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Abstract. Odd powers of the Dirac operator are conformally invariant, if the conformal weight of the field is chosen
appropriately. In the paper, it is shown how to use the invariance properties of the kernel of powers of the Dirac operator
to deduce in a simple way the statement of the (generalized) Fueter theorem.
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INTRODUCTION

The Fueter theorem is a classical fact from Clifford analysis ([1, 2, 6, 11]) going back to the 30’s ([5, 14, 18] and many
authors have contributed to its various generalizations (a sample of them can be found in papers [5, 7, 12, 13, 16, 8,
9, 10] ). The essence of the original theorem is a simple procedure how to construct solutions of the Fueter equation
from a given holomorphic function. In later generalizations, further easy objects (e.g., a homogeneous polynomial of
a certain type) were added to the input data of the construction. So the basic aim of the Fueter-type theorems was to
construct more difficult objects (monogenic functions) from well-known and easy to describe data. Tools for proofs
were always analytic.

The aim of the paper is to show that Fueter-type theorems have a purely representation theoretical origin. They are
direct consequences of the basic fact saying that the Dirac operator (and its odd powers) are conformally invariant
for an appropriate conformal weight. From this point of view, the main idea of the Fueter construction consists of the
following simple fact. Any conformal transformation (or its infinitesimal version) maps solutions of (a power of) the
Dirac equation again to solutions. So it is possible to try to construct more complicated solutions starting from simpler
ones. Maps in the conformal group can be divided into translations, rotations and dilations, and proper conformal
transformations. We shall show that the proper conformal transformations (resp. their infinitesimal forms) can be used
to generate successively more and more complicated solutions of the powers of the Dirac operator. The construction
works in a very general situation but the explicit form of the constructed solutions can be quite complicated. The
Fueter theorem describes a special situation, where the set of constructed solutions have a similar form as holomorphic
functions in plane.

INFINITESIMAL CONFORMAL TRANSFORMATIONS.

The Dirac equation on R
m+1 has a big group G of (first order) symmetries consisting of conformal maps under the

condition that the corresponding fields transforms with a (uniquely) given conformal weight. In geometric terms,
it means that we are not considering functions but densities of a given weight. The group G contains translations,
rotations, dilations and proper conformal transformations. The Lie algebra g of G is isomorphic to so(1,m+ 2). The
algebra g is |1|-graded, i.e., g= g−1⊕g0⊕g1, where g−1 � g1 � R

0,m+1, and g0 � so(0,m+1)⊕R.
The infinitesimal conformal action can be realized by vector fields on R

0,m+1. In such a realization, the space g−1
(infinitesimal translations) has a basis given by derivatives Yi = ∂xi

with respect to coordinates, and elements of g0
(infinitesimal rotations and dilations) are realized by usual angular momenta, resp. by the Euler operator E. A basis
of vector fields Xi (infinitesimal versions of proper conformal transformations) giving a realization of elements in g1
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has a more complicated form and will be computed below. It can be obtained by a composition of inversions and
(infinitesimal) translations. Note that the action of proper conformal transformations depend on a given conformal
weight. Coordinates on R

0,m+1 will be denoted by (x0,x1, . . . ,xm). Let us start first with the definition of (a one
parametric) set of inversions.

Definition 1. If α ∈ C, we define the inversion operator Iα on R0,m+1-valued functions f (x) by

(Iα f )(x) =
x

|x|α f

(
x

|x|2
)
.

It is well known that the action of the inversion operator preserves the space of solutions of the Dirac equation if
and only if α = m+1. It follows from the known classification of conformally invariant operators (see [15, 17]) that
the similar statement is also true for all odd powers of the Dirac operator. The kernel of the operator ∂ 2 j+1 is preserved
by the inversion Iα if and only if α = m+1−2 j. Hence the action of inversions can be used to transform solutions of
powers of the Dirac operator. The transformation Iα ∂xi

Iα is a proper conformal transformation for a (unique) choice
of α. Let us now compute an explicit form of such a vector field.

Lemma 2. The operator X0 = Iα ∂x0 Iα is acting on R0,m+1-valued maps on R
m+1 by

X0 =−|x|2∂x0 + x0(2Ex +α)+ xe0,

where Ex = ∑m
i=0 xi∂xi

is the Euler operator and |x|2 = ∑m
i=0 x2

i .

Proof:
It is sufficient to compute how X0 acts on a homogeneous polynomial Pk of a given order k. We get

Iα Pk =
x

|x|α+2k
Pk, ∂x0(Iα Pk) =

e0

|x|α+2k
Pk− (α +2k)

xx0

|x|α+2k+2 Pk +
x

|x|α+2k
∂x0 Pk,

Iα(∂x0(Iα Pk)) = xe0 Pk +(α +2k)x0Pk−|x|2∂x0 Pk.

�
It is an important fact that the operator X0 together with the partial derivative Y0 = −∂x0 generate an sl(2,R)

subalgebra in the conformal Lie algebra so(1,m+ 2). The spaces of monogenic functions, which we shall construct
using the Fueter type theorem are modules for this Lie subalgebra sl(2,R).

Lemma 3. The triple {X0,Y0,H} defined by

X0 = Iα ∂x0 Iα ; Y0 =−∂x0 ; H = 2Ex +α−1

satisfies the standard sl(2,R) commutation relations [X0,Y0] = H, [H,X0] = 2X0, [H,Y0] =−2Y0.

Proof:
The commutation relations of X0 and Y0 with the shifted Euler operator H are obvious and[

∂x0 ,−|x|2∂x0 + x0(2Ex +α)+ xe0
]
=−2x0∂x0 +(2Ex +α)+2x0∂x0 −1 .

�

CONFORMAL INVARIANCE OF ∂ 2 j+1

The Dirac operator and its odd powers are conformally invariant for an appropriate conformal weight (see [15, 17, 3]).
In particular, the action of the element X0 = Iα ∂0Iα preserves the space of solutions of the power ∂ 2 j+1 of the Dirac
operator, if α = m−2 j+1. The action of X0 may be used to create more complicated solutions from a simple one.

Generalizations of the Fueter theorem are usually stated, in fact, for the Cauchy-Riemann operator D instead of the
Dirac operator ∂ . For its definition, we have to break the SO(0,m+ 1) invariance down to SO(0,m) by a choice of a
direction in R

m+1, say, e0. The Cauchy-Riemann operator D is then defined by D =−e0∂ = ∂x0−∑i e0ei∂xi
. It is often

formulated in terms of the para-vector variable x0 +∑m
i=0 fixi, fi =−e0ei, then D = ∂x0 +∑i fi∂xi

. Every solution f of
the Dirac equation ∂ f = 0 is, of course, also the solution of the Cauchy-Riemann equation D f = −e0∂ f = 0, and
vice versa. The same statements remains also true in higher dimensions.
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THE FUETER THEOREM IN QUATERNIONIC ANALYSIS

The main idea of a Fueter type theorem came from the following disappointing fact in quaternionic analysis. Let H
denote the field of quaternions. It was immediately found that, contrary to the holomorphic case, the quaternionic
powers qk,q = q0 + i1q1 +q2i2 +q3i3 ∈H are not monogenic, i.e., they do not satisfy the Fueter equation

D f = (∂0 + i1∂1 + i2∂2 + i3∂3) f = 0.

But Fueter noted that Δ(qk) are monogenic ([5]). This gives immediately the model form of the Fueter theorem. Let
us define the Fueter map Φ from the space of holomorphic functions in the plane to functions of quaternionic variable
as follows. If f (z) = f0(x0,x1)+ i f1(x0,x1),z = x0 + ix1 is a holomorphic function in the plane, then the value Φ( f ) is
defined by

Φ( f )(q) = f0(q0,r)+ω f1(q0,r), ω =
q

|q| , q = i1q1 + i2q2 + i3q3, r = |q|=
√

q2
1 +q2

2 +q2
3.

Then the Fueter theorem is stating that if f (z) is a holomorhic function in the plane, then Δ(Φ( f )) is monogenic,
i.e. D(Δ(Φ( f ))) = 0. Note that the function Φ( f ) is not necessarily defined in the whole space R

0,m+1, it can have
singularities due to the factor ω . Indeed, let f (z) be a holomorphic function represented by its Taylor series

f (z) = ∑
k

ak zk, ak = bk + ick

is a holomorphic function on the domain of convergence of the series, then the coefficients ak = bk + ick are mapped
by Φ to bk +ωck and can have singularities.

We can write f as f (z) = g(z)+ ih(z), g(z) = ∑k bkzk, h(z) = ∑k ckzk. The functions g and h in the decomposition
are characterized by the property that their values on R are real. The Fueter map then satisfies Φ( f ) = Φ(g)+ωΦ(h).
Hence Φ is only R-linear and images of polynomials are no more polynomials in general. There is an alternative
version of the Fueter theorem (which is a special case of the general theorem discussed below).

Theorem 4. Let us suppose that f (z) = ∑k ak zk is a holomorphic function in the plane, then ΔΦ̃( f ) is monogenic,
where Φ̃( f ) := ∑k ak qk.

Hence if f = g+ ih is the decomposition above, then Φ̃( f ) = Φ(g) + iΦ(h). Note that Φ̃( f ) has values in the
complex Clifford algebra Cm+1 and is C-linear.

There is a close relation between both formulations. The function ΔΦ( f ) is monogenic for all f holomorphic if and
only if the same is true for Φ̃( f ) and ωΦ̃( f ) for all f holomorphic.

A GENERAL FORM OF THE FUETER THEOREM

We shall now state a general form of the Fueter theorem in higher (even) dimensions. Let m + 1 be even. Let
us consider the plane R

2 with coordinates z = x0 + ix1. Vectors in R
0,m+1 are identified with the vector variable

x = e0x0 + x,x = ∑m
i=1 eixi and we shall introduce the expression −e0x = x0 +∑m

i=1 eie0xi.

Theorem 5. Let P�(x) be a homogeneous polynomial of order � with values in the Clifford algebra R0.m+1, depending
only on the variables x1, . . . ,xm. Let f (z) = ∑k akzk,ak ∈ C be a holomorphic function in the plane.

Then
∂ m+2�(Φ̃( f )P�) = 0, Φ̃( f )(x) = ∑

k

ak(−e0 x)k,

hence Δ
m−1

2 +�(Φ̃( f )P�) is monogenic in R
0,m+1. The same is true for the function ωΦ̃( f )P� instead of Φ̃( f )P�.

Note that the word monogenic in the theorem above means that the function is in the kernel of the Dirac operator ∂
as well as in the kernel of the Cauchy-Riemann operator D.
Proof

Let us show first that any power (−e0 x) j, j ∈ N is in the kernel of the operator ∂ m = ∂Δ
m−1

2 . The kernel of the
operator ∂ m is invariant under the action of the inversion Iα for the special value α = 2. The constant function 1 is in
the kernel, hence the same is true for

(X0)
j(1), j ∈ N, X0 = I2∂0I2.
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Let us denote x = ∑m
k=1 ekxk. Using the explicit form of the operator X0, we get

[−|x|2∂0 + x0(2E+2)+ xe0]
(
(x0− e0 x) j

)
=

=−|x|2 j (x0− e0 x) j−1 +2( j+1)x0 (x0− e0 x) j− (x0 + e0x)(x0− e0 x) j =

= (x0− e0 x) j−1( j+1)
(
x2

0−2e0x0x−|x|2)= ( j+1)(x0− e0 x) j+1.

Hence we get by induction that
(X0)

j(1) = j!(−e0 x) j, j ∈ N

is in the kernel of the operator ∂ m. By C-linearity, the same is true for the function f (−e0 x), if f is a polynomial.
Let us now discuss the case of the function Φ̃( f )P�, where f (z) is a polynomial. Let α = 2−2�. We know that the

kernel of the operator ∂ m+2� is invariant with respect to the action of Iα . Hence the operator X0 = Iα ∂x0 Iα is preserving
the kernel of the operator ∂ m+2�. Now for any polynomial f (z)

Iα [ f (−e0 x)P�] =
x

|x|2−2�
1
|x|2� f

(−e0 x

|x|2
)

P�(x) = I2 ( f (−e0 x))P�(x).

Similarly, we get that X0[ f (−e0 x)P�] = I2∂x0 I2 ( f (−e0 x))P�(x). We know that for f (z) = 1, the function P� is in
the kernel of ∂ m+2�. Hence again by induction the same is true for any power f (z) = z j and by linearity for any
polynomial f .

The case of f holomorphic is then treated by taking the limit of holomorphic polynomials.
To prove the second statement of the theorem, it is sufficient to show that ωP� is also in the kernel of ∂ m+2� and to

apply the same procedure as above. But P� depends only on coordinates in R
m and the kernel of the operator ∂ m+2� is

invariant with respect to I1−2�. Hence I1−2�(P�) =
x
|x|P� = ωP� is also polymonogenic of order m+2l in R

m−{0} and
thus also in R

m+1−Re0, since ωPl does not depend on x0.
The usual form of the Fueter theorem (using the Fueter map Φ) is then just a simple consequence.
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