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In these lecture notes, partly based on a course taught at the Karpacz Winter School in March
2014, we discuss the close connections between non-adiabatic response of a system with respect to
macroscopic parameters and the geometry of quantum and classical states. We center our discus-
sion around adiabatic gauge potentials, which are the generators of unitary basis transformations in
quantum systems and generators of special canonical transformations in classical systems. In quan-
tum systems, expectation values of these potentials in the eigenstates are the Berry connections
and the covariance matrix of these gauge potentials is the geometric tensor, whose antisymmetric
part defines the Berry curvature and whose symmetric part is the Fubini-Study metric tensor. In
classical systems one simply replaces the eigenstate expectation value by an average over the micro-
canonical shell. We express the non-adiabatic response of the physical observables of the system
through these gauge potentials. We also demonstrate the close connection of the geometric tensor
to the notions of Lorentz force and renormalized mass. We show how one can use this formalism to
derive equations of motion for slow macroscopic parameters coupled to fast microscopic degrees of
freedom to reproduce and even go beyond macroscopic Hamiltonian dynamics. Finally, we illustrate
these ideas with a number of simple examples and highlight a few more complicated ones drawn
from recent literature.
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Geometry plays an important role in many aspects of modern physics. In these lecture notes, we will highlight one

situation where geometry plays a crucial role, namely the dynamics of closed systems. We will do so by introducing
the concept of gauge potentials, which are infinitesimal generators of unitary transformations. Specifically, gauge
potentials are defined as Aλ = i~∂λ, where the derivative is understood as acting on a smooth manifold of basis states
parameterized by the (potentially multi-component) parameter λ. Among gauge potentials, a very important role in
these notes will be played by adiabatic gauge potentials where the family of basis states are chosen as the eigenstates
of some Hamiltonian H(λ)[157]. These adiabatic gauge potentials are the fundamental objects of both adiabatic
perturbation theory and geometry of quantum or classical states. We will see, for instance, that in a moving frame
the Hamiltonian picks up an effective Galilean term H → H− λ̇Aλ, which yields important non-adiabatic corrections
to the dynamics. These corrections can be measured through standard linear response techniques or by their back
action on λ if it is treated as a dynamical degree of freedom. In classical systems, gauge potentials correspond
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to generators of infinitesimal canonical transformations parameterized by λ. The adiabatic gauge potentials are
in turn generators of special canonical transformations q(λ) and p(λ) which leave the Hamiltonian invariant. In
particular, the adiabatic gauge potentials ensure that the Hamiltonian corresponding to coupling λ′ = λ+ δλ in new
coordinates q′, p′ “commutes,” i.e., has vanishing Poisson bracket, with the Hamiltonian corresponding to coupling λ
in the original coordinates q, p. Such special canonical transformations in classical systems are analogous to special
unitary transformations in quantum systems which diagonalize the instantaneous Hamiltonian. The vanishing Poisson
brackets in classical systems then correspond to vanishing commutator between two diagonal matrices representing
the instantaneous diagonalized Hamiltonian in quantum systems.

We begin the lecture notes in Sec. I by introducing the major concepts in more detail using two simple examples:
the quantum spin-1/2 and the simple harmonic oscillator (both quantum and classical). Next, in Sec. II, we introduce
the concept of adiabatic gauge potentials for quantum and classical systems in full generality. For simple integrable or
highly symmetric systems the adiabatic gauge potentials can be found exactly. For more complex systems, we show
in Sec. III that adiabatic gauge potentials can be found approximately by either perturbative or variational methods.
We further discuss applications of exact and approximate adiabatic gauge potentials to designing counter-diabatic
(transitionless) driving protocols, allowing fast state preparation. In Sec. IV we introduce the geometric tensor,
an object which describes the geometric properties of quantum ground state manifolds via the Fubini-Study metric
and Berry curvature tensors. We show how these ideas can be generalized to quantum systems that are far from
their ground states as well as to classical systems. In Sec. V, we connect adiabatic gauge potentials to the geometric
tensor by showing how the geometric tensor can be measured via dynamical response. Finally, in Sec. VI we show
one important consequence of these ideas, namely the emergence of effective Newtonian dynamics for the classical
parameter λ due to excitation of the quantum or classical system to which it is coupled. To help understand this
general concept, in Sec. VII we show explicit examples of this emergent dynamics, ranging from relatively simple
(particle in a box) to more complicated (dynamics of the order parameter in a quenched superconductor).

I. INVITATION: QUANTUM SPINS AND CLASSICAL OSCILLATORS OUT OF EQUILIBRIUM

We begin by considering two simple examples where geometry enters into dynamics. The goal of this section
is to introduce the main ingredients of the formalism such as gauge potentials, geometric tensor, counter-diabatic
driving, generalized Coriolis force and mass renormalization. In the following sections we will rigorously introduce
these concepts, derive general statements and illustrate them with additional examples. As a first example, consider
one of the staple problems in quantum mechanics, a single spin-1/2 particle in a time-dependent magnetic field with
Hamiltonian H = −µB · s. We will restrict ourselves to considering the case where the field strength is fixed but
the field’s direction can vary with time. If we parameterize the magnetic field direction by the spherical angles θ
and φ, express the magnitude as h = ~µB/2, and represent the spin in terms of Pauli matrices σ = 2s/~, then the
Hamiltonian for this problem takes the form

H = −h [cos(θ)σz + sin(θ) cos(φ)σx + sin(θ) sin(φ)σy] = −h
(

cos θ eiφ sin θ
e−iφ sin θ − cos θ

)
(1)

with ground (|g〉) and excited (|e〉) eigenstates

|g〉 =

(
cos(θ/2)

eiφ sin(θ/2)

)
, |e〉 =

(
sin(θ/2)

−eiφ cos(θ/2)

)
. (2)

The simple dynamical problem that we want to consider is the case where the field rotates around the z-axis in the
lab frame. This problem can be solved exactly by going to the moving (rotating) frame, i.e., by diagonalizing the

Hamiltonian by a unitary rotation U to give a diagonal matrix H̃ = U†HU , where

U(θ, φ) =

(
cos(θ/2) sin(θ/2)

eiφ sin(θ/2) −eiφ cos(θ/2)

)
(3)

and H̃ = −hσ̃z Going to a rotating frame corresponds to a time-dependent unitary transformation on the wave
function

|ψ̃〉 = U†(θ, φ)|ψ〉 . (4)



4

This unitary transformation can be equivalently thought of as expanding the wave function in the rotated basis. For
rotations around the z-axis, only the angle φ changes and |ψ̃〉 satisfies a new Schrödinger equation given by

i~
d|ψ̃〉
dt

= i~
d(U†|ψ〉)

dt
= i~

dU†

dt
|ψ〉+ i~U†

d|ψ〉
dt

= i~
dφ

dt

∂U†

∂φ
|ψ〉+ U†H|ψ〉

=
dφ

dt

(
i~
∂U†

∂φ
U

)
|ψm〉+ U†HU |ψ̃〉 =

(
H̃ − φ̇Ãφ

)

︸ ︷︷ ︸
H̃m

|ψ̃〉 , (5)

where

Ãφ = −i~
(
∂φU

†)U = −i~
[
∂φ
(
U†U

)
− U†∂φU

]
= i~U†∂φU (6)

is a very important operator that we will refer to as the adiabatic gauge potential with respect to the parameter φ
(here in the moving frame)[158]. In writing these equations, we have introduced the notation, which we are going
to use later, that the tilde superscript refers to objects in the moving frame basis. In particular, for any operator O
we define Õ = U†OU . By examining Eq. (5), it is clear that the combination H̃m = H̃ − φ̇Ãφ plays the role of the
Hamiltonian in the moving frame basis, and we refer to this operator as the moving frame Hamiltonian. Note that we
can remove tilde signs here by doing the inverse unitary transformation to get Hm = H− φ̇Aφ, which is equivalent to
projecting operators back to the original basis. Let’s try to understand a bit more about what this gauge potential
does in our system by calculating its matrix elements. For instance,

〈e|Aφ|g〉 = 〈↓ |Ãφ| ↑〉 = 〈↓ |i~U†(∂φU)| ↑〉 (7)

= i~〈↓ |U†
[
∂φ(U | ↑〉)− U��

��*0
∂φ| ↑〉

]
(8)

= i~〈e|∂φg〉 =
~ sin θ

2
, (9)

where we have used from the definition of U that U(θ, φ)| ↑〉 = |g(θ, φ)〉 and similarly for the excited state. From the

remaining matrix elements, it becomes clear that we can think of A as the derivative operator Aφ = i~∂̂φ. As we will
see later, this is a very general property defining the gauge potentials. It is straightforward to check by comparing
the matrix elements that Aφ = ~σz/2, which is nothing but the angular momentum operator Sz. Indeed in this case
adiabatic transformations of the Hamiltonian are simply rotations around z-axis generated by the angular momentum.
Likewise it is easy to check that Aθ = ~σy/2. Similarly, if instead of rotations we were to consider a particle in some
potential which depends on x0 − x and translate x0, then we will see later that the (adiabatic) gauge potential with
respect to x0 is Ax0

= i~∂x0
= −i~∂x = p, which is nothing but the momentum operator.

To see how the gauge potential connects to geometry, we note that its expectation value in the moving frame ground
state | ↑〉 is the ground state Berry connection multiplied by Planck’s constant, Aφ ≡ i~〈g|∂φg〉 = −~ sin2(θ/2) [1][159].
The Berry connection is related to both the ground state Berry (a.k.a. geometric) phase ϕB and the Berry curvature
Fµν ≡ (∂µAν − ∂νAµ)/~ via

ϕB =
1

~

∮
Aλ · dλ =

∫
Fµνdλµ ∧ dλν , (10)

where for the remainder of this review we use the convention that repeated indices are summed over, unless stated
otherwise. More generally, one can think of the gauge potentials as connections defining a notion of parallel transport
of wave functions in parameter space via the covariant derivative Dµ = ∂µ + iAµ/~ such that Dµ|ψn〉 = 0 for all
energy eigenstates |ψn〉. This is the fundamental geometric definition that will later allow us to define curvature and
distances via the covariance matrix of this connection.

The form of the moving frame Hamiltonian [Eq. (5)] immediately suggests another interesting application of the
gauge potentials, namely counter-diabatic or transitionless driving [2–4]. Indeed the term responsible for transitions

between energy levels in the instantaneous frame is −φ̇Ãφ because the Hamiltonian H̃ is diagonal by construction.

Therefore if we add the term φ̇Aφ to the lab frame Hamiltonian then the moving frame Hamiltonian will be just H̃
and there will be no transitions between energy levels. This observation defines the counter-diabatic Hamiltonian

HCD = H(φ) +
~φ̇
2
σz, (11)
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under which the system will remain in its instantaneous ground state for arbitrary smooth protocol φ(t). In this
example, the second term has a simple interpretation. It is well known that in a rotating frame the Hamiltonian
acquires an extra contribution equal to the product of the angular velocity and the angular momentum. The second
term in Eq. (11) simply counters this contribution, such that the rotating frame Hamiltonian is H̃ = −hσ̃z

Next, let us use this simple example to discuss the connection of adiabatic gauge potentials to the dynamical
response of the system to slow perturbations. A natural way to analyze this response is to go to the moving frame
and then apply the framework of adiabatic perturbation theory [5, 6]. The latter effectively treats the Galilean term

H̃1 = −φ̇Ãφ in the moving frame Hamiltonian as a small perturbation around H̃0 = −hσ̃z. If we imagine gradually

ramping up the velocity starting from φ̇ = 0 to some constant value then, up to order φ̇2, the system will follow the
ground state of the moving Hamiltonian Hm. For constant velocity φ̇ this Hamiltonian is time independent and hence
we can use the static perturbation theory to find the non-adiabatic corrections to transition probabilities and various
observables in the original lab frame. For example, the transition amplitude to be in the instantaneous excited state
|e〉 at first order in adiabatic perturbation theory is

ae =
〈e|H1|g〉
E0
g − E0

e

= φ̇
〈↓ |Ãφ| ↑〉

2h
=

~ sin θ

4h
φ̇ . (12)

If we think of the actual time-dependent wave function |ψ(t)〉 as the ground state of this weakly-perturbed Hamiltonian
in the moving frame, then at lowest order in perturbation theory,

|ψ(t)〉 = ag|g〉+ ae|e〉, (13)

where as always the normalization condition gives |ag| ≈ 1 − |ae|2/2 and the phase of ag is given by the sum of the
dynamical and geometric phases.

Let us use this perturbative result to calculate the expectation value of the operator Mθ ≡ −∂θH. In thermody-
namics the equilibrium expectation value ofMθ is known as a generalized force with respect to θ. For example, if the
Hamiltonian had a conventional form H = p2

θ/2m+ V (θ), then Mθ = −∂θV and its expectation value is the average
angular force (a.k.a. torque) acting on a particle. By analogy we extend the definition of the generalized force to
non-equilibrium states and define Mθ(t) = 〈ψ(t)|Mθ|ψ(t)〉 as a non-equilibrium generalized force. At leading order

in the ramp rate φ̇,

Mθ(t) ≡ 〈ψ(t)|Mθ|ψ(t)〉 = 〈g|Mθ|g〉+ ae〈g|Mθ|e〉+ a∗e〈e|Mθ|g〉+O(φ̇2) . (14)

It is straightforward to check that the matrix elements of Mθ are 〈g|Mθ|g〉 = 〈e|Mθ|e〉 = 0 and 〈g|Mθ|e〉 =
〈e|Mθ|g〉 = −h, so

Mθ(t) ≈ 2~

(
φ̇ sin θ

4h

)
(−h) = −φ̇~ sin θ

2
= ~Fθφφ̇ , (15)

where in the last equation we have used the Berry curvature ~Fθφ = ∂θAφ − ∂φAθ = −~ sin θ/2 for the spin-1/2
ground state. We will see later that this identification of the Berry curvature times the ramp velocity as the leading
non-adiabatic correction to the generalized force is a universal result. In turn this means that the Berry curvature
underlies the Coriolis or Lorentz-type forces, which are well known from elementary physics.

In addition to the generalized force, we can look at other observables such as the energy. The leading correction to
the energy is of order φ̇2 and is given by

∆E = 〈ψ|H|ψ〉 − 〈g|H|g〉 = (|ag|2 − 1)Eg + |ae|2Ee = −|ae|2Eg + |ae|2Ee

≈ 2~h
(
φ̇

sin θ

4h

)2

= ~φ̇2 sin2 θ

8h
. (16)

An interesting consequence arises if we ask the question “where did this extra energy come from?” For instance,
consider a setup as illustrated in Fig. 2 in which the spin-1/2 is placed below a bar magnet that is rotating without
friction around an axis inline with the spin. If the magnet has moment of inertia I0 and the spin is in its ground state,
then as we start to rotate the magnet, the spin will attempt to follow its rotation. By conservation of energy, the
work W done on the magnet in order to accelerate it to angular velocity φ̇ will be equal to the total energy change
in the full magnet + spin system:

W =
1

2
I0φ̇

2 + ∆Espin(φ̇) =
1

2

(
I0 + ~2 sin2 θ

4h

)
φ̇2 . (17)
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FIG. 1: Ramping the angle φ leads to a deflection in 〈∂θH〉 which is proportional to the Berry curvature Fθφ.

FIG. 2: Possible experimental realization of the rotating magnetic field. The rotation of the bar magnet is dressed by exciting
the quantum spin and leads to mass renormalization (see text).

Clearly the non-adiabatic excitations of the spin appear as an extra moment of inertia for the magnet, κ = ~2 sin2 θ/4h,
making it appear to have net moment of inertia Ieff = I0 + κ. The additional positive contribution κ comes from the
dressing of the magnet by the spin. Not surprisingly, this mass renormalization is stronger if the gap in the system gets
smaller. So with this simple example, we have seen that doing perturbation theory in a slowly-moving frame yields
important corrections to the dynamics, such as an effective force due to the Berry curvature and a renormalization of
the moment of inertia of the macroscopic degree of freedom causing the parameter change.

The second example we will consider in this introduction is a simple harmonic oscillator with an offset in both
its position (x0) and its momentum (p0). This example is also relatively simple, but importantly has a well-defined
classical limit. This system is described by the Hamiltonian:

H =
(p̂− p0)2

2m
+

1

2
mω2(x̂− x0)2 . (18)

We use hat-notation for position and momentum operators to distinguish them from the parameters x0 and p0.
Translations in x0 are fairly easy to generate by, for example, moving a harmonic trap or spring. It’s not as obvious
how one gets a time-dependent p0. One possibility is to consider a pendulum with a charged particle at the end of it
in static electric and magnetic fields (see Fig. 3 and Ref. [7]). Then the angle of the electric field shifts the equilibrium
position of the pendulum (x0) and the magnetic field prefers a certain angular momentum (p0).

Exercise I.1. Show that the setup in Fig. 3 gives the Hamiltonian in Eq. (18) with x̂→ φ̂, p̂→ p̂φ, x0 = αQE/(mg+
QE) and p0 = L2QB/c in the small angle limit α, φ� 1.

As with the spin-1/2, we want to go to the moving frame in which we know how to diagonalize H. We can do

this with the unitary U(x0, p0) = e−ip̂x0/~eix̂p0/~, in terms of which H̃ = U†(x0, p0)H(x0, p0)U(x0, p0) = H(0, 0) =
~ω(n̂+ 1/2) ≡ H0. The moving Hamiltonian is thus

Hm = H0 − ẋ0Ãx0 − ṗ0Ãp0 , (19)
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FIG. 3: A charged pendulum in crossed electric and magnetic fields.

where

Ãx0 = i~U†∂x0U = i~e−ix̂p0/~eip̂x0/~∂x0

(
e−ip̂x0/~eix̂p0/~

)

= ie−ix̂p0/~(−ip̂)eix̂p0/~ = p̂+ p0

Ãp0
= i~U†∂p0

U = −x̂ , (20)

which stems from the fact that p̂ (−x̂) generates translations in position (momentum).
For simplicity, let’s consider this system for a fixed value of p0. Then Hm = H0 − ẋ0(p̂+ p0) and the amplitude to

transition from the ground state |0〉 to the n-th eigenstate (n 6= 0) of the harmonic oscillator is, at first order in ẋ0,

an ≈
〈n| (−ẋ0(p̂+ p0)) |0〉

E0 − En
. (21)

The only non-zero matrix elements of the p̂ operator connect the state |0〉 to the state |1〉, so an>1 = 0 and

a1 ≈ ẋ0
〈1|p̂|0〉
ω

=
ẋ0

ω

〈
1
∣∣ i(â

† − â)

`
√

2

∣∣0
〉

=
iẋ0

ω`
√

2
, (22)

where ` =
√
~/mω is the natural length scale of the oscillator, and â† and â are the standard creation and annihilation

operators. Using the non-adiabatic corrections to the wave function we can easily find the leading non-equilibrium
correction to the generalized force with respect to p0, which should be proportional to the Berry curvature as suggested
in Eq. (15):

∆F = 〈(−∂p0
H)〉 − 〈0|(−∂p0

H)|0〉 ≈ a∗1〈1|(−∂p0
H)|0〉+ a1〈0|(−∂p0

H)|1〉

= − 2iẋ0

ω`
√

2
〈1|p̂|0〉 = ẋ0

��
�
��*

1(
~

mω`2

)
= ~Fp0x0 ẋ0 (23)

For consistency one can compute Berry curvature directly from the Berry connection. Indeed , from Eq. (20) it is
clear that Ax0

= 〈0|Ax0
|0〉 = p0 and Ap0

= 0. Note the apparent asymmetry between the Berry connections is
simply a gauge choice.[160] Then ~Fp0x0

= ∂p0
Ax0
−∂x0

Ap0
= 1. If we consider an arbitrary closed path (x0(t), p0(t))

as depicted in Fig. 4, the fact that the Berry curvature is Fp0x0
= 1/~ means that we will get a Berry phase of

ϕB = ~−1
∫
C
Aλ · dλ =

∫
S
dx0dp0Fp0x0

= AreaS/~, i.e., the Berry phase is just area of the phase space trajectory
enclosed by (x0, p0) in units of ~. Similarly, the energy of excitations

∆E ≈ E1|a1|2 + E0(|a0|2 − 1) = (E1 − E0)|a1|2 =
ẋ2

0

2

(
1

ω`2

)
=
mẋ2

0

2
. (24)

If the center-of-mass motion of the harmonic oscillator was generated by a trap, we know that by a conservation of
energy argument analogous to that for the moment of inertia of the spin-1/2 particle, the trap will feel heavier by
an amount equal to the mass of the particle inside this trap. Here we see that this intuitive result comes from the
(virtual) excitations of the particle created by the Galilean term.
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FIG. 4: The Berry phase of the harmonic oscillator is proportional to the area in phase space enclosed by the path (x0(t), p0(t)).

Exercise I.2. Consider the harmonic oscillator Hamiltonian from the previous section but now initialized in an arbitrary
energy eigenstate |n〉. Show that as x0 is slowly ramped, the force −〈∂p0

H〉 and mass renormalization (κx0
) are the

same as those in the ground state: −〈∂p0
H〉 = ẋ0 =⇒ Fp0x0

= 1 and κx0
= m.

The harmonic oscillator can be also analyzed classically, where we just consider the same Hamiltonian with x and
p as canonical phase space variables instead of operators. We can apply much of the same machinery to go to a
moving frame, solve for corrections to the motion, etc. If the parameters x0 and p0 evolve along some generic path
(x0(t), p0(t)), then we can go to the moving frame by performing a canonical change of variables to p′ = p − p0 and
x′ = x− x0. We anticipate that as in the quantum case, the effective Hamiltonian in the moving frame will be

Hm = H0 −Ap0
ṗ0 −Ax0

ṗ0 = H0 + x′ṗ0 − p′ẋ0 , (25)

where H0 = p′2/2m + mω2x′2/2 and we used the classical limit for the gauge potentials introduced in Eq. (20). As
we explain in the next section, these gauge potentials in the classical language are simply generators of the canonical
transformations to the moving frame, i.e., from x, p to x′, p′. The equations of motion in the moving frame are thus

ẋ′ =
∂Hm
∂p′

=
p′

m
− ẋ0 (26)

ṗ′ = −∂Hm
∂x′

= −mω2x′ − ṗ0 (27)

Note that these equations can be directly obtained by first writing the lab-frame equations of motion and then shifting
the phase space variables x → x′, p → p′. Let us again first consider the setup where p0 remains constant and only
x0 slowly changes in time. Moreover we assume that we start in a stationary states x(0) = x0 and p(0) = p0. As we
know from analytical mechanics, at leading order the adiabatic theorem tells us that the stationary orbit of a classical
system with slowly changing parameters maps to another stationary orbit with same adiabatic invariants [8][161].
Since for the chosen initial condition the adiabatic invariant is zero, the adiabatic theorem simply states that ẋ′ ≈ 0
and ṗ′ ≈ 0. Then Eq. (26) implies that the particle moves at the same velocity as the potential, i.e., p′ = mẋ0, which
is not surprising. If instead x0 = 0 and we only ramp p0, then Eq. (27) yields the slightly less obvious result that
the particle is deflected to x′ = −ṗ0/mω

2. For the realization of the harmonic oscillator depicted in Fig. 3, this just
reflects the fact that a time-varying magnetic field generates an electric field by the Faraday effect which pushes the
charged particle to one side. In our language this Faraday force is nothing but the effective Coriolis force due to the
Berry curvature by analogy with the quantum case. For example, for a ramp of p0,

〈−∂x0
H〉 = mω2x′ṗ0 = −ṗ0 = ~Fx0p0

ṗ0 , (28)

where in the classical case angular brackets imply averaging over the adiabatically connected stationary distribution.
Similarly, the additional energy for a ramp of x0 is

∆E = H(x = x0, p = mẋ0)−H(x = x0, p = 0) =
1

2
mẋ2

0 , (29)

so as expected the mass of the trap generating the center-of-mass motion of the harmonic oscillator is dressed by
an amount κx0

= m. The harmonic oscillator can also be used to illustrate the ideas of counter-diabatic driving.
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However, we postpone the corresponding discussion until Sec. II E because this setup naturally brings additional
interesting subtleties related to utilizing the gauge freedom.

The examples shown in this section illustrate how simple dynamical effects can be obtained using gauge potentials
and adiabatic perturbation theory. We have seen that by going into a moving frame, one can derive both classically
and quantum mechanically the leading corrections to generalized forces and the energy, from which the Coriolis force
related to the Berry curvature and the mass renormalization emerge. Using the spin example, we also illustrated the
ideas of counter-diabatic driving allowing one to design fast protocols in which transitions out of the ground state are
suppressed. Both of these systems are quite simple, and these results could have been obtained via a number of other
methods. The power of this formalism comes from its generality. In what follows, we revisit the ideas in this section
in their full generality, turning back to these two simple examples as useful illustrations throughout.

II. GAUGE POTENTIALS IN CLASSICAL AND QUANTUM HAMILTONIAN SYSTEMS

Key concept: Gauge potentials are generators of translations in parameter space. Adiabatic gauge potentials are
a special subset of these which diagonalize the instantaneous Hamiltonian, attempting to leave its eigenbasis invariant
as the parameter is changed. These adiabatic gauge potentials generate non-adiabatic corrections to the Hamiltonian
in the moving frame.

A. Classical Hamiltonian systems

Classical Hamiltonian systems are defined by specifying the Hamiltonian H in terms of a set of canonical variables
pj , qj satisfying the canonical relations

{qi, pj} = δij , (30)

where {. . . } denotes the Poisson bracket:

{A(p,q), B(p,q)} =
∑

j

(
∂A

∂qj

∂B

∂pj
− ∂B

∂qj

∂A

∂pj

)
. (31)

This choice of canonical variables is arbitrary, as long as they satisfy Eq. (30). There are therefore many transforma-
tions that preserve this Poisson bracket, such as the orthogonal transformation

q = R(λ)q0, p = R(λ)p0 , (32)

where R is an orthogonal matrix (RT = R−1). A general class of transformations which preserve the Poisson brackets
are known as canonical transformations [8].

In this work, we will mostly be interested in families of canonical transforms that depend continuously on some
parameter(s) λ. It is easy to check that continuous canonical transformations can be generated by functions Aλ which
we refer to as gauge potentials:

qj(λ+ δλ) = qj(λ)− ∂Aλ(λ,p,q)

∂pj
δλ =⇒ ∂qj

∂λ
= −∂Aλ

∂pj
= {Aλ, qj}

pj(λ+ δλ) = pj(λ) +
∂Aλ(λ,p,q)

∂qj
δλ =⇒ ∂pj

∂λ
=
∂Aλ
∂qj

= {Aλ, pj}, (33)

where λ parameterizes the canonical transformation[162] and the gauge potential is an arbitrary function of q, p, and
λ. We can then see that, up to terms of order δλ2, the transformation above preserves the Poisson brackets:

{qi(λ+ δλ), pj(λ+ δλ)} = δij − δλ
(
∂2Aλ
∂pj∂qi

− ∂2Aλ
∂pj∂qi

)
+O(δλ2) = δij +O(δλ2). (34)

Consider a simple example of such a continuous canonical transformation, qi(X) = qi(0)−Xi, in which the position
coordinate is shifted by X (we use the X notation instead of λ notation for the parameters here to highlight their
meaning as the coordinate shift). Let’s determine the components of the gauge potential AXi(q,p,X) using Eq. (33).
First, note that pi is independent of X, meaning that ∂AXi/∂qj = 0. Meanwhile, the X-dependence of q gives
∂qi/∂Xj = −δij = −∂AXj/∂pi. These equations are solved by AXj = pj + Cj , where Cj are arbitrary constants of
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integration. The presence of these constants in this solution is the first example we will see of a gauge choice that
gives these gauge potentials their name. This is directly analogous to the gauge choice in electromagnetism; indeed
one can show that the gauge potentials for canonical shifts of the momentum appear exactly as the electromagnetic
vector potential [see Exercise (III.1)]. Gauge potentials generalize these ideas from electromagnetism to arbitrary
parameters.

For fixed canonical variables, Hamiltonian dynamics gives a particular canonical transformation parameterized by
time

q̇j = −{H, qj} =
∂H
∂pj

, ṗj = −{H, pj} = −∂H
∂qj

(35)

Clearly these Hamiltonian equations are equivalent to Eq. (33) with the convention At = −H. In the same way that
Hamiltonians generate motion in time, we see that the gauge potentials Aλ are generators of motion in the parameter
space. For instance, we saw that if λi = Xi corresponds to shifts in position, it is generated by AXi = pi.

Exercise II.1. Show that the generator of rotations around z-axis,

qx(θ) = cos(θ)qx0 − sin(θ)qy0, qy(θ) = cos(θ)qy0 + sin(θ)qx0,

px(θ) = cos(θ)px0 − sin(θ)py0, py(θ) = cos(θ)py0 + sin(θ)px0,

is the angular momentum operator Aθ = pxqy − pyqx.

Exercise II.2. Another particularly important transformation is dilation, which plays a central role in renormalization
group physics [9–11] and the closely related gauge-gravity duality [12, 13]. This transformation involves dilating real
space by a factor λ, q(λ) = λq0, and shrinking momentum space by the same factor, p(λ) = p0/λ. Show that dilations
are canonical transformations, and find the gauge potential Aλ that generates them.[163]

Canonical transformations are conventionally expressed through generating functions [8], which are usually defined
as functions of one old variable (q0 or p0) and one new variable (q(λ) or p(λ)). For example, one can use the generating
function G(q0, q(λ), λ) such that

p0 =
∂G

∂q0
, p(λ) = − ∂G

∂q(λ)
.

Differentiating the second equation with respect to λ at constant q(λ) we find

∂p(λ)

∂λ
=

∂Aλ
∂q(λ)

= − ∂2G

∂q(λ)∂λ
. (36)

Clearly this equation can be satisfied if we choose

Aλ = −∂G
∂λ

∣∣∣∣
q0,q(λ)

. (37)

Similarly one can check that the gauge potential can be expressed through derivatives of other generating functions
expressed through q0, p(λ), q(λ), p0 and p0, p(λ). For instance, defining

G1(q0, p(λ), λ) = G(q0, q(λ), λ) + q(λ)p(λ)

such that q(λ) = ∂G1/∂p(λ) we can check that

Aλ = −∂G1

∂λ

∣∣∣∣
q0,p(λ)

. (38)

Let us illustrate these relations using an example of orthogonal transformations [Eq. (32)]. Differentiating these
equations with respect to λ we find

∂q

∂λ
=
dR

dλ
q0 =

dR

dλ
RTRq0 =

dR

dλ
RTq = −∂Aλ

∂p
,

∂p

∂λ
=
dR

dλ
p0 =

dR

dλ
RTRp0 =

dR

dλ
RTp =

∂Aλ
∂q

(39)
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It is straightforward to check that the gauge potential for these orthogonal transformations can be chosen to be

Aλ = −pT dR

dλ
RT q = −pj

dRjk
dλ

RTkiqi (40)

One can also check that the generating function for this orthogonal transformation is

G1(q0,p(λ), λ) = pTRq0 (41)

such that

∂G1

∂q0

= pTR = p0,
∂G1

∂p
= Rq0 = q

Then according to Eq. (38)

Aλ = −∂G1

∂λ
= −pT

dR

dλ
q0 = −pT

dR

dλ
RTq,

which is identical to Eq. (40).

Exercise II.3. Using Eq. (40), find the gauge potential Aλ corresponding to the orthogonal transformation [Eq. (32)]
given by the two-dimensional rotation around z-axis:

R =

(
cos θ − sin θ
sin θ cos θ

)

with parameter λ = θ such that
(
qx(θ)
qy(θ)

)
= R(θ)

(
qx0

qy0

)

and similarly for px and py. Show that you recover the result of Exercise (II.1)

Exercise II.4. Generalize the previous exercise to three dimensional rotations. Namely use that in a three dimensional
space they can be decomposed into a product of three elementary rotations parameterized by the Euler angles
α, β, γ [8]:

R = Rx(α)Ry(β)Rz(γ), (42)

where Rx, Ry, Rz are the rotation matrices

Rx(α) =




1 0 0
0 cosα − sinα
0 sinα cosα


 , Ry(β) =




cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ


 , Rz(γ) =




cos γ − sin γ 0
sin γ cos γ 0

0 0 1


 .

Choosing the Euler angles as parameters according to Eq. (40) find the components of the gauge potentialsAα, Aβ , Aγ
as the functions of the Euler angles. Show that the gauge potentials corresponding to infinitesimal rotations around x,
y and z axes, i.e., Aα(β = 0, γ = 0), Aβ(α = 0, γ = 0) and Aγ(α = 0, β = 0) are precisely the x, y and z components
of the angular momentum.

As we know well from electromagnetism, when we are dealing with waves it is often convenient to deal with complex
canonical variables (wave amplitudes and conjugate momenta). Recalling that normal modes of waves are identical to
harmonic oscillators, let us show how one can introduce this complex phase space variables for a single normal mode,
parameterized by the parameter k (which in a translationally invariant system would be the momentum). Once these
variables are introduced we can use them in arbitrary systems, linear or otherwise. The Hamiltonian for each mode is

Hk =
p2
k

2m
+
mω2

k

2
q2
k. (43)

Let us define new linear combinations [14]

pk = i

√
mωk

2
(a∗k − ak), qk =

√
1

2mωk
(ak + a∗k) (44)
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or equivalently

a∗k =
1√
2

(
qk
√
mωk −

i√
mωk

pk

)
, ak =

1√
2

(
qk
√
mωk +

i√
mωk

pk

)
. (45)

We will refer to a∗k and ak as coherent state phase space variables, since the eigenstates of the corresponding quantum
creation and annihilation operators are precisely coherent states. Next we compute the Poisson brackets of the complex
wave amplitudes

{ak, ak} = {a∗k, a∗k} = 0, {ak, a∗k} = −i. (46)

To avoid dealing with the imaginary Poisson brackets it is convenient to introduce new coherent state Poisson
brackets

{A,B}c =
∑

k

(
∂A

∂ak

∂B

∂a∗k
− ∂B

∂ak

∂A

∂a∗k

)
, (47)

where as usual we treat a and a∗ as independent variables. From this definition it is immediately clear that

{ak, a∗q}c = δkq. (48)

Comparing this relation with Eq. (46) we see that standard and coherent state Poisson brackets differ by the factor
of i:

{. . . } = −i{. . . }c. (49)

Infinitesimal canonical transformations preserving the coherent state Poisson brackets can be defined by the gauge
potentials:

i
∂ak
∂λ

= −∂Aλ
∂a∗k

, i
∂a∗k
∂λ

=
∂Aλ
∂ak

. (50)

We can write the Hamiltonian equations of motion for the new coherent variables. For any function of time and
phase space variables A(q, p, t) (or equivalently A(a, a∗, t)) we have

dA

dt
=
∂A

∂t
+
∂A

∂q
q̇ +

∂A

∂p
ṗ =

∂A

∂t
+ {A,H} =

∂A

∂t
− i{A,H}c. (51)

Let us apply now this equation to coherent state variables ak and a∗k. Using that they do not explicitly depend on
time (such dependence would amount to going to a moving frame, which we will discuss later) we find

i
dak
dt

= {ak,H}c =
∂H
∂a∗k

, i
da∗k
dt

= {a∗k,H}c = − ∂H
∂ak

(52)

These are also known as the Gross-Pitaevskii equations. Note that deriving these equations we did not assume any
specific form of the Hamiltonian, so they equally apply to linear and non-linear Hamiltonians.

Exercise II.5. Check that any unitary transformation ãk = Uk,k′a
′
k, where U is a unitary matrix, preserves the

coherent state Poisson bracket, i.e., {ãk, ã∗q}c = δk,q.

Exercise II.6. Verify that the Bogoliubov transformation [15, 16]

γk = cosh(θk)ak + sinh(θk)a∗−k, γ
∗
k = cosh(θk)a∗k + sinh(θk)a−k, (53)

with θk = θ−k also preserves the coherent state Poisson bracket, i.e.,

{γk, γ−k}c = {γk, γ∗−k}c = 0, {γk, γ∗k}c = {γ−k, γ∗−k}c = 1. (54)

Assume that θk are known functions of some parameter λ, e.g., the interaction strength. Find the gauge potential
Aλ =

∑
kAλ, k, which generates such transformations.
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B. Quantum Hamiltonian systems

The analogues of canonical transformations in classical mechanics are unitary transformations in quantum mechan-
ics. In classical systems these transformations reflect the freedom of choosing canonical variables while in quantum
systems they reflect the freedom of choosing basis states.

The wave function[164] representing some state can be always expanded in some basis:

|ψ〉 =
∑

n

ψn|n〉0, (55)

where |n〉0 is some fixed, parameter independent basis. One can always make a unitary transformation to some other
basis |m(λ)〉 =

∑
n Unm(λ)|n〉0 or equivalently |n〉0 =

∑
m Unm(λ)∗|m(λ)〉. Then |ψ〉 can be rewritten as

|ψ〉 =
∑

mn

ψnU
∗
nm|m(λ)〉 =

∑

m

ψ̃m(λ)|m(λ)〉, (56)

where ψ̃m(λ) = 〈m(λ)|ψ〉 =
∑
n U
∗
nmψn, which is equivalent to the vector notation

ψ̃ = U†(λ)ψ.

We can introduce gauge potentials by analogy with the classical systems as generators of continuous unitary
transformations, namely

i~∂λ|ψ̃(λ)〉 = i~∂λ
(
U†|ψ〉

)
= i~

(
∂λU

†) (U |ψ̃〉
)

= −Ãλ|ψ̃〉 , (57)

where we used the fact that |ψ〉 is independent of λ. We use the tilde notation in the gauge potentials to highlight

that they act on the rotated wave function |ψ̃〉.

Ãλ = −i~∂λU†U = i~U†∂λU = (Ãλ)†. (58)

The second equality follows from the fact that

∂λ(UU†) = ∂λ1 = 0 =⇒ U∂λU
† = −∂λU U† . (59)

As in the classical case, the gauge potential generates motion in parameter space. From Eq. (58) it follows that Ãλ
is a Hermitian operator, which can be formally defined through its matrix elements:

0〈n|Ãλ|m〉0 = i~ 0〈n|U†∂λU |m〉0 = i~〈n(λ)|∂λ|m(λ)〉 , (60)

so we can think of the gauge potential in the lab frame, Aλ = UÃλU†, as just i~ times the derivative operator ∂λ:

Aλ = i~∂λ, (61)

which immediately follows from the fact that 〈n(λ)|Aλ|m(λ〉 = 0〈n|Ãλ|m〉0.

Exercise II.7. Verify that the gauge potential corresponding to the translations: ψ̃(x) = ψ(λ + x) is the momentum
operator. Similarly verify that the gauge potential for rotations is the angular momentum operator.

Exercise II.8. It is often useful to think in terms of the action of Ãλ on operators instead of wave functions. Consider
the case where our basis-changing unitary takes a λ-dependent operator Õ(λ) to a λ-independent operator O =

UÕU† = const(λ).

• Show that Ãλ = i~U†∂λU differentiates the operator Õ: [Ãλ, Õ(λ)] = −i~∂λÕ.

• In the previous problem, shifting the position is equivalent to defining the new operator X ′ = λ+X. Show that
Ãλ = P satisfies the correct commutation relations, with Õ = X ′ and O = X.

• What is the momentum operator P ′ in this new basis? Show that it also satisfies the appropriate commutation
relations with Ãλ = P .
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Exercise II.9. Consider the quantum version of the Bogoliubov transformations discussed in the previous section
[Eq. (53)]. Show that the quantum and classical gauge potentials coincide if we identify complex amplitudes ak and
a∗k with the annihilation and creation operators respectively. Note that you can do this one of two ways:

• The easy way – Consider a unitary operator U that rotates the θ-dependent number operator γ†kγk to the

original basis a†kak. Show that Ãθ satisfies the appropriate commutation relation with γk, using the results of
the previous exercise.

• The hard way – Verify by direct computation on the θ-dependent number eigenstates |nk, n−k〉 ∝(
γ†k

)nk (
γ†−k

)n−k
|Ωγ〉, where |Ωγ〉 is the γ vacuum, that the matrix elements satisfy 〈mk,m−k|Ãθ|nk, n−k〉 =

i~〈mk,m−k|∂θ|nk, n−k〉.

C. Adiabatic gauge potentials

Up to now gauge potentials we introduced were generators of arbitrary continuous canonical (classical) or unitary
(quantum) transformations. In these notes we will be particularly interested in a special class of such gauge potentials,
which we call adiabatic. It is easier to introduce them using the language of quantum mechanics first and then extend
their definition to classical systems.

Imagine that we are dealing with a family of Hamiltonians H(λ) parameterized by some continuous parameter λ.
We will assume that the Hamiltonians are non-singular and differentiable. At each value of λ, these Hamiltonian are
diagonalized by a set of eigenstates |m(λ)〉, which we call the adiabatic basis. When the parameters λ are varied
adiabatically (infinitely slowly), these states are related by the adiabatic theorem. For the time being, we assume
no degeneracies ensuring that the basis states are unique up to a phase factor.[165] These basis states |m(λ)〉 are
related by a particular adiabatic unitary transformation and we call the associated gauge potentials adiabatic gauge
potentials. Such potentials satisfy several properties, which we are going to use later.

First let us note that the diagonal elements of the adiabatic gauge potentials in the basis of H(λ) are, by definition,
the Berry connections

A
(n)
λ = 〈n(λ)|Aλ|n(λ)〉 = i~〈n(λ)|∂λ|n(λ)〉.

Recall that, up to a sign, the gauge potential with respect to time translations is the Hamiltonian itself, and its
expectation value is negative the energy. Another important property of these gauge potentials can be found by
differentiating the identity

〈m|H(λ)|n〉 = 0 for n 6= m

with respect to λ:

0 = 〈∂λm|H|n〉+ 〈m|∂λH|n〉+ 〈m|H|∂λn〉 (62)

= En〈∂λm|n〉+ Em〈m|∂λn〉+ 〈m|∂λH|n〉 = (Em − En) 〈m|∂λn〉︸ ︷︷ ︸
−i/~〈m|Aλ|n〉

+〈m|∂λH|n〉

=⇒ 〈m|Aλ|n〉 = i~
〈m|∂λH|n〉
En − Em

, (63)

where it is important to note that all quantities – the eigenstates |n〉, the Hamiltonian H and the energies En –
depend on λ. This relation can be also written in the matrix form [17]

i~∂λH = [Aλ,H]− i~Mλ, (64)

where

Mλ = −
∑

n

∂En(λ)

∂λ
|n(λ)〉〈n(λ)| (65)

is an operator that is diagonal in the instantaneous energy eigenbasis, whose values are the generalized forces corre-
sponding to different eigenstates of the Hamiltonian.
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From Eq. (64) and the fact that [H,Mλ] = 0, we immediately see that the adiabatic gauge potentials satisfy the
following equation:

[H, i~∂λH− [Aλ,H]] = 0. (66)

This equation can be used to find the adiabatic gauge potentials directly without need of diagonalizing the Hamiltonian.
Note that as the spectrum of the Hamiltonian is invariant under gauge transformations, Mλ is also gauge invariant.
One may use this to reverse the previous arguments and show that Eq. (66) implies Eq. (64).

Because energy eigenstates are not well-defined in classical systems, we cannot directly extend Eq. (63) to define
the classical adiabatic gauge potential. However, we can instead use the matrix relation Eq. (64), recalling that in
the classical limit the commutator between two operators corresponds to the Poisson bracket between corresponding
functions: [. . . ]→ i~{. . . }. Then classical adiabatic gauge potentials must satisfy [17]

−∂λH = Mλ − {Aλ,H}, (67)

where Mλ is the classical generalized force, which is formally defined as the average of −∂λH over time. This can be
seen by recalling that time-averaging is the classical analogue of the quantum average over stationary eigenstates. In
the non-chaotic systems that we are focusing on, this time average is equivalent to the average over the stationary
orbit containing phase space points p,q. Note that because Mλ is an averaged object, it depends only on conserved
quantities like energy.

Eq. (66) can likewise be immediately extended to classical systems, serving as a practical tool for finding adiabatic
gauge potentials in classical systems

{H, ∂λH− {Aλ,H}} = 0. (68)

This equation has a useful implication that the Poisson bracket of the “new” Hamiltonian H′ ≡ H(λ+ δλ) written in
“new” coordinates q′ = q(λ+ δλ), p′ = p(λ+ δλ) with the “old” Hamiltonian H(λ) written in the “old” coordinates
q(λ), p(λ) vanishes:

∂H′
∂q′

∂H
∂p
− ∂H′
∂p′

∂H
∂q

= 0. (69)

This relation implies that if one finds the canonical transformation which keeps the Hamiltonian effectively invariant
as a function of λ, then the gauge potential generating this transformation is precisely the adiabatic gauge potential.

To prove Eq. (69), we start by noting that

H′ ≡ H(q, p, λ+ δλ) ≈ H(q, p, λ) + ∂λHδλ = H(q, p, λ)−Mλδλ+ {Aλ,H}δλ, (70)

where the last equality follows from Eq. (67). From the definition of the gauge potentials and the fact that the
transformation from q′, p′ to q, p is inverse of that from q, p to q′, p′, one finds

H(q, p, λ) ≈ H(q′, p′, λ)− {Aλ,H}δλ. (71)

Combining these two equations we see that

H′ ≈ H(q′, p′, λ)−Mλδλ . (72)

Therefore to linear order in δλ,

∂H′
∂q′

∂H
∂p
− ∂H′
∂p′

∂H
∂q

= {H −Mλδλ,H} = 0, (73)

where we used that Mλ is a function of only the energy and other conserved quantities, and thus {Mλ,H} = 0.
To illustrate this idea let us consider a simple example of the Hamiltonian

H =
p2

0

2m
+ V (q0 − λ) (74)

The canonical transformation q(λ) = q0−λ and p(λ) = p0 clearly keeps the Hamiltonian effectively independent of λ:

H =
p(λ)2

2m
+ V (q(λ))
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such that Eq. (69) is trivially satisfied. Thus in this case the corresponding gauge potential is the adiabatic gauge
potential. If we take a slightly more complicated example

H =
p2

0

2m
+
λ2

2
q2
0 (75)

and perform the canonical (dilation) transformation to new variables q(λ) = q0/
√
λ, p(λ) = p0

√
λ then the resulting

family of Hamiltonians reads

H = λ

(
p(λ)2

2m
+

1

2
q(λ)2

)
. (76)

These Hamiltonians are not identical at different values of λ, but they differ only by an overall scale factor. As a result
Eq. (69) is still satisfied. Therefore the gauge potential corresponding to this particular canonical transformation is the
adiabatic gauge potential. An additional example of an adiabatic gauge potential found in a similar way is discussed
in Sec. IV D.

Since the main purpose of these lectures is to connect the geometric notion of gauge potentials to dynamical
quantities that derive from the Hamiltonian, we will be almost exclusively concerned. Thus, for the remainder of the
review, we will often use the term “gauge potential” to mean adiabatic gauge potential unless otherwise specified. In
other words, unitary changes of the energy eigenbasis will play a special role throughout the remainder of these notes.

D. Hamiltonian dynamics in the moving frame: Galilean transformation

Gauge potentials are closely integrated into Hamiltonian dynamics. We will see that they naturally appear not
only in gauge theories like electromagnetism, but also in other problems where we attempt a time-dependent change
of basis. We will come to issues of gauge invariance later, but for now we simply note that the equations of motion
should be invariant under these gauge transformations. Indeed we can describe the same system using an arbitrary
set of canonical variables in the classical language or an arbitrary basis in the quantum language.

1. Classical systems

Let us first consider the classical equations of motion of some system described by a Hamiltonian that possibly
depends on time for the canonical variables qi(λ, t) and pi(λ, t), where as before the index i runs over both the particles
and spatial components of the coordinates and momenta. If λ = λ0 is time independent, then we are dealing with
normal Hamiltonian dynamics

[
dqi
dt

]

l

= {qi,H},
[
dpi
dt

]

l

= {pi,H}, (77)

where the subindex l implies that the derivative is taken in the lab frame at λ = λ0. Now let us consider the moving
frame, where λ also depends on time, i.e., not only do the variables qi and pi evolve in time but also their very
definition changes with time. Then using Eq. (33) we find

[
dqi
dt

]

m

=

[
dqi
dt

]

l

+ λ̇
∂qi
∂λ

= {qi,H} − λ̇{qi,Aλ} = {qi,Hm}
[
dpi
dt

]

m

=

[
dpi
dt

]

l

+ λ̇
∂pi
∂λ

= {pi,H} − λ̇{pi,Aλ} = {pi,Hm}, (78)

where the subindex m at time derivative highlights that it is taken in the moving frame and we defined the effective
moving frame Hamiltonian by generalizing the Galilean transformation

Hm = H− λ̇Aλ . (79)

We thus see that the equations of motion in the moving frame preserve their Hamiltonian nature. If λ stands for a
shift of the x-coordinate of the reference frame, qx(λ) = qx(λ0) − λ, then as we discussed earlier Aλ = px and the
expression above reduces to the standard Galilean transformation. If λ stands for the angle of the reference frame
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with respect to the lab frame, then Aλ is the angular momentum and we recover the Hamiltonian in the rotating
frame. If λ is the dilation parameter then

Hm = H− λ̇

λ

∑

j

qjpj , (80)

using the form of the gauge potential derived in Exercise (II.2).
It is instructive to re-derive the equations of motion in a moving frame using a slightly different, but equivalent

approach. Consider the equations of motion in terms of the lab frame coordinates q0 and p0:

dq0

dt
= {q0,H},

dp0

dt
= {p0,H} (81)

Now let us go to the moving frame, i.e., let us find the analogous equations of motion in terms of canonical variables
q(q0, p0, λ, t) and p(q0, p0, λ, t). By the chain rule,

dq

dt
=
∂q

∂t
+ λ̇

∂q

∂λ
+ q̇0

∂q

∂q0
+ ṗ0

∂q

∂p0
=
∂q

∂t
+ λ̇{Aλ, q} − {H, q} , (82)

and similarly for p (and for each component of multi-dimensional q and p). For the majority of the cases we consider,
the basis choice will not depend explicitly on time (only implicitly through λ), so that ∂tq = ∂tp = 0. Then we see
that the equations of motion in the moving frame reduce to Eq. (78).

Exercise II.10. Find the gauge potential Ap corresponding to the translations of the momentum p = p0 + ∂qg(q, λ),
q = q0, where g(q, λ) is an arbitrary function of the coordinate q and the parameter λ, which in turn can depend on
time. Show that the moving frame Hamiltonian with the Galilean term amounts to the standard gauge transformation
in electromagnetism, where the vector potential (which adds to the momentum) is transformed according to Λ →
Λ +∇qf and the scalar potential (which adds to the energy) transforms as V → V − ∂tf . Find the relation between
the gauge potential Ap and the function f . We use the notation Λ for the electromagnetic vector potential to avoid
confusion with the parameter-dependent gauge potential A.

It is interesting to note that the Galilean transformation can be understood from an extended variational principle,
where the equations of motion can be obtained by extremizing the action in the extended parameter space-time

S =

∫
[pi dqi −Hdt+Aλdλ] (83)

with respect to all possible trajectories pi(λ, t), q(λ, t) satisfying the initial conditions. The derivation is a straight-
forward generalization of the standard variational procedure found in most textbooks, cf. Ref. [8]. Extremizing the
action at constant time t clearly gives back the canonical transformations [Eq. (33)]. Extremizing this action at
constant λ with respect to time reproduces the Hamiltonian equations of motion in the lab frame. If we extremize the
action along some space time trajectory λ(t) such that dλ = λ̇dt we will clearly reproduce the Hamiltonian equations
of motion with the Galilean term [Eq. (79)].

While we are focusing in these notes on conventional canonical transformations, it is easy to use this variational
formalism to consider more general transformation where we treat time on equal footing with the other parameters. In
particular, we can consider a transformation that maps (t, λ) to new coordinates (τ, µ). When the parameters represent
translations in the physical coordinates themselves, this class of transformations are space-time transformation that
mix time and space degrees of freedom, such as Lorentz transformations in special relativity. For these extended class
of transformations, both λ and t can be viewed as functions of µ and τ . By noting that dλ = ∂λ

∂µdµ + ∂λ
∂τ dτ and

dt = ∂t
∂µdµ+ ∂t

∂τ dτ , we can rewrite the action [Eq. (83)] as

S =

∫ [
pi dqi − dτ

(
H ∂t

∂τ
−Aλ

∂λ

∂τ

)
+ dµ

(
Aλ

∂λ

∂µ
−H ∂t

∂µ

)]
(84)

It is clear that in this generalized moving frame defined by (τ, µ) the Hamiltonian and the gauge potential are given
by

Hτ = H ∂t

∂τ
−Aλ

∂λ

∂τ
, Aµ = Aλ

∂λ

∂µ
−H ∂t

∂µ
.
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and the corresponding equations of motion are given by [compare to Eq. (78)]

∂qi
∂τ

= {qi,Hτ} −
dµ

dτ
{qi,Aµ},

∂pi
∂τ

= {pi,Hτ} −
dµ

dτ
{pi,Aµ} (85)

For the choice, t = cosh(θ)τ − sinh(θ)µ and µ = cosh(θ)λ− sinh(θ)τ , with θ being a constant, the expressions above
reproduce Lorentz transformations. Gauge transformations give us a lot of freedom to choose the moving frame that
gives the simplest equations of motion by utilizing symmetries of the Hamiltonian; they allow us to map superficially
different problems onto each other, map time dependent to time independent problems, and so on.

So far our discussion of equations of motion focused on arbitrary gauge transformations. In these notes we, however,
are particularly interested in adiabatic gauge transformations. Dynamics in such special adiabatic moving frames is
ideally suited for developing adiabatic perturbation theory (discussed in detail in Sec. VI). For now, let us show that
the adiabatic gauge potentials are responsible for non-adiabatic corrections to the energy change of the system:

E(t) =

∫
dqi dpiH(qi, pi, λ)ρ(qi, pi, t), (86)

where ρ(qi, pi, t) is the time dependent density matrix. There is a word of caution needed in understanding this
integral as it is usually the subject of confusion. The Hamiltonian and the integration variables here go over all phase
space and in this sense they are time independent, while the density matrix evolves according to the Hamiltonian
dynamics. Thus, if we choose our integration variables q and p to denote lab-frame coordinates, we get

dH(qi, pi, λ)

dt
=

∂H
∂λ

λ̇ = λ̇ ({Aλ,H} −Mλ)

dρ(qi, pi, t)

dt
= {ρ,H}

where we have rewritten ∂λH using Eq. (67). Putting this back into Eq. (86) and employing the cyclicity of the
integral

∫
dqdpA(q, p){B(q, p), C(q, p)} =

∫
dqdpB(q, p){C(q, p), A(q, p)}

for any A, B, and C, we find

dE

dt
=

∫
dqidpi

[
λ̇ ({Aλ,H} −Mλ) ρ+H{ρ,H}

]

= −λ̇
∫
dqidpi ρMλ + λ̇

∫
dqidpiAλ{H, ρ}+

∫
dqidpiρ��

��:0{H,H} . (87)

The first term here gives the standard adiabatic work averaged over the distribution function, as Mλ is the generalized
force. The second term gives the non-adiabatic corrections. In particular, it vanishes to the leading order in λ̇ if the
initial density matrix is stationary, since then {ρ0,H} = 0. So the leading non-adiabatic contribution in the last term

in Eq. (87) due to the adiabatic gauge potential is of order λ̇2 or higher.

2. Quantum systems

Very similar analysis goes through for the quantum systems. Interestingly the derivations for quantum systems are
even simpler than for classical ones. Consider the Schrödinger equation

i~dt|ψ〉 = H|ψ〉 (88)

after the transformation to the moving frame: |ψ〉 = U(λ)|ψ̃〉:

i~λ̇(∂λU)|ψ̃〉+ i~U∂t|ψ̃〉 = HU |ψ̃〉 (89)

Multiplying both sides of this equation by U† and moving the first term in the L.H.S. of this equation to the right we
find

i~dt|ψ̃〉 =
[
U†HU − λ̇Ãλ

]
|ψ̃〉 =

[
H̃ − λ̇Ãλ

]
|ψ̃〉 = H̃m|ψ̃〉 . (90)
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Here H̃ = U†HU is the original Hamiltonian written in the moving basis while −λ̇Ãλ is the Galilean term. The
moving Hamiltonian Hm = H− λ̇Aλ thus retains the same form as in classical systems.

In the adiabatic moving frame it is easy to get the analogue of Eq. (87) by differentiating energy with respect to
time and using Eq. (90):

dE

dt
=

d

dt
〈ψ̃|H̃|ψ̃〉 = λ̇〈ψ̃|∂λH̃|ψ̃〉 −

i

~
λ̇〈ψ̃|[Ãλ, H̃|ψ̃〉 = −λ̇Mλ −−

i

~
λ̇〈ψ|[Aλ,H|ψ〉. (91)

Because the Hamiltonian H̃ is diagonal in the instantaneous basis, the expectation value 〈ψ̃|∂λH̃|ψ̃〉 is nothing but
negative the generalized force defined in Eq. (65). We also note that expectation value of any operator is invariant
under choice of basis so we can remove tilde sign in all final expressions. Let us point out that the second term
vanishes at leading order in λ̇ if the initial state is an energy eigenstate. Then up to higher orders in λ̇, |ψ〉 remains
the eigenstate of the instantaneous Hamiltonian and the expectation value of the commutator [Aλ,H] vanishes. It is
easy to see that these considerations apply to mixed states as well.

From Eq. (90) we see that one gets a generalized Galilean correction to the Hamiltonian which is proportional to
the gauge potential Aλ. Later in these lectures, we will see many ways in which this term manifests in the dynamics
of closed systems. We will do so after discussing in more detail the geometric properties that are encoded in the Aλ
operator.

E. Counter-diabatic driving

We will conclude this section by briefly discussing another interesting application of the adiabatic gauge potentials,
which has been termed in literature in three different ways: counter-diabatic driving, shortcuts to adiabaticity and
transitionless driving [2–4, 17–24]. We will stick with the term counter-diabatic driving, which was introduced in
the first paper by M. Demirplak and S. Rice [2, 3]. We will not attempt to review this already extensive literature,
instead focusing on two simple but illustrative examples. In the next section we will comment how these ideas can
be extended to complex systems using approximate adiabatic gauge potentials. For the remainder of this section we
will use the quantum language, having already explained the equivalence to classical systems.

In the previous section we discussed that the Galilean term is the one causing transitions between energy levels of
the original Hamiltonian H. In order to eliminate these transitions, it suffices to simply add a counter-diabatic (or

counter-Galilean) term λ̇Aλ to the driving protocol such that the system evolves under the Hamiltonian

H(λ) + λ̇Aλ(λ). (92)

Then if we go to the moving frame of the original Hamiltonian H, the effective Hamiltonian will be

H̃m = H̃ − λ̇Ãλ + λ̇Ãλ = H̃. (93)

By definition H̃ is the diagonalized version of H. Thus, if the system is initially prepared in a stationary distribution,
say the ground state, it will always remain in such a stationary distribution no matter how fast the protocol is. We
now study this for a variety of examples to see how counter-diabatic driving can be realized in practice.

1. Particle in a moving box

We will start from the simplest and most intuitive example of a particle of mass m confined to some potential
V (q −X) which depends on the parameter X, say the minimum of this potential. This setup generalizes our earlier
example from Sec. I beyond a harmonic potential. We want to move this potential from some initial point X0 to final
point X1 without exciting the particle inside. From Exercise (II.7) we know that the gauge potential corresponding

to translations is the momentum operator: ÃX = AX = p̂. Thus the counter-diabatic term should be Ẋp̂ such that
the desired time-dependent Hamiltonian is

HCD =
p̂2

2m
+ V (q −X(t)) + Ẋ(t)p̂. (94)

This Hamiltonian is hard to realize because one needs to couple directly to the momentum operator [cf. Exercise (I.1)].
This is not always easy, especially for neutral particles. However, one can bring this Hamiltonian to a more famil-
iar form by making another gauge transformation corresponding to the momentum shift p̂ → p̂′ = p̂ + mẊ [see
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Exercise (III.1)] resulting in a moving frame Hamiltonian

H′CD =
p̂′2

2m
+ V (q −X(t))−mẌ(t)q − mẊ2(t)

2
. (95)

The last term here, which comes from completing the square, can be omitted as it does not depend on q and p. The
third term is nothing but an effective gravitational field, which compensates the acceleration of the system. In the
classical language this term ensures that in the accelerating frame there are no additional forces acting on the particle
due to the acceleration.

It is important to emphasize that the Hamiltonians H′ and H are related by the unitary transformation, which
defines the gauge choice. Therefore, under evolution with H′CD the system will not follow the ground state of the
desired Hamiltonian H, but rather the ground state of the gauge equivalent Hamiltonian H′. This is intuitively clear:
the ground state of H at any fixed X has a zero momentum while the particle following the ground state of H′ clearly
has non-zero velocity and momentum in the lab frame. However, note that p̂ and p̂′ coincide whenever Ẋ = 0, which
is equivalent to the statement that the gauge transformation between the Hamiltonians H and H′ reduces to the
identity. Therefore the protocol in Eq. (95) results in the system following the ground state of H only at these special

points of zero velocity Ẋ = 0. Moreover if one chooses the protocol with both vanishing velocity and acceleration at
the initial and final points (Ẋ = 0, Ẍ = 0), then the counter-diabatic drive is smooth and does not require any jump
of the potential at the beginning or end of the ramp.

2. Particle in a time-dependent vector potential

We can similarly consider a Hamiltonian with time-dependent momentum shift, which is equivalent to a charged
particle in a time-dependent electromagnetic field (cf. Fig. 2):

H =
(p̂− P (t))2

2m
+ V (q). (96)

As we discussed earlier in Eq. (20), the gauge potential corresponding to the momentum shift is AP = −q therefore
the counter-diabatic Hamiltonian in this case will be

HCD =
(p̂− P (t))2

2m
+ V (q)− Ṗ (t)q. (97)

This example is even easier to interpret than the previous one; the compensating term in the counter-diabatic protocol
simply reduces to adding an electric field opposing the one created by the time-dependent vector potential.

3. Scale invariant driving

Let us now consider a slightly more complicated example of a classical one-dimensional non-relativistic particle in
an external potential V (q, λ) described by the Hamiltonian

H =
p2

2m
+ V (q, λ).

Assuming that the parameter λ changes in time according to some protocol, our goal will be to find the corresponding
adiabatic gauge potential Aλ and hence the counter-diabatic term λ̇Aλ. Let us note as earlier that in general chaotic
systems, the adiabatic gauge potentials do not exist [25]. So the general problem does not have a solution; instead
one can either find approximate solutions for Aλ (see Sec. III) or find particular protocols – such as translations –
where a solution exists. We will focus on a latter possibility here, finding a protocol for which Aλ takes a simple
form. Although we consider a one dimensional system, the protocol we discuss can be straightforwardly generalized
to higher-dimensional cases.

The adiabatic gauge potential should satisfy Eq. (68). A sufficient condition to satisfy this equation clearly is

∂λV − {Aλ,H} = ξH ⇔ ∂λV −
∂Aλ
∂q

p

m
− ∂V

∂q

∂Aλ
∂p

= ξ

(
p2

2m
+ V

)
. (98)
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where ξ ≡ ξ(λ) is an arbitrary function of λ. Let us seek an adiabatic gauge potential of the form Aλ = pf(q, λ),
where f is an arbitrary function. Then Eq. (98) reduces to

∂λV +
∂V

∂q
f − p2

m

∂f

∂q
= ξ

(
p2

2m
+ V

)
, (99)

which is obviously satisfied if we require that

∂f

∂q
= −ξ

2
, ∂λV +

∂V

∂q
f = ξV. (100)

The first equation implies that f = −ξq/2 + η, where η(λ) is another arbitrary function of λ. Substituting this to the
second equation above gives

∂λV −
ξ

2
q
∂V

∂q
+
∂V

∂q
η = ξV, (101)

which clearly puts a constraint on the possible driving protocols which can be made to satisfy our ansatz for Aλ.
A particular form of the potential which satisfies this constraint is the so-called scale-invariant driving protocol [21]:

V (q, λ) =
1

γ2(λ)
V0

(
q −X(λ)

γ(λ)

)
. (102)

where γ(λ) and X(λ) correspond to squeezing and translations of the potential respectively. Plugging this ansatz into
Eq. (101) we find

− 2

γ3

dγ

dλ
V0 −

q −X
γ4

dγ

dλ
V ′0 −

1

γ3

dX

dλ
V ′0 −

ξ

2γ3
qV ′0 +

η

γ3
V ′0 =

ξ

γ2
V0, (103)

which can only hold for generic function V0 if

ξ(λ) = − 2

γ

dγ

dλ
, η(λ) =

dX

dλ
− X

γ

dγ

dλ
. (104)

Thus, for arbitrary protocols X(λ) and γ(λ), the adiabatic gauge potential is

Aλ = −ξ(λ)

2
qp+ η(λ)p (105)

such that the counter-diabatic Hamiltonian reads

HCD =
p2

2m
+

1

γ2(λ)
V0

(
q −X(λ)

γ(λ)

)
− λ̇p

(
ξ(λ)

2
q − η(λ)

)
. (106)

As in the previous example one can shift the momentum p to

p̃ = p−mλ̇
(
ξ(λ)

2
q − η(λ)

)

resulting in a gauge equivalent Hamiltonian

H′CD =
p̃2

2m
+

1

γ2(λ)
V0

(
q −X(λ)

γ(λ)

)
− mλ̇2

2

(
ξ(λ)

2
q − η(λ)

)2

+
m

4

d

dt
(λ̇ξ(λ))q2 −m d

dt
(λ̇η(λ))q. (107)

As before p̃ coincides with p at the points of zero velocity λ̇ = 0, so this is where adiabatic (transitionless) driving of
the original Hamiltonian occurs.

The path in parameter space γ(λ) and X(λ) can be arbitrary. In particular, choosing γ(λ) = 0 and X(λ) = λ we
see from Eq. (104) that ξ = 0 and η = 1, such that we reproduce the previous example of a particle in a moving box.
If we choose the squeezing protocol where γ = λ and X = 0, we instead find that ξ = −2/λ and η = 0, such that the
counter-diabatic Hamiltonian is

H′CD =
p̃2

2m
+

1

λ2
V0(q/λ)− m

2

λ̈

λ
q2, (108)

showing that one only has to introduce an additional harmonic potential. Interestingly, if V0(q) is harmonic itself,
then the counter-diabatic protocol simply affects the time dependence of the effective spring constant. So we see that
for the scale-invariant case, one may obtain transitionless driving by adding a rather simple potential, even in the
more complicated case where the path consists of a combination of translations and dilations.
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Exercise II.11. Write down explicitly the Hamiltonian equations of motion corresponding to Eq. (108). Check that
under substitutions dt = λ2dτ , q′ = q/λ and p′ = p̃λ the equations of motion become independent of λ for any time
dependence λ(t):

dp′

dτ
= −∂q′V (q′),

dq′

dτ
=
p′

m
. (109)

Based on this, we may conclude that the evolution of the system is strictly adiabatic, which manifests in exact
conservation of the adiabatic invariants, zero heat generation and complete reversibility for any cyclic function λ(t).

Interestingly, the ansatz we chose for Aλ is far from unique. For instance, Eq. (98) allows for another simple ansatz:

Aλ = pf(q, λ) +
ζ

3m
p3, (110)

where ζ(λ) is another function of λ. Then instead of Eq. (100) we get

∂f

∂q
+ ζ

∂V

∂q
= −ξ

2
, ∂λV +

∂V

∂q
f = ξV, (111)

such that f(q, λ) = −ξ(λ)q/2 + η(λ)− ζ(λ)V (q) and hence

∂λV −
ξ(λ)

2
q
∂V

∂q
+ η(λ)

∂V

∂q
− ζ(λ)V

∂V

∂q
= ξ(λ)V . (112)

The functions ξ(λ), η(λ), and ζ(λ) can have arbitrary dependence on λ. If the potential V (q, λ) satisfies the differential
equation above, then counter-diabatic driving is again possible by adding a counter-diabatic term proportional to Aλ
of the form in Eq. (110). A particular choice of the functions – ξ(λ) = 0, ζ(λ) = −1, and η(λ) = 0 – yields the
dispersionless Korteweg-de Vries (KdV) equation for the potential V [26]:

∂λV + V
∂V

∂q
= 0, (113)

which is intimately related to integrability of the model. The non-linear terms in this gauge potential yield a crucial
difference between quantum and classical systems which shows up as a dispersion term in the KdV equation. Never-
theless, it was shown in Ref. [26] that both quantum and classical systems admit counter-diabatic driving. In general,
understanding which driving protocols correspond to tractable adiabatic gauge potentials even for such few-body
problems is an active and vital topic in the field.

4. Klein-Gordon theory with a time-dependent mass

Finally, let us apply the ideas of counter-diabatic driving to a somewhat less trivial example of an extended system.
Specifically we will analyze a massive Klein-Gordon theory with time-dependent mass. It is intuitively expected that
in a gapped system the adiabatic gauge potential should be localized within the length scale inversely proportional
to the mass (the Compton wavelength). Let us demonstrate here that this is indeed the case.

We consider the system described by the following Hamiltonian:

H =
1

2

∫
ddx[Π2(x) + (∇Φ(x))2 +m2(t)Φ2(x)], (114)

where d is the spatial dimensionality and Π and Φ are canonically conjugate fields satisfying standard commutation
relations: [Π(x),Φ(x′)] = −iδ(x − x′) if the fields are quantum (we set ~ = 1, in this section) and {Π(x),Φ(x′)} =
−δ(x − x′) if the fields are classical. Because the Hamiltonian is harmonic, the analysis of quantum and classical
systems is identical. Since the above Hamiltonian is translationally invariant, it is convenient to work in momentum
space, where the Hamiltonian reads

H =
1

2

∫
ddk

(2π)d
[ΠkΠ−k + ω2

k(t)ΦkΦ−k], (115)
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with ω2
k = k2 + m2(t). The problem is now reduced to a set of independent parametric harmonic oscillators. This

system was already considered in Exercise (II.2). Using those results we find that the adiabatic gauge potential reads

Am2 = −
∫

ddk

(2π)d
αk
2

[ΠkΦ−k + ΦkΠ−k] with αk =
1

4

∂m2 ω2
k

ω2
k

(116)

By transforming back to real space this becomes

Am2 = −1

8

∫∫
ddxddx′K(x− x′)[ΠxΦx′ + ΦxΠx′ ], (117)

where the kernel K(x) is the Green’s function of the screened Laplace equation:

K(x) =

∫
ddk

(2π)d
eik·x

k2 +m2
⇐⇒ (−∇2 +m2)K = δ(x) (118)

The exact expression depends on the dimensionality d; for d = 3 it becomes the Yukawa potential:

K(x) =
e−m|x|

4π|x| . (119)

Note that for any d the kernel K(x) decays exponentially at large separation |x− x′| as long as the mass is finite. The
kernel is thus local on the scale of the Compton wavelength 1/m as we originally anticipated. In the limit of vanishing
mass the adiabatic gauge potential becomes long-ranged (even divergent in the infrared below two dimensions),
reflecting non-locality of adiabatic transformations in gapless (critical) systems.

The counter-diabatic Hamiltonian associated with the time-dependent mass is thus:

HCD =
1

2

∫
ddk

(2π)d
[
ΠkΠ−k + ω2

k(t)ΦkΦ−k − ζk(ΠkΦ−k + ΦkΠ−k)
]

; ζk =
1

4ω2
k

dm2

dt
. (120)

As in the single particle case, we can shift the momenta Πk → Πk + ζkΦk and find the gauge equivalent Hamiltonian,
which does not contain cross terms

H′CD =
1

2

∫
ddk

(2π)d
[
ΠkΠ−k + Ω2

k(t)ΦkΦ−k
]
, with Ω2

k = ω2
k − ζ2

k + ∂tζk. (121)

Since all the terms have a different k-dependence, the counter-diabatic Hamiltonian can not be realized by simply
modulating some global coupling. However, if we do a small k expansion, then this Hamiltonian approximately maps
back to the Klein-Gordon theory with both a time-dependent mass and time-dependent speed of light:

Ω2
k(t) = m2

eff(t) + v2
eff(t)k2 +O(k4). (122)

The latter can be removed by an additional scale and gauge transformation. By a uniform scaling of all the fields,
Πk → Πkαt and Φk → Φk/αt, the transformed Hamiltonian becomes

H′′CD =
α2(t)

2

∫
ddk

(2π)d

[
ΠkΠ−k +

Ω2
k(t)

α4(t)
ΦkΦ−k +

∂tα(t)

2α3(t)
(ΠkΦ−k + ΦkΠ−k)

]
. (123)

Setting α2(t) = veff(t) makes the effective speed of light constant. A gauge transform Πk → Πk− (v̇eff/4veff)Φk finally
results in a Hamiltonian which is of exactly the same form as the original one. Note that the prefactor in front of the
Hamiltonian does not cause any transitions and simply tells us that proper time should be measured as ds = veffdt.

For completeness, let us generalize the above results to general inhomogeneous mass distributions considering a
more general Hamiltonian

H =
1

2

∫
ddxΠ2

x +
1

2

∫∫
ddxddx′Φx Vx,x′(λ(t)) Φ′x. (124)

Since the Hamiltonian is still harmonic and real , the most general adiabatic gauge potential must be also harmonic
and imaginary

Aλ =
1

2

∫∫
ddxddx′(ΠxKx,x′Φx′ + Φx′Kx,x′Πx′), (125)
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where Kx,x′ is the real symmetric Kernel. Substituting this ansatz into Eq. (66) and explicitly evaluating all commu-
tators one can show that the kernel Kx,x′ must satisfy the following equation:

∫
dx′′(K(x, x′′)V (x′′, x′) + V (x, x′′)K(x′′, x′)) =

1

2
∂λV (x, x′) (126)

Although closed form solutions to this equation only exist for a handful of special examples, one can formally solve it
by discretizing space and using eigenvectors {|n〉} and eigenvalues {εn} of the discretized matrix V :

〈n|K |m〉 = −1

2

〈n| ∂λV |m〉
εn + εm

. (127)

In the translationally invariant case ∂λV is diagonal in momentum space and we immediately recover the homogeneous
result.

Exercise II.12. Perform the missing steps in the derivation of Eq. (126).

III. APPROXIMATE ADIABATIC GAUGE POTENTIALS IN COMPLEX SYSTEMS

Key concept: Adiabatic gauge potentials can be computed from a minimization principle, which in turn can be
used to develop variational methods for finding approximate gauge potentials. These variational gauge potentials are
useful for creating approximate counter-diabatic protocols and finding approximate eigenstates of complex interacting
Hamiltonians.

We have seen from Eq. (63) that the adiabatic gauge potentials maybe ill-defined if the energy spectrum is dense
and there are non-zero matrix elements of the generalized force operator, −∂λH, between nearby eigenstates. This is
known as the problem of small denominators. If these divergences happen at isolated points such as phase transitions,
then they can be easily dealt with as we will discuss later. But in generic chaotic systems, the situation is more
subtle and requires careful regularization. Intuitively, this issue arises because the exact adiabatic gauge potential
would allow one not only to adiabatically follow the ground state, but also excited states of the system. But the
widely-accepted eigenstate thermalization hypothesis implies that those are essentially equivalent to random vectors
in the Hilbert space, which are exponentially susceptible to tiny perturbations [27]. Following these states would
require exponential fine tuning of Aλ. More formally the eigenstate thermalization hypothesis [27–31] states that the
off-diagonal matrix elements appearing in the numerator in Eq. (63) scale as exp[−S/2], where S is the extensive
thermodynamic entropy of the system, while the energy denominator for nearby states scales as exp[−S]. Therefore
the matrix elements of Aλ between nearby energy eigenstates are exponentially divergent with the system size, scaling
as exp[S/2]. However, even in generic chaotic systems, thermodynamic adiabaticity is a useful and well-defined limit.
So our goal must be not finding an exact fine-tuned adiabatic gauge potential, but rather a good approximation which
would allow one to eliminate or significantly reduce dissipation in the system and, in particular, to nearly adiabatically
follow the ground state of the system. Note also that, while this argument is primarily quantum mechanical, it has
also been shown [25] that adiabatic gauge potentials are similarly reference to quantum mechanics.

In this section, we will discuss methods for finding approximate adiabatic gauge potentials. We begin by reformu-
lating Eq. (66) for the gauge potential as a least action principle, which will prove useful for concrete calculations. We
proceed to show how variational minimization of this action leads to a class of approximate gauge potentials which do
not suffer suffer from issues of small denominators. We show how similar methods may be used to obtain perturbative
approximations to the adiabatic gauge potentials. Finally, we illustrate the usefulness of these approximations by
deriving variational gauge potentials for a variety of many-body systems: interacting chains of two or more spins, the
quantum XY chain, and an impurity in a Fermi gas. In addition to deriving approximate gauge potentials, we show
how they may be used to obtain approximate counter-diabatic protocols, ground states, and excited states for these
complicated strongly-interacting systems.

A. Adiabatic gauge potentials from the least action principle

While Eqs. (66) and (68) defining the adiabatic gauge potential cannot always be solved exactly, we will show how
they may be used to derived a useful and tractable variational ansatz. To do so, let us begin by reformulating these
equations as a minimum action principle, which serves as a seed for developing efficient approximate schemes. We
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will focus our derivation on the more general case of quantum systems, keeping in mind that in the classical limit one
simply has to substitute the commutators with Poisson brackets and traces of operators with averages over classical
phase space.

Define the Hermitian operator Gλ(X ) as

Gλ(X ) = ∂λH+
i

~
[X ,H] , (128)

where the argument X is itself a Hermitian operator. Then Eq. (64) determining the adiabatic gauge potential Aλ
simply reads Gλ(Aλ) = −Mλ. Instead of directly solving for Aλ, we may reformulate it as a problem of minimization
the operator distance between Gλ(X ) and −Mλ with respect to X . Since Gλ is linear in X it is natural to use the
Frobenius norm for defining the distance, i.e.,

D2(X ) = Tr

[(
∂λH+

i

~
[X ,H] +Mλ

)2
]

= Tr
[
(Gλ +Mλ)

2
]

= Tr
(
G2
λ

)
+ Tr

(
M2
λ

)
+ 2Tr (MλGλ) . (129)

Clearly the distance is indeed minimal (zero) when Gλ = −Mλ. Tracing in the energy eigenbasis and using cyclic
properties of the trace, one finds

Tr (MλGλ) = Tr (Mλ∂λH) +
i

~
Tr (Mλ [X ,H]) = −Tr

(
M2
λ

)
− i

~���
��

��:0
Tr ([Mλ,H]X ) (130)

D2(X ) = Tr
[
G2
λ(X )

]
− Tr

[
M2
λ

]
, (131)

where we used that the operator Mλ commutes with H and that Tr (Mλ∂λH) = −Tr
(
M2
λ

)
, which becomes obvious if

we explicitly write the trace in the eigenbasis of the Hamiltonian. Since the generalized force term does not depend
on X , it does not affect the minimization. Hence, minimizing the distance is equivalent to minimizing the norm of
Gλ. One can thus consider the norm of Gλ as the action associated with the gauge potential:

S = Tr
[
G2
λ(X )

]
. (132)

It can easily be minimized by expanding X in some operator basis. The distance is minimized whenever Aλ satisfies:

δS

δX

∣∣∣∣
X=Aλ

= 0 ⇒
[
H, ∂λH+

i

~
[Aλ,H]

]
= 0 , (133)

which, as anticipated, is just Eq. (66).
An even a simpler way to see that X = Aλ minimizes the distance between Gλ(X ) and Mλ is by noting that the

diagonal elements of Gλ in the eigenbasis of H do not depend on X : 〈n|Gλ(X )|n〉 = ∂λEn. Therefore by minimizing
the norm of Gλ we are minimizing the sum off-diagonal elements of Gλ. For X = Aλ, [Gλ,H] = 0 by construction,
so all off-diagonal elements of Gλ are equal to zero and hence the distance D(X ) reaches the absolute minimum.

The action S itself has a simple physical interpretation in terms of the transition rate from a particular energy
level to all other states under white noise modulation of λ in the presence of the compensating term λ̇X . To see this,
let us consider a Hamiltonian

HX = H(λ) + λ̇X , (134)

where λ = λ0 + ε(t) and ε(t) is an infinitesimal white noise ε(t)ε(t′) = κδ(t− t′). We can expand the Hamiltonian HX
in small modulation amplitude λ(t) = λ0 + ε(t):

HX ≈ H(λ0) + ε ∂λH(λ0) + ε̇X . (135)

Next we will use the standard Fermi-Golden rule expression for the transition rate Γn from the eigenstate |n〉 with
energy En to all other states [32]:

Γn =

∫ ∞

−∞
dω Sε(ω)

∑

m 6=n
|〈n| (∂λH− iωX ) |m〉|2 δ(Em − En − ω)

=

∫ ∞

−∞
dω κ

∑

m 6=n

∣∣∣∣〈n|
(
∂λH+

i

~
[X ,H]

)
|m〉
∣∣∣∣
2

δ(Em − En − ~ω) = κ〈n|G2
λ(X )|n〉 − κ〈n|∂λH|n〉2. (136)
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Here Sε(ω) = κ is the spectral density of the noise ε(t), which is frequency independent for white noise. Averaging
Γn over all eigenstates yields the average lifetime, which is clearly proportional to Eq. (131). Minimizing the average
transition rate is thus equivalent to minimizing the action in Eq. (132).

The lifetime of eigenstates especially in many-particle systems is not a physically observable quantity. A more
physical measure of dissipation is the heating rate. But the latter is always zero if we consider states in the middle of
the spectrum, which effectively correspond to infinite temperature. The easiest way to characterize dissipation that
remains valid at infinite temperature is to instead look at the rate of change of the energy variance σ2

E , which we term
here the dissipation rate. If the system stays in the eigenstate, then there is no dissipation and the energy variance
remains zero. Otherwise the dissipation rate is positive and the energy variance grows in time. In macroscopic ergodic
systems satisfying the eigenstate thermalization hypothesis, the heating rate and the dissipation rate are proportional
to each other because of the fluctuation-dissipation relation with the proportionality constant equal to half the inverse
temperature of the eigenstate [27]. Within Fermi’s golden rule, the dissipation rate starting from the eigenstate |n〉
is obtained from Eq. (136) by multiplying the transition probabilities by ω2:

dσ2
E

dt
=

∫ ∞

−∞
dω Sε(ω)

∑

m 6=n
ω2 |〈n| (∂λH− iωX ) |m〉|2 δ(Em − En − ω) = −κ〈n|[Gλ(X ),H]2|n〉, (137)

Clearly the dissipation rate averaged over all eigenstates |n〉 defines the action given by the Frobenius norm of the
commutator of Gλ(X ) with the Hamiltonian. Thus the average dissipation rate for a system subject to external white
noise in λ and in the presence of the compensating term from Eq. (134) is equal to the square error of Eq. (133) when
X is used as an approximate solution to Eq. (133).

B. Variational gauge potentials

The least action principle [Eq. (133)] often serves as a useful way to calculate Aλ, as we will see throughout
the following sections. More importantly, it establishes a variational principle for the gauge potential based on the
inequality S(X ) ≥ S(Aλ). The benefit of such a variational principle is that it allows us to construct approximate
solutions to problems in which Eq. (66) is to hard to solve analytically. We will see throughout the following sections
that this variational method is both useful and tractable, even for complicated interacting Hamiltonians.

Before moving on to a simple example, let us note that the trace norm in the action is similar to the infinite
temperature norm as we are summing over all the eigenstates of H with the equal weight. Very often we are interested
only in the low energy manifold, as for example in trying to find the approximate counter-diabatic driving required
to keep the system close to the ground state. If we are dealing with quantum or classical systems with unbounded
spectra, the Frobenius norm of the operators may also be ill-defined, requiring some cutoff regularization. In such
situations we may instead define the finite temperature action:

S (X , β) =
〈
G2
λ(X )

〉
− 〈Gλ(X )〉2 , (138)

where 〈. . . 〉 stands for the averaging with respect to the thermal density matrix ρ(β) = 1
Z exp[−βH]. The original

Frobenius norm in Eq. (132) can be recovered as the infinite temperature limit (β → 0) of Eq. (138) up to an addition
of 〈Gλ(X )〉2 = 〈Mλ〉2, which does not depend on X . In the zero temperature limit β → ∞, the action in Eq. (138)
reduces to the variance of Gλ in the ground state. Clearly the exact gauge potential minimizes Eq. (138) for any fixed
temperature β. However, minima of the action restricted to particular variational manifolds will generally depend on
β. In these notes we will restrict the discussion of complex systems to lattice models, where the infinite temperature
norm can be used. Analysis of the finite temperature action will be left for future work.

Exercise III.1. Consider the following time-dependent Hamiltonian for a two-level system: H = ∆σz + h(t)σx. Find
the gauge potential Ah corresponding to a change in the x-magnetic field h by minimizing the action in Eq. (132)
using the ansatz Ah = r(λ)σy. Justify why this ansatz should lead to the exact result. Use the result to construct
the generalized force Mh and check that it agrees with the correct answer.

We will now illustrate how the variational principle can be used for finding the adiabatic gauge potential in an
interacting spin system. Let us consider a system of two coupled identical spin one-half particles in a uniform
magnetic field with Ising interactions:

H = −h cos θ(σz1 + σz2)− h sin θ(σx1 + σx2 )− Jzσz1σz2 , (139)
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with ~ = 1 throughout this section. The Hamiltonian above corresponds to a real matrix in the z-basis, so the
adiabatic gauge potential can be chosen to be imaginary, and hence contain an odd number of σy operators. As a
first variational ansatz for Aθ, we will choose the non-interacting form

X =
α

2
(σy1 + σy2 ). (140)

It is then straightforward to compute the function G(X ):

G(X ) = ∂θH+ i[X ,H] = h sin θ(1− α)(σz1 + σz2)− h cos θ(1− α)(σx1 + σx2 ) + αJz(σ
x
1σ

z
2 + σz1σ

x
2 ). (141)

To evaluate the action, S(α) = Tr
[
G2(X )

]
, we note that all Pauli matrices are traceless, so only even powers of Pauli

matrices contribute. Therefore

S(α)

4
= 2h2(1− α)2 + 2α2J2

z , (142)

where the overall factor of four in the denominator comes from the trace of the identity matrix. Minimizing this
action with respect to α, we find the optimal value α∗:

∂S

∂α

∣∣∣∣
α∗

= 0 =⇒ α∗ =
h2

h2 + J2
z

, (143)

leading to the following variational gauge potential

A∗θ =
1

2

h2

h2 + J2
z

(σy1 + σy2 ). (144)

We use the ∗-notation to highlight that this gauge potential represents the best variational solution but it is not
generally exact because our variational manifold is restricted to single spin operators. Nevertheless this variational
solution is very instructive as it clearly shows that the spin-spin coupling affects the magnitude of the gauge potential
compared to the non-interacting case, suppressing it.

We can improve the variational ansatz by adding two-spin terms into the variational manifold

X =
α

2
(σy1 + σy2 ) +

β

2
(σy1σ

x
2 + σx1σ

y
2 ) +

γ

2
(σy1σ

z
2 + σz1σ

y
2 ) (145)

Evaluating the additional commutators of the two spin terms with the Hamiltonian, we find

G(X ) = h sin θ(1− α)(σz1 + σz2) + (γJz − h cos θ(1− α)) (σx1 + σx2 ) + (αJz − βh sin θ + γh cos θ)(σx1σ
z
2 + σz1σ

x
2 )

+ 2βh cos θ σx1σ
x
2 − 2γh sin θ σz1σ

z
2 − 2h(β cos θ − γ sin θ)σy1σ

y
2 . (146)

From this expression one can easily compute the action by noting that all cross-terms in G2(X ) are traceless. Thus,

S(α, β, γ)
8=h2(1−α)2−2γ(1−α)Jzh cos θ+γ2J2

z+(αJz−βh sin θ+γh cos θ)2

+ 4β2h2 cos2 θ + 4γ2h2 sin2 θ − 4βγh2 sin θ cos θ. (147)

In general, the variational action is a quadratic function of the variational parameters so variational optimization
simply reduces to solving a set of linear equations whose rank is equal to the number of variational parameters. Here
it gives




h2 + J2
z −Jzh sin θ 2Jzh cos θ

−Jzh sin θ h2(3 cos2 θ + 1) −3h2 cos θ sin θ
2Jzh cos θ −3h2 cos θ sin θ h2(3 sin2 θ + 1) + J2

z





α∗

β∗

γ∗


 =




h2

0
Jzh cos θ


 (148)

This equation can be solved to obtain the variational parameters α∗, β∗, γ∗. For example, for θ = 0 (field pointing
along the z-direction), we get

Aθ(θ = 0) =
1

2

h2

h2 − J2
z

(σy1 + σy2 )− 1

2

Jzh

h2 − J2
z

(σy1σ
z
2 + σz1σ

y
2 ).
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Note that we left the asterisk off of Aθ because our variational ansatz exhausted all possible terms odd in σy and hence
the variational solution must coincide with the exact result [see Exercise (III.2)]. Not surprisingly the gauge potential

becomes singular at Jz = ±h because at θ = 0 the symmetric eigenstates become degenerate (e.g., (| ↑↓〉+ | ↓↑〉)/
√

2
becomes degenerate with | ↓↓〉 for Jz = h) and this degeneracy is lifted by applying the x-magnetic field. Likewise for
θ = π/2 we find

Aθ(θ = π/2) =
1

2
(σy1 + σy2 ) +

1

2

Jz
h

(σy1σ
x
2 + σx1σ

y
2 ).

Now the gauge potential becomes singular at h → 0 because of degeneracy between | ↓↓〉 and | ↑↑〉 states lifted by a
small magnetic field in the z-direction.

Exercise III.2. Verify Eq. (146). Compare the variational gauge potential obtained by the minimization of the action
in Eq. (147) with the exact result, which can be obtained from Eq. (63).

Exercise III.3. Compute the variational gauge potential AJz using single spin and two spin approximations. Compare
with the exact result.

C. Perturbative gauge potentials

In lieu of the variational approach, it is sometimes more convenient to start from a simple limit, such as a non-
interacting model, where the gauge potential can be found exactly and use perturbative methods to correct it. The
general idea of such a perturbative method is very similar to that used to find approximate integrals of motion in a
weakly interacting systems [33, 34]. In that work, the interacting eigenstates |ñ〉 are found from the non-interacting
eigenstates |n〉 via unitary transform |ñ〉 = e−S |n〉, where S = gS1 + 1

2g
2S2 + . . . is anti-Hermitian. Then one tries to

perturbatively find S and use it to dress the integrals of motion. In our language S is directly related to the adiabatic
gauge potential.

Instead of developing a fully general approach let us demonstrate how one can obtain the leading perturbative
correction using the two-spin model in Eq. (139). We will generalize this to an interacting spin chain in Sec. III D 1.
Treating the coupling Jz as a perturbation, let us find the leading perturbative correction to Aθ. Suppose that
U0(θ) is the unitary operator connecting unperturbed eigenstates corresponding to different angles θ with eigenstates
corresponding to θ = 0 such that by definition

A0
θ = i(∂θU0)U†0 .

Next let us denote by

U1(Jz, θ) = Pe−i
∫ Jz
0

dJ′zAJ′z ,

where P stands for the path-ordered exponential, the unitary which connects the eigenstates of the Hamiltonian
corresponding to fixed θ and different values of Jz. At leading order in perturbation theory, clearly

U1 ≈ 1− iJzA0
Jz .

The total unitary connecting the states at Jz = 0, θ = 0 with arbitrary Jz, θ is then U1U0, such that

Aθ = i(∂θU1)U†1 + iU1(∂θU0)U†0U
†
1 ≈ A0

θ + Jz∂θA0
Jz − iJz

[
A0
Jz ,A0

θ

]
, (149)

where the 0 superscripts indicate that the gauge potential corresponds to the non-interacting limit Jz = 0.
To find A0

Jz
exactly, we need to minimize the Frobenius norm of

G(X ) = ∂JzH
∣∣
Jz=0

+i[X ,H0]

where H0 = −h cos θ(σz1 + σz2) − h sin θ(σx1 + σx2 ) is the non-interacting Hamiltonian. Because H0 is non-interacting
and ∂JzH contains only two-spin terms, it is clear that the exact ansatz for X should also contain only two spin
terms. Unlike in the previously discussed case of finite Jz this is not an artifact of the two-site system but an exact
statement, which applies to arbitrary system sizes. Choosing

X =
α

2
(σy1σ

x
2 + σx1σ

y
2 ) +

β

2
(σy1σ

z
2 + σz1σ

y
2 ) (150)
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we find

G(X ) = −(2βh sin θ+ 1)σz1σ
z
2 + 2αh cos θ σx1σ

x
2 + 2h(β sin θ− α cos θ)σy1σ

y
2 + h(β cos θ− α sin θ)(σz1σ

x
2 + σx1σ

z
2) (151)

leading to the action

S(α, β)

4
= 1 + 4βh sin θ + 8β2h2 sin2 θ + 8α2h2 cos2 θ − 12αβh2 sin θ cos θ + 2β2h2 cos2 θ + 2α2h2 sin2 θ. (152)

Minimizing this action yields the desired adiabatic gauge potential

A0
Jz = −3 cos θ sin2 θ

8h
(σy1σ

x
2 + σx1σ

y
2 )− sin θ(3 cos2 θ + 1)

8h
(σy1σ

z
2 + σz1σ

y
2 ). (153)

Finally, plugging this expression into Eq. (149), we find

Aθ ≈
1

2
(σy1 + σy2 ) +

Jz
h

sin θ

4
(2− 3 cos2 θ)(σx1σ

y
2 + σy1σ

x
2 ) +

Jz
h

cos θ

4
(1− 3 cos2 θ)(σz1σ

y
2 + σy1σ

z
2) (154)

Exercise III.4. Verify that Eq. (154) agrees with the exact result, which can be obtained by solving the linear system
in Eq. (148) perturbatively to linear order in Jz.

D. Exact and variational gauge potentials for many-body systems

Having introduced variational and perturbative methods for calculating approximate adiabatic gauge potentials, we
will now show how they may be applied to understanding complex many-body systems. We will consider both inter-
acting and non-interacting systems, the former of which can be analyzed analytically to highlight various important
properties of gauge potentials. Specifically we will focus on the locality and convergence of the variational ansatz. We
will discuss three characteristic examples: the non-integrable Ising chain, the quantum XY chain, and an impurity
in a gas of free fermions. These examples illustrate some qualitative features of the adiabatic gauge potentials in
both gapped and gapless regimes, as well as close to singularities like the Anderson orthogonality catastrophe for the
impurity in a gas of fermions or near quantum critical points in the XY model.

1. Non-integrable Ising model

Let us now extend the two-spin example from Secs. III B and III C to the Ising spin chain in a uniform magnetic
field described by the Hamiltonian

H = −
L∑

j=1

h(cos θ σzj + sin θ σxj )− Jz
L∑

j=1

σzjσ
z
j+1 (155)

with periodic boundary conditions. This Hamiltonian is already very complicated as it is known that except for
θ = πn/2 it is non-integrable, and thus has chaotic eigenstates satisfying the eigenstate thermalization hypothesis (cf.
Ref. [35]). Therefore, in the thermodynamic limit the adiabatic gauge potential does not exist as a local operator
that is analytic in the coupling constants, and thus it cannot be written in a closed form for large system sizes.
However, due to the locality of the Hamiltonian, one can anticipate that except for some special points such as phase
transitions, there should be an accurate local approximation to the adiabatic gauge potential. Therefore, we will
extend the ansatz from the previous two-spin example and use it to find the variational adiabatic gauge potential:

X =
1

2

∑

j

(
ασyj + β(σxj σ

y
j+1 + σyj σ

x
j+1) + γ(σzjσ

y
j+1 + σyj σ

z
j+1)

)
. (156)

As before only terms odd in σy contribute to the variational ansatz because H is real. By further using the fact that
the system is translationally invariant, we are only left with three undetermined parameters α, β, γ. To find Gλ(X )
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we will need the following commutators:

i
∑

j

[
σyj ,H

]
=
∑

j

2h
(
cos θσxj − sin θσzj

)
+
∑

j

2Jz(σ
x
i σ

z
i+1 + σzi σ

x
i+1), (157)

i
∑

j

[
σxj σ

y
j+1 + σyj σ

x
j+1,H

]
= −2h

∑

j

(
2 cos θ (σyi σ

y
i+1 − σxi σxi+1) + sin θ (σxi σ

z
i+1 + σzi σ

x
i+1)

)

+ 2Jz
∑

j

(
σxi σ

x
i+1σ

z
i+2 + σzi σ

x
i+1σ

x
i+2 − σyi σyi+1σ

z
i+2 − σzi σyi+1σ

y
i+2

)
, (158)

i
∑

j

[
σzjσ

y
j+1 + σyj σ

z
j+1,H

]
= 2h

∑

j

(
2 sin θ (σyi σ

y
i+1 − σzi σzi+1) + cos θ(σxi σ

z
i+1 + σzi σ

x
i+1)

)

+ 4Jz
∑

j

(
σxi σ

z
i+1σ

x
i+2 + σxi

)
. (159)

From this Gλ(X ) reads

Gλ(X ) =
∑

j

(
h sin θ(1− α)σzj + (2γJz − h cos θ(1− α))σxj − 2h(β cos θ − γ sin θ)σyi σ

y
i+1

)

+
∑

j

(
(γh cos θ − βh sin θ + αJz)(σ

x
i σ

z
i+1 + σzi σ

x
i+1) + 2βh cos θ σxi σ

x
i+1 − 2γh sin θ σzi σ

z
i+1

)

+ Jz
∑

j

(
β(σxi σ

x
i+1σ

z
i+2 + σzi σ

x
i+1σ

x
i+2)− β(σyi σ

y
i+1σ

z
i+2 + σzi σ

y
i+1σ

y
i+2) + 2γσxi σ

z
i+1σ

x
i+2

)
. (160)

As before the tracelessness of the Pauli matrices reduces computing the action to summing squares of coefficients in
front of linearly independent operators:

S(α, β, γ)

L 2L
= h2(1− α)2 sin2 θ + (2γJz − h(1− α) cos θ)2 + 4h2(γ sin θ − β cos θ)2

+ 2(hγ cos θ − hβ sin θ + Jzα)2 + (2hβ cos θ)2 + (2hγ sin θ)2 + 4(Jzβ)2 + (2Jzγ)2, (161)

where the factor 2L in the denominator comes from the trace of the identity operator and an additional factor of
L comes from summing over L identical contributions. Minimization leads to following linear equations, which only
slightly differ from the two-spin system due to the presence of three-spin terms and periodic boundary conditions
used in the full spin chain:




h2 + 2J2
z −2Jzh sin θ 4Jzh cos θ

−2Jzh sin θ 2h2(3 cos2 θ + 1) + 4J2
z −6h2 cos θ sin θ

4Jzh cos θ −6h2 cos θ sin θ 2h2(3 sin2 θ + 1) + 8J2
z )





α∗

β∗

γ∗


 =




h2

0
2Jzh cos θ


 (162)

These equations can again be easily solved, giving the following variational adiabatic gauge potentials for two specific
values of θ:

A∗θ(θ = 0) =
1

2

h4

7J4
z + (h2 − J2

z )2

∑

j

σyj +
1

2

Jzh(2J2
z − h2)

7J4
z + (h2 − J2

z )2

∑

j

(σyj σ
z
j+1 + σzjσ

y
j+1)

A∗θ(θ = π/2) =
1

2

h2(2J2
z + h2)

3J4
z + (h2 + J2

z )2

∑

j

σyj +
1

2

Jzh
3

3J4
z + (h2 + J2

z )2

∑

j

(σyj σ
x
j+1 + σxj σ

y
j+1) (163)

This expression does not contain any singularities associated with the quantum phase transition for h = ±Jz and θ = 0
in the thermodynamic limit. This is due to the insufficiency of the local variational ansatz to capture singularities
associated with long wavelength excitations. Nevertheless, away from the critical point we will show in the following
sections that this ansatz allows accurate approximations for many objects of physical interest, including counter-
diabatic driving protocols, many-body ground and excited state wave functions, the geometric tensor, and more. Let
us also note that the variational ansatz also allows one to recover the results of perturbation theory in the limit of
small coupling Jz [see Exercise (III.5)]. Indeed it is easy to see that at linear order in Jz we can only generate one
or two spin corrections to Aθ, at second order we can generate corrections involving up to three nearby terms, and
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so on. To find the perturbative result we note that β and γ should be linearly proportional to Jz so we can simplify
Eq. (162) to




h2 + 2J2
z −2Jzh sin θ 4Jzh cos θ

−2Jzh sin θ 2h2(3 cos2 θ + 1) −6h2 cos θ sin θ
4Jzh cos θ −6h2 cos θ sin θ 2h2(3 sin2 θ + 1))





α∗

β∗

γ∗


 ≈




h2

0
2Jzh cos θ,


 (164)

which in turn gives

α∗ ≈ 1, β∗ ≈ Jz
h

sin θ

2
(2− 3 cos2 θ), γ∗ ≈ Jz

h

cos θ

2
(1− 3 cos2 θ). (165)

leading to

A∗θ ≈
1

2

∑

j

σyj +
Jz
h

sin θ

4
(2− 3 cos2 θ)

∑

j

(σxj σ
y
j+1 + σyj σ

x
j+1) +

Jz
h

cos θ

4
(1− 3 cos2 θ)

∑

j

(σzjσ
y
j+1 + σyj σ

z
j+1). (166)

Exercise III.5. Find the leading perturbative correction in Jz to Aθ for a full spin chain described by the Hamiltonian
in Eq. (155). Specifically argue that the two spin-ansatz generalizing Eq. (150) can be used to find A0

Jz
. Then

use Eq. (149) to find the perturbative expression for Aθ. Verify that the result agrees with that obtained from the
variational approach in Eq. (166).

2. Quantum XY model

Next let us analyze the quantum XY chain. This model is sufficiently simple that all calculations can be done ana-
lytically, yet it has a rich phase diagram serving as a prototype of quantum phase transitions and multi-criticality [36].
The model also provides important insight in the convergence properties of the variational procedure.

The quantum XY chain is described by the Hamiltonian

H = −
L∑

j=1

[
Jxσ

x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + hσzj

]
, (167)

where Jx,y are exchange couplings, h is a transverse field, and we use periodic boundary conditions. It is convenient
to re-parameterize the model in terms of new couplings J and γ as

Jx = J

(
1 + γ

2

)
, Jy = J

(
1− γ

2

)
, (168)

where J is the energy scale of the exchange interaction and γ is its anisotropy. We add an additional tuning parameter
φ, corresponding to simultaneous rotation of all the spins about the z-axis by angle φ/2. While rotating the angle
φ has no effect on the spectrum of H, it does modify the eigenstate wave functions. To fix the overall energy scale,
we set J = 1. Since the Hamiltonian is invariant under the mapping γ → −γ, φ → φ + π, we also generally restrict
ourselves to γ ≥ 0.

We now follow a standard set of tricks to solve such a Hamiltonian [36]. Rewriting the spin Hamiltonian in terms

of free fermions via a Jordan-Wigner transformation, σzj ∼ 1 − 2c†jcj and σ+
j ∼

∏
k<j σ

z
kcj , H can be mapped to an

effective non-interacting spin one-half model with

H =
∑

k

ψ†kHkψk; Hk = −
(
h− cos(k) γ sin(k)e−iφ

γ sin(k)eiφ −[h− cos(k)]

)
,

where ψ†k = (c†k, c−k) denotes the usual Nambu spinor. The details of this transformation can be found elsewhere[166];
for our purposes, it is important to note that it has allowed us to reduce the interacting spin model in Eq. (167) to a
non-interacting fermionic two-band model which is at half-filling (Fig. 5).

Computing the exact gauge potential now simply amounts to finding the gauge potential for a set of uncoupled
two-level systems described by Hk. This can be done by any means described above, but since we want to compare
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FIG. 5: Illustration of the effective band structure of the XY chain that results after a Jordan-Wigner transformation. In the
ground state, the lower band is filled and the upper band is empty. Each mode k can be excited by kicking the fermion into
the upper band [see Eq. (169)].

the results to a variational approximation later, let us follow the minimal action approach and construct Eq. (132)
for all three parameters h, γ, and φ. By parameterizing the gauge potential

A(k) =
1

2
(αx(k)σxk + αy(k)σyk + αz(k)σzk) , (169)

the commutator of the gauge potential with the Hamiltonian becomes

i [A(k),Hk] = [αy(h− cos k)− αzγ sin k sinφ]σxk + [αzγ sin k cosφ− (h− cos k)αx]σyk
+γ sin k [αx sinφ− αy cosφ]σzk. (170)

Consequently the action for changing h is given by:

Sh
2

= [−1 + αxγ sin k sinφ− αyγ sin k cosφ]
2

+ [αy(h− cos k)− αzγ sin k sinφ]
2

+ [αzγ sin k cosφ− (h− cos k)αx]
2
. (171)

Minimizing the action yields the following particular solution:

αx(k) =
γ sin k sinφ

(cos k − h)2 + γ2 sin2 k
, αy(k) = − γ sin k cosφ

(cos k − h)2 + γ2 sin2 k
, αz(k) = 0, (172)

such that the final gauge potential associated with the magnetic field h reads

Ah =
1

2

∑

k

γ sin k

(cos k − h)2 + γ2 sin2 k
ψ†k (sinφσxk − cosφσyk)ψk. (173)

The calculation for γ and φ is completely analogous and results in

Aγ = −1

2

∑

k

sin k(cos k − h)

(cos k − h)2 + γ2 sin2 k
ψ†k (sinφσxk − cosφσyk)ψk,

Aφ =
1

2

∑

k

γ sin k

cos k − hψ
†
k (cosφσxk + sinφσyk)ψk. (174)
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While the resulting gauge potentials are simple in the momentum-space fermionic representation, they are actually
comprised of a series of long strings of spins in the original model. We have found the exact adiabatic gauge potential
for the XY model, but we can only do this by virtue of its integrability. Thus, it is instructive to have a closer look
at the real space representation of the gauge potentials, in particular in view of the previous discussion on variational
gauge potentials in non-integrable spin chains, where we inevitably have to resort to approximate string expansions.
We can now use the XY model to benchmark our results.

In order to more easily discuss the real space representation analytically, let us restrict the parameters to the
transverse field Ising limit, γ = 1 and φ = 0. First of all note that, by Fourier transform we have

ψ†kσ
y
kψk =

i

L

∑

j,l

sin(lk)(c†jc
†
j+l − cj+lcj). (175)

Inverting the Jordan-Wigner transformation then results in the following expression for the fermions in terms of real
spins

Ol = 2i
∑

j

(c†jc
†
j+l − cj+lcj) =

∑

j

(
σxj σ

z
j+1 . . . σ

z
j+l−1σ

y
j+l + σyj σ

z
j+1 . . . σ

z
j+l−1σ

x
j+l

)
, (176)

where we introduced the symbol Ol for an XY string of length l. Combining all of the above expressions, one arrives
at the real-space representation of the gauge potential

Ah =
∑

l

αlOl where αl = − 1

4L

∑

k

sin(k) sin(lk)

(cos k − h)2 + sin2 k
. (177)

In the thermodynamic limit we can replace the sum with an integral, which yields

αl = − 1

4π

∫
dk

sin(k) sin(lk)

(cos k − h)2 + sin2 k
= −1

8

{
hl−1 for h2 < 1
h−l−1 for h2 > 1

(178)

This result was first obtained in [18]. Note that the coefficients αl decay exponentially with the string length as long
as the system is not critical. At the critical point, however, all strings have exactly the same weight.

This treatment allows a variational expansion in terms of finite number of strings, i.e., we make the ansatz

A∗h =

M∑

l=1

αlOl. (179)

By returning to k-space, this results in the fermionic representation

A∗h = 4
∑

k

(
M∑

l=1

αl sin(lk)

)
ψ†kσ

y
kψk. (180)

Clearly if the sum goes up to M = L, we recover the exact result. But by truncating, we reduce the number of
variational parameters to M . The action for the ansatz simply becomes

SMh
2L

=
∑

k



(

1 + 8

M∑

l=1

αl sin(lk) sin(k)

)2

+

(
8

M∑

l=1

αl sin(lk)

)2

(h− cos k)2


 . (181)

After expanding the squares and summing over k-space, the expression takes the following simple form:

SMh
2L+3

= α1 + 4(h2 + 1)

M∑

l=1

α2
l − 4h

M∑

l=1

αl(αl+1 + αl−1). (182)

Minimizing with respect to αj yields the following set of equations

−h(αj−1 + αj+1) + (1 + h2)αj = −1

8
δj1. (183)
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This problem is equivalent to a particle hopping on a chain with nearest neighbor hopping h, a constant potential
(1 + h2), and a source term at site 1. It may be readily solved via discrete Fourier transform αl =

∑
k αk sin(lk),

where k = nπ/(M + 1) for n from 1 to M , giving

αl = − 1

4(M + 1)

∑

k

sin(k) sin(lk)

(cos k − h)2 + sin2 k
. (184)

Comparing this with the exact result, Eq. (177), both expressions are identical if one replaces the system size L with
the string length M + 1. So even though the sum might be infinite, the real space variational result is cut off by the
length of the longest string used. Note that this implies that, when the system is not critical, the variational result for
the smallest strings should quickly approach the exact result once the longest string exceeds the correlation length.
This is consistent with our knowledge that longer strings are exponentially suppressed. However, close to the critical
point all the coefficients are equally important and not taking into account strings longer than M now strongly affects
physical quantities. Let us also emphasize that the variational ansatz coincides with the exact gauge potential for the
system of size M + 1, which differs from taking an exact result for the infinite chain and truncating it to the terms
with the range up to M . In Sec. III E 2 we will analyze physical implications of this difference between the variational
and the truncated exact solutions for state preparation.

3. Impurity in a Fermi gas

For our final example, let us consider a gas of spinless fermions on a one-dimensional lattice subject to an external
potential Vj(λ):

H = −
L/2∑

j=−L/2
(c†jcj+1 + h.c.) +

L/2∑

j=−L/2
Vj(λ)c†jcj ,

where c†j and cj are creation and annihilation operators and we assume open boundary conditions, though this is not

particularly important for our discussion. The potential can, for instance, be an isolated impurity Vj(λ) = λδj0 with
λ representing the strength of the potential or a moving impurity, Vj(λ) = V0(λ− j), where V0 is some potential that
slowly varies in space [24].

To find the exact gauge potential, we will again minimize the action S = Tr[G(X )2]. Because the Hamiltonian H is
real and non-interacting, the adiabatic gauge potential should be imaginary and non-interacting. So the exact ansatz
minimizing S should be

X = i
∑

j,k

αj,k

(
c†kcj − h.c.

)
, (185)

where the variational parameters αj,k = −αk,j are real and antisymmetric. While this ansatz is exact, it leads to
analytically intractable system of coupled linear equations, which can only be solved numerically. Instead we will
focus on the variational ansatz involving only local fermion hopping:

X = i
∑

j

αj

(
c†j+1cj − h.c.

)
. (186)

Explicitly evaluating the commutator of X with the Hamiltonian we find

G(X ) =
∑

j

(∂λVj − 2J∇αj) c†jcj + J
∑

j

∇αj(c†j+1cj−1 + c†j−1cj+1) +
∑

j

∇Vj+1αj(c
†
j+1cj + c†jcj+1), (187)

where ∇αj = αj−αj−1 and ∇Vj = Vj−Vj−1 stand for the lattice derivatives. As in the case of spins, the trace of any
operator involving odd number of fermions on any site is equal to zero. There are only two even fermion combinations

contributing to the action: Tr
[
c†jcj

]
= Tr

[
(c†jcj)

2
]

= 1. Then, up to terms independent of X , we have

S({αj})
2L−2

= const +
∑

j

(∂λVj − 2J∇αj))2
+ 2J2(∇αj)2 + 2(∇Vj+1)2α2

j

= const +
∑

j

(∂λVj)
2

+ 4Jαj∂λ (∇Vj+1) + 6J2 (∇αj)2
+ 2 (∇Vj+1)

2
α2
j . (188)
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Minimizing the action with respect to αj yields the following set of linear equations,

−3J2∆αj + (∇Vj+1)
2
αj = −J∂λ (∇Vj+1) , (189)

where ∆αj = αj+1 − 2αj + αj−1 is the discrete Laplace operator. This system can always be solved numerically by
standard methods or analytically in some special cases. If the potential Vj is smooth on the lattice scale, then discrete
derivatives can be replaced by continuous ones such that the equation above becomes

−3J2∂2
xα(x) + (∂xV (x, λ))

2
α(x) = −J∂λ∂xV (x, λ). (190)

A particularly simple solution can be found for the linear potential: Vj = λj. In this case ∇Vj = λ and one can
solve Eq. (189) by a simple ansatz:

αj = − J

λ2
. (191)

such that the variational gauge potential is the current operator:

A∗λ = −i J
λ2

(
c†j+1cj − h.c.

)
. (192)

This solution has to be modified near boundaries [see Exercise (III.8)].
Another limit, where Eqs. (189) and (190) can be solved explicitly corresponds to the weak potential Vj � J . In

this case one can ignore the quadratic term in these equations such that, e.g., Eq. (189) reduces to

−3J2∆αj = −J∂λ (∇Vj+1) . (193)

The solution can be expressed through the single-particle Green’s functions

αj =
1

3J

∑

j′

Γjj′∂λ (∇Vj′+1) , (194)

where

Γj,j′+1 − 2Γj,j′ + Γj,j′−1 = δj,j′ . (195)

Under Dirichlet boundary conditions for a system confined between −L/2 and L/2, the Green’s function is a triangle
(just like for the continuous Laplace equation) :

Γj,j′ =
jj′

L
+

1

2
|j′ − j| − L

4
. (196)

For the impurity potential Vj = λδj0 we thus get

A∗λ, imp =
i

6J

∑

j

(
|1 + j| − |j| − 2j

L

)
(c†j+1cj − c†jcj+1). (197)

While the overall amplitude of the Green’s function grows with system size, the gauge potential does not and obtains
a maximal strength of 1/6J around the impurity. Note however that, while the perturbation acts locally at site 0, the
variational gauge potential is highly non-local. It is this non-locality of the gauge potential together with the presence
of a Fermi-surface which is the cause of Anderson’s famous “orthogonality catastrophe,” as will be discussed in detail
in Sec. IV E 2.

Finally, if the potential is a weak perturbation, we can directly use perturbation theory to compute the gauge
potential. In this limit only the unperturbed energy and wave functions enter in the expression. Consequently for the
above example we find

Aλ = i
∑

k 6=q

〈k|∂λVj |q〉
εk − εq

c†kcq = i
∑

j,l

γj,l

(
c†j+lcj − c

†
jcj+l

)
(198)

where

γj,l =
1

2

∑

k 6=q

〈k|∂λVj |q〉
εk − εq

〈j + l|k〉 〈q|j〉 , (199)
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εk = −2J cos k, and |q〉 denotes the single particle eigenstates of the bare hopping Hamiltonian. Note that, in
contrast to our variational ansatz, the exact expression contains longer-range hopping terms. The length of the
hopping is denoted by l. For Dirichlet boundary conditions k = nπ/(L + 1), with n = 1, 2, . . . , L and 〈k|x〉 =√

2/L sin(k(x − L/2)). Unfortunately the sum in Eq. (199) can not simply be done analytically. By numerically
performing the sum for Vλ = λδj0 one readily verifies that the gauge potential vanishes for all even hopping terms,
i.e., γj,2n = 0 for all n. One also finds that the functional behavior of the nearest neighbor hopping term is identical
to the variational result, albeit with different prefactor γj,1 = 3/2αj . The suppression can be understood from the
counter-diabatic driving perspective; if one only has access to nearest neighbor terms, one can cancel excitations
caused by inserting the potential. This however generates unwanted next-nearest neighbor terms. Those are again
canceled out by next-next-nearest neighbor terms in the exact perturbative expression, but since they were not allowed
in the variational solution, they will suppress the amplitude of the gauge potential.

Exercise III.6. Consider the infinite temperature action for the free fermion problem in Eq. (138) with β = 0. Show
that this action is equivalent to Eq. (188). Observe that in the infinite temperature action only physical connected

terms show up, i.e., the contribution from the terms like c†jcjc
†
kck with j 6= k automatically cancels. Show also that

such terms are independent of X and thus the infinite temperature action is equivalent to Eq. (132).

Exercise III.7. Show that Eq. (192) in fact gives the exact expression for Aλ for the linear potential apart from
boundary terms. One can show this by adding the second nearest neighbor hopping to the variational ansatz in
Eq. (186) and showing that all coefficients are identically equal to zero. From this its is easy to prove that all higher
order hopping terms are zero as well.

Exercise III.8. Find the effect of the boundaries on the variational gauge potential in Eq. (192) in the continuum
limit. This can be done by solving Eq. (190) with open boundary conditions α(−L/2) = α(L/2) = 0. Show that if
λL� J , your result reduces to Eq. (192) except near the boundaries.

E. Variational gauge potentials for counter-diabatic driving and finding eigenstates

The variational gauge potentials have a broad range of applications both experimental and theoretical. In these
notes we will only touch upon a few such applications with the main goal to demonstrate the principle on relatively
simple setups. In this section we will discuss their applications to designing approximate counter-diabatic driving
protocols and finding approximate eigenstates of interacting systems. In the next section we will also briefly discuss
applications for finding the approximate geometric tensor characterizing the ground state manifold.

In Sec. II E we showed that adiabatic gauge potentials can be used to design counter-diabatic (transitionless) driving
protocols, which keep the system in exact instantaneous eigenstate of the Hamiltonian for any time evolution. It is
thus natural to expect that approximate gauge potentials can be used to suppress transitions between eigenstates and
hence reduce dissipation in the system. Below we will show how this works in practice for the same set of examples
we discussed above.

1. Two coupled spins

Consider the two-spin model from Eq. (139). Using the variational gauge potential restricted to single-spin terms,
we can construct a family of variational counter-diabatic protocols connecting eigenstates corresponding to different
values of the angle θ,

H∗CD = H(θ(t)) + θ̇A∗θ, (200)

where the gauge potential A∗θ is given by Eq. (144). For simplicity we will consider a linear time dependence θ(t) = vt,
choose h, Jz > 0, and focus on the ground state manifold. At t = 0 the magnetic field is pointing along the z axis and
the ground state is given by | ↑, ↑〉. Propagating this state with the Hamiltonian in Eq. (200) we can get approximate
eigenstates for any value of θ.

A particularly important limit of counter-diabatic driving corresponds to infinite velocity v →∞. In this case the
second term in the Hamiltonian in Eq. (200) clearly dominates the time evolution and the Schrödinger equation can
be rewritten as

i
dψ(θ)

dt
= θ̇A∗θψ(θ) (201)
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Using the chain rule dψ/dt = θ̇dψ/dθ, we can rewrite this equation as

i
dψ(θ)

dθ
= A∗θψ(θ). (202)

Thus we see that the variational gauge potential serves as an approximate Hamiltonian generating adiabatic evolu-
tion in the coupling space. This is of course not surprising as the exact Aθ is precisely the generator of adiabatic
transformations. So the family of counter-diabatic Hamiltonians is nothing but interpolation between infinitesimally
slow adiabatic evolution with the original Hamiltonian and the fast evolution with only the gauge potential acting on
the system.

For the initial state |ψ1(0)〉 = | ↑, ↑〉 and the variational gauge potential given by Eq. (144) we can solve Eq. (202)
analytically to get

|ψ∗1(θ)〉 = (cosβθ | ↑〉+ sinβθ | ↓〉)⊗ (cosβθ | ↑〉+ sinβθ | ↓〉) , (203)

where

βθ =
θ

2

h2

h2 + J2
z

Likewise propagating the remaining two eigenstates in the symmetric sector |ψ2〉 = (| ↑↓〉+ | ↓↑〉)/
√

2 and |ψ3〉 = | ↓↓〉
according to Eq. (202) we obtain:

|ψ∗2(θ)〉 = cos(2βθ)
| ↑↓〉+ | ↓↑〉√

2
− sin(2βθ)

| ↑↑〉+ | ↓↓〉√
2

, |ψ∗3(θ)〉 = (cosβθ | ↓〉 − sinβθ | ↑〉)⊗ (cosβθ | ↓〉 − sinβθ | ↑〉) .
(204)

Clearly the variational solution violates the periodicity of the ground state manifold with respect to θ. For this
reason it is not equivalent to the standard variational ansatz for |ψ(θ)〉, which minimizes the energy. Nevertheless the
counter-diabatic propagation has a clear advantage that it allows us to construct the whole manifold of eigenstates,
which is beyond conventional variational methods. If we are interested only in ground state optimization, then one
could use the zero-temperature norm for minimizing the action according to Eq. (138). This, however, yields a non-
linear minimization problem because the ground state wave function itself depends on the variational parameters, and
hence goes beyond the scope of these notes.

2. Transverse field Ising model

The same story of course applies to the transverse field Ising model which we briefly studied as the γ = 1 and
φ = 0 limit of the XY model (see Eq. (167) above). This example is analytically tractable, which makes it a nice
system to study the convergence properties of these approximate counter-diabatic drives and eigenstate preparation
protocols. It is again quite natural to try to prepare the ground state out of a fully polarized state, which in this
model corresponds to the ground state of the system at infinite magnetic field, denoted |ψ(∞)〉. One can generate
the ground state at arbitrary h out of this by simply applying the appropriate gauge field to it, i.e.,

|ψ(hf )〉 = U(hf ,∞) |ψ(∞)〉 where U(hf , hi) = exp

(
−i
∫ hf

hi

dhAh
)

(205)

and Ah is given by Eq. (177). Note that in general the exponential needs to be path-ordered but in this case the gauge
potentials at different values of the magnetic field commute, which follows from the fact that the variational gauge
potential can be represented in momentum space as a sum of commuting σyk Pauli matrices [cf. Eq. (173)] in the Ising
φ = 0 limit. By replacing Aλ by an approximation A∗λ we arrive an approximate ground state of our model |ψ∗(hf )〉.
In order to establish how well we can approximate the ground state by this procedure using A∗h from Sec. III D 2
we look at two observables, namely the density of excitations on top of the ground state, which is proportional to
the logarithm of the fidelity of the wave function [37], and the fluctuations in the energy. Both are clearly positive
quantities that vanish only when we recover the exact ground state. In Figs. 6 and 7 we show results for preparing a
state at hf = 2 and hf = 0. We first note that there is a stark contrast between the two; for example, the variational
expansion converges exponentially for hf = 2 while it only converges algebraically for hf = 0. This is immediately
linked to the presence of a critical point at h = 1 (see Sec. IV B 3), which results in slower convergence due to the
Kibble-Zurek mechanism for protocols like hf = 0 that cross it [38–41]. However, as long as the Hamiltonian remains
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FIG. 6: Momentum-resolved excitations above the ground state given by applying the variational state preparation method
[Eq. (205)] starting from the fully polarized ground state at h = ∞ and integrating the variational gauge potential down to
hf = 2 (a) or hf = 0 (b). The variational gauge potential is truncated at maximum string length M , where M = 0 corresponds
to A∗h = 0, i.e., no change of the initial wave function. Excitations are clearly much higher for hf = 0 because the system must
cross a critical point at h = 1. Solid lines correspond to the variational gauge potential from Eq. (184), while dashed lines
correspond to truncating the exact adiabatic gauge potential from Eq. (177).
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FIG. 7: Dependence of variational preparation on string length M . (a) Excitations integrated over momenta as a function of
M . Excitations die off exponentially in M if one stays in the same phase (hf = 2) but become a power law upon crossing the
phase transition (hf = 0). (b) Energy fluctuations of the variational ground state, showing the same behavior as the excitations
in (a). The ground state preparation procedure is the same as in Fig. 6, where again solid lines use the variational and dashed
lines use the truncated exact adiabatic gauge potential.

gapped, the expansion converges exponentially. Secondly we see that the variational expansion performs as well as a
truncated form of the exact result, which is obtained by removing all strings of length greater than M from the exact
adiabatic gauge potential (dashed lines in Figs. 6 and 7). While one approximation has slightly more excitations, the
other has a lower energy variance, as can be understood from Fig. 6. Abrupt truncation of the string expansion in
real space results in oscillations in k-space which show up in the excitation probability. The variational result suffers
much less from this but in turn has a slightly broader distributions at low energy. As a result, truncating the exact
result causes fewer excitations overall than the variational result, but the excitations that exist cause larger energy
fluctuations because they are higher momentum.

3. Non-integrable Ising model

We can try exactly the same procedure to prepare ground states of the non-integrable Ising spin chain discussed in
Sec. III D 1. It is particularly interesting to prepare states at different angles θ out of the eigenstates at θ = 0, since
the Hamiltonian is diagonal in σz basis at that point and the eigenstates are trivial product states. The results of
attempting to prepare arbitrary excited states in this strongly interacting model are shown in Fig. 8, specifically looking
at the energy fluctuations of a given variational eigenstate in the final Hamiltonian. A few trends are clear. First, as the
number of spin terms included in A∗θ – which we denote M – is increased, the average energy fluctuations of any given
state decrease. This implies that the variational eigenstates are confined to narrower and narrower microcanonical
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FIG. 8: Energy fluctuations in the variational eigenstates of the Ising model at θ = π/2 after evolving them out of σz product
states at θ = 0 according to Eq. (202) using the variational gauge potential A∗θ (see Sec. III D 1). Results are shown for chain
of 14 spins with J = 1 and h = 2. The red dots are the results for a single-spin variational gauge potential and the blue dots
show the result for the two-spin ansatz. The black line is the energy variance for the initial eigenstates at θ = 0, which is
independent of the state chosen within the σz eigenbasis.

energy shells. Similarly, the eigenstate-to-eigenstate fluctuations of the energy variance decrease with M as well, which
is consistent with the expectation from the eigenstate thermalization hypothesis. The latter is relevant even though
the final Hamiltonian at θ = π/2 is integrable because the protocol passes through non-integrable Hamiltonians for
θ ∈ (0, π/2). Thus, it is impossible to target individual eigenstates with local counter-diabatic driving. At best
one can hope to suppress energy fluctuations while populating all states within the relevant microcanonical shell, as
confirmed by the data. Finally, we note that the energy fluctuations on average decrease as a function of the target
energy density. This is perhaps not surprising, as the ground state will generally be much easier to target for this
gapped protocol than eigenstates in the middle of the spectrum. Interestingly, there is no downturn at large energy
densities, despite the fact that entropy density also decreases on that end of the spectrum and one might expect to
easily prepare the maximally excited state. We leave further analysis of such state preparation in strongly interacting
systems for future work.

IV. GEOMETRY OF STATE SPACE: FUBINI-STUDY METRIC AND BERRY CURVATURE

Key concept: The geometry of the wave function in parameter space can be characterized by the geometric tensor,
which is the covariance matrix of the gauge potentials. Its symmetric and antisymmetric parts define the Fubini-Study
metric and the Berry curvature respectively. One can generalize these to classical systems using their representation
as two-time correlation functions.

A. Geometry of the quantum ground state manifold

Up till now, we have treated quantum and classical systems on an equal footing. In this section we will mostly focus
on the geometric properties of the ground state manifold in quantum systems. For this reason, with the exception of
Sec. IV D, we restrict our discussion to the quantum case. We will return to classical systems later in the notes when
we discuss non-adiabatic dynamical response.

The first notion of the quantum geometric tensor appeared in 1980 in Ref. [42]. Formally the geometric tensor is
defined on any manifold of states smoothly varying with some parameter λ: |ψ0(λ)〉.[167] For now we will be primarily
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interested in the family of ground states of some Hamiltonian. We will assume that the ground state is either non-
degenerate or, in the case of degeneracy, ground states are not connected by the matrix elements of generalized force
operators Mα ≡ Mλα = −∂H/∂λα. The geometric tensor naturally appears when one defines the “distance” ds
between nearby states |ψ0(λ)〉 and |ψ0(λ + dλ)〉:

ds2 ≡ 1− f2 = 1− |〈ψ0(λ)|ψ0(λ + dλ)〉|2, (206)

where f = |〈ψ0(λ)|ψ0(λ + dλ)〉| is the so called fidelity of the ground state. Note that 1 − f2 is always positive.
Therefore, the Taylor expansion about dλ = 0 does not contain any first order terms in dλ, and starts with a quadratic
term:

ds2 = dλαχαβdλβ +O(|dλ|3), (207)

where χαβ is as object known as the geometric tensor. To find this tensor explicitly let us note that 1− f2 is nothing
but the probability to excite the system during a quantum quench where the parameter suddenly changes from λ to
λ + dλ. In other words, f2 is simply the probability to remain in the new ground state after this quench, which is
conserved under time evolution after the quench. The amplitude of going to the excited state |ψn〉 is

an = 〈ψn(λ + dλ)|ψ0(λ)〉 ≈ dλα〈n|
←−
∂ α|0〉 = −dλα〈n|∂α|0〉, (208)

where the arrow over the derivative indicates that it acts on the left (derivatives without arrows implicitly act to the
right). To shorten the notations, we introduce ∂α ≡ ∂λα and |n〉 ≡ |ψn(λ)〉. Recall that [see Eq. (60)][168]

i〈n|∂α|m〉 = 〈n|Aα|m〉. (209)

Thus we see that the amplitude of going to the excited state at leading order in dλ is proportional to the matrix
element of the gauge potential

an = −dλα〈n|∂α|0〉 = i〈n|Aα|0〉dλα . (210)

Therefore the probability of transitioning to any excited state is given by taking a sum over n 6= 0:

ds2 =
∑

n 6=0

|a2
n| =

∑

n 6=0

dλαdλβ〈0|Aα|n〉〈n|Aβ |0〉+O(|dλ|3) = dλαdλβ〈0|AαAβ |0〉c +O(|dλ|3), (211)

where the subscript c implies that we are taking the connected correlation function (a.k.a. the covariance):

〈0|AαAβ |0〉c ≡ 〈0|AαAβ |0〉 − 〈0|Aα|0〉〈0|Aβ |0〉. (212)

This covariance precisely determines the geometric tensor introduced by Provost and Vallee [42]:

χαβ ≡ 〈0|AαAβ |0〉c. (213)

In terms of many-body wave functions the geometric tensor can be expressed through the overlap of derivatives:

χαβ = 〈0|←−∂ α∂β |0〉c = 〈∂αψ0|∂βψ0〉c = 〈∂αψ0|∂βψ0〉 − 〈∂αψ0|ψ0〉〈ψ0|∂βψ0〉. (214)

When ~ is not set to unity, the two definitions of the geometric tensor in Eqs. (213) and (214) differ by a factor of
~2 as Aα = i~∂α. We will stick to Eq. (214) as the fundamental one because in this way it is always related to the
distance between wave functions. The last term in this expression is necessary to enforce invariance of the geometric
tensor under arbitrary global phase transformations of the wave function, ψ0(λ) → exp[iφ(λ)]ψ0(λ), which should
not affect the notion of the distance between different ground states.

Exercise IV.1. Consider the global phase transformation ψn(λ) → exp[iφn(λ)]ψn(λ) where φn(λ) are smooth func-
tions defined over the entire parameter manifold for each eigenstate ψn. What is the effect of this transformation on
the gauge potential A? Show that the ground state geometric tensor χαβ is invariant under this gauge transformation.

Note that in general the geometric tensor is not symmetric. Indeed because the operators Aα are Hermitian one
can show that χ is also Hermitian:

χαβ = χ∗βα. (215)
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Only the symmetric part of χαβ determines the distance between the states; in the quadratic form

ds2 = dλαχαβdλβ

one can always symmetrize the indexes α and β so that the antisymmetric part drops out. Nevertheless, both the
symmetric and the anti-symmetric parts of the geometric tensor are very important. The symmetric part,

gαβ =
χαβ + χβα

2
=

1

2
〈0|(AαAβ +AβAα)|0〉c = <〈0|AαAβ |0〉c (216)

is called the Fubini-Study metric tensor.[169] The antisymmetric part of the geometric tensor defines the Berry
curvature

Fαβ = i(χαβ − χβα) = −2=χαβ = i〈0|[Aα,Aβ ]|0〉 , (217)

which we introduced earlier. The Berry curvature plays a crucial role in most known quantum geometric and topo-
logical phenomena.

Let us note that the Berry curvature can be expressed through the derivatives of the Berry connections:

Fαβ = ∂αAβ − ∂βAα, (218)

where the Berry connection,

Aα = 〈0|Aα|0〉 = i〈0|∂α|0〉 , (219)

is just the ground state expectation of the gauge potential. One can easily check this through direct differentiation:

∂αAβ − ∂βAα = i〈0|←−∂ α∂β |0〉 − i〈0|
←−
∂ β∂α|0〉+ i〈0|∂2

αβ |0〉 − i〈0|∂2
βα|0〉 = i(χαβ − χβα) . (220)

It is well known that the Berry connection is directly related to the phase of the ground state wave function. Indeed
if the wave function in position space, can be written as

ψ0 = |ψ0(r,λ)| exp[iφ(λ)] (221)

we find that

Aα = −
∫
dr|ψ0|2∂αφ = −∂αφ. (222)

Therefore the integral of Aα over a closed path C represents the total phase (Berry phase) accumulated by the wave
function during the adiabatic evolution[1, 43]

ϕB =

∮

C
∂αφdλα = −

∮

C
Aαdλα . (223)

By Stokes’ theorem, the same phase can be represented as the integral of the Berry curvature over the surface enclosed
by the contour C,

ϕB =

∫

S

Fαβdλα ∧ dλβ , (224)

where the wedge product implies that the integral is directed.
To get an intuition about the Berry curvature and the metric tensor let us consider two simple examples. First,

following the original paper by Berry, let us consider the Aharonov-Bohm geometry (Fig. 9) [44, 45], namely a particle
confined in a deep potential in the presence of a solenoid. The Hamiltonian for this system is

H =
(p− eΛ(r))

2

2m
+ V (r−R), (225)

where Λ is the electromagnetic vector potential (we use Λ to avoid the confusion with the Berry connection) and
V (r − R) is a confining potential near some point R outside the solenoid, where there is no magnetic field. For
example, one can choose V (r) = mω2r2/2, which is simply the potential of a two-dimensional harmonic oscillator.
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FIG. 9: Illustration of Aharonov-Bohm geometry being considered.

Far from the solenoid, there is no magnetic field. Hence ∇ ×Λ = 0, which implies that the vector potential can be
written as a gradient of the magnetic potential Φ (cf. Ref. [46]):

Λ = ∇Φ⇒ Φ(r,R) =

∫ r

R

Λ(r′) · dr′ .

Because the vector potential is curl-free, the integral does not depend on the path, so the path can be a straight
line. In principle, the lower limit of integration is arbitrary and does not have to be tied to R. With this choice,
however, it is guaranteed that whenever r is close to R, the path does not cross the solenoid and thus does not
break the curl-free requirement. One can easily check by explicitly plugging in the following functional form into the
Schrödinger’s equation that the vector potential can be locally eliminated by a gauge transformation:

ψ0(r) = ψ̃0(r−R) exp [ieΦ(r,R)] . (226)

Then the Hamiltonian for ψ̃ becomes independent of the vector potential and thus the wave function ψ̃0, which is the
ground state in the absence of the vector potential, can be chosen to be real. In this case the Berry connection with
respect to the position of the trap R is, as we just discussed, the derivative of the phase with respect to R:

AR = −e∂RΦ = e∂rΦ = eΛ(r). (227)

More accurately one needs to average the vector potential over the wave function ψ̃(r − R), but assuming that
it is localized near R, the averaging simply reduces to Λ(R). Then the Berry phase for a cyclic path R(t) is
ϕB =

∮
A · dR = 2πΦM/Φ0 if the path surrounds the solenoid, and zero if it does not, where Φ0 = 2π~/e is the flux

quantum of the electron. This follows directly from ΦM =
∮

Λ(R) · dR and the definition of the flux quantum with
reinserted Planck’s constant.

From the above arguments we see that, up to fundamental constants, the Berry connection plays the role of the
vector potential, hence the Berry phase assumes the role of the Aharonov-Bohm phase and the Berry curvature (curl
of the Berry connection) plays the role of the magnetic field. We summarize this analogy in Table I. Note that the
Berry curvature is more generally written as the arbitrary-dimensional curl, Fαβ = ∂αAβ − ∂βAα, which is equivalent
to representing the magnetic field as the off-diagonal components of the electromagnetic field-strength tensor. This
analogy is very useful when we think about general parameter space and, as we will see later, this analogy is not
coincidental. For example, we will see that like the magnetic field, the Berry curvature is the source of a Lorentz
force.

Unlike the Berry phase/curvature, in this example the metric tensor depends on details of the trapping potential
V (r). This is readily seen by considering that the particle is bound within some radius `� R (for instance ` ∼ 1/

√
mω

for the harmonic oscillator). If we move the trap away from the solenoid by an amount ∆R such that R � ∆R � `

the phase independent wave function ψ̃0(r −R) will rapidly change such that ψ̃0(r −R) and ψ̃0(r −R −∆R) will
become almost orthogonal, while the phase φ will stay almost constant. So the metric tensor only slightly depends on
the flux through the solenoid and instead strongly depends on how the ground state of V changes with the position
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Electromagnetism Quantum geometry

Vector potential
A(x)

Berry connection
A(λ) = i〈ψ0(λ)|∇λψ0(λ)〉

Magnetic field/EM tensor
Fab(x) = ∂xaAb(x)− ∂xbAa(x) =

∑
c εabcBc

Berry curvature
Fµν(λ) = ∂λµAν(λ)− ∂xνAµ(λ)

Aharonov-Bohm phase
ϕAB =

∮
A(x) · dx

Berry phase
ϕB =

∮
A(λ) · dλ

TABLE I: Comparison between electromagnetism and ground state (Berry) geometry in quantum mechanics. εabc is the
Levi-Civita symbol.

R. For the isotropic harmonic oscillator, one easily sees that the metric tensor is isotropic:

gRxRx = gRyRy = 〈AxAx〉c = 〈p2
x〉c = 〈p2

x〉 =
mω

2
. (228)

Going along a path, cyclic or not, one can define an invariant dimensionless length

Lg =

∮
ds =

∫
dt

√
gαβṘαṘβ = L

√
mω

2
, (229)

where L =
∫
|Ṙ|dt is the length of the path in real space. Loosely speaking this length measures the number

of orthogonal ground states traversed along the path. A less hand-wavy interpretation of Lg is found in quantum
information theory, where this distance may be related to the number of distinguishable states traversed for an optimal
finite-strength measurement of the quantum system (cf. Eq. 3 in [47]). We will show in Sec. IV A 2 that the length
Lg also sets the minimum time required to move the particle around the solenoid without exciting it.

Let us now analyze the geometry of another simple system, which we already encountered earlier: the quantum
spin-1/2 in a magnetic field. As before, we choose parameters to be the angles θ and φ of the magnetic field. As a
reminder, ground and excited states are [see Eq. (2)]

|g〉 =

(
cos(θ/2)

eiφ sin(θ/2)

)
, |e〉 =

(
sin(θ/2)

−eiφ cos(θ/2)

)
. (230)

Direct evaluation of the geometric tensor for the ground state gives

χθθ = 〈∂θg|∂θg〉 − 〈∂θg|g〉〈g|∂θg〉 =
1

4
, χφφ =

1

4
sin2(θ), χθφ =

i

4
sin(θ) . (231)

These expressions can also be obtained by calculating the covariance matrix of the gauge potentials,

Aθ = i∂θ = −1

2
τy, Aφ = i∂φ =

1

2

(
σz − 1

)
=

1

2

(
τz cos θ + τx sin θ − 1

)
, (232)

which are generators of rotations in the θ and φ directions. Here the Pauli matrices τ are rotated to act in the basis
of instantaneous eigenstates, e.g., 〈e|τx|g〉=1. In this instantaneous basis the Hamiltonian is H = −hτz (see Fig. 10).
The equations above generalize to particles with arbitrary spin where instead of spin one-half operators like τy/2, one
uses the angular momentum operator Sy.

From the expression for the geometric tensor we see that the non-zero metric tensor components are

gθθ =
1

4
, gφφ =

1

4
sin2 θ, (233)

and the Berry curvature is

Fθφ = ∂θAφ − ∂φAθ =
1

2
∂θ cos(θ) = −1

2
sin(θ) = −Fφθ . (234)

Note that the Fubini-Study metric for this model is equivalent to the metric of a sphere of radius r = 1/2. It is
interesting to note that for the excited state the metric tensor is the same while the Berry curvature has an opposite
sign.
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FIG. 10: Comparison of instantaneous eigenbasis (τ) with the original one (σ). Rotations in the θ (φ) direction correspond to
rotations about the −y′ (z) axes, which are generated by −τy/2 and σz/2 respectively.

Exercise IV.2. Calculate the covariance matrix of the spin-1/2 gauge potentials [Eq. (232)] and show that it gives the
correct values for the geometric tensor.

Exercise IV.3. Find the geometric tensor of the shifted harmonic oscillator [Eq. (18)] using the gauge potentials
Ax0

= p̂+ p0 and Ap0
= −x [Eq. (20)].

1. Relation to dissipative Kubo response

The notion of distance between wave functions is very simple and intuitive but not directly measurable. However,
we will now show that the geometric tensor can be related to a standard Kubo susceptibility. Specifically it can be
expressed through the unequal time correlation functions of physical operators in both real and imaginary times. We
start by taking the geometric tensor in the so-called Kallen-Lehmann representation [48, 49],

χαβ =
∑

n 6=0

〈0|Aα|n〉〈n|Aβ |0〉 =
∑

n 6=0

〈0|∂αH|n〉〈n|∂βH|0〉
(En − E0)2

, (235)

where the second equality follows from Eq. (63) and we assumed that the ground state is not degenerate. Let us use
the following standard trick to connecting the Kallen-Lehmann representation of some observable to its unequal time
correlation functions:

1

(En − E0)2
=

∫ ∞

−∞
dω

1

ω2
δ(En − E0 − ω) =

∫ ∞

−∞

dω

ω2

∫ ∞

−∞

dt

2π
e−i(En−E0−ω)t. (236)

We can always add exp[−ε|t|] to this integral to ensure convergence. Next we note that

〈0|eiE0t∂αHe−iEnt|n〉 = 〈0|∂αH(t)|n〉 (237)

is the matrix element of the operator ∂αH in the Heisenberg representation. Plugging this into Eq. (235) we find

χαβ =

∫ ∞

−∞

dω

2π

Sαβ(ω)

ω2
=

∫ ∞

0

dω

2π

Sαβ(ω) + Sαβ(−ω)

ω2
, (238)
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where

Sαβ(ω) =

∫ ∞

−∞
dteiωt〈0|∂αH(t)∂βH(0)|0〉c. (239)

This object Sαβ(ω) is just the Fourier transform of the observables’ fluctuations. It is intricately related to standard
Kubo linear response susceptibilities εαβ through the fluctuation-dissipation relation, which for the ground state
reads [50] (see also Appendix A):

Sαβ(ω) =

{
2ε′′αβ(ω) ω > 0

0 ω < 0.
(240)

In particular this relation implies that

gαβ =

∫ ∞

0

dω

2π

ε′′αβ(ω) + ε′′βα(ω)

ω2
. (241)

Thus the metric tensor can be directly measured from the symmetric part of ε′′αβ(ω), which defines fluctuations (noise)

and energy absorption [50]. As we will discuss in detail in Sec. V A, the Berry curvature Fβα defines the Coriolis (or
the Lorentz) force in parameter space. So it can be measured directly through the linear response of the generalized
force Mβ to the ramp rate of the parameter λα. We note that a similar formula was derived independently in Ref. [51].
For the special case of Bloch electrons, Neupert et al. have proposed using current fluctuations to measure the metric
tensor as well [52].

2. Information theory and quantum speed limits

Before moving on to global (topological) aspects of the geometric tensor, we would like to point out another
important area where the metric tensor emerges naturally, namely quantum information theory. In that field, often
going by the name quantum Fisher information or fidelity susceptibility, the metric tensor plays a fundamental role
in information-theoretic distinguishability of states. One particularly important aspect of this is quantum parameter
estimation, where it can be shown that the metric tensor sets a fundamental bound on the ability to determine an
unknown parameter in the system [53–55]. Therefore the ability to measure the metric tensor through fluctuations in
quantum systems provides an important link between the theory of quantum information and practical experimental
systems. As we mentioned above, this allows us to interpret the distance between states defined by this metric in
terms of distinguishable states traversed for an optimal finite-strength measurement of the quantum system.

Optimal measurements are intricately connected to optimal control, which we will now show provides a fundamental
“quantum speed limit” on the ability of counter-diabatic driving or other similar protocols to drive the system between
two states [56]. Let us first make a general remark explaining what we mean by the speed limit. Consider a counter-
diabatic protocol, which brings the system from initial state |ψi〉 to the target state |ψf 〉 with 100% fidelity in time
t∗. It is clear that we can always scale the Hamiltonian by an arbitrary factor and reduce the time of the protocol by
the same factor. So in order to define the maximum speed we have to fix the norm of the Hamiltonian or equivalently
define the proper time. In order to do this, let us first rewrite the Schrödinger equation in dimensionless form:

i~
dψ

dt
= ||HCD||

HCD

||HCD||
ψ ⇐⇒ i

dψ

d`
=
HCD

||HCD||
ψ, where d` =

||HCD||dt
~

. (242)

Here ||HCD|| is the norm of the counter-diabatic Hamiltonian. As earlier we will stick to the Frobenius norm:

||HCD|| =
√

Tr[H2
CD]. Note that the evolution with respect to ` happens with the unit norm Hamiltonian and thus

is not affected by rescaling HCD. Now the problem of finding the minimum length `∗:

`∗ =
1

~

∫ tf

ti

||HCD(t)||dt (243)

becomes non-trivial and defines the intrinsic speed limit. Note that `∗ is the intrinsic dimensionless length associated
with the time evolution. We can only convert it into a physical time τ∗ in the lab if we fix the norm of the Hamiltonian
HCD to whatever value is appropriate for our laboratory setup. If we consider a setup in which the norm is restricted
to ||HCD|| < ~ω, then the quantum speed limit is simply

τ∗ =
`∗

ω
=

1

~ω

∫ tf

ti

||HCD(t)||dt. (244)
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Using the explicit form of the counter-diabatic Hamiltonian, HCD = H+ λ̇Aλ, and changing the integration variables
from t to λ in the definition of time, we see that

`∗ =
1

~

∫ λf

λi

dλ

∥∥∥∥
H
λ̇

+Aλ
∥∥∥∥ . (245)

The gauge potential can be always chosen to be orthogonal to the Hamiltonian in the sense that ||H + aA||2 =
||H||2 + a2||A||2, which follows from gauge invariance of A upon subtracting any terms commuting with (parallel to)
H. Now we trivially see that among all counter-diabatic protocols the shortest evolution is realized in the limit of
infinite velocity λ̇ → ∞, where the system is evolved with only the gauge potential Aλ. This result is in fact very
intuitive for some of the simple examples we analyzed earlier. For instance, consider a single spin in a magnetic field
pointing initially along the z-axis, which we want to rotate in the xz-plane. The result we just discussed states that
the fastest way to perform this rotation is to apply a magnetic field in the y-direction, which is the gauge potential
in this case, and allow the spin to rotate by the desired angle. If the norm of the Hamiltonian is fixed (or bounded
from above) then this evolution gives the fastest possible protocol to reach the desired ground state.

The above expression for the quantum speed limit bears a strong resemblance to the Fubini-Study metric tensor
gλλ. This metric tensor defines the norm of the gauge potential ||A||20. The only difference of this norm with the
Frobenius norm is that instead of using the trace we are averaging A2 with respect to the ground state (〈0|A|0〉 is
zero for A orthogonal to H). Alternatively one can define A′ = AP0 + P0A, where P0 is the projector to the ground
state manifold and note that 2||A||20 = ||A′||2. Clearly A′ has exactly the same effect on counter-diabatic driving as
A if we are only interested in adiabatically following the ground state. Combining this discussion with Eq. (245), we
see that the minimum time for the counter-diabatic protocol with restricted norm is

τmin =
1

ω

∫ λf

λi

√
gλλdλ. (246)

This is nothing but the length of the segment connecting two points λi and λf in a curved manifold divided by norm
of the maximum allowed Hamiltonian norm.

It is now straightforward to extend the analysis above to the multi-parameter space λ. For any particular path
λ(t) we already established that the minimum time is given by Eq. (246), where the integration is taken along this
path. If we now minimize the time τmin we obtain that the shortest protocol corresponds to the counter-diabatic drive
along the geodesic and the shortest time is set by the geodesic length:

τmin =
1

ω
min

∫ √
gαβ dλα dλβ . (247)

With this observation we will stop our brief detour into this very interesting and important topic, which goes beyond
the scope of these notes and which contains many open questions. The main purpose of a rather brief discussion
here was to highlight deep connections between problems of counter-diabatic driving, optimum state preparation and
geometry of the ground state manifold which we now discuss in much more detail.

B. Topology of the ground state manifold

The geometric properties derived above give a local description of the wave functions living on the parameter
manifold. From these local geometric properties, one can derive robust global properties of the manifold, i.e., its
topology. In this section, we will discuss two types of topology that can be defined on the geometric tensor: the
Chern number, which describes how the wave function wraps a closed parameter manifold via integrating the Berry
curvature, and the Euler characteristic, which describes the topological shape of the Riemannian manifold encoded
in the metric tensor.

As the Chern number has been extensively discussed in literature in many different contexts, we will mention it
rather briefly and will concentrate more on the Euler characteristic, which has been discussed much less with respect
to physical systems. We will also focus exclusively on two-dimensional manifolds, since the geometry and topology of
higher-dimensional manifolds is much more complex and is often understood through various two-dimensional cuts.
Please note that this section closely follows Ref. [57], and we refer interested readers there for more details.
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1. Basic definitions: Euler characteristic and Chern number

The Euler characteristic of a (possibly open) manifold M is an integer equal to the integrated Gaussian curvature
over the manifold with an additional boundary term:

ξ(M) =
1

2π

[∫

M
KdS +

∮

∂M
kgdl

]
. (248)

A standard notation for the Euler characteristic is χ, but because we used this symbol for the geometric tensor, we
will use ξ instead. The two terms on the right side of Eq. (248) are the bulk and boundary contributions to the Euler
characteristic of the manifold. We refer to the first term,

ξbulk(M) =
1

2π

∫

M
KdS , (249)

and the second term,

ξboundary(M) =
1

2π

∮

∂M
kgdl , (250)

as the bulk and boundary Euler integrals, respectively. These terms, along with their constituents – the Gaussian
curvature (K), the geodesic curvature (kg), the area element (dS), and the line element (dl) – are geometric invariants,
meaning that they remain unmodified under any change of variables. More explicitly, if the metric is written in first
fundamental form as

ds2 = Edλ2
1 + 2Fdλ1dλ2 +Gdλ2

2 , (251)

then these invariants are given by

K =
1√
g

[
∂

∂λ2

(√
g Γ2

11

E

)
− ∂

∂λ1

(√
g Γ2

12

E

)]

kg =
√
gG−3/2Γ1

22

dS =
√
gdλ1dλ2

dl =
√
Gdλ2 , (252)

where kg and dl are given for a curve of constant λ1. The metric determinant g and Christoffel symbols Γkij are

g = EG− F 2 (253)

Γkij =
1

2
gkm (∂jgim + ∂igjm − ∂mgij) , (254)

where gij is the inverse of the metric tensor gij . As we see, the explicit expressions for the Euler characteristic are
quite cumbersome, but they are known and unique functions of the metric tensor. A simple intuitive understanding of
the Gaussian curvature of a two-parameter manifold comes from embedding the manifold in three dimensions. Then

K =
1

R1R2
,

where R1 and R2 are the principal radii of curvature, i.e., the minimal and the maximal radii of the circles touching
the surface (see Fig. 11). The geodesic curvature is the curvature of the boundary projected to the tangent plane,
and is zero for a geodesic as the projection of the latter is locally a straight line. Thus, for example, the geodesic
curvature of a great circle on a sphere is zero. For manifolds without boundaries like a torus or a sphere, the Euler
characteristic simply counts the number of holes in the manifold. Thus for a sphere the Euler characteristic is ξ = 2,
for a torus ξ = 0, and each additional hole gives an extra contribution of −2.

Another important topological invariant is the (first) Chern number, which is defined through the Berry curvature.
To understand where it comes from, let us consider a closed manifold as shown in Fig. 12 and choose an arbitrary
closed contour on that sphere like the dashed line. Let us compute the Berry phase (flux) along this contour by two
ways:

ϕtop
B =

∫

Stop

Fαβ dλα ∧ dλβ , ϕbottom
B = −

∫

Sbottom

Fαβ dλα ∧ dλβ , (255)
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FIG. 11: Illustration of the principle radii R1 and R2 of a two dimensional manifold embedded in three dimensions.

✓
h?

h

FIG. 12: Schematic representation of the spin in an external magnetic field, where the angles of the magnetic field θ and φ are
the parameters. Figure reproduced with permission from Ref. 58.

where the minus sign in the second term appears because the top and bottom surfaces of the sphere bounded by the
curve have opposite orientations with respect to this curve. Recall that ϕB represents the physical phase acquired by
the wave function during the (adiabatic) motion in the parameter space. Since the wave function is unique the two
phases should be identical up to an overall constant 2πn. Thus we find that

2πn = ϕtop
B − ϕbottom

B =

∮

S

Fαβ dλα ∧ dλβ (256)

The integer n is precisely the Chern number C1 so we get

C1 =
1

2π

∮

S

Fαβ dλα ∧ dλβ . (257)

Some intuition for the meaning of the Chern number can be obtained by returning to our electromagnetic analogy.
We’ve seen that the Chern number is proportional to the Berry flux through a closed manifold S in parameter space,
which by Gauss’s law for magnetism suggests that C1 ∝ qm, the effective magnetic charge enclosed by the manifold.
Indeed, it is known that if magnetic monopoles exist, they must be quantized [59], which directly gives quantization
of the Chern number. Berry showed that isolated degeneracies could act as sources of Berry curvature, and it is
precisely the flux from these degeneracies that give rise to this topological invariant.
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2. Geometry and topology of a quantum spin-1/2

As our first example of these types of topology, let’s pick up on the spin-1/2 in a magnetic field from the previous
section. As before, the two-dimensional parameter space corresponds to the angles (θ, φ) of the magnetic field with
fixed magnitude, whose geometric tensor is given in Eq. (231). The diagonal real components of the geometric tensor
χθθ = gθθ = 1/4 and χφφ = gφφ = 1/4 sin2(θ) define a Riemannian metric which coincides with that of the sphere of
the radius 1/2 and constant Gaussian curvature K = 4. The imaginary off-diagonal component of χ gives the Berry
curvature: Fφθ = 1/2 sin(θ). Thus we see that the Euler invariant and Chern number are:

ξ =
1

2π

∫
KdS =

1

2π
4

∫ √
g dθdφ = 2 (258)

C1 =
1

2π

∫
Fφθ dφ ∧ dθ = 1. (259)

The Euler characteristic implies that the metric topology of the spin-1/2 ground state in a rotating field is that of a
sphere and the Chern number tells us that the wave function (i.e., the Bloch vector) “wraps” once if we adiabatically
change the magnetic field over a full spherical angle. We can think of this Chern number as sourced by the degeneracy
at magnetic field equal to zero, which our magnetic field sphere clearly encloses.

The example above can be generalized to an arbitrary spin S in a magnetic field. The result is very simple: the
spin-1/2 metric tensor is simply multiplied by 2S:

χθθ =
S

2
, χφφ =

S

2
sin2(θ), χθφ =

iS

2
sin(θ). (260)

The metric of the ground state manifold now coincides with that of the sphere of radius
√
S/2. The Euler character-

istic, however, does not depend on the radius and thus we see that ξ = 2 for any spin. Conversely, the Chern number
is proportional to S: C1 = 2S.

Exercise IV.4. Prove Eq. (260). It may be useful to remember that Si is the generator of rotations about the i-axis
for i = x, y, z.

Exercise IV.5. The Chern number naturally appears in a band theory, where it is used to define various topological
invariants and leads to numerous interesting physical effects such as topologically-quantized charge pumps [60], the
quantum Hall effect [61] and quantized spin-Hall effect in topological insulators [62, 63]. The Chern number for a
(non-degenerate) band α is defined in a standard way: C1 =

∫
BZ

dkxdkyF
α
kx,ky

, where Fαkxky = ∂kxA
α
ky
− ∂kyAαkx is

the band Berry curvature and Aαkj = i〈uα(k)|∂kjuα(k)〉 is the band Berry connection. Here |uα(k)〉 are the Bloch

wave functions corresponding to the band α.
The simplest band model with a non-trivial topological structure is two-dimensional with two atoms/orbitals per

unit cell and complex hopping amplitudes such that the Hamiltonian reads

H =
∑

kx,ky

(
a†k, b

†
k

)(
hzk hxk − ihyk

hxk − ihyk −hzk

)(
ak
bk

)
+M

∑

kx,ky

(
a†k, b

†
k

)(
1 0

0 −1

)(
ak
bk

)
(261)

where a†k , b
†
k, ak, bk are the momentum space fermion creation and annihilation operators corresponding to the two

sublattices, hik for i = x, y, z, are smooth functions of k satisfying periodicity conditions hik+G = hik, where G is the
reciprocal lattice vector, and M is the symmetry breaking field between two sublattices. For example for a Haldane
model on a square lattice with a π-flux per plaquette and equal nearest neighbor and next nearest neighbor hopping
t we have [64]:

hzk = 2t(cos kx − cos ky),

hxk = t (cos(π/4) + cos(ky − kx − π/4) + cos(ky + π/4) + cos(kx − π/4)) ,

hyk = t (− sin(π/4) + sin(ky − kx − π/4) + sin(ky + π/4)− sin(kx − π/4)) .

• Show that this problem can be mapped to the spin one half in an effective k-dependent magnetic field of
magnitude

hk =
√

(2t(cos kx − cos ky) +M)2 + 4t2(1 + cos kx cos ky)
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and angles θk and φk defined according to

tan(θk) =

√
(hxk)2 + (hyk)2

hzk +M
=

2t
√

1 + cos kx cos ky

2t(cos kx − cos ky) +M
, tanφk =

hyk
hxk
.

• Identify the momenta corresponding to the north and south poles of the sphere. Argue that for M = 0, region
A labeled in Fig. 13 maps to the top of the sphere and region B maps to the bottom of the sphere. By arguing
that the Chern number is invariant under parameterization from this mapping conclude that the Chern number
of the lower band (corresponding to the ground state manifold) with respect to kx and ky is equal to one and
the Chern number of the higher band (corresponding to the excited state manifold) is equal to negative one.

FIG. 13: First Brillouin zone illustrating the regions A and B that map to the two hemispheres.

• Argue that both Chern numbers do not change with M as long as M < 4t and that for M > 4t the band Chern
numbers become zero.

We will not explore the Chern number further in this section, though we will return to it in the context of dynamical
response in Sec. V A. More recently, a few works have explored the ground state metric topology of assorted systems.
We will now detail one such system, namely the metric of the quantum XY chain, closely following Ref. [57].

3. Geometry and topology of the quantum XY model

Let us now analyze the geometric invariants for the quantum XY chain, which as we saw in Sec. III D 2 is an
integrable model on which many calculations may be done analytically. This model has a rich phase diagram whose
geometric properties we now explore. Its Hamiltonian is given by Eq. (167), :

H = −
L∑

j=1

[
Jxσ

x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + hσzj

]
, (262)

where we parameterize Jx,y as

Jx = J

(
1 + γ

2

)
, Jy = J

(
1− γ

2

)
. (263)
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FIG. 14: Ground state phase diagram of the XY Hamiltonian [Eq. (167)] for φ = 0. The rotation parameter φ modifies the
Ising ferromagnetic directions, otherwise maintaining all features of the phase diagram. As a function of transverse field h
and anisotropy γ, the ground state undergoes continuous Ising-like phase transitions between paramagnet and ferromagnet
at h = ±1 and anisotropic transitions between ferromagnets aligned along X and Y directions (X/Y-FM) at γ = 0. Figure
reproduced with permission from Ref. [57].

As before, we add tuning parameter φ, corresponding to simultaneous rotation of all the spins about the z-axis by
angle φ/2.

The phase diagram for this model is shown in Fig. 14 (see Ref. [65] for details). There is a phase transition between
paramagnet and Ising ferromagnet at |h| = 1 and γ 6= 0. There is an additional critical line at the isotropic point
γ = 0 for |h| < 1. The two transitions meet at multi-critical points when γ = 0 and |h| = 1. Another notable line is
γ = 1, which corresponds to the transverse-field Ising (TFI) chain. Finally let us note that there are two other special
lines γ = 0 and |h| > 1 where the ground state is fully polarized along the magnetic field and thus h-independent.
These lines are characterized by vanishing susceptibilities including vanishing metric along the h-direction. One can
show that such state is fully protected by the rotational symmetry of the model and can be terminated only at the
critical (gapless) point [57]. The phase diagram is invariant under changes of the rotation angle φ.

The exact and variational gauge potentials for this model were derived in Sec. III D 2. We note here that the exact
adiabatic gauge potentials may be written as

Aλ = −1

2

∑

k

(
∂λθk

)
τyk , (264)

where λ = {h, γ} and τx,y,zk are Pauli matrices that act in the instantaneous ground/excited state basis, i.e., the basis

in which Hk = −
√

(h− cos k)2 + γ2 sin2 k τzk . Similarly, for the parameter φ,

Aφ =
1

2

∑

k

[cos(θk)τzk + sin(θk)τxk − 1] . (265)

These expressions make calculating the metric tensor simple. From

gµν =
1

2
〈g|(AµAν +AνAµ)|g〉c (266)

we find

ghh =
1

4

∑

k

(
∂θk
∂h

)2

, gγγ =
1

4

∑

k

(
∂θk
∂γ

)2

, ghγ =
1

4

∑

k

∂θk
∂h

∂θk
∂γ

, gφφ =
1

4

∑

k

sin2(θk). (267)

The remaining two components of the metric tensor, ghφ and gγφ, are equal to zero.
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The ghh component of the metric tensor, known as the fidelity susceptibility, has been computed analytically for
finite size systems [66, 67]. The remaining expressions can be analytically evaluated in the thermodynamic limit,
where the summation becomes integration over momentum space. Calculating these integrals, one finds that

gφφ
L

=
1

8





|γ|
|γ|+1 , |h| < 1

γ2

1−γ2

(
|h|√

h2−1+γ2
− 1

)
, |h| > 1

ghh
L

=
1

16

{
1

|γ|(1−h2) , |h| < 1
|h|γ2

(h2−1)(h2−1+γ2)3/2 , |h| > 1

gγγ
L

=
1

16





1
|γ|(1+|γ|)2 , |h| < 1


2

(1−γ2)2

[
|h|√

h2−1+γ2
− 1
]
−

|h|γ2

(1−γ2)(h2−1+γ2)3/2


 , |h| > 1

ghγ
L

=
1

16

{
0, |h| < 1
−|h|γ

h(h2−1+γ2)3/2 , |h| > 1
(268)

Note that all components of the metric tensor are extensive, as expected, which mathematically comes from the
replacement

∑
k → (L/2π).

While the remainder of this section will focus on exact results, let us briefly discuss the geometric tensor derived
from the variational gauge potentials found earlier [Eqs. (179) and (184)]. In the language of operator strings, the
geometric tensor for changing h is given by

ghh
L

=
1

L
〈AhAh〉 =

∑

l

(2αl)
2. (269)

If we only go up to strings of length M and use the exact coefficients in the thermodynamic limit [Eq. (177)], this
results in

ghh
L

=
1

16

{
(1− h2)−1(1− h2M ) for h2 < 1

h−2(h2 − 1)(1− h−2M ) for h2 > 1.
(270)

As expected, the metric tensor exponentially converges to the exact result with increasing string length M as long
as the system is not critical. At the critical point h = 1, the approximate metric tensor becomes M/16 such that it
only diverges linearly with M . Thus, critical properties only converge algebraically with M . Similar rounding of the
phase transition is found due to finite size effects in Refs. 66 and 67.

Returning to the exact metric tensor, we can visualize the ground state manifold by building an equivalent (i.e.,
isometric) surface and plotting its shape. It is convenient to focus on a two-dimensional manifold by fixing one of the
parameters. We then represent the two-dimensional manifold as an equivalent three-dimensional surface. To start,
let’s fix the anisotropy parameter γ and consider the h−φ manifold. Since the metric tensor has cylindrical symmetry,
so does the equivalent surface. Parameterizing our shape in cylindrical coordinates and requiring that

dz2 + dr2 + r2dφ2 = ghhdh
2 + gφφdφ

2 , (271)

we see that

r(h) =
√
gφφ, z(h) =

∫ h

0

dh1

√
ghh(h1)−

(
dr(h1)

dh1

)2

. (272)

Using Eq. (268), we explicitly find the shape representing the XY chain. In the Ising limit (γ = 1), we get

r(h) =

√
L

4
, z(h) =

√
L arcsin(h)

4
for |h| < 1 ; r(h) =

√
L

4|h| , z(h) =
√
L

(
π

8

|h|
h

+

√
h2 − 1

4h

)
for |h| > 1. (273)

The phase diagram is thus represented by a cylinder of radius
√
L/4 corresponding to the ferromagnetic phase capped

by the two hemispheres representing the paramagnetic phase, as shown in Fig. 15. It is easy to check that the shape
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FIG. 15: Equivalent graphical representation of the phase diagram of the transverse field Ising model (γ = 1) in the h − φ
plane. The ordered ferromagnetic phase maps to a cylinder of constant radius. The disordered paramagnetic phases h > 1 and
h < −1 map to the two hemispherical caps. The inset shows how the cylindrical coordinates z and r depend on the transverse
field h. Figure reproduced with permission from Ref. [57].

of each phase does not depend on the anisotropy parameter γ, which simply changes the aspect ratio and radius of the
cylinder. Because of the relation r(h) =

√
gφφ, this radius vanishes as the anisotropy parameter γ goes to zero. By an

elementary integration of the Gaussian curvature, the phases have bulk Euler integral 0 for the ferromagnetic cylinder
and 1 for each paramagnetic hemisphere. These numbers add up to 2 as required, since the full phase diagram is
topologically equivalent to a sphere. From Fig. 15, it is also clear that the phase boundaries at h = ±1 are geodesics,
meaning that the geodesic curvature (and thus the boundary contribution ξboundary) is zero for a contour along the
phase boundary. One can show that this boundary integral protects the value of the bulk integral and vice versa.

In the Ising limit (γ = 1), the shape shown in Fig. 15, can also be easily seen from directly computing the curvature
K using Eq. (252). Within the ferromagnetic phase, the curvature is zero – no surprise, given that the metric is
flat by inspection. The only shape with zero curvature and cylindrical symmetry is a cylinder. Similarly, within the
paramagnet, the curvature is a constant K = 16/

√
L, like that of a sphere. Therefore, to get cylindrical symmetry,

the phase diagram is clearly seen to be a cylinder capped by two hemispheres.
We can also reconstruct an equivalent shape in the γ−φ plane. In this case we expect to see a qualitative difference

for |h| > 1 and |h| < 1 because in the latter case there is an anisotropic phase transition at the isotropic point γ = 0,
while in the former case there is none. These two shapes are shown in Fig. 16. The anisotropic phase transition is
manifest in the conical singularity that develops at γ = 0.[170]

The singularity at γ = 0 yields a non-trivial bulk Euler integral for the anisotropic phase transition. To see this,
consider the bulk integral

ξbulk(ε) = lim
L→∞

∫ 2π

0

dφ

∫ ∞

ε

dγ
√
g(γ, φ)K(γ, φ) . (274)

In the limit ε → 0+, this integral has a discontinuity as a function of h at the phase transition, as seen in Fig. 16.
Thus, ξbulk ≡ ξbulk(ε = 0+) can be used as a geometric characteristic of the anisotropic phase transition. Direct

calculation shows that ξbulk = 1/
√

2 in the ferromagnetic phase and ξbulk = 1 in the paramagnetic phase. This
non-integer geometric invariant is due to the existence of a conical singularity.

A careful analysis shows that in both cases the bulk Euler characteristics are protected by the universality of the
transition, i.e., if one adds extra terms to the Hamiltonian which do not qualitatively affect the phase diagram, then
the bulk Euler characteristic does not change. The details of the proof are available in Ref. [57], but the basic idea is
very simple. The sum of the bulk and the boundary Euler characteristics is protected by the geometry of the parameter
manifold. As long as the boundary of the manifold coincides with the phase boundary, all components of the metric
tensor become universal [68]. Therefore it is not surprising that the geodesic curvature also becomes universal and
thus the boundary Euler characteristic is protected. As a result the bulk Euler characteristic is protected too. It is
interesting that, unlike critical exponents, the bulk Euler characteristic truly characterizes the phase transition and
does not depend on the parameterization. One can also analyze the Euler characteristic and the Gaussian curvature
in the h − γ plane [57, 69]. One finds additional non-integrable curvature singularities near the anisotropic phase
transition and near the multi-critical point. This curvature singularity implies that the Euler characteristic of different
phases becomes ill-defined and can no longer be used for their characterization.
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FIG. 16: (insets) Equivalent graphical representation of the phase diagram of the XY model in the γ−φ plane, where γ ∈ [0,∞)
and φ ∈ [0, 2π]. The right inset shows the paramagnetic disordered phase and the left inset represents the ferromagnetic phase.
It is clear that in the latter case there is a conical singularity developing at γ = 0 which represents the anisotropic phase
transition. The plots show bulk Euler integral ξbulk(ε) as defined in Eq. (274), demonstrating the jump in ξbulk at the phase
transition between the paramagnet and ferromagnet in the limit ε→ 0+. Figure reproduced with permission from Ref. [57].

These ideas may be readily extended to other phase transitions beyond the XY model. For the specific case of
non-interacting Bloch bands, the Euler topology has already been explored in Refs. [70] and [71]. More generally, the
study of critical scaling of the quantum geometric tensor begin with pioneering work by Venuti and Zanardi [68, 69],
which has spurred research on a wide variety of models [72–83]. In addition, a great deal of work has been done
developing related ideas for finite temperature systems, both quantum and classical, which should allow one to treat
thermal phase transitions in a similar language [84–89]. In the next section we will describe one possible way to
generalize these ideas to stationary mixed states such as the thermal Gibbs ensemble.

First, however, let us revisit the local information that the metric provides. One important property of the metric
are its geodesics, i.e., paths λ(s) that locally minimize the metric distance

`[λ(s)] =

∫ 1

0

ds

√
gµν λ̇µλ̇ν (275)

between two points λi = λ(s = 0) and λf = λ(s = 1), where λ̇ ≡ dλ/ds. As discussed in Sec. IV A 2, geodesics are
related to fundamental bounds on the ability to control the system, such as quantum speed limits. Pictorially, geodesics
can be visualized as shortest path between two points in the equivalent manifold [cf. Fig. 15 and Exercise (IV.6)].
More generally, geodesics satisfy the geodesic equation

δ`(λ) = 0 ⇒ λ̈µ + Γµαβλ̇
αλ̇β = 0, (276)

where Γµαβ denote the Christoffel symbols. An important property of this geodesic length is that it is parameterization

independent, i.e., `[λ(s)] = `[λ(f(s))] for arbitrary monotonic function f(s) satisfying f(0) = 0 and f(1) = 1.
Taking a page from general relativity, we want an affine parameterization of the curve. This is accomplished by

minimizing the action [90]

S[λ(s)] =

∫ 1

0

ds gµν λ̇
µλ̇ν , (277)

whose Euler-Lagrange equations yield precisely the geodesic equation [Eq. (276)]. Unlike the length `, the action S
is only invariant to linear rescalings of s, and thus we can interpret s physically as the scaled time s = t/τramp for a

given protocol ramping from λi to λf in time τramp. The geodesic action is clearly minimized by choosing gµν λ̇µλ̇ν
constant along the path, which helps simplify the geodesic equations. It also gives us important insight into the overall
behavior of λ(s); near points where the metric tensor becomes large, such as critical points, the speed |λ̇| goes down.

For a single parameter, the path is trivial and the geodesic equations are primarily useful for obtaining the parame-
terization λ(s). Consider for example changing only magnetic field h in the TFI chain. Conservation of ghhḣ

2 results
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in the following set of equations for the geodesic

dh√
1− h2

= c ds for h2 < 1

dh

h
√
h2 − 1

= c ds for h2 > 1, (278)

which yields the general solution

h(s) =

{
sin(c s+ a) for h2 < 1

± [sin(c s+ b)]
−1

for h2 > 1.
(279)

Continuity of the curves near h2 = 1 and boundary conditions can be used to fix all the constraints. For example,
the geodesic that goes from h = 0 to h =∞ is

h(s) =

{
sin(πs) for s < 1/2

[sin(π − πs)]−1
for s > 1/2

(280)

resulting in the geodesic length

` = π
√
L/4, (281)

which also immediately follows from Eq. (273) and its equivalent graphical representation in Fig. 15. Note that, due to
the extensivity of the metric tensor, geodesic lengths for all protocols hi → hf – including those that do not cross any

critical points – nevertheless diverge as
√
L. This is expected for extensive systems and is quite similar to divergences

that show up upon varying other control parameters, such as the local potential in the Anderson orthogonality
catastrophe (see Sec. IV E 2). However, even though we are driving the system through a critical point, there is

nevertheless a geodesic path that goes across it and in fact yields a finite length up to the overall
√
L prefactor. This

implies that the singularity of the metric tensor is sufficiently weak that
√
g has an integrable singularity. Moreover,

close to any second order quantum critical point one can extract some universality in this geodesic. As discussed in
Refs. [37, 68, 69, 76], in the vicinity of the critical point the metric scales as g ∼ |λ− λc|νd−2, where d and ν are the

spatial dimension and correlation length critical exponent respectively. Conservation of gλ̇2 immediately implies that
geodesics behave as

λ(s) ≈ λc + c(s− sc)2/νd ≡ λc + c(s− sc)α. (282)

Since dν > 0, all second order quantum critical points can be traversed by a geodesic, which furthermore has universal
power law behavior in the vicinity of the critical point. Note that for the Ising transition in 1D, for which d = ν = 1,
we indeed get quadratic scaling of the geodesic [cf. Eq. (280)].

In Sec. IV A 2 we discussed that the minimum time required to follow the ground state is proportional to the
geodesic length `. Let us now apply this result to the TFI model. Specifically let us consider a protocol where we
initialize the Hamiltonian in the fully polarized state, i.e., in the ground state of the Hamiltonian

Hi = −h
∑

j

σzj . (283)

We then apply a counter-diabatic driving protocol to ramp the system through the critical point to the ferromagnetic
state, which is the ground state of the Hamiltonian

Hf = −J
∑

j

σxj σ
x
j+1 (284)

To derive a speed limit, we need to fix the norm of the driving field. The Frobenius norm of any extensive Hamiltonian
scales as square root of the number of degrees of freedom. Therefore, we can bound the norm of the driving Hamiltonian
by ||HCD(t)|| ≤ ω

√
L, where ω is some intensive energy scale. Then according to Eq. (246), the minimal time is

τmin =
~
ω

π

4
. (285)
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This result is quite remarkable because it shows that the minimal time to ramp the TFI ground state across the
phase transition is finite. Moreover, it exactly coincides with time to rotate independent non-interacting spins from
the x to the z direction; the metric for L non-interacting spins is gθθ = L/4 [Eq. (233)], so the geodesic length
corresponding to a π/2 rotation is again given by Eq. (281), resulting in the same minimal time. This result might
seem natural as the minimal time can not depend on how we prepare the system, so one might argue that it simply
shows consistency of its geometric interpretation. But, importantly, the counter-diabatic driving protocol pushes the
system through a path of highly-entangled ground states, rather than non-interacting product states. Furthermore,
at all times counterdiabatic driving respects the Z2 symmetry of the TFI model corresponding to flipping σzj → −σzj
on each site. Therefore the ground state prepared by the counter-diabatic protocol is the true ground state of the
TFI model, i.e., the macroscopic superposition (“Schrödinger cat”) of positive and negative magnetizations:

|0f 〉 =
| ↑↑ . . . ↑〉+ | ↓↓ . . . ↓〉√

2
.

This state is impossible to prepare without crossing a phase transition. So the fact that such a state can be prepared
in the same time required to rotate a single spin is very counterintuitive. The subtlety is that the necessary counter-
diabatic driving Hamiltonian to prepare this state becomes long range near the critical point. Finally, note that the
minimal time to ramp the system to the critical point is just half of Eq. (285).

From this example, we see that geodesic length gives us an important physical constraint on the ability to prepare
ground states with high fidelity in finite time. For relatively slow protocols, we will show in Sec. V B that the conserved
quantity gλ̇2 may be directly measured as excess energy fluctuations in the system. Therefore the metric tensor has
important implications for both fast and slow dynamics and is a physical, measurable quantity.

Exercise IV.6. Calculate the length of the geodesic for the TFI model (γ = 1) for a path starting from (hi, φi = 0)
and ending at (hf , φf ). Without loss of generality, you may assume 0 < hi < 1, 1 < hf , and 0 < φf < π. You may
find it useful to use the isometric shape illustrated in Fig. 15, for which geodesics are known, by mapping the initial
and final points to ones on the cylinder and sphere respectively.

C. Geometric tensor of steady state density matrices

Having explored (global) topological properties of the ground state manifold, it is natural to ask how these ideas can
be generalized to classical and/or finite temperature systems. To make the classical limit explicit we will reintroduce
the Planck’s constant ~ to all expressions. Previously we derived the geometric tensor for the ground state manifold,
but clearly the arguments flow through trivially for arbitrary excited states |ψm〉 ≡ |m〉:

χmαβ =
〈m|AαAβ |m〉 − 〈m|Aα|m〉〈m|Aβ |m〉

~2
=
∑

n 6=m

〈m|∂αH|n〉〈n|∂βH|m〉
(En − Em)2

. (286)

While this may be relevant to microscopic or mesoscopic systems, it is generally very difficult to prepare excited
energy eigenstates. We are therefore interested in exciting systems into some steady state density matrix. To ensure
that it is stationary, we consider a density matrix of the form ρ =

∑
n ρn|n〉〈n|. Then as before, we can define the

geometric tensor as the covariance matrix of the gauge potentials: χαβ = 〈AαAβ〉c/~2.
There remains a slightly subtle question that we must answer: what is the meaning of 〈· · · 〉c for a density matrix?

Two natural solutions present themselves. The first option, 〈AB〉c = 〈AB〉 − 〈A〉〈B〉 = Tr [ρAB] − Tr [ρA] Tr [ρB]
which we call the coherent connection, is the type of connected correlation function that appears in the theory of
phase transitions, where it will often be singular near the transition. The second option,

〈AB〉c =
∑

n

ρn〈n|AB|n〉c =
∑

n

ρn (〈n|AB|n〉 − 〈n|A|n〉〈n|B|n〉) (287)

at first seems much less natural, as it does not take the form of a simple operator expectation value. However, it
will turn out that this second “incoherent” definition is the one which appears in the dynamical response in isolated
systems and can be related to noise and dissipation (cf. Appendix A). It is worth noting that the difference between
the two ways of defining the connected correlation function is in their handling of the diagonal elements of the density
matrix. Therefore, the anti-symmetric Berry curvature, which only depends on the off-diagonal part, does not care
which definition we use. For the symmetric part of the correlation function, however, there is an important difference
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between the two options.[171] Let us also point out that the geometric tensor defined in this way does not correspond
to a natural Bures distance between density matrices (see, e.g., Eq. (3) in Ref. [87]) so the relation of χ defined in
this way with quantum information geometry becomes less clear. Nevertheless we will stick to this definition, as it
naturally emerges in dynamical response, and leave discussion of the relationship between these two natural metrics
for future work.

The natural extension of the geometric tensor to mixed stationary states is thus

χαβ(ρ) =
∑

n

ρnχ
n
αβ . (288)

As this is simply a sum over all eigenstates, it is trivial to write it as a response function by plugging in the expression for
χnαβ from Eqs. (238) and (239) with |0〉 → |n〉. For a finite temperature density matrix, it is similarly straightforward
to see that this is connected to the dissipative part of linear response, which is shown in more detail in Appendix A.

In Exercise (IV.3), we derived the metric tensor of the harmonic oscillator with respect to shifts in the position
or momentum coordinate. In the exercises below, we will see how this generalizes to finite temperature states. Let
us analyze explicitly the metric of the harmonic oscillator with Hamiltonian H = p2/2m + kx2/2 with respect to
changing a slightly less trivial parameter: the spring constant k. If the mass is held fixed, then the generalized force
with respect to changes of k is ∂kH = x2/2. Then the metric tensor for an arbitrary harmonic oscillator state |n〉 is

gnkk =
∑

m 6=n

∣∣〈m| (x2/2) |n〉
∣∣2

(En − Em)2
=
`4

4

∑

m6=n

∣∣〈m| (a+ a†)2 |n〉
∣∣2

(En − Em)2

=
`4

16~2Ω2

(∣∣〈n− 2| a2 |n〉
∣∣2 +

∣∣〈n+ 2| (a†)2 |n〉
∣∣2
)

=
`4

8~2Ω2

(
n2 + n+ 1

)
, (289)

where Ω =
√
k/m and ` =

√
~/2mΩ are the natural frequency and length scales of the oscillator. Then for an

arbitrary stationary state, the metric tensor is clearly

gρkk =
`4

8~2~2Ω2

(
〈n2〉+ 〈n〉+ 1

)
=

1

32~2m2Ω4

(
〈n2〉+ 〈n〉+ 1

)
.

For the Gibbs ensemble, ρn = e−~βΩ(n+1/2)/Z, one finds that 〈n〉 = 1/(e~βΩ − 1) and 〈n2〉 = (e~βΩ + 1)/(e~βΩ − 1)2.
In the high temperature or classical limit, β~Ω� 1, this reduces to

~2gT�~Ω
kk → ~2

32m2Ω4

2

~2β2Ω2
=

(kBT )2

16m2Ω6
. (290)

We see that in the classical (high-temperature) limit it is the product ~2gkk = 〈A2
k〉c which is well defined.

We can also arrive to the result above by calculating the variance of the gauge potential. Note that the eigenstates
of the Harmonic oscillator are

ψn(x) =
1√
`
φn(x/`),

where φn is the dimensionless eigenfunction of the oscillator expressed through the Hermite polynomials [91]. Differ-
entiating this wave-function with respect to k we find:

∂kψn(x) = − 1

2`

d`

dk
ψn(x)− x

`

d`

dk
∂xψn(x) = − d`

dk

1 + 2x∂x
2`

ψn(x). (291)

Therefore

Ak = i~∂k =
d`

dk

xp̂+ p̂x

2`
= −1

4

`

k
D, (292)

where

D =
xp̂+ p̂x

2`
(293)

is nothing but the quantum dilation operator [cf. Exercise (II.2)]. This is not surprising, as rescaling of the spring
constant amounts to dilations. In the second quantized notation

xp̂+ p̂x

2
=
i

2

[
(a† + a)(a† − a) + (a† − a)(a† + a)

]
= i(a†a† − aa)
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Using this expression and substituting it into the definition of the metric tensor:

~2gkk = 〈A2
k〉c

we can reproduce the expression for the metric tensor in Eq. (289). In particular, in the classical limit, using the
equipartition theorem we recover Eq. (290):

〈A2
k〉c =

1

16k2
〈x2p2〉c =

1

16k2

4m

k

〈
kx2

2

〉〈
p2

2m

〉
=
m(kbT )2

16k3
=

(kbT )2

16mΩ6
.

Exercise IV.7. Verify that the variance of the gauge potential Ak in Eq. (292) reproduces the metric tensor, Eq. (290).

Exercise IV.8. Repeat Exercise (IV.3) for the thermal state at temperature T . Check that at the zero temperature
you reproduce the ground state geometric tensor. Find the asymptotic expression for the geometric tensor in the
classical limit T � ~ω.

D. Geometric tensor in the classical limit

Having defined the thermal geometric tensor for a quantum system, we expect to be able to define a classical
(~ → 0) limit of the metric tensor that matches Eq. (290). In the classical problem we have the stationary state
ρ(p, q) ∝ e−βH(p,q). Unfortunately, the definition of “matrix elements” of the operator ∂kH is less clear, so we must
resort to the dynamical definition of the geometric tensor given in Eqs. (65), (238), (239), and (288). The sum over
eigenstates,

∑
n ρn, is replaced by an integral over phase space:

Sclαβ(ω) =

∫ ∞

−∞
dt eiωt

∫
dpdq ρ(p, q) [∂αH(p(t), q(t))∂βH(p, q)−Mα(p, q)Mβ(p, q)] , (294)

where p ≡ p(0), q = q(0), Mα(p, q) is the generalized force or the infinite time average of −∂αH(p(t), q(t)) starting
from the initial conditions q(0), p(0). This generalized force is nothing but the Born-Oppenheimer force emerging
in the adiabatic approximation (see Sec. VI). When doing this integral, one should think of integrating over p and
q as integrating over initial conditions weighted by the probability ρ(p, q). For instance, the “Heisenberg” operator
∂kH(p(t), q(t)) = q(t)2/2 should be thought of as half the value of q2 at time t after starting at t = 0 from the state
(p, q). Let us analyze the example from the previous section and find gkk for the harmonic oscillator in the thermal
equilibrium. Time dependence of q(t) for the oscillator is

q(t) = q(0) cos(Ωt) +
p(0)

mΩ
sin(Ωt) ≡ q cos(Ωt) +

p

mΩ
sin(Ωt) , (295)

Therefore the generalized force

Mk(p, q) = −q
2(t)

2
= −q

2

4
− p2

4m2Ω2
= − 1

2mΩ2
H(p, q) = −H(p, q)

2k
, (296)

where the overline stands for time averaging. As expected the generalized force Mk(p, q) only depends on conserved
quantities, namely the Hamiltonian. Then the integrand appearing in the spectral function is given by

∂kH(p(t), q(t))∂kH(p, q)−Mk(q, p)2 =
1

4
q2
[
q cos(Ωt) +

p

mΩ
sin(Ωt)

]2
− 1

16

(
q2 +

p2

m2Ω2

)2

=
1

16

(
q4 − p4

m4Ω4

)
+
q2

8

[(
q2 − p2

m2Ω2

)
cos(2Ωt) +

qp

mΩ
sin(2Ωt)

]
. (297)

To calculate Sclαβ(ω) now according to Eq. (294) we have to average the expression above over the probability distri-
bution and take the time integral. Upon averaging over the equilibrium density matrix, the first, time-independent
term vanishes because 〈q4〉 = 〈p4/(m4Ω4)〉. Similarly the last term averages to zero: 〈q3p〉 = 0. So the only non-zero
contribution to the spectral function comes from the second term proportional to cos(2Ωt). Because the integrals are
all Gaussian, we may apply Wick’s theorem to get

〈q4〉 = 3〈q2〉2 =
12

k2

〈
kq2

2

2
〉

=
12

k2

(kBT )2

4
=

3

k2
(kBT )2, 〈q2p2/m2Ω2〉 = 〈q2〉2 = (kBT )2.
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Therefore

Sclkk(ω) =
(kBT )2

4k2

∫ ∞

−∞
dt eiωt cos(2Ωt) =

(kBT )2

4k2
π (δ(ω + 2Ω) + δ(ω − 2Ω)) . (298)

Then, via the dynamical definition of the geometric tensor [Eq. (238)],

~2gkk =

∫ ∞

0

dω

2π

Skk(ω) + Skk(−ω)

ω2
=

(kBT )2

16k2Ω2
=

(kBT )2

16m2Ω6
, (299)

which indeed coincides with the classical limit of the quantum geometric tensor, Eq. (290).
Let us now show how the same result can be reproduced using the language of the adiabatic gauge potentials.

According to Eq. (67) the adiabatic gauge potential should satisfy

−∂kH(q, p) = Mk(q, p)− ∂Aclk
∂q

∂H
∂p

+
∂Aclk
∂p

∂H
∂q

, (300)

Using Eq. (296), the equation above reduces to

p2

4mk
− q2

4
= −∂A

cl
k

∂q

p

m
+
∂Aclk
∂p

kq (301)

It is easy to check that the desired adiabatic gauge potential is

Aclk = − qp
4k
, (302)

which coincides with the earlier result Eq. (292) in the classical limit and, as we already showed, reproduces the
correct metric tensor.

For simple cases like this, the gauge potentials can be found explicitly and can be much easier to work with than
correlation functions of the generalized forces. For more complicated situations such as the Duffing oscillator, one
can imagine doing a similar construction numerically or iteratively and/or utilizing the correlation function of the
generalized forces. In classical chaotic systems the gauge potentials and hence the geometric tensor will not necessarily
converge [25]. The issue comes from a divergent low-frequency tail in the spectrum of generic observables due to the
presence of diffusive modes. Physically these divergences are always cut off by either coupling to the bath or finite
duration of the physical process. Introducing a consistent cutoff for such systems is beyond the level of the present
discussion and will be a subject of future research.

E. Exact and variational geometric tensors for many-body systems

We saw in Sec. III E that one can target individual eigenstates by integrating the variational gauge potentials.
Therefore, it is not surprising that one may also obtain a variational geometric tensor by differentiating these varia-
tional eigenstates. Here we show how to do for the non-integrable Ising chain and impurity in a Fermi gas explored
earlier.

1. Non-integrable Ising model

Let us begin by examining the non-integrable Ising model discussion in Sec. III D 1. We already computed the
single and two-spin variational gauge potentials, and now we will show how to use them to construct the approximate
geometric tensor and Berry curvature. Specifically, consider as before the Hamiltonian

H(θ, φ) = −
∑

j

h(cos θ σzj + sin θ cosφσxj + sin θ sinφσyj )− Jz
∑

j

σzjσ
z
j+1. (303)

By rotating the system around the z-axis we can of course always make φ = 0, so the exact adiabatic gauge potential
for φ is simply

Aφ =
1

2

∑

j

σzj . (304)
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FIG. 17: Ground state geometry for a non-integrable quantum Ising chain of length L = 18 with J = 1 and h = 2. All panels
show the single-spin variational result in red and the two-spin variational result in blue. For the dashed line we obtained the
ground state and the first 100 excited states by Lanczos and computed the approximate metric tensor by simply truncating
the sum over excited states to the first 100 states. Since the ground state is gapped, this should be a good approximation of
the exact result. Panel A shows the metric tensor gφφ, Panel B the metric gθθ and Panel C the Berry connection Fφθ.

For φ = 0 the variational gauge potential with respect to θ was computed in Sec. III D 1, which crucially was possible
without ever diagonalizing the Hamiltonian. To do this, we use the gauge potentials to prepare the ground state of
the system at any value of θ, φ out of a trivial state. For example, for φ = θ = 0 (and positive Jz) the ground state
is just a product state of the spins aligned with the magnetic field, which we denote |ψ(0, 0)〉. Consequently we can
write the approximate ground state at different angles as

|ψ∗(θ, φ)〉 = exp (−iφAφ) |ψ∗(θ, 0)〉 = exp (−iφAφ)P
[

exp

(
−i
∫ θ

0

dθA∗θ

)]
|ψ(0, 0)〉 , (305)

where A∗θ is an approximate gauge potential for φ = 0. Note that in order to compute any geometric property we
therefore also need to propagate A∗θ to finite φ by approximate rotation around the z-axis. Since the spins always
undergo exactly the same rotations, it immediately follows that nothing explicitly depends on the angle φ, only on
θ. Another direct consequence of this is that the Berry phase for θ vanishes and the metric tensor becomes diagonal.
The system should however have a non-zero Berry curvature.

We have used this procedure with the variational gauge potential from Sec. III D 1 to find the variational geometric
tensor. The results are depicted in Fig. 17 for a spin chain of length L = 18. For comparison, we determine the exact
value of the ground state geometric tensor (black dashed line) by truncating the Lehmann representation [Eq. (235)]
to only incorporate the lowest 100 eigenstates and confirming convergence in the number of eigenstates included. As
the number of spins M in the variational ansatz is increased, the variational geometric tensor appears to converge
towards the exact value. This is consistent with our expectations that the result should converge exponentially in M
because no critical points are crossed, as seen for the gauge potential itself in Fig. 7.

2. Impurity in a Fermi gas

Finally, consider the case of an impurity in a Fermi gas, which we saw in Sec. III D 3 gives rise to a divergent metric
tensor in the thermodynamic limit due to lack of an excitation gap. Another related consequence is the Anderson
orthogonality catastrophe [92], the phenomenon by which Anderson showed that a system would quickly become
orthogonal to its initial ground state upon addition of a weak impurity. The emergent non-locality of the adiabatic
gauge potential is intricately related to the orthogonality catastrophe. We can see this more explicitly by evaluating
the metric tensor, gλλ, for a filled Fermi sea |ψ0〉 with Fermi momentum kF :

gλλ = 〈ψ0|A2
λ|ψ0〉 = − ~2

L2

∑

k 6=k′

∑

k′′ 6=k′′′

〈ψ0|c†k+ck′+c
†
k′′+ck′′′+|ψ0〉

(cos k − cos k′)(cos k′′ − cos k′′′)

= − ~2

L2

∑

k 6=k′

∑

k′′ 6=k′′′

Θ(kF − k′′′)Θ(k′′ − kF )δk′k′′δkk′′′

(cos k − cos k′)(cos k′′ − cos k′′′)

= (2π~)2

∫ kF

0

dk

∫ π

kF

dk′
1

(cos k − cos k′)2
.
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The integrand above diverges near k = k′ and thus is dominated by terms near the Fermi surface. Therefore, let us
shift k(′) → k(′) − kF and Taylor expand the denominator, using the momentum spacing 2π/L as a low momentum
cutoff and Λ ∼ π as a high momentum cutoff. This gives

gλλ ≈
(

2π~
sin kF

)2 ∫ −π/L

−Λ

dk

∫ Λ

π/L

dk′
1

(k − k′)2

≈
(

2π~
sin kF

)2

ln

(
ΛL

4π

)
.

So we see that the metric tensor is also divergent in the thermodynamic limit due to the long-range nature of Aλ. The
divergence is readily regulated by the finite size L as well as the finite lattice spacing. Note that this regularization is
quite similar to the methods we used to understand and regulate behavior of physical observables near critical points,
since both the Fermi gas and a quantum critical system are gapless. [172]

V. GEOMETRIC TENSOR AND NON-ADIABATIC RESPONSE

Key concept: The geometric tensor appears naturally through response coefficients of the system to the rate

of change of parameters λ̇a. The Berry curvature shows up as a Coriolis-type force while the metric tensor defines
broadening of the energy distribution (energy variance). In the classical (high temperature) limit, the metric tensor
also defines the leading non-adiabatic correction to the energy through renormalization of the mass.

A. Dynamical quantum Hall effect

We already noted in the first section that the gauge potentials appear in the Galilean term in the moving Hamil-
tonian:

H̃m = U†HU − λ̇αÃα = H̃ − λ̇αÃα. (306)

Then we introduced the geometric tensor χ, which we found could be written as the covariance of the gauge potentials.
In this section, we connect the dots between these observations by relating the geometric tensor to the dynamical
response of physical observables.

We start by noting that the bare Hamiltonian in the moving frame H̃ is diagonal and thus only produces shifts
in the energies but does not couple them, so it is not responsible for the transitions between levels. Conversely the
Galilean term generally has off-diagonal elements and thus causes transitions between levels. Near the adiabatic limit
the Galilean term is small and thus can be treated as a perturbation. Because the gauge potentials are simultaneously
responsible for the non-adiabatic response of the systems and for the geometry we just discussed in the previous
section it is thus not very surprising that the response coefficients can be related to the geometric tensor. The goal
of this section is precisely to establish such connection.

Let us now consider the setup where the system is initially prepared at equilibrium (for concreteness in the ground
state) at some initial value of the coupling λ0 ≡ λ(t = 0). Then the coupling starts changing in time. To avoid the
need of worrying about initial transients, which can be done but makes the derivations more involved, we will assume
that the rate of change of the coupling is a smooth function of time. Under this smooth transformation, at leading
order in |λ̇| the system follows the ground state of the moving Hamiltonian Hm. One can worry whether the adiabatic
theorem applies to this Hamiltonian, which is still time-dependent; later we will give a more rigorous derivation of
the result using the machinery of adiabatic perturbation theory (see Refs. [5, 58] for more details). For now let us
simply note, as we already did in the very first section, that the adiabatic approximation applied to the moving
Hamiltonian encodes the leading non-adiabatic corrections beyond the standard adiabatic approximation, where the
system follows the eigenstates of the instantaneous Hamiltonian H̃. Already at this level of approximation we can
derive very important results such as emergence of the Coriolis force and the mass renormalization.

Applying first order perturbation theory to the moving frame Hamiltonian Hm, the amplitude to transition to the
excited state |n〉 of the bare Hamiltonian H̃ due the Galilean term is given by

an = λ̇α
〈n|Aα|0〉
En − E0

(307)

One can alternatively understand this result as coming from the instantaneous measurement process viewed as a
sudden quench, where the rate λ̇ is quenched to zero. It is convenient to represent observables as generalized force
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operators conjugate to some other coupling λβ :

Mβ = −∂βH. (308)

The matrix elements of these objects already appeared in the definition of the geometric tensor so it is convenient to
continue dealing with them. Generalized forces defined as expectation values of the generalized force operators, appear
quite naturally in many problems. For example, the magnetization is a generalized force conjugate to the magnetic
field, current is a generalized force conjugate to the vector potential, nearest neighbor correlation function can be
viewed as a generalized force conjugate to the nearest neighbor hopping or interaction, etc. Indeed any observable O
can be represented as some generalized force operator by adding a source term −λO to the Hamiltonian. Taking the
expectation value of Mβ and using Eq. (63) for the matrix elements of the gauge potential, we find that

Mβ ≡ 〈ψ|Mβ |ψ〉 = M
(0)
β −

∑

n 6=0

(a∗n〈n|∂βH|0〉+ an〈0|∂βH|n〉)

≈ M
(0)
β + i~λ̇α

∑

n 6=0

〈0|∂βH|n〉〈n|∂αH|0〉 − 〈0|∂αH|n〉〈n|∂βH|0〉
(En − E0)2

= M
(0)
β + ~Fβαλ̇α, (309)

where M
(0)
β is the generalized force evaluated in the instantaneous ground state (i.e., in the adiabatic limit). This

relation shows that the leading non-adiabatic (Kubo) correction to the generalized force comes from the product of
the Berry curvature and the rate of change of the parameter λ. Using our previous intuition that Berry curvature
behaves as a magnetic field in parameter space, we see that this Kubo correction is the Lorentz (or the Coriolis) force
in parameter space [93]. Because the integral of the Berry curvature over a closed parameter manifold is a quantized
first Chern number, this effective Lorentz force leads to a quantized response, which one can term the dynamical
quantum Hall effect [58].

Related methods of understanding leading corrections to adiabaticity have been around since the early days of the
quantum adiabatic theorem [94–96]. In particular, similar notions in the language of Kubo response have been used
to understand the response of quantum Hall systems [61, 97–103], in semi-classical calculations of the anomalous
Hall effect [104–106] and in deriving “molecular Aharonov-Bohm” corrections to Born-Oppenheimer descriptions of
molecules [93, 107–109]. While the results are similar to those described above, we emphasize here the generality of
the results given by adiabatic perturbation theory, and in particular their applicability to parameters that are in no
way connected to traditional Hall conductance.

1. Quantum Hall effect

Let us first illustrate that this relation does indeed reproduce the standard integer quantum Hall effect (QHE). We
will make only two generic assumptions: (i) the ground state of the system is not-degenerate (although degeneracies
can lead interesting phenomena like the fractional QHE) and (ii) the Hamiltonian of the system can be represented
in the form

H =

N∑

j=1

(
pj − eΛj

)2

2mj
+ V (r1, r2, . . . rN ), (310)

where V is an arbitrary momentum independent potential energy which can include both interactions between particles
and an external potential. As before, we use the Λj ≡ Λ(rj) notation for the vector potential to avoid confusion
with the gauge potential. Let us assume that the vector potential consists of some static part (not necessarily
uniform) representing a static magnetic field and an extra dynamic part representing the electric field in the system,
where throughout this section we work in the Coulomb gauge, E = ∂tΛ. We will choose the components of the
time-dependent vector potential as our parameters, i.e.,

λx = Λx, λy = Λy. (311)

The generalized force with respect to λy is

My = −∂λyH =
∑

j

e

mj

(
p

(y)
j − eΛ

(y)
j

)
= Jy, (312)
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which is the current operator along the y-direction. In the absence of the electric field there is no average current,
〈0|Jy|0〉 = 0 so the dynamical Hall relation reads

Jy = ~Fλyλx λ̇x = ~FλyλxEx, (313)

To find the Hall conductivity we note that the total current J is related to the two-dimensional current density j via

Jy = LxLyjy, (314)

where Lx and Ly are the dimensions of the sample. Therefore the Hall conductivity σxy = jy/Ex is related to the
Berry curvature via

σxy =
~Fλxλy
LxLy

. (315)

If we now focus on bulk response by considering a system with periodic boundary conditions (eliminating the
edges), the parameter λx can be gauged away once it reaches λ0

x = 2π~/eLx, and similarly for λy. This corresponds
to threading a flux quantum through the torus [97]. Since the ground state returns to itself upon insertion of a flux
quantum along either direction, this defines a closed manifold in λ space on which we can define a Chern number.
Furthermore, as λ0

x,y are very small and generally immeasurable in the thermodynamic limit, we can average over
them to get the averaged conductance

σxy ≈
~Fλxλy
LxLy

=
~

LxLy

∫ λ0
x

0
dλx

∫ λ0
y

0
dλyFλxλy

λ0
xλ

0
y

(316)

=
~

LxLy

2πC1

(2π~/eLx) (2π~/eLy)
(317)

= C1
e2

h
. (318)

Thus the quantization of the conductance in the quantum Hall effect can be thought of as the topological response
to insertion of flux quanta along the two directions in the system [99].

Exercise V.1. Show that for a system of free fermions in the thermodynamic limit with a gap between filled and
unfilled bands, the many-body Berry curvature (and its Chern number) with respect to gauge potentials reduce to
the sum of band Chern numbers defined in Exercise (IV.5):

Fλxλy =
1

λ0
xλ

0
y

∑

α

∫

FBZ

Fαkxkydkxdky , (319)

where the integral is over the first Brillouin zone and the sum is over filled bands α.

2. Quantum spin-1/2

The second example we discuss is our old friend, the spin-1/2 in a time-dependent magnetic field. Because this
is a purely quantum system we will again set ~ = 1. Suppose that the spin is prepared in the ground state along a
magnetic field whose angle then starts to change with time along, e.g., the θ-direction. The generalized force along
the orthogonal φ-direction is just the φ-component of the magnetization. In the adiabatic limit it is clearly zero since
in this case the magnetization simply follows the magnetic field. The leading non-adiabatic correction is then given
by the Berry curvature:

Mφ = 〈Mφ〉 ≈ Fφθ θ̇ , (320)

where Fφθ = sin θ/2 (see Sec. I). Similarly, if we again ramp the magnetic field in the x − z plane (φ = 0), but now
with a time dependent x-component and a time independent z-component, we have

My = Fyxḣx. (321)
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Then by a standard transformation from spherical to Cartesian coordinates, we find

Fyx =
Fφθ

h2 tan θ
=

cos θ

2h2
. (322)

In Fig. 18 we show numerically computed dependence of the transverse y-magnetization on the rate of change of the
magnetic field v for a particular protocol

H = −σz − hx(t)σx, (323)

where hx(t) = 0.5 + vt. The transverse magnetization is computed at time t = 0 and the initial condition corresponds
to the ground state at large negative time t = −100/v. As is evident from the figure, at slow rates the dependence of
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FIG. 18: Dependence of the transverse magnetization on the rate of change of the magnetic field along the x-direction (see text
for details). The dashed line shows the expected low-velocity asymptote from the dynamical Hall effect, Eq. (321). Adapted
with permission from Ref. [58]

the transverse magnetization on the rate is linear and the slope is exactly given by the Berry curvature.
Integrating the measured Berry curvature over the angles of the field, one can measure the Chern number, which

we found to be C1 = 1 for this example in Sec. IV B 2. Interesting, even within such a simple system, one can already
observe a topological transition where the Chern number changes from 1 to 0. For this we can consider a slight
modification into the Hamiltonian by adding a constant static magnetic field along the z direction.

H = −1

2
[h0σz + h1 cos(θ)σz + h1 sin(θ) cos(φ)σx + h1 sin(θ) sin(φ)σy] . (324)

Then as one changes the magnetic field h1 along the sphere of constant radius at fixed h0 we can have two different
scenarios. First, h0 < h1 still corresponds to the total magnetic field encircling the origin h = 0 and thus produces a
Chern number equal to one. The second scenario is realized when h0 > h1. Then the total magnetic field does not
enclose the origin and the Chern number is zero. The easiest way to see this is to take the limit h1 → 0 and recall
that the Chern number cannot change unless the surface crosses a gapless crossing point. This phase transition was
recently observed in experiments on superconducting qubits [110]. Recall that the Chern number tells the magnetic
monopole charge enclosed by our surface in parameter space. For the spin-1/2 we saw that the only monopole resided
at h = 0 and carries charge 1. Therefore, one can interpret this topological transition as simply a shift of the surface
in parameter space such that, for large h0, it does not enclose the degeneracy at the origin. Interestingly this phase
transition maps exactly to the phase transition in the Haldane model discussed in Exercise (IV.5) if one identifies
angles of the magnetic field with the Bloch momenta. In this mapping the offset magnetic field h0 plays the same role
as the sublattice symmetry breaking parameter M in the band model.
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3. Disordered quantum spin chain

We have used a simple single-particle problem to illustrate the topological response of spins to a magnetic field.
The situation becomes much more interesting if we consider interacting systems. In particular, following Ref. [58] we
quote the numerical results for the Chern number computed through the non-adiabatic response for a disordered spin
chain:

H = −h ·
L∑

j=1

ζjσj − J
L−1∑

j=1

ηjσj · σj+1, (325)

where ζj and ηj are drawn from a uniform distribution in the interval [0.75, 1.25]. We fix |h| = 1 and look into the
Berry curvature associated with angles of the magnetic field θ and φ as a function of J (see Fig. 19). Because of the
SU(2) invariance of the system, as for a single spin the Chern number and the Berry curvature are simply different
by a factor of 2. At large negative J , the system minimizes the total spin to S = 1/2 and the Berry curvature is also4
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FIG. 3: The Berry curvature extracted from numerically eval-
uating dynamical response of the magnetization of a Heisen-
berg spin chain to the rotating magnetic field. The two lines
represent chains of the length N = 9 and N = 10. The
quantization plateaus clearly indicate the topological charac-
ter of the response. Numerical simulations were done by solv-
ing time dependent Schrödinger equation with fixed velocity
v = 0.1 (see Eqs. (11) and (12)), The Berry curvature was ex-
tracted from the transverse magnetization: F�⇥ � my(v)/v.

N . The plot shows a clear signature of a phase transition
at J = �1/4h. We are going to analyze it in detail in a
di�erent publication. It is interesting to note that even
though we numerically extracted the slope of magneti-
zation F�⇥ ⇥ My(v)/v from a moderately small velocity
v = 0.1 the accuracy of the quantization of plateaus is
better than 0.1%. Let us point once more that the dy-
namical response can be either observed by performing
a series of destructive measurements like in cold atom
setups or by continuously observing transverse magneti-
zation in a rotating magnetic field.

The example above has still one significant simplifica-
tion coming from the fact that the magnetization com-
mutes with the Heisenberg interaction term. Therefore
the time evolution of the magnetization is decoupled from
the latter. To show that the quantization of the dynam-
ical response holds in a more generic setup we will next
consider a disordered (and hence nonintegrable) Heisen-
berg chain with the Hamiltonian

H = ��h
N�

j=1

⇥j�⇤j � J
N�1�

j=1

�j�⇤j�⇤j+1, (13)

where ⇥j and �j are random variables, which for concrete-
ness are both chosen from a box distribution in the in-
terval [0.75, 1.25]. We repeat the same protocol as before
extracting the Berry curvature from the response of the
magnetization to the velocity of the rotating magnetic
field. In Fig. 4 we show the results of such simulations
for a chain of length N = 9 with a given realization of
disorder. The slopes are extracted from two di�erent ve-
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FIG. 4: Berry curvature extracted from dynamical simula-
tions of the disordered Heisenberg chain (see Eq. (13)). The
simulations are done for the spin chain of length N = 9 using
the protocol identical to that in Fig. 3 for a particular real-
ization of the disorder. The two lines represent two di�erent
velocities v = 0.1 and v = 0.025. Smaller velocity clearly
improves the accuracy of quantization.

locities v = 0.1 and v = 0.025. The plot clearly shows
that the quantization of the response persists. At higher
velocity the crossovers between the plateaus are slightly
more rounded and one observes small fluctuations of F�⇥

in the plateau regions. At smaller velocity, i.e. closer
to the linear response regime, these fluctuations are sup-
pressed and we see again nearly perfect quantization.

Discussion and Conclusions. Our approach allows an
interesting possibility of mapping the Hilbert space ge-
ometry and topology through quantum dynamics. By
measuring the Berry curvature one can map out the met-
ric tensor of the quantum space experimentally. Once we
know the metric, the connection components as well as
the Riemann tensor can be further obtained. This infor-
mation can be then used to find a geodesics in the quan-
tum parameter space. Evolving the system according to
geodesics means to define a specific protocol. This proto-
col is characterized by maximal fidelity and thus should
be extremely useful for the quantum information setups.
One can also use these ideas for precision measurements,
as a sensitive probe of quantum phase transitions, espe-
cially topological phase transitions with no local order
parameter, as a probe of time reversal symmetry break-
ing in complicated systems e.g. in biology.

In conclusion we demonstrated that the Berry curva-
ture can be measured in generic systems, interacting or
not, as a leading non-adiabatic response of physical ob-
servables to quench velocity. This method does not re-
quire stringent adiabatic conditions hard to achieve in
large systems. While in this letter we focused on the
quantum dynamics close to the ground state, our main re-
sult Eq. (4) applies to the mixed states as well. We illus-

FIG. 19: Berry curvature at the equatorial plain θ = π/2 for a disordered spin chain as a function of the coupling J for 9 spins.
At large negative J the system minimizes the total spin to S = 1/2. The Berry curvature is also 1/2, corresponding to Chern
number equal to one. At small J the system becomes polarized and the Chern number is 9. Figure reproduced with permission
from Ref. [58].

1/2, corresponding to Chern number equal to one. At small J , the system becomes polarized and the Chern number
is L for a chain of length L. In between the Berry curvature and thus the Chern number changes in steps. If one
breaks the SU(2) invariance by considering, e.g., anisotropic interactions, the quantization of the Berry curvature
disappears while the Chern number remains quantized. The minimal model for observing this is a two-spin system,
which was recently realized experimentally also using superconducting qubits [111]. More recently, this has been
extended experimentally to four-spin systems[112], demonstrating the applicability of these methods towards larger
many-body systems where no other techniques may be used.

While a detailed discussion is beyond the scope of these notes, it is important to mention that these ideas are
not only being extended to many-body systems, but also to more complicated systems with direct experimental
relevance. One important avenue is understanding responses of open quantum systems, as most quantum systems
have some non-negligible coupling to their environment. Non-adiabatic corrections to the dynamics of these systems
are significantly more complicated, but they show some interesting connections to both the Berry curvature and the
metric tensor [113–117]. Another important direction is to understand the response of systems with degeneracies, as
pioneered by Wilczek and Zee [118]. Adiabatic perturbation theory in the presence of degeneracies has since been
developed in a series of papers by Rigolin and Ortiz [119–121]. Recently one of us has suggested to apply this to
measure the second Chern number [101, 122, 123], a novel topological invariant that gives information about the
non-Abelian Berry phase, a fundamental ingredient in active areas such as topological quantum computation. This
non-Abelian topological invariant has subsequently been measure in an four-level system using hyperfine levels of
ultracold atoms [124].
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FIG. 20: Topological phase diagram of the two-qubit model in Eq. (326).

Exercise V.2. Using two superconducting qubits, in Ref. [111], the authors are able to create Hamiltonian of the form

H = −Brn̂(θ, φ) ·
(
σ1 + σ2

)
+B0σ

z
1 + g

(
σx1σ

x
2 + σx1σ

x
2

)
, (326)

where n̂ is a unit vector. For fixed magnitudes Br, B0, and g, they consider the Chern number with respect to the
angles θ and φ as they encompass a sphere in parameter space. Here you will derive the theory behind some of the
experimental results in the paper.

• Assume the system begins in its ground state at θ = 0, after which the angle θ is ramped slowly with time at
fixed φ = 0. Use the dynamical quantum Hall effect to find an expression for the Berry curvature Fθφ. Assuming
the experimentalists are able to measure 〈σ〉 for each qubit separately, what should they measure to find Fθφ?

• The Chern number is given by C1 = (2π)−1
∫
dθdφFθφ. For the given Hamiltonian, why is it sufficient to

measure at φ = 0 instead of integrating over φ?

• The topological phase diagram of this model is depicted in Fig. 20. Let’s begin by imagining that there are no
interactions between the qubits (g = 0). Using the solution of the single qubit above, what are the values of the
Chern number in regions A and B?

• Now turn off the “pinning field” B0 = 0 and turn on very strong interaction, g � Br. Argue that in this limit,
deep in region C, the Chern number vanishes. Note that we have now found the Chern number in various limits
of the phase diagram. Away from these limits, the math is much less trivial. Nevertheless, the Chern number
remains perfectly quantized until a topological transition is reached, in which the gap above the ground state
closes.

• Bonus: Find an analytical solution to the phase transition lines in Fig. 20. Hint: degeneracies are generally
protected by a symmetry, so look along lines of high symmetry.

Exercise V.3. Let’s consider another unusual situation where topology emerges. A quintessential model of topology
in condensed matter systems is the Harper-Hofstadter model, where a magnetic flux is placed through each plaquette
of a square lattice to create a lattice realization of the quantum Hall effect [126, 127]. This has become particularly
relevant recently as a route to realizing topological physics in systems of ultracold atoms [125, 128–130]. Here we will
show that topology manifests at the level of a single plaquette in such a model (Fig. 21). Consider a single particle
living on such a plaquette with flux Φ = ϕΦ0/2π through it, such that the particle picks up phase ϕ/4 (−ϕ/4) each
time it hops clockwise (counter-clockwise). Furthermore, put potentials Vj on the four sites, setting V0 = 0 without
loss of generality. We will see that there is a non-zero Chern number with respect to the effective three-dimensional
manifold defined by x = ϕ− π, y = V1 − V3, and z = V2.
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FIG. 21: Illustration of a single plaquette with flux, similar to what is realized in Ref. [125].

• In order to get a non-zero Chern number, we must first identify singularities that can act as sources of Berry
curvature. Begin with Vj = 0 for all j. Show that a degeneracy appears at ϕ = π. Then show that this
degeneracy extends into a line of degeneracies for V1 = V3.

• Let’s pick one point on this line of degeneracies by fixing V1 = −V3. Then show that setting any of the above
perturbations x, y, or z to a small non-zero value breaks the degeneracy. Therefore, there exists an isolated
degeneracy (a Berry monopole) at x = y = z = 0.

• Finally, consider a small sphere of radius r in this parameter space, i.e., let x = r sin θ cosφ, y = r sin θ sinφ,
z = r cos θ. Argue that the first Chern number with respect to the angles θ and φ is non-zero for small but
non-zero r. Show numerically that its value can be measured using the dynamical Hall effect.

B. Metric tensor as a dynamical response

Originally Provost and Vallee thought that the metric tensor was a nice but unmeasurable mathematical object.
On the other hand, it was very soon understood that the Berry curvature, i.e., its imaginary part, is responsible for
many different physical phenomena such as the Aharonov-Bohm effect and the quantum Hall effect. In Sec. IV A we
already discussed that the ground state metric tensor can be expressed through the measurable imaginary part of the
Kubo susceptibility [see Eq. (241)]. In Appendix A we extended this relation to finite temperature density matrices.
Here let us show that the metric tensor like the Berry curvature has a direct physical meaning as a non-adiabatic
response coefficient.

Let us again use the result of the adiabatic perturbation theory for transition amplitudes [Eq. (307)] and compute
the energy variance due to the ramp rate:

∆E2 = 〈H2〉 − 〈H〉2 =
∑

n

|an|2E2
n −

(∑

n

En|an|2
)2

=
∑

αβ

λ̇αλ̇β


∑

n 6=0

(En − E0)2 〈0|∂αH|n〉〈n|∂βH|0〉
(En − E0)4


+O(|λ̇|2) = ~2

∑

αβ

λ̇αgαβλ̇β +O(|λ̇|2). (327)

So the metric tensor defines the leading non-adiabatic correction to the energy variance, which, by energy conservation,
is equal to the variance of work done on the system during the ramp δw2. It is easy to see that this result is not tied
to the ground state and applies to any other initial eigenstate. For mixed states with non-zero initial fluctuations
metric tensor describes the increase in energy fluctuations due to the ramp, i.e.,

∆E2 = ∆E2
ad + ~2

∑

αβ

λ̇αgαβλ̇β +O(|λ̇|2), (328)

where ∆Ead is the width of the energy distribution for the adiabatic ramp with |λ̇|2 → 0. This is closely connected
with the quantum speed limit [131–133], which we explored in more detail in Sec. IV A 2.
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In the high-temperature limit the average work and work fluctuations are not independent. The satisfy Einstein’s
relations, which are in turn derived from fluctuation theorems (see Refs. [27, 134]): δw2 ≈ 2kBTw. Therefore in this
classical or high-temperature case the metric tensor gives the leading non-adiabatic contribution to the energy:

E ≈ Ead +
~2

2kBT

∑

αβ

λ̇αgαβλ̇β +O(|λ̇|2) (329)

This non-adiabatic contribution to the energy is clearly proportional to the square of the velocity λ̇ and thus describes
a correction to the kinetic energy associated with the parameter λ. Therefore ~2gαβ/(kBT ) plays the role of the mass
renormalization of this parameter. We will derive this result more carefully in the next section.

Exercise V.4. Using the leading order adiabatic perturbation theory as in Eq. (327), prove Eq. (329) in the high-
temperature limit assuming that the adiabatic (equilibrium) density matrix of the system is described by the Gibbs
distribution: ρn ≈ 1/Z exp[−En/(kBT )]. Hint: you can use the relation

ρn − ρm
Em − En

≈ 1

kBT
ρn, if kBT � |En − Em|.

In passing we note that one can relate the metric tensor to the probability of doing zero work during an infinitesimal
double quench [57], which is connected to the well-known Loschmidt echo [135]. These energy/work distributions are
in principle measurable for a wide variety of systems, and in particular there has been a recent upswelling of progress
in the field spurred by non-equilibrium fluctuation relations that also make reference to the work distribution [136].

VI. NON-ADIABATIC RESPONSE AND EMERGENT NEWTONIAN DYNAMICS

Key concept: For slow macroscopic degrees of freedom λ coupled to fast degrees of freedom, Newtonian
equations of motion emerge from leading non-adiabatic corrections to the Born-Oppenheimer approximation. In the
classical or high-temperature limit, the emergent mass tensor is proportional to the metric tensor. In the quantum
low-temperature limit, it is described by a related susceptibility expressed through the gauge potentials.

A. Adiabatic perturbation theory

In the previous section, we argued that the leading non-adiabatic correction in λ̇ to the wave function of the system
can be found from an assumption that the system follows the instantaneous ground state of the moving Hamiltonian
H̃m = H̃ − λ̇αÃα. From this we saw how leading non-adiabatic corrections to generalized forces and the energy
broadening connect the geometric tensor to response coefficients. In this section, we extend the previous analysis to a
more general class of systems, which are not necessarily in a ground state and which might have gapless excitations.
This chapter closely follows Ref. [137]. Our starting point will be the von Neumann equation for time evolution of
the density matrix in the moving frame

i
dρ

dt
=
[
H− λ̇αAα, ρ

]
,

where we remember that H is the diagonal Hamiltonian in the instantaneous basis. We again temporarily in this
section set ~ = 1 in all intermediate formulas to simplify notations. Also for simplicity we drop the tilde signs in this
section over the Hamiltonian, gauge potentials and other observables. As expressions for all resulting expectation
values are gauge invariant (independent of the choice of frame), the tilde signs in the final expressions can be dropped
anyway. As before, we will use standard perturbation theory (Kubo formalism), where the Galilean term plays the role
of the perturbation, but now considering the full time dependent Hamiltonian. We will go to the interaction picture

(i.e., the Heisenberg representation with respect to H) via the time-dependent (diagonal) unitary V (t) = e−i
∫ tH(t′)dt′ :

ρ = e−i
∫ tH(t′)dt′ρHei

∫ tH(t′)dt′ = V ρHV
†, Aα = V AH,αV

† . (330)

Note that because the Hamiltonian H is diagonal by construction, and thus commutes with itself at different times,
it remains unchanged in the interaction picture: HH = H. For the same reason we do not need to worry about time-
ordering in Eq. (330), which illustrates the difference between the “interaction” picture above and the Heisenberg
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representation: in the latter one has to use the full time-dependent Hamiltonian (not its instantaneous diagonal part)
and thus the time-ordered integral.

In this interaction picture, the von Neumann equation becomes

i
dρH
dt

= −λ̇α [AH,α(t), ρH(t)] , (331)

which is equivalent to the integral equation

ρH(t) = ρH(0) + i

∫ t

0

dt′λ̇α(t′) [AH,α(t′), ρH(t′)] (332)

Next we are going to utilize the standard linear response Kubo formalism to perturbatively solve this integral equa-
tion [138]. As the Hamiltonian H is generally time-dependent, its spectrum explicitly depends on λ(t). However,

this dependence is trivial because it only amounts to using phase factors φn =
∫ t

0
En(t′)dt′ instead of φn = Ent. To

simplify derivations we will assume a λ-independent spectrum for the remainder of this section and only comment
in the end how one should modify the final expressions if this is not the case (see Ref. [137] for a more detailed
derivation).

We assume that the system is initially prepared in a stationary state of the Hamiltonian H(λ(0)), after which one
slowly turns on the ramping protocol. In the leading order in perturbation theory we can substitute the stationary
density matrix into the R.H.S. of the integral equation [Eq. (332)]:

ρH(t) = ρ0 + i

∫ t

0

dt′λ̇α(t′) [AH,α(t′), ρ0] +O(λ̇2), (333)

where we used that ρH,0 = ρ0 because ρ0 is stationary and hence commutes with H. From this we can find the linear
response correction to the generalized forces:

〈Mα(t)〉 ≈M (0)
α + i

∫ t

0

dt′ λ̇β(t′)〈[MH,α(t),AH,β(t′)]〉0, (334)

where M
(0)
α ≡ 〈Mα〉0 is the instantaneous generalized force. Evaluating the expectation value of the commutator in

the co-moving basis and using Eq. (63) for the matrix elements of the gauge potential, we find

〈[MH,α(t),AH,β(t′)]〉0 =
∑

n

ρ0
n〈n|MH,α(t)AH,β(t′)|n〉 − h.c.

=
∑

m6=n
ρ0
n〈n|eiHtMα(t)e−iHt|m〉〈m|eiHt′Aβ(t′)e−iHt

′ |n〉 − h.c.

=
∑

m6=n
ρ0
nei(En−Em)(t−t′)〈n|Mα(t)|m〉

( 〈m|Mβ(t′)|n〉
i(En − Em)

)
− h.c.

= i
∑

m 6=n

ρ0
n − ρ0

m

Em − En
ei(En−Em)(t−t′)〈n|Mα(t)|m〉〈m|Mβ(t′)|n〉. (335)

The time-dependence on the observables is a reminder that we are working in the instantaneous frame, which changes
in time together with λ. Substituting this expression back into Eq. (334) and switching to integration variable
t′′ = t− t′, we find a general expression for the microscopic force:

〈Mα(t)〉 = M (0)
α −

∫ t

0

dt′′λ̇β(t− t′′)
∑

n 6=m

ρ0
n − ρ0

m

Em − En
ei(Em−En)t′′〈m|Mα(t)|n〉〈n|Mβ(t− t′′)|m〉+O(λ̇

2
) . (336)

This expression will generally hold for arbitrary systems as long as ˙|λ| is sufficiently small that the λ̇
2

term can
be neglected. We can simplify this expression further by using time scale separation. Recall that by assumption λ
represents slow variables in the system. Mathematically this statement implies that the non-equal time correlation
function of the generalized forces 〈MH,α(t′′)MH,β(0)〉0,c decays much faster than the characteristic time scale of
changing λ(t). Because we are interested in long time dynamics of the system, we expect therefore that the system
will forget its long-time history: 〈MH,α(t)MH,β(t − t′′)〉0,c → 0 as t′′ � τ , where τ is the characteristic relaxation
time scale of fast degrees of freedom. Thus unless we are interested in short time transient dynamics t . τ , we can
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extend the upper integration limit in Eq. (336) to ∞. It is then natural to expand λ̇µ(t − t′′) into a Taylor series

near t′′ = 0: λ̇β(t− t′′) ≈ λ̇β(t)− t′′λ̈β(t) + . . . . As we will see shortly, it is important to keep the first two terms in
this expansion and all other terms, in most cases, describe unessential subleading corrections.[173] Similarly we can

approximate Mβ(t − t′′) ≈ Mβ(t), as the next order correction ∂αMβ(t)λ̇α(t) will result in quadratic correction in

λ̇ in Eq. (336). Then by grouping terms, we find

〈Mα(t)〉 = M (0)
α − λ̇β(ηαβ − Fαβ)− λ̈β(καβ + F ′αβ) +O(

...
λ, λ̇

2
) , (337)

where we split the coefficients in front of λ̇β and λ̈β into symmetric (ηαβ and καβ) and anti-symmetric (Fαβ and F ′αβ)
components. For instance,

ηαβ =
1

2

∫ ∞

0

dt′′
∑

n 6=m

ρ0
n − ρ0

m

Em − En
ei(Em−En)t′′ [〈m|Mα|n〉〈n|Mβ |m〉+ α↔ β] ,

Fαβ = −1

2

∫ ∞

0

dt′′
∑

n 6=m

ρ0
n − ρ0

m

Em − En
ei(Em−En)t′′ [〈m|Mα|n〉〈n|Mβ |m〉 − α↔ β] , (338)

where all matrix elements (and in general energies) as well as the eigenstates correspond to the instantaneous parameter
value λ(t).

It is now straightforward to evaluate the remaining integrals over t′′. As usually one can regularize them by inserting
small decaying exponential exp[−δt′′] with infinitesimal positive δ. For instance, in Eq. (338), one uses

∫ ∞

0

exp[i(Em − En)t′′ − δt′′]dt′′ =
1

δ − i(Em − En)

δ→0
−−−→ iP

(
1

Em − En

)
+ πδ(En − Em), (339)

where P stands for the principal value. Note that the first term is antisymmetric under the permutation of indexes n
and m, while the second is symmetric. Because, as is evident from Eq. (337), the permutation of n and m is equivalent
to the permutation of α and β, we see that the principal value determines the antisymmetric coefficient Fαβ and the
second, symmetric term determines ηαβ . Therefore

Fαβ(λ) = −i
∑

n 6=m

ρ0
n − ρ0

m

(Em − En)2
〈m|Mα|n〉〈n|Mβ |m〉

= i
∑

n 6=m
ρ0
n

〈n|Mα|m〉〈m|Mβ |n〉 − 〈n|Mβ |m〉〈m|Mα|n〉
(En − Em)2

, (340)

where all energies and matrix elements are evaluated at λ. If we compare this expression with Eq. (235) and use that
Fαβ = i(χαβ−χβα) [cf. Eq. (217)], we will recognize Fαβ is just the average of the Berry curvature over the adiabatic
density matrix ρ0.

Similarly, for a thermal density matrix ρ0 the symmetric part of the response coefficient is given by

ηαβ =
π

kBT

∑

n 6=m
ρ0
m〈m|Mα|n〉〈n|Mβ |m〉δ(En − Em),

where we used that for a thermal ensemble with ρ0
n ∝ e−En/kBT ,

ρ0
n − ρ0

m

Em − En
→ 1

kBT
ρ0
n (341)

when Em → En. As we will see shortly, ηαβ represents the friction force on the system. It is non-zero only if the
system has gapless excitations. Therefore, at zero temperature or for a system with a discrete energy spectrum, the
friction coefficient is always zero unless the system is gapless or quantum critical. Thus, for time being we set ηαβ → 0.

In a similar spirit one can derive the other two coefficients. Let us use that

−
∫ ∞

0

t′ exp[i(Em − En)t′ − δt′]dt′ = ∂δ

∫ ∞

0

exp[i(Em − En)t′ − δt′]dt′

= − 1

(δ − i(En − Em))2

δ→0
−−−→ 1

(En − Em)2
− iπδ′(En − Em), (342)
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Plugging this result into Eq. (336) we see that now the off-shell term is symmetric, while the on-shell term is an-
tisymmetric. The first (off-shell) term defines the coefficient καβ , which as we will see shortly determines the mass
renormalization

καβ =
∑

n 6=m

ρ0
n − ρ0

m

(Em − En)
3 〈m|Mα|n〉〈n|Mβ |m〉 =

∑

n 6=m

ρ0
n − ρ0

m

Em − En
〈m|Aα|n〉〈n|Aβ |m〉 (343)

At low temperatures kBT → 0 and hence ρ0
n → δn0 this expression reduces to

καβ ≈ ~
∑

m 6=0

〈0|Mα|m〉〈m|Mβ |0〉+ ν ↔ µ

(Em − E0)
3 , (344)

while at high temperatures (or near the classical limit) we find

καβ ≈
1

2kBT

∑

n

ρ0
n (〈n|AαAβ |n〉c + α↔ β) =

~2

kBT
gαβ (345)

where gαβ is the Fubini-Study metric tensor for the finite temperature ensemble. We reintroduced the factor of ~
into the expression for the mass tensor to highlight that it has a well defined classical limit. It is straightforward
to see that at any temperature the mass tensor καβ can be written as the integral of the connected imaginary time
correlation function of the gauge potentials Aα and Aβ :

καβ =
1

2~

∫ ~/kBT

0

dτ〈AH,α(−iτ)AH,β(0) + α↔ β〉0,c , (346)

where

AH,α(−iτ) = exp[τH/~]Aα exp[−τH/~]

is the imaginary time Heisenberg representation of the operator Aα. Then Eq. (346) immediately follows from
Eq. (343) if we use the identity

1

~

∫ ~/kBT

0

dτ ρ0
n e−(Em−En)τ/~ =

ρ0
n − ρ0

m

Em − En
(347)

While we did not explain yet why the tensor καβ is related to mass, let us point out that its high temperature
asymptotic is perfectly consistent with the equipartition theorem if α and β describe macroscopic coordinates, say
the position of the center of mass: α, β ∈ {x, y, z}. In this case as we discussed earlier the gauge potential reduces
to the total momentum operator of fast degrees of freedom Aα = Pα and thus, e.g., the xx component of the mass
according to Eq. (345) satisfies

κxx =
1

kBT
〈P 2
x 〉c ⇔ 〈P 2

x 〉c
2κxx

=
kBT

2
, (348)

which is indeed the famous equipartition theorem of the statistical physics. As a corollary to our derivation, we note
that Eq. (346) generalizes the equipartition theorem to quantum systems and applies at any temperatures. Perhaps
a less trivial statement is that Eq. (345) applies to all types of motion. For example, in a scale-invariant Hamiltonian
where the slow parameter corresponds to dilations, the additional mass in the classical limit is given by the product of
the variance of the dilation operator and the inverse temperature, and similarly for whatever parameters the problem
presents.

Finally, the antisymmetric tensor F ′ is given by

F ′αβ = −iπ
∑

n 6=m

ρ0
n − ρ0

m

Em − En
〈n|Mα|m〉〈m|Mβ |n〉 δ′(En − Em). (349)

Similar to ηαβ , this tensor is an on-shell contribution responsible for dissipation, but usually it is subleading to η.
Like F , this tensor is always zero if the instantaneous Hamiltonian respects time-reversal symmetry.
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B. Born-Oppenheimer approximation

Up to now we were considering the parameter λ as an external slow field. This is usually justified when the back
action of fast degrees of freedom is negligible. However, there are many instances where such back action can not be
neglected despite the time scale separation. For example in atomic and molecular systems, as well as more complex
materials, the motion of nuclei is much slower than the motion of electrons due to large mass difference, but the
forces exerted by electrons on nuclei cannot be neglected. In systems with emergent macroscopic collective degrees of
freedom like order parameters, dynamics of the latter can be much slower than that of microscopic degrees of freedom
but yet it is entirely determined by interactions with these degrees of freedom (e.g., slow magnetization waves often
originate from fast motion of electrons with different spin). In thermodynamic heat engines, fast degrees of freedom
such as atoms exert a macroscopic force on a macroscopic object such as a piston, causing motion of the piston due
to its energy exchange with fast atoms. In all such situations it is natural to assume that fast degrees of freedom
nearly adiabatically follow equilibrium corresponding to the instantaneous positions of the slow degrees of freedom.
These ideas were first developed by Born and Oppenheimer in the context of atoms in 1927 and are known now
as the Born-Oppenheimer approximation. Let us briefly discuss this approximation since it is the starting point of
our further analysis. For simplicity we will assume that the slow degrees of freedom are classical, which is often
justified since we are assuming they are macroscopic, while we will treat quantum degrees of freedom fully quantum
mechanically.

Let us assume quite generally that the total Hamiltonian describing the degree of freedom λ and the rest of the
system is

Htot(λ) = H0(λ) +H(λ), (350)

where H0(λ) is the Hamiltonian describing the bare motion of λ. The choice of splitting Htot between H0 and H
is somewhat arbitrary and we can well choose H0 = 0 so that Htot = H. However, for an intuitive interpretation of
the results, it is convenient to assume that H0(λ) represents a massive degree of freedom in some external potential
V (λ):

H0(λ) =
1

2
pαm

−1
αβpβ + V (λ),

where m−1
αβ is the inverse mass tensor. In the infinite mass limit (||mαβ || → ∞), λ represents an external (control)

parameter whose dynamics is specified a priori. When ||mαβ || is finite, λ is a dynamical variable and its dynamics
needs to be determined self-consistently. The whole system can be described by coupled Hamiltonian equations of
motion

mαβ
dλα
dt

= pβ ,
dpα
dt

= − ∂V

∂λα
+ Tr[ρ(t)Mα(λ(t))], i

dρ(t)

dt
= [H(λ(t)), ρ(t)]. (351)

Technically one can derive this equation from the path integral representation of the full quantum-mechanical evolution
by taking the saddle point with respect to the classical field λ and treating other microscopic degrees of freedom fully
quantum-mechanically. Alternatively, as was originally suggested by Born and Oppenheimer, one can assume that
the quantum density matrix describing the full system factorizes into the product of density matrices for the slow
degree λ and other degrees of freedom and then taking the classical limit for λ.

The key assumption of the Born-Oppenheimer approximation is that as λ is slow, such that one can substitute the
full density matrix ρ(t) by its adiabatic limit ρ0 and use this ρ0 in the second of the equations in Eq. (351). Under
these conditions the dynamics of λ is described by a motion in the modified potential:

mαβ
dλα
dt

= pβ ,
dpα
dt

= − ∂V

∂λα
+M (0)

α (λ). (352)

Due to the Feynman-Hellman theorem, in equilibrium

M (0)
α (λ) = −Tr[ρ0∂αH] = −∂αTr[ρ0H] =⇒ ṗα = −∂α

(
V + Tr[ρ0H]

)
.

So the slow degree of freedom effectively moves in the renormalized Born-Oppenheimer potential

V ′(λ) = V (λ) + Tr[ρ0H(λ)]. (353)
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C. Emergent Newtonian dynamics

While the Born-Oppenheimer approximation is very powerful for many systems, it completely misses non-adiabatic
corrections to the density matrix. We already alluded to the fact that these corrections give rise to the Lorentz force,
friction, mass renormalization and other effects, which we will briefly discuss below. To take these corrections into
account and thus to go beyond the Born-Oppenheimer approximation, we simply need to combine the equations of
motion [Eq. (351)] and the non-adiabatic expansion of the generalized force [Eq. (337)]

d

dt

[
(mαβ + καβ + F ′αβ)λ̇β

]
+ (ηαβ − ~Fαβ)λ̇β = − ∂V

∂λα
+M (0)

α (354)

up to terms of order λ̇2. The symmetric tensor in the first term in this equation represents the renormalized mass.
Thus καβ indeed gives mass renormalization. The term ηαβλ̇µ is clearly the dissipative force. The Berry curvature
defines an analogue of the Coriolis or the Lorentz force and the other antisymmetric on-shell contribution encoded in F ′

is effectively an antisymmetric friction term. In these notes we are focusing on quantum systems with discrete spectra.
Therefore there are no on-shell contributions and hence we set η and F ′ to zero for the remainder of these notes. We
also point out that within the accuracy of our expansion one can equally write the renormalized mass term as καβλ̈β

or as we did as dt[καβλ̇β ]. Indeed it is easy to see that the difference between these two terms dγκαβλ̇βλ̇γ ∼ O(|λ̇2|).
However, a more careful analysis shows that the mass renormalization terms gives a conservative contribution to the
energy of the system, i.e., is given by the full derivative of the renormalized Hamiltonian and therefore writing it as
in Eq. (354) is more accurate [137].

In the absence of dissipative contributions it is easy to check that the equations of motion [Eq. (354)] come from
the Lagrangian:

L =
1

2
λ̇α (m+ κ)αβ λ̇β + λ̇β Aβ(λ)− V ′(λ), (355)

where

Aβ(λ) = Tr[ρ0Aβ ]

is the equilibrium Berry connection and V ′ is the Born-Oppenheimer potential in Eq. (353). In the zero temperature
case, the Berry connection reduces to the ground state Berry connection and the Born-Oppenheimer potential reduces
to the sum of the bare potential and the instantaneous ground state energy of the system at given λ. From the
Lagrangian, Eq. (355), we can define the canonical momenta conjugate to the coordinates λν :

pα ≡
∂L
∂λ̇α

= (mαβ + καβ)λ̇β +Aα(λ) (356)

and the emergent Hamiltonian:

Hλ ≡ λ̇α pα − L =
1

2
(pα −Aα)(m+ κ)−1

αβ(pβ −Aβ) + V ′(λ). (357)

Clearly the equilibrium Berry connection term plays the role of the vector potential. Thus we see that the formalism
of effective Hamiltonian dynamics for arbitrary macroscopic degrees of freedom is actually emergent. Without the
mass renormalization this (minimal coupling) Hamiltonian was derived earlier [93]. Away from the ground state
the dissipative tensors (η and F ′) are, in general, non-zero and it is not possible to reformulate Eq. (354) via the
Hamiltonian or Lagrangian formalism.

Exercise VI.1. Verify explicitly that the Lagrangian and the Hamiltonian equations of motion given by the Lagrangian
[Eq. (355)] and the Hamiltonian [Eq. (357)] are equivalent to Newtonian equations of motion [Eq. (354)], assuming
that there are no dissipative contributions, i.e., η = F ′ = 0.

D. Beyond Newtonian dynamics: the snap modulus

Within the developed formalism we can continue the non-adiabatic expansion for the generalized force, Eq. (336). To
simplify the analysis in this section let us assume that the parameter λ is single component and thus all antisymmetric
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contributions vanish. As was mentioned in an earlier footnote, in this way one can recover the third derivative friction
term, which describes dissipation due to radiation in Lorentz-invariant systems. Since we are focusing here on non-
dissipative systems with a discrete spectrum this term will be zero. So the next non-zero term will appear if we go to
the fourth derivative in λ. Such high-derivative term might look totally irrelevant given our assumption of time scale
separation. But it has very important implications defining the leading correction to the Newtonian dynamics and
thus showing the regime of its validity. Furthermore, as we will demonstrate later [see discussion below Eq. (359)]
this term is closely related to the Unruh effect for accelerated photons confined to the cavity and has interesting
observable physical consequences for the dynamics of the cavity.

It is straightforward to see that continuing the Taylor expansion in t′′ in Eq. (336) we find up to the fourth order
(and in the absence of dissipative odd derivative terms)

〈Mα〉 ≈M (0)
α − κλ̈+ ζ

d4λ

dt4
, (358)

where

ζ =
∑

n6=m

ρn − ρm
(Em − En)3

|〈m|Aλ|n〉|2 =
∑

n 6=m

ρn − ρm
(Em − En)5

|〈m|Mλ|n〉|2. (359)

Following the definition of the fourth derivative of the position as snap [139] we term the coefficient ζ as the snap
modulus.

Exercise VI.2. Derive Eq. (359).

Exercise VI.3. Derive the microscopic expression for the dissipative contribution entering the generalized force, which
is proportional to

...
λ . Show that if the temperature is positive it can only lead to dissipation of the bare energy of λ,

i.e., due to this term dHλ/dt ≤ 0, where Hλ is given by Eq. (357).

Substituting this generalized force into the equations of motion, Eq. (351), we get

Mλ̈ = −∂λV ′ − κλ̈+ ζλ(4) . (360)

Multiplying by the velocity λ̇ and rearranging, this becomes

0 = λ̇∂λV
′ + (M + κ)λ̈λ̇− ζλ(4)λ̇

≈ d

dt

(
V ′ +

M + κ

2
λ̇2 − ζ

2

(
2λ̇

...
λ − λ̈2

))
,

up to terms of order λ̇3. Equivalently there is an emergent energy conservation law with

Eλ = K + V ′(λ) = const, (361)

where the kinetic energy in the presence of the snap modulus reads

K =
M + κ

2
λ̇2 +

ζ

2

(
λ̈2 − 2λ̇λ̈

)
(362)

Completing the square and ignoring the higher order term
...
λ

2
one can approximately rewrite the kinetic energy as

K ≈ M + κ

2

(
λ̇− ζ

κ+M

...
λ

)2

+
ζ

2
λ̈2 (363)

so that the third derivative term plays a role similar to the gauge potential. In this derivation we assumed for
simplicity that both κ and ζ are independent of λ. One can check that if this is not the case the correct equations
of motion follow from the conservation of the energy Eλ. This energy function does not represent a Hamiltonian any
longer since it explicitly depends on higher order derivatives. Nevertheless one can define the Lagrangian and get the
equations of motion from extremizing the action.
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VII. EXAMPLES OF EMERGENT NEWTONIAN DYNAMICS

We will now illustrate the emergent Newtonian dynamics formalized in the previous section with a few simple
examples. First, we consider a particle in a box whose walls are allowed to move. We find that the excitations of the
particle caused by motion of the walls dress the mass of the walls. The value of mass dressing depends on the nature
of the wall motion (translational, dilational, etc.). Then we extend this concept to a massless particle, where now
the mass dressing is found to depend on the energy of particle in the box. We then proceed to a simple many-body
example, the classical version of a central spin problem, where excitations of the spin bath dress the central spin’s
moment of inertia. Finally, we show that emergent Newtonian dynamics can occur entirely internally by showing how
the BCS gap of a superconductor can be treated as a semi-classical degree of freedom whose dynamics is modified by
excitations of the superconducting quasiparticles. Throughout this section, we will explicitly insert all factors of ~ to
better see when these effects could be observed in realistic systems.

A. Particle in a moving box

Let us begin by considering a massless spring connected to a wall, as illustrated in the left panel of Fig. 22. We
imagine that a quantum particle of mass m is initially prepared in the ground state of the confining potential. As in the
previous example we will compute how the mass of a classical object (the wall) coupled to a quantum environment (the
particle in the well) is renormalized, which in practice could be measured by, for example, a change in the oscillation
frequency of the spring.

a b

FIG. 22: (Color on-line) Schematic of a quantum piston. a) The spring is connected to a wall of the potential in which a
quantum particle of mass m is initially confined into the ground state. b) As in (a) but now the spring is connected to the
whole potential well which moves rigidly. The horizontal black lines represent the low energy wave functions of the quantum
particle in the confining potential.

According to Eq. (344) the mass renormalization is given by

κRR = 2~2
∑

n 6=0

|〈n|Mλ|0〉|2
(En − E0)3

, (364)

where λ = XR is the position of the right potential wall. We approximate the confining potential as a very deep
square well potential:

H =
p2

2m
+ V

(
Θ(XL − x) + Θ(x−XR)

)
. (365)

Then Mλ ≡ −∂λH = V δ(x−XR) and we find

κRR = 2~2
∑

n6=0

V 2|ψ0(XR)|2|ψn(XR)|2
(En − E0)3

. (366)

Using the well known result for a deep but finite square well potential

|ψn(XR)| =
√

2

L

√
En
V
,
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where the factor of
√

2/L comes from the normalization of the wave-function in a square potential of length L, we
obtain

κRR = 2~2

(
2

L

)2∑

n 6=0

E0En
(En − E0)3

. (367)

Substituting

En =
~2k2

n

2m
, kn =

n+ 1

L
π, ∀n ≥ 0

we arrive at

κRR = m
16

π2

∑

n≥1

(n+ 1)2

[(n+ 1)2 − 1]3
= m

2π2 − 3

6π2
≈ 0.28m. (368)

The result is identical if we connect the piston to the left wall, i.e., κLL = κRR.

Exercise VII.1. Derive the result Eq. (368) using the gauge potential. In particular, repeat steps similar to the ones
for the harmonic oscillator leading to Eq. (292) to find the gauge potential corresponding to moving XR. Then using
this gauge potential and Eq. (344) compute the mass correction of the piston.

1. Translations

Now let us consider a slightly different setup where the spring connects to the whole box (see Fig. 22b) so that
λ = X+ now indicates the center of mass of the well. From Galilean invariance we expect κ = m. In fact, since now
both potentials walls are moving, our expression gives

M+ = −∂+H = V (δ(x−XR)− δ(x−XL)),

where XL and XR are the left and right positions of the walls. Thus using Eq. (364) we obtain

κ++ = 2~2
∑

n 6=0

V 2(ψ0(XL)ψn(XL)− ψ0(XR)ψn(XR))2

(En − E0)3
. (369)

Since in a symmetric potential well ψn(XR) = (−1)nψn(XL), only the odd terms contribute in the equation above.
Following the same line of reasoning as before we arrive at (note the extra factor of 4 with respect to Eq. (367))

κ++ = 2~2

(
2

L

)2

4
∑

n=odd

E0En
(En − E0)3

= m
64

π2

∑

n=odd

(n+ 1)2

[(n+ 1)2 − 1]3
= m. (370)

So indeed we recover the expected result. This simple calculation illustrates that we can understand the notion of
the mass as a result of virtual excitations created due to the acceleration of the external coupling, which in this case
is the position of the wall(s).

This result can be found using the language of gauge potentials. As we showed earlier for the global translations
XL = XR is the momentum operator: A+ = p̂. So the renormalization can be also found from Eq. (368)

κ++ = 2
∑

n 6=0

|〈0|p̂|n〉|2
En − E0

= m. (371)

Exercise VII.2. Verify that Eq. (371) gives the correct expression for the mass [Eq. (370)].

Notice that the expression for the mass, Eq. (370), is expected to hold not only for a square well but any trans-
lationally invariant non-relativistic system. As we already discussed, it can be viewed as a sum rule or a quantum
generalization of the equipartition theorem.
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FIG. 23: Four possible modes of motion for the walls of the cavity.

2. Dilations

If instead we analyze the setup where the two walls are connected to a spring and move towards each other so that
λ = X− is the (instantaneous) change in the length of the potential well (see Fig. 23) we find

κ−− = 2~2
∑

n 6=0

V 2(ψ0(XL)ψn(XL) + ψ0(XR)ψn(XR))2

4(En − E0)3

= m
16

π2

∑

n=even
n 6=0

(n+ 1)2

[(n+ 1)2 − 1]3
= m

π2 − 6

12π2
≈ 0.033m.

(372)

Let us note a peculiar property of the dressed mass. Clearly κLL + κRR ≈ 0.56m 6= κ++, κ−−, i.e., the mass
renormalization of the two walls is not the same as the sum of the mass renormalization of each wall measured
separately. This is a result of interference, which is apparent in Eqs. (369) and (372). Note that (κ++ + 4κ−−)/2 =
κLL + κRR. Thus the mass behaves similarly to the intensity in the double pass interferometer, where the sum of
intensities in the symmetric and antisymmetric channels is conserved. This analogy will become more clear after
Exercise (VII.4), where you will compute the full mass renormalization tensor, whose normal modes correspond to
κ++ and κ−−, which interfere to give κLL and κRR.

It is straightforward to generalize this calculation for a particle in the box prepared in an excited state |n〉:

κn++ = 2
∑

n′ 6=n

|〈n′|p|n〉|2
En′ − En

= m
64

π2

∑

n′=n+odd

(n′ + 1)2(n+ 1)2

[(n′ + 1)2 − (n+ 1)2]3
= m . (373)

Similar expressions hold for κn−− and κnRR, but unlike the Galilean mass κ++ the latter two depend on n. In particular
(cf. Exercise (VII.1)),

κnRR = 2~2
∑

m 6=n

|〈m|∂XR |n〉|2
(Em − En)

= 2
∑

m6=n

|〈m|D|n〉|2
Em − En

=
m

3

(
1− 3

2π2n2

)
, (374)

where

D =
xp̂+ p̂x

2L

is the dilation operator introduced earlier [cf. Eq. (293)]. In the classical limit the renormalized mass approaches
m/3. This result can be also easily recovered from the equipartition theorem. Indeed according to Eq. (345) the high
temperature asymptotic of the metric tensor is given by the variance of the gauge potential, which is the dilation
operator in this case:

κnRR
n�1
−−−→ 1

kBT
〈D〉2 ≈ 1

kBT

〈x2〉〈p2〉
L2

=
m

3
, (375)

where we used that in the classical limit, according to the Gibbs statistics, probability distributions for the coordinate
and the momentum factorize.

Exercise VII.3. Complete the missing steps in deriving Eqs. (373) and (374).
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The fact that the mass κRR or in short the dilation mass, since it corresponds to the dilations of the system, is
equal to one third of the usual translational mass might look a bit strange. One would naively expect that the effect
of interference terms appearing, e.g., in Eq. (369) will disappear in the classical limit as usually happens. Indeed it
is easy to see that such terms appear with opposite signs depending on whether the parity of the state n is even or
odd (for the excited state the equivalent expression will involve double summation over n and n′ and the sign of the
interference term will depend on the parity difference between n and n′). Because En′ −En is a smooth function of n
and n′ one would expect that these oscillations will cancel each other. However, this is not the case because the mass
is always, even in the classical limit n� 1, is dominated by the nearest excitations n′ = n± 1, n± 2 so En′ −En can
not be considered as a smooth continuous function of n− n′.

FIG. 24: A figure illustrating equivalence of a piston confined between two cavities with an ideal gas to the piston connected
to two springs of mass m, where m is the mass of the gas in each cavity. Note that analogy extends not only to forces (as it is
usually discussed) but also to masses.

Instead this mass dressing can be qualitatively understood by noting that upon compression of the box (a.k.a.
dilations, the generator of the κ−− term), the mass m pushes back against the walls much like a massive spring or
a rubber band. Then if we push on the right end of the massive spring to give it a velocity vR with the other end
held clamped at x = 0, the velocity of the spring will be a linear function of the position, v(x) = vRx/L. The kinetic
energy of the massive spring in this case is

T =

∫ L

0

1

2
µv2(x)dx =

µ

2

∫ L

0

x2v2
R

L2
=

1

6
mv2

R =
κRR

2
v2
R , (376)

where µ = m/L is the mass density of the spring. The corollary of this interpretation is that one can extend the
analogy of the freely moving piston confined between two ideal gases (see Fig. 24). As is discussed in many textbooks,
in this setup near equilibrium the two gases exert effective elastic forces on the piston from effective massless springs
and the spring constant is proportional to the pressure. Our result shows that this analogy extends beyond this, at
least in the non-interacting limit, giving equivalence of this setup to the piston coupled to two massive springs with
the mass of each spring being the same as the mass of the gas on each side of the piston.

Exercise VII.4. Show that for an arbitrary eigenstate n, the mass tensor is diagonal in the X+, X− basis, i.e.,
κ+− = κ−+ = 0. Then find the full mass tensor in the XR, XL basis by using the Jacobian matrix J = [∂X+,−/∂XR,L]:
κ{R,L} = JTκ{+,−}J . Confirm that this gives the correct value of κRR = κLL for the ground state [Eq. (368)].

Exercise VII.5. Derive the gauge potential for the compression with respect to X−. Using the equipartition theorem
evaluate the mass κ−− in the classical limit (corresponding to the highly excited state of the particle) and prove it is
equal to m/12. Argue that in the high temperature limit the off-diagonal components of the metric tensor g+− = 0
and hence the mass tensor is also diagonal in the +− space.

Exercise VII.6. For the harmonic oscillator presented in Sec. I, translations and dilations correspond to changing x0

and k = mω2 respectively. Find the diagonal components of the mass tensor κx0x0
and κkk for an arbitrary eigenstate

|n〉. Show that these connect to the metric tensor, which was derived for x0 and k in Exercise (IV.3) and Eq. (289),
respectively.

Exercise VII.7. Consider the setup illustrated in Fig. 25 in which a pendulum with mass m attached to a box of mass
M is pulled away from the surface of the earth. Using the results of the previous problem, find the effective mass Meff

that setup will appear to have when lifted away from the earth as a function of its temperature T . For simplicity, you
may assume that T is large enough that the problem may be treated classically.
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FIG. 25: Illustration of pendulum in a box being pulled away from the earth [Exercise (VII.7)].

3. Classical derivation of the mass

The example of the piston shows how the formalism of adiabatic perturbation theory can be used to find both the
anticipated translational mass of the box with a particle inside and the less obvious dilation mass. These examples
are sufficiently simple that they can be recovered from more elementary methods, although as we will see the actual
derivations are more complicated and harder to extend to more complex setups. It is nevertheless instructive to see
how the mass renormalization can be found from simple kinematics.

Let us start by computing the translational mass. Namely let us imagine a classical slow box of mass M , initially at
rest, with a fast particle of mass m inside it. At time t = 0 we start accelerating the box with, for simplicity, constant
acceleration a. Let us compute the force exerted on the box by the particle. We will find the force by computing the
average momentum transferred to the particle during one cycle and divide by the period. Note that we are interested
in the force averaged over the period. One can do the averaging in two equivalent ways: time averaging and space
averaging. The second way, i.e., space averaging, is actually somewhat simpler because the wall is accelerating and
time averaging should be done with some care. In quantum language this space averaging of the force is equivalent
to the averaging of M over the stationary probability distribution.

F F 

F F 

FIG. 26: Figure illustrating an elementary classical calculation of the translational mass. See text for details.

Let us imagine that starting at time t = 0 the box of length L is pulled with a constant acceleration a by some
external force F (see Fig. 26). Let us also assume that the particle starts near the left wall (the position of the particle
can be chosen arbitrarily) and moves in positive direction with initial velocity v. After time ∆t1 this particle collides
with the right wall. By that time the wall moves distance ∆x1 = L + a∆t21/2 and acquires the velocity V1 = a∆t1.
Then it reflects back with velocity

v1 = −v + 2V1 = −v + 2a∆t1.

The total transferred momentum to the particle during this collision is

∆p1 = m(v1 − v) = 2mv + 2ma∆t1.
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Then the particle moves backwards and collides with the left wall after time ∆t2. By that time the left wall moved
by the distance ∆x2 = a(∆t1 + ∆t2)2/2 and acquired the velocity v2 = a(∆t1 + ∆t2). The particle now reflects with
the velocity

v2 = −v1 + 2a(∆t1 + ∆t2) = v + 2a∆t2.

Hence the total transferred momentum to the particle is

∆p2 = m(v2 − v1) = 2mv + 2ma(∆t2 −∆t1).

Now we can compute the force exerted by the wall on this particle as

f =
∆p1 + ∆p2

∆t1 + ∆t2
=

2ma∆t2
∆t1 + ∆t2

. (377)

This expression is rather complicated as we yet have to compute ∆t1 and ∆t2, as functions of v, a, L. However, to
find the mass we are interested only in the leading non-adiabatic response linear in acceleration. The numerator of
Eq. (377) is already linear in a, which means that we can safely compute all time intervals only to zeroth order in a,
which is trivial:

∆t1 ≈ ∆t2 ≈ L/v.
Combining all this together we find

f ≈ 2ma

2
= ma (378)

as expected. So the total force required to accelerate the box and the particle is thus

ftot = (m+M)a, (379)

which is precisely Newton’s second law with the mass equal to the sum of the two masses. It is of course not surprising
that we were able to reproduce this simple and expected result from more elementary methods. However, it is very
instructive to see that we again relied in time scale separation and found this result only in the leading order adiabatic
expansion with the small parameter a∆t1/v = aL/v2.

F F

FIG. 27: Figure illustrating an elementary classical calculation of the dilation mass of the piston. See text for details.

Now let us analyze another setup where the force F is only applied to the right wall such that it moves with the
acceleration a while the left wall remains static (see Fig. 27) . As we will see, the classical elementary derivation not
involving gauge potentials becomes much more delicate as the force now depends on the initial position of the particle
x. It is convenient to define x measured from the left static wall in the interval [−L,L] such that the subinterval [−L, 0]
corresponds to the particle moving to the left (as shown in the figure) and the subinterval [0, L] corresponding to the
particle moving to the right, i.e., towards the moving wall. We assume that we start from a stationary probability
distribution described by a uniform distribution of x. As in the previous example the particle hits the right wall after
the time ∆t1, which can be found from

−L+ x+ v∆t1 =
a∆t21

2

Instead of solving this quadratic equation in general we will only find ∆t1 to the order in acceleration:

∆t1 ≈
L− x
v

+
a

2

(L− x)2

v3
(380)
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The transferred momentum to the particle is thus

∆p1 = −2mv + 2ma∆t1

The particle will return to the original position (and thus will complete the cycle) after time ∆t2 which can be found
from[174]

∆t2 =
L+ x+ a∆t21/2

v − 2a∆t1
,

where we took into account that (i) the particle has to travel a longer distance because of the displacement of the
wall and (ii) that it moves back with a reduced velocity. The force can be found as before by computing the ratio of
the total momentum transfer over the period. To the leading linear order in acceleration it is

f(x) =
∆p1

∆t1 + ∆t2
≈ −mv

2

L
+ma

[
5

2
− 2x

L
− x2

2L2

]
. (381)

The first term is nothing but the usual generalized force proportional to pressure (which resists compression of the
piston). The second term is proportional to the acceleration and thus should define the mass. Unlike the previous case
of the translationally invariant motion, this term explicitly depends on the initial coordinate of the particle. Taking
the average over these coordinates, which is equivalent to the average over the density matrix in the quantum case,
we find the average force

f =
1

2L

∫ L

−L
f(x)dx = −mv

2

L
+ 2ma+

ma

3
≈ −m(v − aL/v)2

L
+
ma

3
(382)

The first term here is now the standard force due to the pressure averaged over the cycle, with v = v − aL/v being
the average velocity of the particles. The second term is the non-adiabatic correction due to the acceleration, which
gives the correct result from Eq. (375). As we see, even in this simple example the “elementary” classical derivation
of the dilation mass is very delicate. It requires careful analysis of several contributions to the force of the same order
and the correct identification of different terms.

B. Mass of a massless relativistic scalar field in a cavity

For a massive particle in a box, we have seen that the box acquires an extra mass due to translations or dilations that
derives from the bare mass of the particle. We now ask what happens for massless particles in a box, such as a phonon,
photon or some other excitation with a linear dispersion. For example one can imagine a vibrating string confined
between two clamps (see Fig. 28). The effective mass of photons in a cavity has been investigated since the early days
of relativity, and the current theoretical understanding is that they appear to have a mass E/c2 proportional to their
energy (cf. Refs. [140] and [141] for a recent discussion). Here we will compute the renormalization of the mass of
the cavity containing particles with relativistic dispersion inside as before through the non-adiabatic correction to the
generalized force. This will allow us to identify both the classical (thermal) and quantum (zero point) contributions
to the photon mass.

A simple example realizing such a setup would be a vibrating string confined between two clamps (see Fig. 28).
Instead of the string one can imagine a Luttinger liquid confined between two impurities or a phonon (photon) gas
confined between two reflecting mirrors. In our analysis we will ignore potential retardation effects on the confining
potential. Specifically as before we will assume that XL(t) and XR(t) are given functions of time and, e.g., the
symmetric mode XR(t) − XL(t) = const(t) in the lab reference frame. This is perfectly justified in the case of a
non-relativistic guitar string but might play an effect in the case of photons. For example, if we pull the right clamp
with some force, there will be some delay before the left clamp starts moving. This implies that the bouncing photon
will feel slightly different accelerations from the two walls and this may have some effect on the mass renormalization.

We will consider the Klein-Gordon Hamiltonian describing a massless scalar harmonic field confined to the cavity:

H =
1

2

∫ XR

XL

dx

[
Π(x)2 + c2

(
∂Φ

∂x

)2
]
, (383)

where Φ is the field (describing displacement of atoms from equilibrium positions in the case of the string) and Π is
the momentum canonically conjugate to Φ. In the case of photons Φ represents the vector potential Λ. Then the
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FIG. 28: Example of a system with a linear dispersion (guitar string) confined between two clamps. It is intuitively clear that
moving the clamps is harder in the presence of vibrations as they should be dragged together with the clamps. This amounts
to dressing the mass of the clamps analyzed here.

momentum Π(x) and the gradient of Φ(x) appearing in the Hamiltonian represent the electric field E = ∂tΛ ∝ Π
and magnetic field B ∝ ∂xΛ respectively. For computing the translational mass we will assume that the cavity of
length L extends from XL = −L/2 + X+ to XR = L/2 + X+. We consider a simple choice of vanishing Dirichlet
boundary conditions: Φ(XL) = Φ(XR) = 0. For the string this implies that vibrations vanish at the boundary.
For electromagnetic waves such boundary conditions can be realized by using a superconducting cavity such that
the photons acquire a mass µ outside the cavity due to the Anderson-Higgs mechanism [142]. In the context of
Klein-Gordon theory, this is represented by the Hamiltonian.

H =
1

2

∫ ∞

−∞
dx

[
Π(x)2 + c2

(
∂Φ

∂x

)2

+ µ2 (Θ(XR − x) + Θ(x−XL)) Φ2(x)

]
. (384)

The two Hamiltonians in Eq. (383) and Eq. (384) are equivalent to each other in the limit µ → ∞. They can be
used for two equivalent derivations of the mass renormalization as we show below: the first one is based on gauge
potentials and the second one is based on generalized forces.

The Hamiltonian in Eq. (383) [similarly Eq. (384)] is harmonic and thus can be diagonalized expanding the fields
Φ(x) and Π(x) in normal modes

Φ(x) =
∑

j

fj(x)Qj , Π(x) =
∑

j

fj(x)Pj , (385)

where the (real-valued) mode functions fj satisfy the usual orthonormality and completeness relations

∫ ∞

−∞
fj(x)fk(x)dx = δjk,

∑

j

fj(x)fj(x
′) = δ(x− x′). (386)

The completeness relation ensures that the mode operators Qj and Pj are canonically conjugate:

[Qj , Pk] = i~δjk . (387)

The mode functions, diagonalizing the Hamiltonian in Eq. (384) must satisfy the wave equation:

−c2∂2
xfj = ω2

j fj (388)

with vanishing boundary conditions for the Hamiltonian in Eq. (383), and the Klein-Gordon equation with spatially
dependent mass for the Hamiltonian in Eq. (384):

−c2∂2
xfj + µ2 (Θ(XR − x) + Θ(x−XL)) fj = ω2

j fj . (389)

It is straightforward to verify that in the limit µ→∞ the mode functions are identical:

fj(x) =

√
2

L
sin (kj(x−XL)) , (390)
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where kj = πj/L, j = 1, 2, . . . and the mode frequencies are ωj = kjc. Then the Hamiltonian can be diagonalized in
terms of usual ladder operators

aj ≡
√
ωj
2~
Qj + i

√
1

2~ωj
Pj , a†j ≡

√
ωj
2~
Qj − i

√
1

2~ωj
Pj

to give

H = ~
∑

j

ωj(a
†
jaj + 1/2) . (391)

The eigenstates of this Hamiltonian are clearly harmonic oscillator eigenstates |n〉 = |n1, n2, . . .〉, where nj = 0, 1, 2, . . .
denotes the number of photons in the mode j.

For this system it is possible to explicitly find the gauge potentials by writing the eigenstates of the Hamiltonian
in the first quantized notation extending the derivation of Eq. (291) to multiple modes. Each normal mode the wave
function is given by the single-particle eigenstates of the harmonic oscillator:

φnj (Qj) =

√
1

`j
ψnj (Qj/`j), (392)

where `j =
√

~/2ωj and ψnj is expressed through the Hermite polynomials [91]. As will become clear shortly we will
not need to explicitly know this function. The full photon many-body wave-function is just the properly normalized
symmetrized product of the single-mode wave function:

Ψn1,n2...(Q1, Q2, . . . ) = C
∑

{σ}

∏

j

φnj (Qσj ), (393)

where {σ} denotes all possible permutations of the mode indexes and C is the normalization constant. Using that
the normal coordinates Qj and the oscillator lengths `j can depend on λ through both the mode functions and the
mode frequencies, we can write

∂λΨ =
∑

j

[
∂Qj
∂λ

∂Ψ

∂Qj
+
∂`j
∂λ

∂Ψ

∂`j

]
. (394)

Let us observe that

∂Qj
∂λ

=

∫ XR

XL

dx ∂λfj(x) Φ(x) +
∂XR

∂λ
fj(XR)Φ(XR)− ∂XL

∂λ
fj(XL)Φ(XL).

For the vanishing boundary conditions that we are considering, the last two terms are equal to zero. In the first term
we can re-express Φ(x) back through the mode functions (cf. Eq. (385)). Then we find

∂Qj
∂λ

=

∫ XR

XL

dx ∂λfj(x)
∑

i

fi(x
′)Qi =

∑

i

ζλjiQi,

where

ζλji =

∫ XR

XL

dx fi(x)∂λfj(x).

From differentiating the orthonormality relation of the mode functions, Eq. (386), with respect to λ, we see that
ζλij = −ζλji and thus ζλjj = 0. As in Eq. (291) for the harmonic oscillator we find

∂φn(Q)

∂`
= −iPQ+QP

2~`
φn

The last identity we need is

∂`j
∂λ

=
∂`j
∂ωj

∂ωj
∂λ

= −1

2

`j
ωj

∂ωj
∂λ

.
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Combining all these results together we find

i~∂λΨ ≡ AλΨ =


∑

i6=j
Qiζ

λ
ijPj −

1

2

∑

j

1

ωj

∂ωj
∂λ

PjQj +QjPj
2


Ψ. (395)

Therefore the gauge potential is

Aλ =
∑

i6=j
Qiζ

λ
ijPj −

1

2

∑

j

∂ logωj
∂λ

PjQj +QjPj
2

. (396)

It is convenient to rewrite this gauge potential in terms of the ladder operators:

Aλ =
i~
4

∑

i 6=j
ζλij

([√
ωj
ωi
−
√
ωi
ωj

]
(a†ia

†
j − aiaj) +

[√
ωj
ωi

+

√
ωi
ωj

]
(a†jai − a†iaj)

)

− i~
4

∑

j

∂ logωj
∂λ

(a†ja
†
j − ajaj) (397)

Clearly the only non-zero matrix elements of the gauge potential correspond either to scattering one particle or
simultaneous creation or annihilation of two particles. In particular,

〈. . . ni − 1 . . . nj + 1 . . . |Aλ| . . . ni . . . nj . . . 〉 = i~
√
ni(nj + 1)

ωi + ωj
2
√
ωiωj

ζλij ;

〈. . . ni + 1 . . . nj + 1 . . . |Aλ| . . . ni . . . nj . . . 〉 = −i~
√

(ni + 1)(nj + 1)
ωi − ωj
2
√
ωiωj

ζλij ;

〈. . . nj + 2 . . . |Aλ| . . . nj . . . 〉 = − i~
4

∂logωj
∂λ

√
(nj + 1)(nj + 2); (398)

〈. . . ni − 1 . . . nj − 1, . . . |Aλ| . . . ni . . . nj . . . 〉 = i~√ninj
ωi − ωj
2
√
ωiωj

ζλij ;

〈. . . nj − 2 . . . |Aλ| . . . nj . . . 〉 =
i~
4

∂logωj
∂λ

√
nj(nj − 1).

Substituting these gauge potentials into the general expression for the mass, Eq. (343), and noting that the energy
differences between the connected states are ±(ωi − ωj) for the scattering terms conserving the number of particles
or ±(ωi + ωj) for non-conserving terms we find

κλ =
~
4

∑

i 6=j

[
ni − nj
ωj − ωi

(ωi + ωj)
2

ωiωj
+
ni + nj + 1

ωi + ωj

(ωi − ωj)2

ωiωj

]
(ζλij)

2 +
~
8

∑

j

2nj + 1

ωj

(
∂ logωj
∂λ

)2

(399)

This expression splits into the two parts, namely κph
λ which is linear in the occupation numbers, and κvac

λ , which is
the vacuum contribution:

κph
λ = ~

∑

i 6=j
nj

ω2
i + 3ω2

j

ωj(ω2
i − ω2

j )
(ζλij)

2 +
~
4

∑

j

nj
(∂λωj)

2

ω3
j

κvac
λ =

~
4

∑

i 6=j

(ωi − ωj)2

(ωi + ωj)ωiωj
(ζλij)

2 +
~
8

∑

j

(∂λωj)
2

ω3
j

. (400)

The expression above applies to any choice of the parameter λ. Moreover in this derivation we never used any
specific dispersion relation so it applies both to massive and massless harmonic systems. In particular, it will apply
to the massive Klein-Gordon theory confined to a cavity. And finally we never explicitly used the fact that the cavity
is one dimensional. So if we extend the integrals defining the mode function overlaps ζλij to d-dimensions, Eq. (400)
will describe the mass renormalization of an arbitrary d-dimensional cavity with vanishing boundary conditions.

As with the single-particle case we focus on two possible motions: translations and dilations. For the translational
motion λ = X+ such that ∂+XR = ∂+XL = 1, obviously ∂+ωj = 0. Using the explicit expressions for the mode
functions, Eq. (390), we find

ζ+
ij =

1

L

2ij

i2 − j2
(1− (−1)i−j). (401)
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For the dilations λ = XR, we find ∂λXR = 1, ∂λXL = 0, and

ζRij =
1

L

2ij

i2 − j2
(1− δij). (402)

In addition

d logωj
dXR

= − 1

L
.

Before proceeding with further analysis of the mass for translations and dilations of the cavity let us briefly show an
alternative derivation of the same result based on generalized forces and Eq. (384). While the result will be equivalent,
this derivation has its own advantages as it allows one to overcome the additional step of finding gauge potentials,
which might prove difficult in more complicated setups, and therefore can be more amenable to numerical methods.
Differentiating the Hamiltonian in Eq. (384) with respect to λ we find the generalized force operator:

Mλ ≡ −∂λH = −µ2

(
∂XR

∂λ
Φ2(XR)− ∂XL

∂λ
Φ2(XL)

)
. (403)

Substituting the mode expansion of the fields and taking the large µ limit one finds

Φ2(XL) =
∑

ij

fi(XL)fj(XL)QiQj =
2c2

µ2L

∑

ij

kikjQiQj , Φ2(XR) =
2c2

µ2L

∑

ij

(−1)i+jkikjQiQj . (404)

Exercise VII.8. Prove that using the generalized forces [Eq. (403)] and the general expression for the mass [Eq. (343)]
you can reproduce the identical expression for the mass as using the language of gauge potentials in Eq. (399).

1. Translations

Let us now analyze in detail the translational motion of the cavity. Substituting the expression for the overlap,
Eq. (401), into Eq. (400) we find

κph
+ =

16

L2

∑

i−j odd

~ωjnj
ω2
i (ω2

i + 3ω2
j )

(ω2
i − ω2

j )3
=

2

c2

∑

j

~njωj =
2E

c2
, (405)

where E =
∑
j ~njωj is the total thermal energy of the photon gas inside the cavity. It is interesting that the result

is completely universal, i.e., it does not depend on the energy distribution among the modes. Except for the prefactor
of 2, this result is fully consistent with expectations from special relativity. One possible origin for the discrepancy
is that we assumed that the walls move with identical velocities in the lab frame, i.e., that we ignored any potential
effects of retardation of the interaction keeping the walls of the cavity together. While this assumption might not
be justified for real photons or other particles propagating with the speed of light, it is perfectly justified for slower
excitations like phonons as in the setup shown in Fig. 28.

Next let us evaluate the vacuum contribution to the mass:

κvac
+ =

4~
L2

∑

i+j odd

ωiωj
(ωi + ωj)3

=
4~
πLc

∑

i+j odd

ij

(i+ j)3
. (406)

This sum is formally divergent. The reason for this divergence comes from the assumption that the cavity is perfectly
reflecting at all wavelengths. In reality this is never the case. For instance, if we are considering photons reflected
from a metal, then the cutoff will be given by the plasma frequency, beyond which the metal becomes transparent.
For the situation of the string shown in Fig. 28 the short distance cutoff would be given by the clamp radius: waves
with very short wavelength would freely pass through the clamps, while longer wavelengths will be stopped. In the
Klein-Gordon theory with a variable mass [Eq. (384)] the cutoff is formally given by µ. The easiest way to introduce
cutoff to the problem is to add smooth cutoff function (e.g., a Gaussian) to the sum:

κvac
+ → 4~

πLc

∑

i+j odd

ij

(i+ j)3
e−(ωi+ωj)

2/ω2
Λ =

4~
πLc

∑

i+j odd

ij

(i+ j)3
e−ε

2(i+j)2

, (407)
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where ε = πc/(LωΛ) and ωΛ is the cutoff frequency. We can evaluate this sum in two steps. First let us make the
substitution i+ j = m and i− j = n where m and n are integers: m = 3, 5, . . . and n = −m+ 2,−m+ 4, . . .m− 2.
Then it is straightforward to evaluate the sum over n:

κvac
+ =

2~
3πLc

∑

m=3,5,...

m2 − 1

m2
exp[−ε2m2] = C

~ωΛ

c2
− π~

12Lc
= C

~ωΛ

c2
+

2Ec
c2

, (408)

where C is a non-universal constant depending on the cutoff details and

Ec = −π~c
24L

(409)

is the Casimir energy of the one-dimensional cavity [143], i.e., the universal (cutoff independent) contribution of the
zero point fluctuations to the ground state energy of the cavity. It is interesting that as with the thermal energy
there is an additional factor of two in the Casimir energy contribution to the cavity mass. The first, cutoff-dependent,
correction to the mass does not depend on L and thus can be interpreted as the renormalization of the mass of the
cavity walls and absorbed into the definition of M . Apart from this correction we see that

κ+ = 2
E + Ec(L)

c2
(410)

In a similar manner we can compute the snap modulus ζ representing the leading correction to Newtonian equations
of motion (see Sec. VI D). Using Eq. (359) and repeating the same steps as deriving the mass we find

ζ+ = ζph
+ + ζvac

+ , (411)

where

ζph
+ =

16L2

π4c4

∑

i+j odd

~ωjnj
i2(i4 + 10i2j2 + 5j4)

(i2 − j2)5
=

L2

π4c4
π4

6

∑

i

~ωjnj =
EL2

6c4
, (412)

ζvac
+ =

4~L
π3c3

∑

i+j odd

ij

(i+ j)5
=

12− π2

144π

~L
c3
. (413)

Interestingly the first “thermal” contribution to the snap modulus also depends only on the total energy of the system.
It gives a small correction to the Newtonian dynamics of the cavity as long as the round trip time of the photon L/c
is short compared to the characteristic time scales characterizing the motion of the cavity, e.g., the period of its
oscillation. The second vacuum term has a very interesting interpretation related to the Unruh effect [144]. Indeed
this term is responsible for an energy correction proportional to the acceleration squared. On the other hand according
to the Unruh effect an accelerated cavity acquires temperature proportional to the acceleration: kBT ∼ ~λ̈/c and as

a result the thermal energy EU ∼ (kBT )2L/(~c) ∼ ~L/c2λ̈2. So we see that

ζλ̈2

2
∼ EU

c2
.

This contribution to the energy of the cavity, which goes beyond the standard paradigm of the Hamiltonian dynamics,
can be interpreted as the result of vacuum heating by acceleration. We note that this interpretation is not precise
as in order for the adiabatic perturbation theory to be valid the acceleration should be small such that the Unruh
temperature should be smaller than the photon mode splitting. The Unruh effect is usually discussed in the continuum
limit, when the cavity modes are not quantized. Nevertheless such an interpretation is very appealing and requires
deeper investigation.

Exercise VII.9. Derive the expressions for the snap modulus, Eqs. (412) and (413).

Exercise VII.10. Assume that the cavity with photons inside is connected to a spring and undergoes small oscillations.
Using perturbation theory, analyze the leading effect of the snap modulus on the motion of the cavity. You can assume
that at time t = 0 the cavity is suddenly displaced by distance λ0 from the equilibrium position and then released.
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2. Dilations

Now let us analyze the second setup corresponding to dilations, where the left wall of the cavity is fixed and the
right is free to move, i.e., λ = XR. The derivations are very similar to the case of translations, so we will only quote
the final results. As before it is convenient to split the mass into the thermal and vacuum contributions

κR = κph
R + κvac

R , (414)

where

κph
R =

~
L2

∑

i 6=j

ni − nj
ωj − ωi

ij

(i− j)2
+

~
L2

∑

i,j

ni + nj
ωi + ωj

ij

(i+ j)2
=

2E

3c2
(415)

and

κvac
R =

~
πLc

∑

ij

ij

(i+ j)3
e−ε

2(i+j)2

=
~

6πLc

∑

m=2,3,...

m2 − 1

m2
e−ε

2m2

= C ′
~ωΛ

c2
− ~

12πLc

(
π2

3
+ 1

)
= C ′

~ωΛ

c2
+

2Ec
3c2

(
1 +

3

π2

)
. (416)

The thermal contribution to the dilation mass is again, as in the single-particle case, one third of the thermal
translational mass. Therefore the equivalence of the gas to the massive spring (cf. Fig. 24) extends to the relativistic
gas. On the other hand, the quantum contribution to the dilation mass, as in the non-relativistic case [cf. Eq. (374)],
contains an additional correction.

Exercise VII.11. Consider the massive Klein-Gordon Hamiltonian with vanishing boundary conditions:

H =
1

2

∫ XR

−XL
dx

[
Π(x)2 + c2

(
∂Φ

∂x

)2

+ µ2
0Φ2(x)

]
, (417)

where µ0 is now finite.

• By repeating the arguments above, prove that mass is still given by Eq. (400) with same overlaps ζij as in the

massless case and the massive dispersion: ωj =
√
µ2

0 + k2
j , kj = πj/L.

• Evaluate the thermal contribution to the translational mass. In particular, prove that

κph
+ =

∑

j

~ωjnj

(
1 +

c2k2
j

ω2
j

)
. (418)

From this expression recover the non-relativistic limit as µ0 becomes large.

• Show that for the dilation mass

κph
R =

κph
+

3

irrespective of µ0.

• Analyze the Casimir vacuum contribution for the translational mass. Show that it vanishes as µ0 becomes large.

Exercise VII.12. Argue that, as was the case for the massive particle in a box, the photon mass tensor is diagonal in
the {X+, X−} basis, i.e., κ+− = 0. Using this compute the mass κ−− ≡ κ− from κ+ and κR.

Exercise VII.13. Consider a three-dimensional rectangular cavity with the Hamiltonian described by

H =
1

2

∫
d3r

[
Π(r)2 + c2 (∇Φ)

2
]
, (419)

where the integration goes over the interval x ∈ [−XL, XR], y ∈ [−Lx/2, Lx/2], z ∈ [−Lz/2, Lz/2] with vanishing
boundary conditions. Find the thermal contributions to the translational and dilation mass along the x-direction.
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For this observe that the y and z components of the momentum are conserved and therefore c2(k2
y + k2

z) plays the
role of the mass µ0 analyzed in the previous problem. Use the results of the previous problem to show that

κph
+,x =

∑

j

~ωjnj

(
1 +

k2
xj

k2
j

)
. (420)

Using this result prove that

κ+ ≡
κ+,x + κ+,y + κ+,z

3
=

4

3

E

c2
. (421)

3. Classical derivation of the mass

Similar to the example of a massive particle in a box discussed in Sec. VII A 3, let us finally consider taking a
semi-classical limit for the photon problem. First we note that the dominant contribution to the mass in Eq. (399) in
the semi-classical limit (kBT � ~c/L) is given by the first term in the sum, which corresponds to number conserving
processes. This follows from observing that the first term is dominated by neighboring modes |ωi − ωj | ∼ c/L as it
is singular when |ωi − ωj | → 0 while the second term is regular. This immediately translates to the suppression of
the second contribution by a dimensionless factor ~c/(LkBT ), which vanishes in the semi-classical limit. Therefore,
instead of photons it suffices to consider classical number-conserving particles with relativistic dispersion confined
to a box, as illustrated in Fig. 29a. Consider for simplicity the one-dimensional case in which we start with a
microcanonical ensemble with particles with energy E0 uniformly distributed within the box. We then gradually
begin to accelerate the box until the final velocity v is reached. During and after the acceleration, when the particle
hits a wall moving away from it with velocity v, it is red-shifted from original frequency E0 to the new energy
E1 = E0(1− 2v/c+ v2/c2)/

√
1− v2/c2 (this energy shift is equivalent to the frequency shift for photons). It simply

follows from the energy and momentum conservation. A similar blue shift occurs upon hitting a wall moving towards
the particle. The combination of these processes causes particles to equilibrate in the lab frame such that forward-
moving particles are blue shifted compared to the backwards moving particles (Fig. 29). Numerically calculating the
total energy of particles in the box, we can verify that the total energy after slowly accelerating to velocity v, averaged
over initial conditions, is Etot ≈ E0(1 + v2/c2) = E0 + κv2/2. Thus, as in the quantum case, we find that κ = 2E/c2

in these semi-classical simulations. Similar simulations can be done for the case of massive relativistic particles or
three-dimensional photons, all of which confirm the quantum predictions of Eq. (420) (Fig. 29c).

Le us comment that this mass renormalization κ ∼ E/c2 is typically tiny for real photons but can be observable
for other types of systems. For example, in the guitar string setup illustrated in Fig. 28 one can easily show that
κ ∝ µA2

osc/L, where µ is the mass density of the string and Aosc is the amplitude of the oscillations, so by either
using a heavier string or plucking it more strongly, one can readily enhance this effect to the point that it might be
observable.

Exercise VII.14. Confirm that the photon contribution to the dilation mass of the three-dimensional case satisfies

κ3d−ph
−− (p) = 1

12κ
3d−ph
++ (p), where κ3d−ph

++ (p) = 2[1− (p2
y + p2

z)/2p
2]Ep/c

2 (see Eq. (420)).

C. Classical central spin (rigid rotor) problem

As another example let us consider a macroscopic rotor interacting with a bath of N independent spin-1/2 particles
(Fig. 30a). This discussion closely follows that of Ref. [137]. We consider an interaction where the rotor with
orientation n̂ = (sin θ cosφ, sin θ sinφ, cos θ) produces a magnetic field parallel to n̂ that interacts with the magnetic
moments in the spin bath via Zeeman coupling of random magnitude. If instead of the rotor we use the quantum
spin operator, this model is known as the central spin model.

The Hamiltonian describing the system of the form in Eq. (350) is

H0 =
L2

2I
+ V (n), H = −n ·

N∑

i=1

∆i σi, (422)
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FIG. 29: (Semi)classical mass of relativistic particles. (a) Initial setup. Particles are prepared at initial energy E0 and uniform
probability distribution in space. (b) Cavity is slowly accelerated to velocity v � c. Doppler shifts of the particles upon
hitting the cavity walls yield an equilibrium distribution in which forward-moving particles are blue-shifted and backward-
moving particles are red-shifted. (c) The results of the simulation in a 3D cavity show that the semi-classical mass matches
the quantum prediction in Eq. (420). Here θ = tan−1

(
k⊥/kx

)
parameterizes the initial direction of the particle in the cavity.

The inset shows excess particle energy (E−E0)/v20 (blue dots) and v2/v20 during a slow ramp from velocity 0 to v0 with θ = 0.
The particles first heat as the box accelerates and then cool back down as the box decelerates, indicating that the dynamics is
reversible as the mass correction should be.

where I is the momentum of inertia, which for simplicity we take to be isotropic, V (n) is a time-dependent external
potential, and L is the angular momentum of the rotor. This example is similar to the one considered earlier except
that the effective magnetic field is no longer confined to the xz plane and we no longer assume that it is given by an
external protocol. Rather, the time evolution of this system needs to be found self-consistently. Each spin evolves
according to the von Neumann equation with the time-dependent Hamiltonian H(n(t)):

i~
dρ

dt
= [H(n(t)), ρ] . (423)

The rotor evolves according to the Hamilton equations of motion

Iṅ = L× n, L̇ = n×
(

Mext +

〈
−∂H
∂n

〉)
= n×

(
Mext +

∑

i

∆i〈σi〉
)

(424)

where Mext = −∂V (n)
∂n is the external force on the rotor, such as the torque generated by an external magnetic field, and

〈. . . 〉 indicates the quantum average over the density matrix ρ(t). We assume that initially n0 = (0, 0, 1) and the spins
are in thermal equilibrium with respect the Hamiltonian H(n0), giving 〈σxi 〉0 = 〈σyi 〉0 = 0 and 〈σzi 〉0 = tanh(β∆i).

For the toy model proposed here, these coupled equations can be easily solved numerically. In fact, according to
the Ehrenfest theorem, the evolution of the expectation values follow the classical equation of motion and Eq. (423)
can be replaced with the much simpler equation ~ṁi = 2∆i mi × n where mi = 〈σi〉. Therefore the exact dynamics
of the system consists of the vectors (L,n, {mi}) precessing around each other.

We now compare the exact dynamics with the emergent Newtonian dynamics. First, we note that the form of
Eq. (424) immediately implies

ṅ · L = 0, n · L̇ = 0 =⇒ n · L = const

|n|2 = const =⇒ ṅ · n = 0 =⇒ n̈ · n = −|ṅ|2
(425)

We wish to compute the approximate generalized force 〈M〉 = −〈∂nH〉 in terms of the tensors κ and F . The
dissipative terms η and F ′ are zero since there are no gapless excitations. Therefore Eq. (337) reduces to:

〈M〉 ≈M0 + ~Fνµṅµ − κνµn̈µ

where ν, µ ∈ {x, y, z}. Using the expression for the spin-1/2 ground and excited states from earlier [Eq. (2)], it follows
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FIG. 30: Dynamics of the rigid rotor coupled to N = 20 spins-1/2. (a) Illustration of the setup described in detail in the text.
(b, c) Solution of the exact dynamics (blue line) and effective dynamics (dashed red line) to the model with β = 0.1, I = 1,
and ∆i randomly distributed in (1, 2). The initial conditions are n0 = (0, 0, 1) and L0 = (0, 0, 0) and initially the spins are in
thermal equilibrium (see main text). The external force is ramped from its initial value of zero to final value M∗ = 0.1 in time

tc = 10 according to the protocol Mext(t) = M∗ sin2
(
πt
2tc

)
x̂ for 0 ≤ t ≤ tc, after which it is held fixed at Mext(t > tc) = M∗x̂.

that

M0 ≡ 〈M〉0 = n̂
∑

i

∆i tanh(β∆i)

Fµν = F0




0 −nz ny
nz 0 −nx
−ny nx 0


 ,

κµν = κ0




1− n2
x −nxny −nxnz

−nynx 1− n2
y −nynz

−nznx −nzny 1− n2
z


 .

where F0 ≡ 1
2

∑
i tanh(β∆i) and κ0 ≡ ~2

∑
i

tanh(β∆i)
4∆i

. Substituting these expressions in Eq. (424) we find

Iṅ = L× n, L̇ = n×Mext − ~F0 ṅ− κ0 (n× n̈) .

To compute In̈ = L̇⊥ × n + L⊥ × ṅ, it is now useful to split up L as L = L⊥ + n̂L‖, where L‖ = n̂ · L is a constant
of motion [see Eq. (425)]. Then, using Eq. (425) and the fact that L⊥ = I (n× ṅ) we arrive at:

Ieff n̈ = (n×Mext)× n− L‖eff (ṅ× n)− Ieff |ṅ|2n , (426)

where the renormalized moment of inertia is Ieff = I+κ0 and the renormalized angular momentum is L
‖
eff = L‖+~F0.

From this equation we see that the motion of the rotor is strongly renormalized by the interaction with the spin- 1
2

particles. Moreover we see that, even when the external force is absent (Mext = 0) and L‖ = 0, the Berry curvature
(F0) causes a Coriolis-type force that tilts the rotation plane of the rotor. Indeed if we start with uniform rotations
of the rotor in the xz plane, i.e., n and ṅ lie in the xz plane, we immediately see that the Berry curvature causes
acceleration orthogonal to the rotation plane. The physics behind the Coriolis force is intuitively simple. At any finite
angular velocity of the rotor, the spins will not be able to adiabatically follow the rotor and thus will be somewhat
behind. As a result there will be a finite angle between the instantaneous direction of the spins and the rotor so the
spins will start precessing around the rotor, and the rotor will in turn start precessing around the spins. Fig. 30c
shows an example where this Coriolis-induced precession can be observed.

D. Quenched BCS superconductor

In the previous sections, we have coupled the internal dynamics of our systems to external parameters such as the
position of a box. A natural question that arises is whether these effective Newtonian dynamics can occur in situations
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where the classical dynamical degree of freedom is emergent, such as a macroscopic order parameter. We will now show
that this possible in the case of a quenched BCS superfluid, which has been studied extensively since its realization
in ultracold fermionic gases [145–148]. It has been shown that the resulting equations of motion are integrable, but
generally involve keeping track of every mode in the BCS theory. We will see how adiabatic perturbation theory gives
new insight into this problem, allowing us to reduce the coupled equations of motion of the different momentum modes
to a single integral equation in which the emergent slow mode – the superconducting gap ∆ – is treated with the
preceding formalism. In such a setup the equations of motion entirely emerge from the interactions with microscopic
degrees of freedom and, for example, the mass is entirely determined by these interactions.

The system that we consider is a BCS superconductor with short-range interactions in which the interaction strength
g can be tuned as a function of time. This is a natural situation in, for example, ultracold atoms, where the interaction
strength can be tuned by a Feshbach resonance [149]. We start from the pairing Hamiltonian in d dimensions

H =
∑

kσ

εkc
†
kσckσ − g

∑

k,q

c†k↑c
†
−k↓cq↑c−q↓ , (427)

which is exactly solvable within mean field theory. Here the single-particle energy of mode k is Ek, from which
the chemical potential is subtracted to get εk = Ek − µ. The mean-field decoupling consists of defining a gap
∆ = g

∑
k〈ck↑c−k↓〉, where the expectation value is taken over an arbitrary time-dependent wave function |ψ(t)〉

self-consistently. Making this replacement and switching to Anderson pseudospin notation σ, where σzk = 1 (−1)
corresponds to an unfilled (filled) pair, we get

H = −
∑

ε

(
εσzε + ∆σxε

)
+

∆2

g
≡
∑

ε

Hε , (428)

where without loss of generality we assumed that the gap starts real and remains real due to particle-hole symmetry.
Note that we have switch from summing over the mode momentum k to their energies ε(k). The last term in Eq. (428)
is often neglected, as it has no effect on the dynamics of the pseudospins. However, since we are interested in the
dynamics of ∆, it is convenient to write the Hamiltonian in this expressly energy-conserving form.

To better connect with our previous discussion let us introduce the momentum conjugate to the gap: P∆ and the
bare mass m0, which we later send to zero. This gives the Hamiltonian in Eq. (428) an additional term:

H → H+
P 2

∆

2m0
, (429)

such that the equations of motion for the gap read:

m0∆̈ = 〈−∂∆H〉 = −2∆

g
+
∑

ε

〈σxε 〉 (430)

In the limit of zero bare mass m0 → 0 this equation simply reduces to the self-consistency equation:

∆ =
g

2

∑

ε

〈σxε 〉 , (431)

Note that the average is taken over the non-equilibrium density matrix, which is the solution of the von Neumann
equation:

i
dρ

dt
= [H(∆(t)), ρ]. (432)

Starting in the ground state at some interaction strength gi, we can ramp the interactions through some arbitrary
protocol g(t). For slow enough changes, we expect that the pseudospins σ will be weakly excited above their ground

state yielding leading Newtonian correction 〈M∆〉 ≈ 〈M∆〉0 − κ∆̈, where

〈M∆〉0 = −2∆

g
+
∑

ε

〈σxε 〉0 = −2∆

g
+
∑

ε

∆√
∆2 + ε2

. (433)

Similarly, using Eq. (344), the effective mass in the ground state will be

κ = 2
∑

ε

|〈e|σx|g〉|2
(Ee − Eg)3

=
1

4

∑

ε

ε2

(ε2 + ∆2)5/2
. (434)
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FIG. 31: Dynamics of the gap in a quenched BCS superfluid. (a) Gap vs. time for a ramp from ∆i = 1 to ∆f = 1.5 in
time T = 1. The exact solution (blue) is compared to the dynamics within the effective mass approximation (dashed red).
This approximation is clearly insufficient, so we must instead solve the full integral equation, e.g., via Laplace transform. (b)
The branch cut structure of α̃, the Laplace transform of α ∝ ∆ −∆f [see Eq. (442)]. (c) Dynamics of the gap after a small
instantaneous quench from ∆i = 1 to ∆f = 1.05. The exact dynamics agree well with the solution of the integral equation.
The dashed lines shows that 1/

√
t envelope that is analytically found at late times.

We can easily simulate both the exact and approximate equations of motion for this theory. More explicitly, we adopt
the conventions of Ref. [147] and expand near the Fermi surface by considering a uniform density of states ν extending
in a band from ε = −W/2 to W/2, with W � ∆ playing the role of the UV cutoff. This band is then broken up
into N = νW discrete modes and the physical limit is achieved by taking W,N → ∞. The ramp is specified in a
UV-independent way as a function ∆eq(t), where from the gap equation in equilibrium (the ground state),

∆eq(t) =
g(t)

2

∑

ε

∆eq(t)√
∆eq(t)2 + ε2

=⇒ g(t)−1 =
1

2

∑

ε

1√
∆eq(t)2 + ε2

≈ ν

2

∫ W/2

−W/2
dε

1√
∆eq(t)2 + ε2

= ν ln

(
W

∆eq(t)

)
. (435)

Note that microscopic parameters such as g can explicitly depend on the cutoff, while emergent objects such as the
mass and the generalized force do not:

κ ≈ ν

4

∫ W/2

−W/2
dε

ε2

(ε2 + ∆2)5/2

W→∞−→ ν

6∆2
.

〈M∆〉0 = 2ν∆ ln

(
∆eq

∆

)
. (436)

Note also that both the mass and the generalized force are proportional to the density of states, i.e., they are extensive.
The simulations described above are plotted in Fig. 31a for a particular protocol in which ∆eq is slowly ramped from

∆i to ∆f : ∆eq(t) = ∆i + (∆f −∆i)erf(t/T ). Quite surprisingly, the effective mass does not accurately described the
dynamics of the ramped or quenched BCS superconductor. Other simulations confirm that this is true independent
of the initial and final values of the gap or the time scale T of the ramp. A particularly noticeable difference is that
the simulations of the full model show damping of the oscillations, while the effective model with mass κ undergoes
infinitely long-lived oscillations about the minimum of the potential at ∆ = ∆f .

To see where this comes from, let us consider small oscillations about the point at the end of the ramp. Linearizing
about the final point, there is only one energy/time scale in the system, so the frequency of oscillations must scale as

ω ∼ ∆f . We have seen that the effective mass gives a contribution to the generalized force κ∆̈ ∼ κAω2 ∼ νA, where

A is the amplitude of the oscillations. The next correction, which is non-Newtonian, is given by ζ∆(4), where ∆(n)

denotes the nth time derivative. From the expansion that gave us the effective Newtonian dynamics, the coefficient
ζ for the ground state is given by

ζ = 2
∑

n 6=0

|〈n|∂∆H|0〉|2
(En − E0)5

=
1

16

∑

ε

ε2

(ε2 + ∆2)7/2
=

ν

60∆4
. (437)

So the correction is ζ∆(4) ∼ (ν∆−4)(A∆4) ∼ νA, i.e., it scales exactly the same way as the effective mass contribution.
Indeed, if we consider an arbitrary term in the series χn∆(n) for arbitrary positive even integer n, we will again find
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that its contribution scales as νA. Therefore, it is not okay to truncate at second order by considering just the effective
mass - indeed, there is no limit where it will be fully correct to truncate at any finite order. This statement that we
need to know not just ∆ and its acceleration, but rather all of its higher-order (even) derivatives, is tantamount to
saying that the local-in-time expansion about the time t is not correct. Therefore, to solve this problem correctly, we
must resort to the full integral equation from first order adiabatic perturbation theory [Eq. (336)]:

〈M∆〉0 = 2

∫ t

t0

dt′∆̇(t′)
∑

m6=n

ρ0
n〈m|M(t)|n〉〈n|M(t′)|m〉

Em(t′)− En(t′)
ei

∫ t
t′ dτ(Em(τ)−En(τ)) +O(∆̇2)

=

∫ t

t0

dt′∆̇(t′)
∑

ε

ε2

(ε2 + ∆(t′)2)
√
ε2 + ∆(t)2

cos

(
2

∫ t

t′
dτ
√
ε2 + ∆(τ)2

)
, (438)

where we have taken the real part of the exponential because all the matrix elements are real. With a bit more effort,
this integral equation can be solved numerically, and for slow ramps or small quenches, the integral equation agrees
with the exact numerics (Fig. 31c).

We can gain a bit more understanding of the integral equation by consider the case of a small quench or equivalently
the late-time behavior of a slow ramp. Assuming that the deviation α = (∆ −∆f )/∆f of the gap from equilibrium
is small, we can expand the integral equation about α = 0. The first order contribution is then

−2ν∆fα(t) =

∫ t

t0

α̇(t′)
∑

ε

ε2

(ε2 + ∆2
f )3/2

cos
(

2
√
ε2 + ∆2

f (t− t′)
)
. (439)

This restores some degree of locality - the integral equation now only depends on the history of α̇ and not directly on
α(t′). Eq. (439) can be Laplace transformed to get

−2ν∆f α̃(s) = (sα̃− α0)
∑

ε

ε2

(ε2 + ∆2
f )3/2

s

s2 + 4(ε2 + ∆2
f )

, (440)

where α̃(s) =
∫∞

0
e−stα(t) is the Laplace transform of α and α0 = (∆i − ∆f )/∆f is the initial condition. The

equilibrium correlation function of the pseudospins σ is encoded in the ε-dependent terms, so the fermions can be
integrated out to give

∑

ε

ε2

(ε2 + ∆2
f )3/2

s

s2 + 4(ε2 + ∆2
f )

=
2ν

s


−1 +

√
4∆2

f + s2

s
cosh−1




√
4 + s2/∆2

f

2




 . (441)

Substituting this into Eq. (440) and rearranging, we find that

α̃(s) = α0

−s+
√

∆2
f + s2 cosh−1

(√
4+s2/∆2

f

2

)

s
√

∆2
f + s2 cosh−1

(√
4+s2/∆2

f

2

) . (442)

Note that, as expected, the only time scale in the problem is set by ∆ and α scales linearly with α0. Therefore,
rescaling α→ α/α0, t→ t∆, and s→ s/∆, we can attempt to invert the Laplace transform and solve for α(t).

These small quenches of the order parameter were studied in Ref. [150]. Using very different methods, they
nevertheless arrived at an equation of motion for the order parameters quite similar to Eq. (442). The inverse Laplace
transform is given by

α(t) =
1

2πi

∫ γ+i∞

γ−i∞
estα̃(s)ds (443)

for any γ > 0. α̃ has branch cuts associated with the square roots at s = ±2i. We make the the branch cut
shown in Fig. 31(b), which does not cross the contour for any γ > 0. The inverse hyperbolic cosine also has a
branch cut on the negative real axis, which again does not affect us. We simply make the obvious branch choice
such that

√
4 + s2 and cosh−1

(√
4 + s2/2

)
are positive and real on the positive real axis, which uniquely defines the

function on the chosen contour. Then taking the limit γ → 0+, we split the contour into four pieces, as shown in



94

Fig. 31(b). Taking first α3, for which s = ir with 0 < r < 2, the branch choices gives
√

4 + s2 =
√

4− r2 and

cosh−1
(√

4 + s2/2
)

= i cos−1
(√

4− r2/2
)
. Thus

α3(t) = <


 1

2πi

∫ 2

0

idreirt
−ir +

√
4− r2

(
i cos−1

(√
4−r2

2

))

ir
√

4− r2
(
i cos−1

(√
4−r2

2

))




=
1

2π

∫ 2

0

dr sin(rt)
−r +

√
4− r2 cos−1

(√
4−r2

2

)

r
√

4− r2 cos−1
(√

4−r2

2

) . (444)

Similarly for the integral α4 (s = ir for r > 2), the branch choices are
√

4 + s2 = i
√
r2 − 4 and cosh−1

(√
4 + s2/2

)
=

iπ/2 + ln
(
(
√
r2 − 4 + r)/2

)
. So

α4(t) = <


 1

2πi

∫ ∞

2

idreirt
−ir + i

√
r2 − 4

(
iπ
2 + ln

(
r+
√
r2−4
2

))

ir(i
√
r2 − 4)

(
iπ
2 + ln

(
r+
√
r2−4
2

))




=
1

2π

∫ ∞

2

dr

r
√
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One can easily show that α1 = α4 and α2 = α3, so α(t) = 2(α3(t) + α4(t)). These integrals can be evaluated
numerically, the results of which are plotted in Fig. 31c. Clearly they match well with the exact dynamics.

We can also analyze the late time limit of these equations. In this limit, the cosines and sines yield fast-oscillatory
integrals, which are then dominated by the stationary points of their integrands. Both α3 and α4 have a singularity
at r = 2 (s = 2i). Therefore, the integrals are dominated by this point and we can simply expand the remainder of
the integrand about r = 2. Thus,

α3(t� 1/∆f ) ≈ 1

2π

∫ 2

0

− sin rt

π
√

2− r dr ≈ −
1

2π2

∫ 2

−∞

sin rt√
2− r dr = (2π3)−1/2 cos 2t− sin 2t√

t
.

α4(t� 1/∆f ) ≈ 1

2π2

∫ ∞

2

cos rt√
r − 2

dr = (2π3)−1/2 cos 2t− sin 2t√
t

. (446)

Thus, as seen in Ref. [150], the late time behavior of the gap is described by power law relaxation ∆ ∼ cos(2∆f t+ϕ)/
√
t,

unlike the exponential relaxation expected in non-integrable (thermalizing) systems. This behavior can be traced back
to the fact that the underlying BCS dynamics is integrable and has been termed collisionless relaxation [150].

It is interesting to extend these results to the finite temperature case. Unlike the previous case where ∆ was the
only energy scale in the problem, the temperature now introduces a new energy scale that we might expect to cut off
the correlation functions such that locality in time is restored. However, a quick calculation similar to that above (not
shown) demonstrates that starting from a finite temperature ensemble yields qualitatively similar dynamics as those
starting from the ground state. The reason for this is simple: as an integrable model, the adiabatically transported
state from the thermal ensemble at ∆i to the final value ∆f is not thermal. Such a non-thermal ensemble is referred
to as a generalized Gibbs ensemble [151] and has been well-understood to occur in generic integrable systems. Here it
manifests as an absence of thermalization that yields similar dynamics at finite energy density as those in the ground
state. It is worth pointing out that previous works have shown that large quenches [147] and/or non-trivial initial
states [148] can result in long-lived oscillations that do not relax. Whether or not such dynamics can be captured
within the effective Newtonian framework is a fascinating open question which is beyond the scope of these lectures.

VIII. SUMMARY AND OUTLOOK

Over the course of these lectures, we have introduced the concept of gauge potentials and seen how they are
connected to a wide variety of ideas from geometry and topology of quantum systems to the emergence of Newtonian
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dynamics. An important aspect of this perspective is its generality, allowing the derivation of effective dynamics
in systems as different as photons in a cavity and quenched BCS superconductors. These ideas are therefore quite
amenable to being used in many important experimental systems as a method for understanding the dynamics of slow
variables. With numerical methods, these can even be used to understand dynamics in complicated interacting many-
body systems using only equilibrium simulations, and therefore have the potential to solve dynamics in complicated
systems above one dimension, where exact well-behaved numerical methods are scarce [75, 80, 152–154].

An interesting open topic is how these ideas can be utilized in ever more complicated systems, particularly towards
understanding the gauge potentials for non-equilibrium systems. For instance, we have seen how the gauge poten-
tials for excited states are ill-defined if the system is ergodic due to the problem of small denominators. We have
provided two methods for regulating this problem, but connecting these ideas to adiabatic evolution in conventional
thermodynamic systems remains an important open question. Furthermore, one may be able to generalize these
ideas to truly non-equilibrium systems where equilibrium statistical mechanics does not apply. A fascinating class of
non-equilibrium Hamiltonians is periodically-driven systems, where one must differentiate between the effect of the
parameters on the slow motion that can be written in terms of an effective time-independent Hamiltonian and the fast
micromotion that it periodic with the same period as the drive [155, 156]. Finally, all these questions become even
more interesting the presence of coupling to an environment, which is usually the situation we are given in realistic
experimental systems. These are all fascinating questions, and understanding them will prove very valuable in solving
the dynamics of complicated quantum and classical systems.
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Appendix A: Metric tensor from Kubo response at finite temperature

Consider a generic Hamiltonian H with eigenstates |n〉. We define the metric tensor with respect to single parameter
λ, alternatively known as the fidelity susceptibility, at finite temperature by

gλλ(T ) =
∑

n

ρn
∑

m 6=n

|Mnm|2
(En − Em)2

, (A1)

where ρn = e−βEn/Z and Mnm = 〈n|∂λH|m〉. Define the (non-symmetrized) spectral function as

S(ω) = 2π
∑

n

ρn
∑

m 6=n
|Mnm|2δ(En − Em + ω) . (A2)

Then it is clear that

g =

∫ ∞

−∞

dω

2π

S(ω)

ω2
=

∫ ∞

0

dω

2π

S(ω) + S(−ω)

ω2
. (A3)

We will now see that this expression can be connected to the out-of-phase susceptibility, which is measurable via
linear response.

From standard Kubo response, the response function ε(ω) of the magnetization M to a small periodic perturbation
of λ = λ0e−iωt is given by [138]

ε(ω) = i

∫ ∞

0

dt eiωt−δt〈[M(t),M(0)]〉 , (A4)

where δ is an infinitesimal positive number added for convergence, M(ω) = ε(ω)λ(ω), and the expectation value is
over the thermal density matrix ρ̂ = e−βH/Z. Note that, unlike the two-time correlation function used in defining
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the metric, the correlation function in Eq. (A4) need not be connected; this is because the commutator makes
〈[A,B]〉 = 〈[A,B]〉c. Let us next use the Lehmann representation:

ε(ω) = i

∫ ∞

0

dt eiωt−δt
∑

n

ρn
(
〈n|eiHtMe−iHtM |n〉 − h.c.

)

= i

∫ ∞

0

dt eiωt−δt
∑

n

ρn
∑

m

(
〈n|eiHtM |m〉〈m|e−iHtM |n〉 − h.c.
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= i

∫ ∞

0

dt eiωt−δt
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n

ρn
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m

(
〈n|eiEntM |m〉〈m|e−iEmtM |n〉 − h.c.
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= i
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0

dt eiωt−δt
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n
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ei(En−Em)t − ei(Em−En)t
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∣∣2

= i
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n

ρn
∑

m 6=n

∣∣Mnm
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(

1

δ − i(En − Em + ω)
− 1

δ − i(Em − En + ω)

)
.

The imaginary part of the susceptibility ε′′(ω) = Im[ε(ω)] is thus

ε′′(ω) =
∑

n

ρn
∑

m6=n

∣∣Mnm

∣∣2
(

δ

δ2 + (En − Em + ω)2
− δ

δ2 + (Em − En + ω)2

)

= π
∑

n

ρn
∑

m 6=n

∣∣Mnm

∣∣2[δ(En − Em + ω)− δ(Em − En + ω)
]

=
S(ω)− S(−ω)

2
, (A5)

where we used the identity

lim
δ→0+

δ

δ2 + x2
= πδ(x)

and Eq. (A2) to get the last equality. In thermal equilibrium S(ω) and S(−ω) satisfy the fluctuation dissipation
relation [138], which we derive for completeness from Eq. (A2):

S(−ω) = 2π
∑

m6=n

1

Z
e−βEn |Mnm|2δ(Em − En + ω) = 2π

∑

m 6=n

1

Z
e−βEm |Mnm|2δ(En − Em + ω)

= 2πe−βω
∑

m6=n

1

Z
e−βEn |Mnm|2δ(En − Em + ω) = e−βωS(ω), (A6)

where in the first equality we changed summation indexes n↔ m and in the second equality used that Em = En−ω.
Therefore

ε′′(ω) =
1

2
S(ω)

(
1− e−βω

)
⇔ S(ω) =

2ε′′(ω)

1− exp[−βω]
.

and

g =

∫ ∞

0

dω

2π

S(ω) + S(−ω)

ω2
=

∫ ∞

0

dω

π

ε′′(ω)

ω2

exp[βω] + 1

exp[βω]− 1
=
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dω

π

ε′′(ω)

ω2
coth(βω/2). (A7)
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