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Highlights

• New method of computation of PROMETHEE using a sliding window
after the alternatives have been sorted.

• Proof of efficiency of this method (complexity reduction from O(n2) to
O(n.log(n))).

• Performance comparison of this method versus the traditional one.
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PROMETHEE is Not Quadratic:
An O(qn log(n)) Algorithm

Toon Caldersa,b, Dimitri Van Asscheb,∗

aDepartment of Mathematics and Computer Science, Universiteit Antwerpen
bComputer & Decision Engineering Department (CoDE), Université libre de Bruxelles

Abstract

It is generally believed that the preference ranking method PROMETHEE has
a quadratic time complexity. In this paper, however, we present an exact al-
gorithm that computes PROMETHEE’s net flow scores in time O(qn log(n)),
where q represents the number of criteria and n the number of alternatives.
The method is based on first sorting the alternatives after which the unicrite-
rion flow scores of all alternatives can be computed in one scan over the sorted
list of alternatives while maintaining a sliding window. This method works with
the linear and level criterion preference functions. The algorithm we present is
exact and, due to the sub-quadratic time complexity, vastly extends the appli-
cability of the PROMETHEE method. Experiments show that with the new
algorithm, PROMETHEE can scale up to millions of tuples.

Keywords: Decision Support Systems, PROMETHEE, Multicriteria,
Incremental Computing, Multicriteria Decision Analysis

1. Introduction

Multi-criteria decision aid (MCDA) [1], that is, the study of simultaneously
evaluating possible decisions on multiple conflicting criteria, has been an active
research field for over 40 years. A common example in this area is that of buying
a new car. When selecting which car to buy, one typically tries to minimize cost
and consumption while maximizing performance, comfort, etc. Obviously no
real car can be best on all those criteria at the same time. Therefore, the notion
of optimal solution necessarily is replaced by that of a compromise solution [2].

Different methods to select a compromise solution from a set of alternatives
have been proposed in the literature, which can be divided into 3 main categories
[3]: those based upon multi-attribute utility theory (MAUT) [4, 5], outranking
methods [6], and interactive methods [7].
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We only discuss the first two methods, as in the paper we only consider fully
automatic ranking methods. In the methods based upon MAUT, scores are
computed by aggregating, per alternative, its unicriterion utilities with functions
that map a value into a preference degree. Most MAUT methods can therefore
be computed efficiently, because the utility function is applied to each alternative
for each criterion only once.

On the other hand, outranking methods such as ELECTRE [8] and PROME-
THEE1 [9] are based on pairwise comparisons of alternatives. These methods
have a wide range of applications [10, 11, 12, 13], yet are often criticized for
their high complexity due to pairwise comparisons. Indeed, the straightfor-
ward computation of these ranking methods leads to a quadratic complexity
in the number of alternatives. As a result, for a small number of alternatives
the straightforward implementation of these methods works fine, yet the per-
formance degrades rapidly for an increasing number of alternatives.

In [14], a discussion is made about the performances of outranking methods
in the context of geographical information analysis. Outranking methods are
considered impractical when a large number of alternatives are involved, but
there is no consensus on the meaning of large. According to [15]: “Outranking
techniques [...] require pairwise or global comparisons among alternatives, which
is obviously impractical for applications where the number of alternatives/cells
in a database range in the tens or hundreds of thousands.” Furthermore, accord-
ing to [16], the problem already arises with more than 100 alternatives: “[...]
outranking methods have difficulties dealing with more than a hundred alterna-
tives.” In [17] it is grossly overgeneralized that the evaluation of a large number
of alternatives is an issue of multi-criteria analysis: “One major drawback of
MCA is that it does not allow the comparison of a large number of alternatives.
With only a few alternatives to be evaluated, it is almost certain that the best
alternative chosen from the set is in fact a sub-optimal solution.”

In order to tackle these complexity problems, recently approximation meth-
ods have been developed to reduce the complexity of the calculation of PROME-
THEE II by, for instance, the use of piecewise linear functions to approximate
net flow scores of alternatives [18]. In this paper we show, however, that effi-
cient exact methods exist to compute PROMETHEE flow scores. We
present an exact method to compute flow scores of all alternatives considered
for both PROMETHEE I and II, with time complexity O(qnlog(n)) with q the
number of criteria and n the number of alternatives. This is clearly a tremendous
improvement over the O(qn2) complexity of the straightforward computation by
iterating over all pairs. Our method works for the two most popular preference
functions: the linear2 and level criterion preference functions (see figure 1 and
2). It requires, for each criterion, that the alternatives are sorted ascending ac-
cording to this criterion using a standard sorting algorithm such as Merge Sort

1Preference Ranking Organization METHod for Enrichment of Evaluations
2We use the naming linear preference function for the V-shape with indifference threshold

preference function (type 5 as defined by [9])
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or Quick Sort. Subsequently a linear scan is made over the sorted alternatives
while maintaining a sliding window. In this way, per criterion one unicriterion
flow score is computed and these scores are then combined in the final PROME-
THEE flow score. The key observation in determining the complexity of this
procedure is that sorting the dataset on a criterion takes time O(n log(n)) using
a standard out-of-the-box sorting algorithm such as merge-sort.

The paper is organized as follows. In Section 2, we revisit the PROME-
THEE ranking method. In Section 3, we introduce our efficient sorting-based
approach for calculating the flow scores of PROMETHEE, and establish its time
complexity. Finally, in Section 4, we compare the performance of the straight-
forward quadratic implementation with our new method, clearly illustrating the
dramatic performance improvement, scaling up PROMETHEE to applications
with millions of alternatives.

2. PROMETHEE

In this section, we revisit the definition of the PROMETHEE I and II scoring
methods. We refer the interested reader to [9] for a detailed description of
PROMETHEE.

Let A = {a1, a2..., an} be a set of n alternatives and let F = {f1, f2..., fq}
be a set of q criteria. The evaluation of alternative ai for criterion k will be
denoted by a real value fk(ai). We assume, without loss of generality, that a
higher value for a criterion is better. For each pair of alternatives, we define
dk(ai, aj) as the difference between ai and aj on criterion k.

dk(ai, aj) := fk(ai)− fk(aj) . (1)

A preference function, denoted Pk, is associated with each criterion k. This func-
tion transforms the difference dk(ai, aj) between alternatives into a preference
degree of ai over aj on criterion k. Multiple preference functions exist [9], such
as the linear preference function (Equation 3, Figure 1) and the level criterion
preference function (Equation 2, Figure 2).

Pk[dk(ai, aj)] =





0 if dk(ai, aj) < qk
1
2 if qk ≤ dk(ai, aj) ≤ pk
1 if pk < dk(ai, aj)

(2)

In this paper we will consider the linear preference function, which is defined
as follows, given an indifference threshold qk and a preference threshold pk:

Pk[dk(ai, aj)] =





0 if dk(ai, aj) < qk
dk(ai,aj)−qk

pk−qk if qk ≤ dk(ai, aj) ≤ pk
1 if pk < dk(ai, aj)

(3)

The results in this paper can easily be extended to the level criterion preference
function as well. These two preference functions represent the most popular
choices in the literature.

4
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Figure 1: Linear preference function
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Figure 2: Level criterion preference function
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By applying the preference function Pk to the difference dk, we get the
unicriterion preference degree πk:

πk(ai, aj) := Pk[dk(ai, aj)] (4)

The aggregated preference degree of alternative ai over aj is then computed as
a weighted sum over the unicriterion preferences using weights wk associated
with each criterion k. Weights are assumed to be positive and normalized.

π(ai, aj) :=

q∑

k=1

wkπk(ai, aj) (5)

The last step consists in calculating the positive flow score denoted φ+(ai)
and the negative flow score denoted φ−(ai) which are combined into the final
flow score of ai as follows:

φ+(ai) :=
1

n− 1

∑

x∈A
π(ai, x) (6)

φ−(ai) :=
1

n− 1

∑

x∈A
π(x, ai) (7)

φ(ai) := φ+(ai)− φ−(ai) (8)

The PROMETHEE I (partial) ranking is obtained as the intersection of the
rankings induced by φ+ and φ−. PROMETHEE II gives a complete ranking
induced by φ. For an interpretation of the net flow scores, the interested reader
is referred to [19].

In this paper we will use the following, equivalent definition of the flow score:

φ+k (ai) :=
1

n− 1

∑

x∈A
πk(ai, x) (9)

φ−k (ai) :=
1

n− 1

∑

x∈A
πk(x, ai) (10)

φk(ai) := φ+k (ai)− φ−k (ai) (11)

φ(ai) =

q∑

k=1

wkφk(ai) (12)

φ+k (ai) and φ−k (ai) are respectively called the unicriterion positive flow score
and unicriterion negative flow score of the alternative ai on criterion k.

3. Sorting-Based Algorithm for PROMETHEE

Our sorting-based algorithm is based on computing the unicriterion posi-
tive and negative flow scores φ+k (a) and φ−k (a) for all alternatives a for each
criterion fk separately. The time required for this computation will be shown

6
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to be O(n log(n)) per criterion. Hence, computing all unicriterion positive and
negative flow scores for all criteria takes time O(qn log(n)). These scores can
be combined into the final PROMETHEE II flow score in time O(qn), leading
to an overall time complexity of O(qn log(n)).

Given the symmetry of the expressions for φ+k (a) and φ−k (a), we will only
elaborate on the computation of φ+k (a). Indeed, if we substitute fk(a) by f ′k(a) =

−fk(a), the resulting φ′+k (a) = φ−k (a). This is quite easy to see since for all k, x,
and ai it holds that d′k(ai, x) = dk(x, ai), and consequently π′k(ai, x) = πk(x, ai).

As such, exactly the same algorithm can be used to compute φ+k (a) for all a as
for computing φ−k (a) for all a. In the following we only present the algorithm for
the linear preference function, as the algorithm for the level criterion preference
function is very similar.

To illustrate the sorting-based computation of the unicriterion positive flow
function, we use the following running example.

Example 1. Consider the following table listing a number of destinations (the
alternatives), together with their characteristics (the criteria) on the basis of
which we want to decide where to go on vacation. We consider three criteria:
hours of sunshine, price, and historical value, each of which have been marked
on a numerical scale of 1 to 10.

f1 f2 f3
Destination Sunshine Price History

a1 Brussels 5 6 9
a2 Paris 6 4 10
a3 Blois 7 9 8
a4 Berlin 7 8 8
a5 Barcelona 10 7 7

Furthermore for all k = 1, . . . , 3, the thresholds qk and pk are respectively 1
and 3. This means that a difference of 1 score point or less will be ignored,
and a difference of more than 3 points will no longer give additional benefit. In
between these two extremes, the contribution to the flow score will be linear.

With these parameters, the positive unicriterion flow score for criterion f1
for alternative a4 is:

φ+1 (a4) =
1

4
(π1(a4, a1) + π1(a4, a2) + π1(a4, a3) + π1(a4, a4) + π1(a4, a5))

=
1

4

(
1

2
+ 0 + 0 + 0 + 0

)
=

1

8

3.1. Window of an Alternative

One of the observations on which our algorithm for the linear preference
function is based, is the following: There are three different ways in which an

7
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fk(a4)

fk(a5) fk(a6)

pk

qk

Rk(a5)Wk(a5)Lk(a5)

πk(a5, x) = 1

πk(a5, x) = fk(a5)−fk(x)
pk−qk

πk(a5, x) = 0

Figure 3: Illustration of the three different cases for the preference degree πk(a5, x): x ∈
Lk(a5), x ∈Wk(a5), and x ∈ Rk(a5)

alternative x can influence φ+k (a) (see figure 3):

fk(x) < fk(a)− pk : πk(a, x) = 1 (13)

fk(a)− pk ≤ fk(x) ≤ fk(a)− qk : πk(a, x) linear in dk(a, x) (14)

fk(a)− qk < fk(x) : πk(a, x) = 0 (15)

Hence, except for a window of length pk− qk, the influence of an alternative
x is a default value that depends on the side of the window on which x falls.
We formalize these three regions as follows:

Definition 1. The window of ai, denoted Wk(ai) is defined as:

Wk(ai) := {x ∈ A | fk(x) ∈ [fk(ai)− pk, fk(ai)− qk]} .

We will use li, respectively ui to denote the lower and upper bounds of the
interval [fk(ai)−pk, fk(ai)−qk]. We say that an alternative x is left of Wk(ai) if
fk(x) < li, and that it is right of Wk(ai) if fk(x) > ui. The set of all alternatives
left, respectively right of ai will be denoted Lk(ai), respectively Rk(ai).

Example 2. We continue Example 1. We illustrate the concept of window by
looking at the first criterion “Sunshine.” The alternatives are already ordered
according to increasing score for “Sunshine.” The window W1(a1) includes all
alternatives with a temperature value that is in the interval [5−3, 5−1] = [2, 4].
Hence W1(a1) = ∅, L1(a1) = ∅, and R1(a1) = {a1, a2, a3, a4, a5}. The other

8
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windows are as follows:

ai [li, ui] L1(ai) W1(ai) R1(ai)
a1 [2, 4] ∅ ∅ {a1, a2, a3, a4, a5}
a2 [3, 5] ∅ {a1} {a2, a3, a4, a5}
a3 [4, 6] ∅ {a1, a2} {a3, a4, a5}
a4 [4, 6] ∅ {a1, a2} {a3, a4, a5}
a5 [7, 9] {a1, a2} {a3, a4} {a5}

Using these definitions, we obtain the following equality:

φ+k (a) =
1

n− 1


 ∑

x∈Lk(a)

1 +
∑

x∈Wk(a)

(fk(a)− fk(x))− qk
pk − qk

+
∑

x∈Rk(a)

0




=
1

n− 1

(
|Lk(a)|+ |Wk(a)| × fk(a)− qk

pk − qk
−
∑
x∈Wk(a)

fk(x)

pk − qk

)
(16)

Hence, in order to compute φ+k (a) for all a efficiently, it is essential to be
able to quickly compute |Wk(a)|, |Lk(a)|, and the sum Sk(a) :=

∑
x∈Wk(a)

fk(x)
for all alternatives a. This can be achieved by a sorting-based method that
incrementally computes |Wk(ai)|, |Lk(ai)| and Sk(ai), as we show next.

3.2. Incremental Computation of the Windows Wk(a)
Let a1, a2, . . . , an be the sequence of alternatives, ordered in ascending order

of their k-th criterion; that is, for all i = 1 . . . n − 1, fk(ai) ≤ fk(ai+1). After
ordering the alternatives, it holds that if i < j, Wk(ai) will be “more to the
left” than Wk(aj) in the sense that li ≤ lj and ui ≤ uj . The following lemma
formalizes this observation. We exploit this fact for computing the windows
Wk(ai) incrementally.

Lemma 1. Let A = {a1, . . . , an} be the set of alternatives ordered in ascending
order w.r.t. the k-th criterion; i.e., fk(ai) ≤ fk(ai+1) for all i = 1 . . . n− 1. Let
x ∈ A, i < j ∈ [1, n]. If x ∈ Wk(ai) ∩Wk(aj), then for all i ≤ ` ≤ j, it holds
that x ∈ Wk(a`). Furthermore, if both ar and as are in Wk(ai), then also for
all r ≤ ` ≤ s, a` ∈Wk(ai).

Proof. x ∈ Wk(ai) ∩ Wk(aj) implies that fk(x) ∈ [li, ui] ∩ [lj , uj ]. Let now
i < ` < j, then we have the following inequalities:

l` = fk(a`)− pk (17)

≤ fk(aj)− pk (18)

= lj (19)

≤ fk(x) (20)

≤ ui (21)

= fk(ai)− qk (22)

≤ fk(a`)− qk (23)

= u` (24)

9
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Hence, l` ≤ fk(x) ≤ u` and thus x ∈ Wk(a`). (17), (19), (22), and (24) follow
from the definition of Wk and the lower and upper bounds of that window. (18)
and (23) follow from i < ` < j and the alternatives being ordered ascending
with respect to fk; hence fk(ai) ≤ fk(a`) ≤ fk(aj). (20) and (21) follow from
x ∈ Wk(ai) ∩Wk(aj) = [li, ui] ∩ [lj , uj ]. Because fk(ai) ≤ fk(aj), li ≤ lj and
ui ≤ uj , from which we derive that [li, ui] ∩ [lj , uj ] = [lj , ui].

We prove the second statement using similar techniques as follows. Let ar
and as with r ≤ s be in Wk(ai), and r ≤ ` ≤ s.

li ≤ fk(ar) (25)

≤ fk(a`) (26)

≤ fk(as) (27)

≤ ui (28)

Hence a` ∈ Wk(ai). (25) and (28) follow from ar, as ∈ Wk(ai) and (26) and
(27) from r ≤ ` ≤ s and hence fk(ar) ≤ fk(a`) ≤ fk(as).

Example 3. Figure 4 illustrates the observation for the dataset of Example 1
and the first criterion.

It is clear that l1 ≤ l2 ≤ l3 ≤ l4 ≤ l5 and u1 ≤ u2 ≤ u3 ≤ u4 ≤ u5, and for
instance, because a1 is in W1(a2) ∩W1(a4), a1 is also in W1(a3).

f1(a1)

f1(a2)

f1(a3)

f1(a4)

f1(a5)

W1(a1)

W1(a2)

W1(a3)

W1(a4)

W1(a5)

Figure 4: windows W1 for each alternative ai on the first criterion from the example

From the lemma it is clear that if we construct the windows in order from
Wk(a1) to Wk(an), every time an element x leaves a window, we will never
have to reconsider it; that is, if x ∈ Wk(ai), but x 6∈ Wk(ai+1), then for all
j = i+1 . . . n, x ∈ Lk(aj). This gives rise to the following incremental algorithm:
when computing Wk(ai) from Wk(ai−1), we first shift the leftmost border of the
window; we increment the index λ until λ = n + 1 or fk(aλ) ≥ li, followed
by shifting the rightmost border of the window by incrementing index υ until
υ = n or fk(aυ+1) > ui. The resulting algorithm is given as Algorithm 1.

Example 4. We continue our running example 2 and show how the subsequent
windows can be computed for the criterion Sunshine. First we order the alter-
natives in ascending order according to this criterion, which gives us the list

10
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Brussels - Paris - Blois - Berlin - Barcelona. L and W are initialized to ∅ and
R = A. We start by constructing the window for Brussels. The value for the
criterion in Brussels is 5, and hence the interval is [2, 4]. Since there are no
elements in W yet, we can skip the test for removing elements from W . We
test the first element of R, being Brussels, and find out that it does not fall into
the window. Hence it remains in R and we have completed the computation for
Brussels. Then we go to the next element, Paris. Paris has 6 hours of sun-
shine, so the window boundaries become [3, 5]. Again, since W is empty, we
do not need to remove elements from W . This time, however, the first element
Brussels of R does fall into the window and hence Brussels is removed from R
and added to W . The second element Paris does not fall into the window and
thus remains in W . Then we compute the window for Blois. The first element
of the current W (Brussels) remains in W and the first element of R (Paris)
is added to W and removed from R. The next element in R, Blois, stays in R.
As the lower and upper bounds for Berlin are the same as for Blois, nothing
changes and we can go to the computation of the windows of the last alternative
Barcelona. For Barcelona, the first and second element of W are expelled as
they do not fall within the interval [7, 9]. The first two elements of the current
R (Blois, Berlin), however, do and are entered into W and removed from R. In
this way we get subsequently exactly the windows we got in Example 2.

The key observation in determining the complexity of this procedure is that
sorting the dataset on criterion qk is executed once and takes time O(n log(n))
using standard sorting algorithms such as merge-sort. Furthermore, lines 9, 10
are executed only if the test fk(W [1]) < l succeeds, which is at most n+1 times
over all incremental computations, because every time the condition is true an
element is removed from W , W is always a subset of A, and every element
removed from W will never enter W again. For the lines 13 − 18 exactly the
same argumentation holds; every time the test succeeds, an element is removed
from R and elements removed from R do never enter R again. All the other steps
of the algorithm are executed either exactly once (before for-loop), or exactly
n times (inside the for-loop). As such the time complexity of the algorithm is
O(n log(n) + n) = O(n log(n)).

3.3. Incremental computation of Sk(a) =
∑
x∈Wk(a)

fk(x)

For computing the sum Sk(ai) from Sk(ai−1), it suffices to look at the dif-
ferences between Sk(ai) and Sk(ai−1):

Sk(ai)− Sk(ai−1) =
∑

x∈Wk(ai)

fk(x)−
∑

x∈Wk(ai−1)

fk(x) (29)

=
∑

x∈Wk(ai)\Wk(ai−1)

fk(x)−
∑

x∈Wk(ai−1)\Wk(ai)

fk(x)(30)

=
∑

x∈Wk(ai)∩Rk(ai−1)

fk(x)−
∑

x∈Wk(ai−1)∩Lk(ai)

fk(x)(31)

11
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Input: Set of alternatives A of size N , criterion fk and thresholds pk, qk.
Output: List of cardinalities (|Wk(ai)|, |Rk(ai)|), i = 1 . . . N

1 sort(A, fk) ; // Sort A ascending w.r.t. fk
2 W ← [] ; // Initialize W to an empty list

3 R← sorted(A, fk) ; // List R is A sorted ascending w.r.t. fk
4 cardL = 0 ; cardW = 0 ;
5 for i=1. . . N do
6 a← A[i] ; // Alternative for which we are computing windows

7 l← fk(a)− pk; u← fk(a)− qk;
8 while |W | ≥ 1 and fk(W [1]) < l do
9 remove first element from W ; // First element leaves W

10 cardW ← cardW − 1 ; cardL ← cardL + 1 ;

11 end
12 while |R| ≥ 1 and fk(R[1]) < u do
13 x← R[1] ; remove x from R ; // Element leaves R
14 if fk(x) ≥ l then
15 append x at the end of W ; // Element enters W
16 cardW ← cardW + 1 ;

17 else
18 cardL ← cardL + 1 ;
19 end

20 end
21 output (cardW , cardL) ;

22 end
Algorithm 1: Compute Wk(ai) and Lk(ai) for all ai.

In other words, when incrementally computing the windowWk(ai) fromWk(ai−1),
we should only keep track of the alternatives leaving Wk(ai−1) (step 9 of Algo-
rithm 1), and those entering Wk(ai) (step 16 of Algorithm 1).

Example 5. We continue example 4. When computing Wk(a5) from Wk(a4),
we removed a1 and a2 from W and added a3 and a4. Therefore, to get Sk(a5)
from Sk(a4) we need to subtract the contributions from a1 and a2, and add the
contributions of a3 and a4. Hence,

Sk(a5)− Sk(a4) = fk(a3) + fk(a4)− fk(a1)− fk(a2) .

3.4. Complete Algorithm

By combining the incremental computation of the windows and that of the
sums, we obtain Algorithm 2 to compute the unicriterion positive flow scores
of a set of alternatives. In this algorithm we consider the use of queue data
structures to store the window W and the set R of alternatives to the right.
These structures act as a LIFO (Last In First Out) store. We retrieve elements
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Input: Set of alternatives A of size n, criterion fk and thresholds pk, qk.
Output: φ+(ai) for all i = 1 . . . n

1 sort(A, fk) ; // Sort A ascending w.r.t. fk
2 W ← [] ; // Initialize W to an empty list

3 R← sorted(A, fk) ; // List R is A sorted ascending w.r.t. fk
4 cardL = 0 ; cardW = 0 ; S = 0 ;
5 for i=1. . . n do
6 a← A[i] ; // Alternative for which we compute flow

7 l← fk(a)− pk; u← fk(a)− qk;
8 while |W | ≥ 1 and fk(W [1]) < l do
9 x←W [1] ;

10 remove x from W ; // Remove first element W
11 cardW ← cardW − 1 ; cardL ← cardL + 1 ;
12 S ← S − fk(x) ; // Remove contribution of x

13 end
14 while |R| ≥ 1 and fk(R[1]) < u do
15 x← R[1] ;
16 remove x from R ; // Remove first element R
17 if fk(x) ≥ l then
18 append x at the end of W ; // Element enters W
19 cardW ← cardW + 1 ;
20 S ← S + fk(x) ; // Add contribution of x

21 else
22 cardL ← cardL + 1 ;
23 end

24 end

25 φ+(a)← 1
n−1

(
cardL + cardW × fk(a)−qk

pk−qk −
S

pk−qk

)
; // Eq. (16)

26 end
Algorithm 2: Sorting-Based Computation of the Uni-Criterion Positive Flow
Score

from the front of the queue, and add items to the end of the queue. The pseudo-
code is very similar to that of 1, but now with the incremental computation of
the sum inserted in those places where elements move in and out of the window
W , and with the computation of the positive flow score based on Equation (16).

Example 6. We illustrate Algorithm 2 by tracing the values of the main vari-
ables at critical points in the program; that is: before executing the first while
loop (line 8), in between the two while loops (line 14), and when the positive
flow of the alternative under consideration is finally computed (line 25).

When processing the first alternative, none of the alternatives moves from
R to W and hence all cardinalities and the sum remain 0 resulting in a positive
flow of 0:

13
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i line a l u fk(a) W R |L| |W | S
1 8 Bruss. 2 4 5 ∅ [a1, a2, a3, a4, a5] 0 0 0

14 ∅ [a1, a2, a3, a4, a5] 0 0 0
25 ∅ [a1, a2, a3, a4, a5] 0 0 0

φ+(a1) = 1
4 (0 + 0− 0) = 0

When processing the second alternative, a1 moves from R to W . The cardi-
nality of W and the sum are updated accordingly. The positive flow for a2 is
computed:
i line a l u fk(a) W R |L| |W | S
2 8 Paris 3 5 6 ∅ [a1, a2, a3, a4, a5] 0 0 0

14 ∅ [a1, a2, a3, a4, a5] 0 0 0
25 [a1] [a2, a3, a4, a5] 0 1 5

φ+(a2) = 1
4 (0 + 1× 6−1

3−1 − 5
3−1 ) = 0

When processing the third alternative, a1 remains in W and a2 moves from
R to W . The cardinality of W and the sum are updated accordingly. The posi-
tive flow for a3 is computed:
i line a l u fk(a) W R |L| |W | S
3 8 Blois 4 6 7 [a1] [a2, a3, a4, a5] 0 1 5

14 [a1] [a2, a3, a4, a5] 0 1 5
25 [a1, a2] [a3, a4, a5] 0 2 11

φ+(a3) = 1
4 (0 + 2× 7−1

3−1 − 11
3−1 ) = 1

8

During the processing of alternative a4 nothing changes since this alternative
has exactly the same value for the criterion and hence also the same flow value
1
8 . Hence we move directly to the computation for the last alternative. Here
alternatives a1 and a2 move from W to L and a3 and a4 move from R to W :
i line a l u fk(a) W R |L| |W | S
3 8 Bcn 7 9 10 [a1, a2] [a3, a4, a5] 0 2 11

14 ∅ [a3, a4, a5] 2 0 0
25 [a3, a4] [a5] 2 2 14

φ+(a5) = 1
4 (2 + 2× 10−1

3−1 − 14
3−1 ) = 1

4. Empirical validation

We compare the performance of our sorting-based algorithm, that we will
call Sorting Based PROMETHEE (SBP), with that of the straightforward al-
gorithm based on iterating over all pairs of alternatives3. Even though from
the theoretical analysis it is crystal clear that the O(qn log(n)) sorting-based
method will outperform the O(qn2) standard method, we want to illustrate
with these experiments how large the actual difference is and to what new prob-
lem sizes PROMETHEE II can be scaled. We do not make any comparison of
the ranking produced since the sorting-based method is exact and hence the

3All code used in the comparisons in this section is avaiable at:
https://github.com/SomeULB/prometheenlogn
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flow scores and ranking produced is always exact. The tests have been executed
on a computer with an Intel Core 2 Quad 2.0 GHz and 4 Gb of RAM. The data
we use is unicriterion and was generated using a random uniform distribution
of values to have as many different values as possible.

Figure 5 shows runtime versus number of alternatives for the standard im-
plementation of PROMETHEE, and for the new sorting-based implementation.
The time to compute the unicriterion net flow scores is shown on the Y axis
and the number of alternatives to be ranked on the X axis. Note that the scale
on the X axes (number of alternatives) is vastly different because the standard
method was not able to scale to large sizes. To illustrate the difference, the
rightmost point in the left figure shows that the standard evaluation method
for PROMETHEE for 25000 alternatives takes over half an hour while for the
sorting-based method this point is on the far left in the graph and takes less
than half a second!
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Figure 5: Execution time with respect to the number of alternatives in the case of “standard”
PROMETHEE (left) versu the new sorting-based PROMETHEE (right). Note the difference
in scale of the graphs.

Table 1 illustrates the computation time’s increase in function of the num-
ber of alternatives. Every next line the number of alternatives considered is
multiplied by 2. The table includes the computation times required to compute
the unicriterion net flow scores of those sets of alternatives. For standard PRO-
METHEE, the execution time increases by a factor 4, as expected due to the
complexity in O(n2). For the incremental version, however, it increases by a
factor only slightly larger than 2.

For a small number of alternatives, both methods perform satisfactorily,
but when the number increases the difference between them increases rapidly.
Indeed, for more than 216 alternatives, the standard version needs more than
1 hour to compute all the scores while the incremental one requires less than a
second!

5. Conclusion

In this paper, we have presented a method that reduces the computation time
complexity of PROMETHEE in the case of the linear preference function from
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# alternatives Standard PROMETHEE Incremental PROMETHEE
2 3e-05 5e-05
4 7e-05 6e-05
8 0.00021 0.0001
16 0.00078 0.00017
32 0.003 0.00032
64 0.012 0.0006
128 0.047 0.0012
256 0.19 0.0024
512 0.75 0.0048
1024 2.98 0.0097
2048 11.88 0.02
4096 47.55 0.04
8192 190 0.08
16384 775 0.17
32768 3216 0.35
65536 12876 0.74
131072 NA 1.56
262144 NA 3.34
524288 NA 7.04
1048576 NA 14.7
2097152 NA 30.5
4194304 NA 64.2

Table 1: Execution time in seconds for the standard and incremental PROMETHEE.

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

O(qn2) to O(qn log(n)). The method is based on an incremental computation
after first sorting the alternatives for each criterion. With this new algorithm
SBP we have presented, the complexity problem is solved for PROMETHEE; it
can now be applied to large sets of alternatives requiring only a small amount
of time. The bottom line is: if the dataset can be sorted, PROMETHEE can
be applied.

This opens up questions on the interpretation of unicriterion flow scores.
Indeed, we have a formulation of φ+(ai) in function of φ+(ai−1). We can see
that with the linear preference function, the difference in scores between ai and
ai−1 only depends on the alternatives that were in the windows of ai and ai−1.
This could be explored in future research.

Although we have developed our algorithm for the linear preference function,
it can easily be extended to the level criterion preference function. The method,
however, does not work for the Gaussian preference function. Hence, developing
a similarly improved version of PROMETHEE with the Gaussian preference
function remains future work as well.
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