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Abstract

Many animal species migrate over long distances, but the physiological challenges of migration are

poorly understood. It has recently been suggested that increased molecular oxidative damage might

be one important challenge for migratory animals. We tested the hypothesis that autumn migration

imposes an oxidative challenge to bats by comparing values of 4 blood-based markers of oxidative sta-

tus (oxidative damage and both enzymatic and nonenzymatic antioxidants) between Nathusius’ bats

Pipistrellus nathusii that were caught during migration flights with those measured in conspecifics

after resting for 18 or 24 h. Experiments were carried out at Pape Ornithological Station in Pape (Latvia)

in 2016 and 2017. Our results show that flying bats have a blood oxidative status different from that of

resting bats due to higher oxidative damage and different expression of both nonenzymatic and en-

zymatic antioxidants (glutathione peroxidase). The differences in oxidative status markers varied be-

tween sampling years and were independent from individual body condition or sex. Our work provides

evidence that migratory flight might impose acute oxidative stress to bats and that resting helps ani-

mals to recover from oxidative damage accrued en route. Our data suggest that migrating bats and

birds might share similar strategies of mitigating and recovering from oxidative stress.
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Migration is a fascinating behavior regularly performed by a wide

range of animal species varying largely in taxon (from insects to

mammals), body size and in the habitats they use (Dingle 2014).

Seasonally changing resources are the main reason for almost all of

the known animal migrations. Fluctuations in resource abundance

force animals to move from areas with insufficient supplies of critic-

al resources to more favorable areas. Owing to these ecological con-

straints, billions of animals are driven to move between a summer

area, in which they breed, to a wintering habitat and back, some

spanning thousands of miles (Dingle 2014). Many terrestrial bat and

bird migrants make use of powered, soaring and gliding flight to

cover long distances. Indeed, flapping flight involves very high meta-

bolic rates during migration, which needs to be powered by

appropriate oxidative fuels when animals are en route (McWilliams

et al. 2004; McGuire and Guglielmo 2009; Voigt et al. 2012a;

Avgar et al. 2014).

While migrating, animals face a number of endogenous challenges

for homeostasis, which may force animals to solve trade-off situa-

tions. For example, the energy budget of a journey has to be spent op-

timally by either uptake and storage of sufficient nutrients before

migration or by refuelling while en route. Negative energy balances

will eventually lead to nutrient sparing and catabolism or inflamma-

tion (McWilliams et al. 2004; McGuire and Guglielmo 2009; Avgar

et al. 2014). In recent years, it has been proposed that regulation

of oxidative balance might be one additional key challenge for migrat-

ing animals (Costantini et al. 2007; Jenni-Eiermann et al. 2014;
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Skrip et al. 2015; Birnie-Gauvin et al. 2017; Eikenaar et al. 2017). For

example, intense and prolonged physical activity may lead to an

increased production of pro-oxidant chemicals (e.g., free radicals) in

skeletal muscle and blood (Sureda et al. 2009; Nikolaidis et al. 2012).

Intense physical activity may also cause inflammation and activation

of immune cells (Matson et al. 2012) that release pro-oxidants into

the bloodstream (Sorci and Faivre 2009). Pro-oxidants such as react-

ive oxygen species interact with critical signaling molecules to stimu-

late a broad variety of cellular processes (Halliwell and Gutteridge

2015). However, they are also prone to attack proteins, lipids,

and nucleic acids, causing chemical modifications referred to as oxi-

dative damage (Costantini 2014; Halliwell and Gutteridge 2015).

Organisms may control the activity of pro-oxidants relying on a large

variety of antioxidant mechanisms and molecules (Costantini 2014;

Halliwell and Gutteridge 2015).

Thus far, studies on the link between migration and oxidative

stress were restricted to birds and fishes. For example, Costantini

et al. (2007) found in two passerine species caught at a stopover site

that plasma nonenzymatic antioxidants were higher in individuals in

better body condition. Jenni-Eiermann et al. (2014) found that

blood oxidative damage and activity of glutathione peroxidase (anti-

oxidant enzyme) were significantly higher in European robins

Erithacus rubecula caught during their nocturnal flight than in con-

specifics caught during the day while resting. Similarly, Skrip et al.

(2015) found that birds at stopover sites were capable of recovering

from the oxidative damage they have accrued during migration,

since plasma oxidation levels decreased with the length of the stop-

over stay. In contrast, while energy expenditure increased in flying

Northern bald ibis Geronticus eremite compared with that meas-

ured before flying, two markers of oxidative status were not affected

by flight effort (Bairlein et al. 2015). Finally, Birnie-Gauvin et al.

(2017) and Eikenaar et al. (2017) found that, as compared with con-

specific resident individuals, migrating individuals had upregulated

antioxidant defences in brown trout (Salmo trutta) and blackbird

Turdus merula, respectively.

Bats are another group capable of long-distance migration, but,

compared with birds, they have received less attention in terms of

physiological adaptations to migratory flight and trade-offs involved

(McGuire and Guglielmo 2009; Popa-Lisseanu and Voigt 2009).

Although balancing time and energy budgets is important for any

migrating animal, bats and birds have disparate adaptations with re-

spect to their physiology during migration. For example, conversely

to birds that derive much energy from fatty acids accumulated in

adipose tissue, bats also fuel their long migrations using nutrients

derived from insects eaten while on migratory transit flights (Voigt

et al. 2012a). Moreover, most birds are incapable of doing extended

periods of torpor during the migration (Fleming and Eby 2003;

McGuire et al. 2014). Yet, migratory birds seem to have a better

aerodynamic efficiency than bats (Muijres et al. 2012).

In this study, we compared values of 4 blood-based markers of

oxidative status measured in bats that were caught during the phase

of high flight activity with those measured in bats after resting. We

carried out the experiments using Nathusius’ bats Pipistrellus nathu-

sii, which migrate seasonally from their north-eastern breeding

range to the southwest of Europe where they hibernate, covering up

to approximately 2,000 km twice during the year (P�etersons 2004).

Conversely to birds, migration and breeding are not temporally iso-

lated in bats during the spring migration because it coincides with

pregnancy. Thus, we carried out the study during the autumn migra-

tion (i.e., after the reproductive season) to isolate migration from

potential effects of pregnancy on stress physiology.

Materials and Methods

Study area and sampling
Experiments were carried out at Pape Bird Ringing Station in Pape,

Latvia, (568090 N 218030 E) between 20 and 22 August 2016 and

between 26 and 27 August 2017 under the licenses Nr. 31/2016-E

from 06.07.2016 and Nr. 33/2017-E from 19.07.2017 issued by the

Latvian Nature Conservation agency and under the licence Nr. 92/

2017 issued by Latvian Food and Veterinary service. All methods

were carried out in accordance with the relevant guidelines and reg-

ulations. The study period included the peak migration season for P.

nathusii in Latvia (P�etersons 2004). Meteorological conditions were

similar in the two sampling years (Table 1). Migratory bats were

captured between 2200 and 0200 h using a Helgoland funnel trap.

The Helgoland trap was manned continuously for trapping bats.

Once a bat was caught, it was bled as soon as possible at the site of

capture. The time elapsed from capture to bleeding was below 5

min. In 2016 and 2017, we collected blood samples from 31 (11

males and 20 females) and 12 (5 males and 7 females) bats, respect-

ively, right after bats were captured during migratory transit flights.

We also collected blood from other 10 (4 males and 6 females) and

19 (6 males and 13 females) bats in 2016 and 2017, respectively,

after having rested for either 18 or 24 h in cages in groups of max-

imum 4 individuals with food (mealworms) and water provided ad

libitum. Wooden cages in which bats were kept temporarily simu-

lated natural roosts in tree hollows. The dimensions were

28�16�13 cm (l�w�h). Holes in the front door enabled air cir-

culation. Bats in cages were housed in a wooden hut at PBRS, which

is specifically used for keeping bats in dark, temperature-stable, and

quiet conditions. Bats kept for a day stopover go into torpor during

the day subsequent of the night of capture. Bats were never caught

in rainy days. The blood was collected using heparinized capillaries

after puncturing the vein in the tail membrane (previously sterilized)

with a sterile needle (StericanVR Gr. 1, G 20�1 1/2”/ø

0.90�40 mm). Then the blood was transferred into an Eppendorf

tube, which was centrifuged straightaway to separate plasma from

blood cells. Both samples of plasma and blood cells were stored in a

dryshipper under liquid nitrogen straightaway. The body mass of

bats kept in cages was recorded with an electronic balance (accuracy

0.01 g; Kern CM 150-1N, Germany) before feeding. All individuals

used in both years of the study were identified as adults, that is, they

were at least one year old according to the closure of the epiphyseal

gap.

Molecular analyses
We measured one marker of plasma oxidative damage, one marker

of plasma nonenzymatic antioxidant capacity and two markers of

red blood cell antioxidant enzymes using standard methods for ver-

tebrates (for more technical details see e.g., Costantini et al. 2013;

Table 1. Meteorological conditions according to the global forecast

system

Sampling day Air temperature (�C) Wind speed (km/h) Humidity (%)

20-08-2016 18.3 15 63

21-08-2016 17.0 5 97

22-08-2016 15.9 9 92

26-08-2017 14.5 9 86

27-08-2017 14.0 6 91

Note: Avaialble at http://www.emc.ncep.noaa.gov/via earth nullschool model

at 23: 00.
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Schneeberger et al. 2013). Briefly, the d-ROMs assay (Diacron

International, Grosseto, Italy) was used to measure the reactive oxy-

gen metabolites in 4 ml of plasma, which include primary oxidative

damage products (e.g., organic hydroperoxides, endoperoxides).

Values were expressed as mM H2O2 equivalents. The OXY-

Adsorbent test (Diacron International) was used to quantify the abil-

ity of nonenzymatic antioxidant compounds (e.g., vitamins, thiols)

present in the plasma (diluted 1: 100 with distilled water) to cope

with the in vitro oxidant action of hypochlorous acid (HOCl, an en-

dogenously produced oxidant). Values were expressed as mM of

HOCl neutralized. The Ransel assay (RANDOX Laboratories,

Crumlin, UK) was used to measure the activity of the enzyme gluta-

thione peroxidase (gpx) in erythrocytes. The activity was expressed

as units of gpx per mg of proteins. The Ransod assay (RANDOX

Laboratories, Crumlin, UK) was used to measure the activity of the

enzyme superoxide dismutase (sod) in erythrocytes. The activity was

expressed as units of sod per mg of proteins. Quality controls with

known concentrations of the markers were included in all assays

performed. The Bradford protein assay (Bio-Rad Laboratories,

Hercules, USA) with bovine albumin as a reference standard was

used to quantify the concentration of proteins in samples. All analy-

ses were carried out within a few months from collection. The be-

tween year coefficient of variation of quality controls included in all

assays was below 10%, indicating that the differences of the oxida-

tive status marker values between sampling years were not due to

assay performance.

Statistics
Generalized linear models were used to assess relationships between

each oxidative status marker and the predictor variables experimen-

tal group (flying vs. resting) and sampling year (2016 vs. 2017), as

well as their interaction. A normal error function and an identity-

link function were applied to models of nonenzymatic antioxidant

capacity and gpx. A gamma error function and an identity-link func-

tion were applied to models of reactive oxygen metabolites and sod.

Generalized linear models were also used to assess relationships be-

tween a body condition index (body mass as dependent variable and

forearm length as covariate; e.g., Garcı́a-Berthou 2001; Pearce et al.

2008; Reynolds et al. 2009; Jonasson and Willis 2011) and the pre-

dictor variables experimental group and sampling year, as well as

their interaction. A normal error function and an identity-link func-

tion were applied. The Tukey test was used for post-hoc compari-

sons when the interaction was significant. Preliminary analyses

did not reveal any significant differences between males and females

between experimental groups and years (experimental group-

� sex� sampling year, all P values �0.36) for each metric analyzed.

Thus sex was not retained in the analyses in order to minimize the

number of variables that went into the full models. Outcomes were

similar when sex was retained in full models. Data on oxidative sta-

tus markers for both males and females are reported in Table 2.

Finally, the Pearson correlation was used to test whether there was a

correlation between the time blood was sampled and each oxidative

status marker in those bats blood-sampled straightaway from their

capture (i.e., flying bats). For the analysis of body condition index in

flying bats, we used partial correlation with body mass as dependent

variable and both time of blood sampling and forearm length (index

of body size) as independent variables (Garcı́a-Berthou 2001).

Analyses were run pooling data from 2016 and 2017, as well as for

each year, separately. We also used partial correlation to assess

whether any of the oxidative status markers was correlated with body

condition index (body mass and forearm length both included as inde-

pendent variables) in flying birds. All analyses were performed using

the software STATISTICA 10 (StatSoft. Inc., Tulsa, OK, USA).

Finally, the compute.es package (Del Re 2013) in R (R Core Team

2013) was used to calculate the standardized effect size Hedges’ g

from test statistics of oxidative status markers. The forestplots func-

tion of the metafor package in R was used to visualize values of effect

size and 95% confidence interval. Effect sizes were considered to be

small (Hedges g¼0.2, explaining 1% of the variance), intermediate

(g¼0.5, explaining 9% of the variance), or large (g¼0.8, explaining

25% of the variance) according to Cohen (1988).

Results

In both study years, flying bats had significantly higher reactive oxy-

gen metabolites than resting bats (Table 3, Figure 1A). Reactive oxy-

gen metabolites were also significantly higher in 2017 than in 2016

(Table 3, Figure 1A). Resting bats had significantly lower plasma

nonenzymatic antioxidant capacity than flying bats in 2016, while

they had significantly higher plasma nonenzymatic antioxidant cap-

acity than flying bats in 2017 (Table 3, Figure 1B). Glutathione per-

oxidase did not differ between flying and resting bats in 2016, while

it was significantly higher in flying than resting bats in 2017

(Table 3, Figure 1C). Superoxide dismutase was significantly higher

in 2017 than 2016 and it did not differ between flying and resting

bats in both sampling years (Table 3, Figure 1D). Body condition

index did not differ between flying and resting bats in both sampling

years (Table 3; see also Table 4 for values of body mass, forearm

length and body condition index).

There was no significant correlation between time of blood sam-

pling and values of all oxidative status markers analyzed or body

condition index in flying bats (r-values ranging from �0.53 to 0.46,

P�0.08). There was also no significant correlation between each

oxidative status marker and body condition index (r-values ranging

from �0.19 to 0.20, P�0.22), There was also no difference in

blood sampling time (t-test, P¼0.82; Levene test, P¼0.73) between

2016 (average and range: 00: 03, 22: 00-02: 00) and 2017 (average

and range: 23: 58, 22: 20-01: 22).

Estimates of effect size for reactive oxygen metabolites, non-

enzymatic antioxidants and gpx measured in 2017 were large and

Table 2. Descriptive statistics (mean 6 standard error) of markers of oxidative status in both males and females

Study year Sex ROMs OXY GPX SOD

2016 Male 0.26 6 0.08 (14) 195 6 11 (15) 0.48 6 0.03 (15) 0.62 6 0.08 (15)

2016 Female 0.34 6 0.06 (24) 207 6 8 (25) 0.48 6 0.03 (26) 0.66 6 0.06 (26)

2017 Male 1.56 6 0.09 (11) 268 6 13 (11) 0.23 6 0.04 (11) 1.85 6 0.09 (11)

2017 Female 1.42 6 0.06 (20) 277 6 9 (20) 0.26 6 0.03 (20) 1.58 6 0.07 (20)

Notes: ROMs, reactive oxygen metabolites (mM H2O2 equivalents); OXY, nonenzymatic antioxidant capacity (mM HOCl neutralised); GPX, glutathione perox-

idase (units/mg proteins); SOD, superoxide dismutase (units/mg proteins). Sample sizes are reported between brackets.
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their 95% confidence intervals did not include zero (Figure 2).

Estimates of effect size for gpx in 2016 and for sod were small and

their 95% confidence intervals included zero (Figure 2).

Discussion

Our work provides strong evidence that performing migratory

flights may result in increased blood oxidative stress and that resting

(e.g., during a stopover) may help the animal to detoxify cells from

damage accumulated while en route or to reduce generation of oxi-

dative damage. Effect size estimates of significant differences be-

tween resting and flying animals were large (Hedges’ g�0.8), thus

explaining more than 25% of the variance (Cohen 1988). It has

been suggested that intermediate effect sizes are biologically mean-

ingful because average proportions of variance explained in eco-

logical, evolutionary, and physiological studies is usually below 7%

(Møller and Jennions 2002).
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Figure 1. Differences of plasma reactive oxygen metabolites (A), plasma nonenzymatic antioxidant capacity (B), erythrocyte glutathione peroxidase (C) and

erythrocyte superoxide dismutase (D) between flying and resting bats in the sampling years 2016 and 2017. Resting duration was 18 and 24 h in 2016 and 2017,

respectively. Means that are not sharing a same superscript (i.e., letters a, b or c) are significantly different from each other (Tukey test, P<0.05). Note that post-

hoc tests were performed only for nonenzymatic antioxidant capacity and glutathione peroxidase because their respective models detected a significant inter-

action between experimental group and sampling year. Values are shown as least square means 6 standard error.

Table 3. Outcomes of generalized linear models used to detect the significant predictors of blood oxidative status markers and of body con-

dition index

Variable Factor Wald P

Reactive oxygen metabolites Experimental group 4.73 0.030

Sampling year 101.36 <0.001

Experimental group � sampling year 0.34 0.559

Nonenzymatic antioxidant capacity Experimental group 0.02 0.876

Sampling year 47.24 <0.001

Experimental group � sampling year 17.00 <0.001

Glutathione peroxidase Experimental group 5.15 0.023

Sampling year 59.01 <0.001

Experimental group � sampling year 10.13 0.002

Superoxide dismutase Experimental group 0.89 0.346

Sampling year 91.69 <0.001

Experimental group � sampling year 1.69 0.194

Body mass Experimental group 1.73 0.189

Sampling year 2.52 0.112

Forearm length 16.79 <0.001

Experimental group � sampling year 0.23 0.632

Notes: Significant P-values are shown in bold. The removal of the interaction when nonsignificant did not change the outcomes.
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In both study years, bats that were kept resting had lower plasma

reactive oxygen metabolites (early derivatives of oxidative damage)

than flying bats irrespective of whether they rested for either 18

(year 2016) or 24 h (year 2017). Our results suggest that bats share

with birds the capability of recovering from oxidative damage

accrued during migratory flight by performing short stopover peri-

ods (Jenni-Eiermann et al. 2014; Skrip et al. 2015). It is very likely,

although not yet supported by empirical data, that Nathusius’ bats

go into torpor on a daily basis during migration, similar to North

American migratory bats, which would enable bats to save energy

(McGuire et al. 2014) and, possibly, to recover from oxidative

stress. We do not know to what extent such reduction is due to ei-

ther activation of detoxification pathways or reduction in gener-

ation of metabolites. The lower glutathione peroxidase activity that

we observed in resting bats in 2017 compared with flying bats sug-

gests that this enzyme, which detoxifies cells from peroxides and or-

ganic hydroperoxides (Halliwell and Gutteridge 2015), might have

been downregulated. Similarly, prior work on migrating birds found

a decreased glutathione peroxidase activity in resting birds (Jenni-

Eiermann et al. 2014). This result suggests that migrating bats and

birds might not need to keep expression of certain enzymes up dur-

ing the whole duration of migration, rather they upregulate certain

enzymes on demand, such as during a strenuous flight. Conversely,

the nonenzymatic antioxidant component of plasma showed differ-

ent patterns between study years. In 2016, it was lower in flying

bats, while in 2017 it was lower in resting bats. Previous work on

birds did not find a link between resting at a stopover site

and plasma nonenzymatic antioxidant capacity (Skrip et al. 2015).

An important component of plasmatic nonenzymatic antioxidants

comes from diet or from dietary antioxidants accumulated in key

body tissues like fat (e.g., Metzger and Bairlein 2011). It might be

that the amount or type (e.g., insects richer or poorer in antioxidant

content) of prey while en route differed between the two study years

or mobilization of stored antioxidants into the bloodstream was

stronger in 2017 because of a higher demand. Also, varying me-

teorological factors bats were facing before passing our field site,

that is direction of wind and wind speed, could have created differ-

ences in the amount of physical stress to the individuals in both

years. The reasons and mechanisms underlying these results remain

unanswered.

Irrespective of the mechanism, a reduction of oxygen metabolites

might bring the organism some benefits. First, reactive oxygen

metabolites may be broken down into several very reactive free radi-

cals that can propagate further the oxidative damage to fundamental

biomolecules like lipids, DNA or proteins (Lajtha et al. 2009;

Halliwell and Gutteridge 2015). Second, some reactive oxygen

metabolites (lipid hydroperoxides) are precursors of end products of

lipid peroxidation, such as malondialdehyde, hydroxynonenal, and

isoprostanes, which can be toxic at high concentrations and may

cause damage to proteins (e.g., carbonylation) (Lajtha et al. 2009;

Halliwell and Gutteridge 2015). Previous work found that high

plasma reactive oxygen metabolites may be associated with shorter

telomeres (Geiger et al. 2012; Hau et al. 2015) or reduced survival

(Costantini and Dell’Omo 2015; Herborn et al. 2016). Thus, bats

might also need to optimize their migratory effort to avoid any po-

tential detrimental carry-over effects of accumulated oxidative

Table 4. Descriptive statistics of body mass (grams), forearm length (mm), and body condition index

Experimental group Study year Body mass Forearm length Body condition

Resting 2016 7.77 6 0.17 34.65 6 0.31 7.67 6 0.19

Flying 2016 7.97 6 0.12 34.41 6 0.18 7.94 6 0.11

Resting 2017 7.99 6 0.16 34.35 6 0.22 7.98 6 0.14

Flying 2017 7.93 6 0.19 33.70 6 0.28 8.11 6 0.18

Notes: Values of body mass and forearm length are reported as means and standard error. Values of body condition index are reported as least square means and

standard error generated by generalized linear models (i.e., body mass standardized by the covariate forearm length).

Figure 2. Estimates of effect size and 95% confidence interval calculated from all test statistics. Estimates are positive when values of a given marker are higher in

flying than resting bats.
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damage. In this context, it will be important to measure additional

markers of oxidative damage (e.g., to DNA) to assess whether

migrating animals recover from any kind of damage while resting.

Our study also found significant differences in markers between

the two study years. In 2016, bats had lower damage, nonenzymatic

antioxidants and activity of superoxide dismutase and higher activ-

ity of glutathione peroxidase than bats in 2017, respectively. The

lower amount of reactive oxygen metabolites might be explained

to some extent by the higher activity of glutathione peroxidase, an

enzyme that detoxifies cells from peroxides and organic hydroperox-

ides. The lower nonenzymatic antioxidants and activity of super-

oxide dismutase (which detoxifies cells from the histolesive

superoxide free radical) might indicate a lower need of keeping anti-

oxidant defenses high compared with 2017. Overall these results

might suggest that (1) animals caught in the two years represented

different cohorts of the population or (2) the migratory flight was

less demanding (in terms of time spent or energy needed to conduct

it), and thus the production of free radicals lower, in 2016. The first

explanation does not appear plausible because bats caught in the

two years were similar in terms of body traits (Table 4). Results of

body condition index also do not appear to support the first explan-

ation because body condition would be expected to decline with mi-

gratory effort because of a higher consumption of body energy

reserves, such as fat. However, bats can use a mixed strategy to fuel

flight, relying on both recently ingested nutrients and endogenous

fat stores (Welch et al. 2008; Voigt et al. 2010, 2012a).

Finally, our work did not detect any significant differences be-

tween males and females. In Nathusius’ bat, males migrate slightly

later than females at our study site (P�etersons 2004). Thus it might

be that the cohorts of males and females included in this study were

not representative of the overall intra-sexual variation whether oxi-

dative status or individual quality are linked to the migration phen-

ology. However, sexual differences in oxidative status markers are

usually low in mammals (Costantini 2018). Sexual differences in

oxidative status might emerge stronger during the spring migration

because females engage into migration while being pregnant. Thus

females would be exposed to stringent trade-offs in resource alloca-

tion during that time.

In conclusion, we found the first evidence that increased oxida-

tive stress might be a consequence of migratory flight in a bat spe-

cies. We also observed a role of resting as a way for recovering from

oxidative stress. These results also indicate that any potential stress

due to restraint in a cage was negligible given the lower values of

oxidative damage in resting than flying bats. Future work will be

needed to clarify whether migratory flight imposes an oxidative

challenge comparable or different to that of other important activ-

ities like foraging flight or reproduction. It will also be important to

assess whether, as previously suggested for birds (Skrip et al. 2015;

Eikenaar et al. 2017), bats may employ the physiological strategy of

building prophylactic antioxidant capacity or upregulating key anti-

oxidant or repair enzymes before starting a migratory flight. Given

the capacity of bats of recovering from oxidative stress while resting

(i.e., a one-day stopover), one important avenue for research will be

understanding whether bats adjust torpor duration at stopover sites

and/or length of stopover to the oxidative damage accrued during

the migratory flight. Finally, Nathusius’ bats suffer significant mor-

tality during migration because of the collision with wind turbines

(Voigt et al. 2012b, 2016). Migratory stress might be a concurring

factor in determining increased probability of mortality or reduced

reproductive fitness, thus further jeopardizing the conservation sta-

tus of this bat species.
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