
ELSEVIER Theoretical Computer Science 149 (1995) 49-66

Theoretical
Computer Science

The expressive power of cardinality-bounded set values
in object-based data modelsf7

Jan Van den Busschea*l, Dirk Van Guchtb.*

b Computer Science Departmer2t, Indiana Unioersit~~, Bloomington. IN 474Oj-4101, C’SA

Abstract

In object-based data models, complex values such as tuples or sets have no special status and
are represented just as any other object. However, different objects may represent the same
value, i.e., duplicates may occur. It is known that typical object-based models supporting
first-order queries, standard object creation, and while-loops, cannot in general guarantee the
duplicate-freeness of representations of set values. In this paper. we consider a number of
extensions of the basic object-based model which provide exactly this ability, under the
assumption that a fixed bound is known on the cardinality of the set values. We show that these
extensions are all equivalent to each other. Our main result is that increasing the cardinality
bound from PTI to m + 1 yields strictly more expressive extensions, except for m = 0 and nl = 3.
We thus establish a noncollapsing hierarchy.

1. Introduction

In the past decade, there has been a lot of interest in accommodating more complex
data structures as first-class citizens in database systems, a feature not offered by
standard relational systems. Recent work in this field led to the definition of two new
data models: the complex oalue model and the object-based model. (There were also
proposals to combine the two approaches [2,4,10,17].)

The complex value model’ [1] is an extension of the standard relational model.
While the relational model offers collections of tuples, the complex value model offers

’ Extended and revised version of a paper presented at the 4th lnternational Conference on Database
Theory [21].
*Corresponding author. E-mail: vgucht@cs.indiana.edu.
1 Research Assistant of the NFWO.
’ Also known as the complex object, nested relational, NF’. or unnormalized model.

0304-3975:95:$09.50 :c’ 199SElsevier Science B.V. All rights reserved
SSDI 0304-3975(95)00025-9

collections of arbitrary combinations of sets and tuples called complex values. In the
object-based model [9,11, 13, 14,161, a database is essentially thought of as a labeled
graph of objects, where each set of equally labeled objects comprises a so-called class.
The edges between objects in the graph express properties and are labeled by property
names. This approach is inspired by the object-oriented philosophy [15], but can in
fact be traced back to the Functional Data Model [lS].

A difference between the complex value approach and the object-based approach is
that in the latter, set values are not explicitly part of the data model. The usual way of
representing a set in such a model is by having an object o, with equally labeled edges
linking o to each element of the set. A class of objects then represents a collection of set
values if each object in the class represents a set in the collection, and vice versa, each
set in the collection is represented by an object in the class. However, it may occur that
two different objects in the class represent the same set, i.e., duplicates may occur.

In this paper, we will focus on object-based queries whose result is a collection of set
values. Such queries augment the database with the new objects and edges necessary
for representing the desired collection. The fundamental query language for relational
databases, the relational calculus, can be adapted for this purpose. More specifically,
a relational calculus query over the database graph can be used for object creation by
creating a new object for each tuple in its result. And if the result is a binary relation, it
can be alternatively used for edge addition. A simple yet powerful object-based query
language, which we call OBQL, can thus be obtained by providing object creation and
edge addition as basic statements and closing off under composition and while-loops.
This language subsumes many object-based query languages proposed in the literature.

However, it is known [20] that if we insist on duplicate-free representations, there
are very simple collections of set values that are inexpressible in OBQL. For example,
the query asking for all subsets of two elements of a given class is not expressible
without duplicates.

Duplicate-free representations have a number of apparent practical advantages.
Obviously, duplicates cause redundancy in the database. Another advantage concerns
the efficient answering of queries involving the equality of set values. In arbitrary
representations, checking for equality of two sets requires an expensive comparison of
all elements. However, if every set value is represented by a unique object, checking
equality amounts to one single comparison of the corresponding object identifiers.
A third advantage is efficiency of representation. If a client program asks for a collec-
tion of set values, it is useful if the server program can deliver the collection in the form
of a unique handle to each set. Different handles to the same set value, i.e.. duplicates.
would be very undesirable in this situation.

Hence, it is desirable to enrich OBQL with an additional primitive for the creation
of duplicate-free set representations. The obvious candidate for this, considered in
[16], is an explicit powerset operation. An alternative, considered in [9]. is the
&traction operation, which provides a quotient construction, creating a unique
representative for each equivalence class of duplicate objects. These two options for
enriching OBQL are equivalent [20].

J. Van den Busschr. D. Van Guchi : Throretiwl Computer Science 149 (1995,l 49-66 51

In the present paper, we are motivated by the observation that in many practical
applications, the set values appearing in the database have bounded cardinality: their
cardinality is often known to be bounded by a fixed natural number m. For example, we
might know in advance that each student will take at most ten courses. Or, in
a genealogy database, any person has at most four grandparents. We define a natural
cardinality-bounded restriction of the abstraction operation, and show that it is equiva-
lent to various cardinality-bounded, duplicate-free set-object creation operations. In
particular, the above-mentioned equivalence between abstraction and powerset holds
also under the restriction of bounded cardinality. Our second and main result is that
enriching OBQL with m-bounded abstraction yields a strictly less expressive extension
than the one obtained by enriching with (m + I)-bounded abstraction (except for
nl = 3). We thus reveil a noncollapsing hierarchy of duplicate-free set creation opera-
tions in object-based data models, the supremum of which is general abstraction.

The proofs of our results carry some interest on their own, and provide more insight
on the issues of object creation, set value representation, and duplicates. For instance,
we show that object identifiers can be interpreted as hereditarily finite sets. Based on
this insight, we reduce the ability to do duplicate-free m-bounded set creation to the
existence of a certain type of hereditarily finite set that is fixed by all permutations of
{l, . . . , ml. After this reduction, our hierarchy result then follows from some basic facts
of group theory.

The hierarchy we establish in this paper should be contrasted with other hierarchies
established in the context of data manipulation languages for complex objects [S, 121.
These hierarchies are based on the nesting depth of sets, while our hierarchy is based
on the cardinality of sets. At the end of the paper, we mention a few interesting
problems which remain open.

2. The object-based data model

In this section, we define a general object-based data model, which serves as
a formal framework capturing the features (relevant to this paper) of many object-
oriented database systems encountered in practice. Our formalism. which views
database schemes and instances as directed, labeled graphs, is close to that of the
earlier proposals LDM [16] and GOOD [9]. We will define database schemes and
instances as special kinds of graphs, and we will introduce a simple yet powerful
object-based query language, called OBQL.

It is customary in object-based models to depict a database scheme as a graph. So
we assume the existence of infinitely enumerable sets of class names and property
names, and define:

Definition 2.1. A scheme is a finite, edge-labeled, directed graph. The nodes of the
graph are class names and the edges are triples (B, e, C), where B and C are nodes and
the edge label e is a property name.

52 J. Van den Bussche. D. Van Gucht / Theoretical Computer Science 149 (1995J 49-66

A database instance can now be defined as a graph consisting of objects and
property-links, whose structure is constrained by some database scheme. So we
assume the existence of an infinite supply of objects, and define, for an arbitrary
scheme S:

Definition 2.2. An instance over S is a finite, labeled, directed graph. The nodes of the
graph are objects. Each node o is labeled by a class name i(o) of S. The edges are
triples (o,e,p), where o and p are nodes and the edge label e is a property name of
S such that (i(o), e, j.(p)) is an edge of S.

The set of all objects in an instance labeled by the same class name C will be called
the class C.

Before turning to the object-based query language OBQL, we must first specify
what we mean with the notion of query in the object-based data model. In the
relational model, a query is typically considered as a function, mapping an input
database to an output relation. This output relation is often materialized as derived
information, or used as part of the input to a subsequent query. Hence, it is natural to
view a query alternatively as a function which augments an input database with a new,
derived relation. This view of a query can be readily adopted in the object-based data
model: a query is a function which augments an input instance with new objects and
edges. Correspondingly, OBQL provides two basic operations, one for object creation
and one for edge addition.

Object creation and edge addition are based on the following adaptation of the
relational calculus to object databases. With a scheme S, we can associate a standard,
first-order, many-sorted logic. The class names of S are sorts, and for each edge
(B, e, C) in the scheme there is a binary, sorted predicate name e(B, C). Given an
instance I over S, a sort C is interpreted by the class C in I, and the predicate e(B, C) is
interpreted by the set of all e- labeled edges going from objects of class B to objects of
class C. Now let @(x1,. .., x,) be a formula over S, and let Ci be the sort of Xi.
Evaluating ((x1, . . . , x,)) @} over I yields an nary relation consisting of all tuples
(0 I, . . . ,o,) of objects in I satisfying @. Note that oi will be in class Ci.

The object creation operation

r = C[e,:xl,...,e,:x,]e @

provides a natural way to augment the database with a representation of the above
n-ary relation. Here, C is some class name and e,, . . . , e, are property names. The effect
of r on schemes S and instances I is formally defined as follows:

Definition 2.3. (a) T(S) is the scheme obtained by augmenting3 S with node C and
edges(C,ei,Ci), for i= l,..., n.

3 By augmenting a graph G with a node or edge x, we mean adding x to G provided x does not already
belong to G.

J. Van den Bussche, D. Van Gucht / Theoretical Computer Science 145 (1555) 45-66 53

(b) T(Z) is the instance over Z(S) obtained from I by adding, for each tuple
(0 I , . . ., 0,) of objects in I such that @(o,, . . , 0,) is true in I, a new object o with label C,
together with edges (0, ei, oi), for i = 1, n.

If n = 2, then evaluating the formula @ yields a binary relation, which can be used
not only for object creation, but also for edge addition. Indeed, each pair in the
relation can be interpreted as a set of derived edges. These can be added to the
database using the edge addition operation

A - e(x1,x2) -2 @,

where e is some property name. The effect of d on schemes and instances is formally
defined as follows:

Definition 2.4. (a) A(S) is the scheme obtained by augmenting S with the edge
(Cl,e,C2).

(b) A(I) is the instance over A(S) obtained by augmenting Z with an edge (oi, e, 02)
for each tuple (01,02) of objects in I such that @(o,,02) is true in I.

Queries can now be expressed in OBQL by means of arbitrary compositions of
object creation and edge addition operations. Furthermore, these compositions can
be iterated using a while-loop construct of the form

while change do opl ; . . . ; opk od.

The body of the loop is executed as long as the instance under operation changes
(which might be forever.)

We conclude this section with some remarks on some specific features of OBQL.
We allow that the labels of objects and edges that are added to an instance by an

object creation or edge addition already exist in the scheme of that instance. This
provision is necessary for adding derived information incrementally, e.g., using
a while-loop. For example, the following program computes the transitive closure of
a database graph whose objects are all in the same class and whose edges all have the
same label e. The edges of the transitive closure will get the label e*.

e*(x, y) = 4x, y);
while change do e* (x, y) S= 3z : e(x, z) A e* (5, y) od

A program expressing a query will often create a lot of auxiliary objects and edges
that are only used for storing temporary results in the course of the computation, and
should be omitted from the end result. We will not define this practice formally; it will
always be clear from the context which of the labels are only temporary.

A number of object-based data models considered in the literature [9,13,14] use an
alternative semantics for object creation, which we will call weak semantics, and which
is often natural and useful. Recall Definition 2.3 of the object creation operation. The

54 J. Van den Bussche, D. Van Gucht / Theoretical Computer Science 149 (19951 49-66

weak variant of this operation, written

C[el:xl,...,e,:x,] tweak@:

only adds a new object o (as specified in the definition) if there is not already
a C-labeled object o’ with edges (o’, ei, oi) in the database. Hence, it is equivalent to

C[el :x1, e,:x,] (: @ A i3x:el(x,xl)r\ ... A e,(x,x,).

Thus, the weak semantics can be simulated in our semantics; actually, the converse is
true as well. The converse simulation uses an auxiliary class T, structured as an
every-growing stack. The stack is initialized with a bottom object using the “zero-ary”
object addition:

TC 1 -=weakfrUe.

The object creation

C[el:x,,e.:x,] -2 Cp

is then simulated by first pushing a new object on the stack:

T[preti : t] c weakl 3t’ : preu(t’, t).

(Here, t and t’ are variables of sort T; the formula states that t is the top of the stack.)
The actual object creation is then performed by

C[el:xl,...,e,:x,,e:t] -=weak@ A i!it’:preu(t’,t).

In words, the new object must be connected to the top of the stack with a temporary
edge labeled e. This guarantees that it will indeed be created, regardless of whether
there already exists an object with the same e,, . . . , en-edges, since such an object will
be connected to a lower object in the stack.

3. Representation of set values

Complex values, such as set values, are not explicitly part of the object-based data
model defined in the previous section. Instead, set values are represented by objects
through their properties. Consider as an example a scheme containing class names
Student and Course, with an edge from Student to Course labeled by the property
name takes. In an instance, there will be objects labeled Student, i.e., students, and
objects labeled Course, i.e., courses. Each student is connected to the courses he takes
by edges labeled takes. We say that each student represents the set of courses he takes.
Hence, the collection V of all sets of courses represented by some student is represent-
ed by the class Student. However, since different students may take exactly the same
courses, different students may represent the same set value: we say in this case that
the representation of V by class Student is not duplicate-free.

J. Van rim Bussche, D. Van Gucht / Theoretical Compufrr Science 149 11995) 49-66 55

Of course, we do not want to disallow “duplicate” students. Nevertheless, it might be
desirable to also have a representation of V which is duplicate-free. Some advantage of
duplicate-free representations have been pointed out in Section 1; we will now illustrate
one of them. Assume we have an additional class, say Set, representing the collection
Vwithout duplicates. So, in the scheme, there is an additional edge from Set to Course
labeled with contains, say. In the instance, each Set-object is linked via contains-edges to
precisely the courses of a set in V, All sets in V are represented in this way, and no two.
Set-objects represent the same set. We can then derive new edges, labeled set-courses,
from these Set-objects to students by the following edge addition operation:

seLcourses(2, s) e Vc : takes(s, c) F--) contains(z, c).

(Here, s, z and c are variables of sort Student, Set and Course, respectively.) After this
operation, each student is linked to the unique Set-object representing the set of
courses taken by that student. Note also that the contains-edges have now become
dispensable, since they can be recovered by first following a set-courses-edge, then
a takes-edge. After the preprocessing performed by this edge addition, queries con-
cerning the equality of sets of courses can now be answered very efficiently. To test
whether students take exactly the same courses, we can simply check whether they are
linked to the same Set-object (by a set-courses-edge).

A natural question now is the following: can we generate this duplicate-free class Set
(together with the set-courses-edges) by means of an OBQL query? This question can
be put more generally in terms of the abstraction operation, introduced in [9]. The
abstraction is an operation for turning an arbitrary given representation into a duplic-
ate-free one. More specifically, given a class C, it creates for each equivalence class
Z of duplicate objects in C (with respect to some property p) a unique representative
object (labeled K) which is linked to all members of Z (by edges labeled e). Here, two
objects are called duplicates with respect to p if they represent the same set value with
respect to p, i.e., if they are linked to the same set of objects by edges labeled p. We will
write the abstraction operation as

abstr K[e] e C/p.

For example, we can create the desired class Set of the above example as follows:

abstr Set [set-courses] e Student/takes.

As just defined, the abstraction operation works on all objects of a class C. It is
often useful however to work only on a subset of the class, determined by some
formula Q(X), with x a variable of sort C, We will write this generalized version of the
abstraction operation, which we will call the qualifying version, as

abstr K[e] C= C/p) Qi.

For example, in the above example, if we want only Set-objects for the sets of courses
taken by married students, we use:

abstr Set [set-courses] t Student/takes / 3p : spouse(s,p).

56 J.Van den Bussche, D. Van Gurht / Theoreiical Computer Science 149 (1995) 49-66

(Assuming the database scheme contains an edge labeled spouse from Student to, say,
class name Person; variables s and p are of sort Student and Person, respectively.)

Returning now to our question, we can rephrase it as follows: is abstraction
expressible in OBQL? This question was answered negatively in [20]. It was shown
there that even very simple collections of set values are inexpressible in OBQL
without duplicates, such as the query asking for all subsets of two elements of a given
class. The latter query is a kind of cardinality-restricted powerest construction, which
can be defined in general as follows:

Definition 3.1. Let C,K be class names and let e be a property name. Let m be
a natural number. Then applying the m-restricted powerset operation

powerset, K[e] = C

results in the addition, for each subset Z of class C of cardinality m, of a new object
o with label K together with edges (0, e, 0’) to each o’ E Z.

We can also define a cardinality-bounded version of the cardinality-restricted
powerset operation by replacing the phrase “of cardinality m” in Definition 3.1 with
“of cardinality at most m”. Let us denote this operation by powerset G m.

Like the qualifying version of the abstraction operation, a qualifying version of the
cardinality-bounded powerset operation is often useful. We conceive qualifying
powerset construction as an intuitive set-based dual of OBQL’s standard object
creation operation:

Definition 3.2. Let C, K be class names and let e be a property name. Let m be
a natural number. Let @(xi, . . . , xk), with k < m, be a formula where each Xi is of sort
C. Then applying the m-bounded set creation operation

K[e: {x1, xk}] e @(Xl, xk)

results in the addition, for each collection {o i, . . , ok) of (not necessarily distinct)
objects of class C such that @(oi, . . . , ok) is true, of a new object o with label K together
with edges (0, e, oi) to each oi.

For example, if we know that each student takes at most ten courses, then the
Set-objects desired in the earlier example can be added as follows:

Set[set-courses: {cl,clo}] = 3s: takes(s,cl)r\ ..- A takes(s,clo).

Inspired by all these cardinality-bounded operations, we can also define a cardinal-
ity-bounded version of the original abstraction operation (qualifying or not), which
creates representative objects only for those equivalence classes of objects represent-
ing a set value of cardinality at most m, for some fixed natural number m. Let us
denote this by abstr G m.

J. Van den Bussche, D. Vun Gucht / Theoretical Computer Science 149 (199s) 49-66 51

Given any of the new kinds of operations defined in this section, say op, we can
extend OBQL by allowing operations of that kind as basic statements (besides object
creation and edge addition.) The such extended language will be called OBQL + op. It
turns out that all these different possible extensions are equivalent:

Theorem 3.3. The following languages are equicalent:
1. OBQL + m-bounded set creation;
2. OBQL + qual$y;fying abstr Gm;
3. OBQL + abstr G.m;
4. OBQL + powerset G ,;
5. OBQL + powerset,.

Proof. (1) =S (2): Given a program in OBQL + m-bounded set creation, an equiva-
lent program in OBQL + qualifying abstr <,,, can be obtained by replacing each
statement of the form

KCe:{x,,xk)l -+ @(xl,xJ (k f m)
with the following statements. Variables Xi, z’, z, and x are of sort C, K’, K, and C,
respectively.

K’[e’:x,, e’:x,] e @(xl,xk).
abstr G m K [e”] -=z K’/e’ 1 I old(z’, z’);
e(z, x) e 3~’ : 1 old(z’, z’) A e”(z, z’) A e’(z’, x);
old(z’,z’) + z’ = z’

Note that at each execution of the above program fragment, new auxiliary K-objects
will be created, which are then discarded at the end by labeling them with old.4 This
reuse of the same auxiliary class name K’ is important if the statement simulated by
the program fragment would occur in the body of a while-loop. (This technique, which
is frequently used in this paper, has been used in the literature earlier, e.g., [3, Theorem
2.4.11.)

(2) = (3): Given a program in OBQL + qualifying abstr G ,,,, an equivalent pro-
gram in OBQL + abstr G m can be obtained by replacing each statement of the form

abstr $ m K Gel = C/p I @Cd
with the following statements.

abstr c m K’ [e’] + C/p;
K[a : z’] t 1 old(z’, z’) A 3x : e’(z’, x) A G(x);
e(z, x) t 3z’ : i old(z’, z’) A a(z, z’) A e’(z’, x) A Q(x);

old@‘, z’) e z’ = z’

4 Objects are labeled old by attaching a loop-edge to them, labeled old. This explains the “binary” format of
the last statement, which may seem awkward at first sight.

58 J. Van den Busschr, D. Van Cucht / Theoretical Computer Science 149 1199.5) 49-66

(3) 3 (4): Given a program in OBQL + abstr G m, an equivalent program in
OBQL + powerset G m can be obtained by replacing each statement of the form

abstr ,,,,K[e] e C/p

with the following statements. For simplicity, we assume that in the database scheme,
there is only one edge labeled p leaving C, say (C, p, B). Variable y is of sort B.

powerset GmK’[e’] = B;
e”(z’, x) -+ 1 old(z’, z’) A Vy : p(x, y) ++ e’(z’, y);
K(a : z’) e i old(z’, z’) A 3x: e”(z’, x);
e(z, x) t= 32’ : 1 okf(z’, z’) A a(z, z’) A e”(z’, x);
old(z’, z’) c= z’ = z’

(4) 5 (5). By induction on m. The case m = 0 is trivial. So assume m > 0. Note that
a statement of the form

powerset.,K[e] c= C

is equivalent to the two statements

powerset G n - 1 K [e] -+ C;

powerset, K [e] t C

By the induction hypothesis, it now suffices to show that given a program in
OBQL + powerset, - 1, there is an equivalent program in OBQL + powerset,. This
can be obtained by replacing each statement of the form

powerset,- 1 K[e] = C

with the following statements. Variable x’ is of sort C’.

C’ [] -+ true;
dummy(x’,x’) -== 1old(x',x');

C’[a:x] -=x=x;
powerset, K’[e’] I= C’;
K[b:z’] =iold(z’,z’)r\Vx’:e’(z’,x’) + iold(x’,x’)r\

3x’ : dummy(x’, x’) A e’(z’, x’);
e(z, x) -+ 32’ : e i old(z’, z’) A b(z, 2’) A 3x’ : e’(z’, x’) A a(~‘, x);
old(x’, x’) -2= x’ = x’;
old(z’,z’) -c= z’ = z’

(5) = (1): Given a program in OBQL + powerset,, an equivalent program in
OBQL + m-bounded set creation can be obtained by replacing each statement of the
form

powerset, K [e] c; C

with the statement

KCe: {xl,xm}l e /j Xi # Xj. 0
Ig,<,<m

J. Van den Bussche, D. Van Gucht i Theoretical Computer Science 149 (1995) 49-66 59

4. A hierarchy result

In [20,19], it was shown that the abstraction operation is not expressible in OBQL.
This was done by proving that for m 3 2, powerset, is not expressible in OBQL. In
this section. we will show:

Theorem 4.1. Except for m = 0 and m = 3, powerset,, 1 is not expressible in
OBQL + powerset,.

The operations powerset, and powerset r are merely special cases of OBQL’s
standard object creation, so OBQL + powerset G , is equivalent to OBQL, settling the
case m = 0. We next settle the case m = 3.

Proposition 4.2. OBQL + powerset, is equivalent to OBQL + powerset,.

Proof. The idea of the proof is to simulate a 4-set, say (1,2,3,4}, with the 3-bounded
object:

Note that this technique is ad hoc: it does not generalize. It is mere coincidence that
there are less than four ways to split a set of four elements in two equal-sized parts.’

Formally, given a program in OBQL + powerset,, an equivalent program in
OBQL + powerset, can be obtained by replacing each statement of the form

powerset, K [e] = C

with the following statements:

powerset, K’ [a] t C;
K”[b:{z;,z;}] e ~i=1,2iold(z~,z~) ~iJx:a(z,,x) A a(zz,x);
K[e’:(z;‘,z’;,z’;}] t /ji=1,2,3iold(z:l,z~) A

Ai=;+;=: Vx:(3z’:b(zy,z’) A a(z’,x))ct(W:b(z;,z’) A a(z’,x));

e(z, x) t= 32” : C= i old(z”, z”) A 32’ : e’(z, z”) A b(z”, z’) A a(z’, x)
old(z’, z’) c= ZI = z’;
old(z”,z”) e= z” = z” 0

We now embark on the proof of Theorem 4.1 for m # 0,3. Along the way, we will
prove a number of lemmas which we think are interesting in their own right.

’ In particular, it is readily verified that l/2 (Jz), the number of ways to split a set of some even size m in two
equal-sized parts, is strictly larger than m if m > 4. A similar situation holds for sets of odd size. (For
example, the number of ways to split a set of some odd size m in a part of size [m/21 and a part of size Lm/2 J
is (LmTZl) which is at least m if 111 z 1.)

60 J.Van den Bussche, D. Van Gucht / Theoretical Computer Science 149 (1995) 49-66

As we already mentioned, the theorem is already known for m = 1. So, we will
assumefor the remainder ofthis section that m B 2. This allows us to make a simplifica-
tion. Denote by OBQL- the language of all OBQL programs that do not use object
creation statements. Recall that OBQL + powerset, is equivalent to OBQL + m-
bounded set creation. We have:

Lemma 4.3. OBQL- + m-bounded set creation is equivalent to OBQL + m-bounded
set creation.

Proof. Given a program in OBQL + m-bounded set creation, an equivalent program
in OBQL- + m-bounded set creation can be obtained by replacing each object
creation statement, of the form

K[el :x1 ,..., ek:xk] e @(xl ,..., xk),

as follows.
If k = 0, then @ is either true or false. If false, then the statement is simply deleted. If

true, it can be replaced with

KCe:{}I * @,
for some arbitrary e.

If k = 1, then the statement can be replaced with

K[el: ix1 >I * @(XI).
If k = 2, then - inspired by Kuratowski’s ordered pair construction [xi, xz] =

{{xi }, (x1,x2}} - the statement can be replaced with the following statements.
Variables zi, z2 and z are of sort Ki, K2 and K, respectively.

K[e’:{z,,z,}] e lold(z,,z,) A lold(z,,z,)~
3xl,x2:4zl,xl) * 4z2,x1) * +2,x2) * @h,xd;

el(z,xl) -+ 3z1:~old(z,,zl) A e’(z,zl) A e(zl,xl);
e2(z, x2) -S 3z2 : 1 old(z2, z2) A e’(z, z2) A e(zz, x,);
old(z,,z,) -Z z1 = zl;
old(z,,z2) G= z2 = z2

If k > 2, then - inspired by the well-known tuple construction [xi, . . ., x,J =
[IXl,CXZ> xJ] - the statement can be replaced with the following statements:

K’[e2:x2, ek:xk] e 3x1:@(x1,x2,...,xk);
K[e,:x,,e:z’] t 3x2,...,xk:@(x1 , . . . , xk) A 1 old(z’, z’) A /j\:=l e;(z’, xi);
ez(z, x2) -=s 32’ : 1 old(z’, z’) A e2(z’, x2);

ek(z, xk) e= 32’ : 1 old(z’, z’) A ek(z, z’) A ek(z’, xk);
old(z’, z’) -e 2’ = z’

J. Van den Bussche, D. Van Gucht / Theoretical Computer Science 149 (199.5) 49-66 61

This replacement is repeated until we are reduced to the case k = 2. 0

The proof of Theorem 4.1 will be based on the insight that the objects, created
by a program in OBQL + powerset, when executed on an input instance I,
can be identified with m-bounded hereditarily finite sets with ur-elements in dam(I),
where dam(1) is the set of all objects occurring in I. This identification is formalized
next,

Definition 4.4. Let U be a set, the elements of which are called ur-elements. Then
HF,(U), the collection of m-bounded hereditarily$nite sets with ur-elements in U, is the
smallest set satisfying the following two conditions:

1. U c HF,(U);
2. for any subset X of HF,(U) having cardinality at most m, X E HF,(U).

Let P be a program in OBQL + powerset,. Then P is equivalent to a program Q in
OBQL- + m-bounded set creation. Let I be an instance to which Q is applied. Let
J be the result of this application. We can number the class and property names that
are used in Q in some arbitrary but fixed way; let #C or #p denote the unique
number thus assigned to class name C or property name p. We can also number the
consecutive statement executions during the application of Q on I. Now let o be an
object in J. We identify o with a number 6 of HF,(dom(l)) in an inductive manner, as
follows:

Definition 4.5. (a) If o is in I, then o”:= o.
(b) If o is not in I, then o must have been created during the application of Q on I,

say in the Lth statement execution. Let the statement be of the form

K[e: {x1, . . . ,%)I -c= w1,...,%J
Then o is created in function of a set of objects {oi , . . . ,oJ in J, and we define

6:= [t,[#K,[#e,{6, ,..., &j]]],

with the understanding that natural numbers are encoded as sets in the following
straightforward way: 0 z 0, n + 1 z {n}, and that ordered pairs are encoded as sets in
the usual Kuratowski way, [a, b] z {{a}, {a, b}}.

In the sequel, we will no longer make a formal distinction between o and d.
If I and J are as above, then by the identification of objects in J and elements of

HF,(dom(Z)), every permutation f of the objects of 1 can be canonically extended to
a permutation of the objects of J. We can then observe that OBQL + powerset, is
BP-bounded in the sense of [6]:

Lemma 4.6. Zff is an automorphism of I, i.e., f is a permutation of dam(Z) preserving
labels and edges, then f is also an automorphism of J.

62 J.Van den Bussche. D. Van Gucht i Theoretical Computer Science 149 (1995) 49-66

Proof. It suffices to prove the lemma for the simple case where J is obtained from I by
application of a single edge addition or m-bounded set addition. Indeed, the lemma
will then follow in general by repeated application of this simple case. First, assume
J is obtained from I by edge addition:

It is well known that the relational calculus is BP-bounded. Therefore, if f is an
automorphism of I, thenfis also an automorphism of the binary relation over dam(Z)
defined by @ on I, and hence preserves the edges added by the edge addition. Next,
assume J is obtained from I by m-bounded set creation:

K[e: {x 1,Xk}] c= @(Xl) . ..) Xk) (k d m).

Any automorphismf of I is also an automorphism of the k-ary relation over dam(I)
defined by @ on I. Hence, if an object o is created in function of the set {ol, . . . , ok},
then @(f(oI), . . . ,f(o,J) will be true in I. Therefore, also the objectf(o) will be created,
in function of the set {f(o,), . . .,f(o,J}. This completes the proof. 0

We are now ready to present two key lemmas, from which Theorem 4.1 will follow
immediately. The lemmas are based upon the following auxiliary notion:

Definition 4.7. The base of a hereditarily finite set o, denoted by B(o), is the set of
ur-elements appearing in 0.

Lemma 4.8. IA for some arbitrarily but jixed m’ > 2, power-set,, is expressible in
OBQL + powerset, then there exists an m-bounded hereditarily finite set, with base
{l,... ,m’}, which is fixed by every permutation of its base.

Proof. Let S be the scheme consisting of one single class name C and no edges. For
any natural number n, let I, be the instance over S with dom(Z,) = { 1, . . . , n}. So, I, is
a discrete graph consisting of n isolated nodes. As a consequence, every permutation
of { 1, . . , n} is an automorphism of I,,

Assume powerset,, is expressible in OBQL- + m-bounded set creation. Then there
exists a program Q in the language which, when applied to I,, is equivalent to the
application of the ml-restricted powerset operation

powerset,, K [e] + C

to I,. Let J, be the results of applying Q to I,. So, there is a one-to-one correspondence
between the m’-subsets 2 of { 1, . . . , n> and the K-labeled objects oz of J,,, such that oz is
linked precisely to the elements of Z by e-edges. Furthermore, every object in J, can be
identified with a member of HF,({ 1, . . . , n}), and by Lemma 4.6, every permutation of
{l,... , n} is an automorphism of J,.

LetusfocusonZ = Cl,..., m’}; to keep notation simple, we will write oz simply as o.
Let f be an arbitrarily permutation of { 1, H) such that f(2) = Z. Since f is an

J. Van den Bussche. D. Van Gucht / Theoretical Computer Science I49 (1995} 49-66 63

automorphism of J,, we have an edge (f(o), e,f(‘)) ‘ff 1 1 we have an edge (0, e, i), i.e., iff
i E Z. Consequently, sincef(Z) = Z, the set represented byf(o) through its e-edges is
Z. So, necessarily,f(o) = o by the definition of J,. We have thus observed that:

Every permutation f such that f (Z) = Zjxes o.

Analogously, we can make the observation that also conversely:

Euery permutation f such that f(o) = o satisfies f(Z) = Z.

As a result, if it were the case that B(o) = Z> then o itself is the desired m-bounded
hereditarily finite set.

We can therefore concentrate on the possibility that B(o) # Z. We distinguish the
following cases:

1. Z is a strict subset of B(o). We consider two possibilities:
(4 JW) f CL..., n>. Then we can choose i E B(o) - Z and j E { 1, PI} - B(o).

Clearly,j $ Z. But now consider the transpositionf= (ij). Clearly,f(o) # o. However,
sincef(Z) = Z,f(o) must equal o, which is in contradiction with our earlier observa-
tions. So this case cannot occur.

(b) B(o) = (1, n). Replace each occurrence of an element of Z in o by 8; denote
the resulting hereditarily finite set by 0’. Then o’ is still m-bounded, and
B(0’) = {m’ + 1, n}. Since each permutation which is the identity on Z fixes o, each
permutation of {m’ + 1, n) fixes 0’. Hence, if we put n = 2m’ and define the
bijection $ from (m’ + 1, 2m’) to {l, m’} by $(i):= i - m’, we obtain I/I(O) as the
desired m-bounded hereditarily finite set with base Z which is fixed by each permuta-
tion of Z.

2. 2 is not a subset of B(o), and Z n B(o) # 8. Then we can choose i E Z - B(o) and
j E Z n B(o). As in case (la) we now arrive at a contradiction. So, this case cannot
occur.

3. Z n B(o) = 0. Again we consider two possibilities:
(a) Z u B(o) # (1, . . . , n}. Then we can choose i E (1,. .., n) - (Z u B(o)) and j E Z.

The transpositionf = (ij) clearly satisfiesf(o) = o andf(Z) # Z, which is in contradic-
tion with our earlier observations. So this case cannot occur.

(b) So, necessarily, Z u B(o) = (1, . . . , n}. Then B(o) = {m’ + 1, n}. Each permu-
tation which leaves Z invariant also leaves o invariant. So, in particular, each
permutation of {m’ + 1, . . . , a) leaves o invariant. Hence, with n = 2m’ and $ as in case
(lb), we obtain $(o) as the desired hereditarily finite set. 0

Theorem 4.1 (for m # 3) will now follow if we can prove that no m-bounded
hereditarily finite set exists having base (1, . . , m + l} which is fixed by each permuta-
tion of its base. In fact, we will prove a stronger statement in Lemma 4.9. To this end,
we will need to recall some basic facts of group theory.

For a set X, denote the group of all permutations of X by Sx, and denote the group
of all even permutations of X by Ax. If (X 1 = r, then Sx and Ax are also written as S,

64 J. Van den Bussche, D. Van Gucht / Theorrtical Computer Science 149 (199.5) 49-66

and A,. If r 3 2 then (A,1 = r!/2. Note that any permutation of a set X works also as
a permutation of the hereditarily finite sets with ur-elements in X in the canonical
manner.

For any group G working on a set X, the set (g(x) 1 g E G} is denoted by G(x), and
the subgroup {g E G (g(x) = x} of G is denoted by G,. By Lagrange’s theorem,
IGW = IGI/IGx/.

Let 4 : G + H be a group homomorphism. Then the kernel Ker(4)=
{gE GIG) = i&j is a normal subgroup of G. Furthermore, 4 is injective iff
Ker($) = (id,}. For r # 4, A, is simple, i.e., has no nontrivial normal subgroups.

We are now ready for:

Lemma 4.9. If m # 4, then there is no (m - l)-bounded hereditarilyfinite set whose base
is (1, m} and which is jixed by A,,,.

Proof. Define the depth of a hereditarily finite set as its depth when viewed as a tree in
the obvious way. We will prove by induction on n that for each ~1, there is no
m-bounded hereditarily finite set of depth n with base { 1, . . , m} which is fixed by A,.
The basis of the induction, n = 0, is trivial. Now let o = {or, ok), k < m, be an
(m - I)-bounded hereditarily finite set of depth II > 0 with base Z = { 1, m>. For
the sake of contradiction, assume that o is fixed by A,.

Note that for each oi E o, B(oi) G B(o) = Z. First, we show that, actually,
B(oi) = Z. For, suppose IB(oi)l = G < m. Without loss of generality we may assume
B(Oi) # 8 and thus / > 0. Since for every fe A,, f(oi) E 0, we have 101 2 /Am(o
Clearly, lAm(3 I A,(B(oi))l. The latter equals I A,I/I(A,),,,,I. Every member
of 64tJB,o,, can be written as a product Fiji, wheref, is in S,,,,, and f2 is in S, _ B(o,)r
such that either both factors are even, or both factors are odd. So,
I(Am)B(,,,jl = L!(m - e)!/2, by straightforward calculations. Hence, k = 101 > (y), which
is at least m by our assumptions on d. But, from the outset, k < m; a contradiction.
Hence, B(oi) = Z.

Since A, fixes o, eachfe A,,, induces a permutation on the elements of o. Since o has
k elements, this yields a natural homomorphism 4: A, + Sk. Ker(4) consists of those
f6 A,,, such thatf(oi) = oi for each oi E o. Since Ker(4) is a normal subgroup of A,, the
former must be trivial, by the simplicity of the latter. So, there are two possibilities:

(1) Ker($) = {id). But then 4 is injective, which would imply that IA,,,1 6 I Sk 1,
which is in contradiction with k -C m.

(2) Ker(4) = A,,,. But then each Oi E o, of which we know that B(oi) = Z, would be
fixed by A,,,, which is in contradiction with the induction hypothesis.

Hence, o cannot be fixed by A,, as had to be shown. 0

Note how the above proof relies on the simplicity of A, for r # 4. A4 is not simple:
a nontrivial normal subgroup of A4 is the group generated by the three permutations
(1 2)(3 4), (1 3)(2 4), and (1 4)(2 3). Interestingly, these generators have precisely

the same structure as the simulation of 4-sets by 3-sets exhibited in the proof of
Proposition 4.2.

5. Discussion

Let us conclude by mentioning an interesting open problem. Suppose the known
cardinality bound on the set values appearing in an application is m. Without
supplying the full functionality of m-bounded abstraction (or the equivalent m-
bounded set creation) in the query language, our results indicate that duplicate-free
representations will not be achievable in general, i.e., the generation of duplicates will
sometimes be unavoidable.

However, one might allow a limited number of duplicates, at the gain of not having
to implement abstraction. For example, not having abstraction, one can represent
m-sets by m-ary tuples (which can be created using OBQL’s standard object creation),
achieving a duplication factor of at most m!, which is a limit independent of the
particular database instance. This is actually an optimal representation in general,
since it can be shown that in the absence of abstraction, in the worst case, as many as
m! duplicates per m-set will be unavoidable. (This follows from the proof in [19] that
powerset, is not expressible in OBQL.)

More subtly, one might provide in the query language, not the complete m-bounded
set creation operation, but a more efficient k-bounded one, where k < m. For example,
if m = 3 and k = 2, one can represent a 3-set { 1,2: 3) as a pair [I, {2,3)]. In the worst
case, this will yield two other duplicate representations [2,(1,3}] and [3,{1,2j].
Hence, the duplication factor is now reduced to 3. Again, it can be shown that this
representation is optimal: in the language OBQL + abstr I,,- 1, m duplicates per m-set
are unavoidable in general.

This suggests a trade-off between the processing time needed to eliminate duplicates
(as provided by abstraction), and the maximum number of duplicates that one can
“live with”. It would be interesting to develop a cost model to study this trade-off in
more detail. (A cost model for duplicate tuple values was described in [5].) Doing so
will in particular require the solution of the following problem: in the language
OBQL + abst&, with k < m, how many duplicates per m-set are unavoidable in the
worst case? In the preceding paragraphs, we answered this question for k = 1 and
k = m - 1 but the general solution remains open.

Acknowledgements

The first author wishes to thank Michel Van den Bergh for some inspiring
discussions in the initial stages of this investigation. We are indebted to Darrell Haile
for pointing out the use of the natural group homomorphism 4 in the proof of Lemma
4.9. Marc Gyssens, Jan Paredaens and Inge Thyssens gave useful comments on

66 J. Van den Bussche, D. Van Gucht / Tkoretiwi Computer Science 149 (199.5~ 49-66

a previous version of this paper. We also thank an anonymous referee for correcting
a few errors in the submitted manuscript.

References

[l] S. Abiteboul, P. Fischer and H.-J. Schek, eds., Nested Relations and Complex Objects in Datubases,
Lecture Notes in Computer Science, Vol. 361 (Springer, Berlin, 1989).

[2] S. Abiteboul and P. Kanellakis, Object identity as a query language primitive, in: [7], pp. 159 173.
[3] S. Abiteboul and V. Vianu, Procedural languages for database queries and updates, J. Comput. Sysrem

Sci. 41 (1990) 181-229.
[4] C. Beeri, A formal approach to object-oriented databases, Data Know/edge Engng. 5 (1990) 353-382.
[S] D. Bitton and D. Dewitt, Duplicate record elimination in large data files, ACM Truns. Datahuse

Sysrems 8 (1983) 255-265.
[6] A. Chandra and D. Harel, Computable queries for relational database systems. J. Comput. System Sci.

21 (1980) 156-178.
[7] J. Clifford, B. Lindsay and D. Maier, eds., Proc. 1989 ACM SIGMOD fnternar. Cm7f on the

Management of Data, SIGMOD Record. Vol 18:2 (ACM, New York, 1989).
[S] S. Grumbach and V. Vianu, Playing games with objects, in: S. Abiteboul and P.C. Kanellakis, eds..

ICDT’90, Lecture Notes in Computer Science, Vol. 470 (Springer, Berlin, 1990)25%38.
[9] M. Gyssens, J. Paredaens, J. Van den Bussche and D. Van Gucht. A graph-oriented object database

model. fEEE Trans. Knowledge Data Eng. 6(4) (1944) 572-586.
[lo] R. Hull and R. King, Semantic database modeling: survey, applications, and research issues, ACM

Compur. Surueq;s 19 (1987) 201-260.
[ll] R. Hull and J. Su, On accessing object-oriented databases: expressive power, complexity, and

restrictions, in: [7]. pp. 147-158.
1121 R. Hull and J. Su, On the expressive power of database queries with intermediate types, J. Cornput.

System Sci. 43 (1991) 219-237.
[13] R. Hull and M. Yoshikawa, ILOG: declarative creation and manipulation of object identifiers, m: D.

McLeod, R. Sacks-Davis and H. Schek. eds., Proc. 16th Internat. Conf: on Very Large Data Bases
(Morgan Kaufmann, Los Altos, CA, 1990).

[14] M. Kifer and J. Wu, A logic for programming with complex objects, J. Comput. Sysrem %i. 47 (19931
77-120.

[15] W. Kim and F.H. Lochovsky, eds., Object-Oriented Concepts, Databases, und Applicafions, Frontier
Series (ACM, Addison-Wesley, 1989).

[16] G. Kuper and M. Vardi, The logical data model, ACM Trans. Database Systems 18(3)(1993) 379-413.
[17] C. Ltcluse, P. Richard and F. Velez, 02, an object-oriented data model, in: H. Boral and P.A. Larson.

eds., 1988 Proc. SIGMOD Internat. Conf: on Manugemenr qf Data (ACM, New York, 1988).
1181 D. Shipman, The functional data model and the data language DAPLEX, 4C.M Trans. Durabase

Systems 16 (10) (1981) 14G173.
1191 J. Van den Bussche and J. Paredaens, The expressive power of complex values in object-based data

models, Inform. and Comput. (1995). to appear; full version of [20].
[20] J. Van den Bussche and J. Paredaens. The expressive power of structured values in pure OODB’s. in:

Proc. 10th ACM Symp. on Principles of D&abase Systems (ACM, New York. 1991) 291-299.
[Zl] J. Van den Bussche and D. Van Gucht, A hierarchy of faithful set creation in pure OODBs. in: J.

Biskup and R. Hull, eds., Database Theory - ICDT’9?, Lecture Notes in Computer Science, Vol. 646
(Springer, Berlin, 1992) 326340.

