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 Theory suggests that hermaphroditic plants and animals should be either entirely outcrossing or entirely selfi ng. As such, very few 
hermaphroditic plants and basommatophoran snails have a mixed breeding system. However, reliable estimates of selfi ng rates are 
lacking for most hermaphroditic animals. This partly prevents to delineate the relative contributions of the selective factors that 
determine selfi ng and outcrossing rates in hermaphroditic animal taxa. Here, we studied the population genetic structure of, and 
breeding system in, 11 populations of the hermaphroditic land slug  Arion intermedius  using fi ve polymorphic microsatellite loci. 
Moreover, genotype frequencies deviated signifi cantly from Hardy – Weinberg equilibrium expectations for most of the loci in all 
populations suggesting some level of selfi ng. Estimates of the selfi ng level  s , suggest moderate levels of outcrossing (mean  s  based 
on  F  IS     �    0.84; mean  s  based on the two-locus heterozygosity disequilibrium    �    0.20, or with a ML approach    �    0.22). Our study 
therefore suggests that  A. intermedius  has a mixed breeding system. A re-analysis of allozyme data from another arionid slug 
( subgenus  Carinarion ) indicates that mixed breeding may be more common in arionid slugs than hitherto was assumed. These 
results seem therefore at variance with current theoretical and empirical predictions and opens perspectives for the study on the 
evolutionary factors driving mixed breeding systems in animals.  

   Kurt Jordaens  ,   Joint Experimental Molecular Unit  ,   Royal Museum for Central Africa  ,   Leuvensesteenweg 13  ,   BE-3080 Tervuren  , 
 Belgium.  E-mail: kurt.jordaens@africamuseum.be  

 Mixed breeding, in which hermaphroditic species repro-
duce by both self- and cross-fertilization, is a challeng-
ing problem for evolutionary biologists (reviewed by 
 GOODWILLIE  et   al. 2005; B ARRETT  2013 and W RIGHT  et   al. 
2013 for plants and  ESCOBAR  et   al. 2011 for animals). 
Theory suggests that inbreeding depression should result 
in  strategies of pure outcrossing or pure selfi ng, but 
under some assumptions mixed breeding systems are 
evolutionary stable ( GOODWILLIE  et   al. 2005; W INN  et   al. 
2011; but see I GIC  and B USCH  2013). In plants, predomi-
nant outcrossing and predominant selfi ng are common, 
while only few species have a mixed breeding system 
( VOGLER  and  KALISZ  2001;  GOODWILLIE  et   al. 2005). In 
contrast, many animal species appear to have a mixed 
breeding system ( JARNE  and  AULD  2006). However, esti-
mates of the selfi ng rate in hermaphroditic animals are 
scarce and are mostly based on the fi xation index  F  IS . 
Unfortunately, the use of  F  IS  may result in upward biases 
of the selfi ng rate, especially in outcrossing species, 
because most studies used microsatellites that may show 
null-alleles and scoring problems (e.g. stuttering, large 
allelic drop-out) ( DAVID  et   al. 2007;  JARNE  and  DAVID  
2008). Indeed, using a more robust method to estimate 
selfi ng rates based on microsatellites,  DAVID  et   al. (2007) 

showed that hermaphroditic basommatophoran snails 
lack individuals that have a mixed breeding system 
( ESCOBAR  et   al. 2011). This is in line with behavioural 
studies showing that, although many outcrossing 
 hermaphroditic gastropods may be able to self ( JARNE  
and  DELAY  1991;  JARNE  et   al. 1993), 1) natural popula-
tions appear primarily or entirely outcrossing ( JARNE  
and   ST Ä DLER  1995), 2) offspring produced by isolated 
 individuals suffer from strong inbreeding depression 
(  ESCOBAR  et   al. 2011), and 3) individuals immediately 
switch from self-fertilization to outcrossing when 
 provided with a partner (reviewed by  JORDAENS  et   al. 
2007). Other species appear to be strictly self-fertilizing 
and suffer from strong outbreeding depression ( ESCOBAR  
et   al. 2011). 

 Estimates of selfi ng levels in hermaphroditic gastro-
pods are strongly biased towards the Basommatophora 
(17 species), while selfi ng rates in Stylommatophora 
(land snails and slugs) are only known for a few species 
(reviewed by  ESCOBAR  et   al. 2011). However, there is 
circumstantial evidence of substantial variation in 
breeding systems in Stylommatophora as well. A case 
in point is the slug genus  Arion  (family Arionidae). 
Breeding experiments and allozyme studies have 

Hereditas 150: 45–52 (2013) 

© 2013 The Authors. This is an Open Access article.  DOI: 10.1111/j.1601-5223.2013.02272.x



46   K. Jordaens et al. Hereditas 150 (2013)

suggested that arionids may reproduce by exclusive 
outcrossing to exclusive self-fertilization (W ILLIAMSON  
1959;  MCCRACKEN  and  SELANDER  1980;  FOLTZ  et   al. 
1982, 1984; S ELANDER  and O CHMAN  1983;  BACKELJAU  
et   al . 1997; JORDAENS  et   al. 2000). Until recently, one 
species, viz.  Arion intermedius   NORMAND , 1852 was 
suspected to be such an exclusive selfer because 1) none 
of the population genetic studies detected heterozygote 
individuals, but instead populations were either fi xed 
for single homozygous multilocus genotypes (strains) 
or consisted of two or more of such strains ( MCCRACKEN  
and  SELANDER  1980;  FOLTZ  et   al. 1982; B ACKELJAU  and 
D E  B RUYN  1991;  BACKELJAU  et   al. 1992); 2)  A. intermedius  
has never been observed to mate ( QUICK  1960; 
 CHICHESTER  and  GETZ  1973;  DAVIES  1977); and 3) 
isolated specimens easily reproduce uniparentally for 
several generations without apparent strong inbreeding 
depression ( CHICHESTER  and  GETZ  1973;  DAVIES  1977). 
The fi rst doubt as to whether  A. intermedius  is a strict 
selfer arose when  GARRIDO  et   al. (1995) found spermato-
phores in the bursa copulatrix of Spanish specimens. 
Since spermatophores are produced during courtship 
( TOMPA  1984) and get into the bursa only by transfer 
from a mating partner ( WIKTOR  1987), the occurrence of 
spermatophores suggests that specimens have mated. 
However, exchanging allosperm does not necessarily 
imply that this allosperm will also effectively fertilize 
the recipient’s eggs. So, the mere observation of sper-
matophores is insuffi cient evidence to decide about the 
breeding system ( BACKELJAU  and  DE BRUYN  1990).  REISE  
et   al. (2001) studied the population structure of 18 pop-
ulations of  A. intermedius  using allozymes. Apart from 
two specimens from Jauernick-Buschbach (Germany), 
each containing a complete spermatophore, they also 
found eight heterozygotes in this population. Assuming 
that  A. intermedius  does not reproduce parthenogeneti-
cally ( SELANDER  and  OCHMAN  1983;  TOMPA  1984; 
 RUNHAM  1993), the occurrence of heterozygote individuals 
in this population provided the fi rst strong indication of 
some degree of outcrossing in  A. intermedius . However, 
the sample sizes, as well as the numbers of allozyme 
loci surveyed and their degree of variability were too 
low to reliably estimate selfi ng rates (R EISE  et   al. 2001). 
Therefore, we here re-assess the breeding system and 
population genetic structure of  A. intermedius  by 
screening fi ve polymorphic microsatellite loci in 11 
natural populations.  

 MATERIAL AND METHODS  

 Collection of slugs and microsatellite genotyping 

 A total of 227 adult  Arion intermedius  specimens were 
collected by hand in ten European and one North  American 

populations (Table 1). Animals were stored in absolute 
ethanol. Genomic DNA was extracted from individual 
foot muscle tissue according to  PINCEEL  et   al. (2004). Sam-
ples were genotyped at six microsatellite loci (Arin1 to 
Arin6) following  BROOKES  et   al. (2001), but because Arin6 
yielded bad PCR results, this locus was excluded from 
further analyses. PCR products were electrophoresed 
using an automated ALFexpress DNA Sequencer (Amer-
sham Pharmacia Biotech). The program  ALLELELINKS  ver. 
1.00 (Amersham Pharmacia Biotech) was used to deter-
mine allele size. Individuals with known allele sizes and 
size standards were included on each gel to ensure scoring 
accuracy and consistency among gels.   

 Population genetic analyses 

 Overall population level genetic diversity was quantifi ed 
as the mean number of alleles per locus ( MN  A ), observed 
heterozygosity ( H  O ) (i.e. the mean proportion of heterozy-
gotes at a locus) and  NEI  ’ s (1978) unbiased expected 
heterozygosity ( H  E ) using the program  GENETIX  ver. 
4.05.2 ( BELKHIR  et   al. 2000). Allelic richness ( AR ) for 
each locus and for each population was estimated with 
 FSTAT  ver. 2.9.3.2 ( GOUDET  2005; available at  � www2.
unil.ch/popgen/softwares/fstat.htm � ). Allelic richness 
is a measure of the number of alleles independent of 
sample size, hence allowing to compare this quantity 
between different sample sizes (E L  M OUSADIK  and P ETIT  
1996). The estimator of single and multilocus  F  IS  values, 
 f  ( WEIR  and  COCKERHAM  1984) (also called the fi xation 
index or inbreeding coeffi cient), was estimated with 
 FSTAT  ver. 2.9.3.2 ( GOUDET  2005).  F  IS  measures the reduc-
tion of heterozygosity within populations based on a 
correlation of alleles within individuals (C ROW  and 
K IMURA  1970, W EIR  and C OCKERHAM  1984). When defi ned 
as 1  –   H  O  /  H  E  it can be used to measure the extent to 
which a particular population departs from Hardy – 
Weinberg equilibrium (HWE) expectations. Deviation of 
genotype frequencies from HWE expectations for each 
locus and population was analysed with an exact test 
using  GENEPOP  ver. 4.0 ( ROUSSET  2008). Self-fertilization 
is the most extreme form of inbreeding and thus high 
values of  F  IS  (or signifi cant heterozygote defi cits) may be 
indicative of self-fertilization (J ARNE  1995). 

 Populations were also screened for private alleles ( N  PA ), 
i.e. alleles that occur in only one population. Linkage 
 disequilibrium (LD) between pairs of loci was tested for 
each population using  GENEPOP  ver. 4.0 ( ROUSSET  2008). 
LD measures the signifi cance of association between 
 genotypes at pairs of loci in each population. If selfi ng 
levels are high, the decay of LD is slowed down substan-
tially because inbreeding reduces the number of double 
heterozygotes by which LD is eliminated (N ORDBORG  
2000). G ENEPOP  was further used to assess heterogeneity 
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tions ( N  PA     �    13). More than one private allele was found 
in Lamswick (four), Beeding (three) and Rambouillet 
(two).  MN  A  values ranged between two and four, while 
 H  O  and  H  E  values varied, respectively, between 0.01 and 
0.26 and between 0.26 and 0.55 (Table 1). There was 
no signifi cant correlation between sample size and  H  O  
(Spearman  R     �    0.10;  N     �    10;  P     �    0.78),  H  E  (Spearman 
 R     �    0.35;  N     �    10;  P     �    0.30) or allelic richness (Spearman 
 R     �    0.52;  N     �    10;  P    �     0.10) suggesting little, if any, 
sampling bias on genetic diversity estimates. 

 There was only signifi cant LD in fi ve out of 80 tests, but 
these were not signifi cant after Bonferroni correction. The 
populations from Serra de  Á gua and Lamswick were 
genetically the most diverse, both in  MN  A ,  AR  and  H  E  
(Table 1). There was signifi cant genic and genotypic dif-
ferentiation among populations at all loci (all  P     �    0.0001), 
even after Bonferroni correction. Especially the popula-
tions of Serra de  Á gua, Beeding and Barnstable were well 
differentiated from the other populations. The Serra de 
 Á gua population had a private allele at Arin5 (allele C) 
with a very high frequency (0.528; Table 2). Similarly, a 
private allele at Arin3 was found in the Beeding popula-
tion (allele B). Both populations also had a high frequency 
for the A allele at Arin3 (respectively 0.25 and 0.28) that 
was absent in the other populations. Signifi cant departures 
from HWE (i.e. heterozygote defi cits) were observed at 
all loci in many populations, even after Bonferroni correc-
tion (Table 2). Nevertheless, heterozygotes were observed 
in all populations and several  H  O  values were relatively 

in allele frequencies ( “ genic differentiation ” ; whether 
the allelic distribution is identical across populations) 
and genotype frequencies ( “ genotypic differentiation ” ; 
whether the genotypic distribution is identical across pop-
ulations) among populations using an unbiased estimate 
of Fisher ’ s exact test ( ROUSSET  2008). 

 Selfi ng rates ( s ) were estimated by three approaches: 1) 
from the inbreeding coeffi cient ( f  ) using the classical for-
mula   ŝ ( f )    �     2 f /(1    �     f  ), 2) from two-locus heterozygosity 
disequilibrium (  ĝ    2 ), using the program RMES (D AVID  
et   al. 2007; available at  �  www.cefe.cnrs.fr/en/genetique-
et-ecologie-evolutive/patrice-david  � ), and 3) using a 
maximum likelihood (ML) approach by maximizing the 
log-likelihood (LnL) of the multilocus heterozygosity 
structure of the sample, also with RMES. Yet, RMES 
could not be applied to the populations from Rugeley, 
Ekeren and Barnstable because these populations yielded 
heterozygotes only at single loci. Sequential Bonferroni 
corrections were applied throughout ( RICE  1989). Null 
alleles may bias  F  IS  estimates upward (D AKIN  and A VISE  
2004; D AVID  et   al. 2007;  JARNE  and A ULD  2006). There-
fore, we estimated theoretical mean null allele frequencies 
(and their standard error) with the program F REE NA 
(C HAPUIS  and E STOUP  2007).    

 RESULTS 

 A total of 38 alleles were detected at the fi ve microsatel-
lite loci. Thirteen alleles were unique to single popula-

  Table 1.  List of populations and numbers of specimens sampled (N) in eleven populations of the hermaphroditic land slug 
Arion intermedius. Genetic diverstiy was quantifi ed as: mean number of alleles per locus (M  N  A    ), allelic richness (AR), 
number of private alleles (  N  PA    ),  NEI  ’ s (1978) gene diversity (  H  E    ), observed heterozygosity (H  O   ). The selfi ng rate s was 
estimated by three methods:   F  IS  ,  ĝ   2   and ML ( DAVID  et   al. 2007). Detailed information on the different measures is given 
in the text .  

 Genetic diversity  Selfi ng rate 

Country  N  MN  A  AR  N  PA  H  E  H  O  F  IS   ĝ    2 ML

Belgium
Huy 21 2.8    �    0.9 2.21 1 0.26    �    0.10 0.06    �    0.04 0.81 0 0.18
Ekeren 15 2.0    �    0.4 1.87 0 0.28    �    0.14 0.02    �    0.02 0.97 – –

France
Rambouillet 20 3.2    �    0.6 2.55 2 0.36    �    0.12 0.06    �    0.02 0.86 0 0.08
Le Landin 16 2.6    �    0.4 2.34 0 0.35    �    0.06 0.13    �    0.05 0.69 0.90 0.84
Neufchatel 21 3.0    �    0.4 2.55 0 0.40    �    0.11 0.14    �    0.06 0.75 0.23 0.37

United Kingdom
Bilsington 19 2.4    �    0.4 2.18 0 0.39    �    0.10 0.11    �    0.03 0.84 0 0.07
Rugeley 24 2.6    �    0.4 2.01 1 0.26    �    0.10 0.01    �    0.01 0.99 – –
Lamswick 25 4.0    �    1.0 2.86 4 0.47    �    0.13 0.05    �    0.03 0.94 0 0.11
Beeding 30 3.4    �    0.8 2.69 3 0.41    �    0.14 0.18    �    0.14 0.76 0.44 0.10

Portugal (Madeira)
Serra de  Á gua 20 3.2    �    0.4 2.70 1 0.55    �    0.03 0.26    �    0.10 0.72 0 0.03

USA
Barnstable 16 2.6    �    0.5 2.04 1 0.27    �    0.09 0.02    �    0.02 0.94 – –
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with high selfi ng rates (up to 1) in northeastern European 
populations and low selfi ng rates (up to 0.315) in some 
central European populations. A re-analysis of these 
allozyme data using the ML method of  DAVID  et   al. (2007) 
resulted in selfi ng rates of  s     �    0 to 1 and confi rm our 
 previous fi ndings that  Carinarion  has a mixed breeding 
system too. Also P R É VOT  et   al. (2013) found substantial 
interpopulation variation in the selfi ng level ( s  estimated 
from nine polymorphic microsatellite loci by ML varied 
from 0 to 0.817) in the land snail  Rumina decollata  in 
southern France. 

 Several factors, including the magnitude of in- and out-
breeding, population density, the probability of fi nding 
mates, the life history and seasonal changes (see  JARNE  
and  CHARLESWORTH  1993,  JARNE  and  AULD  2006 and  ESCO-
BAR  et   al. 2011 for a more extensive list) may infl uence 
selfi ng rates. Given the among-population variation in 
selfi ng rates in  A. intermedius  (this study) and  Carinarion  
( JORDAENS  et   al. 2000), these, and other species of the 
genus  Arion  ( WILLIAMSON 1959, HAGNELL et   al. 2006, 
ENGELKE et al. 2011), and  R. decollata  (SELANDER and 
 KAUFMAN 1973, P R É VOT  et   al. 2013) may be very suitable 
stylommatophoran taxa to study the various aspects listed 
above, in the same way as Planorbidae or Physidae are for 
the Basommatophora. Moreover, the list of other stylom-
matophoran species that are probably capable of both 
 outcrossing and self-fertilization (but in which reliable 
estimates of the outcrossing or selfi ng level are lacking) 
is substantial, viz.  Cochlicopa  spp. (  ARMBRUSTER  and 
 SCHLEGEL  1994),  Deroceras laeve  ( HOFFMANN  1983),  Dero-
ceras praecox  (R EISE  1996),  Deroceras juranum  (R EISE  
1997),  Zonitoides nitidus  ( JORDAENS  et   al. 1998),  Vertigo 
pusilla  ( POKRYSZKO  1990),  Chondrina  clienta  ( BAUR and 
KLEMM 1989 ) and  Balea perversa  ( WIRTH  et   al. 1997). 
Hence, stylommatophoran land snails may offer ample 
opportunities to study the evolution of mixed breeding in 
hermaphroditic animal species.       
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