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A uniform ground-state three-dimensional Fermi gas with short-range repulsive pairwise interaction is under
consideration. Its kinetic and interaction energies are calculated up to the second order of the expansion in the
gas parameter. Similar to recent results for an interacting Bose gas, the quantities in question are found to
depend on the pairwise interaction through two characteristic lengths: the former,a, is thes-wave scattering
length, and the latter,b, is related toa by b=a−ms]a/]md, wherem stands for the fermion mass. To control
the results, we proceed in two independent ways. The first involves the Hellmann-Feynman theorem applied to
derive the kinetic and interaction energies from the total-energy expansion in the gas parameter first found by
Huang and Yang. The second way operates with in-medium pair wave functions and allows one to calculate the
quantities of interest “from scratch.” The results of the present investigation, taken together with those of the
recent consideration of a dilute Bose gas, make it possible to conclude that the pairwise interaction in a
quantum gas has an essential and nontrivial effect on the kinetic energy, which is not the case for a classical
many-particle system.
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I. INTRODUCTION

Recent experiments with magnetically trapped alkali at-
oms have significantly renewed interest in the properties of
quantum gases. As is known, the initial series of these ex-
periments concerned a Bose gas(87Rb [1], 23Na [2], and7Li
[3]), which motivated extensive reconsiderations and some
new investigations in the field of Bose-Einstein condensa-
tion. The derived theoretical and experimental results not
only confirmed conclusions made more than 40 years ago
but also extended the understanding of boson physics. In
particular, the Gross-Pitaevskii equation developed in the
1960s[4] was found to provide a good agreement with ex-
perimental data on the density profiles of a trapped Bose gas
[5]. The exact derivation of the Gross-Pitaevskii energy func-
tional [6] can be highlighted among recent theoretical
achievements. As for experimental innovations, the interfer-
ence pattern of two expanding Bose condensates[7,8] is of
interest(for theoretical details see the papers Ref.[9] and
reviews in[10,11]).

The first communications about experiments with trapped
fermionic atoms appeared in the literature about five years
ago [12] when a temperature near 0.4Tf was claimed to be
reached for trapped6Li atoms, whereTf is the temperature
below which the Fermi statistics is of importance. Today
trapped atoms of the fermionic isotope40K can be cooled
down to temperatures 0.17Tf [13] and 0.08Tf [14]. So the
regime of the degenerate Fermi gas is already under experi-
mental study. In view of this fact, reconsideration of the ba-
sic aspects of the theory of an imperfect Fermi gas looks to
be of importance.

In the present paper a uniform ground-state three-
dimensional(3D) Fermi gas with a short-range repulsive

pairwise interaction is investigated. Why could the situation
of a repulsive Fermi gas be of interest while thes-wave
scattering lengtha is negative for6Li [15] and, most likely,
for 40K [16]? The point is that the magnetic-field Fesbasch
resonances provide experimentalists with a good means of
governing thes-wave scattering length of the atom-with-
atom interaction[13,14,17]. Indeed, imposing a uniform
magnetic field significantly changes this characteristic length
in such a way that effectively attractive(a is negative) and
repulsive (a is positive) regimes are attainable[13,14,17].
Thus, experiments with trapped fermionic atoms of6Li and
40K offer an exciting possibility to explore an imperfect
Fermi gas in both the normal(see, for example, Ref.[17])
and superfluid(see the recent paper in[14]) states.

The particular problem to be investigated here concerns
the kineticEkin and interactionEint energies of an interacting
Fermi gas. This problem is connected with a more general
question as to whether or not the pairwise interaction has an
effect on the kinetic energy of a quantum gas. It is well
known that for a classical imperfect gas the pairwise poten-
tial does not make any contribution to the kinetic energy
[18]. As for a quantum gas, common expectations regarding
Ekin are based on the pseudopotential approach. This ap-
proach suggests that the kinetic energy is not practically sen-
sitive to the pairwise interaction in a quantum gas. To go into
detail, the total energy of a ground-state uniform 3D Bose
gas, taken in the leading order of the expansion in the gas
parameter, coincides with the corresponding interaction en-
ergy when calculating with the pseudopotential(see Refs.
[10,19,20]). For a ground-state uniform 3D Fermi gas with
repulsive pairwise interaction the kinetic energy found with
the pseudopotential does not include terms coming from the
pairwise interaction in both the leading and next-to-leading
orders of the expansion in the gas parameter(see Ref.[21]
and Eqs.(24) and (25) below). Hence, concerning the influ-
ence of the pairwise potential on the kinetic energy, the situ-
ation in a quantum gas, from the “pseudopotential” point of
view, is the same as in a classical gas. However, recently a
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thorough investigation[19,20] has demonstrated that this is
not the case, and the pairwise interaction has a strong and
nontrivial effect on the kinetic energy of an interacting Bose
gas. The aim of the present paper is to show the same for an
imperfect Fermi gas.

The devision of the total energy in the kinetic and inter-
action energies can seem formal from the “thermodynamic”
point of view (when keeping in mind only thermodynamic
quantities). However, this division is rather natural. The
point is that the kinetic energy is proportional to the second
moment of the momentum distribution. In principle, this dis-
tribution can be measured directly. On the contrary, the total
and interaction energies are only inferred from experimental
data by means of model-dependent interpretations. To get
information about the momentum distribution of a trapped
quantum gas, the so-called time-of-flight expansion images
are investigated[1,2]. They are used to establish the Bose-
Einstein condensation and determine the system temperature.
Hence, it seems natural to try the same experimental tech-
nique in order to find the kinetic energy of a trapped quan-
tum gas. However, some serious problems can be met in this
way. In particular, to extract the kinetic energy of the ground-
state quantum gas, one needs to remove the contribution of
thermal excitations. This is a more complicated problem than
observations of the bimodal character of the velocity distri-
bution[2] when establishing the Bose-Einstein condensation.
Another point is that to exclude any change in the momen-
tum distribution during the expansion, images corresponding
to sufficiently small times of flight should be involved. In
this case the resolution problem can prevent us from getting
data with a reasonable accuracy. Thus, any measurements of
the two-point Green’s function can be helpful in the situation
of interest.

Note that an important argument in favor of investigations
of the kinetic energy of a quantum gas is an interesting in-
terplay between the pairwise interaction and momentum dis-
tribution in a quantum many-body system. For example, the
present work and papers Refs.[19,20] show that vapors of
alkali-metal atoms driven by a magnetic field to the regime
of a nearly zero scattering length[22,23] acquire a very un-
usual feature never met before. Indeed, the total energy in
this situation is equal(or practically equal) to that of the
corresponding free quantum gas. However, this is not the
case for the kinetic and interaction energies: the contribu-
tions of pairwise interaction to these quantities are the same
(or practically the same) in absolute value but have opposite
signs. Other interesting examples of the interplay between
the pairwise interaction and kinetic energy can be found in
Sec. III and in Ref.[24].

This paper is organized as follows. In Sec. II the kinetic
and interaction energies of a ground-state uniform Fermi gas
with short-range repulsive pairwise interaction are calculated
via the Hellmann-Feynman theorem, starting from the low-
density expansion for the total energy first found by Huang
and Yang[25]. An important point of these calculations is the
use of the auxiliary variational theorem for the scattering
length proved in Refs.[19,20]. Section III presents a consid-
eration ofEkin andEint under various regimes: from weak to
strong coupling. This consideration is interesting itself but is
also needed to discuss the failure of the pseudopotential ap-

proach to deal withEkin and Eint. The derivation of the ki-
netic and interaction energies given in Sec. II is rather for-
mal, which can prevent a reader from understanding the
underlying physics in detail. This is why in Sec. IV the lead-
ing order of the expansion in the gas parameter forEint is
calculated in a more physically sound way. It is based on a
method developed in Refs.[19,20] and operating with in-
medium pair wave functions. An advantage of this approach
is that it allows for the calculation ofEkin and Eint “from
scratch,” without using the result of Huang and Yang for the
total energy. Section V shows how the kinetic energy of a
Fermi gas can be calculated by means of pair wave func-
tions. Here an important relation between the quantum-
particle momentum distribution and in-medium pair wave
functions is discussed. Note that exactly this relation is a
conductor of the pairwise-interaction influence on the kinetic
energy of a quantum gas. In addition, some interesting links
to the Bethe-Goldstone equation[26] and Galitskii effective
wave functions[27,28] are considered in Sec. V.

II. HELLMANN-FEYNMAN THEOREM

Let us consider the system ofN identical fermions placed
in a box with the volumeV and ruled by the Hamiltonian

Ĥ = − o
i

"2

2m
¹i

2 + o
i. j

Vsur i − r jud, s1d

with the pairwise interactionVsrd=gFsrd, whereg.0 is the
coupling constant andFsrd.0 stands for the interaction ker-
nel [29]. The particle spin is assumed to bes=1/2 [30]. The

ground-state energy of the system in questionE=k0uĤu0l
obeys the relation

dE = k0udĤu0l, s2d

which is often called the Hellmann-Feynman theorem,dE

anddĤ being infinitesimal changes ofE andĤ [for example,
see the proof of Eq.(2) in Ref. [31]]. An advantage of this
theorem is that it yields important relations connecting the
total ground-state energyE with the kineticEkin and interac-
tion Eint energies. These relations read

− m
]E

]m
=K0U− o

i

"2

2m
¹i

2U0L = Ekin, s3d

g
]E

]g
= K0Uo

i. j

Vsur i − r judU0L = Eint. s4d

If the dependence of the ground-state energy on the coupling
constant and particle mass were known explicitly, one would
readily be able to calculateEkin andEint via Eqs.(3) and(4).
However, it is not the case as a rule.

In the situation of the repulsive Fermi gas the dependence
of the ground-state energy ong andm is indeed known only
implicitly. According to the familiar result of Huang and
Yang [25] found with the pseudopotential and then repro-
duced with the boundary collision expansion method[32]
and with the approach of the Green’s functions[27], the
energy per fermion«=E/N is of the form
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« =
3"2kF

2

10m
F1 +

10

9p
kFa +

4

21p2s11 − 2 ln 2dkF
2a2G , s5d

which is accurate to the terms of orderkF
2a2. In Eq. (5), a

stands for thes-wave scattering length,kF is the Fermi wave
number given by

kF = s3p2nd1/3, s6d

wheren=N/V, and the thermodynamic limitN→`, V→`,
n=N/V→const is implied. Inserting Eq.(5) in Eqs.(3) and
(4), one can arrive at

«kin = « −
3"2kF

2

10a

]a

]m
F 10

9p
kFa +

8

21p2s11 − 2 ln 2dkF
2 a2G ,

s7d

«int =
3"2kF

2

10ma
g

]a

]g
F 10

9p
kFa +

8

21p2s11 − 2 ln 2dkF
2 a2G , s8d

where«kin=Ekin/N and«int=Eint /N. Hence, to derive the ki-
netic and interaction energies from Eq.(5) with the help of
the Hellmann-Feynman theorem, we should have an idea
concerning the derivatives ofa with respect to the particle
massm and coupling constantg. As E=Ekin+Eint, then from
Eqs.(7) and (8) it follows that

m]a/]m= g]a/]g. s9d

This property of the derivatives becomes clear if we remind
that in the 3D case thes-wave scattering length is given by

a =
mg

4p "2 E d3rwsrdFsrd, s10d

where wsrd obeys the the two-body Schrödinger equation
taken in the center-off-mass frame and at the zero energy:

− s"2/mgd¹2wsrd + Fsrdwsrd = 0. s11d

The pair wave functionwsrd represents the zero-momentum
scattering state so thatwsrd→1 whenr →`. The scattering
part of the pair wave function given by the definitionwsrd
=1+csrd is characterized by the asymptotic behavior

csrd → − a/r sr → `d. s12d

As is seen from Eqs.(10) and (11), the scattering length
depends on the particle mass and coupling constant through
the productmg. Hence, to use Eqs.(7) and (8), we should
know the derivative ofa with respect tomg.

This derivative can be found with a variational theorem
proved in Refs.[19,20]. After small algebra the result of this
theorem can be rewritten as

da =
dsmgd
4p"2 E d3rw2srdFsrd, s13d

where, recallwsrd is a real quantity. In view of importance of
this theorem, let us make some explaining remarks concern-
ing its proof. The key point here is to represent Eq.(10) in
the form

a =
mg

4p"2 E d3rw2srdFsrd +
1

4p
E d3r u ¹ csrdu2, s14d

which follows from Eqs. (11) and (12) and ¹sc¹cd
= ¹c¹c+c¹2c. Varying the left- and right-hand sides of
Eq. (14) with respect tomg, one can find thatdw does not
make any contribution toda due to Eq.(11). From Eq.(13)
one gets

m]a/]m= g]a/]g = a − b, s15d

where the additional characteristic lengthb.0 is of the form

b =
1

4p
E d3r u ¹ csrdu2. s16d

We emphasize thatb is always positive and cannot be repre-
sented as a function ofa in principle. It means that the ratio
b/a depends on a particular shape of the pairwise interaction.
Now we have everything at our disposal to calculate the
kinetic and interaction energies of the Fermi gas in the
ground state. Equations(7) and (8), taken in conjunction
with Eq. (15), result in the following expressions:

«kin =
3"2kF

2

10m
F1 +

10

9p
kFb +

4

21p2s11 − 2 ln 2dS2
b

a

− 1DkF
2 a2G , s17d

«int =
3"2kF

2

10m
S1 −

b

a
D 3 F 10

9p
kFa +

8

21p2s11 − 2 ln 2dkF
2 a2G ,

s18d

whose sum reproduces Eq.(5). From Eqs.(17) and(18) it is
seen that«kin and «int are given by the series expansions in
kFa but with the coefficients depending on the ratiob/a. The
derived results prove that the pairwise interaction influences
both the kinetic and interaction energies of a Fermi gas.

III. FROM WEAK TO STRONG COUPLING

To go in a more detail concerning Eqs.(17) and (18), let
us consider them in various regimes. We speak about weak
coupling when the interaction kernelFsrd is integrable and
the coupling constantg!1. The integrable kernel withg
@1 and a singular pairwise interaction like the hard-sphere
potential are related to the strong-coupling regime. The ex-
pansion parameterkFa involved in the expressions men-
tioned above corresponds to the dilution limitkF→0. In this
situation one is able to operate with Eq.(5) in the both weak-
and strong-coupling regimes. However, in the weak-coupling
casekFa can be small due toa~g!1, which makes it pos-
sible to rearrange Eq.(5) in such a way that to derive the
weak-coupling expansion for«.

In the weak-coupling regime the scattering lengtha is
given by the Born series:

a = a0 + a1 + ¯ , s19d

with
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a0 =
mg

4p"2Fsk = 0d, a1 = −
mg2

4p"2 E d3k

s2pd3

F2skd
2Tk

,

s20d

whereTk="2k2/ s2md and Fskd is the Fourier transform of
the interaction kernel(for more detail see Ref.[33]). Insert-
ing Eq. (19) in Eq. (5), one gets

« =
3"2kF

2

10m
F1 +

10

9p
kF a0 + S 10

9p
kFa1 +

4

21p2

3s11 − 2 ln 2dkF
2a0

2DG , s21d

where the terms of orderg3 are ignored. Now the depen-
dence of« on the particle mass and coupling constant is
known explicitly. Therefore, we can readily employ the
Hellmann-Feynman theorem that, taken together with Eq.
(21), yields

«kin =
3"2kF

2

10m
F1 −S 10

9p
kF a1 +

4

21p2s11 − 2 ln 2dkF
2 a0

2DG ,

s22d

«int =
3"2kF

2

10m
F 10

9p
kF a0 + S 20

9p
kF a1 +

8

21p2s11

− 2 ln 2dkF
2 a0

2DG . s23d

The major part of theg-dependent contribution to Eq.(21) is
related to«int, this part being proportional tog, while terms
of orderg2 appear in both«kin and«int. This meets the usual
expectations that the pairwise potential does not influence
practically the kinetic energy of a quantum gas(see, for ex-
ample, Refs.[10,15] and the discussion in the Introduction of
Ref. [19]). However, forg*1 the effect of the pairwise in-
teraction on«kin is rather curious and differs significantly
from that of the weak-coupling case. But before proceeding
to detailed examples, let us consider the pseudopotential pre-
dictions for«kin and«int being a part of the usual expectations
about the imperfect quantum gases.

The standard way of operating with the thermodynamics
of a dilute cold Fermi gas with a repulsive pairwise potential
is based on the pseudopotential procedure by Huang and
Yang [25]. The key point of this approach is that to go be-
yond the weak-coupling regime, one should replace the Fou-
rier transform of the pairwise interactionFskd by the quan-
tity 4p"2a/m in all the expressions related to the weak-
coupling approximation. In so doing, some singular integrals
appear. Indeed, substitutingt=4p"2a/m for Fskd in Eq.
(14), one gets a divergent quantitya1~ed3k/2Tk that makes
a contribution to the total energy of the system. To derive the
familiar result of Huang and Yang, the divergent term con-
nected witha1 should be removed, which is fulfilled via a
regularization procedure. In particular, this can be realized
by means of replacings4p"2a/mddsrd by s4p"2a/mddsrd
3s] /]rdr. Hence, to generalize Eqs.(21)–(23) to the case of
a realistic coupling, one should replacea0 by a and remove

all the terms depending ona1. This yields Eq.(5) and the
following pseudopotential predictions for the kinetic and in-
teraction energies:

«kin
spsd =

3"2kF
2

10m
F1 −

4

21p2s11 − 2 ln 2dkF
2 a2G , s24d

«int
spsd =

3"2kF
2

10m
F 10

9p
kF a +

8

21p2s11 − 2 ln 2dkF
2 a2G . s25d

Note that Eqs.(24) and (25) can be derived in another way,
as well. For example, the first term in Eq.(25) is reproduced
within the Hartree-Fock approximation used together with
the pseudopotential(see Ref.[25] and the next section of the
present paper). According to Eqs.(24) and (25) taken to the
leading and next-to-leading orders inkF a, the pairwise inter-
action makes a contribution only to the interaction energy,
which significantly differs from the correct results given by
Eqs. (17) and (18). Thus, the pseudopotential approach has
serious limitations due to a problem with the kinetic and
interaction energies.

Now let us consider Eqs.(17) and(18) beyond the weak-
coupling regime, the ratiob/a being of special interest. We
start with the simplified situation of the penetratable spheres
that is specified by the interaction kernel

Fsrd = HF if r ø r0,

0 if r . r0.
J s26d

Inserting Eq.(26) into Eq. (11), one can find

wsrd = H2A sinhsard/r if r ø r0,

1 − a/r if r . r0,
J s27d

wherea2=mg F /"2 sF.0d and A is a constant. Equation
(27) taken together with the usual boundary conditions atr
=r0 leads to

a = r0f1 − tanhsar0d/sar0dg s28d

and

b = r0F1 −
1

2
f3 tanhsar0d/sar0d − cschsar0dgG , s29d

where cschsxd=1/cosh2sxd. One can check that in the weak-
coupling regime, whenar0~g1/2→0, Eqs.(28) and(29) are
reduced to

a .
1

3
a2r0

3 ~ g, b .
2

15
a4r0

5 ~ g2, s30d

and, hence,b!a. This means that the next-to-leading term
in the expansion inkFa given by Eq.(5) is mostly the inter-
action energy, as was mentioned above. On the contrary, in
the strong-coupling regime, whenar0→`, Eqs. (28) and
(29) yield

a → r0, b → r0. s31d

Hence,b/a→1 wheng→ +`, and the ground-state energy
of a dilute Fermi gas with the hard-sphere interaction is
purely kinetic. Note that the same conclusion is valid for a
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dilute Bose gas of hard spheres[19,20]. This result can be
understood as follows. Any particle of the system with the
hard-sphere pairwise interaction moves in a region bounded
by the infinite walls due to the surrounding hard spheres.
This is why its energy and, hence, the total system energy are
purely kinetic in this case, which was first mentioned by Lieb
and Yngvason[34].

A more realistic example concerns a situation when the
interaction kernel combines a short-range repulsive sector
with a long-range attractive “tail.” It is usually considered
(see, e.g.,[35]) that for alkali atoms one can employ the
following approximation:

Fsrd = H + ` if r ø r0,

− C/r6 if r . r0.
J s32d

The scattering length for the pairwise-interaction kernel
given by Eq.(32) is of the form(see Ref.[36])

a/r0 = Î2xGs3/4dJ−1/4sxd/f2Gs5/4dJ1/4sxdg, s33d

wherex=rc
2/ s2r0

2d with rc=smgC/"2d1/4, whereasJnsxd and
Gszd denote the Bessel function and the Euler gamma func-
tion. We haveJnsxd.xn / f2nGs1+ndg for x→0 [37]. There-
fore, Eq.(33) reduces toa/ r0=1 in this limit. In other words,
when the attractive sector is “switched off,” we arrive at the
hard-sphere result discussed in the previous paragraph. For
x.0 the scattering length(33) is a decreasing function ofx
with the complicated pattern of behavior specified by the
infinite set of singular pointshx`

s1d ,x`
s2d ,x`

s3d , . . .j. These points
are the zeros ofJ1/4sxd so thata→−` whenx→x`

sid−0 and
a→ +` when x→x`

sid+0. In addition, there is also the infi-
nite sequence of the zeros of the scattering length
hx0

s1d ,x0
s2d ,x0

s3d , . . .j being the zeros ofJ−1/4sxd. Note that

x0
sid,x`

sid,x0
si+1d. Keeping in mind this information, we can

turn to the ratiob/a for the pair interaction kernel(32).
Equation(33) leads to

g]a/]g = DÎxhJ−1/4sxd/f2J1/4sxdg − Î2/fpJ1/4
2 sxdgj,

s34d

with D=r0Gs3/4d / f23/2Gs5/4dg. Note that to derive Eq.(34),
the useful formula

Jn+1sxdJ−nsxd + JnsxdJ−sn+1dsxd = − 2 sinspnd/spxd

should be applied[37]. Equation(34), taken in conjunction
with Eq. (15), yields

b/a = 3/4 + 1/fpÎ2J1/4sxdJ−1/4sxdg. s35d

As is seen from Eq.(35), in the limit x→0 we get the hard-
sphere resultb/a=1 (see Fig. 1). The quantityb (recall that
b is always positive) remains finite atx=x0

sid, while b→ +`

for x→x`
sid. In the latter situationb goes to infinity in such a

way thatb/ uau→ +` thoughuau→` for x→x`
sid, too. Hence,

x0
sid andx`

sid are both singular points ofb/a. Let us stress that
the zeros of the scattering length in the case in question have
nothing to do with the weak-coupling regime for which, re-
call, b/ uau!1. Operating with the kernel(32) we are not able
to reach the weak-coupling regime at all because this kernel

is not bound from above. Now let us consider positive values
of the scattering length given by Eq.(33). As seen from Fig.
1, aù0 for xøx0

s1d andx`
sid,xøx0

sid. For any of these regions
b/aù1. In particular, b/a*3 for x`

s1d,xøx0
s1d whereas

b/a*5 for x`
s2d,xøx0

s2d. Hence, the interaction energy for
the pairwise potential specified by Eq.(32) is negative even
for the positive values of the scattering length(C.0 is
meant). Moreover, atrc/ r0@1, when the role of the attrac-
tive “tail” is significant, we haveb/a@1. In this situation the
contribution of the pairwise interaction to the kinetic energy
is much larger than its contribution to the mean energy.
Hence, the interaction energy is negative in this case and also
much larger, if taken in absolute value, than the sum of the
a-dependent terms in the Huang-Yang result. In view of the
recent consideration of a trapped Fermi gas[17], features of
the ratiob/a near the special pointsx`

sid and x0
sid can be of

particular interest. Imposing a uniform magnetic field, ex-
perimentalists can change the scattering length in such a way
that a approaches the Fesbasch-resonance pointsa→`d or
drops down to zero[14,17]. In the both situations, as follows
from Eqs.(17) and (18), we haveb/ uau@1. Note that pas-
sage to the limita→` in Eqs. (17) and (18) is not correct
because it violates the expansion conditionkFuau!1. On the
contrary, one can puta=0, which leads to

«kinsa → 0d =
3"2kF

2

10m
+

"2kF
3b

3pm
, s36d

«intsa → 0d = −
"2kF

3b

3pm
. s37d

Equations(36) and (37) correspond to an interesting and
extreme situation: the total energy is the same as for an ideal
Fermi gas, while the interaction and kinetic energies taken
separately have nothing to do with the case of noninteracting
fermions.

FIG. 1. The ratiob/a versusx=rc
2/ s2r0

2d for the pairwise inter-
action kernel(32), rc=smgC/"2d1/4.
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Thus, the examples given above show that the correct
results for the kinetic and interaction energies given by Eqs.
(17) and (18) differ significantly from the pseudopotential
predictions(24) and (25). Contrary to a classical imperfect
gas, the pairwise interaction in the Fermi gas has a profound
effect on its kinetic energy, which well meets the conclusions
for an interacting Bose gas in Refs.[19,20]. To go into more
detail about this feature of the quantum gases and display the
underlying physics, the interaction and kinetic energies of
the uniform ground-state 3D Fermi gas with repulsive forces
are investigated with the help of the in-medium pair wave
functions in Secs. IV and V.

IV. INTERACTION ENERGY VIA THE PAIR
WAVE FUNCTIONS

An essential disadvantage of the derivation of the kinetic
and interaction energies given in Sec. II is that the important
microscopic information remains hidden in Eqs.(5), (17),
and (18). This is why the consideration of Sec. II is below
supplemented by the calculations of the pairwise-interaction
contribution to «int and «kin via the in-medium pair wave
functions(PWF’s). Not to go into much detail but outline a
physical picture, these calculations are limited to the leading
order inkFa.

For the sake of convenience, let us begin with the inter-
action energy. All the microscopic information concerning
the N-particle system is contained in theN-particle density
matrix. For the zero-temperature case this matrix is defined
by

%Nsx18,x28, . . . ,xN8 ;x1,x2, . . . ,xNd

= C * sx1,x2, . . . ,xNdCsx18,x28, . . . ,xN8 d, s38d

whereCsx1,x2, . . . ,xNd is the ground-state normalized wave
function,x=hr ,sj stands for the space coordinatesr , and the
spinz projections= ±1/2. Toinvestigate the interaction en-
ergy, we do not need to know theN-matrix in detail but can
deal with the 2-matrix given by the integral

%2sx18,x28;x1,x2d =E
V

dx3 ¯ dxNC * sx1,x2,x3, . . . ,xNd

3 Csx18,x28,x3, . . . ,xNd, s39d

where in general

E
V

¯ dx= o
s
E

V

¯ d3r .

Let us introduce the eigenfunctions of the 2-matrixjnsx1,x2d
given by

E
V

dx1dx2%2sx18,x28;x1,x2djnsx1,x2d = wnjnsx18,x28d, s40d

wherewn stands for then-state eigenvalue. These eigenfunc-
tions are usually called in-medium PWF’s[38]. The 2-matrix
can be expressed in terms of its eigenfunctions and eigenval-
ues as follows:

%2sx1,x2;x18,x28d = o
n

wnjn
*sx1,x2djnsx18,x28d, s41d

where it is implied that

E
V

dx1dx2jn
*sx1,x2djn8sx1,x2d = dnn8.

From Eq.(39) it follows that

E
V

dx1dx2%2sx1,x2;x1,x2d = 1 s42d

and, hence,

o
n

wn = 1, s43d

which allows one to interprete the eigenvaluewn as the prob-
ability of observing a particle pair in then state.

Now let us recall that the total momentum of the system
of interest, the total system spin, and itsz projection are

conserved quantities[39]. As the totalpair momentum"Q̂,

the totalpair spin Ŝ, and itsz componentŜz commute with
the totalsystemmomentum, totalsystemspin, and itsz pro-
jection, correspondingly, they commute with the system
Hamiltonian given by Eq.(1), too. If so, then one can derive

that Q̂, Ŝ, and Ŝz commute with the 2-matrix being permut-
able with the Hamiltonian(1). This is why we can choose the
eigenfunctions of the 2-matrix in such a way that[38] n
=hl ,Q ,S,mSj, wheremS is an eigenvalue ofSz andl stands
for other quantum numbers. Hence, in the homogeneous situ-
ation one can arrive at(see Refs.[38,40])

jnsx1,x2d = qnsr ,s1,s2dexpsiQ ·Rd/ÎV, s44d

wherer =r 1−r 2 andR=sr 1+r 2d /2. As the in-medium bound
pair states like the BCS pairs are beyond the scope of the
present work, then we deal only with the scattering or “dis-
sociated” pair states. Hence,n=hq ,Q ,S,mSj, whereq stands
for the relative wave vector. This is why it is convenient to
set by definition

qnsr ,s1,s2d = wnsr ,s1,s2d/ÎV s45d

as periodic boundary conditions are implied. Furthermore,
the pairwise interaction does not depend on the spin vari-
ables, which means thatwnsr ,s1,s2d can be expressed as

wnsr ,s1,s2d = wq,Q,Ssr dxS,mS
ss1,s2d. s46d

For the singlet statessS=0d one gets

x0,0ss1,s2d = − x0,0ss2,s1d s47d

and, due to the Fermi statistics,

wq,Q,0sr d = wq,Q,0s− r d = w−q,Q,0sr d, s48d

while for the triplet wave functionssS=1d,

x1,mS
ss1,s2d = x1,mS

ss2,s1d s49d

and, hence,
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wq,Q,1sr d = − wq,Q,1s− r d = − w−q,Q,1sr d. s50d

For r →` we have

wq,Q,0sr d → Î2 cossq · r d, s51d

whereas

wq,Q,1sr d → Î2 sinsq · r d. s52d

Working in the thermodynamic limitN→`, V→`,
N/V=n=const, it is more convenient to leave the 2-matrix in
favor of the so-called pair correlation function

F2sx1,x2;x18,x28d = kĉ†sx1dĉ†sx2dĉsx28dĉsx18dl, s53d

wherekÂl stands for the statistical average of the operatorÂ,

and ĉ†sxd and ĉ sxd denote the field Fermi operators. The
pair correlation function differs from the 2-matrix by the
normalization factor(see Ref.[38])

F2sx1,x2;x18,x28d = NsN − 1d%2sx18,x28;x1,x2d, s54d

so thatF2 remains finite while%2 approaches zero in the
thermodynamic limit. Indeed, whenV→`, N→`, N/V=n
→const, Eqs.(41) and (54), taken in conjunction with Eqs.
(44) and (45), yield

F2sx1,x2;x18,x28d

= o
S,mS

E d3qd3Q

s2pd6 rS,mS
sq,Qdwq,Q,S

* sr dwq,Q,Ssr 8d

3xS,mS

* ss1,s2dxS,mS
ss18,s28dexphiQsR8 − Rdj, s55d

where the momentum-distribution function

rS,mS
sq,Qd = lim

V,N→`
hNsN − 1dwq,Q,S,mS

j s56d

is finite becausewq,Q,S,mS
,1/V2 [this follows from Eq.(43)

whenV→`]. For rS,mS
sq ,Qd one gets the relation

o
S,mS

E d3qd3Q

s2pd6 rS,mS
sq,Qd = n2, s57d

resulting from Eqs.(43) and (56).
All the necessary formulas are now discussed and dis-

played, and we can turn to the calculations of the interaction
energy. Using the expression(see the textbook[28])

Eint =
1

2
E dx1dx2Vsur 1 − r 2udF2sx1,x2;x1,x2d s58d

and keeping in mind Eq.(55), one gets the following impor-
tant relation:

«int =
1

2n
E d3rVsrd o

S,mS

E d3qd3Q

s2pd6 rS,mS
sq,Qduwq,Q,Ssr du2,

s59d

provided the equality

o
s1,s2

xS,mS

* ss1,s2dxS,mS
ss1,s2d = 1

is taken into account. Equation(59) directly connects the
interaction energy per fermion with PWF’s and, thus, with
the scattering waves defined by

cq,Q,0sr d = wq,Q,0sr d − Î2 cossq · r d s60d

and

cq,Q,1sr d = wq,Q,1sr d − Î2 sinsq · r d. s61d

The scattering waves are immediately related to the pairwise-
potential contribution to the spatial particle correlations. Set-
ting cq,Q,0sr d=cq,Q,1sr d=0 or, in other words, ignoring that
contribution and taking notice only of the correlations due to
the statistics, one arrives at the Hartree-Fock scheme.

So far we did not invoke any approximation when oper-
ating with the 2-matrix and pair correlation function[41].
However, taken in the regime of a dilute Fermi gas, Eq.(59)
can significantly be simplified. Indeed, the lower the densi-
ties, the lower the momenta are typical of the system. This
means that the pair momentum distributionrS,mS

sq ,Qd is
getting more localized in a small vicinity of the pointq=Q
=0 whenn→0. Consequently, the low-momentum approxi-
mation can be applied according to which forn→0 we get

E d3qd3Q

s2pd6 rS,mS
sq,Qduwq,Q,Ssr du2 . uwSsr du2hS,mS

, s62d

where

hS,mS
=E d3qd3Q

s2pd6 rS,mS
sq,Qd s63d

and

wSsr d = lim
q,Q→0

wq,Q,Ssr d. s64d

From Eqs.(50) and (64) it follows that wS=1sr d=0. This re-
sult, taken in conjunction with the low-momentum approxi-
mation of Eq.(62), makes it possible to conclude that Eq.
(59) reduces forn→0 to

«int .
h0,0

2n
E d3rVsrduw0sr du2. s65d

The triplet states do not make any contribution to the inter-
action energy in the approximation(62), and this completely
meets the usual expectations.

Now, to employ Eq.(65), one should have an idea con-
cerning w0sr d and h0,0. As to the limiting wave function
w0sr d, it can be determined by means of the following simple
and custom arguments. In the dilution limit the pair wave
function wq,Q,Ssr d approaches the solution of the ordinary
Schrödinger equation

− s"2/md¹2wq,Q,Ssr d + Vsrdwq,Q,Ssr d = s"2q2/mdwq,Q,Ssr d,

s66d

with the boundary conditions given by Eqs.(48) and (50).
Hence, in the limitn→0 the quantityw0srd obeys Eq.(11)
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andw0sr d→Î2 whenr →`. Therefore, forn→0 one gets

w0sr d . Î2wsrd. s67d

To complete the calculation of the interaction energy, it only
remains to findh0,0. One can expect that when numbers of
fermions with positive and negative spinz projections are the
same, the magnitude ofrS,mS

sq ,Qd appears to be indepen-
dent of the spin variables. In this case Eqs.(57) and(63) give

hS,mS
= n2/4. s68d

Note that Eq.(68) can be found in a more rigorous way with
the relation

1

V2 E d3r1d
3r2F2sx1,x2;x1,x2d = ns1

ns2
, s69d

resulting from the definition of the pair correlation function

(53). Here ns=kĉ†sx1dĉsx1dl. To derive Eq.(68) from Eq.
(69), one should employ the latter in conjunction with the
explicit form of xS,mS

ss1,s2d (see, for example, Ref.[40])

and Eq. (55) and, then, take account ofns=kĉ†sx1dĉsx1dl
=n/2. Let us stress that Eq.(68) is not general. For example,
when all the considered fermions have the spinz projection
equal to +1/2, one getsh1,1=n2 andh0,0=h1,−1=h1,0=0. As
is seen, in this case the interaction energy resulting from Eq.
(65) exactly amounts to zero: one should go beyond the ap-
proximation defined by Eq.(62) to get an idea about«int of
such a weakly interacting system. Here it is worth noting that
this weak interaction is a serious obstacle that prevents ex-
perimentalists from observing the BCS-like pairing of fermi-
ons due to an extremely low temperature of the BCS transi-
tion. To strengthen the interaction effects, it was, in
particular, suggested[15] to complicate the experimental
scheme in such a way that fermions with various spinz pro-
jections would be trapped. In this case the low-momentum
approximation yields a finite result for«int. It is instructive to
go in a more detail about this situation because now it is
under experimental investigation[14]. Here another choice
of the eigenfunctions of the 2-matrix is more convenient
rather than that of Eq.(46). The details can be found in the
Appendix.

At last, inserting Eqs.(67) and (68) into Eq. (65) and
making use of Eqs.(14) and (16), one can derive«int
=p"2nsa−bd /m, which is the leading term of Eq.(18). It is
worth noting that to calculate the next orders of Eq.(18) by
means of PWF’s, one should employ a more accurate proce-
dure similar to that developed for a dilute Bose gas in Refs.
[19,20]. The important point of such a procedure is taking
account of the in-medium corrections to PWF. Though a
complex investigation of this problem is beyond the scope of
the present work, several remarks about the medium effects
on PWF’s are made in the next section.

Now it is interesting to check if Eq.(65) yields Eq.(25)
when replacingVsrd by the pseudopotentialVspsdsrd. The
simplest way of operating with the pseudopotential is to
adopt Vspsdsrd=s4p"2a/mddsr d in conjunction with the
Hartree-Fock approximation. It allows for calculating the
contribution of the pairwise interaction to the total energy of

a ground-state quantum gas in the leading order of the ex-
pansion in the dilution parameter. For example, this way was
used in the classical paper by Pitaevskii when deriving the
Gross-Pitaevskii equation for the order parameter of the
Bose-Einstein condensation in a dilute Bose gas[4]. A more
elaborated variant, which goes beyond the Hartree-Fock
framework, requires a more sophisticated choice of pseudo-
potential given byVspsdsrd=s4p"2a/mddsr ds] /]rdr [25]. This
variant makes it possible to calculate the contribution of the
pairwise interaction to the total energy in the both leading
and next-to-leading orders in the dilution parameter. To pro-
vide an illustration, we can limit ourselves to the simplest
choice of pseudopotential. ReplacingVsrd by Vspsdsrd
=s4p"2a/mddsr d in Eq. (65) and settingcsrd=0 fwsrd=1g,
one can find«int

spsd=p"2an/m, which is exactly Eq.(25) taken
to the leading order inkFa. This supports the conclusion of
Sec. III about the serious limitations of the pseudopotential
procedure due to the wrong results for the kinetic and inter-
action energies.

As was mentioned in Sec. III, the pseudopotential ap-
proach does not yield a correct picture of the short-range
boson correlations in addition to the failure with the kinetic
and interaction energies in the case of a dilute Bose gas[19].
The same fault can be expected in the Fermi case, as well. In
view of this fact, it is important to remark that the procedure
based on PWF’s yields a correct picture of the short-range
particle correlations. Indeed, from Eq.(55) it follows that the
pair distribution function gsrd, defined by gsrd
=s1/n2dos1,s2

F2sx1,x2;x1,x2d, is expressed as

gsrd =
1

n2 E d3qd3Q

s2pd6 rS,mS
sq,Qduwq,Q,Ssr du2. s70d

When using the low-momentum approximation in conjunc-
tion with Eqs.(67), (68), and(70), Eq. (70) is reduced to

gsrd . s1/2dw2srd, s71d

which is correct atn→0 and forkFr !1. This short-range
result differs from the corresponding result for a dilute Bose
gas [19,20] by a factor of 1/2 appearing due to the Fermi
statistics. Note that this factor manifests itself in the total
energy, as well. Indeed, the leading term in the dilution ex-
pansion for the total energy of a ground-state uniform 3D
Bose gas is twice more than the firsta-dependent term in the
corresponding expansion for the Fermi gas[28]. Contrary to
the results of the calculations based on the pseudopotential
(see Ref.[19]), there are no negative values ofgsrd at small
particle separations when using the 2-matrix.

Several remarks need to be added concerning the momen-
tum distribution of the “dissociated” pairsrS,mS

sq ,Qd. The
calculations resulting in Eq.(65) do not involve detailed
knowledge of this distribution. However, its form can be
completely refined. As was shown in Ref.[40], rS,mS

sq ,Qd
can be determined via the correlation-weakening principle.
According to this principle the pair correlation function
obeys the following relation:

F2sx1,x2;x18,x28d → F1sx1;x18dF1sx2;x28d, s72d

when

A. A. SHANENKO PHYSICAL REVIEW A 70, 063618(2004)

063618-8



ur 1 − r 2u → `, ur 1 − r 18u = const, ur 2 − r 28u = const.

In Eq. (72) we setF1sx1;x18d=kĉ†sx1dĉsx18dl. So the pair mo-
mentum distributionrS,mS

sq ,Qd, which appears in the expan-
sion ofF2 in the set of its eigenfunctions, can be expressed in
terms of the single-particle momentum distributionnsskd
=kas

†skdasskdl, which comes into the plane-wave expansion
for F1. In the case of interest, when the both distribution
functions turn out to be independent of spin variables, this
leads to

rS,mS
sq,Qd = nsuQ/2 + qudnsuQ/2 − qud, s73d

where, by definition,nskd=nsskd. Concluding let us set, for
the sake of demonstration,nskd=1 for køkF, nskd=0 for k
.kF and return to Eq.(62). Inserting Eq.(73) in the right-
hand side of Eq.(62) and utilizing this single-particle mo-
mentum distribution of an ideal Fermi gas, we arrive at the
left-hand side of Eq.(62) due tokF→0 whenn→0.

Thus, in Sec. IV the interaction energy of the Fermi gas
was calculated to the leading order inkFa “from scratch.”
These calculations yield a result being in agreement with Eq.
(18) and provide detailed information about the contribution
of the pairwise interaction to«int. Now it is of interest to
display the “mediator” between the pairwise potential and
kinetic energy. A discussion of this subject is given in Sec. V.

V. KINETIC ENERGY VIA THE PAIR
WAVE FUNCTIONS

Some hints about the way of treating the problem of the
influence of the pairwise interaction on the kinetic energy
can be selected in the Bogoliubov model of a weakly inter-
acting Bose gas and in the BCS model. As was shown in
Refs. [19,20], there exists an important relation connecting
the single-boson momentum distributionnBskd with the scat-
tering parts of PWF’s in the Bogoliubov model. For the case
of the ground state this relation is written as

nBskdf1 + nBskdg = n0
2ucBskdu2, s74d

wherecBskd is the Fourier transform for the scattering part of
the bosonic PWF’s corresponding toq=Q=0, andn0 stands
for the density of the condensed bosons. Note that the PWF’s
with q, QÞ0 are the plane waves in the Bogoliubov model
[19,20]. When the pairwise boson interaction is being
“switched off,” cBskd approaches zero. AtcBskd=0, Eq.(74)
yields the only physical solutionnBskd=0, which corre-
sponds to the ideal Bose gas with the zero condensate deple-
tion and kinetic energy. On the contrary, “switching on” the
pairwise interaction results incBskdÞ0. Due to Eq.(74), this
leads tonBskdÞ0 and to the kinetic energy dependent on
Vsrd.

A similar relation appears in the BCS model. At the zero
temperature it can be represented[40] in the form

nBCSskdf1 − nBCSskdg = nC
2 uqBCSskdu2, s75d

where nBCSskd stands for the single-fermion distribution,
qBCSskd is the Fourier transform of the Cooper-pair wave

function, andnC is the density of the Cooper pairs. We re-
mark that the “dissociated” pair states are the plane waves in
the framework of the BCS approach[40]. “Switching off”
the pairwise interaction leads to the disappearance of the
in-medium bound states:qBCSskd=0. In this case there exist
two branches of the solution of Eq.(75): nBCS=1 andnBCS
=0. The system acquires minimal energy if selecting the first
branch below the Fermi momentum and taking the second
one above, which yields the momentum distribution of the
ideal Fermi gas. When “switching on” the mutual attraction
of fermions, this momentum distribution acquires corrections
due to the right-hand side of Eq.(75).

Now, keeping in mind these examples, we can assume
that the relation connecting PWF(more precisely, the scat-
tering parts and bound pair waves) with the single-particle
momentum distribution is a general feature of any quantum
many-body system. If so, exactly this relation should be re-
sponsible for the influence of the pairwise interaction on the
kinetic energy of the Fermi gas. For the situation in question
it can be constructed as

nskdf1 − nskdg = Lskd, s76d

whereLskd stands for a functional ofcq,Q,Ssr d. To go in a
more detail aboutLskd, let us calculate the kinetic energy,
operating withnskd of Eq. (76). From Eq.(76) it follows that

nskd =Hf1 +Î1 − 4Lskdg/2 if k ø KF,

f1 −Î1 − 4Lskdg/2 if k . KF,
J s77d

where"KF stands for the Fermi momentum in the presence
of the pairwise interaction. The momentum distributionnskd
approaches the Fermi distribution in the dilution limit:
Lskd→0, KF→kF whenn→0. Then, forn→0, Eq. (77) is
reduced to

nskd = f1 −LskdgQskF − kd + LskdQsk − kFd. s78d

Taken together with the familiar formula

«kin = o
s
E d3k

s2pd3Tknsskd, s79d

Eq. (78) results in

«kin =
3"2kF

2

10m
+

2

n
E d3k

s2pd3Tk,skd + ¯ . s80d

Comparing Eq.(17) with Eq. (80), we arrive at

Lskd → sn2/4dc2skd sn → 0d. s81d

This suggests thatLskd is indeed a functional ofcp,q,Ssr d.
It is worth noting that substitution of the right-hand side

of Eq. (81) for Lskd in Eq. (78) yields a good approximation
for nskd only when k*kF. From Eq. (11) it follows that
cskd~−1/k2 for k→0, which prevents us from using this
substitution in the long-wavelength regime. Hence, to con-
sidernskd for k→0, one should go beyond Eq.(81). In par-
ticular, keeping in mind the replacement ofw0srd by Î2wsrd
in Eq. (65), we can introduce the approximation
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Lskd < sn2/8duc0skdu2, s82d

wherec0skd is the Fourier transform ofc0srd=w0srd−Î2. To
have an idea about Eq.(76) taken together with Eq.(82), it is
natural to start from the expectation that the Fermi sphere is
completely occupied. In this case Eqs.(76) and (82) lead to
c0skd=0 at køKF.kF. In the region of high fermion mo-
menta(reflecting the physics at small particle separations),
c0skd is not significantly influenced by the surrounding me-
dium and, therefore, is nearly governed by the ordinary two-
body Schrödinger equation taken in the center-of-mass frame
and at the zero energy. Combination of these two regimes
results in

2Tkc0skd + Qsk − kFd E d3rw0srdVsrdexps− ik · r d = 0.

s83d

Note that a jump in the Fourier transform ofc0srd at k=kF

does not imply a jump ofc0srd itself. Passing to the space-
coordinate representation, one is able to rewrite Eq.(83) in
the form

−
"2

m
¹2w0srd + w0srdVsrd =E d3r8w0sr8dVsr8dGsr − r 8d,

s84d

where Gsr d=ek,kF
d3k/ s2pd3expfik ·r g. Equation (84) is

nothing more but the simplest version of the Bethe-
Goldstone equation[26] for the pair wave function atQ=q
=0. Hence, the relation between the fermion momentum dis-
tribution and scattering parts of PWF’s is directly connected
with the familiar “veto” upon the appearance of the interme-
diate scattering states inside the Fermi sphere(see the p. 320
in the textbook in[28]). We can now turn to a more accurate
way of treatingw0srd. The total system energy can be repre-
sented as a functional ofw0srd andnskd with the help of Eqs.
(65) and (79). Making a variation of this functional with
respect toc0

*srd andnskd, one gets

dE

V
=E d3k

s2pd3F2Tkdnskd +
n2

8
dc0

*skd

3E d3rw0srdVsrdexps− ik · r dG . s85d

The infinitesimal changesdnskd anddc0
*skd are not indepen-

dent but related to one another by

f1 − 2nskdgdnskd = sn2/8dc0skddc0
*skd, s86d

which follows from Eq.(76). In addition, the total number of
fermions, N=2ed3k/ s2pd3nskd, should not be changed so
that the equation of interest is written in the form

dsE − mNd = 0, s87d

where m stands for the chemical potential. Equations
(85)–(87) make it possible to arrive at

c0skd =
1 − 2nskd
2sm − Tkd

E d3rw0srdVsrdexps− ik · r d. s88d

This equation is more complicated but similar to Eq.(83).
Indeed, for k→`, Eq. (88) approaches the two-body
Schrödinger equation taken in the center-of-mass frame at
zero energy, whereas the contribution of the medium-
dependent terms is significant only fork&KF. However, the
important difference is thatc0skd is now suppressed but does
not vanish inside the Fermi sphere. This is due the fact that
the Fermi sphere is not completely occupied in the presence
of the pairwise interaction. It is worth noting that the equa-
tion derived by Galitskii[27] for the scattering part of the
“effective wave function of two particles in a medium”[see
Eq. (11.39) in Ref. [28]] is exactly reduced to Eq.(88) when
Q, q→0. To the best knowledge of the present author, Gal-
itskii did not associate the “effective wave functions” with
the eigenfunctions of the 2-matrix but introduced this name
due to the similarity with the two-body Schrödinger equa-
tion. However, the derived result suggests that the Galitskii
“effective wave functions” are actually eigenfunctions of the
reduced density matrix of the second order.

Thus, it was shown in Sec. V that the “mediator” between
the pairwise interaction and kinetic energy of a ground-state
uniform repulsive 3D Fermi gas is the relation connecting
the single-particle momentum distribution with the scattering
parts of PWF’s. A similar relation takes place for the uniform
ground-state 2D and 3D Bose gases, which results in the
appearance of a condensate depletion and nonzero kinetic
energy in the presence of the repulsive pairwise interaction.
The mutual attraction of particles has also an effect on the
momentum distribution and kinetic energy of the quantum
gases. However, in this case the scattering parts of PWF’s are
accompanied by the in-medium bound states. In general, one
can expect that influence of the pairwise interaction on the
kinetic energy of any quantum many-body system is gov-
erned by the relation connecting the single-particle momen-
tum distribution with PWF’s.

VI. CONCLUSION

In conclusion, the kinetic and interaction energies of a
uniform ground-state 3D Fermi gas with a repulsive short-
range pairwise interaction have been calculated up to the
second order in the gas parameterkFa. These quantities were
found to depend on the pairwise potential through the two
characteristic lengths. One of them is thes-wave scattering
length a which also appears in the total energy. Another,b
defined by Eq.(16), makes contributions only to the kinetic
and interaction energies taken separately: the terms depend-
ing onb are mutually canceled in the total energy in the first
three orders of the expansion inkFa. The derived results
suggest that when the pairwise potential combines a hard-
sphere core with an attractive “tail”(in particular, this is
relevant for the alkali-metal atoms), the Fermi gas turns out
to be an interacting system even ata=0 though its total
energy is equal to that of an ideal Fermi gas. In this caseb
Þ0, which results in a nonzero contribution of the pairwise
interaction to both the kinetic and interaction energies. An-
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other interesting situation concerns the resonant regimea
→`. The contribution of the pairwise potential to the kinetic
energy near a point of the Fesbasch resonance is much larger
than the corresponding contribution to the total energy. This
is due to the fact that the interaction energy is negative in this
case in spite of a positive scattering length.

Thus, contrary to a classical imperfect gas, the pairwise
interaction has a nontrivial effect on the kinetic energy of
quantum gases. Experiments with trapped alkali-metal va-
pors make it possible to check this effect, for example, by
means of the standard technique based on time-of-flight ex-
pansion images[1,2] introduced to probe the velocity distri-
bution in a trapped atom cloud.
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APPENDIX

Let us consider a uniform cold 3D Fermi gas made of
particles with the spin, /2 (,.1 is an odd number), the
fermions with only two spinz projections being present, say,
, /2 and , /2−,8, where ,8 is an integer and,8ø,. This
situation may be of interest due to the recent experiments
[14] with the atoms of the fermionic isotope40K in an optical
trap. The total atomic spin isf =9/2 for 40K, and the inco-
herent mixture ofu9/2,−7/2l and u9/2,−9/2l spin states
was investigated in the experiments. In the case under con-
sideration it is more convenient to choose a set of eigenfunc-
tions of the 2-matrix in a way different from Sec. IV. We now
choosen=hq ,Q ,Sz,dSz

j, whereSz stands for the eigenvalues

of Ŝz, the z projection of the total pair spin, whiledSz
enu-

merates degenerate states[for more detail, see Eq.(A2) be-
low]. To simplify the calculations, we do not operate with the
total pair spin here. Note that the same choice of the eigen-
functions could be used in Sec. IV. Equation(46) is now of
the form

wnsr ,s1,s2d = wq,Q
sdd sr dxSz

sddss1,s2d, sA1d

where the spin variablesi si =1,2d takes the values, /2 and
, /2−,8. In Eq. (A1) the condensed notationd=dSz

is intro-
duced, andd is taken as a superscript, to stress the fact that it
is an auxiliary quantity rather than important physical char-
acteristics. The spin states are specified by

uxSz=,
sd=1dl = U,

2
LU,

2
L ,

uxSz=,−,8
sd=1d l =

1
Î2

SU,

2
LU,

2
− ,8L + U,

2
− ,8LU,

2
LD ,

uxSz=,−,8
sd=2d l =

1
Î2

SU,

2
LU,

2
− ,8L − U,

2
− ,8LU,

2
LD ,

uxSz=,−2,8
sd=1d l = U,

2
− ,8LU,

2
− ,8L . sA2d

There is no degeneracy forSz=, and Sz=,−2,8, and for
these statesdSz

=1. While for Sz=,−,8 two possible eigen-

states ofŜz are present, which is expressed ind,−,8=1,2.
From Eq.(A2) it follows that

xSz

s1dss1,s2d = xSz

s1dss2,s1d, sA3d

and, due to the Fermi statistics, we find

wq,Q
s1d sr d = − wq,Q

s1d s− r d = − w−q,Q
s1d sr d, sA4d

the wave functionwq,Q
s1d sr d approachingÎ2 sinsq ·r d when r

→`, whereas ford=2 one gets

xSz

s2dss1,s2d = − xSz

s2dss2,s1d sA5d

and, hence,

wq,Q
s2d sr d = wq,Q

s2d s− r d = w−q,Q
s2d sr d, sA6d

wherewq,Q
s2d sr d tends toÎ2 cossq ·r d for r →`. Taken in con-

junction with Eqs.(41), (44), and(45), Eq. (A1) yields

F2sx1,x2;x1,x2d = o
Sz,d

E d3qd3Q

s2pd6 rSz

sddsq,Qd

3uwq,Q
sdd sr du2uxSz

sddss1,s2du2, sA7d

where passage to the thermodynamic limit is implied. Fur-
ther, inserting Eq.(A7) into Eq.(58) and keeping in mind the
relation

o
s1,s2

uxSz

sddss1,s2du2 = 1,

one can arrive at

Eint/V =
1

2
E d3rVsrdo

Sz,d
E d3qd3Q

s2pd6 rSz

sddsq,Qduwq,Q
sdd sr du2.

sA8d

Working in the dilution limit n,/2, n,/2−,8→0, one can em-
ploy the low-momentum approximation of Eq.(62). This
makes it possible to rewriteEint for n,/2, n,/2−,8→0 in the
form

Eint/V .
h,−,8

s2d

2
E d3rVsrduws2dsr du2, sA9d

where

hSz

sdd =E d3qd3Q

s2pd6 rSz

sddsq,Qd sA10d

and
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wsddsr d = lim
q,Q→0

wq,Q
sdd sr d. sA11d

Only the terms corresponding tod=2 make a contribution to
the interaction energy(A9) in the dilution limit because
ws1dsr d is exactly equal to zero due to Eqs.(A4) and (A11).
Following the arguments of Sec. IV one can replace Eq.(A9)
by

Eint/V . h,−,8
s2d E d3rVsrdw2srd, sA12d

with wsrd obeying Eq.(11). Now, to get the final result, it
only remains to have an idea abouth

,−,8
s2d . Equations(A7)

and (69) lead to

o
Sz,d

E d3qd3Q

s2pd6 rSz

sddsq,QduxSz

sddss1,s2du2 = ns1
ns2

,

sA13d

provided that the normalization conditions1/VdeV d3r uwq,Q
sdd

3sr du2=1 is taken into account[see Eqs.(45) and (A1)].
From Eqs.(A2) and (A13) it is seen that

1

2
E d3qd3Q

s2pd6 fr,−,8
s1d sq,Qd + r,−,8

s2d sq,Qdg = n,/2n,/2−,8.

sA14d

It is natural to expect thatr
,−,8
s1d sq ,Qd=r

,−,8
s2d sq ,Qd. Then,

from Eqs.(A10) and (A14) we can find

h,−,8
sdd = n,/2n,/2−,8. sA15d

Thus, forn,/2, n,/2−,8→0 one gets

Eint/V . f4p"2sa − bd/mgn,/2n,/2−,8 sA16d

and, hence,

E/V . s4p"2a/mdn,/2n,/2−,8, sA17d

Ekin/V . s4p"2b/mdn,/2n,/2−,8. sA18d

At n,/2=n,/2−,8=n/2 Eqs.(A16)–(A18) reproduce the results
of Sec. II taken in the leading order inkFa. As was first
pointed out in Ref.[15] and follows also from the consider-
ations of Sec. IV and this appendix, trapping of fermions
with two different z projections of the single-particle spin
allows one to operate with the system, where the effects of
the pairwise interaction are more significant with respect to
the situation of one spinz projection. This simplifies experi-
mental searches for the BSC phase transition(see, for ex-
ample, Ref.[14]).
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