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Imperfect Fermi gas: Kinetic and interaction energies
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A uniform ground-state three-dimensional Fermi gas with short-range repulsive pairwise interaction is under
consideration. Its kinetic and interaction energies are calculated up to the second order of the expansion in the
gas parameter. Similar to recent results for an interacting Bose gas, the quantities in question are found to
depend on the pairwise interaction through two characteristic lengths: the fanierthe s-wave scattering
length, and the latteh, is related toa by b=a-m(da/dm), wherem stands for the fermion mass. To control
the results, we proceed in two independent ways. The first involves the Hellmann-Feynman theorem applied to
derive the kinetic and interaction energies from the total-energy expansion in the gas parameter first found by
Huang and Yang. The second way operates with in-medium pair wave functions and allows one to calculate the
quantities of interest “from scratch.” The results of the present investigation, taken together with those of the
recent consideration of a dilute Bose gas, make it possible to conclude that the pairwise interaction in a
guantum gas has an essential and nontrivial effect on the kinetic energy, which is not the case for a classical
many-particle system.
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[. INTRODUCTION pairwise interaction is investigated. Why could the situation
) ) ) . of a repulsive Fermi gas be of interest while thevave
Recent experiments with magnetically trapped alkali at'scattering lengtta is negative for’Li [15] and, most likely,

oms have significantly renewed interest in the properties ofpr 4% [16]? The point is that the magnetic-field Fesbasch
quantum gases. As is known, the initial series of these exresonances provide experimentalists with a good means of
periments concerned a Bose g&%Rb [1], *Na[2], and’Li  governing thes-wave scattering length of the atom-with-
[3]), which motivated extensive reconsiderations and somatom interaction[13,14,17. Indeed, imposing a uniform
new investigations in the field of Bose-Einstein condensamagnetic field significantly changes this characteristic length
tion. The derived theoretical and experimental results noin such a way that effectively attractia is negative and
only confirmed conclusions made more than 40 years ageepulsive (a is positive regimes are attainablgl3,14,17.

but also extended the understanding of boson physics. [fhus, experiments with trapped fermionic atoms’ldif and
particular, the Gross-Pitaevskii equation developed in thé’K offer an exciting possibility to explore an imperfect
1960s[4] was found to provide a good agreement with ex-Fermi gas in both the norméabee, for example, Ref17])
perimental data on the density profiles of a trapped Bose ga&d superfluidsee the recent paper [a4]) states.

[5]. The exact derivation of the Gross-Pitaevskii energy func- The particular problem to be investigated here concerns
tional [6] can be highlighted among recent theoreticalthe kl.netlcEkin gnd interactiorE;, energies _of an interacting
achievements. As for experimental innovations, the interferE€Mi gas. This problem is connected with a more general
ence pattern of two expanding Bose condensged is of question as to whether or not the pairwise interaction has an

interest(for theoretical details see the papers Rl and  Eff€Ct on the kinetic energy of a quantum gas. It is well
reviews in[10,1T) known that for a classical imperfect gas the pairwise poten-

The first communications about experiments with trappe lal does not make any contribution to the kinetic energy
o . exp 1 trapp 18]. As for a quantum gas, common expectations regarding
fermionic atoms appeared in the literature about five year

; «in are based on the pseudopotential approach. This ap-
?g;c[r}ezé \?g;et?aa tgg]_?z;i#rse \'7;2;3?%?@'??*%:;5@ proach suggests that the kinetic energy is not practically sen-
. PP . Voo e P sitive to the pairwise interaction in a quantum gas. To go into

below which the Fermi statistics is of importance. Today

; d at f the fermionic isotof b led detail, the total energy of a ground-state uniform 3D Bose
drgp?]eto a':eonrwnsezt (S Sr;:nlo$|c :r?doo oa’cari4 esc(;)?[hee gas, taken in the leading order of the expansion in the gas

W peratures 0.I¢ 3]. e f [14]. Iparameter, coincides with the corresponding interaction en-
regime of the degenerate Fermi gas is already under expe 5

mental study. In view of this fact, reconsideration of the ba- rgy when calculating with the pseudopotentiabe Refs.

. ts of the th f . foct Fermi looks t 10,19,2Q). For a ground-state uniform 3D Fermi gas with
SIC aspects of the theory of an Imperfect Fermi gas 100ks epulsive pairwise interaction the kinetic energy found with
be of importance.

In the present paper a uniform ground-state threeEheT p§eu<:,iopoten.tial QOes not includeT terms coming from_the
dimensional(3D) Fermi gas with a short-range repulsive pairwise interaction in bo_th the leading and next-to-leading
orders of the expansion in the gas paramétee Ref[21]
and Eqs(24) and(25) below). Hence, concerning the influ-
ence of the pairwise potential on the kinetic energy, the situ-
*Also at Bogoliubov Laboratory of Theoretical Physics, Joint In- ation in a quantum gas, from the “pseudopotential” point of
stitute for Nuclear Research, 141980 Dubna, Russia. view, is the same as in a classical gas. However, recently a
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thorough investigatiorf19,2Q has demonstrated that this is proach to deal wittE,;, and E;,.. The derivation of the ki-
not the case, and the pairwise interaction has a strong antktic and interaction energies given in Sec. Il is rather for-
nontrivial effect on the kinetic energy of an interacting Bosemal, which can prevent a reader from understanding the
gas. The aim of the present paper is to show the same for afhderlying physics in detail. This is why in Sec. IV the lead-
imperfect Fermi gas. ing order of the expansion in the gas parameterHgy is
The devision of the total energy in the kinetic and inter-cajculated in a more physically sound way. It is based on a
action energies can seem formal from the “thermodynamiciethod developed in Ref§19,2Q and operating with in-
point of view (when keeping in mind only thermodynamic edium pair wave functions. An advantage of this approach
quantitie. However, this division is rather natural. The ig that it allows for the calculation oE,;, and E;,, “from

point is that the kinetic energy is proportional to the Secondye asch » without using the result of Huang and Yang for the
moment of the momentum distribution. In principle, this dis-

tribution can be measured directly. On the contrary, the tota%) tal energy. Sel;:tlon lV slhto v(\j/sbhow the k"}etlc. energy fOf a
and interaction energies are only inferred from experiment “€rmi gas can be calculated by means of pair wave func-
data by means of model-dependent interpretations. To g ns. Here an important rc_alauon bgtween_ the quantum-
information about the momentum distribution of a trappedp""rt'(f‘Ie mpmgntum distribution and |n—med|pm pair wave
quantum gas, the so-called time-of-flight expansion imagefinctions is discussed. Note that exactly this relation is a
are investigated1,2]. They are used to establish the Bose-Cconductor of the palr\lee-lnteract_lqn mfluenc_e on the_ kln_etlc
Einstein condensation and determine the system temperatu@€rgy of a quantum gas. In addition, some interesting links
Hence, it seems natural to try the same experimental tecfio the Bethe-Goldstone equati¢®6] and Galitskii effective
nique in order to find the kinetic energy of a trapped quanWave functiong27,28 are considered in Sec. V.

tum gas. However, some serious problems can be met in this Il HELLMANN-EEYNMAN THEOREM

way. In particular, to extract the kinetic energy of the ground-

state quantum gas, one needs to remove the contribution of Let us consider the system bfidentical fermions placed
thermal excitations. This is a more complicated problem tharn a box with the volumé/ and ruled by the Hamiltonian
observations of the bimodal character of the velocity distri- 2
bution[2] when establishing the Bose-Einstein condensation. H=-> ﬁ_v_z + > V(ri-ri)), (1)
Another point is that to exclude any change in the momen- T 2m ! i>] !

tum distribution during the expansion, images corresponding . o i B )
to sufficiently small times of flight should be involved. In With the pairwise interactiol(r) = y(r), wherey>0 is the

this case the resolution problem can prevent us from gettin§PUP!ing constant an®(r) >0 stands for the interaction ker-
data with a reasonable accuracy. Thus, any measurements ! [29]. The particle spin is assumed to §e1/2[30]. The
the two-point Green’s function can be helpful in the situationground-state energy of the system in questi&n(0/H|0)
of interest. obeys the relation

Note that an important argument in favor of investigations ~
of the kinetic energy of a quantum gas is an interesting in- SE=(0|sH|0), (2
terplay between the pairwise interaction and momentum dis- | . .
tribFl)Jtign ina quanturgl many-body system. For example, théNh'ChA is often called the HeIImann-FeynAman theorefi,
present work and papers Ref49,2q show that vapors of and éH being infinitesimal changes & andH [for example,
alkali-metal atoms driven by a magnetic field to the regimesee the proof of Eq(2) in Ref. [31]]. An advantage of this
of a near|y zero Scattering |eng[22723 acquire a very un- theorem is that it erIdS important relations ConneCting the
usual feature never met before. Indeed, the total energy ifptal ground-state enerdy with the kineticE,j, and interac-
this situation is equalor practically equal to that of the tion Ei energies. These relations read

corresponding free quantum gas. However, this is not the JE 72

case for the kinetic and interaction energies: the contribu- -m—=(0|-> —V?|0)=Egp, (3)
tions of pairwise interaction to these quantities are the same om i 2m

(or practically the samen absolute value but have opposite

signs. Other interesting examples of the interplay between JE _

the pairwise interaction and kinetic energy can be found in 7’(9_ - <O gjv(“i - rj|) ‘ O> = Bint- (4)

Sec. Il and in Ref[24].
This paper is organized as follows. In Sec. Il the kineticlf the dependence of the ground-state energy on the coupling
and interaction energies of a ground-state uniform Fermi gasonstant and particle mass were known explicitly, one would
with short-range repulsive pairwise interaction are calculatedeadily be able to calculatg,, andE;, via Eqs.(3) and(4).
via the Hellmann-Feynman theorem, starting from the low-However, it is not the case as a rule.
density expansion for the total energy first found by Huang In the situation of the repulsive Fermi gas the dependence
and Yang[25]. An important point of these calculations is the of the ground-state energy gnandm is indeed known only
use of the auxiliary variational theorem for the scatteringimplicitly. According to the familiar result of Huang and
length proved in Refd.19,20. Section Il presents a consid- Yang [25] found with the pseudopotential and then repro-
eration ofE,;, andE;,; under various regimes: from weak to duced with the boundary collision expansion metHad]
strong coupling. This consideration is interesting itself but isand with the approach of the Green’s functiof&y], the
also needed to discuss the failure of the pseudopotential apnergy per fermior=E/N is of the form
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which is accurate to the terms of ordlq%_raz. In Eq. (5), a
stands for thes-wave scattering lengttk: is the Fermi wave
number given by

ke = (37°n)*%, (6)

wheren=N/V, and the thermodynamic lim\— oc, V— oo,
n=N/V— const is implied. Inserting Eq5) in Egs.(3) and
(4), one can arrive at

31%k2 sa )
Ein=¢€— 10a &Tn[aTkF o1 2(11 21n 2k; & 2
(7)
31 aa[ 10 }
: ——kea+ 11-2In2k2a’|, (8
*n= Toma”d| om Fa 712( n2 (8)

whereg,;,=Ey,/N and g;,,=E;+/N. Hence, to derive the ki-
netic and interaction energies from E&) with the help of

the Hellmann-Feynman theorem, we should have an idea

concerning the derivatives @ with respect to the particle
massm and coupling constang. As E=E,;,+E;, then from
Egs.(7) and(8) it follows that

mdaldm = ydal dy. (9)

This property of the derivatives becomes clear if we remind

that in the 3D case thewave scattering length is given by

a=

f dr o(r)d(r), (10)

41 2
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1
a= 4Wﬁ2fd3rcp2(r)<l>(r)+—Jd3r|V¢(r)|2, (14)
which follows from Egs.(11) and (12) and V(4V )
=V ¢V i+ V2. Varying the left- and right-hand sides of
Eqg. (14) with respect tomy, one can find thabe does not
make any contribution téa due to Eq.(11). From Eq.(13)
one gets

mdaldm= ydaldy=a-b, (15

where the additional characteristic lengittr O is of the form

(16)

—ifd3r| V y(r)[2.
41

We emphasize thdi is always positive and cannot be repre-
sented as a function @f in principle. It means that the ratio
b/a depends on a particular shape of the pairwise interaction.
Now we have everything at our disposal to calculate the
kinetic and interaction energies of the Fermi gas in the
ground state. Equation&) and (8), taken in conjunction
with Eg. (15), result in the following expressions:

3h2k§{ 10 4 ( b
in= 7|1+ —keb+ ——=(11-2In2{ 2=
%= om | 1 om0t 212" n2\2,
- 1>k§ az] (17)
342K b 10 8
Eint= —10;(1 - g) X [Ekpa+ ﬁ(ll -2In zklzz a2:| ,

(18
whose sum reproduces E&). From Eqs(17) and(18) it is

where ¢(r) obeys the the two-body Schrédinger equationseen that,;, and ¢, are given by the series expansions in

taken in the center-off-mass frame and at the zero energy:
= (R2My)V2e(r) + (r)e(r) =0. (11)

The pair wave functionp(r) represents the zero-momentum
scattering state so that(r)— 1 whenr —o. The scattering
part of the pair wave function given by the definitigr)
=1+y(r) is characterized by the asymptotic behavior

Yr)——alr (r— o). (12

As is seen from Eqgs(10) and (11), the scattering length
depends on the particle mass and coupling constant throu
the productmy. Hence, to use Eqg7) and(8), we should
know the derivative of with respect tamy.

This derivative can be found with a variational theorem
proved in Refs[19,2(Q. After small algebra the result of this
theorem can be rewritten as

a(my)

da=
47h?

d®r ?()P(r), (13)

where, recalkp(r) is a real quantity. In view of importance of

this theorem, let us make some explaining remarks concern-

ing its proof. The key point here is to represent Ef) in
the form

e

kra but with the coefficients depending on the rdii@. The
derived results prove that the pairwise interaction influences
both the kinetic and interaction energies of a Fermi gas.

IIl. FROM WEAK TO STRONG COUPLING

To go in a more detail concerning Eq4.7) and(18), let
us consider them in various regimes. We speak about weak
coupling when the interaction kerndli(r) is integrable and
the coupling constany<1. The integrable kernel withy
1 and a singular pairwise interaction like the hard-sphere
ntial are related to the strong-coupling regime. The ex-
pansion parametekca involved in the expressions men-
tioned above corresponds to the dilution lirkit— 0. In this
situation one is able to operate with E§) in the both weak-
and strong-coupling regimes. However, in the weak-coupling
casekra can be small due tac y<1, which makes it pos-
sible to rearrange Eq5) in such a way that to derive the
weak-coupling expansion far.

In the weak-coupling regime the scattering lengths

given by the Born series:
a=apg+a,+ (19

with
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my my? dk D3(Kk) all the terms depending oa,. This yields Eq.(5) and the
8= 4ﬂ_ﬁ2¢(k: 0, a=- 47Tﬁ2f 2m3 2T, ' following pseudopotential predictions for the kinetic and in-
k 20 teraction energies:

oo _ _ (b _ 3H°KE 4 2 5
where T,=Ak</(2m) and ®(k) is the Fourier transform of i = om 1 —ﬁ(ll— 2In2kca” |, (24
the interaction kerneffor more detail see Ref33]). Insert- 1 1
ing Eq.(19) in Eq. (5), one gets 5

(s ke[ 10 8 2
3ﬁ2k,2: 10 10 4 e =——| —keat _772(11 -2In2kga“|. (25
&= 1+ —kpag+| —keay + — 10m [ 97 21
10m o 9w 2172

Note that Eqs(24) and(25) can be derived in another way,
_ 2.2 as well. For example, the first term in E@5) is reproduced
*X(11-21n szao)] 29 within the Hartree-Fock approximation used together with
) the pseudopotentidgtee Ref[25] and the next section of the
where the terms of or<_je1/3 are ignored. Noyv the depen—_ present papérAccording to Eqs(24) and(25) taken to the
dence ofs on the particle mass and coupling constant iSjgading and next-to-leading orderskpa, the pairwise inter-
known explicitly. Therefore, we can readily employ the 5ction makes a contribution only to the interaction energy,
Hellmann-Feynman theorem that, taken together with Eqyhich significantly differs from the correct results given by

(21), yields Egs.(17) and (18). Thus, the pseudopotential approach has
3522 10 4 serious limitations due to a problem with the kinetic and
Ein = —F{ - (—kF a, + _ﬂz(ll -21In2k2 aé)] , interaction energies.
10m Om 21 Now let us consider Eqg17) and(18) beyond the weak-
(22) coupling regime, the ratib/a being of special interest. We
start with the simplified situation of the penetratable spheres
3ﬁ2k§ 10 20 8 that is specified by the interaction kernel
in=——| —krpag+| —kra; + —(11
int 10m[9w F 80 <9WF 1 212 ® ifr=r,,
O(r) = . (26)
» 2 0 ifr>rg.
-2In2kéaj] |. (23 . . ,
Inserting Eq.(26) into Eq.(11), one can find
The major part of the~dependent contribution to E¢R1) is 2AsinNar)/r if r <r,,
related toe;,, this part being proportional tg, while terms olr) = 1—alr if 1> rq (27)

of ordery? appear in botf,;, ande;,. This meets the usual
expectations that the pairwise potential does not influencevhere a®?=my ®/#? (®>0) and A is a constant. Equation
practically the kinetic energy of a quantum gase, for ex- (27) taken together with the usual boundary conditions at
ample, Refs[10,15 and the discussion in the Introduction of =r, leads to
Ref. [19]). However, fory=1 the effect of the pairwise in-

teraction ongy, is rather curious and differs significantly

from that of the weak-coupling case. But before proceedingng

to detailed examples, let us consider the pseudopotential pre- L
dictions fore,;, ande;,; being a part of the usual expectations _ _ 2 _

about the imperfect quantum gases. b=ro| 1 2[3 tank(aro)/(ato) - cschlarg)] |, (29)

The standard way of operating with the thermodynamics _ .
of a dilute cold Fermi gas with a repulsive pairwise potential’Vnere csch)=1/cosR(x). One can check that in the weak-

is based on the pseudopotential procedure by Huang arfePuPling regime, whearo y2—0, Eqs.(28) and(29) are
Yang [25]. The key point of this approach is that to go be- educed to

yond the weak-coupling regime, one should replace the Fou- 1 2

rier transform of the pairwise interactioh(k) by the quan- a= §a2r8 <y, b= 1—5a4f(5)°< Y, (30)

tity 47A%a/m in all the expressions related to the weak-

coupling approximation. In so doing, some singular integralsand, henceb<a. This means that the next-to-leading term
appear. Indeed, substituting=4n#%a/m for ®(k) in Eq. in the expansion itkca given by Eq.(5) is mostly the inter-
(14), one gets a divergent quantisy = [d°k/ 2T, that makes action energy, as was mentioned above. On the contrary, in
a contribution to the total energy of the system. To derive theéhe strong-coupling regime, whear,— o, Egs. (28) and
familiar result of Huang and Yang, the divergent term con-(29) yield
nected witha; should be removed, which is fulfilled via a
regularization procedure. In particular, this can be realized

by means of replacing4=#?a/m)(r) by (4whi%a/m)s(r)  Hence,b/a— 1 wheny— +, and the ground-state energy
X (alar)r. Hence, to generalize Eq®1)~(23) to the case of of a dilute Fermi gas with the hard-sphere interaction is
a realistic coupling, one should replaagby a and remove purely kinetic. Note that the same conclusion is valid for a

a=rg1-taniary)/(ary)] (28)

a— ro, b*) ro. (31)
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dilute Bose gas of hard sphergk9,2d. This result can be 30 '
understood as follows. Any particle of the system with the

hard-sphere pairwise interaction moves in a region bounded
by the infinite walls due to the surrounding hard spheres.
This is why its energy and, hence, the total system energy are
purely kinetic in this case, which was first mentioned by Lieb 10 /) .

and Yngvasori34].
A more realistic example concerns a situation when the

<
interaction kernel combines a short-range repulsive sector =T L S S S 1
with a long-range attractive “tail.” It is usually considered
(see, e.g.[35]) that for alkali atoms one can employ the 10k i

following approximation:

+oo  ifr=<rg
d(r) = ' 32 20 ]
® {—C/re if > ro. (32 {\

The scattering length for the pairwise-interaction kernel 30 . s

given by Eq.(32) is of the form(see Ref[36]) 0 2 4 . 6 8 10

alrg = V21 (3/4)J-1/4(X)/[2T (5/4)J1/4(x)], (33 FIG. 1. The ratiob/a versusx=r2/(2r) for the pairwise inter-

wherex=r?/(2r2) with r,=(myC/#?)Y4 whereas],(x) and  action kemnel32), ro=(myC/#?)
I'(z) denote the Bessel function and the Euler gamma func-
tion. We havel,(x)=x"/[2"T'(1+v)] for x—0 [37]. There- is not bound from above. Now let us consider positive values
fore, Eq.(33) reduces t@/ry=1 in this limit. In other words, of the scatterlng Iength given by E(3). As seen from Fig.
when the attractive sector is “switched off,” we arrive at thel,a=0 forx<x andx;, )<x<x For any of these regions
hard-sphere result discussed in the previous paragraph. Fofa=1. In partlcular b/a=3 for x(1)<x<x(1) whereas
x>0 the scattering lengt(B3) is a decreasing function of  p/a=5 for x2)<x<x2) Hence, the mteractlon energy for
with the complicated pattern Of behawor specified by thethe pairwise potenual specified by E@2) is negative even
infinite set of singular point§&”, x’ ...}. These points  for the positive values of the scattering lengi@>0 is
are the zeros ofl;;4(x) so thata—>—oo when x—>x(') 0 and meanj. Moreover, atr./r,>1, when the role of the attrac-
a— +o when x—>x(')+0. In addition, there is also the infi- tive “tail” is significant, we havéds/a> 1. In this situation the
n|te sequence of the zeros of the scattering lengtt¢ontribution of the pairwise interaction to the kinetic energy
O x2 X3} being the zeros ofi_y(x). Note that IS much larger than its contribution to the mean energy.
Hence, the interaction energy is negative in this case and also
much larger, if taken in absolute value, than the sum of the
a-dependent terms in the Huang-Yang result. In view of the

recent consideration of a trapped Fermi g, features of
yoal 9y = DNXI_1/a00/[ 23140 = 20722, (0T}, the ratiob/a near the special points’ andx)’ can be of

(34) particular interest. Imposing a uniform magnetic field, ex-
perimentalists can change the scattering length in such a way

with D=roI'(3/4)/[2%4"(5/4)]. Note that to derive Eq34),  thata approaches the Fesbasch-resonance gaint>) or

x8)<x(')<x'+1) Keeping in mind this information, we can
turn to the ratiob/a for the pair interaction kerne{32).
Equation(33) leads to

the useful formula drops down to zer14,17. In the both situations, as follows
_ from Egs.(17) and(18), we haveb/|a|>1. Note that pas-
Jp41()3-4(%) + I, (X) - (+0)(X) = = 2 sin(7v)/ (77X) sage to the limita—c« in Egs.(17) and(18) is not correct
should be applied37]. Equation(34), taken in conjunction because it violates the expansion conditigfa| <1. On the
with Eq. (15), yields contrary, one can pw=0, which leads to
= [2 A¢ KA
b/a=3/4 + 1[mV231;4(X)I-1,4(X)]. (35) ep(a— 0) = 3lﬁomF N f;_Fb’ (36)
As is seen from Eq(35), in the limit x— 0 we get the hard- mm
sphere resulb/a=1 (see Fig. 1. The quanutyo (recall that
bis always positive remains finite ak= x0 , while b— +o0 B h2ch
for x—x". In the latter situatiorb goes to |nf|n|ty in such a einf@—0) == 3mm (37)

way thatb/|a|—> +o0 though|a| — o for x—x", too. Hence,

M andx " are both singular points df/a. Let us stress that Equations(36) and (37) correspond to an interesting and
the zeros of the scattering length in the case in question havextreme situation: the total energy is the same as for an ideal
nothing to do with the weak-coupling regime for which, re- Fermi gas, while the interaction and kinetic energies taken
call, b/|a] < 1. Operating with the kerng¢B2) we are not able separately have nothing to do with the case of noninteracting
to reach the weak-coupling regime at all because this kerndérmions.
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Thus, the examples given above show that the correct ! ) = * v
results for the kinetic and interaction energies given by Egs. 021, %1%, %)) 2;' Wiy (X0X0) 6,000, %), “D
(17) and (18) differ significantly from the pseudopotential L
predictions(24) and (25). Contrary to a classical imperfect Where itis implied that
gas, the pairwise interaction in the Fermi gas has a profound
effect on its kinetic energy, which well meets the conclusions J A d%E (X1, %0) €, (X1, X0) = 8,
for an interacting Bose gas in Refd.9,20. To go into more v
detail about this feature of the quantum gases and display t
underlying physics, the interaction and kinetic energies o
the uniform ground-state 3D Fermi gas with repulsive forces
are investigated with the help of the in-medium pair wave f AX X0 2(Xg, X3 X1, Xp) = 1 (42
functions in Secs. IV and V. v

om EQq.(39) it follows that

and, hence,

IV. INTERACTION ENERGY VIA THE PAIR 2 w,=1, (43)
WAVE FUNCTIONS v

An essential disadvantage of the derivation of the kineti¢Vhich allows one to interprete the eigenvalugas the prob-
and interaction energies given in Sec. Il is that the importan@bility of observing a particle pair in the state.
microscopic information remains hidden in EgS), (17), Now let us recall that the totgl momentum .of t_he system
and (18). This is why the consideration of Sec. Il is below Of interest, the total system spin, and isprojection are
supplemented by the calculations of the pairwise-interactiomonserved quantitieg39]. As the totalpair momentumaQ,
contribution to iy and &y, via the in-medium pair wave the totalpair spin S, and itsz componentS, commute with
functions(PWF's). Not to go into much detail but outline a the totalsystermmomentum, totabystenspin, and itsz pro-
physical picture, these calculations are limited to the leadingection, correspondingly, they commute with the system
order inkga. _ o ~ Hamiltonian given by Eq(1), too. If so, then one can derive

For the sake of convenience, let us begin with the 'mer'thaté 3 andéz commute with the 2-matrix being permut-
action energy. All the microscopic information concerning 5y, with the Hamiltoniaril). This is why we can choose the
the N-particle system is contained in thid-particle density 8igenfunctions of the 2-matrix in such a way tHag] »

matrix. For the zero-temperature case this matrix is define_{)\ Q,S,md, wheremg is an eigenvalue o8, and\ stands

by for other quantum numbers. Hence, in the homogeneous situ-
ON(XL XD o X X1 X, - XN ation one can arrive asee Refs[38,40)
=W (X, Xp, - X)W (XX, 0 X)), (398 E(X, %) = (1, 0q,00)expliQ - R)/\r’v, (44

whereW(x;,X,, ... Xy is the ground-state normalized wave wherer =r,;—r, andR=(r,+r,)/2. As the in-medium bound
function,x={r , o} stands for the space coordinatesand the  pair states like the BCS pairs are beyond the scope of the
spinz projectiono=+1/2. Toinvestigate the interaction en- present work, then we deal only with the scattering or “dis-
ergy, we do not need to know thé-matrix in detail but can  sociated” pair states. Hences{q,Q,S, mg}, whereq stands

deal with the 2-matrix given by the integral for the relative wave vector. This is why it is convenient to
set by definition
1. — .. * Y
02(Xq, X2 X1, X0) jvd)% dxXyW * (X1, X, X3, - .. Xn) 9,(r,00,09) = @,(r,01,0,)\V (45)

(39) as periodic boundary conditions are implied. Furthermore,
the pairwise interaction does not depend on the spin vari-
where in general ables, which means that,(r,o;,0,) can be expressed as

X W(X1,X5, Xz, - -+ XN) s

f cdx=S f e dPr @,(1,01,02) = @q,0.8(NXsmd01,02). (46)
v oV For the singlet state€S=0) one gets
Let us introduce the eigenfunctions of the 2-mafjkx; , %)

given by Xo,o(ffbffz) == Xo,0(0'2,0'1) (47)
and, due to the Fermi statistics,
JVdxldXZQZ(Xi!Xé;lexz)gv(xlvxz) = Wvgv(xiaxé)v (40) ‘Pq,Q,O(r) = (Pq,Q,O(_ r) = (P—q,Q,O(r)i (48)

wherew,, stands for the-state eigenvalue. These eigem‘unc-whIIe for the triplet wave function$S=1),

tions are usually called in-medium PWH38]. The 2-matrix
can be expressed in terms of its eigenfunctions and eigenval-
ues as follows: and, hence,

X1md(01,02) = X1 m(02,01) (49)
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?q.0.1(N) =~ ¢q01(—T) =~ ¢qa(r). (50)
Forr—c we have
eq0.0(r) — V2 codq 1), (51)
whereas
q.0a(r) — V2sing -1). (52)

Working in the thermodynamic limitN—o, V— oo,
N/V=n=const, it is more convenient to leave the 2-matrix in
favor of the so-called pair correlation function

Fa(X0, %2 X0, X5) = (T (%) 4T (k) O X)), (BI)

where(A) stands for the statistical average of the operﬁtor

and fp*(x) and z:b(x) denote the field Fermi operators. The
pair correlation function differs from the 2-matrix by the
normalization factoKsee Ref[38])

Fa(Xg, X2 X1, %5) = N(N = 1) 05(X1,X5; X1, %), (54)

so thatF, remains finite whilep, approaches zero in the
thermodynamic limit. Indeed, wheWi— o, N—o, N/V=n
—const, Eqs(41) and (54), taken in conjunction with Egs.
(44) and(45), yield

Fa(X1,X2; Xi, Xé)

Fadf *
-3 o pandQeq N eaoslr)

X Xsm(01,02) Xsmd 01, 7)expiQ(R' - R)},  (55)
where the momentum-distribution function
PSms(qu) = V'Lm {N(N - 1)Wq,Q,S,mS} (56)

is finite becaus&s;vq,Q,SmS~1/V2 [this follows from EQ.(43)
whenV—c]. For psm(q,Q) one gets the relation

>

Smg

d’qd’Q
(2m)®

PSmS(an) =n?, (57)

resulting from Eqs(43) and (56).

All the necessary formulas are now discussed and dis.].
played, and we can turn to the calculations of the interaction

energy. Using the expressigsee the textbook28)])

1
Bint = > J dxgdV([r g = 1o )Fa(Xg, Xo; X1, %) (58)

and keeping in mind Eq55), one gets the following impor-
tant relation:

1
Eint= %

provided the equality

d’qd’Q

WpSms(qu)|§Dq,Q,S(r) 2,

drvin) >,

Smg

(59)

PHYSICAL REVIEW A 70, 063618(2004)

> X*sms(Ulyﬂ'z)Xsms(Ul.Uz) =1

01,09
is taken into account. Equatiof®9) directly connects the
interaction energy per fermion with PWF’s and, thus, with
the scattering waves defined by

Ya0.01) = @q00(f) — V2 codq 1) (60)

and

Ya0a(r) = @qoa(r) =2 sing -1). (61)

The scattering waves are immediately related to the pairwise-
potential contribution to the spatial particle correlations. Set-
ting 4,0,0(r)=4,0,1(r)=0 or, in other words, ignoring that
contribution and taking notice only of the correlations due to
the statistics, one arrives at the Hartree-Fock scheme.

So far we did not invoke any approximation when oper-
ating with the 2-matrix and pair correlation functigal].
However, taken in the regime of a dilute Fermi gas, &§)
can significantly be simplified. Indeed, the lower the densi-
ties, the lower the momenta are typical of the system. This
means that the pair momentum distributipgms(q,Q) is
getting more localized in a small vicinity of the poigtQ
=0 whenn— 0. Consequently, the low-momentum approxi-
mation can be applied according to which for-0 we get

d’qd?
@q—aﬂ‘ggpsméqQN@q,qs(r)IZ = ledD) s, (62
where
d®qd®
Nsmg = (Zq—,n_)?ps,ms(an) (63)
and
(64)

eg(r) = lim @qo4(r).
0.0-0 q.Q

From Eqgs.(50) and (64) it follows that ¢g-41(r)=0. This re-
sult, taken in conjunction with the low-momentum approxi-
mation of Eq.(62), makes it possible to conclude that Eq.
(59) reduces fon— 0 to

70,0

2n

he triplet states do not make any contribution to the inter-
action energy in the approximati@62), and this completely
meets the usual expectations.

Now, to employ Eq.(65), one should have an idea con-
cerning ¢o(r) and 7y As to the limiting wave function
@o(r), it can be determined by means of the following simple
and custom arguments. In the dilution limit the pair wave
function ¢4 o <(r) approaches the solution of the ordinary
Schrddinger equation

- (hZ/m)Vzgoquys(r) + V(r)(Pq,Q,S(r) = (ﬁzqzlm)qu,Q,s(r),
(66)

with the boundary conditions given by Eqel8) and (50).
Hence, in the limitn— 0 the quantityey(r) obeys Eq.(11)

d*rv(r)]eo(r)[?. (65)

Eint =
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and ¢,(r) — 2 whenr — . Therefore, fom— 0 one gets a ground-state quantum gas in the leading order of the ex-
= pansion in the dilution parameter. For example, this way was
@o(r) = \2¢(r). (67)  used in the classical paper by Pitaevskii when deriving the

To complete the calculation of the interaction energy, it onlyGross-Pitaevskii equation for the'l order parameter of the
remains to findz,, One can expect that when numbers of B0Se-Einstein condensation in a dilute Bose ggsA more

fermions with positive and negative spiprojections are the €laborated variant, which goes beyond the Hartree-Fock
same, the magnitude gfs, (q,Q) appears to be indepen- framework, requires a more sophisticated choice of pseudo-
S

. . . . potential given by ®3(r)=(4=A2al/m)8(r)(a/ or)r [25]. This
dent of the spin variables. In this case EGs) and(63) give variant makes it possible to calculate the contribution of the

=n?4. 68 pairwise interaction to the total energy in the both leading
smg
. _ _and next-to-leading orders in the dilution parameter. To pro-
Note that Eq(68) can be found in a more rigorous way with vide an illustration, we can limit ourselves to the simplest

the relation choice of pseudopotential. Replacing(r) by V®9(r)
1 =(4mh?a/m)&(r) in Eq. (65) and settingy(r)=0 [¢(r)=1],
V2 A3r 18P o F 5 (Xq, X0 Xq, %) = Ny, No,)» (69 one can fincbi(ﬁf) =h%an/m, which is exactly Eq(25) taken

to the leading order ik-a. This supports the conclusion of
resulting from the definition of the pair correlation function Sec. Ill about the serious limitations of the pseudopotential
(53). Heren :@T(Xl):ﬁ(xl)% To derive Eq.(68) from Eq. procedure due to the wrong results for the kinetic and inter-

(69), one should employ the latter in conjunction with the action energies.

- As was mentioned in Sec. lll, the pseudopotential ap-
explicit form of xsm (e, 02) (see, for example, Ref40)) proach does not yield a correct picture of the short-range

and Eq.(55) and, then, take account of,=(¢(x)¢(x))  boson correlations in addition to the failure with the kinetic
=n/2. Let us stress that E¢68) is not general. For example, and interaction energies in the case of a dilute Bosd 18is
when all the considered fermions have the spjprojection  The same fault can be expected in the Fermi case, as well. In
equal to +1/2, one getg,; 1= n? and 70,0=7,-1= 71,0=0- AS  view of this fact, it is important to remark that the procedure
is seen, in this case the interaction energy resulting from Ethased on PWF’s yields a correct picture of the short-range
(65) exactly amounts to zero: one should go beyond the apparticle correlations. Indeed, from E&5) it follows that the
proximation defined by Eq62) to get an idea about,; of  pair distribution function g(r), defined by g(r)
such a weakly interacting system. Here it is worth noting that (1/n?)S | F,(X;,%;X;,%,), is expressed as

this weak interaction is a serious obstacle that prevents ex-
perimentalists from observing the BCS-like pairing of fermi- _ 1 [ d%d’Q 2

ons due to an extremely low temperature of the BCS transi- g(r) = ) @2n° Psm(@:Q)l¢q. 081" (70)

tion. To strengthen the interaction effects, it was, in ] ) o )
particular, suggestedl15] to complicate the experimental When using the low-momentum approximation in conjunc-
scheme in such a way that fermions with various spmo-  tion with Egs.(67), (68), and(70), Eq.(70) is reduced to
jections would be trapped. In this case the low-momentum g(r) = (1/2)¢X(r), (70
approximation yields a finite result fet,. It is instructive to

go in a more detail about this situation because now it igvhich is correct an—0 and forker <1. This short-range
under experimental investigatidi4]. Here another choice result differs from the corresponding result for a dilute Bose
of the eigenfunctions of the 2-matrix is more convenientdas[19,2Q by a factor of 1/2 appearing due to the Fermi
rather than that of Eq46). The details can be found in the statistics. Note that this factor manifests itself in the total
Appendix. energy, as well. Indeed, the leading term in the dilution ex-

At last, inserting Eqs(67) and (68) into Eq. (65) and  pansion for the total energy of a ground-state uniform 3D
making use of Eqgs(14) and (16), one can deriveg, Bose gas is twice more than the fiesslependent term in the
=mh?n(a—b)/m, which is the leading term of Eq18). It is corresponding expansion for the Fermi ¢ja8]. Contrary to _
worth noting that to calculate the next orders of Etf) by the results of the calculations ba_sed on the pseudopotential
means of PWF’s, one should employ a more accurate procésee Ref[19]), there are no negative valuesgif) at small
dure similar to that developed for a dilute Bose gas in Refsparticle separations when using the 2-matrix.

[19,20. The important point of such a procedure is taking Several remarks need to be added concerning the momen-
account of the in-medium corrections to PWF. Though atum distribution of the “dissociated” paiissm(d,Q). The
complex investigation of this problem is beyond the scope ofalculations resulting in Eq(65) do not involve detailed

the present work, several remarks about the medium effectéhowledge of this distribution. However, its form can be
on PWF’s are made in the next section. completely refined. As was shown in R¢&0], pSmS(q,Q)

Now it is interesting to check if Eq65) yields Eq.(25)  can be determined via the correlation-weakening principle.
when replacingV(r) by the pseudopotentiaV®(r). The  According to this principle the pair correlation function
simplest way of operating with the pseudopotential is toobeys the following relation:
adopt VPY(r)=(4mh%a/m)&(r) in conjunction with the
Hartree-Fock approximation. It allows for calculating the
contribution of the pairwise interaction to the total energy ofwhen

0'1,0'2

Fa(X, %21 %1,X5) — F1(Xq; %) F1(X2;%5) (72
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[ri—ry] —o, |ry—rj=const, |r,—rj =const. function, andn; is the density of the Cooper pairs. We re-
R ~ mark that the “dissociated” pair states are the plane waves in
In Eq. (72) we setF(x1;X;) =(/ (x))#(x})). So the pair mo- the framework of the BCS approadh0]. “Switching off”
mentum distributionps ,(q,Q), which appears in the expan- the pairwise interaction leads to the disappearance of the
sion of F, in the set of its eigenfunctions, can be expressed inn-medium bound stateslgcg(k)=0. In this case there exist
terms of the single-particle momentum distributiop(k)  two branches of the solution of E75): ngcs=1 andngcs
=<a£(k)ag(k)>, which comes into the plane-wave expansion:o. The system acquireg minimal energy if se_lecting the first
for F1. In the case of interest, when the both distributionPranch below the Fermi momentum and taking the second
functions turn out to be independent of spin variables, thi¢ne above, which yields the momentum distribution of the
leads to ideal Fermi gas. When “switching on” the mutual attraction
of fermions, this momentum distribution acquires corrections
psmd@,Q) =n(|Q/2 +q)n(|Q/2 -q]), (73)  due to the right-hand side of E@Z5).

I . Now, keeping in mind these examples, we can assume
where, by definitionn(k)=n,(k). Concluding let us set, for ¢ the relation connecting PW(nore precisely, the scat-
the sake of demonstration(k)=1 for k<kg, n(k)=0 for K (aring parts and bound pair wayesith the single-particle
>kg and return to Eq(62). Inserting Eq.(73) in the right-  momentum distribution is a general feature of any quantum
hand side of Eq(62) and utilizing this single-particle mo- many-pody system. If so, exactly this relation should be re-
mentum distribution of an ideal Fermi gas, we arrive at thesponsible for the influence of the pairwise interaction on the

left-hand side of Eq(62) due toks—0 whenn—0. ~ kinetic energy of the Fermi gas. For the situation in question
Thus, in Sec. IV the interaction energy of the Fermi gasit can be constructed as

was calculated to the leading order kpa “from scratch.”

These calculations yield a result being in agreement with Eq. n(k)[1-n(k)]=L(k), (76)
(18) and provide detailed information about the contribution . .
of the pairwise interaction te;,. Now it is of interest to WhereL(k) stands for a functional ofio s(r). To go in a
display the “mediator” between the pairwise potential andMore detail aboutC(k), let us calculate the kinetic energy,
kinetic energy. A discussion of this subject is given in Sec. V.operating withn(k) of Eq. (76). From Eq.(76) it follows that

{[1 +\V1-4C(K]2 if k<K,
n(k) =

!— . (77)
[1-V1-4Cc(K]2 if k> K,

V. KINETIC ENERGY VIA THE PAIR

WAVE FUNCTIONS
wherefiCe stands for the Fermi momentum in the presence

~ Some hints about the way of treating the problem of theyf the pairwise interaction. The momentum distributiu(i)
influence of the pairwise interaction on the kinetic energyapproaches the Fermi distribution in the dilution limit:

can be selected in the Bogoliubov model of a weakly inter-£ (k) .0, - — k: whenn— 0. Then, forn—0, Eq.(77) is
acting Bose gas and in the BCS model. As was shown iRaqyced to

Refs.[19,2Q, there exists an important relation connecting

the single-boson momentum distributiog(k) with the scat- nk)=[1-LKk)]Oke—k) + L(KOK=-kg). (78)
tering parts of PWF'’s in the Bogoliubov model. For the case ) .
of the ground state this relation is written as Taken together with the familiar formula

na(K[1 +ng(k)] = Ny, (74) =S f %Tkng(k), (79

whereyg(K) is the Fourier transform for the scattering part of

the bosonic PWF'’s corresponding ge=Q=0, andn, stands  Eq. (78) results in

for the density of the condensed bosons. Note that the PWF'’s

with ¢, Q # 0 are the plane waves in the Bogoliubov model 32 2 [ dk

[19,20. When the pairwise boson interaction is being &in= Tom ' n @ka(k) o (80)
“switched off,” jg(k) approaches zero. Atg(k)=0, Eq.(74)

yields the only physical solutiomg(k)=0, which corre- Comparing Eq(17) with Eq. (80), we arrive at

sponds to the ideal Bose gas with the zero condensate deple- 2

tion and kinetic energy. On the contrary, “switching on” the £0) = (147K (n—0). (81)
pairwise interaction results igig(k) # 0. Due to Eq(74), this  This suggests that(k) is indeed a functional of, , «(r).
leads tong(k) #0 and to the kinetic energy dependent on |t is worth noting that substitution of the right-hand side

V(r). of Eq.(81) for £(k) in Eq.(78) yields a good approximation
A similar relation appears in the BCS model. At the zerofor n(k) only whenk=kz. From Eq.(11) it follows that
temperature it can be represenfdd] in the form (k) —1/k? for k— 0, which prevents us from using this
Necd KL~ Nece(K)] = nf:|"95cs(k)|2. (75) substitution in the long-wavelength regime. Hence, to con-

sidern(k) for k— 0, one should go beyond E(B1). In par-
where ngcgk) stands for the single-fermion distribution, ticular, keeping in mind the replacement @f(r) by v2e¢(r)
Uscdk) is the Fourier transform of the Cooper-pair wave in Eq. (65), we can introduce the approximation
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LK) = (n?/8)[ (K7, (82 1-2n(k

_ oK) = T
where (k) is the Fourier transform afi(r) = ¢g(r)—+v2. To (=T
have an idea about E((6) taken together with Eq82), itis ~ This equation is more complicated but similar to E83).
natural to start from the expectation that the Fermi sphere ilndeed, for k—o, Eq. (88) approaches the two-body
completely occupied. In this case E@86) and(82) lead to  Schrodinger equation taken in the center-of-mass frame at
Po(K)=0 atk<Kg=ke. In the region of high fermion mo- zero energy, whereas the contribution of the medium-
menta(reflecting the physics at small particle separatijons dependent terms is significant only fos /Cr. However, the
(k) is not significantly influenced by the surrounding me-important difference is thafy(k) is now suppressed but does
dium and, therefore, is nearly governed by the ordinary twonot vanish inside the Fermi sphere. This is due the fact that
body Schrodinger equation taken in the center-of-mass framéne Fermi sphere is not completely occupied in the presence
and at the zero energy. Combination of these two regimesf the pairwise interaction. It is worth noting that the equa-
results in tion derived by Galitskii[27] for the scattering part of the

“effective wave function of two particles in a mediurfgee
. _ Eqg.(11.39 in Ref.[28]] is exactly reduced to E¢88) when
2Tiaho(k) + Ok~ ke) J dreg(nV(Nexp(=ik 1) =0. Q, q—0. To the best knowledge of the present author, Gal-
itskii did not associate the “effective wave functions” with

(83) the eigenfunctions of the 2-matrix but introduced this name

Note that a jump in the Fourier transform gf(r) at k=kg due to the similarity with the two-body Schrddinger equa-

does not imply a jump off(r) itself. Passing to the space- tion. However, the derived result suggests that the Galitskii
coordinate representationoone is able to rewrite (B8) in “effective wave functions” are actually eigenfunctions of the

the form reduced density matrix of the second order.
Thus, it was shown in Sec. V that the “mediator” between
52 the pairwise interaction and kinetic energy of a ground-state
- —V2p(r) +<po(r)V(r):J A3 @o(r)V(rG(r =r'), uniform repulsive 3D Fermi gas is the relation connecting
m the single-particle momentum distribution with the scattering
(84) parts of PWF’s. A similar relation takes place for the uniform
_ 3 3 ) ] ) ground-state 2D and 3D Bose gases, which results in the

where G(r)= [y« dk/(2m)%exdik -r]. Equation (84) is  appearance of a condensate depletion and nonzero kinetic
nothing more but the simplest version of the Bethe-energy in the presence of the repulsive pairwise interaction.
Goldstone equatiof26] for the pair wave function 8@=q  The mutual attraction of particles has also an effect on the
=0. Hence, the relation between the fermion momentum diSmomentum distribution and kinetic energy of the quantum
tribution and scattering parts of PWF’s is directly connectedyases. However, in this case the scattering parts of PWF's are
with the familiar “veto” upon the appearance of the interme-accompanied by the in-medium bound states. In general, one
diate scattering states inside the Fermi splisee the p. 320 can expect that influence of the pairwise interaction on the
in the textbook in28]). We can now turn to a more accurate kinetic energy of any quantum many-body system is gov-
way of treatingeg(r). The total system energy can be repre-ermed by the relation connecting the single-particle momen-
sented as a functional @fy(r) andn(k) with the help of Egs. tum distribution with PWF's.
(65) and (79). Making a variation of this functional with
respect tayy,(r) andn(k), one gets

d®reo(r)V(r)exp(—ik -r). (88)

VI. CONCLUSION

Ezf _dsk [ZT éh(k)Jr”_z&p*(k) In conclusion, the kinetic and interaction energies of a
V (2m)® k g '° uniform ground-state 3D Fermi gas with a repulsive short-
range pairwise interaction have been calculated up to the
XJ d®r @o(r)V(r)exp(— ik - r)} ] (85) second order in the gas parameéktga. These quantities were
found to depend on the pairwise potential through the two
characteristic lengths. One of them is th&ave scattering
lengtha which also appears in the total energy. Another,
defined by Eq(16), makes contributions only to the kinetic
) « and interaction energies taken separately: the terms depend-
[1 = 2n(k)Jan(k) = (n/8) oK) dik(k) (86) ing onb are mutually canceled in the total energy in the first

which follows from Eq.(76). In addition, the total number of three orders of the expansion ka. The derived results
fermions, N=2[ d%/(2m)3n(k), should not be changed so suggest that when the pairwise potential combines a hard-

that the equation of interest is written in the form sphere core with an attractive “tai(in part_icular, this is
relevant for the alkali-metal atomshe Fermi gas turns out

S(E-uN)=0, (87)  to be an interacting system even @t 0 though its total
energy is equal to that of an ideal Fermi gas. In this dase
where u stands for the chemical potential. Equations+ 0, which results in a nonzero contribution of the pairwise
(85)—87) make it possible to arrive at interaction to both the kinetic and interaction energies. An-

The infinitesimal changeén(k) and 5¢g(k) are not indepen-
dent but related to one another by

063618-10



IMPERFECT FERMI GAS: KINETIC AND.. PHYSICAL REVIEW A 70, 063618(2004)

other interesting situation concerns the resonant regime (6=1) 1/1€\|C , 4 A€
— o0, The contribution of the pairwise potential to the kinetic |st=€—€’> = _E 2/12" )+ 2 € 2/ )
energy near a point of the Fesbasch resonance is much larger v
than the corresponding contribution to the total energy. This 1/le\le ¢ ¢
is due to the fact that the interaction energy is negative in this |X(‘t§)_€,> = —_( ‘ —> - - e'> - ‘ ~— g'> ‘ —>)
case in spite of a positive scattering length. & v2\[2/ ]2 2 2

Thus, contrary to a classical imperfect gas, the pairwise
interaction has a nontrivial effect on the kinetic energy of o= _|¢ _¢ f_g, A2
quantum gases. Experiments with trapped alkali-metal va- |XSZ=€—2€’>_ 2 2 ' (A2)

pors make it possible to check this effect, for example, by ) )

means of the standard technique based on time-of-flight extnere is no degeneracy f@,=¢ an(? S,=¢-2¢', and for

pansion image$l,2] introduced to probe the velocity distri- these stateds =1. While for S,=¢-¢’ two possible eigen-

bution in a trapped atom cloud. states ofS, are present, which is expressed dp, =1,2.
From Eg.(A2) it follows that
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and, hence,

whered%(r) tends toy2 cogq r) for r — . Taken in con-
junction with Eqs.(41), (44), and(45), Eq. (A1) yields
APPENDIX 3
d3qd®Q
Fo(Xq, X2, X1, %0) = 2 ; 6 P(si)(q,Q)
S, 8 ( )

Let us consider a uniform cold 3D Fermi gas made of
particles with the spinf/2 (¢>1 is an odd number the © (129 )
fermions with only two spirz projections being present, say, X|egoFIxs (ar,02)?, (A7)

(/2 and¢/2=¢', where (" is an integer and’’ <. This where passage to the thermodynamic limit is implied. Fur-

situation may be of interest due to the recent experiment . ; . Coo
[14] with the atoms of the fermionic isotof& in an optical ﬁwer, inserting EQA7) into Eq.(58) and keeping in mind the

trap. The total atomic spin i6=9/2 for *%K, and the inco- relation
herent mixture of/9/2,-7/2 and [9/2,-9/2 spin states > |X(sf)(01,02)|2:1,
was investigated in the experiments. In the case under con- 01,09

sideration it is more convenient to choose a set of eigenfunc- .
tions of the 2-matrix in a way different from Sec. IV. We now one can arrive at
chooser=1{q,Q,S,, 5 }, wheresS, stands for the eigenvalues 3

2056/=14.Q. 5, b, wheres, stands for the eig EnlV =2 j v [ S5 00 g)einl.
of S, the z projection of the total pair spin, Wh|lésZ enu- 2 S0 (2m)
merates degenerate stafés more detail, see EqA2) be- (A8)
low]. To simplify the calculations, we do not operate with the
total pair spin here. Note that the same choice of the eigenorking in the dilution limitn,,, ny,-,»—0, one can em-
functions could be used in Sec. IV. Equati@t6) is now of  ploy the low-momentum approximation of E@2). This

the form makes it possible to rewrit&;,, for ng,, Ny —0 in the
form
()DV(r 10-150-2) = ()DE'f)Q(r)X(Si)(O-LO-Z)i (Al) )
Ny_pr
where the spin variable; (i=1,2) takes the value§/2 and EindV = = Jd3rV(r)|<p(2)(r)|2, (A9)

€/2-¢'. In Eq. (A1) the condensed notatiof~ Js, is intro-

duced, and’ is taken as a superscript, to stress the fact that itvhere
is an auxiliary quantity rather than important physical char- Fad®
acteristics. The spin states are specified by () = qdQ 9(q,Q) (A10)

s, T (21m)® Ps,
e\l ;
2 2 1 an
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(5)(r)— I|m (p (r) (A11) d*ad’Q,

(2m)° [P( gr(q Q) +P€ (@, Q)] =Ny

Only the terms corresponding =2 make a contribution to (A14)

the interaction energyA9) in the dilution limit because i js natural to expect thap'” ,(q,Q)=p'>.,(q,Q). Then,
¢!M(r) is exactly equal to zero due to Eq#4) and(A11). ¢ Eqs.(A10) and (A14) we can find (
Following the arguments of Sec. IV one can replace(B§)

by ﬂ(e(i)ef = NeraNgro-r - (A15)
ThUS, fornglz, ng/2_€I—>0 one getS
mt/V 77€ €, f der(l’)cpZ(r), (A12) Eim/V: [4ﬁz(a_b)/m]n€/2n€/2_€r (A16)
and, hence,
with ¢(r) obeying Eq.(11). Now, to get the final result, it E/V = (4ahZalm)ng N -, (A17)
only remains to have an idea abovf_) ,. Equations(A7) )
and(69) lead to Eyin/V = (4mhb/m)ngng ¢ (A18)
At ngp=ngn_=n/2 EQqs.(A16)—(A18) reproduce the results
d*adfQ 5 of Sec. Il taken in the leading order k:a. As was first
E (28 pSZ 9(q, Q)|X )(1,05)]2=n No,Norys pointed out in Ref[15] and follows also from the consider-

ations of Sec. IV and this appendix, trapping of fermions
(A13) with two different z projections of the single-particle spin

allows one to operate with the system, where the effects of

the pairwise interaction are more significant with respect to

provided that the normalization conditicid/V) [y d3f|<P the situation of one spim projection. This simplifies experi-
X(r)|?=1 is taken into accounfsee Eqs(45) and (Al)] mental searches for the BSC phase transitiege, for ex-
From Egs.(A2) and(A13) it is seen that ample, Ref[14)]).
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