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ABSTRACT

In this work, we present a nonlinear spectral mixing model
that, apart from the fractional abundances, contains two ad-
ditional parameters, one accounting for multiple reflections
and another accounting for shadow. The model is based on
the multilinear mixing (MLM) model that we have proposed
earlier. An analysis of the parameter values is performed on
a close-range hyperspectral image of a building facade. The
model is compared to the linear model and two models that
account for only one of the two effects: the linear model with
an extra shadow endmember, and the MLM model.

Index Terms— hyperspectral unxming, multiple reflec-
tions, shadows

1. INTRODUCTION

Hyperspectral unmixing aims to decompose each observed
pixel spectrum into a number of pure component spectra,
i.e. endmembers. The linear mixing model (LMM) assumes
that each spectrum is a linear combination or pure materials,
where the linear coefficients denote their fractional abun-
dances within the pixel. Often, these abundances are assumed
to be non-negative, leading to the abundance nonnegativity
constraint(ANC). When the entire spectral signal is decom-
posed into endmember contributions, the abundances sum
up to one, leading to the sum-to-one constraint (ASC). This
particular model allows a light ray to interact with a single
material (endmember) before reaching the sensor. Moreover,
it assumes flat surfaces with nicely segregated endmember
materials. It was proven to work in certain scenarios [1].

However, in real life scenarios, the linear model is not en-
tirely adequate. Phenomena such as multiple scattering, shad-
ows, spatial neighborhood effects etc. contribute to a nonlin-
ear behavior of the material mixtures. To accomodate this,
models allowing light to interact with 2 endmember materials
i.e. secondary reflections were developed, such as the bilin-
ear unmixing models [2–5]. Theoretically, the bilinear mod-
els can be extended to higher order interactions, but they are
often not physically based and become hard to solve.

Recently, we have developed a multilinear mixing model
(MLM), a model that takes multiple reflections into account
[6]. MLM includes all higher order interactions by introduc-

ing one single parameter that describes the probability that
a light ray undergoes a further interaction after each interac-
tion with a material. This model is analytically tractable and
physically sound and useful in practical situations where non-
linearities due to multiple reflections are apparent.

So far, most nonlinear unmixing methods were validated
in Earth observation settings, either on synthetic data or well
known hyperspectral remote sensing images. One problem
with hyperspectral remote sensing images is their limited spa-
tial resolution. Subtle nonlinear effects typically take place
on a scale, smaller than the pixel size, and are expected to av-
erage out, making the linear contribution the dominant one.
In this work, we investigate nonlinear spectral unmixing in a
close-range setting. Images of high spatial resolution are ex-
pected to reveal subtle nonlinear effects. One particular effect
that reveals nonlinear behavior is shadow. Since shadowed
areas do not receive direct light, all light reaching the sensor
from shadowed areas have a nonlinear origin. It is therefore
important to properly describe shadow in a nonlinear spectral
mixing model.

In this work, we included a shadow parameter in the
MLM model. This allows to identify shadowed areas, and to
study the reflectance from such areas. The model will be val-
idated on a high-resolution close-range hyperspectral image
of a building facade.

2. METHOD

2.1. The MLM model

The MLM model [6] allows the light to interact multiple times
with materials. It is based on a ray-based approximation of
light, tracing the path of a single light ray from the source to
the observer. This path can be modeled as a Markov chain
following certain rules:

• An incoming light ray interacts with at least one mate-
rial.

• After each interaction with a material, the ray has a
probability P of undergoing further interactions, and a
probability (1− P ) of escaping the scene and reaching
the observer.



• The probability of interacting with material i is propor-
tional to its abundance ai.

• When a light ray is scattered by material i, its intensity
changes according to that materials reflectance ei.

The resulting mixing equation then becomes:
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The MLM model accommodates all orders of interactions
between endmembers, and scales all higher-order interactions
with a single parameter P with a clear physical interpretation
(the probability of interacting again with an endmember). We
refer to [6] for more details.

2.2. A shadow MLM model (SMLM)

In this section, we extend the MLM model with the capabil-
ity of dealing with shadows, resulting in the shadow MLM
(SMLM) model. Shadows play an important role in the com-
position of a scene. These shadows may be partial, when only
part of the IFOV of a pixel is be shadowed, or when the ob-
ject that casts the shadow is smaller than the IFOV (e.g. small
trees and bushes). By definition, any object that is shadowed
has no direct line of sight to the light source. When we con-
sider the MLM model and its series expansion, this means that
in shadowed regions only interactions of order two and higher
are allowed, while directly illuminated parts of the pixel also
have contributions from the first-order interactions. By in-
troducing a parameter Q ∈ [0, 1] where Q = 0 means no
shadow, while Q = 1 indicates a full shadow situation, the
following mixing equation for the SMLM model is obtained:

x =
(1− P )

∑p
i=1 aiei
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−Q(1− P )
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i=1

aiei (2)

Both models, MLM and SMLM can be inverted to obtain
the fractional abundances from the reflectance. For this, we
performed constrained optimization of the reconstruction er-
ror versus the model parameters via sequential quadratic pro-
gramming. The model parameters P in the case of MLM and
both P and Q in the case of SMLM are estimated along with
the fractional abundances and a map of these parameters re-
veals additional information on the spatial location of regions
where multiple reflections occur and on shadowed regions.

3. EXPERIMENTS AND RESULTS

A a preliminary study, the parameters of the SMLM model
were evaluated on a real close-range hyperspectral image,
taken from a selected historic building facade in Bergen
(Norway). The south view of the building was scanned with
a Hyspex 320m hyperspectral camera (Norks Elektro Op-
tikk AS, Oslo, Norway) from an offset of almost 15 m to
the facade. The camera has a spectral range in the short-
wave infrared (1,300-2,500 nm), with a spectral resolution of
5nm. A number of preprocessing steps such as dark image
subtraction, linear interpolation of bad pixels, non-uniformity
corrections, relative reflection calibration and MNF denoising
were performed (see [7] for more details).

Ground-truth was manually obtained for five different ma-
terials: brick, mortar, rendering, stone and painted window
frame. Endmembers were obtained as average spectra of the
ground-truth data for the different materials. Since glass has
very low reflectance values and can easily be mixed up with
shadow and/or multiple reflections, no endmember for glass
was defined.

The proposed SMLM model was applied to this image.
We made a comparison with 3 alternatives:

• The linear mixing model (LMM), with ANC and ASC
imposed on the abundances [1]. The mixing model is
given by:

x =

p∑
i=1

aiei,

{∑
i ai = 1

∀i : ai ≥ 0
(3)

• SLMM: LMM with an extension of the endmember
matrix with an aditional zero-vector shadow endmem-
ber:
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i=1 âi = 1

∀i : âi ≥ 0
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with

{
∀i ∈ 1, . . . , p : âi = (1−Q)ai

âp+1 = Q = 1−
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• The MLM model [6], given by (1).

Note that the P → 0 limit of the SMLM model equals the
SLMM model, the Q → 0 limit gives the MLM model, and
the P,Q→ 0 limit gives the LMM model.

For LMM and SLMM we employed the fully-constrained
least-squares unmixing (FCLSU) algorithm [1], based on the
nonnegatively-constrained least-squares algorithm by Law-
son and Hanson [8].



The obtained maps of the model parameters are shown in
Fig. 1. Moreover, scatter plots between the parameters of
the different models can be seen in Fig.2. Abundance maps 1

were calculated and compared to classification maps obtained
by using the ground truth data as training data in a SVM clas-
sifier.

The following observations can be made from these fig-
ures:

• From both the parameter maps and the scatterplot, it
can be observed that the shadow abundance map of
SLMM and the P map of MLM are very similar, indi-
cating that the effect of these parameters are similar in
both models. This can be attributed to the fact that the
first order term from the series expansion of the MLM
model (Eq. 1) corresponds to the SLMM model.

• Wherever the P value of MLM and the shadow abun-
dance of SLMM differs from zero, one or both of the
parameters of SMLM differ from zero. The P val-
ues of SMLM are always equal to or lower than the
ones of MLM, while the Q values of SMLM are always
equal to or lower than the shadow abundance values of
SLMM (except for the values close to 1).

• The windows show high values for the SMLM param-
eters. While SLMM regards these areas as shadow and
MLM regards them as areas of multiple reflections, the
SMLM model seems to divide the effect over both pa-
rameters, with an emphasis on the parameter P .

• Shadowed areas, e.g. under the stone sills on top and
beneath the windows, also have high parameter val-
ues. Again SLMM regards these areas as shadow and
MLM as areas of multiple reflections. SMLM there
shows high shadow values (high Q). The shadowed
regions above and under glass areas seem to indicate
more multiple reflections (high P ) than the shadowed
areas above or under the window frames.

• Analysis of the obtained abundance maps learns that
the LMM model deviates most from the classification
maps. The abundance values of SLMM are in general
lower than the abundance values of MLM and SMLM.
This is in particular the case when the shadow abun-
dance is high. Differences between abundance maps of
MLM and SMLM are very small.

• In shadowed regions (e.g. under the stone sills beneath
the windows), SMLM and MLM show high abundance
values for brick. Since in shadowed regions no linear
but only higher order reflections appear, this shows that
these models are able to reveal fractional abundance in-
formation of materials under the shadow. SLMM is
able to determine these shadowed areas but shows re-
duced abundance values for all materials.

1All abundance maps

4. CONCLUSIONS

In this work, we have presented an extension of a nonlinear
mixing model, by including shadow and multiple reflections.
As a preliminar validation of these effects, the model param-
eter were evaluated by an experiment on a close range hyper-
spectral image in the SWIR of a building facade. In the future,
we want to further validate the SMLM model for its ability to
estimate fractional abundances, in particular in shadowed re-
gions, where only higher order reflections appear.
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Fig. 1. RGB image, the shadow abundance map from the SLMM model, the P map from the MLM model and the Q and P
maps from the SMLM model.

a b c

Fig. 2. Scatterplots between the model parameters of the different models, obtained from the building image; a) the shadow
abundance values of SLMM versus the P values of MLM; b) the P values of SMLM versus the P values of MLM; c) the Q
values of SMLM versus the shadow abundance values of SLMM;
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