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Exploring The λ Copula Construction Method for Archimedean
copulas : Discussion of Three λ Types

Frederik Michiels , Inge Koch and Ann De Schepper

University of Antwerp∗

We introduce and discuss a new parametric copula builder which is named the “λ construction
method”. The methodology is explained and illustrated using 3 types of λ functions. It shows that the
λ method has strong visual advantages for recognizing key dependence characteristics and importing
them into the copula model. Furthermore, the λ method facilitates the representation of a copula
family as a collection of comparable test spaces as defined in Michiels and De Schepper (2008). As
such, the modeling capacity of these families is discussed in a clear way.

Keywords: copula, Kendall’s τ , multiparametric Archimedean copula family, tail depen-
dence

AMS Subject Classification: 62H20, 62P05, 62H12

1. INTRODUCTION

During the last decades, the research in the field of dependencies has gained a lot by the use of copulas.
A copula in fact is nothing else than a mathematical expression allowing to split up a general joint
distribution into the margins and the mutual dependence between the factors, but due to the fact
that is a very flexible tool, it has become almost impossible to imagine dependence modeling without
copulas nowadays.

When a practioner is faced with a modeling problem in a certain application, be it in finance,
biostatistics, hydrology, geostatistics or another discipline, the basic problem is to obtain the best
possible fit for the observed dependence structure. One possibility is to choose among existing copulas
for the one which performs best according to a goodness-of-fit test. For the choice of the copula, one
could look e.g. at the observed value of the concordance in the data, or at striking characteristics
of the observed dependence like symmetries, or one could work with comparable test spaces as we
suggested in a previous paper (see Michiels and De Schepper (2008)). Another possibility consists of
the construction of a new “ideal” copula, on the basis of a number of parameters that can be estimated
from the data.

In this paper we want to contribute to this last domain, by presenting a new method of constructing
multiparametric bivariate Archimedean copula families. More specifically, we will show how such new
families can be built and we will discuss the advantages of this approach. The central item in our method
is the function λθ(t) = ϕθ(t)

ϕ′
θ
(t)

(t ∈ [0, 1]), where ϕ is the generator of the Archimedean copula, such that

C(u, v) = ϕ
[−1]
θ {ϕθ(u) + ϕθ(v)}, with u, v ∈ [0, 1] and ϕ[−1] the pseudo-inverse of the generator. See

section 2 for a brief summary about these concepts.

∗Faculty of Applied Economics, Departement of mathematics, Statistics and Actuarial Sciences. The authors
would like to thank Johan Segers for his relevant suggestions on a preliminary version of this article.
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The first important advantage of our construction method can be found in the clear link with
Kendall’s τ , due to the relation τ = 1 + 4

∫ 1

0
λθ(t)dt. As a consequence, for any (estimated) value of τ

and for any feasible function λ, the possible Archimedean dependence structures can be explored. A
second advantage of the construction method, related to the previous one, is the possibility to explicitly
import Kendall’s τ as the concordance parameter into the copula function. Next, all parameter ranges
can be obtained in function of τ , so parameter interpretation becomes straightforward. Finally, it will
turn out that our method has also strong visual advantages (see section 4).

The method is explained by a full elaboration of the construction method for three types of λ

functions: polynomial functions, rational functions and logarithmic type functions. For the first two
λ types, examples with and without intercept are being discussed; for the third type only examples
without intercept are presented. For each family, we will derive the parameter ranges and expressions
for the tail dependence measures. Furthermore, the power of the visual interpretation of the λ function
is shown by studying the effect of a change in the parameters of λ on the simulated (U , V ) observations
from the affiliated copula. We also compare the modeling power of the three λ types by looking for
parallels and differences, e.g. according to the possible lower tail and upper tail combinations. Finally
we present an overview of the modeling strengths and weaknesses of the λ types. Because the emphasis
in this working paper will be on the methodological aspect of the construction method, both strict
and non-strict copula families will be discussed, although the latter have never been used for fitting
applications.

The paper is organized as follows. In section 2, a brief summary is given about basic copula theory
including the most important copula properties in relation to fitting applications. Next, in section 3,
we introduce and discuss the λ method of copula construction. Together with section 4, this is the main
part of the paper. In the fourth section, the three λ types are presented, worked out and compared
with each other. The visual power of the different λ functions is illustrated by means of a number of
simulations. Section 5 concludes.

2. BASIC CONCEPTS

We start with the definition and the most important theorem for copulas. We use the symbol I to
denote the unit interval [0, 1].

Definition 1 A bivariate copula is a function C : I2 → I with the following properties:

1. C is 2-increasing, or for all u1 ≤ u2, v1 ≤ v2 ∈ I it is true that C(u2, v2)−C(u2, v1)−C(u1, v2)+
C(u1, v1) ≥ 0.

2. C is grounded, or C(u, 0) = C(0, v) = 0 for all (u, v) ∈ I2.

3. C has uniform [0, 1] margins, or C(u, 1) = u and C(1, v) = v for all (u, v) ∈ I2.

In fact a copula represents the link between the marginal distribution functions and their joint aggregate.
This link can be formalized through the following theorem:

Theorem 1 (Sklar’s theorem) Let H be a bivariate joint distribution function with margins F and G.
Then there exists a copula C in such a way that H(x, y) = C(F (x), G(y)) for all (x, y) ∈ R̄.

If F and G are defined continuously, then C is unique. If not, then C is unique on imF×imG.
Conversely, if C is a copula and F and G are distribution functions, then H is defined as indicated
above.

Sklar’s theorem withholds two important facts which are of great value to dependence modeling.
The first one includes the observation that copulas facilitate the construction of bivariate distribution
functions, in the sense that any combination of margins can be chosen to build their bivariate aggregate.
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The second one entails the observation that any bivariate distribution function can be split up into a
part only containing information related to the respective variables, the margins, and into a part which
captures the dependence structure inherent to the multivariate distribution function, the copula.

A copula usually belongs to one or more copula families. These families are characterized by
one or more parameters. When a copula family entails both the Frechet lower bound W (u, v) =
max(u+v−1, 0) and upper bound M(u, v) = min(u, v) and also the independence copula Π(u, v) = uv

it is called comprehensive. Typically a bivariate copula family has one parameter, which determines
the degree of dependence the system displays. Additionally, the copula parameter can also be used to
display the degree of tail dependence inherent to the system ( provided the tail dependence is parameter
dependent). But clearly, there is a one-on-one relationship here between the degree of dependence
and the degree of tail dependence or any other parameter dependent copula property. Alternatively,
bivariate copula families with multiple parameters can be defined. A multiparametric system typically
allows more degrees of freedom when modeling dependence, as it, apart from its dependence parameter,
also can control e.g. tail dependence properties for a given degree of dependence.

In this paper we will focus on a well-known class of copula families, the Archimedean copula class.
This class is characterized by a generator ϕ, a function which facilitates the construction, parameter
estimation and simulation of copulas. For this reason Archimedean copulas form an important copula
class and find a wide range of applications. The copula generator ϕ and its pseudo-inverse are defined
in the following way:

Definition 2 A generator ϕ is a continuous, strictly decreasing convex function defined on I and image
[0,∞). If ϕ(0) = ∞ then the generator is called strict. The pseudo-inverse of ϕ is the function ϕ[−1]

with support [0, ∞ ) and image I, given by

ϕ
[−1] =

{

ϕ−1(t), 0 ≤ t ≤ ϕ(0)
0, ϕ(0) ≤ t < ∞ .

With this generator the Archimedean copula can be defined as follows:

Definition 3 A bivariate Archimedean copula with generator ϕ is the function C : I2 → I defined as:

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)).

If ϕ[−1] has an explicit form, the Archimedean copula can also be written in a closed form. This is
generally the case for most known one-parametric Archimedean copula families (see Nelsen (2006) for
an overview). An important aspect of the dependence structure is the dependence in the tails. In this
respect, the coefficients of tail dependence (see Joe (1997)) are a powerful tool.

Let X and Y be continuous random variables with margins F and G, respectively.

Definition 4 The upper tail dependence parameter λU is the limit (provided it exists) of the conditional
probability that Y is greater than the t-th percentile of G given that X is greater than the t-th percentile
of F as t approaches 1, i.e. λU = limt→1−P [Y > G[−1])(t)|X > F [−1](t)].
The lower tail dependence parameter λL is the limit (provided it exists) of the conditional probability
that Y does not exceed the t-th percentile of G given that X does not exceed the t-th percentile of F as
t approaches 0, i.e. λL = limt→0+P [Y ≤ G[−1](t)|X ≤ F [−1](t)]

Nelsen (2006) shows that the tail dependence parameters λL and λU only depend on the derivative
diagonal section δC of a copula.

Lemma 1 If the diagonal section of a copula is defined as δC(t) = C(t,t), t ∈ [0, 1]), the tail dependence
parameters can be obtained as follows

λU=2−limt→1−
1−C(t,t)

1−t
=2 − δ

′

C(1−)
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λL=limt→0+
C(t,t)

t
=δ

′

C(0+).

Indices of regular variation are closely related to the classic tail dependence coefficients. For a sound
analysis of these quantities we refer to Charpentier and Segers (2008).

Definition 5 Let C be an Archimedean copula with generator ϕ. The index of regular variation at

zero is defined as θ0 := − lims→0
sϕ′(s)
ϕ(s)

such that lims→0
ϕ(st)
ϕ(s)

= t−θ0 , t ∈ (0,∞). The index of regular

variation at one is defined as θ1 := − lims→0
sϕ′(1−s)
ϕ(1−s)

such that lims→0
ϕ(1−st)
ϕ(1−s)

= t−θ1 , t ∈ (0,∞).

Charpentier and Segers (2008) show that the tail dependence parameters λL and λU can be written
by means of these indices.

Lemma 2 An alternative expression for the coefficients of tail dependence λL and λU in terms of θ0

and θ1 is

λU = 2 − 21/θ1

λL = 2−1/θ0 .

A transparent way of representing copulas, is by visualising their level curves.

Definition 6 A level curve is defined as the function C(u, v) = t for t ∈ [0, 1] and (u,v) ∈ I2.

By studying the level curves we get more insight about the distribution of the probability mass or
C-measure below, on and above the level curves, i.e. the probability of drawing random variables U , V

from the subsets of I2 below, on and above the level curves. For more information, see Nelsen (2006).
Related to this subject we define a second characterisation. It is concerned with the property of having
a non-empty zero set Z(C), since it determines the proximity of the zero curve to the countermonotonic
curve which has C-measure 1.

Definition 7 The zero set is defined as the set Z(C) = {(u, v) ∈ I|Cθ(u, v) = 0}.
This zero set Z(C) might contain positive area which naturally influences the shape of the copula.
Additional to Z(C) the C-measure of the zero curve ϕ(u) + ϕ(v) = ϕ(0), which will be denoted as C0,
can be nonnegative for non-strict generators. Hence, it can be used as indicator for its shape.

3. THE λ METHOD

We now turn to a specific aspect of the study of Archimedean copula functions, namely their construc-
tion. It must be clear that an Archimedean copula can be obtained in a straightforward way. Indeed, if
one defines a feasible generator ϕ one immediately has a feasible (implicit or explicit) copula. However,
the ϕ function is not visually informative and as such it is, in our opinion, not the best choice for
constructing a copula. Besides, the functional form of ϕ does not provide a priori information on Cϕ.
This can be explained by the following observations:

• Every generator function ϕ can be rescaled by a constant c > 0.

• The tail dependence coefficients rely on Cϕ, or on ϕ and ϕ[−1].

• The C-measure of the zero curve depends on ϕ and ϕ′.

• The parameter range of ϕ, in terms of τ , depends on ϕ and ϕ′.

It should be clear that a construction method that makes it possible to deal with these concerns,
would create an interesting alternative to the ϕ method. Therefore, we want to explore such a con-
struction method based on the λ function. It will be shown that this function does entail all the
visual information necessary to fully understand the resulting copula function. We first give a brief
characterization of the λ function. Next we explain the λ copula construction method.
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3.1. The λ function

The λ function was introduced in Genest and Mackay (1986). In general the relationship between the
copula parameter and Kendall’s τ reads as

τ = 4

∫ ∫

I2

C(u, v)dC(u, v) − 1. (1)

Genest and Mackay showed that this expression can be written in terms of the generator ϕ and its
first derivative ϕ′, or

τ = 1 + 4

∫ 1

0

λ(t) dt (2)

where

λ(t) =
ϕ(t)

ϕ′(t)
. (3)

As such the λ function provides the geometrical interpretation between the copula and Kendall’s
τ . In Figure 1 a graph of the λ function is shown in the Kendall’s τ space which is naturally bounded
by the λ versions of the Fréchet bounds W (u, v)=max(u + v-1, 0) and M(u, v)=min(u, v). Another
important advantage is that the value of the intercept λ(0) is in fact the C-measure of the zero curve
of the non-strict copula (see Theorem 4.3.3 in Nelsen (2006)).

Figure 1: Geometrical interpretation between the copula and Kendall’s τ .
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It must be clear that the λ is more informative than the generator function ϕ. If we return to the
four observations earlier in the text, we can already mention two important facts about the λ function:

• The C-measure of the zero curve is fully determined by λ,

• There is a straightforward relation between τ and λ.

Also the second observation made earlier, concerning the tail dependence coefficients, can be solved
by means of the λ function. Therefore we use a result from Charpentier and Segers (2008) to redefine the
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coefficients of upper and lower tail dependence as a function of λ. As such, tail dependence properties
can be studied by analysing the λ function. We first state the following results:

Lemma 3 For any strict Archimedean copula, it is true that

• λL = 0 ⇔ λ′(0+) = −∞
• λL = 1 ⇔ λ′(0+) = 0

• λU= 0 ⇔ λ′(1−) = 1

• λU= 1 ⇔ λ′(1−) = 0.

This result can be proved when looking at the diagonal section (see Lemma 1) for the Fréchet upper
bound M and the independence copula Π(u, v)=uv. Note that for a non-strict copula it is possible
that λ′(0+) < 0.

From Charpentier and Segers (2008) we recall the result that the coefficient of upper tail dependence
λU is determined by the index of regular variation θ1 of ϕ in 1. In a similar fashion the coefficient of
lower tail dependence λL is determined by the index of regular variation θ0 of ϕ in 0. Consequently
the following holds:

Lemma 4 For any Archimedean copula it is true that

θ0 = − 1
λ′(0)

θ1 = 1
λ′(1)

.

Corollary 1 As a consequence of Lemma 2 and Lemma 4, the coefficients of tail dependence of an
Archimedean copula can be rewritten as

λL = 2λ′(0+)

λU = 2 − 2λ′(1−).

As such a third observation can be made:

• With the alternative definition the tail dependence coeffiecients are completely determed by λ.

A final advantage of the λ function is the fact that it can be used to assess the goodness-of-
fit of a (non)parametric copula. This was first proposed in Genest and Rivest (1993), where the
relationship between λ and K, with K(t) = P (C(u, v) ≤ t) the copula distribution function, is given
by λ(t) = t − K(t). As such, an empirical λ function can be obtained and directly fitted on using
observations coming from K. In a more recent paper by Genest et al. (2007) two goodness-of-fit
statistics on K are being discussed and are proven to be powerful. Finally, in a paper by Lambert
(2007) the λ function is fitted on nonparametrically, using the method of splines in a fitting application.

As conclusion we state that the λ function gives a very good picture of the bivariate copula. Not only
does it provide valuable information regarding copula characteristics, it can also be used to assess the
goodness-of fit of a copula. Furthermore, simulations of the copula can be done by using the generator
based algorithm by Genest and Rivest (1993).
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3.2. The λ copula construction method

We now explain how the λ function can be used in order to construct an Archimedean copula (space).
As a first step, we note that from (3) we can recover ϕ by solving the differential equation. This yields

ϕ(t) = ϕ(t0)e
∫ t
t0

1
λ(z)

dz
(4)

for 0 < t0 < 1. This function is properly defined, see e.g. Genest and Rivest (1993). Of course not
any arbitrarily chosen function λ will lead to a function that represents a generator of an Archimedean
copula. In order to define a feasible ϕ some restrictions need to be imposed on λ (see also Lambert
(2007)).

Property 1 The function ϕ as in (4) will be a well-defined generator function, provided that λ is a
continuously differentiable function with domain [0, 1] for which is true that

R1 λ(0) ∈ [-1, 0]

R2 λ(1)= 0

R3 λ(t) < 0, t ∈(0, 1)

R4 λ′(t) < 1, t ∈(0, 1).

Proof.
By construction ϕ(t) = ϕ(t0)e

∫ t
t0

1
λ(z)

dz
with 0 < t0 < 1 assures ϕ(t) ≥ 0. The fact that λ

is continuous differentiable assures ϕ to be continuously differentiable. From restriction R3 we de-
rive λ(t) < 0, t ∈ (0, 1) ⇐⇒ ϕ(t)

ϕ′(t)
< 0, t ∈ (0, 1) ⇐⇒ ϕ′(t) < 0,t ∈ (0, 1) ⇐⇒ ϕ strictly de-

creasing on (0,1). From restriction R4 we derive
(

ϕ(t)
ϕ′(t)

)′
< 1, t ∈ (0, 1) ⇐⇒ 1 − ϕ(t)ϕ′′(t)

(ϕ′(t))2
< 1,

t ∈ (0, 1) ⇐⇒ ϕ′′(t) > 0, t ∈ (0, 1) ⇐⇒ ϕ is strictly convex on (0,1). From restriction R2 we derive

λ(0) = 1 ⇐⇒ ϕ(1)
ϕ′(1)

= 0 ⇐⇒ ϕ(1) = 0 (since ϕ′ is negative and strictly increasing on (0,1)). Restriction

R2-R4 combined guarantee 1 − t ≤ λ(t) ≤ 0 for t ∈ (0, 1) and consequently ϕ(0) ∈ [−1, 0].

As such restriction R1 is superfluous but from a construction point of view it facilitates the choice
for the parametric λ form and the derivation of the parameter ranges. Note that the generator can
only be strict if λ(0) = 0, but the fact that λ(0) = 0 does not guarantee in advance the strictness of
the generator.

Any λ function satisfying these requirements will provide a valid copula generator. As such it is
arguable that any empircal dependence function C can in fact be represented by an Archimedean
copula through (4). If the λ function itself is symbolically integrable, it will be possible to directly
import Kendall’s τ as the concordance parameter into the system. If the reciprocal form 1

λ
is sym-

bolically integrable, a closed form generator can be obtained, which is practical for means of simulation.

An extra advantage of the λ method is its capability to generate and study comparable Archimedean
test spaces. A comparable test space is introduced in Michiels and De Schepper (2008) and refers to a
collection of copulas that are able to describe a certain degree of dependence and which can be used
together in a fitting application. Indeed, by making a restriction on τ it is possible to obtain the vast
Archimedean comparable copula space for τ value τ∗ by solving the following mathematical problem

find λθ(t) for θ = f(τ∗)

subject to:

λθ(0) ∈ [−1, 0]
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λθ(1) = 0

λθ(t) ≤ 0

λ′
θ(t) ≤ 1

for t ∈ [0, 1], τ∗ ∈ [−1, 1]

which allows to obtain every possible (Archimedean) dependence structure per degree of dependence.
Of course, in order to solve this mathematical program, it is necessary to refine the objective function,
by fixing a functional form for λ. This will be subject of section 4, where we suggest, argue and elaborate
several possibilities. We will do this by defining multiparametric λ functions. If the parametrization is
not too complex, it will be possible to represent the copula as a collection of comparable test spaces.
It will also be possible to write all parameters in function of τ . As such, the concordance ordening of
the copula family is straightforward, as C1,θ=f(τ1) ≺ C1,θ=f(τ2), ∀τ1 ≤ τ2.

Although it seems very promising to depart from the λ method to study the Archimedean copula
space and to construct multiparametric families, as far as we know it has not been done in the literature.
In the following section we will show how this method can be used to generate general Archimedean
copulas. We will investigate 3 types of λ functions and we will explore their associated Archimedean
copula spaces.

4. THREE TYPES OF MULTIPARAMETRIC λ FUNCTIONS

We now discuss three types of λ functions: the polynomial λ, denoted as λ(POL), the rational λ, denoted
as λ(RAT ) and the log inspired λ, denoted as λ(LOG). We will illustrate the procedure by means of
examples of low complexity. As already mentioned in the introduction, the focus of this paper lies on the
methodology, and therefore also examples containing non-strict copulas will be considered. We discuss
parameter interpretations, partially by means of the coefficients of tail dependence. The obtained
multiparametric families will be represented as collections of comparable test spaces, which facilitates
the parameter interpretation. The practical use of the λ function as a representative of the dependence
function will be shown by comparing the characteristics of the λ function and the characteristics of the
simulated (U, V ) ∼ Cλ pair. Wherever possible, we generalize properties for n-parametric λ functions.

4.1. Polynomial configuration

Polynomial λ’s are first class candidates for constructing multiparametric Archimedean families, since
both their functional form f as their reciprocal form 1

f
are symbolically integrable. Another advantage

of the polynomial class is that it is very wide. We will discuss two types of λ(POL): polynomials with
intercept, denoted as λ(POL,1), and polynomials without intercept, denoted as λ(POL,2).

4.1.1. Polynomial λ with intercept

Polynomial λ’s with intercept generally create non-strict Archimedean copulas. We will discuss this λ

type by considering a three parameter 2nd degree polynomial:

λ(POL,1)(t) = α + βt + γt2.

Note that for α = 0 the resulting copula family will be strict and is known as family (4.12) in Nelsen
(2006). For −1 ≤ α < 0 the copula will be non-strict. When incorporating the restrictions on the λ we
get

R1: λ(0) = α ⇒ α ∈ [−1, 0]

R2: λ(1) = α + β + γ ⇒ γ = −α − β
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R3: satisfied if

λ is convex ⇔ γ ≥ 0

λ is concave ⇔ γ ≤ 0 and β ≥ −2γ

R4: satisfied if β ≤ 1 − 2γ

Note that from restriction R2 we already lose a parameter, so this basically is a two parameter
system. From (2) we deduce 6α + 3β + 2γ = 3(τ−1)

2
. Combining this relationship with R2 we get

β(τ, α) =
3

2
τ − 3

2
− 4α (5)

γ(τ, α) = −3

2
τ +

3

2
+ 3α. (6)

The convexity of λ (R3) results in an additional lower bound for α : max(−1, τ−1
2

) ≤ α ≤ 0.
Restriction R4 leads to an additional upper bound for α: max(−1, τ−1

2
) ≤ α ≤ min(0, 3τ−1

4
).

When λ is concave R3 leads to a different lower bound for α : max(−1,
3(τ−1)

4
) ≤ α ≤ 0. Summa-

rizing the global α range can be expressed in terms of τ in the following way:

α ∈ [
1

2
(τ − 1), min(

1

4
(3τ − 1), 0)]. (7)

All parameters are now written as a function of τ . Moreover, β and γ leave the system due to (5)
and (6). A comparable test space can be obtained by first fixing a τ value and then obtaining the λ

functions which accord to the feasible α range. It can easily be checked that this 2nd degree polynomial
can generate comparable test spaces over the complete τ ∈[−1, 1] range. For τ ∈ [ 1

3
, 1] the λ function

can generate one strict copula per τ value (when α =0). For τ < 1
3

the λ function only generates
non-strict copulas.

The tail dependence properties can be studied using

λL = 23(τ−1)
, (only in case α =0) (8)

and
λU = 2 − 2

3
2
(1−τ)+2α

. (9)

The λ function leads to the following copula generator:

ϕτ,α(t) =
(

1−t
(1+µ)t−α

) 1
µ

with µ = − 3
2
τ + 3

2
+ 2α.

(10)

As can be seen from its functional form, (10) can be inverted in an explicit way, leading to a closed
form copula family.

Next we turn attention to the visual advantage of the λ method when it comes to the construction
of copulas. In Figures 2 and 3 visuals are shown from both λ(POL,1) and Cλ(P OL,1)

for τ = 0.5 and τ

= -0.5. The latter is represented by means of simulating observations from (U , V )∼ Cλ(P OL,1)
. The

idea here is to show how well λ behaves as a univariate representative of the affiliated copula. A first
observation includes the clear relationship between the λ(0) value (Figure 3, 4 (left)) and the size of
Z(C) (Figure 3, 4 (right)): the lower the absolute value of the intercept the smaller Z(C) will be. A
second observation focuses on the upper tail behaviour of the copula. As can be seen, for example in
Figure 3 (a), strong upper tail dependence accords with a λ function which, for t → 1 is close to the line
λ = 0. In a similar fashion, for example in Figure 4 (a), the case of weak or no upper tail dependence
accords with a λ function which, for t → 1, is close to the line λ = t − 1. As such, a quick scan of the
λ function immediately provides us with key aspects of the associated dependence function.
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Figure 2: Comparable test space and simulations for τ= 0.5 for λ(POL,1)(t) = α + βt + γt2.
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(d) τ= 0.5, α =0, C0 = 0, λL = 0.5946, λU = 0.3182
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Figure 3: Comparable test space and simulations for τ= -0.5 for λ(POL,1)(t) = α + βt + γt2.
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(b) τ= -0.5, α =-0.7083 , C0 = 0.7083, λU = 0.2182

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

t

λ(
t)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

v
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(d) τ= -0.5, α =-0.6250, C0 = 0.6250, λU = 0
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4.1.2. Polynomial λ without intercept

The polynomial defined in 4.1.1. mainly provides non-strict Archimedean copulas, since for α 6= 0 we
have positive C0. The general τ range is [-1, 1], but strict copulas can only be generated for τ ∈ [ 1

3
,

1] and only one strict copula per comparable test space can be produced. However, it is desirable, for
example in the field of finance, to work with strict copulas only. Hence, polynomials without intercept
then are more appropriate, since they produce only strict Archimedean copulas. Consequently, this
type of λ configuration can be used to study the affiliated strict Archimedean test spaces. As example
we consider a 3th degree two parameter polynomial:

λ(POL,2)(t) = t(t − 1)(αt + β).

When incorporating the restrictions on the λ we get

R1: satisfied since λ(0) = 0

R2: satisfied since λ(1) = 0

R3: satisfied if

α ≥ 0 and β ≥ 0

α ≤ 0 and β ≥ −α

R4: satisfied if

α ≥ 0 and −1 ≤ β ≤ min(α, 1 − α)

α ≤ 0 and −2α ≤ β ≤ 1 − α

α ≤ 0 and −1 ≤ β ≤ α

From (2) we derive

β(α, τ) =
3(1 − τ) − α

2
. (11)

When combining this relationship with restrictions R3 and R4, we get additional upper and lower
bounds for α ≥ 0:

max(0, 1 − τ) ≤ α ≤ min(3(1 − τ), 3τ − 1), τ ∈ [
1

2
, 1]. (12)

In a similar fashion restrictions R3 and R4 lead to extra bounds for α ≤ 0 (note that the third R4
condition cannot be combined with the R3 condition for α ≤ 0):

τ − 1 ≤ α ≤ min(3τ − 1, 0), τ ∈ [0, 1]. (13)

Combined this leads to the global α range:

τ − 1 ≤ α ≤ min(3τ − 1, 3(1 − τ)), τ ∈ [0, 1]. (14)

Again all parameter ranges are written as a function of τ . Since β leaves the system based on (11)
a comparable test space is created by choosing τ ∈ [0, 1] and then obtaining the λ functions for the
appropriate α space. The 2 parameter function λ(POL,2) can only generate strict Archimedean copulas
in positive τ test spaces.

The tail dependence measures are given by

λL = 2
3(τ−1)+α

2 (15)

and

λU = 2 − 2
3(1−τ)+α

2 . (16)
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The λ function leads to the following copula generator:

ϕτ,α(t) = (1 − t)
2
µ t

− 2
µ−2α

(

αt + µ−2α
2

)
4α

µ(µ−2α)

with µ = 3 + α − 3τ.

(17)

As can be seen from the functional form of (17), it is no longer analytically invertable. Hence,
the alternative definition of the coefficients of tail dependence as defined in Section 3 now prove their
practical use, as explicit formulas for tail dependence can still be obtained. Furthermore, the strictness
porperty of λ(POL,2) can be checked evaluating (17) for t = 0.

Again we mention the visual advantage of the λ function. Figure 5 shows visuals of the λ(POL,2) and
its associated copula as simulations from (U , V )∼ Cλ(P OL,2)

. Notice how for upper tail dependence the
same observation can be made as for λ(POL,1). In the case for strong upper tail dependence (Figure 5
(a)) the λ function will be close to the comonotone case (λ = 0) for t → 0. Conversely, for weak upper
tail dependence (Figure 5 (d)) the opposite is true (closer to the countermonotone case). Analogous
observations can be made for lower tail dependence.

Since λ(POL,2) provides strict copulas we are interested in its modeling power. The polynomial
defined above is a two parameter model. Which combinations of λL and λU are possible for a specific
τ value in this kind of parametrization? In Figure 4 the feasible region is displayed. As can be seen,
the number of possible combinations is rather limeted per τ space, as λL and λU cannot move over the
[0, 1] range. Also, notice the fact that dλU

dλL
decreases for increasing τ .

The polynomial as described above can only generate copulas for positive dependence. In order
to create strict Archimedean copulas appropriate to describe negative dependence, a higher degree
polynomial is necessary to obtain more curvature. However, this can be seen as a disadvantage of
polynomial λ functions, as also the necessary amount of parameters will increase and therefore also its
complexity. Moreover, it will no longer be possible to obtain explicit bounds for the parameters. An
alternative way of obtaining comparable test spaces from higher degree polynomials is by numerically
solving the mathematical problem defined in Section 3.

In conclusion, for λ(POL,2) we make the following observation: Note that λL can never be equal to
zero for polynomials, since it would require the first degree variable parameter moving to infinity. Hence,
strict copula families generated from a polynomial λ function always have lower tail dependence.

Property 2 Any λ function of the form λ(t)= t(t-1)(β0 + β1t
1 + ... + βntn), t ∈ [0, 1], n ∈ [2, ∞)

will generate copula functions with lower tail dependence λL 6= 0.

4.2. Rational configuration

A second type of λ function which also proves to be workable are rational functions. Like the polynomial
class this class of functions is very numerous. As with the polynomial class we first discuss the rational λ

with intercept, dentoted as λ(RAT,1). Next we will discuss the case without intercept, denoted λ(RAT,2).

4.2.1. Rational λ with intercept

Rational λ’s with intercept generate non-strict Archimedean copulas. As example we use the 2 param-
eter first degree rational function:

λ(RAT,1)(t) = α(1−t)
βt+1

.

When incorporating the restrictions on the λ we get

R1: λ(0) = α =⇒ α ∈ [−1,0]
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Figure 4: Combinations of λU with λL in comparable test spaces τ ∈ { 0.1, 0.3, 0.5, 0.7, 0.9}
for λ(POL,2)(t) = t(t − 1)(αt + β).

R2: λ(1) = 0
β+1

=0 or β 6= −1

R3: satisfied if β ∈ (−1, +∞), α ≤ 0

R4: satisfied if −α − 1 ≤ β ≤ −1 − 1
α
, α ≤ 0

From (2) we retrieve τ = 1 + 4α

[

ln |1 + β|
1+β

β2 − 1
β

]

which can only be made explicit with respect

to α:

α =
τ − 1

4

[

ln |1 + β|
1+β

β2 − 1

β

]−1

. (18)

A comparable test spaces per τ value is obtained by verifying for β ∈ (−1, +∞) that expression (18)
results in values belonging to [max(−β − 1,−1,− 1

1+β
), 0]. As for λ(POL,1) , non-strict Archimedean

copulas can be generated over the complete τ ∈ [−1, 1] range. However, λ(RAT,1) can only generate
non-strict copulas (α = 0 ⇐⇒ C = CM ) per comparable test space, whereas the polynomial λ(POL,1)

could create strict copulas for τ ∈ [ 1
3
, 1]. As such only the measure for upper tail dependence is relevant:

λU = 2 − 2
− α

β+1 . (19)
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Figure 5: Comparable test space and simulations for τ=0.5 for λ(POL,2)(t) = t(t − 1)(αt + β).
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(b) τ= 0.5, α =-0.1667 , λL = 0.5612, λU = 0.4126
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(d) τ= 0.5, α = 0.5000, λL = 0.7071, λU = 0
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From restriction R1 it is clear the α value determines C0.
The λ function creates the following copula generator, which is again not explicitely invertable:

ϕτ,β(t) = (1 − t)−µ2−µ1eµ2(1−t)

with µ1 =
4(ln |1+β|

1+β

β2 − 1
β

)

τ−1
, µ2 =

4β(ln |1+β|
1+β

β2 − 1
β

)

τ−1
.

(20)

In Figures 6 and 7 visuals are shown for both λ(RAT,1) and its copula simulations. It is not difficult
to see how again the λ function captures key copula characteristics. The size of Z(C) clearly diminishes
when |λ(0)| becomes smaller and the upper tail dependence property can be derived from the behaviour
of the right tail of λ, expressed by λU .

4.2.2. Rationals without intercept

As with the polynomial configuration with intercept the same remark can be made for λ(RAT,1). Al-
though this λ function is able to produce dependence structures over the complete τ range, it provides
non-strict copulas (except the comonotonic case) and as such its practical use is almost negligible. Hence
we want to study the rational configuration without intercept necessary to create strict Archimedean
copulas. We show the flexibility of strict rational λ functions by using a two parameter example of the
form

λ(RAT,2)(t) = αt(t−1)
βt+1

.

When incorporating the restrictions on the λ we get

R1: satisfied since λ(0) = 0

R2: satisfied since λ(1) = 0
β+1

= 0 or β 6= −1.

R3: satisfied if β ∈ (−1, +∞), α ≥ 0

R4: satisfied if α ∈ [0, β + 1], β ∈ (−∞, +∞)

From (2) we retrieve τ = 1 + 4α
β2

[

−β
2
− 1 + ln |1 + β|

(1+β)
β

]

which can only be made explicit with

respect to α:

α =
τ − 1

4
β

2

[

−β

2
− 1 + ln |1 + β|

(1+β)
β

]−1

. (21)

To obtain comparable test spaces per τ value one needs to verify for β ∈ (−1, +∞) that expression
(21) results in values belonging to [0, β + 1]. It can easily be checked that the τ range for this copula
family is [−1, 1], and as such, for the same parametrization, the concordance range of λ(RAT,2) is larger
than λ(POL,2).

The tail dependence properties can be studied immediately, as

λL = 2−α (22)

and
λU = 2 − 2

α
β+1 . (23)

The λ function leads to the following copula generator, which is not analytically invertable:

ϕτ,β(t) = (1 − t)(β+1)µt−µ

with µ = 4
β2(1−τ)

(

β
2
− 1 + ln |1 + β|

1+β
β

)

.

(24)
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Figure 6: Comparable test space and simulations for τ= 0.5 for λ(RAT,1)(t) = α(1−t)
βt+1 .
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(a) τ= 0.5, α =-0.1616 , C0 = 0.1616, λU = 0
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(b) τ= 0.5, α =-0.2510 , C0 = 0.2510, λU = 0.8124
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(c) τ= 0.5, α =-0.3143,C0 = 0.3143, λU = 0.8759
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(d) τ= 0.5, α = -0.3687, C0 = 0.3687, λU = 0.9012
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Figure 7: Comparable test space and simulations for τ= -0.5 for λ(RAT,1)(t) = α(1−t)
βt+1 .
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(a) τ= -0.5, α =-0.6589 , C0 = 0.6589, λU = 0
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(b) τ= -0.5, α =-0.7120 , C0 = 0.7120, λU = 0.2154
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(c) τ= -0.5, α =-0.7612,C0 = 0.7612, λU = 0.3434
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(d) τ= -0.5, α = -0.8075, C0 = 0.8075, λU = 0.4285
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The strictness property of λ(RAT,2) can be checked by evaluating (24) for t = 0. We now turn to
the modeling aspects of λ(RAT,2). In Figures 10 and 11 visuals are shown of both the λ function and
simulations from its associated copula for τ = 0.5 and τ = −0.5. As with the former λ functions
we clearly see how the tail dependence aspects of the copula are recognizable on the λ function. It
also shows that, unlike λ(POL,2), λ(RAT,2) can generate copulas whose λL becomes arbitrary small for
α → +∞. In Figure 10 the same remarks can be made for a strict Archimedean test space for negative
dependence.

Next we investigate the modeling power of λ(RAT,2) by obtaining the feasible (λL, λU ) combinations
for a given τ value, provided the given parametrization. This is shown in Figure 8. It becomes clear
that λ(RAT,2) can model tail dependence freely, since λLmin, λU min can take the value 0 for τ < 1.
Next we investigate the modeling power of λ(RAT,2) versus λ(POL,2). In Figure 9 the feasible regions
for (λL, λU ) combinations are compared for λ(POL,2) and λ(RAT,2) for τ ∈ [0, 1].

The following observations can be made. First of all, the tail dependence range per τ value for
λ(RAT,2) is more complete than for λ(POL,2), as the λ(RAT,2) system enables a complete trade-off
between λL and λU . Secondly, for strong positive dependence (τ ∈ {0.7, 0.9}) the λ(RAT,2) still holds
the possibility to generate copulas with λU=0, while this is not the case for λ(POL,2). Finally, notice the

difference in trade-off between λL and λU for λ(RAT,2) and λ(POL,2). Clearly the dλL

dλU λ(RAT,2)

function

has a concave form, while dλL

dλU λ(P OL,2)

has a convex form. As can be seen in Figure 9, both λ functions

share (λL, λU ) combinations, for τ ∈[0.5, 1].
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4.3. Logarithmic configuration

None of the families discussed above actually contains the independence copula Π(u, v) = uv. Hence
a third type of λ function is introduced which contains Π and also proves workable in the sense that
both λ and 1

λ
are integrable. In analogy with the preceding two λ types we will discuss two different

logarithmic types. The first one provides mainly non-strict copulas and is denoted as λ(LOG,1). The
second one provides both strict and non-strict copulas but only the strict part will be discussed. This
type will be denoted as λ(LOG,2) .

4.3.1. Logarithmic λ type 1

The first λ type is based on powers of logaritmic functions. As example we discuss a two parameter
function of the form

λ(LOG,1)(t) = αt(ln(t))2 + βt ln(t)

where λ(0) is defined as the limiting value λ(0+) = 0. This function provides non-strict copulas for
α 6= 0. However, since λ(0+) = 0 we have C0 = 0 is parameter independent. For α = 0 the associated
family of copulas is known as the Gumbel-Hougaard family. (The strictness property can be checked
by evaluating ϕ(0) in (28).) For α = 0 and β = 1 we have λ(LOG,1)=λΠ.

When incorporating the restrictions on the λ we get
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Figure 10: Comparable test space and simulations for τ= 0.5 for λ(RAT,2)(t) = αt(t−1)
βt+1 .

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

v

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

t

λ(
t)

(a) τ= 0.5, β =-0.413 , λL = 0.6657, λU = 1.5305e − 004

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

v

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

t

λ(
t)

(b) τ= 0.5, β =1 , λL = 0.4667, λU = 0.5362

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

v

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

t

λ(
t)

(c) τ= 0.5, β =10, λL = 0.0760, λU = 0.7360

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

v

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

t

λ(
t)

(d) τ= 0.5, β =100, λL = 7.3929e − 009, λU = 0.7966



22 FREDERIK MICHIELS, INGE KOCH AND ANN DE SCHEPPER

Figure 11: Comparable test space and simulations for τ= -0.5 for λ(RAT,2)(t) = αt(t−1)
βt+γ
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R1: satisfied since λ(0) = 0

R2: satisfied since λ(1) = 0

R3: satisfied if α ≤ 0 and β ≥ 0

R4: satisfied if

α ∈ [
−1−

√
(1−β2)

2
,
−1+

√
(1−β2)

2
], β ∈ [−1, 1]

When combining R3 with R4 we get clear bounds for α ∈ [
−1−

√
(1−β2)

2
, 0] and β ∈ [0, 1]. From (2)

we retrieve β = −τ +1+α ∈ [0, 1] or τ − 1 ≤ α ≤ τ . Combined this leads to the follwing bounds on α:

max(
1

5
(τ − 3 − 2

√

1 + τ − τ2), τ − 1) ≤ α ≤ min(
1

5
(τ − 3 + 2

√

1 + τ − τ2), τ), τ = [
1 −

√
5

2
, 1] (25)

max(
1

5
(τ − 3 − 2

√

1 + τ − τ2), τ − 1) ≤ α ≤ min(0, τ), τ = [−1

2
, 1]. (26)

All parameters can be written as a function of τ . As such, a comparable test space can be obtained

by fixing τ ∈ [ 1−
√

5
2

, 1] and by collecting λ functions according to the appropriate α range. Indeed, λL

can generate strict copulas for both positive and negative dependence up to τ=−0.618. In order to
model copulas with degree of dependence τ <−0.618 a more complex λ(LOG,1) is necessary, providing
more curvature.

It can easely be checked that this family contains only copulas having no lower tail dependence, since
for α 6= 0 we have non-strict copulas, and for α = 0 we have λL = 0 independent of the parameters.
Upper tail dependence can be studied by means of

λU = 2 − 2β
. (27)

The following generalizations concerning λ(LOG,1) can be made:

Property 3 Any λ function of the form λ(t) = β1t(ln(t))1 + β2t(ln(t))2 + ... + βnt(lnt)n will generate
copula functions with zero lower tail dependence.

Property 4 Any λ function of the form λ(t) = t(ln(t)) + β2t(ln(t))2 + ... + βnt(ln(t))n will generate
copula functions without tail dependence.

Property 5 Any λ function of the form λ(t) = β2t(ln(t))2 + ... + βnt(ln(t))n will generate copula
functions with λU = 1 and λL = 0.

The λ(LOG,1) function leads to the following generator, which is not explicitely invertable:

ϕα,τ (t) =

[

[

ln t

α ln t + 1 + α − τ

]2
] 1

2(1+α−τ)

. (28)

Next we turn to the modeling capacities of λ(LOG,1). Figure 13 and 14 show visuals of λ(LOG,1) and
simulations from its associated copula in test spaces τ = 0.5 and τ = −0.5. In contrast to λ(POL,1) and
λ(RAT,1), the log type λ has C0 = 0 which is parameter independent. As a consequence notice the more
relaxed scatterplot forms with respect to the zero curve of the λ(LOG,1) copulas. Indeed, although the
copulas associated to λ(LOG,1), α 6= 0 are non-strict, their form does not imply to actually observe a
zero curve, which is the case for λ(POL,1) and λ(RAT,1). Hence, it can be argued that λ(LOG,1) copulas
can be used to model real-life bivariate dependence structures.
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Due to this fact we compare the modeling capacity of λ(LOG,1) with that of λ(POL,2) and λ(RAT,2)

rather than with that of λ(POL,1) and λ(RAT,1). Clearly, since the former has no lower tail dependence
we are interested in the possible (τ , λU ) combinations for τ ∈ [−0.618, 1], and we compare it to the
(τ , λU ) combinations for λ(RAT,2) and λ(POL,2). In Figure 12 the three feasible regions for λU are
displayed, given by the boundary functions λU maxλ(RAT,2)

, λU maxλ(P OL,2)
, λU maxλL

, λU minλ(LOG,1)
.

A first observation involves the fact that λ(RAT,2) is the only λ type that can model λU for all τ ∈
[-1, 1], given the same parametrization. Next, notice that for τ ≥ 0 the function λL can model copulas
having λU = 1, while the other λ type cannot, except for τ = 1. A thrid observation focuses on the fact
that λ(LOG,1) cannot generate copulas with λU = 0 for τ > 0, while the other λ types can. A fourth
observation is dedicated to the fact that the λU ranges for λ(LOG,1) and λ(POL,2) are complementary,
as the boundary curves λU maxλ(P OL,2)

= λU minλ(LOG,1)
. Finally, notice that the feasible region of

λ(POL,2) lies completely in the feasible region of λ(RAT,2).
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Figure 12: Overview of λU ranges for λ(LOG,2)(t) = βtα ln(t), λ(LOG,1)(t) = αt(ln(t))2 +

βt ln(t),λ(POL,2)(t) = t(t − 1)(αt + β) and λ(RAT,2)(t) = αt(1−t)
βt+1 in the Kendall’s tau space

4.3.2. Logarithmic λ type 2

A second type of logarithmic λ involves a parametric extension of λΠ. As an example we discuss a two
parameter function of the form

λ(LOG,2)(t) = βtα ln(t)



Exploring the λ copula construction method for multiparametric Archimedean copulas 25

Figure 13: Comparable test space and simulations for τ= 0.5 for λ(LOG,1)(t) = αt(ln(t))2 +
βt ln(t).

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

λ(
t)

t
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

v

(a) τ= 0.5, α= -0.5000, λU = 1

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

λ(
t)

t
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

v

(b) τ= 0.5, α= -0.3509, λU = 0.8911

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

λ(
t)

t
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

v

(c) τ= 0.5, α= -0.2019, λU = 0.7705

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

λ(
t)

t
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

v

(d) τ= 0.5, α= -0.0528, λU = 0.6366



26 FREDERIK MICHIELS, INGE KOCH AND ANN DE SCHEPPER

Figure 14: Comparable test space and simulations for τ= -0.5 for λ(LOG,1)(t) = αt(ln(t))2 +
βt ln(t).
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where λ(0) is defined as the limiting value λ(0+) = 0. The function provides strict copulas for α ≥ 1
and non-strict copulas for α < 1. (The strictness property can be checked by evaluating ϕ(0) in (30).)
For α = 1 and β = 1 we have λ(LOG,2)=λΠ. As mentionned before we only discuss the strict part here,
since λ(LOG,1) is mainly concerned with non-strict copulas.

When incorporating the restrictions on the λ we get

R1: satisfied since λ(0) = 0, α 6= 0

R2: satisfied since λ(1) = 0

R3: satisfied if β ≥ 0 since t ln(t) ≤ 0, t ∈ [0, 1]

R4: satisfied for any feasible (α, β) pair from βtα−1 + αβ ln(t)tα−1 ≤ 0 , t ∈ [0, 1]

In order to obtain feasible parameter ranges for α and β respectively, 2 alternatives exist. The first
alternative consists of solving R4 numerically and then combining R3 with R4 to obtain lower bounds
of α in function of β. However, if one is interested in obtaining only strict copulas from λ(LOG,2)

a second alternative exist. Following the strictness property we obtain the α lower bound and the
appropriate α range is [1, +∞). An upper bound for β is established to evaluate R4 for t = 1 which
yields λU = 2 − 2β . As such the feasible β range is [0, 1].

From (2) we retrieve τ = 1+ 4β
(α+1)2

and as such a comparable test space can be obtained by fixing τ

and obtaining all λ functions for which α ≥ 1 and β ∈ [0, 1]. It can easely be checked that for α ≥ 1 the
appropriate τ range is [0, 1] so only positive dependence can be modeled by the strict part of λ(LOG,2).

Next tail dependence properties are discussed. It is not difficult to see that this family contains
only copulas having perfect lower tail dependence, since for α ≥ 1 we have limt→0 λ(LOG,2)(t)

′=0
=⇒ λL = 1. Upper tail dependence can be studied using

λU = 2 − 2β
. (29)

The resulting generator is

ϕβ,τ (t) = e

Ei

(

ln(t)(2−

√

4β
1−τ

)

)

β (30)

where Ei is defined as the exponential integral Ei(x) =
∫ x

−∞
et

t
dt. Clearly this generator is not

analytically invertable.
Next we turn to the modeling capacities of λ(LOG,2). Figure 15 show visuals of λ(LOG,2) and

simulations from its associated copula in test spaces τ = 0.5. Again it can be seen how well the λ

function captures the behaviour of the copula in a one dimensional way.
Next we investigate the modeling power of λ(LOG,2). Clearly, since λL = 1 is a constant we com-

pare the possible (τ , λU ) combinations for τ ∈ [0, 1] and compare it with λ(POL,2), λ(RAT,2) and
λ(LOG,1). In Figure 12 the four feasible regions for λU are displayed, given by the boundary functions
λU maxλ(P OL,2)

=λU maxλ(LOG,2)
, λU maxλ(LOG,1)

, λU minλ(LOG,1)
and λU maxλ(RAT,2)

. It becomes clear

that λ(LOG,2) can model the same λU range as λ(POL,2), making abstract of lower tail dependence.
As such, these two families can be seen as complementary in the λL field. Finally we want to stress
the fact that λ(LOG,2) entails the independence copula, which is an absolute advantage when e.g. a
modeler would like to simplify a higher dimensional dependence problem by testing for conditional
independence.

5. CONCLUSION

In the present contribution attention is drawn to a new and informative copula construction method,
namely the λ construction method. It is shown how well the λ function captures essential characteristics
of the associated copula and how straightforwardly parameters can be interpreted. The λ method is



28 FREDERIK MICHIELS, INGE KOCH AND ANN DE SCHEPPER

Figure 15: Comparable test space and simulations for τ= 0.5 for λ(LOG,2)(t) = βtα ln(t)
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explored by discussing three functional types: polynomial functions λ(POL,1) and λ(POL,2), rational
functions λ(RAT,1) and λ(RAT,2) and a log inspired functions λ(LOG,1) and λ(LOG,2). Examples of low
complexity are used to explore the affiliated Archimedean copula spaces and to compare tail dependence
properties between the λ types. Table 1 gives an overview of the three λ types and their characteristics.

The functions λ(POL,1) and λ(RAT,1) are defined as functions with intercept, implying non-strictness
and positive C-measure on the zero curve. The function λ(LOG,1) also provides non-strict copulas but
is defined without intercept. Consequently the dependence structures have a more relaxed form and
real life dependence applications are not excluded. The functions λ(POL,2), λ(RAT,2) and λ(LOG,1) are
defined to obtain strict generators and can be used for (higher) dependence modeling problems. A
comparison of λ(POL,2) and λ(RAT,2) shows that the region of (λL, λU ) combinations in the τ space for
the latter is the larger for the same parametrization (see Figure 11). As such, λ(RAT,2) is more flexible
than λ(POL,2) with respect to these characteristics. Moreover, the incapability of λ(POL,2) to model
λL=0 has been generalized for n-parametric λ(POL,2). An advantage of both λ(POL,2) and λ(RAT,2) is
that their tail dependence coeficients vary with τ . This is not the case for λL,1,2 where λL is a constant.
The advantage the latter have, is that they include the independence copula Π. It turns out that some
interesting generalizations for the n-parametric λ(LOG,1) type can be made concerning tail dependence
properties, namely for λ(LOG,1) with no lower tail dependence, λ(LOG,1) with no tail dependence and
λ(LOG,1) with perfect upper tail dependence. The modeling capacities for the four λ types concerning
λU are compared in the τ space (12). Here it is shown that λ(RAT,2) is more flexible with respect to the
τ space ( it can model situations up to τ = −1). Comparing λ(RAT,2) to λ(LOG,1) we see that λ(LOG,1)

can model stronger upper tail dependence in the τ ∈ [0,1] region, but this is offset by its incapacity
of modeling weak upper tail dependence. Comparing λ(POL,2) with λ(LOG,1) shows that both regions
are complementary. When comparing λ(POL,2) with λ(RAT,2) we observe that the λ(POL,2) region lies
completely in the λ(RAT,2) region (making abstract of λL). Finally, the modeling capacity of λU for
λ(LOG,2) is the same as for λ(POL,2), excluding λL. As such, they can be seen as complementary in the
λL field. Finally, we want to stress the extra advantage of the λ function for fitting applications. As
such, future research will include the testing of the flexibility of the new multiparametric families in
practice.
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λ type λ(P OL,1) λ(RAT,1) λ(LOG,1)

function α + βt + γt2
α(1−t)
βt+1

αt(ln(t))2 + βtln(t)

τ 2
3
(6α + 3β + 2γ) + 1 1 + 4α






ln |1 + β|

1+β

β2
− 1

β






1 + α − β

τ range [-1, 1] [-1,1] [-0.681, 1]

strictness non-strict for α 6= 0 non-strict strict for α = 0

strict for α =0, τ ∈[ 1
3
, 1]

C0 |α| |α| 0

λL 23(τ−1), τ ∈ [ 1
3
, 1] 0 0

λU 2 − 2
3
2
(1−τ)+2α

2 − 2
− α

β+1 2 − 2β

λΠ no no α = 0, β = 1

λ type λ(P OL,2) λ(RAT,2) λ(LOG,2)

function t(t − 1)(αt + β)
αt(t−1)

βt+1
βtα ln(t)

τ 1 −
2β+α

3
1 + 4α

β2



−
β
2

− 1 + ln |1 + β|

(1+β)
β



 1 +
4β

(α+1)2

τ range [0, 1] [−1, 1] [0, 1], α ≥ 0

strictness strict strict strict for α ≥ 1

C0 0 0 0

λL 2
3(τ−1)+α

2 2−α 1

λU 2 − 2
3(1−τ)+α

2 2 − 2
α

β+1 2 − 2β

λΠ no no α = 1, β = 1

Table 1: Overview of the 6 multiparametric Archimedean copula families based on λ(POL,1),
λ(POL,2), λ(RAT,1), λ(RAT,2), λ(LOG,1) and λ(LOG,2).
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