .

3.3. The lower subgraph

We now turn to the lower subgraph. Consider the matrix element

dp Xq
A XX4 4 i p P yyi p P xA A ² < < :MMs d y d x e 0 TOO y OO x 0 . 3.56Ž . Ž . Ž .H H H AA

2p

The operator OO creates the initial heavy quark-antiquark state and then the operator OO
X

destroys the final heavy quark state:

X Xm mOO x se e ´ C x g C x , OO y se e ´ C y g C y . 3.57Ž . Ž . Ž . Ž . Ž . Ž . Ž .Q m Q m

Here ´ and ´
X are the polarization vectors for the initial and final state photons andm m

e e is the coupling of the heavy quark to the photon. The initial and final momenta ofQ

the photon are

q2
m q m qX Xp s p ,0,0 , p s p , ,yq . 3.58Ž .Ž .A A A A qž /X2 pA

We expand MM in perturbation theory and extract the term MM proportional to two0,2

powers of g AA and zero additional powers of g . The coefficient of this term is thes s
Ž .Green function L of Eq. 2.13 :0

1 dp Xq d4s d4 wA c d 4 4˜ ˜ XMM s A s A w 2p d p qsqwypŽ . Ž . Ž . Ž .rH H H s0,2 A A4 42 2p 2p 2pŽ . Ž .

=
rsXL q ,s,´ ,´ . 3.59Ž . Ž .cd0
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When we use the color singlet nature of L and make the simplifications that result in0
Ž .the 1rx ™` limit, Eq. 2.16 leads us to anticipate MM takes the formP 0,2

1 d2 s dsq dwq
y yq q˜ ˜MM s A s ,0,s A w ,0,yqysŽ . Ž .H H H c c0,2 22 2p 2p2pŽ .

dsy 1 qqXy= L q;0,s ,s,´ ,´ . 3.60Ž . Ž .H ee022p N y1c

Ž . Ž .Using 2.17 , we identify the function L that appears in the formula 2.20 for the
diffractive gluon distribution. Thus

1 d2 s dsq dwq
y y Xq q q˜ ˜MM s A s ,0,s A w ,0,yqys p L q;s,´ ,´ .Ž . Ž . Ž .H H H c c0,2 A22 2p 2p2pŽ .

3.61Ž .

Our aim in this section is to calculate MM in the 1rx ™` limit and then to use Eq.0,2 P

Ž . Ž X.3.61 to extract L q;s,´ ,´ .
The matrix element MM is evaluated in the presence of an external gluon field AA,

which we think of as created by the scattering in the upper subgraph that we analyzed
earlier. In this subsection, it is convenient to use a reference frame in which the minus

y 2 Ž q.momenta of the partons in the upper subgraph, k ;k r x p , are fixed to be ofP A

order M as x ™0, so that the external field can be regarded as remaining fixed in theP

x ™0 limit. Then pq is large:P A

pq;Mrx . 3.62Ž .A P

We are now ready for the evaluation of MM. We use the same methods that we used
for the upper subgraph. As we found for the upper subgraph, the interaction with the
external field can be approximated by the eikonal operator F that supplies for a parton at
transverse position b a phase

`
q y qF b 'PPexp yig dy AA y ,0,b t . 3.63Ž . Ž . Ž .H a a½ 5

y`

Note that here the indices q and y are interchanged compared to what they were in our
evaluation of the upper subgraph. We do not, however, make this change explicit by

Ž .introducing a new name for the operator F, the phase function F b , or its Fourier
˜Ž .transform F q ,

˜ iqPbF q s db e F b . 3.64Ž . Ž . Ž .H
In MM , we have the order g 2 term in the perturbative expansion of F, with everything0,2

else evaluated at order zero in QCD interactions:

Xq
`dp 0A Xq y q y i p P yyi p P xA AMM f dy dy dy dx dx dx eH H H H H H H0,2 2

0 y`2pŽ .
=² < X

2 < :w x0 OO y F OO x 0 . 3.65Ž . Ž . Ž .g
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Ž .Eq. 3.65 is actually the main result. The rest of the derivation amounts to some
straightforward manipulations. We first insert intermediate states into the expression:

Xq
`dp 0A y12Xq y q y i p P yyi p P xA AMM f dy dy dy dx dx dx e 2pŽ .H H H H H H H0,2 2p 0 y`

dz dz dzX dzX
1 2 1 2X X

= dr dr dr drH H H H H H H HX X1 2 1 22 z 2 z 2 z 2 z1 2 1 2

² < X < X q X X X q X X :X X= 0 OO y z p ,r ,s ; z p ,r ,sŽ . 1 A 1 1 2 A 2 2

² X q X X X q X X < 2 < q q :X X w x= z p ,r ,s ; z p ,r ,s F z p ,r ,s ; z p ,r ,sg1 A 1 1 2 A 2 2 1 A 1 1 2 A 2 2

² q q < < := z p ,r ,s ; z p ,r ,s OO x 0 . 3.66Ž . Ž .1 A 1 1 2 A 2 2

Here the state created by the operator OO consists of an antiquark with momentum
Ž q . Ž q .z p ,r and spin s and a quark with momentum z p ,r and spin s . After the1 A 1 1 2 A 2 2

operator F acts, we have a similar state with the momenta and spins denoted with
primes. Next, we perform the space integrals. The integrations over yq and xq give ky

denominators. The other space integrals give delta functions that can be used to
eliminate some of the momentum integrations:

X X 2 21 dz dz r qM
Xq 2XMM fy dp dr dr q yH H H H HX X X0,2 A7 z 1yz z 1yz zŽ . Ž .4 2pŽ .

y1 y12X 2 2 2 2 2qqr qM r qM r qMŽ .
y q ie y y q ieX1yz z 1yzŽ . Ž .

² < X < X q X X X q X X :X X= 0 OO 0 z p ,r ,s ; 1yz p ,yqyr ,sŽ . Ž .A 1 A 2

² X q X X X q X X < 2 < q q
X X w x= z p ,r ,s ; 1yz p ,yqyr ,s F zp ,r,s ; 1yz p ,Ž . Ž .gA 1 A 2 A 1 A

:² q q < < :yr,s zp ,r,s ; 1yz p ,yr,s OO 0 0 . 3.67Ž . Ž . Ž .2 A 1 A 2

We introduce here a wave function F defined in Appendix B, so that we can make the
replacements

² q q < < :zp ,r,s ; 1yz p ,yr,s OO 0 0Ž . Ž .A 1 A 2 (se e z 1yz F z ,r, M ,´ ,Ž . Ž . s sQ 1 22 2 2 2w x w xy r qM rzy r qM r 1yzŽ .
3.68Ž .

and

² < X < X q X X X q X X :X X0 OO 0 z p ,r ,s ; 1yz p ,yqyr ,sŽ . Ž .A 1 A 2

2X X XX2 2 2 2w xq y r qM rz y qqr qM r 1yzŽ . Ž .

X X X X X X† X X(se e z 1yz F z ,r qz q, M ,´ . 3.69Ž . Ž . Ž .s sQ 2 1
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For the matrix element of F we can write

² X q X X X q X X < 2 < q q :X X w xz p ,r ,s ; 1yz p ,yqyr ,s F zp ,r,s ; 1yz p ,yr,sŽ . Ž .gA 1 A 2 A 1 A 2

sd X d X 2p 2 zpqd zX p X
qyzpq 2p 2 1yzŽ . Ž . Ž .Ž .s s s s A A A1 1 2 2

=
X X Xq q q ˜ ˜Xp d 1yz p y 1yz p F r yr F ryqyr . 3.70Ž . Ž . Ž . Ž . Ž .Ž . 2A A A g

With these substitutions we have

e2 e2 pq
Q A X X X†MM fy dz dr dr F z ,r qzq, M ,´Ž . s sH H H0,2 2 152pŽ .

=
X X˜ ˜F r yr F ryqyr F z ,r, M ,´ . 3.71Ž . Ž . Ž . Ž .2 s s1 2g

˜ X ˜ XŽ . Ž .In this equation, we expand F r yr F ryqyr in powers of g AA and keep the
2 Ž .order g terms. There are four contributions. Using Eq. 3.61 , we extract L:

2 2 2 2e e g d r 1Q sX X†L q,s, M ,´ ,´ s dzTr yF z ,rqsqz q, M ,´Ž . Ž .�H H24 p 02 pŽ .
yF † z ,rysy 1yz q, M ,´ X qF † z ,rqz q, M ,´ XŽ . Ž .Ž .

X†qF z ,ry 1yz q, M ,´ F z ,r, M ,´ . 3.72Ž . Ž . Ž .Ž . 4
We find in Appendix B that

1
F z ,k, M ,´ s 1yz ´Ps kPsyz kPs ´Psq i M ´Ps .Ž . Ž .2 2k qMŽ .

3.73Ž .
Ž X.This completes our evaluation of L q,s, M,´ ,´ .

3.4. The gluon and quark distributions

We now recap the result for the diffractive gluon distribution and give its extension to
the case of the diffractive quark distribution. Let us introduce a parton index a, with

Ž .asg,q. Let us define functions U in terms of the functions u of Eq. 2.18 as follows:a

g 4 c d2 ks aX X†U x ,b ,q,s,s s Tr u b ,k,q,s u b ,k,q,s ,Ž . Ž . Ž .Ž .Ha P a a2 24 p b 1yb xŽ . 2 pŽ .P

3.74Ž .
Ž .with u given by the linear combination 3.51 of wave functions,a

u b ,k,q,s sc k,k yc k,kqs qc k,kyq yc k,kyqys .Ž . Ž . Ž . Ž . Ž .a a a a a

3.75Ž .
The difference between the gluon and the quark cases is in the expressions for the color
factors c and the wave functions c . The color factor for gluons may be read from Eq.a a
Ž .2.20 ,

c sC 2 N 2 y1 . 3.76Ž .Ž .g A c
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A similar calculation yields the color factor for quarks:

c sC 2 N . 3.77Ž .q F c

Ž .The wave function for gluons is given in Eq. 3.44 ,

b k2 d i j q2 1yb p i p jŽ .
i jc k,p s . 3.78Ž . Ž .g 2 2b k q 1yb pŽ .

We find in Appendix A that the wave function for quarks is

2(b 1yb kŽ .
c k,p s pPs . 3.79Ž . Ž .q 2 2b k q 1yb pŽ .

Ž .Then we may rewrite the overall structure 2.20 of the result in the following form,
for both the gluon and the quark distributions:

df diff b x , x ,q2 , MŽ .ar A P P

dx dtP

1 1 d2 s 1 d2 sX 1
s Ý Ý H H2 2 2 2 2X X2 2

X264 p 2 p s qqs 2 p s qqsŽ . Ž . Ž . Ž .´ ´

=L q,s, M ,´ ,´ X U x ,b ,q,s,sX L q,sX , M ,´ ,´ X , 3.80Ž . Ž . Ž . Ž .a P

Ž . Ž .with U given in Eq. 3.74 and L in Eq. 3.72 .a

4. Behavior of the diffractive Green functions

Ž .The result 3.80 for the diffractive parton distributions is given in terms of two
quantities: the functions U and the functions L. The latter contain the dependence on the
specific diffracted system. The functions U, on the other hand, are universal Green
functions. They control the process of diffractive deep inelastic scattering for any
small-size hadronic system. In this section we examine some of their properties and

Ž .present results from the numerical integration of Eq. 3.80 .

4.1. UltraÕiolet and infrared finiteness

Ž . 2 Ž .2Observe first, in Eq. 3.80 , the factors 1rs , 1r qqs from the propagators for the
Ž X.exchanged gluons and analogous factors with s™s . The poles at ss0 and ssyq

Ž . Ž .are canceled partly by U and partly by L. From Eqs. 3.75 and 3.72 we see that
< < < < XU A s , LA s as s™0. Analogous behavior is observed for the other poles in s and s .a

The Green functions U are constructed from the linear combinations of wavea
Ž .functions 3.75 by integrating over the s-channel transverse momentum k. Note that

Ž .each of the terms in Eq. 3.75 would give rise to an ultraviolet-divergent integration
Ž .over k in Eq. 3.74 , but that the bad behavior cancels among the terms. This can be

Ž . 2seen by expanding Eq. 3.75 for k ™`. Both the leading and next-to-leading terms in
the expansion vanish. The first non-vanishing contribution to u is proportional to thea

second derivative of the wave function c . This goes like 1rk2 at large k2. The net
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Ž . 2 < < < < 3contribution to Eq. 3.74 from the large k region is therefore of the type d k rk .
The physical reason for this cancellation lies with the partons being at the same
transverse position in the limit k2 ™`. Since the net color of the state is zero, the
coupling of the state to gluons vanishes in this limit. Similar power counting shows that
all of the integrations are convergent in the ultraviolet.

Since the integrals are convergent both in the ultraviolet and in the infrared, we
conclude that the transverse momenta dominating the integrals are all of order M.

4.2. Asymptotic behaÕiors of Ua

The functions U contain the dependence on the longitudinal momentum fractionsa

x , b. The dependence on x is given simply by the overall factor 1rx 2 that definesP P P

Ž .the leading 1rx ™` power at which level we are working . The dependence on b isP

in contrast non-trivial. Detailed plots of the b dependence that we find by numerically
Ž . Ž .integrating Eqs. 3.80 and 3.74 will be given in the next subsection. The limiting

behaviors of U and U as b™0 and b™1, on the other hand, can be obtainedg q
Ž .analytically. Consider b™0. We may take the limit inside the integral in Eq. 3.74 and

Ž . Ž .evaluate the wave functions c in Eqs. 3.78 , 3.79 for b™0. We geta

i j 2(2 p p b k
i jc k,p s 1qOO b ,c k,p s pPs 1qOO b ,b<1.Ž . Ž . Ž . Ž .g q2 2p p

4.1Ž .

Ž . Ž . Ž .By using the expressions 4.1 in Eqs. 3.74 , 3.75 it is straightforward to check that
2 Ž . Ž .the integral in d k is convergent. From Eqs. 3.74 and 4.1 we conclude that

U Aby1 ,U Ab 0 ,b<1. 4.2Ž .g q

Ž .The behavior 4.2 can be understood on general grounds. The emission of a soft
vector quantum has a 1rb spectrum, while the emission of a soft fermion does not. The

Ž .behavior 4.2 holds for any value of the transferred momentum q. In the case qs0, in
Ž .particular, the trace and the integral in Eq. 3.74 can be evaluated analytically in a

simple way. The coefficients of the leading b™0 terms take a fairly simple form as
functions of the transverse momenta s,sX:

2X4 2 2g C N y1 1 sqsŽ .Ž .s A cX XU x ,b ,qs0,s,s s 2 sPs lnŽ .g P 2 2 2X½ ž /b4 p x sysŽ .P

2 2X Xsqs sysŽ . Ž .
2qs ln q ln2 2ž / ž /s s

2 2X Xsqs sysŽ . Ž .
X 2qs ln q ln

X X2 2ž / ž / 5s s

= 1qOO b , b<1 4.3Ž . Ž .
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and

2X4 2g C N sqsŽ .s F cX XU x ,b ,qs0,s,s s 2 sPs ln 1qOO b , b<1.Ž . Ž .q P 2 2 2Xž /8 p x sysŽ .P

4.4Ž .

Ž .See Appendix D for calculational details and general expressions for the functions U .a

Consider now b™1. It is convenient to switch to a new integration variable v in Eq.
Ž .3.74 by setting

1yb
ksl v, l' . 4.5Ž .(

b

The functions U are rewritten in the forma

g 4 c d2 vs a †U s Tr u u . 4.6Ž .Ž .Ha a a2 2 24pb x 2pŽ .P

Ž . Ž .The wave functions c of Eqs. 3.78 , 3.79 are rewritten asa

2 i j i j 2'v d q2 p p v
i jc s , c s pPs . 4.7Ž .g q2 2 2 2v qp v qp

Ž .The limit b™1 may be obtained by taking l™0 inside the integral 4.6 . Consider
Ž Ž ..the leading term in the expansion of the functions u Eq. 3.75 about ls0. By usinga

Ž .the expressions 4.7 we get

v 2 d i j q2 s i s j v 2 d i j q2 q i q j v 2 d i j q2 q i qs i q j qs jŽ . Ž .
i ju ™ d y q yg 2 2 2 2 22ž /v qs v qq v q qqsŽ .

= 1qOO l 4.8Ž . Ž .
and

2 2 2' ' 'v v v
u ™ y sPsy qPsq qqs PsŽ .q 2 2 2 2 22ž /v qs v qq v q qqsŽ .

= 1qOO l . 4.9Ž . Ž .

We notice that the b™1 behavior of the functions U is different according to whethera

the transferred momentum q is zero or finite. Consider qs0. Then observe that in this
0 Žcase the terms of order l in u , u vanish. In particular, for the gluon this termg q

i j 2 i j .vanishes after integrating over the angle of s, so that 2 s s ™s d . By expanding
further in powers of l, for the quark we find

2 2'v 4 vPs 2 s
2u ™l sPsq vPs qOO l , qs0 . 4.10Ž . Ž . Ž .q 2 2 2 2 2ž /v qs v qs v
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For the gluon, the qs0 case has an additional cancellation at order l1, so that the first
surviving term is proportional to l2:

2 v i v j 2 v i v j 4 vPs v i s j qs i v jŽ .
2 i ju ™2 l yd y qg 2 2 2 22 2½ v v qs v qsŽ .

2 2 2 4 2 i j i j4 vPs yv s yv v d q2 s sŽ . Ž .
3y qOO l , qs0 .Ž . Ž .32 2 5v qsŽ .

4.11Ž .

Ž . Ž . Ž . Ž .By doing the b™1 power counting from Eqs. 4.5 , 4.6 , 4.10 , 4.11 we obtain the
behaviors

2 1U A 1yb ,U A 1yb ,1yb<1 qs0 . 4.12Ž . Ž . Ž . Ž .g q

In the qs0 case one can also determine the first non-zero b™1 coefficients in a
Ž . Ž . Ž .simple way by using the expressions 4.10 , 4.11 in Eq. 4.6 and performing the trace

and the integral in d2 v. This gives

U x ,b ,qs0,s2 ,sX 2Ž .g P

g 4 C 2 N 2 y1Ž .s A c 2s 1ybŽ .2 24 p xP

3 2 2 3X X X X2 2 2 2 2 2 2 2°2 s s 2 s y5 s s y5 s s q2 sŽ . Ž . Ž . Ž .~= 4X¢ 2 2s ysŽ .

4 3 2 2 3 4X X X X X2 2 2 2 2 2 2 2 2 26 s s s y5 s s q10 s s y5 s s q sŽ . Ž . Ž . Ž . Ž . Ž .
q 5X2 2s ysŽ .

s2
3

=ln qOO 1yb , 1yb < 1 4.13Ž . Ž .
X 2 5ž /s

and

2X X4 2 2 2g C N sPs s qsŽ . Ž .s F cXU x ,b ,qs0,s,s s 1ybŽ . Ž .q P 2 2 2X2 2½p xP s ysŽ .

2X X2 2 2s s 2 sPs sŽ .
q 1y ln

X X2 2 2 2X ž /2 2 5s ys ss ysŽ .
2qOO 1yb , 1yb < 1. 4.14Ž . Ž .

Ž .Again, we refer the reader to Appendix D for more details.
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Ž . Ž .Fig. 3. The b dependence of the gluon above and quark below diffractive distributions for different values
2 < < Ž .of q , t . The rescaled distributions h are defined in Eq. 4.16 .a

Ž .In the case q/0, on the other hand, there are no such cancellations as in Eqs. 4.10 ,
Ž . 0 Ž . Ž .4.11 . The leading l terms in Eqs. 4.8 , 4.9 do not vanish. The b™1 power
counting thus yields a constant behavior for the functions U :a

0U ,U A 1yb ,1yb<1 q/0 . 4.15Ž . Ž . Ž .g q

It appears that near bs1 the diffractive distributions will have a non-trivial q2-depen-
dence and will be largest at non-zero q2.

4.3. Results from Monte Carlo integration

We are now in a position to determine numerical results for the diffractive parton
distributions. To this end, we set up a Monte Carlo integration to evaluate the integrals

Ž . Ž . Ž .in Eqs. 3.80 , 3.74 , 3.72 .
It is convenient to define the rescaled diffractive distributions ha

x 2 M 2 df diff
P ar A2 2h b ,q rM s . 4.16Ž .Ž .a 2 4 4 dx dta e a PQ s

In Fig. 3 we plot the results for the b dependence of these distributions at different
values of q. To emphasize the behavior in the regions of small b and large b we make

Ž .a logarithmic plot in the variable br 1yb . This behavior reflects the properties of the
functions U discussed in the previous subsection. In particular, for small b we havea

h Aby1 , h Ab 0 b™0 . 4.17Ž . Ž .g q
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For large b , both the gluon and quark distributions evaluated at any finite q have a
constant behavior:

0h ,h A 1yb b™1,q/0 . 4.18Ž . Ž . Ž .g q

The distributions at qs0, on the other hand, vanish in the b™1 limit, because of the
cancellations in the leading b™1 coefficients of the functions U , U observed in theg q

previous subsection:
2 1h A 1yb , h A 1yb b™1,qs0 . 4.19Ž . Ž . Ž . Ž .g q

The quantity that is perhaps most interesting for experiment at present is the
< < 2diffractive distribution integrated over t ,q from 0 up to a value of the order of the

squared heavy-quark mass, M 2. Therefore in the following we will also consider the
integrated gluon and flavor-singlet quark distributions, defined as follows:

df diff df diff
2 2g r A jr AM M2 2GsNN dq , SsNN dq , 4.20Ž .ÝH H

dx dt dx dt0 0P Pj
2 2 4 4Ž . � 4where NNsx r a e a and the sum in S runs over js u,u,d,d,s,s .P Q s

Fig. 3 shows that the asymptotic large-b behavior is reached for rather small values
of 1yb , roughly of order 10y2 . Furthermore, it shows that the asymptotic constants are
numerically small compared to the values of the distributions at intermediate b.
Correspondingly, the diffractive distributions fall off as one approaches the small
Ž .1yb region. The fall-off region may be most relevant phenomenologically, because

Ž .likely it is to this range of b values rather than to the asymptotic region that current
experiments on diffraction are most sensitive.

The results in Fig. 3 indicate that the form of the q-dependence of the distributions is
different at small or intermediate b and at large b. We illustrate this in Fig. 4 for the
quark distribution. Qualitatively, the behavior is the same for the gluon. While for small

Ž .Fig. 4. The q dependence of the quark diffractive distributions for small or intermediate b above and for
Ž .large b below .



( )F. Hautmann et al.rNuclear Physics B 563 1999 153–199 181

and intermediate b one has a monotonic fall-off with q, at large b the distribution
peaks at a finite value of q. The decrease seen as q™0 when 1yb<1 arises because
of the cancellations in the functions U and U .g q

We observe from Fig. 3 that the gluon distribution is much larger than the quark
Ždistribution. The different order of magnitude at intermediate values of b say, about

. Ž . Ž .bf1r2 is roughly accounted for by the color factors in Eqs. 3.76 , 3.77 , c rc sg q

27r2. To facilitate the comparison, in Fig. 5 we display h and h in the same graph.g q

Here we use a linear scale for b. We see that the gluon remains large compared to the
quark even at large values of b.

The results described above have been obtained for the diffractive scattering of a
model vector meson made of a photon that couples to heavy quarks. To what extent do
they depend on the assumed incoming state? To address empirically this question, we
first consider the case of a scalar meson that couples to scalar quarks with an interaction

Ž .l f q q l being a coupling with dimension of mass . A calculation analogous to the one
described in Subsection 3.3 for the photon shows that in the scalar case the wave

Ž .function 3.73 gets replaced by

(z 1yzŽ .
Žscalar .F z ,k, M sl . 4.21Ž . Ž .2 2k qMŽ .

Then, we also consider a Gaussian model in which the incoming bound state is
described by the wave function

1
ŽGauss. 2 2F z ,k, M s exp yk rM . 4.22Ž . Ž .Ž .

M

We compute the resulting diffractive distributions for these cases. In Fig. 6 we plot the
Ž . Ž .results. In this figure, the normalization for each of the two models 4.21 and 4.22 has

been fixed so that it includes coupling and charge factors as well as an overall arbitrary
numerical constant. This arbitrary normalization factor is independent of b and is the
same for quarks and gluons. Aside from this absolute normalization, we see that the
results for the diffractive distributions are remarkably stable against variation of the

Ž . Ž . Ž .Fig. 5. The gluon h and quark h diffractive distributions versus b linear scale .g q
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Ž . Ž .Fig. 6. The gluon h and quark h diffractive distributions for different incoming hadronic states. Theg q
Ž . Ž .dashed curves photon case are as in Fig. 5. The dotted curves scalar meson case and the dotdashed curves

Ž . ŽGaussian case have been rescaled by an overall normalization factor independent of b the same factor for
.gluons and quarks .

hadronic wave function. In particular, the shape in b of both the gluon and the quark
distribution as well as the relative size between the gluon and the quark is qualitatively
very similar for all initial states. We take this as an indication that such features of the
diffractive parton distributions may hold with more generality. They do not so much
depend on the specific form of the incoming hadron wave function, but rather they result
from the color and xy ordering constraints that give rise to the convolution formula
Ž . Ž . Ž .3.80 and the expressions 3.75 – 3.79 for the Green functions U .a

Having given results for the diffractive parton distributions, it is of interest to ask
what are the typical transverse sizes that dominate the answer. A measure of the

Fig. 7. The distribution in the relative transverse momentum k for the gluon case at various fixed values of b

and qs0.
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Žtransverse separations between the two outgoing particles in the upper subgraph see
.Fig. 2 may be obtained by looking at the relative transverse momentum in the final

Ž . 2state, that is, the momentum k in Eq. 3.74 . In Fig. 7 we plot the distribution in k for
the gluon operator matrix element at some fixed values of b with qs0. We observe
that there is quite a large spread in k2 values. In the range of b values considered, the

< < < <typical value of k does not depend much on b and is of order M, about k ;3 M.
Ž .This plot provides a numerical illustration of the remark made below Eq. 2.12 about

the dominant integration regions in the upper subgraph. A qualitatively similar behavior
holds for the quark matrix element.

5. Ultraviolet behavior and renormalization group

To the order in a at which we have worked so far, the matrix elements do not haves

ultraviolet divergences. Correspondingly, the calculation that we have discussed does
not describe scaling violation. When additional gluons are emitted from the top subgraph
in Fig. 1, on the other hand, ultraviolet divergences arise. The renormalization of these
divergences leads to the dependence of the diffractive parton distributions on a renor-

Žmalization scale m. The scale at which parton distributions are renormalized is often
.called the factorization scale in applications . Because the factorization theorem applies,

this scale dependence is governed by the same renormalization group evolution equa-
w xtions as in the case of the inclusive parton distributions 22,23,42–45 .

The higher order, ultraviolet divergent graphs are suppressed compared to the graphs
Ž 2 2 . Ž 2 2 .considered so far by a factor a log m rM . When log m rM is large, theses

contributions are important, and thus evolution is important. On the other hand, when m

is of the same order as the heavy quark mass M, the higher order contributions are small
corrections to the graphs considered so far. Thus one may interpret the result given in
the previous sections as a result for the diffractive parton distributions at a fixed scale of
order m2 fM 2. Then the diffractive parton distributions at higher values of m2 are given

Ž .by solving the evolution equations with the results of Eq. 3.80 as a boundary condition.
We will explore the results of evolution in Section 6.

6. Evolution and diffractive deep inelastic scattering

Until now, we have considered diffractive parton distributions in a model hadron with
a transverse size 1rM that is as small as one likes. Then lowest order perturbation
theory is applicable. We have found that in this context we can evaluate the diffractive
parton distributions as exactly as numerical integration permits. In Section 4, we have
investigated some of the properties of the results. Among other things, we have found
that the results are rather insensitive to the precise wave function of the small-size
hadron; if we change wave functions we get diffractive parton distribution functions that
are qualitatively similar.

Now suppose that one had available a hadron of adjustable size R. For a very small
size, R<1rL , the diffractive parton distributions at any m2 R1rR2 must beQCD
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Ž .similar to those obtained by evolution beginning with Eq. 3.80 with Ms1rR. Let the
size now increase. Longer and longer distances are now allowed to contribute to the

Ž .diffraction process. What would the answer look like when Rf1r 300 MeV ? In a
perturbation expansion, the result would be completely dominated by the soft region
k ;300 MeV. Then one possible scenario is that the diffractive parton distributions areH
radically different from those for a small hadron. A different, but conceptually related,
scenario is that, even in the soft region, perturbation theory gives a description that is
not too far off. In this case the diffractive parton distributions would be similar to what
one gets from the calculation presented above using evolution from the scale Mf
300 MeV to the multi-GeV scale relevant for experiments. On the other hand, as the size
of the hadronic system increases, we may hypothesize that non-perturbative dynamics
sets in that reduces the infrared sensitivity suggested by the perturbative power counting.
As we go to larger and larger sizes, then, the distance scales that dominate the
diffraction process, rather than continuing to grow, stay of the order of some intermedi-
ate, semihard scale 1rM . This suggests a conceptually different scenario for theSH

diffractive parton distributions, in which the contribution from hard physics is enhanced
with respect to the contribution from soft physics. Under this hypothesis, the diffractive
parton distributions would be similar to what one gets from the calculation presented
above using evolution from the scale MfM to the multi-GeV scale.SH

Although this hypothesis does not have a firm theoretical justification at present,
there are some indications in its favor. A set of indications comes from lattice QCD.

w xLattice investigations of glueballs 46–48 suggest that the correlation length for a color
singlet pair of gluons is on the order of 1 GeV, not 300 MeV. Another set of indications
comes from recent experimental measurements on the x dependence in diffraction.P

Recall that in our model calculation the leading dependence is xy2 , corresponding to aP

Ž .pomeron intercept a 0 s1. The inclusion of higher order corrections of the typeP
k kŽ .a ln 1rx would, roughly speaking, modify this into a structure of the forms P

Ž .a 0 ;1qconst.=a . The value measured in diffractive deep inelastic scatteringP s
w x Ž .16–18 is a 0 f1.15. The first, very general, observation is that this result is notP

inconsistent with evaluating a at a relatively short distance scale in the above formulas
Ž . w xfor a 0 . More specifically, it has been stressed 16–18,49 that the experimental valueP

Ž .of a 0 y1 given above differs by a factor of 2 from the corresponding valueP

measured in soft hadron–hadron cross sections. This may be taken to suggest that
semihard physics dominates the diffractive parton distributions.

In this section we explore the hypothesis of a semihard scale by comparing its
predictions to results from diffractive deep inelastic scattering from protons at HERA.

Ž .To carry out this study, we choose a value for M in Eq. 3.80 and take the scale
Ž .dependence of the diffractive parton distributions to be that given by the two-loop

Ž . Ž .evolution equations 1.2 with the results 3.80 as a boundary condition at msM. We
expect a semihard scale to be of the order of 1 or 2 GeV. In what follows we set
Ms1.5 GeV. Note however that in this study the value of M is to be regarded as a free
parameter to be adjusted phenomenologically. If, for instance, the data prefer a value
M<1 GeV, this would indicate that the diffractive parton distributions are completely
dominated by soft physics but that nevertheless the perturbative result is not far off. If
the data do not agree with the predictions for any M, then we would learn that soft
physics dominates and completely transforms the answer. We will comment later on
what happens when we vary the value of M.
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Ž . Ž .Fig. 8. Evolution of the gluon above and singlet quark below diffractive distributions. The integrated
Ž .distributions G and S are defined in Eq. 4.20 . We assume the initial scale to be Ms1.5 GeV and we use
Ž .evolution equations in next-to-leading order two-loop .

< < 2The study of evolution may be done for the distributions at t ,q fixed or for the
< <distributions integrated over t . Here we consider the integrated case. We determine the

Ž .gluon distribution and the flavor-singlet quark distribution at the initial scale msM
Ž . Ž .by integrating the result 3.80 according to the definition 4.20 . We then compute the

evolution of these initial distributions up to msQ for different values of Q. In Fig. 8
we show the results.

It is interesting to compare directly the distributions that we obtain from this
Ž .calculation with the ordinary inclusive parton distributions. In Figs. 9 and 10 we report

Ž 2 .Fig. 9. The b dependence of the gluon and up quark diffractive distributions multiplied by b at
Q2 s20GeV 2. The overall normalization constant C is arbitrary.



( )F. Hautmann et al.rNuclear Physics B 563 1999 153–199186

Ž 2 .Fig. 10. The x dependence of the gluon and up quark inclusive distributions multiplied by x at
2 2 Ž .Q s20GeV from the set CTEQ4M .

Ž 2 2 .the gluon and up quark distributions at a certain scale Q s20 GeV for, respectively,
Ž .the diffractive case and the inclusive case. The diffractive result Fig. 9 is from our

Ž .calculation. The inclusive result Fig. 10 is from the standard set CTEQ4M of parton
w xdistributions in a proton 50 . In the diffractive case we look at the b dependence and

plot b 2 times the distributions. In the inclusive case we look at the x dependence and
plot x 2 times the distributions.

Recall that the absolute normalization of the diffractive distributions has been
obtained by dividing out numerical factors and coupling factors associated with the

Ž Ž ..incoming state see Eq. 4.20 . Therefore the absolute scale of Fig. 9 compared to Fig.
10 has to be regarded as arbitrary. In contrast, the relative normalization between gluon
and quark as well as the shape in b is determined by our calculation. Fig. 10 shows that,
for ordinary partons in a proton at the Q2 scale considered, the gluon is dominant for
small momentum fractions, but, as the momentum fraction increases to about xf0.2,
the up quark starts to dominate over the gluon. The behavior changes dramatically in the

Ž .diffractive case Fig. 9 . The gluon distribution is broader and stays large compared to
the quark throughout the range of momentum fractions. The origin of this is in the

Ž .behavior observed at a fixed scale M see Figs. 3 and 5 . Fig. 9 illustrates that the
feature found in the fixed scale calculation persists qualitatively after the inclusion of
loop corrections through perturbative evolution.

This behavior has consequences on the pattern of the scaling violation in Q2. As can
be seen from Fig. 8, the diffractive distributions grow with Q2 at low b and decrease
with Q2 at high b. In particular, for the quark the stability point at which the behavior
changes is about bf0.5. This is to be contrasted with the case of the ordinary
Ž .inclusive quark distribution in a proton, for which the stability point is at xf0.08.
There is a large, important range of moderate values of momentum fractions, say,
approximately, 0.1 to 0.5, in which the ordinary quark distribution is flat or weakly
decreasing with Q2, while the diffractive distribution is rising with Q2. This is
illustrated in Fig. 11. The explanation for the rise in the diffractive case lies with the

Ž .gluon distribution being dominant even at large momentum fractions Figs. 5 and 9 . As
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Ž .Fig. 11. Scaling violation in the flavor-singlet quark distribution S at moderate values of momentum
Žfractions. Above is the case of the diffractive distribution, below is the case of the inclusive distribution from

.the set CTEQ4M .

2Q increases, gluons splitting into qq pairs feed the quark distribution and cause it to
grow in the region of moderately large b.

Let us turn to the calculation of the deep inelastic structure function F diff. Having2

determined the diffractive parton distributions and their evolution, we may use the
Ž . diff difffactorization formula 1.1 to compute results for F . We evaluate F in next-to-2 2

ˆw xleading order by using the one-loop expressions 30 for the hard scattering functions F .a

Note that the use of the factorization theorem allows us to systematically take into
account corrections to the diffractive scattering beyond the leading logarithms for both
the quark and the gluon contributions, much as in the case of inclusive deep inelastic

2 Ž . 2scattering. We set the factorization scale m in Eq. 1.1 equal to Q . In Fig. 12 we plot
the results for F diff versus b at different values of Q2. Here F diff is related to the2 2

Ž .differential structure function of Eq. 1.1 by

x 2 dF diff
2P 2Mdiff < <F sa d t , 6.1Ž .H2 2 4 4 dx dta e a 0 PQ s

where a is an arbitrary numerical normalization. In Fig. 13 we show these results along
with the ZEUS data for the proton diffractive structure function at the same values of Q2

w x18 . These data are obtained from the structure function integrated over t by fitting the
x dependence to a power xy2 a P and extracting the coefficient of xy2 a P.P P P

Notice the main qualitative features of the curves in Fig. 12. For 0.2-b-0.8 the
diffractive structure function is rather flat in b. As Q2 increases, F diff increases for2

b-0.5, reflecting the behavior already observed for the quark distribution S. For
0.2-b-0.8 the Q2 dependence is quite mild. Similar rather flat dependences on both
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Fig. 12. The b dependence of the diffractive structure function Fdiff for different values of Q2. We compute2

Fdiff in next-to-leading order.2

b and Q2 are striking features of the data for F diff and distinguish the diffractive F diff
2 2

sharply from the inclusive F .2

We observe from Fig. 13 that these features are in qualitative agreement with what is
Žseen in the HERA data on proton diffraction except for the two data points at the

. 2smallest values of b : see below . Recall that, given the value of M, both the Q
dependence and the b dependence of F diff are determined from theory. Only the overall2

normalization, associated with the absolute normalization of the diffractive parton
Ždistributions, is free. The t dependence is also determined in principle. In the results

.presented here t is integrated over. The agreement represented in Fig. 13 between the

w xFig. 13. Same as in Fig. 12. Also shown are the ZEUS data from Ref. 18 .
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predictions and the data is evidently not perfect, but given the simple nature of the
theoretical calculation, one may suspect that this agreement is telling us something.

Recall that the predictions represented in Fig. 13 are based on the choice Ms1.5 GeV.
If we decrease M to 1 GeV, we find that the agreement between the predictions and
experiment is also not too bad, but if we choose M much below 1 GeV then we find that
there is too strong a dependence on Q2 and too much of a slope in b. Thus a semihard
scale for M seems to be preferred by the data.

In the region of small b , the curves of Figs. 12 and 13 have a different behavior from
that suggested by the two data points at the lowest values of b and lowest values of Q2

Ž 2 2 2 2 .Q s8 GeV and Q s14 GeV . If further data were to confirm this difference, this
could point to interesting effects. Here we limit ourselves to a few qualitative remarks.
As far as the theoretical curves are concerned, we note that the diffractive distributions
that serve as a starting point for the evolution are fairly mild as b™0. The gluon

Ždistribution goes like 1rb , while the quark distribution goes like a constant see Eq.
Ž .. diff4.17 . The small-b rise of the structure function F in the curves of Figs. 12 and 132

is essentially due to the form of the perturbative evolution kernels. As regards the data,
w xit has been observed 51,52 that for small b the experimental identification of the

rapidity gap signal may be complicated by the presence of low p particles in the finalH
state. If the current data hold up and especially if the same features are observed at
lower values of b , it would be interesting to see whether detailed models for the

w xsaturation of the unitarity bound 53–55 , which might bring in a new kind of physics
for very small x , could accommodate this small b behavior.P

7. Conclusions

We have analyzed diffractive deep inelastic scattering in QCD, drawing on two main
ideas. One is the notion of factorization of the hard scattering. For processes with only
one hadron in the initial state, this allows us to introduce diffractive parton distributions,
defined through certain measurement operators in terms of the fundamental quark and
gluon fields. The other is the notion, widely used in small x physics, that the space-time
structure of the diffraction process looks simple in a reference frame in which the struck

Ž .hadron is at rest or, at least, has small momentum . That is, the process is dominated by
configurations in which the parton probed by the measurement operator is created at
light cone times xy far in the past and much later, following a slow evolution in xy,
interacts with the color field of the incoming hadron.

We find that this physics can be described most transparently by using a Hamiltonian
formulation in which the theory is quantized on planes of equal light cone coordinates.

w xWe develop this description in detail along the lines of Ref. 41 .
Using this method, we examine the problem of diffractive deep inelastic scattering

from a color source with small transverse size 1rM. Because the size is small,
Ž 4.perturbation theory is applicable. Using perturbation theory at lowest order order as

for the diffractive parton distributions, we find a solution in closed form. This solution
Ž .has the property that except for the overall normalization factor it is independent of the

size of the source. It is also scale invariant, since the diagrams are ultraviolet conver-
gent. The scale dependence that arises from diagrams with more loops is to be included
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by solving the renormalization group evolution equations with the results of the lowest
order calculation as input at msM.

We find that, although the diffractive distributions are generally softened by evolu-
tion, certain distinctive qualitative features survive. Both the diffractive quark distribu-
tion and the diffractive gluon distributions fall off less quickly as b increases than the
comparable inclusive distributions fall off as x increases. Furthermore, the diffractive
gluon distribution is much larger than the diffractive quark distributions. This has
implications for the diffractive structure function: F diff is rather flat as a function of both2

b and Q2 as long as Q2 is not too much larger than M 2.
We observe that these qualitative features can be seen in the data from HERA on the

proton diffractive structure function F diff in the range 0.2-b-0.8 and 8 GeV 2 -Q2
2

-60 GeV 2. If the small hadron calculation is regarded as a model with an adjustable
parameter M, then we find rough agreement between the model and the experimental
results if we take M to be M f1.5 GeV. We conclude that the model may not be tooSH

far from reality provided that some essentially non-perturbative effect intervenes to
provide a semihard scale M in diffractive deep inelastic scattering.SH
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Appendix A. Wave function for quarks

Ž .In this appendix, we evaluate the wave function c k,p for the antiquark statess

created by the quark measurement operator. We follow the gluon case closely, merely
noting what needs to be changed to deal with the quark measurement operator instead of
the gluon measurement operator.

Ž .In Eq. 2.7 we have the operator

b x pq
P A † q y yC 0 E 0 . . . g . . . E 0, y ,0 C 0, y ,0Ž . Ž . Ž . Ž .
2

b x pq 1P A † † y q y ys C 0 E 0 . . . g g . . . E 0, y ,0 C 0, y ,0 . A.1Ž . Ž . Ž . Ž . Ž .' 22

We use a representation of the g matrices with

is 0j0 0 0 1q y j' 'g s 2 , g s 2 , g s . A.2Ž .ž / ž /1 0 0 0 0 yisž /j
Then

1 01 y qg g s . A.3Ž .2 ž /0 0
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Let us break the Dirac field into two parts,

CU
Cs . A.4Ž .ž /CL

Ž .Then the operator in Eq. 2.7 is

b x pq
P A † † y yC 0 E 0 . . . E 0, y ,0 C 0, y ,0 . A.5Ž . Ž . Ž . Ž . Ž .U U'2

Thus in order to compute the upper subgraph for quarks, we need to compute a
Ž .matrix element analogous to that in Eq. 3.1 :

1r2q yy i b x p y q y s yP A ' ² < < :MMs dy e b x p r 2 k ,s E 0, y ,0 C 0, y ,0 0 . A.6Ž . Ž . Ž .H AAP A U

The Dirac field operator c creates the antiquark state that, after interaction with the
² <external field AA, becomes the antiquark state k,s . Proceeding as in the gluon case, we

Ž .obtain the analogue of Eq. 3.32 ,

y1 dpy
X2 y y

2² < < : Xw xMMs d p k ,k;s ;EE Fy1 p ,p;s ;EE c k,p ,Ž .gÝH H ssy3
X2 p2pŽ . s

A.7Ž .

Ž .where the wave function analogous to that in Eq. 3.36 is

1r2 Xq y s² < < :b x p k ,p;s C 0 0Ž .P A U
Xc k,p s i A.8Ž . Ž .ss q 2 yž /' b x p qp r 2kŽ .2 P A

Xy 2 qw Ž . x Ž .with k sk r 2 1yb x p as in Eq. 3.37 . Here s, s and s are two componentP A

spinor indices. We evaluate the matrix element in free field theory, so the result is
simple:

X Xy s s y² < < :k ,p,s C 0 0 sVV k ,p,s , A.9Ž . Ž . Ž .U U

Ž y .where VV k ,p, s is a two-component spinor consisting of the top two components ofU
Ž y .the four-component Dirac spinor for antiquarks, VV k ,p, s :

VV ky,p,sŽ .UyVV k ,p,s s . A.10Ž . Ž .yž /VV k ,p,sŽ .L

It remains to specify precisely the spin, and here we come to an important technical
point. As we have seen, the operator that we need is expressed very simply in terms of
the upper two components of the Dirac field. These are the components that have a
simple partonic interpretation for a system of partons with large momentum in the plus
direction, the direction in which the hadron is moving. However, our derivation has been
based on null planes with fixed xy, which is the natural formulation of the theory for a
system of partons with large momentum in the minus direction. In this formulation of
QCD, it is the lower two components of the Dirac field that are the independent degrees
of freedom for the quarks. At any given xy, the upper two components are given in

y w xterms of the lower two at the same x by an equation of constraint 31,41 . The lower
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part of the Dirac field has two components, which create the two antiquark states with
the corresponding null-plane helicities:

² y < s1 < :k ,p,s C 0 0 Ad . A.11Ž . Ž .2 L s s1 2

With this definition of helicity, the antiquark helicity is preserved as the fast antiquark
passes through the external field.

We conclude that with the appropriate definition of the antiquark spin the lower two
components of the spinors VV are simple:

1r2Xs y y' XVV k ,p,s s 2 k d . A.12Ž . Ž .L ss

Here the normalization is fixed to give the conventional normalization for the four-com-
m mŽ . Ž .ponent spinors, VV k,s g VV k,s s2k . The upper two components of the spinor are

related to the lower two components by the free Dirac equation

yi
y yVV k ,p,s s pPs VV k ,p,s . A.13Ž . Ž . Ž .U Ly'2 k

Thus

yi
Xy s² < < : Xk ,p,s OO 0 0 s pPs . A.14Ž . Ž .ss1r2y'2 k

Ž .We now insert this result into Eq. 3.39 in order to obtain the wave function for the
Ž .antiquark state created by the measurement operator. For our application in Eq. A.7 ,

X y 2 w Žwe want s ss because of null-plane helicity conservation and we want k 'k r 2 1y
. qxb x p . With these replacements, we findP A

1r22b 1yb kŽ .
c k,p s pPs . A.15Ž . Ž .ss ss2 2b k q 1yb pŽ .

Ž .This expression for c is ready to be inserted into Eq. 3.75 for the upper subgraph U.ss

Appendix B. Wave function for the incoming heavy-quark system

Ž . Ž .In this appendix, we evaluate the function F used in Eqs. 3.68 , 3.69 . We define F

as

q q m² < < :zp ,r ,s ; 1yz p ,r ,s ´ C 0 g C 0 0Ž . Ž . Ž .A 1 1 A 2 2 m

2 2 2 2 2r qr y r qM rzy r qM r 1yzŽ . Ž .1 2 1 2

(s z 1yz F z , 1yz r yzr , M ,´ . B.1Ž . Ž . Ž .Ž . s s1 2 1 2

Ž .It is not immediately obvious that F depends on the combination 1yz r yzr of the1 2

transverse momenta and not on r and r separately. This is a consequence of the1 2

invariance of the wave function under the subgroup of the Lorentz group in which
Ž . w xr ™r qzv and r ™r q 1yz v 41 . We shall find this property by explicit1 1 2 2

calculation.
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First, the denominator is

22 2 2 2 2r qM r qM 1yz r yzr qMŽ .1 2 1 22r qr y y sy . B.2Ž . Ž .1 2 z 1yz z 1yzŽ . Ž .
The numerator is

q q m q´ p ,r qr UU 1yz p ,r ,s g VV zp ,r ,s . B.3Ž . Ž .Ž . Ž .Ž .mA 1 2 A 2 2 A 1 1

Ž .For the Dirac algebra, we use the representation A.2 of the Dirac matrices. Then, using
´qs0 gauge for the polarization vector, the numerator has the form

y' VV2 ´ i´ Ps UH Hm † †´ UUg VVs UU ,UU . B.4Ž .Ž .m U L ž /VVž /yi´ Ps 0 LH H

We need the quark and antiquark spinors UU and VV . In our application, the quark and
antiquark move through an external field with a large momentum in the plus direction.
The external field leaves the spin unchanged provided that we use null-plane helicity
adapted to the plus direction. Then the upper two components of UU and VV are simple:

1r2s q q'UU 1yz p ,r ,s s 2 1yz p d ,Ž . Ž .Ž .U A 2 2 A ss2

1r2s q q'VV zp ,r ,s s 2 zp d . B.5Ž .Ž .U A 1 2 A ss1

The lower two components are then given by the free Dirac equation

ir PsqM2s q s qUU 1yz p ,r ,s s UU 1yz p ,r ,s ,Ž . Ž .Ž . Ž .L A 2 2 U A 2 2q'2 1yz pŽ . A

ir PsyM1s q s qVV zp ,r ,s s VV zp ,r ,s . B.6Ž .Ž . Ž .L A 1 2 U A 1 2q'2 zpA

Ž q . mFinally, we need the polarization vector ´ p ,r qr of the photon. SinceA 1 2
Ž . m qp ´ p s0 in ´ s0 gauge, we havem

r qr P´Ž .1 2y´ s . B.7Ž .qpA

Ž .With these ingredients, we obtain Eq. B.1 with

1
F z ,k, M ,´ s 1yz ´Ps kPsyz kPs ´Psq i M ´Ps .Ž . Ž .2 2k qMŽ .

B.8Ž .

Appendix C. Covariant formulation

In the main text we have derived the results for the diffractive parton distributions
collected in Subsection 3.4 by using the null-plane formulation of perturbation theory
and emphasizing the picture of diffraction scattering in configuration space. Here we
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outline the main aspects of the alternative derivation based on the covariant formalism in
momentum space. We limit ourselves to highlighting the most important ingredients of
the calculation.

We first discuss the gauge for the gluon field. The conceptually simplest choice
would be to use Ays0 gauge. However, some calculational simplicity can be achieved
by using Feynman gauge. It is necessary only to replace the sum, yg mn , over four
polarizations for the gluon that enters the final state by a sum

2
m n´ k ,l ´ k ,l C.1Ž . Ž . Ž .Ý

ls1

yŽ .over physical polarizations, with the choice ´ k,l s0 for the polarization vectors.
Recall that

2 m n m nk n qn k
mn m nyg s ´ k ,l ´ k ,l y , C.2Ž . Ž . Ž .Ý

kPn
ls1

where n m is the gauge fixing vector defined by nPAsAy. The unphysical polariza-
tions, represented by the second term, do not contribute to the result after summing over
graphs. Thus we can drop them. Effectively, then, we have Ays0 gauge for the final

mn Ž 2 .state gluon. We can retain the simple Feynman gauge propagator, yi g r k q i´ for
virtual gluons.

Let us now see which graphs contribute to the result in the 1rx ™` limit. ConsiderP

the upper subgraph in Fig. 2. The definition of the Green function U containsa
q Xq Ž Ž . Ž ..integrations over the plus momenta s ,s see Eqs. 2.18 , 3.74 . We recognize that

only certain topologies give rise to pinch singularities in the complex sq plane.
Consider for instance the two contributions in Fig. 14. From the eikonal propagator and

Ž .the t-channel propagator we get, for graph a ,

q`
q Ža.ds N

Ža.II s C.3Ž .Hq 2q2 py` w xs q i ´ kyqys q i ´Ž .

Ž .and for graph b

q`
q Žb.ds N

Žb.II s , C.4Ž .Hq 2q q2 py` w xs qk q i ´ kqs q i ´Ž .
Ža. Žb. Ž .where N and N denote spin numerators. Using the kinematic relation 2.12 and

the fact that in the limit 1rx ™` we only need to evaluate the upper subgraph atP

Fig. 14. Two examples of Feynman graphs contributing to the amplitude for the gluon Green function U .g
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y y Ž .s sq s0 see Subsection 2.2 , the position of the poles in the two cases is as in Fig.
Ž .15. In the case of graph a the poles pinch the contour and one gets a leading 1rx ™`P

Ž .contribution, while in the case of graph b one may deform the contour away from the
poles and neglect this graph as 1rx ™`.P

The gauge choice ´ys0 for the final state gluon is crucial for this argument to go
through in the form described above. With this choice, the spin numerators behave like
Ž q. 0 Ž . Ž . qs . Then the integrals C.3 , C.4 are sufficiently convergent at large s to allow
the contour deformation.

Consider now the two graphs shown in Fig. 16, in which a gluon is emitted into the
final state from the eikonal line. The contribution in Fig. 16a is disallowed by color
conservation, because the t-channel gluons are in a color-singlet configuration while the
eikonal line carries color octet charge. The contribution in Fig. 16b may be dealt with by
sq contour deformation, by an argument similar to that given above.

Having seen why certain graphs do not contribute in the 1rx ™` limit, we turn toP

the calculation of the result for a graph that does contribute. Consider the contribution to
the gluon Green function U from the product of the amplitude in Fig. 14a with theg

complex conjugate amplitude of the same form. This contribution can be written as

U Ž0. x ,b ,q,s,sXŽ .g P

g 4 C 2 N 2 y1 pq dsq dsXq d4kŽ .s A c A X2 qs 2 p d k 2 p d kŽ . Ž .H H H q42 p b x 2 p 2 p 2 pŽ .P

=
yF m j M Fn j

mn
,2 2X Xq qw x w xs q i ´ kyqys q i ´ kyqys y i ´ s y i ´Ž . Ž .

C.5Ž .
where F m j is the gluon operator vertex, M is the polarization tensor associated withmn

the squared amplitude, and the resulting expression for the spin numerator is

qb x pP A22 2m j n j y qyF M F s4 k b x p y kyqysŽ . Ž .Ž .mn P A y½ k

2Xkyqys P kyqysŽ . Ž .2Xq kyqys q . C.6Ž . Ž .2y 5kŽ .
We may perform the integrations over the plus and minus components of the momentum

Ž . q Xq Ž .k by using Eq. 2.14 . The s ,s integrations are of the form C.3 . By carrying out

Fig. 15. Poles in the complex sq plane from the graphs of Fig. 14.
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Fig. 16. Gluon emission from the eikonal line.

this integral we get

1
Ža.II s . C.7Ž .q 22b k r 1yb q kyqysŽ . Ž .

Then we obtain

g 4 C 2 N 2 y1 d2 kŽ . 2s A cXŽ0. 2U x ,b ,q,s,s s 2 b kŽ . Ž .H ½g P 2 24 p b 1yb xŽ . 2 pŽ .P

2 2X2q2 b 1yb k kyqys q kyqysŽ . Ž . Ž .
22 X 2q4 1yb kyqys P kyqys r b kŽ . Ž . Ž . �5

2 2X2q 1yb kyqys b k q 1yb kyqys .Ž . Ž . Ž . Ž . 5
C.8Ž .

Ž .We recognize in this expression the contribution to U from the last term in Eq. 3.75 .g
Ž .Indeed, the expression C.8 can be recast in the form

g 4 C 2 N 2 y1 d2 kŽ .s A cX XŽ0. †U x ,b ,q,s,s s Tr c k,kyqysŽ . Ž .ŽHg P g2 24 p b 1yb xŽ . 2 pŽ .P

=c k,kyqys , C.9Ž . Ž ..g

Ž .with c being the wave function given in Eq. 3.78 .
Ž .The other terms in Eq. 3.75 are obtained in a similar way by adding the graphs in

which the exchanged gluons attach to the same line and using the color singlet
Ž .projection 3.47 .

Appendix D. An integral representation for the Green functions Ua

In this appendix we give an integral representation for the Green functions Ua
Ž . Ž .alternative to the one given in the text, Eq. 3.74 . It is obtained from Eq. 3.74 by

performing the trace, introducing a Feynman parameterization to combine the denomina-
tors and carrying out the integral over k. The resulting formulas are lengthy and not as
compact as the formulas used in the text. They have the advantages, though, that the
spin structure is explicitly worked out and that the cancellation of the singular terms at
large k2 is also explicitly worked out. They may be useful for numerical evaluation.
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The functions U are written asa
4 3 3g c 1ybŽ .s a iqjXU x ,b ,q,s,s s y1Ž . Ž .Ý Ýa P 2 216 p b xP is0 js0

=
GG1 a , i j2dx FF ln MM q , D.1Ž .H a , i j a , i j 2ž /MM0 a , i j

Ž X .where the arguments q,s,s ,b , x of the auxiliary functions FF, GG, MM are suppressed.
Ž . Ž .The color factors c are given in Eqs. 3.76 , 3.77 . The summation labels i, j run overa

Ž Ž ..the four-momentum configurations appearing in the definition of u see Eq. 3.75a
3

i Ž i.u b ,k,q,s s y1 c k,kqr ,Ž . Ž . Ž .Ýa a 1
is0

where for i, js0,1,2,3, r Ž i.,r Ž j. have the values1 2
Ž i. � 4 Ž j. � X X 4r s 0,s,yq,yqys , r s 0,s ,yq,yqys .1 2

The expressions for FF , GG and MM 2 area, i j a, i j i j
Ž .Ž i. Ž i. Ž i. Ž j. i Ž j.FF s f x ,g r Pr q f x ,g r Pr q x™ 1yx ,r ™r ,Ž . Ž . Ž .Ž .a , i j a ,1 1 1 a ,2 1 2 1 2

2Ž i. Ž i. Ž i. Ž i. Ž j. Ž j.GG sg x ,g r Pr qg x ,g r Pr r PrŽ . Ž .Ž . Ž . Ž .a , i j a ,1 1 1 a ,2 1 1 2 2

2Ž i. Ž j. Ž i. Ž j. Ž i. Ž i.qg x ,g r Pr qg x ,g r Pr r PrŽ . Ž .Ž . Ž . Ž .a ,3 1 2 a ,4 1 2 1 1
Ž .i Ž j.q x™ 1yx ,r ™r ,Ž .Ž .1 2

MM 2 sg x 1yg x r Ž i.Pr Ž i.yg 2 x 1yx r Ž i.Pr Ž j.Ž . Ž .i j 1 1 1 2

Ž .i Ž j.q x™ 1yx ,r ™r ,Ž .Ž .1 2

where gs1yb. The new auxiliary functions f and g are simple polynomials in x:
f s4 1yg x 2y3g x ,Ž . Ž .q ,1

f s 1yg y1q2gy12g 2 1yx x rg ,Ž . Ž .Ž .Ž .q ,2

g sy2 1yg g 2 x 3 1yg x ,Ž . Ž .q ,1

2g sy 1yg g 1yx x 1y2g 1yx x ,Ž . Ž . Ž .q ,2

g s2 1yg g 1yx x 1ygq2g 2 1yx x ,Ž . Ž . Ž .Ž .q ,2

qg s2 1yg g x 2 1yg 3y2 x q4g 2 1yx x ,Ž . Ž . Ž .Ž .q ,4

in the case of quarks and

f s y2 1y2 1q2gq3g 2 xq6 gqg 3 x 2 rg ,Ž . Ž .Ž .Ž .g ,1

f s2 y1q2gy6 1qg 2 x 1yx ,Ž .Ž .Ž .g ,2

22 2 3 2g s2g x 1qg y1qx y2g xqg x ,Ž .Ž .g ,1

22 3 2g sg 1y2 1qg x 1yx q2g 1yx xŽ . Ž .Ž .žg ,2

qg y1q2 x 1yx 2qx 1yx ,� 4Ž . Ž Ž . /
23 4 2g s2 1y2gy2g 1yx xq2g 1yx xŽ . Ž .Žg ,3

2qg 1q2 x 1yx 1qx 1yx ,� 4Ž . Ž . .
2 3 2 2 3g sy4g x 1qxqg 3y2 x xy2g 1yx x yg 1q4 x y2 xŽ . Ž . Ž .g ,4
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in the case of gluons. The x integral can easily be carried out but the result is simple
only for the limiting values qs0,b™0 or b™1. The expressions for these cases are
given in Subsection 4.2.
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