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Magnetic field dependence of atomic collapse in bilayer graphene
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The spectrum of a Coulomb impurity in bilayer graphene is investigated as function of the strength of a
perpendicular magnetic field for different values of the angular quantum number m and for different values of
the gate voltage. We point out fundamental differences between the results from the two-band and four-band
model. The supercritical instability and fall-to-center phenomena are investigated in the presence of a magnetic
field. We find that in the four-band model the fall-to-center phenomenon occurs as in monolayer graphene, while
this is not the case in the two-band model. We find that in a magnetic field the supercritical instability manifests
itself as a series of anticrossings in the hole part of the spectrum for states coming from the low-energy band.
However, we also find very distinct anticrossings in the electron part of the spectrum that continue into the hole
part, which are related to the higher energy band of the four-band model. At these anticrossings, we find a very
sharp peak in the probability density close to the impurity, reminiscent for the fall-to-center phenomenon. In this
paper, these peculiar and interesting effects are studied for different magnetic field, interlayer coupling, and bias
potential strengths.
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I. INTRODUCTION

Graphene is a stable two-dimensional (2D) material with
very interesting properties such as high thermal and electrical
conductivity [1]. Its quasiparticles are described by a 2D
Dirac-Weyl equation with a linear spectrum at low energies.
This linear, relativisticlike spectrum together with the zero
band gap has very fundamental implications when a Coulomb
impurity is added to the graphene system. When the charge
of a point Coulomb impurity exceeds a critical value, two
inextricably intertwined phenomena will occur [2–6]: (i) the
wave function will oscillate in space with infinitely increasing
frequency near the impurity, physically corresponding with
an electron falling to the center of the impurity. A complete
fall-to-center can only be prevented by regularizing the prob-
lem through, e.g., the introduction of a cutoff [7]. Note that
after this regularization, the fall-to-center physics manifests
itself as a very sharp peak in the probability density located
very close to the impurity, (ii) after this regularization, the
electronic energy levels will dive into the negative hole con-
tinuum and hybridize with it; this diving into the continuum is
called the supercritical instability phenomenon, which is also
referred to as atomic collapse. After entering the continuum,
the bound state turns into a resonance corresponding to a
quasibound state [6]. This resonance is observed as a peak
in the local density of states (LDOS) at the position of the
impurity. In the presence of external confinement, for exam-
ple, with a magnetic field or in a quantum dot, the peak in the
LDOS is replaced by a series of anticrossings between discrete
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confined hole states [8–10]. When confinement is decreased
(by making the quantum dot larger or decreasing the magnetic
field) these anticrossings merge into a resonance level [9].
The fall-to-center phenomenon is a direct consequence of the
particular scaling of the potential and kinetic energy with
distance to the impurity, making a quasibound state on the
impurity energetically favorable [11]. The supercritical stabil-
ity phenomenon, on the other hand, occurs in every system
with nonlinear conduction and valence bands for sufficient
large strength of the Coulomb potential. It is important to
realize the difference in signature of these two phenomena:
while the supercritical instablity is seen as the diving of a
bound state into the continuum hybridizing with it, the fall-to-
center physics is seen as a sharp peak in the electron density
very close to the impurity when entering the continuum. The
charge for which these phenomena occur is called the critical
charge. In relativistic quantum physics with real electrons,
this critical charge is so large that the above phenomena were
never observed [12,13]. However, in graphene the effective
fine structure constant α is much larger because the Fermi
velocity is about 300 times lower than the velocity of light,
giving an α ∼ 1. Recently atomic collapse has been detected
in monolayer graphene (MLG) using charged dimers placed
on top of graphene [14] and with charged vacancies [15].

AB-stacked bilayer graphene (BLG) is another interesting
2D material that consists of two van der Waals coupled mono-
layers of graphene placed on top of each other with interlayer
coupling t ≈ 0.377 eV [16]. BLG has a low-energy quadratic
spectrum with zero gap, which at high energy becomes linear.
Because of the fundamentally different energy spectrum it is
not obvious how the fall-to-center and supercritical instability
phenomena manifest themselves in BLG. Previously [11], it
was argued that, due to the low-energy quadratic spectrum,
the fall-to-center phenomenon will not occur in BLG since the
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kinetic energy scales in a different way as the potential energy
[11,17]. In a recent study on gapped BLG, it was shown that
the supercritical instability takes place and electronic states
dive into the negative continuum band, forming resonance
states with increasing charge (Zα). However, they did not
see any effect resembling the fall-to-center phenomenon [11].
However, this study was limited to the case of very small
(but nonzero) values of the gap term and in the absence
of any magnetic field. Furthermore, the calculations were
performed within the two-band model and for Zα < 0.8. But
another study claimed that for gapless BLG, the supercritical
instability can already occur for arbitrary small values of the
impurity strength [18]. Here, we will resolve these conflicting
results by investigating the influence of a magnetic field on
the spectrum of a Coulomb impurity in BLG. The effect of the
magnetic field on the fall-to-center and supercritical instability
phenomena will be investigated and we discuss the limit of
small magnetic field. The effect of a band gap on these results
will also be investigated. Essential differences between results
from the two- and four-band model for BLG are pointed out.

The paper is structured as follows: in Sec. II we discuss
the two different models we use in this paper. The equations
for the four- and two-band model are derived and some limit
solutions are given. The necessity and the effect of regular-
ization is also discussed for these two models. In Sec. III, we
study the gapless spectrum for different magnetic fields and
angular momenta. In Sec. IV, we investigate the effect of the
interlayer coupling, allowing us to go continuously from MLG
to BLG, and the behavior for small magnetic fields. In Sec. V,
we study the effect of a gap on the spectrum. The conclusions
of our work are presented in Sec. VI.

II. THE MODEL

We employ the continuum approach and obtain the cor-
responding equations for both the four-band and two-band
models in the presence of a Coulomb impurity and magnetic
field.

A. Four band model

In an AB-stacked BLG, the Hamiltonian in the vicinity of
the K valley is given by [19]

HK = HK
0 + (�U )τz + V (r )I4, (1)

where �U is a gap term which can be realized through the ap-

plication of an external gate, τz is the 4x4 matrix: (
I2 0
0 −I2

)

with I2 the 2x2 unit matrix, and V (r ) is an electrostatic
potential term. HK

0 is the Hamiltonian for AB stacked BLG
in the presence of a perpendicular magnetic field:

HK
0 =

⎛
⎜⎜⎝

0 π t 0
π † 0 0 0
t 0 0 π †

0 0 π 0

⎞
⎟⎟⎠, (2)

where

π = −ih̄vF eiθ

(
∂

∂r
+ i

r

∂

∂θ

)
+ evF [Ar cos θ − Aθ sin θ

+ iAρ sin θ + iAθ cos θ ], (3)

with Aρ and Aθ the radial and azimuthal components of the
vector potential, respectively. Here we neglect effects due to
trigonal warping [20]. For the K ′ valley, we have the following
expression:

HK ′
0 =

⎛
⎜⎜⎝

0 π † t 0
π 0 0 0
t 0 0 π

0 0 π † 0

⎞
⎟⎟⎠, (4)

which are obtained from HK
0 by interchanging π → π †. Note

also that (HK
0 )† = HK ′

0 . The symmetric Landau gauge for the
vector potential is used:

�A =
(

0,
Br

2
, 0

)
. (5)

Plugging this in Eq. (3), we get

π = −ih̄vF eiθ

[(
∂

∂r
+ i

r

∂

∂θ

)
− eBr

2h̄

]
. (6)

Solving the Schrödinger equation H� = E� using the
Hamiltonian Eq. (1), we obtain the following set of coupled
equations:

h̄vF

[
∂

∂r
− (τm − 1)

r
− τ

eBr

2h̄

]
φτ

B = [E − V (r )]φτ
A−tφτ

B ′ ,

(7)

h̄vF

[
∂

∂r
+ τm

r
+ τ

eBr

2h̄

]
φτ

A = −[E − V (r )]φτ
B, (8)

h̄vF

[
∂

∂r
+ (τm + 1)

r
+ τ

eBr

2h̄

]
φτ

A′

= [E − V (r )]φτ
B ′ − tφτ

A, (9)

h̄vF

[
∂

∂r
− τm

r
− τ

eBr

2h̄

]
φτ

B ′ = −[E − V (r )]φτ
A′ . (10)

Here τ denotes the valley index, i.e., τ = +1 for the K valley
and τ = −1 for the K ′. To obtain the above equations, we
made use of the circular symmetry of the problem and took
the following ansatz for the K and K ′ four-component wave
functions:

�K (r, θ ) =

⎛
⎜⎜⎜⎜⎝

φK
A (r )eimθ

iφK
B (r )ei(m−1)θ

φK
B ′ (r )eimθ

iφK
A′ (r )ei(m+1)θ

⎞
⎟⎟⎟⎟⎠,

�K ′
(r, θ ) =

⎛
⎜⎜⎜⎜⎝

φK ′
A (r )eimθ

iφK ′
B (r )ei(m+1)θ

φK ′
B ′ (r )eimθ

iφK ′
A′ (r )ei(m−1)θ

⎞
⎟⎟⎟⎟⎠, (11)

where m is the angular momentum. Note that in BLG, the
Hamiltonian does not commute with the orbital angular mo-
mentum Lz but rather with the total angular momentum Jz =
Lz + h̄τz + h̄Sz [21].

Since we are considering the problem of a Coulomb im-
purity in the presence of a magnetic field, the electrostatic
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potential is V (r ) = −Zα0/r , where α0 = e2/4πκ , Ze is the
charge of the impurity and κ is the dielectric constant. In
MLG, regularization is required when solving the problem
of a Coulomb impurity for Zα > 0.5 [22]. The mathemat-
ical reason is the first-order derivatives in the Hamiltonian
describing graphene and the singularity of the Coulomb po-
tential when r → 0, making the problem ill defined for Zα >

0.5. This is not the case for the nonrelativistic Schrödinger
equation, which is described by a Hamiltonian containing
second-order derivatives and the problem is well defined for
all values of the charge. Physically, the electron will undergo
a complete fall to the center of the impurity for Zα > 0.5,
which is reflected by an infinitely rapidly oscillating behavior
of the wave function in the limit r → 0. To prevent this, a
cutoff of the potential is needed. Note, however, that in MLG,
the fall-to-center physics persists after the regularization and
manifests itself through the appearance of a sharp peak in the
probability density very close to the impurity when entering
the continuum. In MLG, the behavior of the components of
the wave function in the limit r → 0 is given by the following
expression:

ψa = ψb = r±
√

(m+1/2)2−(Zα)2−1/2. (12)

For m = 0, we find that when Zα < 1/2 only the solution
with positive sign in the exponent is acceptable and the prob-
lem is solvable. However, when Zα > 1/2, the square root
becomes imaginary (and the wave functions show infinitely
fast oscillating behavior near the impurity) and both the pos-
itive and negative sign solutions are acceptable, making the
problem ill defined and therefore requiring an extra boundary
condition by, e.g., considering a finite size impurity. We would
like to recall that for Zα > 0.5, the Hamiltonian is also
non-Hermitian making the problem clearly ill defined. In this
paper, we impose the regularization

V (r ) = − Zα√
r2 + d2

, (13)

which corresponds to the physical situation of a charge placed
a distance d from the top of the BLG sheet. Taking into
account the fact that the distance from the top layer to the
impurity is different from the distance of the bottom layer to
the impurity, we get the following set of equations:

h̄vF

[
∂

∂r
− (τm − 1)

r
− τ

eBr

2h̄

]
φτ

B

=
⎡
⎣E + Zα√

r2 + d2
1

⎤
⎦φτ

A − tφτ
B ′ (14a)

h̄vF

[
∂

∂r
+ τm

r
+ τ

eBr

2h̄

]
φτ

A

= −
⎡
⎣E + Zα√

r2 + d2
1

⎤
⎦φτ

B, (14b)

h̄vF

[
∂

∂r
+ (τm + 1)

r
+ τ

eBr

2h̄

]
φτ

A′

=
⎡
⎣E + Zα√

r2 + d2
2

⎤
⎦φτ

B ′ − tφτ
A, (14c)

h̄vF

[
∂

∂r
− τm

r
− τ

eBr

2h̄

]
φτ

B ′

= −
⎡
⎣E + Zα√

r2 + d2
2

⎤
⎦φτ

A′ . (14d)

Here d1 is the distance from the upper layer to the impurity
and d2 = d1 + 0.35 nm the distance from the bottom layer to
the impurity. We introduce the dimensionless variable ρ =
r/ lB using the magnetic length lB = √

h̄/eB as unit of length.
This leads to the following set of dimensionless coupled
differential equations:

[
∂

∂ρ
− (τm − 1)

ρ
− ρ

2

]
φτ

B =
⎡
⎣Ē + Zα√

ρ2 + d̄1
2

⎤
⎦φτ

A− t̄φτ
B ′ ,

(15a)[
∂

∂ρ
+ τm

ρ
+ ρ

2

]
φτ

A = −
⎡
⎣Ē + Zα√

ρ2 + d̄1
2

⎤
⎦φτ

B,

(15b)[
∂

∂ρ
+ (τm + 1)

x
+ ρ

2

]
φτ

A′ =
⎡
⎣Ē+ Zα√

ρ2 + d̄2
2

⎤
⎦φτ

B ′ − t̄φτ
A,

(15c)[
∂

∂ρ
− τm

ρ
− ρ

2

]
φτ

B ′ = −
⎡
⎣Ē + Zα√

ρ2 + d̄2
2

⎤
⎦φτ

A′ .

(15d)

In the above equations, we use Ē = ElB/h̄vF , t̄ =
t lB/h̄vF , d̄1 = d1/lB , d̄2 = d2/lB and α = α0/h̄vF .

Lets first investigate the solution in the limit r → 0. For a
point size impurity (d1 = d2 = 0) and neglecting the magnetic
field, Eqs. (15a)–(15d) can be reduced to

−
[

∂

∂ρ
+ 1

ρ

]
1

Ē + Zα
ρ

[
∂

∂ρ

]
φA −

[
Ē − +Zα

ρ

]
φA = −t̄φB ′

−
[

∂

∂ρ
+ 1

ρ

]
1

Ē + Zα
ρ

[
∂

∂ρ

]
φB ′ −

[
Ē + Zα

ρ

]
φB ′ = −t̄φA.

(16)

Decoupling the above set of equations we get{[
∂

∂ρ
+ 1

ρ

]
1

Ē + Zα
ρ

[
∂

∂ρ

]
+

[
Ē + Zα

ρ

]}

×
{[

∂

∂ρ
+ 1

ρ

]
1

Ē + Zα
ρ

[
∂

∂ρ

]
+

[
Ē + Zα

ρ

]}
φA = t̄2φA,

(17)
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which, in the limit ρ → 0, becomes[
ρ

Zᾱ

∂2

∂ρ2
+ 2

Zᾱ

∂

∂ρ
+ Zᾱ

ρ

]2

φA = t̄2φA. (18)

This problem is equivalent to the following Bessel equations:[
ρ

Zα

∂2

∂ρ2
+ 2

Zα

∂

∂ρ
+ Zα

ρ

]
φA = ±t̄φA, (19)

and the most general solution to Eq. (18) is given by

φA = 1√
ρ

(C1I√1−(2Zα)2 (Z√
ρ) + D1I−

√
1−(2Zα)2 (Z√

ρ)

+C2J√
1−(2Zα)2 (Z√

ρ ) + D2J−
√

1−(2Zα)2 (Z√
ρ )).

(20)

Here Z = 2
√

t̄Zα, Ia (x) and Ja (x) are, respectively, the
modified Bessel function and the Bessel function of the first
kind of order a. C1, C2, D1, and D2 are constants. One can set
D1 = D2 = 0 when Zα < 1/2 and the problem is solvable.
But when Zα > 1/2, two more solutions are required and,
as in MLG, we will need an extra boundary condition to
have a well-defined problem. Next to that, the solutions show
infinitely fast oscillating behavior for ρ → 0. Analogous to
MLG, a cutoff is needed to prevent a complete fall-to-center
for Zα > 0.5. This is in agreement with Ref. [17], where it
was shown, using semiclassical arguments, that the fall-to-
center should occur in BLG for Zα > 0.5.

B. Two-band model

In the low-energy limit E << t , one often describes the
carrier dynamics in BLG using a two-band model defined by
the Hamiltonian [19]:

H = 1

t

(
0 (π †)2

(π )2 0

)
+

(
V (r ) 0

0 V (r )

)
, (21)

where π and π † are given by Eq. (6). Taking the following
form of the wave spinor:

� =
(

ei(m−1)θφ1(r )

ei(m+1)θφ2(r )

)
, (22)

which we insert into the Schrödinger equation H� = E�. We
can remove the angular part and obtain the following set of
coupled equations for the radial part:

∂2φ2

∂ρ2
+

(
2m + 1

ρ2
+ρ

)
∂φ2

∂ρ
+

(
m2 − 1

ρ2
+ (m + 1)+ ρ2

4

)
φ2

= −
(

Ẽ + Zα̃

ρ

)
φ1, (23)

∂2φ1

∂ρ2
−

(
2m − 1

ρ2
+ρ

)
∂φ1

∂ρ
+

(
m2 − 1

ρ2
+(m − 1)+ ρ2

4

)
φ1

= −
(

Ẽ + Zα̃

ρ

)
φ2. (24)

Here we introduced the dimensionless variable ρ = r/ lB as
in the four-band model. We also introduced the following di-
mensionless variables: Ẽ = Etl2

B/h̄2v2
F and α̃ = α0t lB/h̄2v2

F .

Using the displaced Coulomb potential, Eq. (13), we
obtain

∂2φ2

∂ρ2
+

(
2m + 1

ρ2
+ρ

)
∂φ2

∂ρ
+

(
m2 − 1

ρ2
+(m + 1)+ ρ2

4

)
φ2

= −
(

Ẽ + Zα̃√
ρ2 + b̄2

)
φ1, (25)

∂2φ1

∂ρ2
−

(
2m − 1

ρ2
+ρ

)
∂φ1

∂ρ
+

(
m2 − 1

ρ2
+(m − 1)+ ρ2

4

)
φ1

= −
(

Ẽ + Zα̃√
ρ2 + c̄2

)
φ2, (26)

and defined b̄ = b/lB and c̄ = (c + 0.35 nm)/lB as in the
four-band model.

The two-band model leads to a Hamiltonian containing
second-order derivatives and therefore no regularization is
expected to be required. This can also be seen by considering
the limit ρ → 0 for the m = 0 state. Considering a point
impurity (d1 = d2 = 0) we get(

∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2

)
φ2 =

(
−Ẽ − Zα̃

ρ

)
φ1, (27)(

∂2

∂ρ2
+ 1

x

∂

∂ρ
− 1

ρ2

)
φ1 =

(
−Ẽ − Zα̃

ρ

)
φ2. (28)

The equations above can be simplified by using the ansatz
χ1 = √

ρφ1 and χ2 = √
ρφ2 and further decoupling to(

ρ2

∂ρ2
− 3

4

1

ρ2

)
1(

−Ẽ − Zα̃
ρ

)(
∂2

∂ρ2
− 3

4

1

ρ2

)
χ1

=
(

−Ẽ − Zα̃

ρ

)
χ1. (29)

In the limit ρ → 0, Eq. (29) can be further simplified as

ρ

Zα̃

∂4χ1

∂ρ4
+ 2

Zα̃

∂3χ1

∂ρ3
− 3

2

1

Zα̃ρ

∂2χ1

∂ρ2
+ 3

2

1

Zα̃ρ2

∂χ1

∂ρ

− 15

16

χ1

Zα̃ρ3
− Zα̃

ρ
χ1 = 0. (30)

In contrast to the four-band model, it can be clearly seen that
when ρ → 0 the last term in the above equation drops out and
the equation does not depend on the charge Zα̃. This indicates
that the problem is solvable for all values of the charge without
needing regularization and that the fall-to-center phenomenon
will not occur in the two-band model.

III. ZERO GAP BILAYER GRAPHENE

In this section, we will solve the set of coupled four-
band Eqs. (15a)–(15d) and the two-band Eqs. (25) and (26)
numerically using the finite elements method.

In Fig. 1, the spectrum is shown as function of the im-
purity strength Zα for the angular quantum numbers m =
0, 1 and − 1 with an applied magnetic field of 1 T. We used
d1 = 0.4 nm and d2 = 0.75 nm in accordance with Ref. [23].
The results of the four-band model are shown in blue while
those of the two-band model are shown in opaque red. The
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(a) m=0

0.0 0.5 1.0 1.5 2.0
−1.0

−0.5

0.0

0.5

1.0

E
v F

l B

(b) m=1

0.0 0.5 1.0 1.5 2.0
−1.0

−0.5

0.0

0.5

1.0

Z

E
v F

l B

(c) m=−1

FIG. 1. The LLs as function of the impurity strength Zα for
different values of the angular quantum number (a) m = 0, (b)
m = 1, and (c) m = −1. Results from the four-band (blue curves)
and two-band model (red curves) are shown. The magnetic field is
B = 1T , giving h̄vF / lB = 25.6 meV.

agreement between those two models is very good at low
energies | E | and small values of the impurity strength Zα.
With increasing impurity strength, the results from the four-
and two-band models start to deviate, which is due to the
neglect of higher order terms in the two-band Hamiltonian. In
the absence of the impurity we recover the degenerate Landau
levels (LLs) [24]. When the impurity strength increases, these
levels start to split and the degeneracy is lifted. From Fig. 1,
we see that when an electron LL approaches the first hole
LL an anticrossing occurs. Such an avoided crossing occurs

0.0 0.5 1.0 1.5 2.0
- 1.0

- 0.5

0.0

0.5

1.0

Z

E
v F

l B

(a)

0.0 0.5 1.0 1.5 2.0
- 1.0

- 0.5

0.0

0.5

1.0

Z

(b)

FIG. 2. The spectrum as function of the impurity strength for
m = 0 and B = 1 T for the regularization parameters d1 = 0.2 nm
(red) and d1 = 0.4 nm (blue). Results obtained within the two-band
model are shown in (a) where blue and red curves coincide, and
within the four-band model in (b).

between states that have the same quantum number m. The
electron LL then continues into the hole region through a
series of anticrossings. Previously, this was also found in
MLG [9,11], where in the presence of a magnetic field the
resonances are replaced by a series of anticrossings. Notice
that this series of anticrossings occurs both in the four-band
and two-band model. However, in the four-band model, for
m = 0 a series of anticrossings is observed that already start
in the electron region around Zα = 1.5 and continues further
into the hole region. This series of anticrossings only occurs
in the four-band model, which suggests that they are related
to the second high energy band, which is not present in the
two-band model. This special series of anticrossings in the
electron part of the spectrum also occurs for the other quantum
numbers but then for higher impurity strengths. Note that the
first LL coming from the second high energy band is located at
E[h̄vF / lB] = 14.76 and is outside the region shown in Fig. 1.

We will first focus on the series of anticrossings that occur
when a low-energy electron state crosses a hole state. The
series of anticrossings in the hole part of the spectrum can be
regarded as the manifestation of the supercritical instability
phenomenon in the presence of a magnetic field. This can
be understood from looking at the supercritical instability
phenomena in gapped graphene, as was discussed in Ref.
[10] when the lowest electron level touches the negative
continuum, the bound state will hybridize with the negative
continuum forming a resonance state. In the presence of a
magnetic field, the spectrum is discrete and the resonance is
replaced by a series of anticrossings. In MLG, it was found
that the series of anticrossings depend on the value of the
angular momentum m [9,10] as also seen in Fig. 1.

In Sec. II, we studied the limit r → 0 solutions of both
the two-band and four-band model. Here we confirm that in
the four-band model, regularization is required to prevent a
complete fall-to-center and to obtain solutions for Zα > 0.5
while, for the two-band model, this is not required. In Fig. 2,
results are shown for two different values of the regularization
parameter, shown in red (d1 = 0.2 nm) and blue (d1 = 0.4
nm), for m = 0 and B = 1 T both for the two-band [Fig. 2(a)]
and four-band [Fig. 2(b)] model. Notice that in the two-band
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FIG. 3. The m = 0 Landau levels as function of the impurity
strength Zα calculated within the four-band model for a magnetic
field of (a) B = 1 T, (b) B = 10 T, and (c) B = 40 T.

model, the regularization does not influence the spectrum
while, in the four-band model, the energy levels and the
anticrossings in particular start to depend on the regularization
parameter when Zα > 0.5. Note that this transition is not
abrupt at Zα = 0.5 but happens for finite value above Zα =
0.5, which is due to the influence of the magnetic field.

Next we study how the spectrum depends on the magnetic
field, and especially the series of anticrossings in the electron
part of the spectrum. In Fig. 3, the m = 0 spectrum as function
of the impurity strength is shown for B = 1, B = 10, and
B = 40 T. It can be seen that the position of the series
of anticrossings that start in the hole part of the spectrum
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0.4

0.6

0.8

1.0

1.0
B

Z
c

0.0
0.1
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0.3
0.4
0.5
0.6

0.0 0.1 0.2 0.3 0.4

Z
c

t eV

FIG. 4. The value of Zα for which the N = 0 LL of m = 0
touches the first hole LL, e.g., the position of the first anticrossing.
The behavior is shown for t = 377 meV (blue) and t = 100 meV
(red). The behavior is fitted to Zαc = 0.43B0.44 (blue), Zαc =
0.768B0.3 + 0.06 (red). Inset shows the zero magnetic field critical
Zcα as function of the interlayer hopping.

depends strongly on the magnetic field. With decreasing
magnetic field, the series of anticrosssings moves to lower
values of the charge. In the limit B → 0, the position of the
first anticrossings approaches zero. This is clearly shown in
Fig. 4, where the critical Zα for which the first anticrossing
occurs (i.e., the point where the N = 0 LL of m = 0 touches
the first hole LL) is given as function of the magnetic field
(blue curve). The same is shown (red curve) for a smaller
interlayer coupling t = 0.1 eV. Decreasing the coupling raises
the charge for which the first anticrossing occurs. When the
coupling is decreased to t = 100 meV, the critical charge
tends to a finite value (see fitted function in the caption of
Fig. 4). For large coupling (blue curve), we observe almost√

B dependence. This is in agreement with Ref. [11], where
they observe the same functional behavior but as function of
the gap. In the inset of Fig. 4, we plot the B = 0 critical charge
Zcα as function of the interlayer coupling t , demonstrating
the continuous evolution from MLG to BLG. We found that
for BLG, the critical charge is definitely zero. However, the
exact t-value for which Zcα becomes zero was difficult to
determine. The reason being that we were not able to put the
magnetic field exactly to zero (B = 0.001T was the smallest
B-value for which our numerics was stable, and extrapolating
the results to B = 0 becomes less accurate with increasing t).

The series of anticrossings that occur in the electron part
of the spectrum can be clearly seen for all values of the
magnetic field. At high magnetic field, it is obvious that this
series of anticrossing originates from the LLs coming from
the upper band of the four-band model. In Ref. [24], it was
shown that the position of the first LL coming from the upper
band is given by (in units of h̄vF / lB): E = √

t̄2 + 2, where
t̄ = t lB/h̄vF . For a magnetic field of 1, 10, and 40 T we
have, respectively, t̄ = 14.70, 4.65, and 2.32 and thus for
B = 40 T we have E = 2.72, which corresponds exactly with
the position of the level in Fig. 3(c) indicated by number (8).
Using the exact position of the first level of the upper energy
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FIG. 5. The probability densities for the states marked on Fig. 2.

band, we fitted the first series of anticrossings to the function
E[eV] =

√
t2 + 2(h̄vF / lB )2 − a(Zα)b for the three values of

the magnetic field shown in Fig. 3. Fitting gives, respectively,
for B = 1, 10, and 40 T: {a, b} = {0.22, 1.64}, {0.24, 1.47},
and {0.28, 1.35}. The fits are shown by the dashed red curves
in Fig. 3. In the case of perfect Rydberg behavior, one would

FIG. 6. Local density of states at the position of the impurity
as function of the energy and impurity strength for B = 10 T. Red
in the figure corresponds to a large density of states while white
corresponds to a low density of states.

find a = 2�lB/h̄vF [25] which gives, respectively, {29.39, 2},
{9.29, 2}, and {4.64, 2} and is very different from our results.

In Fig. 5, we plot the probability densities for the (Zα,B )-
values indicated by the points marked on Fig. 3. The points
(1), (2), and (3) correspond to the probability densities before,
at, and right after an anticrossing coming from a low energy
N = 0 LL diving into the hole LLs. The points (4) and (5)
are the densities before and at the anticrossing of the N = 1
LL. The points (6) and (7) are the densities right before and
at the anticrossing that is caused by a LL coming down from
the upper band. Notice that at the anticrossing, the particle
is more closely localized at the impurity. There is a large
difference between the densities during these two different
anticrossings. The density for the anticrossing of the upper
band shows a very sharp peak very close to the impurity.
This peak is more pronounced than for the other anticrossings.
From looking at the densities in the points (8), (9), and (10),
we can understand why the LLs of the upper band respond
more strongly to the impurity strength since their probability
densities are localized closer to the impurity.

From Fig. 3, it is seen that the LLs corresponding to the
upper band have a stronger dependence on Zα then those
from the lower band. This can be understood as follows. In
the absence of the impurity and magnetic field, the upper band
of BLG is separated by a gap � ≈ 377 meV from the lower
band and those states can be considered to be similar to those
of gapped graphene. It is well known that in gapped graphene
the fall-to-center phenomenon occurs [2]. This explains why
the anticrossings coming from the upper band: (i) exhibit a
sharp peak very close to the presence of the impurity [see
Fig. 5(c)], and (ii) why they respond more strongly to the
impurity. For the low-energy anticrossings, such a sharp peak
is not visible [see Figs. 5(a) and 5(b)], signifying the absence
of the fall-to-center physics. This point is further supported
by the fact that the anticrossings of the low-energy states are
both visible in the two-band and four-band model (see Fig. 2)
and by the fact that in the two-band model the fall-to-center
physics is absent (as shown analytically in Sec. II).

Experimentally, the LDOS is measurable by using an STM
tip. In Fig. 6, we show a density plot of the LDOS at the
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FIG. 7. The energy levels as function of the magnetic field
strength for m = 0 and Zα = 1. The gray full curves show the
corresponding LLs in bilayer graphene for Zα = 0.

position of the impurity for B = 10 T as function of the
impurity charge for a large energy range. The anticrossings
originating from the upper band can be clearly seen in the
figure as a large peak in the LDOS in the electron part of the
spectrum. The other surrounding states coming from the lower
band have a much smaller LDOS. The peak of the LDOS in
the electron part of the spectrum is in sharp contrast with
observations in MLG where only peaks in the hole part of
the spectrum are observed. This makes these anticrossings a
unique and very distinct signature. In the hole part, distinct
anticrossings coming from m = 0 states can be observed.
Between those peaks, anticrossings corresponding to higher
angular momentum states can already be observed.

In Fig. 7, the spectrum is shown as function of the mag-
netic field strength for m = 0 and Zα = 1. The LLs without
impurity are shown in gray. The energy of the LLs are pushed
down by the impurity. A series of anticrossings in the electron
part around 150 meV is seen. In the hole region, similar
anticrossings occur around −90 meV. In MLG, a similar
series of anticrossings in the hole region are observed and the
energy position is also independent of the magnetic field. For
anticrossings from the lower band, the position is determined
by the position of the resonant state in the limit B → 0,
exactly as in MLG. This series of anticrossings corresponds to
the first anticrossing seen in Fig. 3. For states coming from the
upper band, the position is determined by the position of the
bound state coming from the upper band in the limit B → 0.
This series of anticrossings corresponds to the anticrossings
observed in the electron part of the spectra in Fig. 3.

IV. INFLUENCE OF THE INTERLAYER COUPLING
AND SMALL MAGNETIC FIELD LIMIT

It is interesting to investigate how the spectrum evolves
as function of the interlayer coupling parameter. This gives
us more insight in how the atomic collapse evolves from
monolayer to BLG. This, in particular, is interesting when
investigating the B → 0 limit.

In Fig. 8, the m = 0 LL spectrum is plotted for different
values of the interlayer coupling strength. In the top figures,
the spectrum is given as function of the impurity strength.
In the bottom pictures, the probability densities are given
for the lowest N = 0 LL (the level that starts in zero) for
different values of the impurity strength. When the interlayer
coupling is zero, we have two noncoupled monolayers of
graphene. This can be clearly seen in the blue figure where for
Zα = 0 all the levels (except the zero energy one) are double
degenerate. When the charge is increased, this degeneracy
is lifted and the electron levels dive in the negative energy
region. When they hit the first hole LL, they anticross and the
levels continuously dive in the negative hole region as a series
of anticrossings. In the case of MLG, a resonance would be
produced, which is replaced by a series of anticrossings when
a magnetic field is present. For small value of the charge, the
localization of the wave function does not change that much.
However, when Zα ≈ 1, the wave function becomes localized
very close to the impurity center and a sharp peak is seen
accompanied with a sharp drop in the energy spectrum. Note
that for zero coupling, the wave function of N = 0 is only
localized on the top layer, which is closest to the impurity. In
principle, one expects that both decoupled layers are equiva-
lent except for the difference in the distance of the impurity
from the graphene sheet. However, one should keep in mind
that the conserved quantity is Jz and not Lz and that m = 0 for
the top layer is equivalent to taking m = −1 when considering
the bottom layer due to the Sz term in the expression for
Jz. Therefore, we will obtain an almost equivalent energy
spectrum for m = −1 (and thus the N = 0 level will be almost
double degenerate keeping in mind that d1 �= d2) with the
bottom and top wave functions interchanged.

When interlayer coupling is added the behavior changes
qualitatively. Due to the coupling, the degeneracy at Zα = 0
is lifted and the levels hybridize. Half of the levels move
down and form the LLs connected to the lower band and
half of the states move up and are connected to the upper
band. As discussed above, the anticrossings in the electron
part of the spectrum are caused by states from the upper band.
During the anticrossings, the probability densities show a very
sharp peak very close to the impurity. Note that when the
coupling increases, the anticrossings become stronger. The
lower energy LLs still exhibit anticrossings when they hit
the set of Landau hole states. However, when studying the
wave functions, it can be clearly seen that the behavior of the
wave functions changes with increasing coupling, see evolu-
tion between lower panels of Fig. 8. At low coupling, a sharp
peak in the probability density is observed, which diminishes
and eventually disappears when the coupling increases. Also
the dependence of the levels on the impurity strength changes
with increasing coupling: for zero coupling the lower energy
LLs show a stronger dependence on the impurity strength. In-
creasing the coupling reduces this dependence on the impurity
strength for the lower energy LLs, which can be clearly seen
in Fig. 8. This change in qualitative behavior is explained by
the change in energy spectrum, when the coupling is increased
the spectrum changes from a linear to a quadratic one at low
energies. The scaling of the kinetic energy changes from 1/r

to 1/r2 close to the impurity and the effect of the Coulomb
potential, which scales like 1/r , gets diminished. This change
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FIG. 8. Landau levels for the angular quantum number m = 0 are shown for different values of the interlayer coupling (t). In the left figure,
the coupling is zero. In the middle (right) figure, the spectrum is plotted for a coupling of 0.1(0.2) eV. In the lower panels, the probability density
of the first LL N = 0, i.e., the state starting at zero energy when Zα = 0, are shown for different values of the impurity strength. The probability
density on the upper layer are shown as solid curves and on the lower layer by dashed lines. A magnetic field of 1 Tesla is applied.

of scaling of kinetic and potential energy effectively destroys
the fall-to-center physics for the lower energy states.

The series of anticrossings in the electron part with in-
creasing coupling can be clearly seen in the last two panels.
The slope becomes sharper with increasing coupling. The
series of anticrossings in the electron part move to higher
Zα-values with increasing coupling strength. In the middle
figure of Fig. 8, the anticrossings of the second level coming
from the upper band can be seen. The anticrossings in the
hole spectrum seem to move to lower charges with increasing
coupling. For example, for B = 1T the point where the N = 0
LL hits the first hole LL changes from Zα = 1 for t = 0 to
Zα = 0.85 for t = 0.1 eV and Zα = 0.65 for t = 0.2 and
Zα = 0.48 for BLG.

It is also interesting to study the LDOS at smaller magnetic
fields since this will provide us with information on the B →
0 limit. In Fig. 9(a), we plot the LDOS for B = 1 T. The
states coming from the upper band can be clearly seen as a
sharp peak in the LDOS and should be a clear signature to
look for in experiments. The anticrossings in the hole part
of the spectrum coming from the low-energy states start to
form a peak in the LDOS, corresponding to the quasibound
state in the B = 0 case. By comparing with Fig. 1, it is clear
that the sharp anticrossings correspond to the m = 0 states.
Between the sharper peaks, two broader peaks coming from

the m = −1 and m = 1 states can be observed. To show this
more clearly, a close-up of those peaks is shown in Fig. 9(b),
note that the second m = 0 state corresponds to one with a
higher quantum number. The peak coming from the upper
band exhibits clear different Zα-dependence in the negative
continuum as compared to the peaks coming from the lower
band. The formation of these peaks in the LDOS is similar to
MLG [9] but with one important difference: in MLG, these
peaks show up for larger charges. For example, for B = 1 T,
the first peak shows up around Zα = 1 [9] while in the case of
BLG the first peak already shows up around Zα = 0.5. This
is shown in Fig. 10, where the LDOS for MLG is plotted for
B = 1 T. Notice the clear absence of states coming from the
upper band in MLG and how the resonances emerges from the
anticrossings.

V. GAPPED BILAYER GRAPHENE

Applying a bias potential to the bilayer leads to the opening
of an energy gap in the spectrum. The size of the gap is given
by the following formula [26]:

Eg = �Ut√
4(�U )2 + t2

. (31)
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FIG. 9. (a) LDOS at the position of the impurity for B = 1 T. (b)
Close up of the peaks in the negative energy region.

Here �U is the applied bias voltage and t the interlayer
coupling parameter. From this, it can be seen that the gap
in the spectrum will always be smaller than the applied bias
voltage and, for high voltages, this difference will increase
rapidly.

It is not immediately clear how such a gap opening will
influence the impurity states. Please note that this situation is
more close to the original atomic collapse problem but now in
2D [27,28]. When a gap is present in BLG, impurity states will
appear inside this gap. This situation was studied in Ref. [10]
for zero magnetic field. Without a magnetic field, the spectrum

FIG. 10. Same as in Fig. 9 but for monolayer graphene.
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FIG. 11. (a) Spectrum as function of the Coulomb charge for
a magnetic field of 1 T and a gap of 50 meV. A close-up of the
anticrossings in the electron part seen between Zα = 1 and Zα =
1.5 is shown in the inset. (b) The same but now for a magnetic field
of 0.25 T and a gap of 25 meV. Only results for angular quantum
number m = 0 are shown.

above the gap is continuous; this means that when a bound
state from inside the gap enters the negative hole continuum
the bound state will transform into a resonant state. This is
very similar to monolayer gapped graphene.

In Fig. 11(a), the spectrum is shown for a bias potential
�U = 50 meV and a magnetic field of 1 T. In Fig. 11(b), the
gap �U = 25 meV is taken twice smaller but this time we
took a smaller magnetic field of 0.25 T. In Fig. 11(a), a thick
band of LLs above the gap can be seen. When the charge is
increased, the lowest LLs enter the gap region and descend
toward the negative band of LLs. Exactly as in the case
without a gap, a series of anticrossings are seen. The series
of anticrossings coming from the upper band in the electron
spectrum can still be seen between Zα = 1 and Zα = 1.5.
In the inset of Fig. 11(a), a close-up of these anticrossings is
shown. This series of anticrossings also influences the states
inside the gap region. It can be clearly seen that only higher
states are affected. In Fig. 11(b), the series of anticrossings
is still visible. In Ref. [11], they investigated an impurity in
gapped graphene without magnetic field but they only showed
the spectrum up to a charge of Zα = 0.8 and were therefore
not able to observe this series of anticrossings. When an

115406-10



MAGNETIC FIELD DEPENDENCE OF ATOMIC COLLAPSE … PHYSICAL REVIEW B 98, 115406 (2018)

FIG. 12. LDOS at the impurity site for the parameters used in
Fig. 11(a). The gap edges are given by the dashed lines.

impurity state from the gap touches a hole LL, exactly as in
the gapless case, an anticrossing will occur.

For the low-energy states, the application of a bias potential
opens up a gap. Because of this, the impurity-modified LLs
are allowed to sink into the gap, forming true bound states.
This behavior is of course consistent with the gapped case
studied in Ref. [11]. The supercritical instability still occurs
for these low-energy states when they touch the negative
energy band of LLs. The series of anticrossings in the electron
part of the spectrum still persists in the spectrum as shown
clearly in the inset of Fig. 11(a). To guide the eye, the
anticrossings in the electron part are denoted by an opaque
red dashed line in Fig. 11, we used the same fitting formula
as on page 6 with the parameters {a, b} = {0.34, 1.64} for
Fig. 11(a) and {a, b} = {1.47, 1.64} for Fig. 11(b). The low-
energy states still enter the continuum after they entered the
gap region, which was also found in Ref. [11], and the series
of anticrossings in the electron part remain visible showing a
persistence of the effects discussed in the gapless case.

In Fig. 12, we show the LDOS at the impurity for the same
paramters as in Fig. 11(a). Note that more states are visible
compared to Fig. 11(a) where we show only the m = 0 states.
We indicated the angular quantum number of the states. Note
that the first state entering the gap is an m = 1 state, which is
consistent with the results shown in Ref. [11]. In this figure,
the anticrossings from the upper band are still visible as a
higher intensity peak in the electron continuum. When the
anticrossings enter the gap, region they influence the bound
states inside the gap, which can be seen as an increase in
strength of the LDOS. This shows that the behavior remnant
of the fall-to-center phenomenon is still visible when a gap is
added to the spectrum.

VI. CONCLUSIONS

In this paper, we investigated the spectrum of a Coulomb
impurity in BLG in the presence of a perpendicular magnetic
field. A number of interesting properties and effects were
found, which we will summarize point by point:

(1) As function of the impurity strength, the degenerate
LLs split in a similar fashion as in MLG [23].

(2) The validity of the two-band model when an impurity is
present is limited. Although there is very good agreement for
low values of the charge, the two-band and four-band model
results deviate rapidly with increasing Zα. Anticrossings that
occur when a low-energy LL touches the hole LLs are found
both in the two- and four-band model. However, additional
anticrossings are found in the electron part of the spectrum in
the four-band model, which are absent in the two-band model.
In Ref. [11], it was found that the results from the two band
and four-band model agree very well for gapped BLG. Those
authors limited themselves to very small values of the gap in
the absence of magnetic field and to the lowest energy level for
which, indeed, the two-band model gives a good description.

(3) By studying analytical solutions, we showed that in the
four-band model regularization is required to prevent a com-
plete fall-to-center for Zα > 0.5. Beyond this charge value,
the four-band spectrum becomes sensitive to regularization.
In the two-band model, such regularization is not required. As
a consequence, the fall-to-center physics is not present in the
two-band model.

(4) Anticrossings in the electron part of the spectrum are
found only in the four-band model. These anticrossings were
attributed to states of the second upper band. The probability
density showed a very sharp peak close to the impurity at the
anticrossing, being a signature of the so called fall-to-center
physics. This is confirmed by the fact that the upper band
is essentially similar as the band in gapped graphene, which
was found to exhibit the fall-to-center physics. These series
of anticrossings that dive sharply in the continuum should be
clearly visible when measuring the LDOS.

(5) Anticrossings in the negative energy part of the spec-
trum are observed, which are manifestations of the supercrit-
ical instability phenomenon, similar as in MLG. By studying
the LDOS, we showed that for smaller magnetic fields the an-
ticrossings start to form peaks in the LDOS analogous to MLG
[9]. These peaks should be clearly visible in experiments.

(6) Adding a finite gap to the system shows a persistence
of the effects seen in the gapless case. Low-energy states can
enter the gap and dive into the continuum at higher Zα values.
The anticrossings in the electron part of the spectrum persist
regardless of the gap.

From this study, we can conclude that the effect of a
charged impurity in BLG has a dual nature. On the one
hand, we have low-energy states that dive toward the negative
energy states forming a distinct series of anticrossings. By
studying these anticrossings and comparing with the two-band
model, we showed that these low-energy states do not exhibit
fall-to-center physics. However, on the other hand, we observe
states coming from the upper band that do exhibit fall-to-
center physics. From this we can conclude that BLG does
exhibit fall-to-center physics that can only be captured by the
four-band model.
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