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Abstract

This thesis presents several studies on calculations for high-energy proton-proton colli-
sions using the Parton Branching (PB) method for the evolution of transverse momentum
dependent parton distribution functions (TMDs). The PB method allows to perform both
inclusive and exclusive calculations of collision final states by means of Monte Carlo tech-
niques. Evolution of TMDs in the PB method allows for the resummation of soft gluons
by the Sudakov form factor. The implementation of PB TMDs in the TMDlib library and
the implementation of the backward PB Sudakov form factor in the Cascade3 Monte
Carlo event generator allows for the calculation of a wide variety of particle collision
processes in a wide kinematic range.

We examine the PB method, focusing on the Sudakov form factor and the soft-gluon reso-
lution scale. By extending the emission phase space with longitudinal splitting fractions 𝑧
approaching one, we achieve accurate perturbative resummation and a non-perturbative
contribution to the evolution. A dynamical resolution scale separates resolvable and
non-resolvable phase space regions, acting as a boundary between these perturbative
and non-perturbative domains. We show that PB evolution with next-to-leading or-
der (NLO) splitting functions achieves next-to-leading logarithmic (NLL) accuracy in
soft-gluon resummation. The implementation of the physical (or effective) soft-gluon
coupling enhances Sudakov resummation towards next-to-next-to-leading logarithmic
(NNLL) accuracy. Application to the transverse momentum spectrum of the 𝑍-boson
in the Drell-Yan (DY) process shows the effect of implementing the physical coupling.
Non-perturbative contributions of the Sudakov are illustrated through the extraction of
the Collins-Soper (CS) kernel. These extractions highlight the influence of both the emis-
sion phase space and the scale of the strong coupling in TMD evolution on the large 𝑏
behavior of the CS kernel.

Combining higher order matrix element calculations with PB TMDs and TMD shower is
done through matching and merging techniques. Azimuthal correlations of high trans-
verse momentum jets in di-jet production and boson-jet production are calculated using
PB TMDs matched to NLO matrix elements. QCD predictions for final states with mul-
tiple jets in hadron collisions make use of multi-jet merging methods. These methods
consistently combine the contributions from hard scattering matrix elements with differ-
ent parton multiplicities and parton showers. Calculations of jet transverse momentum
and jet multiplicity distributions, as well as highly non-trivial jet event shapes, are per-
formed with the recently developed TMD merging method. We investigate theoretical
predictions for 𝑍-boson plus jets production using multi-jet merging algorithms. Our
analysis focuses on the differential jet rates (DJRs) and their discontinuities, which al-
lows us to develop a method for quantitatively analyzing the merging algorithm and its
dependence on the merging scale by varying invariant di-lepton masses.
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Samenvatting

Dit proefschrift presenteert verschillende studies over berekeningen voor hoog-
energetische proton-proton botsingen met behulp van de Parton Branching (PB)
methode voor de evolutie van transversale impulsafhankelĳke parton distributies
(TMDs). De PB-methode maakt het mogelĳk om zowel inclusieve als exclusieve
berekeningen van eindtoestanden van deeltjesbotsingen uit te voeren met Monte
Carlo-technieken. De evolutie van TMDs in de PB-methode maakt de hersommatie
van laag energetische gluonen door gebruik te maken van de Sudakov-vormfactor. De
implementatie van PB TMDs in de TMDlib bibliotheek en de implementatie van de
achterwaartse PB Sudakov vormfactor in de Cascade3 Monte Carlo event generator
maakt het mogelĳk om een grote variëteit aan deeltjesbotsingsprocessen te berekenen in
een breed kinematisch bereik.

We onderzoeken de PB-methode, waarbĳ we ons richten op de Sudakov-vormfactor en
de soft-gluon resolutieschaal. Door de faseruimte van emissies uit te breiden met lon-
gitudinale splitsingsfracties 𝑧 die de waarde één benaderen, bereiken we nauwkeurige
perturbatieve hersommatie en een niet-perturbatieve bĳdrage aan de evolutie. Een
dynamische resolutieschaal scheidt “resolvable” en “non-resolvable” gebieden uit de
faseruimte en vormt daarmee de grens tussen perturbatieve en niet-perturbatieve
domeinen. We laten zien dat PB evolutie met “next-to-leading order” (NLO) splitsings-
functies “next-to-leading” logaritmische (NLL) nauwkeurigheid bereikt in soft-gluon
hersommatie. De implementatie van de fysische (of effectieve) soft-gluon koppeling
verbetert de Sudakov hersommatie naar “next-to-next-to-leading” logaritmische (NNLL)
nauwkeurigheid. Toepassing op het transversale impuls spectrum van het 𝑍-boson
in het Drell-Yan (DY) proces toont het effect van de implementatie van de fysische
koppeling. Niet-perturbatieve bĳdragen van de Sudakov worden geïllustreerd door de
extractie van de Collins-Soper (CS) kernel. Deze extracties benadrukken de invloed
van zowel de faseruimte als de schaal van de sterke koppeling in TMD-evolutie op het
gedrag van de CS kernel bĳ grote 𝑏 waarden.

Het combineren van hogere orde matrixelementberekeningen met PB TMDs en een TMD
shower wordt gedaan door matching- en mergingtechnieken. Azimuthale correlaties
van jets met hoog transversaal impuls in di-jet productie en boson-jet productie worden
berekend aan de hand van PB TMDs die gematcht worden met NLO-matrixelementen.
QCD voorspellingen voor eindtoestanden met meerdere jets in hadronbotsingen maken
gebruik van multi-jet “merging” technieken. Deze methoden combineren consistent
de bĳdragen van matrixelementen met verschillende partonmultipliciteiten en “parton
showers”. Berekeningen van transversaal impuls van jets en jet multipliciteiten, evenals
zeer niet-triviale jet “event shapes”, worden uitgevoerd met de recent ontwikkelde “TMD
merging” methode. We onderzoeken theoretische voorspellingen voor de productie van
𝑍-bosonen met jets met behulp van algoritmen voor multi-jet merging. Onze analyse
richt zich op “differential jet rates” (DJRs) en hun discontinuïteiten, waarmee we een
methode hebben kunnen ontwikkelen voor het kwantitatief analyseren van het merging
algoritme en de afhankelĳkheid van de merging schaal door invariante di-leptonmassa’s
te variëren.
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Introduction

Progress in the experimental investigation of fundamental interactions at high-energy
particle colliders strongly depends on the possibility to carry out realistic event sim-
ulations via Monte Carlo (MC) event generators. Many research groups are currently
devoting significant efforts to increase the accuracy of analytical and numerical calcula-
tions in high-energy physics. This is needed for a relevant comparison of highly accurate
experimental measurements with theoretical studies. In this respect, the aim of the whole
particle physics community is to increase the precision of the Standard Model (SM) and
find physics Beyond-the-Standard-Model (BSM). This forms a crucial input to the current
European Strategy Update for Particle Physics [1]. It will also be essential to increase
the accuracy for designing and executing forthcoming experimental initiatives like the
High-Luminosity Large Hadron Collider (HL-LHC) [2], the proposed forward physics
facility [3] and hadron-electron facility [4] at the HL-LHC, the Electron Ion Collider
(EIC) [5], and the Future Circular Collider (FCC) [6].

A key component of event generators is provided by parton branching algorithms which
describe the radiative processes of quarks and gluons (“partons”) occurring in high-
energy collisions, based on Quantum Chromodynamics (QCD) [7–9], the gauge field
theory of strong interactions. Multiple quark and gluon radiation are associated to
any scattering process that involves hadrons. This radiation gives rise to the “parton
showers” which accompany any high-energy collision, and contributes to the “jets” of
hadronic particles which appear in the final states of hard scattering processes and can
be measured by the detectors of high-energy experiments.

Parton branching algorithms go back to the ideas of the pioneering works of the 1980s [10–
15], and are based on the dominance of quanta of the quark and gluon fields radiated at
small angles (“collinear” radiation) and small energies (“soft” radiation). Multiple soft
and collinear radiation gives rise to a hierarchy of logarithmically-enhanced contributions
in QCD perturbation theory. In order to achieve reliable high-energy event simulations,
such contributions need to be taken into account to all orders in the strong-interaction
coupling 𝛼s via “resummation” procedures. A large body of work is being currently
devoted to improving the logarithmic accuracy of parton showers and exploring the
associated theoretical systematic uncertainties [16–26].

While most of the above works focus on soft and collinear radiation dominating the
final-state parton showers, important contributions to advancing the accuracy of parton
showers also come from more complete treatments of the initial-state radiation and initial-
state hadron structure. The main subject of this thesis is the study of such initial-state
effects, and their inclusion in parton branching approaches.

The thesis moves from the observation that accurate treatments of initial-state dynamics
require taking into account hadron structure and parton radiation using methods that

1
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go beyond collinear approximations [27–31]. To do this, the key idea is to introduce
transverse momentum dependent (TMD), or unintegrated, distributions of partons in
the initial state [32, 33]. Recent reviews of TMD distributions are given in [34, 35], and
recent steps towards TMD branching methods are taken in [36–39]. The thesis builds
on these works, and carries out original work (partly already submitted for publication,
partly about to be submitted for publication) in the following three inter-connected
streams:

i) development of the TMD Parton Branching approach in its perturbative and non-
perturbative components. This includes the investigation of the logarithmic accuracy
of the branching algorithm, the study of dynamical constraints on the parton radiation
such as soft-gluon angular ordering, the determination of TMD distributions and the
non-perturbative Sudakov evolution kernel.

ii) construction of a TMD parton shower MC event generator. This requires several dif-
ferent components: input TMD distributions and their evolution, initial-state showering
algorithm, final-state showering and hadronization, generation of hard scattering matrix
elements at leading order (LO) and next-to-leading order (NLO) in perturbation theory,
combination of hard scattering matrix elements with TMD distributions and showers via
procedures of “matching” and “merging”.

iii) application of the computational framework thus developed to make theoretical
predictions for production processes and observables of interest at the Large Hadron
Collider (LHC). This concentrates on production of a) 𝑍-boson + jets, and b) multi-jets.
The main focus is on transverse momentum spectra of 𝑍-bosons and jets; jet multiplicity
distributions; differential jet rates (DJR); azimuthal correlations of jet-jet and boson-jet
final states.

The structure of the thesis’ chapters is as follows. Chapters 1, 2 and 3 are review chapters;
Chapters 4, 5 and 6 cover topics described above under stream i); Chapter 7 is devoted to
the MC event generator in stream ii); Chapters 8 and 9 treat the subset of applications in
stream iii) which are carried out via “matching” techniques; Chapters 10, 11 and 12 treat
the subset of applications in stream iii) which are carried out via “merging” techniques.

More precisely, the thesis starts with a brief overview of QCD as a gauge theory of strong
interactions (Chapter 1), and of key concepts in the application of QCD to physics at high-
energy colliders (Chapter 2). It then reviews the Parton Branching (PB) formulation [38,
39] of the QCD evolution of TMD distributions (Chapter 3). This formulation involves
evolution kernels which are theoretically calculable (Sudakov form factors and splitting
functions) and input distributions which are to be determined from fits to experimental
data. On top of that, angular phase-space constraints ensure consistent TMDs, indepen-
dent on the resolution scale [39]. The next three chapters of the thesis are devoted to
analyzing the various elements of this approach. First, we briefly describe a web-based
C++ library of fits and parameterizations of TMD distributions, TMDlib2 (Chapter 4).
This is based on the publication [40]. We also review the published PB-TMD sets [37,
38] that are available in this library for wide applications. TMDlib2 updates and extends
the early library TMDlib (version 1) and corresponding plotting tool TMDplotter [41].
The subsequent calculations presented in the thesis all rely on the parton distributions
accessible from the TMDlib2 library.

Next, we investigate the dynamical phase-space constraints which enter the PB TMD



3

evolution, in particular, the soft-gluon angular ordering. This leads us to studying
dynamical, i.e. branching-scale dependent, soft-gluon resolution scales (Chapter 5). This
study is based on the publication [42]. This study also allows us to perform a comparison
of PB TMD results with results from two widely-used approaches in the literature:
the coherent branching approach of [10, 43] (CMW) and the single-emission approach
of [44–47] (KMRW). Further, using the notion of dynamical soft-gluon resolution scales
thus explored, we investigate the perturbative and non-perturbative components of the
PB TMD Sudakov form factor (Chapter 6). This investigation will be reported in a
forthcoming publication [48]. Here we study analytically the PB logarithmic accuracy at
leading logarithmic (LL), next-to-leading logarithmic (NLL) and next-to-next-to-leading
logarithmic (NNLL) levels, and perform a comparison of PB TMD results with results
from the widely-used Collins-Soper-Sterman (CSS) approach [49, 50]. We also present
numerical results on the non-perturbative Sudakov effects embodied in the Collins-Soper
(CS) kernel.

We then move on to describe the MC event generator Cascade3 (Chapter 7), an MC
generator based on the PB TMD formalism discussed in the previous chapters. This is
based on the publication [51], part of the original work performed during the thesis.
This MC generator evolves from the earlier generators [52–54]. We give a self-contained
description of the physics picture underlying the MC program, in particular introducing
the backward Sudakov form factor for the TMD initial-state showering. We also provide
a concise account of all the other components of the program.

The final five chapters of the thesis describe applications of the TMD branching for-
malism and of its MC implementation. These applications can be subdivided into two
sets, according to the method used to combine the TMD shower with hard scattering
matrix elements. In the first set of applications, we perform a “matching” of NLO ma-
trix elements, computed from the MadGraph5_amc@nlo [55] event generator, with TMD
distributions and showers, following the approach proposed in [36] for the𝑍-boson trans-
verse momentum spectrum. We apply this NLO matching approach to di-jet production
(Chapter 8) and to 𝑍 + jet production (Chapter 9). These studies are part of the original
work done during the thesis and are reported in the publications [56] (on di-jets) and [57]
(on 𝑍 + jet). We investigate in particular distributions on the correlation in azimuthal
angle Δ𝜙 between the two jets and between the 𝑍 boson and the jet. Focusing on the
back-to-back configurations Δ𝜙 → 𝜋, and scanning the kinematical region of transverse
momenta from around 100 GeV all the way up to about 1 TeV, we discuss the possibility
to use the azimuthal correlations as detailed experimental probes of TMD dynamics.
Such measurements will become feasible in the forthcoming high-luminosity phase of
the LHC.

In the second set of applications, we perform original “multi-jet merging” calculations,
using the TMD multi-jet merging method [58, 59]. We start by briefly reviewing this
method and the results that were already published in Refs. [58, 59] for𝑍 + jets production
(Chapter 10). Then we study the production of pure QCD jets (Chapter 11). This original
work is to be submitted for publication [60]. We compute predictions based on the
TMD merging for multi-jet observables including transverse momenta, multiplicities
and event shapes such as thrust, aplanarity, the 𝐶-parameter and a few others. We
present a phenomenological comparison with experimental measurements which have
recently become available from the ATLAS experiment at the LHC.
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Finally, we continue the exploration of multi-jet merging techniques by performing a
study, for the first time, of 𝑍-boson + jets production at varying vector boson invariant
masses (Chapter 12), from about 60 GeV to about 800 GeV. This is original work, in
progress and about to be submitted for publication [61]. The key idea is to extend
the merging technique by introducing a “sliding” merging scale parameter, namely, a
merging scale which varies with the hard scale of the process set by the vector boson
invariant mass. We present the analysis of the differential jet rates (DJR) associated to 𝑍 +
jets in a wide range of invariant masses; based on this, we discuss the mass dependence of
the jet merging scale. This investigation is topical, as measurements of 𝑍 + jets scanning
the invariant mass kinematical region have been presented by the CMS experiment at the
LHC, and will be continued in the upcoming LHC runs.
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QCD as a gauge field theory of the

strong interaction

This chapter is devoted to provide a compact description of Quantum Chromodynamics
(QCD) as the𝑆𝑈(3)gauge field theory describing one of the four fundamental interactions
of nature: the strong interaction. The concepts that are introduced in this chapter
serve as basic building blocks of QCD and the work of this thesis. Chapter 2 is a
natural continuation of this chapter and concentrates on high energy proton-proton (𝑝𝑝)
collisions.

1.1 Symmetries of gauge field theories

The Standard Model (SM) of elementary particle physics consists of quantum gauge field
theories obeying the following Lie group structure:

𝑆𝑈(3) × 𝑆𝑈(2) ×𝑈(1), (1.1)

where 𝑆𝑈(𝑛) stands for special unitary group of order 𝑛. Three out of the four fun-
damental interactions in physics are described by gauge theories: the strong nuclear
interaction, the weak nuclear interaction and the electromagnetic interaction. Quantum
electrodynamics (QED) is the abelian gauge field theory of 𝑈(1) that describes the in-
teractions among electrically charged particles through photon exchange. 𝑆𝑈(2) is the
symmetry group of the weak interaction governed by massive 𝑊 and 𝑍 bosons. The
underlying symmetries of the strong interaction, describing the behavior of quarks and
gluons, are determined by the symmetries of the group 𝑆𝑈(3) and its Lie algebra, which
contains the generators of the group’s transformations.

Mechanisms of these fundamental interactions find their origin in gauge symmetry. The
invariance of a Lagrangian ℒ under gauge transformations, i.e. gauge invariance, is an
important ingredient to construct the quantum gauge field theories of the SM. Gauge
transformations can be interpreted as rotations of internal space. If 𝜃𝑎 is a phase angle
and 𝑇𝑎 is a generator of the Lie algebra, a local gauge transformation of a field 𝜓(𝑥) can
be written as:

𝜓(𝑥) → 𝐺(𝑥)𝜓(𝑥) = 𝑒 𝑖𝜃
𝑎 (𝑥)𝑇𝑎𝜓(𝑥). (1.2)

5
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Equation (1.2) is a local gauge transformation, i.e. the phase is 𝑥-dependent. In order
to construct a general and physical relevant theory, local gauge invariance is a strong
principle and serves as the symmetry of the gauge field theories for the fundamental
interactions.

The number of generators 𝑇𝑎 , which are represented by 𝑛 × 𝑛 dimensional matrices,
is equal to the dimension of the Lie algebra. The commutation relation between two
generators is a binary operation that reveals the symmetry of a group which in general
writes [62]: [

𝑇𝑎 , 𝑇𝑏
]
= 𝑖 𝑓 𝑎𝑏𝑐𝑇𝑐 , (1.3)

where 𝑓 𝑎𝑏𝑐 stand for the fully antisymmetric structure constants of the Lie algebra.
Groups of order one are abelian, i.e. the generators commute. Generators of groups with
an order larger than 1 have anti-commuting generators and are non-abelian.

A classical Lagrangian density of the form ℒ(𝜓, 𝜕𝜓) is not invariant under local gauge
transformations, because the transformation of the field 𝜓 is represented as follows:

𝜕𝜇(𝐺𝜓) = (𝜕𝜇𝐺)𝜓 + 𝐺(𝜕𝜇𝜓). (1.4)

The term that contains the derivative of the gauge transformation 𝐺 destroys the invari-
ance of the Lagrangian under these transformations. This is solved by replacing the
partial derivative by a covariant derivative:

𝐷𝜇 = 𝜕𝜇 − 𝑖 𝑔𝐴𝑎𝜇𝑇𝑎 , (1.5)

which leads to a gauge invariant Lagrangian ℒ(𝜓, 𝐴𝑎𝜇). 𝐴𝑎𝜇 are the gauge boson fields
representing particles with integer spin that are subject to Bose-Einstein statistics. There
are as many fields 𝐴𝑎 as there are generators 𝑇𝑎 . The fields 𝜓 represent the fermions of
the theory that are subject to Fermi-Dirac statistics. Terms 𝐷𝜇𝜓 in the Lagrangian imply
that the vector boson fields 𝐴𝑎𝜇 interact with the scalar fermion fields 𝜓.

A gauge transformation of the gauge boson fields in the limit of small angles (𝜃𝑎 ≪ 1)
differs for abelian and non-abelian groups. In the non-abelian case a gauge invariant
transformation of 𝐴𝑎𝜇 is of the form

𝐴𝑎𝜇 → 𝐴𝑎𝜇 + 1
𝑔
𝜕𝜇𝜃

𝑎 − 𝑓 𝑎𝑏𝑐𝜃𝑏𝐴𝑐𝜇 , (1.6)

where the last term is the anti-symmetric part inherent to non-abelian gauge theories.
The second term is equal to the gauge transformation of fields in electromagnetism (then
𝜃 represents the scalar potential and 𝑔 the electric charge 𝑒). The coupling strength of
the strong interaction is 𝛼s = 𝑔2/4𝜋.

We limit the scope of this chapter to focus only on 𝑆𝑈(3), the symmetry group of QCD,
which has eight generators 𝑇𝑎 that are the independent anti-Hermitian 3 × 3 Gell-Mann
matrices. The gauge vector boson fields correspond to gluons, which are the mediator
particles of the strong interaction. Charges are intrinsic properties of the elementary
particles of the fundamental interactions. The strong interaction is governed by color

charge. Quarks are color charged particles that are excitations of the fermion fields
of QCD. They are associated with the fundamental representation of the 𝑆𝑈(3) group
because they carry one of the three fundamental colors: red, green or blue. Gluons are
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associated with the adjoint representation of SU(3), since they are superposition color-
anticolor states. The color charge of both quarks and gluons leads to multiple types of
fermion-boson, boson-boson interactions.

1.2 The QCD Lagrangian

Field strength tensors in a non-abelian gauge theory contain (derivatives of) multiple
gauge fields, the gluon fields 𝐴𝑎𝜇 in the case of QCD. This non-abelian field strength
tensor is written as

𝐹𝑎𝜇𝜈 = 𝜕𝜇𝐴
𝑎
𝜈 − 𝜕𝜈𝐴

𝑎
𝜇 + 𝑔 𝑓 𝑎𝑏𝑐𝐴𝑏𝜇𝐴

𝑐
𝜈 . (1.7)

From the gauge symmetry group properties, the gauge invariant Yang-Mills Lagrangian
density is constructed from Dirac fields 𝜓 and field strength tensor products as:

ℒYM(𝜓, 𝐴𝑎) =
∑
𝑓

𝜓̄ 𝑓

(
𝑖 /𝐷 − 𝑚 𝑓

)
𝜓 𝑓 −

1
4𝐹

𝑎
𝜇𝜈𝐹

𝜇𝜈𝑎 , (1.8)

where the covariant derivative /𝐷 = 𝛾𝜇𝐷𝜇 and 𝛾𝜇 are the Dirac matrices. The index 𝑓 in
Eq. (1.8) is a flavor index and the sum runs over all six quark fields (up, down, strange,
charm, bottom and top). The masses of the quarks are represented by 𝑚 𝑓 . The Dirac
fields 𝜓 in QCD have three color components and correspond to quarks.

The Yang-Mills Lagrangian is common for any non-abelian gauge field theory. It contains
terms with products of fields that represent particle interactions. Products of 𝜓 with
𝐴𝑎𝜇 represent quark-gluon interactions and quadratic terms in 𝐴𝑎𝜇 represent gluon self-
interactions. A detailed calculation of the interaction terms can be found in Ref. [63].

The use of the Yang-Mills Lagrangian of Eq. (1.8) leads to non-physical behavior, because
for longitudinal fields (𝐴𝜇 ∼ 𝑐𝑘𝜇) the propagation amplitude diverges. In order to define
a physical propagator for the gauge field, the Fadeev-Popov method [64] is used to “fix
the gauge”. The consequence of gauge fixing in a non-abelian theory is the necessity of
introducing new, unphysical, so-called “ghost” fields 𝑐. With that, the full Lagrangian
density of QCD becomes:

ℒQCD =
∑
𝑓

𝜓̄ 𝑓 (𝑖 /𝐷 − 𝑚 𝑓 )𝜓 𝑓 −
1
4𝐹

𝑎
𝜇𝜈𝐹

𝜇𝜈𝑎 − 1
2𝜉 (𝜕𝜇𝐴

𝜇)2 − 𝑐𝑎𝜕𝜇𝐷𝜇
𝑎𝑐𝑐

𝑐 , (1.9)

where 𝜉 is the gauge parameter from gauge fixing and 𝐷𝜇
𝑎𝑐 is the covariant derivative in

the adjoint representation:
𝐷

𝜇
𝑎𝑐 = 𝜕𝜇𝛿𝑎𝑐 + 𝑔 𝑓𝑎𝑏𝑐𝐴

𝜇𝑏 . (1.10)

From the Lagrangian in Eq. (1.9), the Feynman rules of QCD can be determined. With
these, all possible Feynman-diagrams that include strong interactions can be drawn and
the transition probability matrix elements can be calculated perturbatively. The Feynman
rules contain all possible vertices and the propagators of the color charged fields. These
follow directly from the Lagrangian which can be subdivided in a propagation/free term
and an interaction term: ℒ = ℒfree + ℒinteracting. The vertices are the factors from the
interacting part of the Lagrangian where multiple (more than two) fields are present
in each term. The propagators are related to the factors from the free Lagrangian that
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only contain terms that are quadratic in the fields. A more detailed description of the
calculation of vertices and propagators can be found in Ref. [63].

In Tab. 1.1, all the propagators and vertices of strongly interacting particles are given.
These rules are however not sufficient for a full theory of the strong interaction because
they lead to divergences in the case of loop diagrams. Ultraviolet (UV) divergences
arise due to large momenta that can circulate in these loops. Another limit in which the
calculation of Feynman-diagrams is not sufficient is when initial- or final-state particles,
represented by legs in the diagrams, radiate soft (with low energy) or collinear (at small
angle) particles. These emissions lead to infrared (IR) divergences that are dealt with
in Chapter 2. In the next section, we will deal with UV divergences by discussing the
renormalization of the theory.

1.3 Renormalization of a gauge field theory

Diagrams that contain loops have UV divergent probability amplitudes. The key idea
behind renormalization is that the divergences that arise are absorbed into a redefinition
of physical parameters of the theory. A theory is renormalizable if a finite number
of quantities is needed to absorb all infinities. QCD is proven to be a renormalizable
theory [65].

The procedure of renormalization consists of three steps: 1) regularization of the diver-
gent amplitudes, 2) rescaling all physical parameters and fields, and 3) computing all the
finite physical quantities.

1.3.1 Structure of renormalization

Dimensional regularization This is the most commonly used regularization method,
because it preserves the physical symmetries like gauge- and Lorentz invariance. The
key idea of dimensional regularization is to calculate the momentum space integral
(
∫
𝑑4𝑘/(2𝜋)4) of a probability amplitude in general for 𝑑 dimensions. For less than 𝑑 = 4

dimensions, the UV divergence disappears and the integral is calculable analytically. By
applying 𝑑 = 4 − 2𝜖 (with 𝜖 ≪ 1), the UV divergence is translated to a pole in 1/𝜖. This
reduction of dimensions goes along with the introduction of a mass-scale parameter: the
renormalization scale 𝜇𝑅. The integration over 𝑑4𝑘 transforms as

𝑑4𝑘

(2𝜋)4
→ (𝜇2

𝑅)
𝜖 𝑑4−2𝜖𝑘

(2𝜋)4−2𝜖 . (1.11)

Rescaling In the rescaling procedure, a bare observable 𝐺0 is written as the product of
a renormalization constant 𝑍 and a renormalized observable 𝐺:

𝐺0(𝑝𝑖 , 𝛼0) = 𝑍𝐺(𝑝𝑖 , 𝛼, 𝜇𝑅), (1.12)

with 𝑍 = 1 + 𝛿 and 𝛿 representing the counterterms which contain the divergences that
come from the 1/𝜖 pole. 𝛼0 is the bare coupling strength of the gauge theory, 𝛼 is the
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QCD Feynman Rules

Quark propagator
𝑖 𝑗

𝑝 =
𝑖𝛿𝑖 𝑗(/𝑝 + 𝑚)
𝑝2 − 𝑚2 + 𝑖𝜖

Gluon propagator 𝑎, 𝜇 𝑏, 𝜈
𝑘 =

𝑖𝛿𝑎𝑏

𝑘2 + 𝑖𝜖

[
𝑔𝜇𝜈 − (1 − 𝜉) 𝑘

𝜇𝑘𝜈

𝑘2

]
Ghost propagator

𝑎 𝑏
𝑞 =

𝑖𝛿𝑎𝑏

𝑞2 + 𝑖𝜖

Quark-gluon vertex

𝑖

𝑗

𝑎, 𝜇 = −𝑖 𝑔𝛾𝜇𝑇𝑖 𝑗
𝑎

Ghost vertex

𝑏 𝑐

𝑎, 𝜇

𝑝

= 𝑔 𝑓 𝑎𝑏𝑐𝑝𝜇

Triple gluon vertex

𝑎, 𝜇 𝑏, 𝜈

𝑐, 𝜌

𝑘 𝑝

𝑞

=
𝑔 𝑓 𝑎𝑏𝑐 (𝑔𝜇𝜈(𝑘 − 𝑝)𝜌 + 𝑔𝜈𝜌(𝑝 − 𝑞)𝜇

+𝑔𝜌𝜇(𝑞 − 𝑘)𝜈)

Quartic gluon vertex

𝑎, 𝜇 𝑏, 𝜈

𝑐, 𝜌 𝑑, 𝜎

= −𝑖 𝑔2


𝑓 𝑎𝑏𝑒 𝑓 𝑐𝑑𝑒 (𝑔𝜇𝜈𝑔𝜌𝜎 − 𝑔𝜇𝜌𝑔𝜈𝜎)
+ 𝑓 𝑎𝑐𝑒 𝑓 𝑏𝑑𝑒 (𝑔𝜇𝜌𝑔𝜈𝜎 − 𝑔𝜇𝜈𝑔𝜌𝜎)
+ 𝑓 𝑎𝑑𝑒 𝑓 𝑏𝑐𝑒 (𝑔𝜇𝜌𝑔𝜎𝜈 − 𝑔𝜇𝜎𝑔𝜌𝜈)


Table 1.1: Feynman rules for color charged particles [63]. Quarks are straight lines, gluons
are wavy lines and ghost particles are dashed lines. Flavor indices are denoted by 𝑖 or 𝑗 and
color indices by {𝜇, 𝜈, 𝜌, 𝜎}. The four-momenta of the particles are written along the lines with
Roman letters {𝑘, 𝑝, 𝑞}. In vertices, the four-momenta point inwards. The Minkowski metric is
𝑔𝜇𝜈 = diag(1,−1,−1,−1).
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renormalized coupling strength (the strong coupling 𝛼s in QCD) and 𝑝𝑖 are all momenta
that are involved. All fields and parameters of the theory should be rescaled so that
relations among the renormalization constants 𝑍𝑖 can be constructed.

Calculation of physical parameters By calculating all the renormalization constants 𝑍,
all renormalized fields and parameters can be extracted from the bare quantities and the
probability amplitudes become finite.

1.3.2 Renormalization group

The renormalization procedure implies that all the parameters of the quantum field
theory become scale-dependent. The QCD Lagrangian does however not contain any
dependence on the renormalization scale 𝜇𝑅. Therefore, physical quantities should
not depend on the choice of this scale. This insight leads to continuously generated
transformations that leave the Lagrangian invariant. Together these are referred to as the
renormalization group (RG). It does, however, not have the mathematical structure of a
group. This section gives a brief overview of the RG, for more details we refer the reader
to Chapter 2 of Ref. [7] or Chapter 12 of Ref. [63].

With the condition that a bare physical quantity (denoted by 𝐺0) is independent of the
renormalization scale 𝜇𝑅, one can describe the 𝜇𝑅-dependence of the parameters in the
theory. The renormalization group equation (RGE) is:

𝑑𝐺0

𝑑 ln𝜇2
𝑅

= 0. (1.13)

With the relation between the renormalized and bare quantities given in Eq. (1.12) this
becomes

1
𝑍

𝑑(𝑍𝐺)
𝑑 ln𝜇2

𝑅

=
𝜕𝐺

𝜕 ln𝜇2
𝑅

+ 𝜕𝐺

𝜕𝛼s

𝜕𝛼s

𝜕 ln𝜇2
𝑅

+ 𝐺 𝜕 ln𝑍
𝜕 ln𝜇2

𝑅

= 0. (1.14)

The QCD 𝛽-function and anomalous dimension 𝛾 are defined as coefficients of the RG
equation as:

𝛽(𝛼s) ≡
𝜕𝛼s

𝜕 ln𝜇2
𝑅

, 𝛾(𝛼s) ≡
𝜕 ln𝑍
𝜕 ln𝜇2

𝑅

. (1.15)

The beta function characterizes how the coupling constant changes with the energy scale.
A non-zero QCD 𝛽-function thus implies that the coupling strength 𝛼s is dependent on
the scale 𝜇𝑅. The exact form of the strong coupling 𝛼s(𝜇𝑅) is derived in the next section.

Anomalous dimensions describe how fields and operators scale under renormalization.
The physical observable 𝐺 can be measured at a physical scale 𝜇𝑅 = 𝑄. To solve the
RG equation (1.14), insert the definitions of the beta function and anomalous dimension
from Eq. (1.15) and rescale the parameters by 𝑄 changing 𝐺(𝑝𝑖 , 𝛼s , 𝜇𝑅) into 𝐺(𝑥𝑖 , 𝛼s , 𝑡)
with 𝑥𝑖 = 𝑝𝑖/𝑄 and 𝑡 = ln(𝑄2/𝜇2

𝑅
) to yield[

− 𝜕

𝜕𝑡
+ 𝛽(𝛼s)

𝜕

𝜕𝛼s
+ 𝛾(𝛼s)

]
𝐺(𝑥𝑖 , 𝛼s , 𝑡) = 0, (1.16)
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which is the Callan-Symanzik equation [63]. It defines the evolution of an observable 𝐺
in scale 𝑡 in relation with the running coupling and the anomalous dimension. The
dependence on 𝑥𝑖 is not important for further derivations and is left out in the following
notation. The partial differential equation can be solved with a boundary condition. The
value of an observable 𝐺 is known at the scale of the measurement where 𝑡 = 0, this
defines the boundary condition that is 𝐺(0, 𝛼s(𝑡)).

𝐺(𝑡 , 𝛼s) = 𝐺(0, 𝛼s(𝑡)) exp
{∫ 𝑡

0
𝑑𝑡′𝛾(𝛼s(𝑡′))

}
. (1.17)

This structure of evolution explains the breaking of scale invariance. Physical quantities,
eg. the coupling strength, quark masses and structure functions (describing the content
of hadrons), depend on the probing scale 𝑄2. The exponential factor in Eq. (1.17) is a
“resummation” factor that resums logarithms of the form ln(𝑄2/𝜇2

𝑅
).

The renormalization group serves to derive the running of the QCD coupling 𝛼s and the
concept of asymptotic freedom. These are discussed in the next section.

1.4 The running strong coupling

In gauge field theories the coupling strength is scale- (𝜇𝑅-) dependent as a consequence
of the regularization procedure. This is referred to as a “running coupling”. Both 𝛼
(the coupling strength of QED) and 𝛼s (the coupling strength of QCD) are running. At
the 𝑍 boson mass 𝑚𝑍 ≃ 91.2 GeV, the electromagnetic coupling is 𝛼(𝑚𝑍) ∼ 1/128 and
the strong coupling is 𝛼s(𝑚𝑍) ∼ 0.12. When these parameters are smaller than 1, they
are well suited for perturbation theory in which quantities are expressed as power series
expansions in 𝛼 or 𝛼s. However, the need to truncate the perturbation series and calculate
the lowest order coefficients causes systematic uncertainties. In general, leading order
(LO) 𝛼s calculations give a good qualitative idea of observables, next-to-leading order
(NLO) 𝛼2

s calculations give a more quantitative picture and next-to-next-to-leading order
(NNLO) calculations 𝛼3

s lead to very high precision results.

The QCD coupling constant 𝛼s(𝜇𝑅) decreases as the energy (𝜇𝑅) increases, whereas the
QED coupling constant 𝛼(𝜇𝑅) increases towards high energies. Collider processes un-
avoidably include interactions at low energy scales, which complicates QCD calculations
for collider processes compared to QED calculations.

The exact dependence of 𝛼s on 𝜇𝑅 can be expressed in terms of the QCD 𝛽-function given
in (1.15), which can be written as a series expansion:

𝛽(𝛼s) = −𝛼2
s

∞∑
𝑛=0

𝛽𝑛𝛼s
𝑛

= −𝛽0𝛼
2
s − 𝛽1𝛼

3
s − 𝛽2𝛼

4
s + 𝒪(𝛼5

s ). (1.18)

The determination of the coefficients 𝛽𝑛 of the RG 𝛽-function requires the calculation of
loop diagrams to order (𝑛 + 1) to obtain the renormalization constants 𝑍𝑖 .
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The first coefficient of the 𝛽-function is

𝛽0 =
1

12𝜋 (11𝐶𝐴 − 4𝑇𝑅𝑁 𝑓 ), (1.19)

where 𝐶𝐴 is the Casimir invariant in the adjoint (𝐴) representation (with dimensionality
𝑛 = 𝑁𝑐), which is equivalent to the number of colors 𝑁𝑐 . 𝑇𝑅 is the trace invariant (in the
fundamental representation) and 𝑁 𝑓 is the number of quark flavours. Color factors are
calculated with color algebra which uses the symmetries of the SU(3) group. With this,
and using 𝑁𝑐 = 3 as the number of colors, the following values are obtained: 𝑇𝑅 = 1/2,
𝑁 𝑓 = 6, 𝐶𝐴 = 3 and 𝐶𝐹 = (𝑁2

𝑐 −1)/2𝑁𝑐 = 4/3 [66, 67]. 𝐶𝐹 represents the Casimir invariant
in the fundamental representation.

The RGE on the left side of Eq. (1.15) can approximately be written by truncating Eq. (1.18):
𝜕𝛼s

𝜕 ln𝜇2 ≈ −𝛽0𝛼
2
s (1.20)

when 𝛼s is sufficiently small. Solving this differential equation yields an expression for
the running coupling 𝛼s(𝜇) at first order (one-loop 𝛼s):

𝛼s(𝜇) =
𝛼s(𝜇0)

1 + 𝛽0𝛼s(𝜇0) ln(𝜇2/𝜇2
0)
. (1.21)

For QCD, 𝛽0 is negative, such that:

𝛼s(𝜇) < 𝛼s(𝜇0), for 𝜇 > 𝜇0. (1.22)

This phenomenon is called asymptotic freedom implying that partons, the collective name
for quarks and gluons as the constituents of hadrons, are “free” particles at high energies.
At low energies, 𝛼s diverges. In that regime, color charged particles are strongly coupled.
This phenomenon is called confinement. A detailed description on asymptotic freedom
and confinement can be found in Ref. [7].

The decrease of the coupling strength with the energy can be physically related to virtual
emissions of gluons and quarks that respectively screen and anti-screen the color charge.
The first term of the 𝛽-function given in (1.19) represents the anti-screening due to
gluon loops and the second term represents the screening due to quark/anti-quark
pairs. Eventually the anti-screening effect dominates.

QCD gives an expression of 𝛼s in relation to a scale 𝜇 but does not give absolute values.
The value of 𝛼s needs to be measured experimentally. It can be measured through
various processes; measurements from many experiments are averaged by the Particle
Data Group and shown in Fig. 1.1. For reference, the value of the coupling is usually
given at the mass of the 𝑍 boson (𝑚𝑍).

The expression in Eq. (1.21) contains a singularity at a fixed scale Λ𝑄𝐶𝐷 , the QCD pa-
rameter. It takes the value Λ𝑄𝐶𝐷 ≃ 200 MeV ≃ 1 fm−1. In case of 𝜇 ≫ Λ𝑄𝐶𝐷 , the strong
coupling 𝛼s ≪ 1 and quantities depending on 𝜇 can be calculated with perturbation
theory. Effects at scales near the QCD scale are non-perturbative. The renormalization
group approach in this regime is not sufficient. In this regime partons are confined into
hadrons and not behaving as free particles. Hadrons are (non-elementary) particles that
are still not fully understood because of the non-perturbative dynamics of the hadronic
constituents. Non-perturbative models for hadronization or lattice QCD provide accept-
able results describing the formation of hadrons.
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Figure 1.1: Extractions of 𝛼s from various physical observables [68].

1.5 Summary

From this brief chapter where we introduced basic ingredients from QCD serving the
subsequent chapters, here are the important messages:

• QCD is a non-abelian gauge field theory. From its Lagrangian, the fundamental
interactions among color charged particles, quarks and gluons, can be derived. Not
only do the fermions (quarks) interact via a boson (gluon), there are also boson
self-interactions which make the theory more complex than QED.

• QCD is a renormalizable theory. The renormalization of fields introduces the
dependence on a renormalization scale 𝜇𝑅. Renormalization group equations are
derived from independence on 𝜇𝑅.

• The QCD coupling 𝛼s runs. The coupling strength is large at low energy scales and
small at high energies.

• The QCD scale Λ𝑄𝐶𝐷 is a fundamental energy scale of QCD where 𝛼s → ∞.
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Application of QCD to particle collision

processes

In this chapter, we introduce the concepts in QCD that allow us to make calculations
for particle collision processes at high energies. The previous chapter has indicated
why calculations in QCD are complicated; since the coupling strength 𝛼s grows towards
small scales, we can not purely rely on perturbation theory. In physical experiments,
non-perturbative, hadronic elements are present. Factorization of the cross section and
evolution of parton densities allow to combine non-perturbative input with perturba-
tively calculable objects. We derive these principles in section 2.2 starting from the deep
inelastic scattering (DIS) process.

2.1 Introduction

Electron-hadron collisions are well-suited for examining hadron structure and studying
parton distribution functions. The study of electron-proton scattering took place already
in the 1950s at low energies of the order of 0.1 GeV [69]. Interactions at these ener-
gies primarily result in elastic scatterings. Observation of hadron substructure requires
higher center-of-mass energies such that the interaction becomes inelastic and causing
the electron to break the proton apart. At very high momentum exchanges, the interac-
tion is “deep”. Deep inelastic electron-proton scattering (DIS) is a widely studied process
both theoretically as well as experimentally. The HERA (Hadron-Elektron-Ring-Anlage)
collider at the Deutsches Elektronen-Synchrotron (DESY) in Hamburg has been an im-
portant facility for studies to hadronic structure by colliding electrons and protons at a
center-of-mass energy

√
𝑠 = 320 GeV. Accurate calculations of the DIS cross section 𝜎

require a formalism to combine the perturbatively calculable high energetic interactions
and the non-perturbative and soft hadronic interactions. The collinear factorization the-
orem has been very successful in combining the soft and hard dynamics. This is the
topic of section 2.2, where the concepts of factorization of the cross section and evolution
of parton distribution functions are introduced. These concepts are crucial to perform
calculations of strong interaction processes at high energies.

At the Large Hadron Collider (LHC), two beams of protons are accelerated and brought
to collisions. The interacting partons exchange a large momentum 𝑄 which can cause

15
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the production of heavy particles, e.g. electroweak gauge bosons, Higgs bosons, top
quarks or other Standard Model (SM) particles or particles Beyond the SM (BSM). The
possibility to go to very high energies in proton-proton collisions lead to the discovery
of the Higgs boson in 2012 [70, 71]. Increasing the accuracy of theoretical predictions
of LHC processes requires to go beyond the collinear factorization theorem that was
introduced for DIS. For example, the transverse momentum spectrum of the 𝑍 boson in
Drell-Yan (DY) production, the topic of section 2.4, cannot be described well by collinear
factorization. This can be overcome by numerical simulations of parton radiation that
are taken by Monte Carlo event generators, which are briefly explained in section 2.3.
A formal and analytical calculation of the DY 𝑝𝑇 spectrum is obtained by including
transverse momentum in the factorization theorem, explained in section 2.5.

2.2 Deep-inelastic electron-hadron scattering

Consider the inclusive process of electron-hadron scattering 𝑒−(𝑘)+ ℎ(𝑃) → 𝑒−(𝑘′)+𝑋, as
illustrated in Fig. 2.1. Here, ℎ represents the incoming hadron carrying momentum 𝑃 and
𝑒 is the incoming electron carrying momentum 𝑘. Any hadronic final state resulting from
the scattered parton and the remnant of the hadron is denoted by 𝑋. The hard scattering
interaction is defined by the exchange of a virtual photon 𝛾∗ with four-momentum 𝑞 be-
tween the electron and a constituent of the hadron, a parton. The scattering is considered
“deep” when the squared momentum exchange 𝑞𝜇𝑞𝜇 is large.

𝑒−

ℎ

𝑒−

𝑓𝑞/ℎ (𝑥)

𝑋

𝑘

𝑘′

𝑃

𝑝

𝑞

𝑝 + 𝑞

Figure 2.1: Deep inelastic scattering with 𝑝 = 𝑥𝑃 the initial longitudinal parton momentum,
𝑄2 = −𝑞2 the photon virtuality, 𝑘 the initial and 𝑘′ the final electron momentum and 𝑓𝑞/ℎ(𝑥) the
probability distribution function of partons in the hadron.

There are two degrees of freedom in DIS, assuming fixed center-of-mass energy 𝑠 =

(𝑃 + 𝑘)2. A convenient option for parametrization of the kinematical degrees of freedom
includes virtuality 𝑄2 and Bjorken 𝑥:

𝑄2 ≡ −𝑞𝜇𝑞𝜇 , (2.1)

𝑥 =
𝑄2

2𝑃 · 𝑞 . (2.2)

When 𝑄2 is large, the interaction of the photon with a parton occurs in a short time and
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at short distance. The photon travels a distance of Δ𝑥𝛾 ∼ 1/
√
𝑄2 ≪ 1 fm, significantly

smaller than the size of a hadron. The partonic hard scattering event is calculable
perturbatively and is an infrared safe factor, which means that it is generally not sensitive
to the long time dynamics in the hadron. Dynamics at lower energies than𝑄2 need to be
considered as well due to the presence of multiple partons in the incoming hadron.

As seen from the photon in the infinite momentum frame, where the hadron has a
large velocity (𝑣 ≈ 𝑐) anti-parallel to the direction of the photon, the hadron is Lorentz-
contracted in longitudinal direction. Interactions among partons occur time-dilated in
this frame, making them quasi-free particles with respect to the photon which interacts
with only one parton out of the hadron. In particular, when 𝑄2 ≫ Λ2

𝑄𝐶𝐷
, the proba-

bility for multiple partons interacting with the photon is small1. This high resolution
of the photon ensures that dynamics in the proton and the hard scattering do not inter-
fere, forming the foundation for the factorization theorem. The dynamics of the hard
interaction are completely decoupled from the hadronic dynamics. At the lowest order
calculation, in which color charge emissions are not taken into account, the factorized DIS
cross section is equivalent to that of the parton model (PM) [72, 73] where it is factorized
in a partonic matrix element for the interaction of the photon with one parton 𝜎𝛾𝑖 and
a hadronic function 𝑓𝑖/ℎ that represents the non-perturbative input of dynamics in the
hadron:

𝜎𝛾ℎ(𝑥, 𝑄2) =
∑
𝑖

𝜎𝛾𝑖(𝑥, 𝑄2) 𝑓𝑖/ℎ(𝑥), (2.3)

where 𝑓𝑖/ℎ(𝑥) describes the probability of finding a parton with flavor 𝑖 and momentum
fraction 𝑥 in hadron ℎ, which is referred to as the parton distribution function (PDF) or
parton density. PDFs are long-distance, hadronic functions that cannot be calculated from
first principles with perturbation theory. They need to be extracted from experimental
data.

Eq. (2.3) is not a formulation of the cross section that takes into account QCD. For this,
higher order diagrams need to be included. QCD radiative corrections, terms with 𝛼𝑛s
(𝑛 ≥ 1), are essential for a correct description of the DIS process at high energies. The PM,
that considers the constituents of the proton to be point-like particles, does not include
these corrections and does not provide a description of the breaking of scale invariance
of the parton density 𝑓𝑖/ℎ . In the next subsection, we exploit structure functions of QCD
that allow for a factorized formulation and a definition of PDFs.

2.2.1 Structure functions and parton distribution functions

The leading order DIS process is calculated purely with QED. Higher order corrections
from QCD require the inclusion of the transition probability of a hadron ℎ into any
hadronic final state 𝑋. For this, hadronic structure functions 𝐹𝑖 (𝑖 ∈ {1, 2}) are included
in the cross section as

𝑑𝜎𝛾ℎ

𝑑𝑥𝑑𝑄2 =
4𝜋𝛼2

𝑥𝑄4

(
(1 − 𝑦 +

𝑦2

2 )𝐹2(𝑥, 𝑄2) −
𝑦2

2 𝐹𝐿(𝑥, 𝑄2)
)
, (2.4)

1The photon-parton interaction probability is suppressed by a factor of Λ2
𝑄𝐶𝐷

/𝑄2.
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where 𝑦 =
𝑞·𝑝
𝑘·𝑝 is the inelasticity that describes the fraction of energy lost by the incident

lepton in the proton’s rest frame and 𝐹𝐿 = 𝐹2 − 2𝑥𝐹1 is the longitudinal structure func-
tion [7]. In the PM the structure functions “scale”, i.e. they do not depend on the energy
scale 𝑄2, and 𝐹2 is equal to the PDF multiplied with the electric charge of the quark (𝑒𝑖)
squared:

𝐹2,𝑃𝑀(𝑥) = 2𝑥𝐹1,𝑃𝑀(𝑥) =
∑
𝑖

𝑒2
𝑖 𝑓𝑖/ℎ(𝑥). (2.5)

The first equality also holds beyond the parton model and is known as the Callan-Gross

relation, which is equivalent to 𝐹𝐿(𝑥) = 0.

The transition to a QCD description requires a quantum field theory approach in which
higher order corrections (powers of 𝛼s) are taken into account. As seen in Chapter 1,
renormalization of observable quantities in QCD breaks the scale invariance. Therefore,
the structure functions become scale (𝑄) dependent.

𝑒−

ℎ

𝑒−

𝑓𝑞/ℎ (𝑥)

𝑋

𝑘

𝑘′

𝑃

𝜉𝑃

𝑥𝑃

𝑞

𝑝 + 𝑞

Figure 2.2: The DIS process including first order QCD radiation.

The structure functions need to be regularized in order to remove ultraviolet (UV) and
infrared (IR) divergences. UV divergences are dealt with by renormalization. IR di-
vergences arise from collinear, i.e. small angle, parton emissions in the higher order
corrections. The collinear divergent part can be separated, i.e. factorized, from the finite
part, coming from wide-angle emissions, by introducing a factorization scale 𝜇𝐹 . The
structure functions and cross section cannot depend on this scale. The regularized struc-
ture function 𝐹𝑘 is a convolution of a PDF (the soft, IR sensitive part) and an hard, IR safe
function 𝐶:

𝐹𝑘(𝑥, 𝑄2) =
∑
𝑖

∫ 1

𝑥

𝑑𝜉𝐶 𝑖
𝑘

(
𝑥

𝜉
,
𝑄2

𝜇2
𝐹

,
𝜇2
𝐹

𝜇2
𝑅

, 𝛼s(𝜇2
𝑅)

)
𝑓𝑖/ℎ

(
𝜉, 𝜇2

𝐹 , 𝛼s(𝜇2
𝑅)

)
+ 𝒪

(
Λ2
𝑄𝐶𝐷

𝑄2

)
, (2.6)

with 𝑘 = {2, 𝐿} and 𝜉 the longitudinal momentum fraction of the incoming parton before
splitting. The 𝐶 function is calculable in perturbation theory. With the scale choice
𝜇2 ≡ 𝜇2

𝑅
= 𝜇2

𝐹
, which we apply throughout the rest of this chapter, the series expansion

of the 𝐶-function can be written as:

𝐶 𝑖
𝑘

(
𝑥

𝜉
,
𝑄2

𝜇2 , 𝛼s(𝜇2)
)
=

∞∑
𝑛=0

(
𝛼s(𝜇2)

2𝜋

)𝑛
𝐶 𝑖
𝑘

(𝑛)
(
𝑥

𝜉
,
𝑄2

𝜇2

)
. (2.7)
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Truncation of the series expansion of 𝐶 after the first term corresponds to the PM since
𝐶 𝑖
𝑘

(0)(𝑥/𝜉) = 𝑒𝑖𝛿(1 − 𝑥/𝜉). There is an arbitrariness to the higher order coefficients of this
function because the finite, non-divergent terms can be put either to 𝐶 or to 𝑓 . A specific
choice of distributing the finite terms (i.e. not logarithmically divergent) in the expansion
of Eq. (2.7) is characterized by the factorization scheme.

A Mellin transformation2 [74] converts the convolution of Eq. (2.6) into a normal product
containing the Mellin moments (indicated by index 𝑁) of each function. This is conve-
nient to derive expressions for the 𝜇 dependence of the separate functions. The structure
functions’ Mellin moments are written as:

𝐹𝑘,𝑁 (𝑄2) =
∑
𝑖

𝐶 𝑖
𝑘,𝑁

(
𝑄2

𝜇2 , 𝛼s(𝜇2)
)
𝑓𝑖/ℎ,𝑁 (𝜇2). (2.8)

The 𝜇 dependence of PDFs and structure functions implies the breaking of scale invari-
ance as discussed in Sec. 1.3.2. PDFs are however universal objects, i.e. independent on
the process. Structure functions are observable quantities and form the backbone of the
fitting procedure of PDFs. DIS serves well for extraction of structure functions. Other
types of collisions involving hadrons can also allow for fits of PDFs to data.

2.2.2 DGLAP evolution of parton distributions

The renormalization group equation given in Eq. (1.13) applies to observable quantities
like structure functions. Together with the factorized form of the structure function as
given in Eq. (2.8), leaving the parton flavor indices out, the RGE can be schematically
written as:

𝜇2 𝑑

𝑑𝜇2 𝐹𝑘,𝑁 (𝑄
2) = 𝑑

𝑑 ln𝜇2

[
𝐶𝑘,𝑁

(
𝑄2

𝜇2 , 𝛼s(𝜇2)
)
𝑓𝑁 (𝜇2)

]
= 0. (2.9)

The solution of this equation is a Callan-Symanzik equation for the hard function 𝐶 and
one for the parton densities 𝑓 (leaving out the Mellin index 𝑁 for simplicity):

− 1
𝐶

𝑑𝐶

𝑑 ln𝜇2 =
1
𝑓

𝑑𝑓

𝑑 ln𝜇2 = 𝛾(𝛼s(𝜇2)), (2.10)

with 𝛾 the perturbatively calculable anomalous dimension that has the series expansion:

𝛾(𝛼s) =
∞∑
𝑛=1

𝑏𝑛𝛼
𝑛
s . (2.11)

Equations (2.10) are not ordinary differential equations though, because the terms 𝐶 and
𝑓 also depend on physical scales 𝑄 and 𝑚. Integrating the last equality in Eq. (2.10) over
ln𝜇2 from low scale 𝜇0 up to high scale 𝑄 yields:

𝑓 (𝑄2) = 𝑓 (𝜇2
0) exp

{∫ 𝑄2

𝜇2
0

𝑑𝜇′2

𝜇′2 𝛾
(
𝛼s(𝜇′2)

)}
. (2.12)

2A Mellin transformation of any function 𝑓 (𝑥, 𝜇) is defined as: 𝑓𝑁 (𝜇) =
∫ 1

0 𝑑𝑥𝑥𝑁−1 𝑓 (𝑥, 𝜇)
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Logarithmic scaling violation of parton distribution functions arises here as described in
Chapter 1. The scaling is broken via the anomalous dimension 𝛾(𝛼s). The integration over
𝜇′ has the interpretation of evolution of a hadron from a low scale 𝜇0 up to a high scale 𝜇
(usually taken to be the hard scale 𝑄). This exponential factor resums large logarithmic
factors of the form 𝛼𝑛s ln𝑛(𝑄2/𝜇2

0) that become large when 𝜇0 is small compared to 𝑄 (i.e.
evolution over a large energy range):

exp

{∫ 𝑄2

𝜇2
0

𝑑𝜇′2

𝜇′2 𝛾(𝛼s(𝜇′2))
}
≃ exp

{
𝑏1𝛼s ln 𝑄

2

𝜇2
0

}
(2.13)

=

∞∑
𝑛=1

1
𝑛! (𝑏1𝛼s)𝑛 ln𝑛

(
𝑄2

𝜇2
0

)
;

where we applied the first order term of the expansion given in Eq. (2.11). This is
renormalization group (RG) resummation of large logarithms, for hard scattering scales
much larger than the hadronic scale𝑄2 ≫ 𝜇2

0 ≃ 1 GeV, to all orders in the strong coupling.

Equations (2.10) can be rewritten in more detail by reintroducing the flavor indices. The
anomalous dimension is then represented as matrix kernel where the diagonal elements
are kernels for evolution with flavor conservation and non-diagonal elements represent
the possibility of flavor changes. The evolution equations of PDFs are then written as:

𝑑

𝑑 ln𝜇2 𝑓𝑎(𝜇) = 𝛾𝑎𝑏(𝛼s(𝜇)) 𝑓𝑏(𝜇). (2.14)

The result is brought to coordinate space through the inverse Mellin transformation. The
anomalous dimension in coordinate space is written as 𝑃𝑎𝑏 :

𝛾𝑎𝑏,𝑁 (𝛼s) =
∫ 1

0
𝑑𝑧 𝑧𝑁−1𝑃𝑎𝑏(𝛼s , 𝑧), (2.15)

where 𝑃𝑎𝑏(𝛼s , 𝑧) are known as the Altarelli-Parisi splitting functions [75]. These are pertur-
batively calculable functions in powers of 𝛼s:

𝑃𝑎𝑏(𝛼s , 𝑧) =
∞∑
𝑛=1

( 𝛼s
2𝜋

)𝑛
𝑃
(𝑛−1)
𝑎𝑏

(𝑧). (2.16)

The interpretation of the functions 𝑃𝑎𝑏(𝑧) as splitting functions becomes clear later as they
are the kernels for evolution equations of parton densities, see Eq. (2.18). The leading
order splitting functions 𝑃(0)

𝑎𝑏
give probabilities for single parton emissions such as the

one depicted in Fig. 2.3 where parton 𝑏 with longitudinal momentum fraction 𝑥𝑏 emits a
parton 𝑐 with momentum fraction 𝑥𝑐 = 𝑥𝑏 − 𝑥𝑎 = 𝑥𝑏(1− 𝑧) and continues as parton 𝑎 with
momentum fraction 𝑥𝑎 = 𝑧𝑥𝑏 . The branching is fully determined by values of 𝑥𝑏 and the
splitting variable 𝑧. The four leading order (LO) splitting diagrams with corresponding
splitting functions are given in Tab. 2.1.

The Altarelli-Parisi splitting functions are known up to N4LO [76] with which high
levels of precision can be reached in calculations. The plus-prescription inside the split-
ting functions is a quantum field theoretical consequence of the cancellation of infrared
singularities. It is defined as∫ 1

0
𝑑𝑧𝜑(𝑧)𝑔(𝑧)+ =

∫ 1

0
𝑑𝑧 [𝜑(𝑧) − 𝜑(1)] 𝑔(𝑧), (2.17)
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𝑧 =
𝑥𝑎
𝑥𝑏

1 − 𝑧

𝑥𝑎

𝑥𝑏

Figure 2.3: Parton branching of a quark into a quark by radiating a gluon. Labels represent the
longitudinal momentum fractions 𝑥 and splitting variable 𝑧

Splitting functions 𝑃
(0)
𝑎𝑏

𝑃
(0)
𝑞𝑞 : = 𝐶𝐹

(
1 + 𝑧2

1 − 𝑧

)
+

𝑃
(0)
𝑞𝑔 : = 𝑇𝑅

(
𝑧2 + (1 − 𝑧)2

)

𝑃
(0)
𝑔𝑞 : = 𝐶𝐹

1 + (1 − 𝑧)2
𝑧

𝑃
(0)
𝑔𝑔 : =

2𝐶𝐴
{( 1

1−𝑧
)
+ − 𝑧 + 1−𝑧

𝑧

}
+

( 11
6 𝐶𝐴 − 2

3𝑇𝑅𝑁 𝑓

)
𝛿(1 − 𝑧)

Table 2.1: LO splitting functions for processes 𝑞 → 𝑞𝑔, 𝑔 → 𝑞𝑞̄, 𝑞 → 𝑔𝑞 and 𝑔 → 𝑔𝑔 in the limit
of massless partons.

obeying the property
∫ 1

0 𝑑𝑧[𝑔(𝑧)]+ = 0.

The inverse Mellin transformation of Eq. (2.14) to 𝑥-space results in the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations [75, 77, 78]

𝜕 𝑓𝑎(𝑥, 𝜇2)
𝜕 ln𝜇2 =

∑
𝑏

∫ 1

𝑥

𝑑𝑧

𝑧
𝑃𝑎𝑏

(
𝛼s(𝜇2), 𝑧

)
𝑓𝑏

( 𝑥
𝑧
, 𝜇2

)
. (2.18)

Because of this equation, the splitting functions usually get referred to as “DGLAP
splitting functions”. These integral-differential equations of Eq. (2.18) can be solved
iteratively. Such a step-by-step solution has the interpretation of a parton emission
cascade from a low scale up to a high scale, i.e. an evolution in 𝜇. Chapter 3 provides
a detailed explanation of this parton branching approach where we move beyond solving
these “collinear” PDFs and include a transverse momentum dependence to the parton
densities. In formulating the iterative solution, it is critical to address the IR divergences
that are still present. A solution for 𝑓𝑎(𝑥, 𝜇2) corresponds to the forward evolution of the
PDF from 𝜇0 to a larger scale 𝜇. This enables the calculation of observables using the
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factorization theorem, as it allows for determination of the PDFs at any scale. The concept
of parton branching is the foundation for numerical simulations of collinear emissions in
particle collision events. Monte Carlo event generators are used to simulate such events.
The next section provides a brief explanation of the purposes and operations of these
programs.

With the physical picture of partons that carry a longitudinal momentum fraction 𝑥 of
the proton, a QCD momentum sum rule is formulated. The ansatz to derive this is that
all the partons together carry the full momentum of the proton. In other words, the sum
of momentum fractions over all partons, weighted with the parton distribution functions,
equals one: ∫ 1

0
𝑑𝑥𝑥

∑
𝑖

𝑓𝑖(𝑥, 𝜇2) = 1. (2.19)

This is known as the QCD momentum sum rule. From this, a momentum sum rule for
the DGLAP splitting functions can be derived [7]:∑

𝑎

∫ 1

0
𝑑𝑧 𝑧 𝑃𝑎𝑏(𝛼s(𝜇2), 𝑧) = 0. (2.20)

2.3 Monte Carlo event generators

This section is dedicated to introduce the concept of Monte Carlo (MC) event generators
that are based on the collinear factorization theorem and the DGLAP equations which
were explained in the previous section. This section is based largely on the extensive
review paper [79].

2.3.1 What is a Monte Carlo event generator?

An accurate description of final states and observables of particle collision processes
involving hadrons, e.g. the production of hadronic jets or di-lepton systems, cannot in
general be achieved by simply combining hard scattering calculations with collinear
parton densities. Parton radiation causes broadening of jets and changes the transverse
momentum spectrum of lepton pairs (see sections 2.4 and 2.5). In the 1980s it was realized
that the DGLAP evolution equations can be used to simulate such parton radiation
cascades, see Refs. [10–15]. The DGLAP equations are used to construct so-called “parton
showers” simulating soft (at large 𝑧) and collinear (at small angles) emissions, which are
used in numerical programs to connect the perturbatively calculable hard scattering cross
sections with the small-scale, non-perturbative process of hadron formation.

The goal of a parton shower Monte Carlo event generator (MCEG) is to mimic factorization
and perform numerical calculations for a wide variety of processes and over a broad
kinematic region by sampling the relevant phase space. These programs generate large
numbers of collision events, each of which may contain a large number of final state
particles. For accurate calculations, all possible kinematic final state configurations must
be accounted for, resulting in many degrees of freedom. The Monte Carlo method [80],
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which relies on the generation of random numbers to solve problems, is the most optimal
approach for filling and integrating over these multidimensional spaces. Distributions
can be sampled by this method generating e.g. phase space points, branching scales, or
parton flavors. The process of generating an “event record” containing information about
initial, intermediate and final state particles is repeated many times. This generation
process involves several steps, which are briefly described below. The final collection of
events is sometimes referred to as “pseudo-data”, since it can be analyzed identically to
data from measurements. Throughout this work, we analyze generated and processed
events in to format of HepMC [81] files using the Rivet3 [82, 83] tool.

The relative accuracy of the calculation improves inversely with the square of the number
of event samples: 𝜎𝑀𝐶 = 1/

√
𝑁 , where 𝑁 is the number of events. The setup of MCEGs

allows to only fill phase space regions of interest based on the experimental limits to
optimize the statistical uncertainty.

2.3.2 Sub-processes of high energy collision events

We briefly comment on the fundamental sub-processes that are simulated in MCEGs,
starting with the process at the hardest scale and moving down to hadronization, which
occurs at the lowest scales.

Hard sub-process. MCEGs are built around the hard sub-process. The hard interaction,
with a probability given by the “matrix element” (ME), can be generated exclusively.
In the matrix element generation, the kinematics of the process is set by sampling the
momenta of the particles entering the hard interaction according to PDFs. The total
integrated cross section 𝜎 is calculated and should not be changed by any of the other
sub-processes. The other elements of the program must also preserve the energy and total
momentum of the events set in this initial step. For LO matrix element calculations, only
the shape of the distributions is reliable. The overall normalization is usually poor in LO
calculations due to large corrections of higher order contributions. To compare LO MC
predictions with data, so-called 𝐾 factors are included to normalize the distribution. The
pursuit of higher accuracy often requires the inclusion of higher orders in the calculation,
such as next-to-leading order (NLO) corrections, which require the inclusion of both
real and virtual diagrams and the cancellation of UV and IR divergences. Ultraviolet
divergences are treated by renormalization, as in Chapter 1. Infrared divergences require
careful treatment, since both real and virtual diagrams contain IR divergences that cancel
each other out according to the Bloch-Nordsieck [84] and Kinoshita-Lee-Nauenberg [85,
86] theorems, but they affect phase spaces of different dimensions3. Methods to regulate
the IR divergences fall into two categories: phase space slicing methods and infrared
subtraction methods. The mc@nlo method is an example of the latter category, which is
implemented in the MadGraph5_amc@nlo [55] program.

Parton showers & jets. Moving backward in time and backwards in energy scale starting
from the hard interaction, color and electrically charged particles radiate at the legs of the
hard process (i.e. incoming and outgoing lines of the Feynman diagram). These emitters
are off-shell and radiate in a space-like fashion. Space-like emissions only occur in initial

3Virtual emissions leave the 𝑛-particle phase space unchanged whereas real emissions produce a phase
space of 𝑛 + 1 particles.
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state radiation (ISR), which originates from partons that will enter the hard process. When
moving forward in time and backward in energy scale starting from the hard interaction,
the emitters are on-shell and emit in a time-like manner. Time-like emissions occur in
both ISR as well as final state radiation (FSR). A parton shower (PS) simulates soft and
collinear emissions of partons. The leading-order Altarelli-Parisi splitting functions in
Tab. 2.1 provide the emission rates. The concept of “unitarity” specifies that the total
probability of emission and no-emission adds up to one and enables the creation of a no-
branching probability. The algorithm behind showers operates as a Markovian process,
where the subsequent emissions are uncorrelated [87, 88].
The particles emitted from showers can collapse into the proton remnant or they can
form collimated particle cones, known as jets. Analytically describing jets is challenging
as they contain numerous (soft) partons, but MC programs that include parton showers
allow relatively simple calculations of jet observables. Jet clustering algorithms (reviewed
in Ref. [89]) guarantee that the calculations remain collinear and infrared safe. That is: “for
any partonic configuration, replacing any parton with a collinear set of partons with the
same total momentum or adding any number of infinitely soft partons in any directions,
should produce the identical result” [79]. These algorithms cluster the final state partons
into jets using a set of conditions on relative distances and energies between partons in
order to belong to a certain jet. Multiple algorithms exist for jet clustering, such as the
frequently used 𝑘𝑇 algorithm [90–92] and anti-𝑘𝑇 algorithm [93].

Multi-parton interactions. In addition to the partons involved in the hard sub-process,
other partons can interact on softer scales and contribute to the so-called underlying event.
Partons from the same protons that did not participate in the hard interaction may interact,
leading to what is known as “multiple partonic interactions” (MPI). Convincing evidence
demonstrating the existence of MPI and the importance of MPI modeling is presented
through the calculation of the charged particle density with and without an MPI model
(referring to Fig. 8 in Ref. [79]). The original model, published in Ref. [94], remains the
foundation of numerous models concerning multiple parton scattering processes.

Hadronization. The transition from free, color-charged partons to bound, color-neutral
hadronic final states, known as “hadronization”, occurs at low energy scales due to a large
coupling and confinement. It takes place below the radiation scales in parton showers,
in a region where interactions become non-perturbative. Hadronization of final state
partons is necessary to achieve realistic hadronic jets. For analyses, events at partonic
level can provide already substantial information on observable quantities, such as the
transverse momenta of jets or di-lepton pairs.

Besides the listed processes, additional models are typically implemented, such as those
for the treatment of proton remnants, other types of underlying event interactions, decays
of unstable particles, hadron decay, and primordial/intrinsic transverse momentum.

2.3.3 Matching and merging

Parton emissions can be generated in two seemingly indistinguishable ways: one involves
an extra outgoing line in the Feynman diagram (calculated with the ME), and the other
requires an additional parton shower emission. Parton showers are built from collinear
and soft approximations, implying that the hardest emissions in an event should originate
from matrix element calculations. This is enforced by imposing an upper limit on the
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starting evolution scale of parton showers. In case of the lowest order process given
by the tree-level diagram, the “Born process”, this is equal to the hard scattering scale.
However, when higher order contributions in the hard process are present, there is not
a clearly defined starting scale for the shower. It is important to exercise caution when
combining the shower to the hard scattering events.

Simply running parton showers over matrix elements that include higher orders is prob-
lematic due to two issues. Firstly, matrix element calculations are “inclusive”, providing
a probability for at least 𝑛 final state partons, while a parton shower is “exclusive”,
providing a probability for exactly 𝑛 final state partons. Secondly, there is a risk of dou-
ble counting, i.e. overpopulating certain regions of the phase space, or missing phase
space regions by naively combining the two calculations. Matching and merging pro-
cedures address these concerns. Essentially, both include higher orders in 𝛼s where
matching procedures combine parton showers with fixed order calculations, and merg-
ing procedures allow for a combination of multiple orders 𝛼𝑛s and generally larger final
state parton multiplicities. Matching algorithms are designed to conserve the total cross
section when higher orders of 𝛼s are fully integrated in the matrix element, which in-
cludes virtual emissions. Matching NLO MEs to parton showers can be done with e.g.
the well-established mc@nlo method [95–98], the powheg method [99, 100] or more re-
cent methods in Refs [101–103]. These methods have demonstrated high efficacy and
are widely employed in the literature. Multi-jet merging approaches combine different
fixed-order multiplicities while avoiding double counting of emissions and allowing the
parton shower to generate “soft jets” only. Examples of LO merging procedures are
MLM [104–106], CKKW [107] or extended versions of CKKW with angular-ordered or
truncated showers [108, 109]. Examples of NLO merging algorithms are FxFx [110],
MiNLO [111] or others such as those in Refs. [112–115].

2.3.4 General purpose MC event generators

Parton shower Monte Carlo event generators are valuable programs for conducting phe-
nomenology, experimental analyses, and theoretical studies. The number of genera-
tors has been extensive over the past forty years, but today there are three prominent,
multi-purpose event generators with unique implementations of the essential elements
described above. The Pythia [116, 117], Herwig (Hadron Emission Reactions With In-
terfering Gluons) [118–120] and Sherpa (Simulation of High-Energy Reactions of PArti-
cles) [121, 122] programs offer a wide range of event generation possibilities and user-
friendly setups for setting the choice of preference. These three complex generators
specialize in calculating accurately the soft processes that accompany the hard process.

While all of these programs have the ability to generate hard scattering events, with
some even capable of NLO calculations, specific programs like Powheg [100] or Mad-
Graph [55, 123] or Amegic++ [124] focus more on the computation of Feynman-diagram
amplitudes. The resulting output from these programs can be easily transferred to parton
shower programs through the Les Houches Event (LHE) file format [125]. MCEGs that
were mentioned in this section incorporate collinear PDFs. The new work presented in
this thesis concerns with the development of transverse momentum dependent parton
distributions and the application in Monte Carlo event generation. The following sec-
tions motivate the need for parton distribution functions and a factorization theorem that
depend on transverse momenta.
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2.4 The Drell-Yan process

The collinear factorization framework outlined in section 2.2 does not always work. There
are observables that require different treatment, like the transverse momentum of lepton
pairs produced in hadron-hadron collisions. Large logarithms appear at all orders in the
strong coupling, destroying the convergence of the perturbation series.

The process in which a lepton pair is produced by the decay of a virtual photon or a 𝑍
boson at a hard scale 𝑄2 by collisions of two protons has been named after S. D. Drell
and T. M. Yan. Inclusive Drell-Yan (DY) production are processes of:

𝐴 + 𝐵 → 𝑙+ + 𝑙− + 𝑋 (2.21)

where 𝐴 and 𝐵 are protons and 𝑋 represents any hadronic final state. Drell and Yan
calculated the differential cross section of this process by using the parton model in
Ref. [126], as:

𝑑𝜎
(𝑝𝑝→𝑙+ 𝑙−+𝑋)
PM
𝑑𝑄2 =

4𝜋𝛼2

9𝑠𝑄2

∑
𝑞

∫ 1

0
𝑑𝑥𝑎

∫ 1

0
𝑑𝑥𝑏 𝑒

2
𝑞 𝛿(𝑥𝑎𝑥𝑏𝑠 −𝑄2) 𝑓𝑞(𝑥𝑎) 𝑓𝑞̄(𝑥𝑏), (2.22)

with 𝑥1 and 𝑥2 longitudinal momentum fractions of the quarks 𝑞 and 𝑞̄ and 𝑠 = (𝑝𝐴 +
𝑝𝐵)2. The partonic center-of-mass energy equals 𝑠 = 𝑥1𝑥2𝑠 and the 𝛿-function implies
momentum conservation.

The leading order hard interaction, calculated purely with QED, is illustrated by the
tree diagram on the right side of Fig. 2.4. The corresponding Born cross section 𝜎(0) =
4𝜋𝛼2/9𝑠𝑄2 is given by the first factor on the right hand side of Eq. (2.22).

𝑝𝐴

𝑝𝐵

𝑥𝑎

𝑥𝑏

𝑍/𝛾

𝑓𝑎(𝑥𝑎 , 𝑄2)

𝑓𝑏(𝑥𝑏 , 𝑄2)

Figure 2.4: Drell-Yan process. The exchanged neutral vector boson has four-momentum
𝑞, interacting partons have longitudinal momenta 𝑥1𝑝𝐴 and 𝑥2𝑝𝐵 with 𝑝𝐴 and 𝑝𝐵 the
momenta of the incoming protons.

A QCD formulation of the DY cross section requires scale dependent PDFs 𝑓𝑎/𝐴(𝑥𝑎 , 𝜇2),
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𝑓𝑏/𝐵(𝑥𝑏 , 𝜇2) and a hard factor 𝐻𝑎𝑏(𝑄2 , 𝜇2) that includes higher orders in 𝛼s:

𝐻𝑎𝑏(𝑄2 , 𝜇2) = 𝜎(0)
(
𝑄2 , 𝛼(𝜇)

) (
1 +

∞∑
𝑛=1

𝐻
(𝑛)
𝑎𝑏

𝛼𝑛s (𝜇)
)
, (2.23)

which coincides with the Born cross section at LO. The factorized differential cross section
is thus proportional to:

𝑑𝜎
(𝑝𝑝→𝑙+ 𝑙−+𝑋)
QCD

𝑑𝑄2 ∼
∑

𝑎,𝑏={𝑞,𝑞̄,𝑔}
𝐻𝑎𝑏(𝑄2 , 𝜇2) ⊗ 𝑓𝑎/𝐴(𝑥𝑎 , 𝜇2) 𝑓𝑏/𝐵(𝑥𝑏 , 𝜇2). (2.24)

To describe the transverse momentum (𝑝𝑇) distribution of the 𝑍 boson, one has to go
more differential in the cross section and calculate 𝑑𝜎/𝑑𝑄2𝑑𝑦𝑑𝑝2

𝑇
. This causes problems

with the convergence of the series expansion of the perturbative factors in the cross
section. Terms with higher powers in the strong coupling do not necessarily converge
anymore since they are accompanied by powers of logarithms giving terms of the form
𝛼𝑛s ln𝑚(𝑄2/𝑝2

𝑇
). An accurate calculation that takes into account the leading terms can

only be achieved by resumming the logarithmically enhanced terms to all orders 𝑛.

2.5 Transverse momentum dependent parton densities

Application of collinear factorization resulted in large progress within particle physics.
It allows to calculate observables in large kinematic domains and use in data analysis
led to discoveries of new particles, decay channels and information on the structure
of the proton. However, there are certain kinematic regions where only finite order
perturbative (DGLAP) calculations do not work. Emissions of soft gluons that possess
very small transverse momentum lead to large logarithms at all orders in the perturbation
series in 𝛼s. These series therefore need to be resummed. In deep inelastic scattering
and Drell-Yan, the kinematic regions of the phase space where resummation is necessary
are respectively the asymptotic high energy region (large 𝑠) and the low transverse
momentum region (small 𝑞⊥).

The DGLAP equations given in Eq. (2.18) are commonly used to construct collinear PDFs
𝑓 (𝑥, 𝜇) which depend on longitudinal momentum and the factorization scale. With these
functions, one has a one-dimensional picture of the proton. The phase space regions that
are logarithmically enhanced by soft gluons require to include the dynamics of partons
in the plane transverse to the proton’s direction to have a three-dimensional picture of the
proton. The transverse momentum dependence of parton distribution functions should
thus be uncovered. There are several approaches to do this. Some of these are discussed
in detail in Chapters 3, 5 and 6.

2.5.1 Structure functions from DIS

In the case of DIS, the use of collinear factorization is not sufficient to obtain structure
functions of the proton in the limit of

√
𝑠 → ∞. For fixed momentum transfer𝑄 they scale
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like 1/𝑠. With the current high energies of colliders and the prospects of future collider
energies, more events at low 𝑥 contribute to the measurements. At small longitudinal
momenta, the transverse momentum of the partons becomes relatively more important.
Without the inclusion of these degrees of freedom, a fixed order perturbative calculation
is not precise as can be seen in Fig. 2.5. The uncertainty bands of these collinear gluon
distributions at LO, NLO and NNLO are large and do not overlap. Physically the con-
tributions to the low 𝑥 regime come from soft gluon emissions which are present at any
order in 𝛼s. Terms in the perturbative series expansion of the DIS structure functions are
of the form [

𝛼s ln(
√
𝑠/𝑄)

] 𝑘
, (2.25)

where 𝛼s is considered to be small but the logarithms can become very large in the case of
a large center-of-mass energy

√
𝑠. These terms have to be resummed to perform correct

perturbative calculations. The resummation of these logarithms is not implied in the
DGLAP equations. These types of logarithms are resummed by BFKL (Balitsky-Fadin-
Kuraev-Lipatov) [127, 128] types of evolution equations. The CCFM (Catani-Ciafaloni-
Fiorani-Marchesini) [129] evolution equations interpolate between BFKL and DGLAP
evolution.

Figure 2.5: The gluon density against longitudinal momentum fraction 𝑥 for fixed order perturba-
tive calculations at LO, NLO and NNLO. The left plot shows the gluon density at fixed momentum
transfer 𝑄2 = 2 GeV2 and the right plot at 𝑄2 = 5 GeV2.[34]

2.5.2 Transverse momentum spectrum from DY

In the case of DY, the transverse momentum (𝑝𝑇) spectrum of the vector boson or final
state di-lepton system is not well described by finite order perturbative calculations of
collinear PDFs. This concerns the small 𝑝𝑇 region of the spectrum that is sensitive to QCD
effects beyond perturbative fixed order associated with soft multi-gluon radiation. In the
region of transverse momenta 𝑝 𝑙𝑙

𝑇
small compared to the di-lepton invariant mass 𝑚𝑙𝑙 ,

all terms in the perturbative series get possibly enhanced by large logarithms. Reliable
theoretical predictions require soft-gluon resummation - also referred to as Sudakov

resummation - and non-perturbative contributions which can be included by using the
TMD theoretical framework. For large 𝑝𝑇 , above the peak region, collinear factorization



2.5. TRANSVERSE MOMENTUM DEPENDENT PARTON DENSITIES 29

works fine provided that sufficient higher order diagrams leading to large transverse
momentum recoils are taken into account.

In the perturbative series of the transverse momentum spectrum for DY, large logarithms
arise for small parton transverse momentum 𝑞⊥. The terms in the perturbative series are
of the form:

𝛼𝑛s ln𝑚(𝑄/𝑞⊥). (2.26)

The collection of terms where 𝑛 < 𝑚 ≤ 2𝑛 are leading terms [43], but all terms with 𝑛+2 ≤
𝑚 ≤ 2𝑛 vanish due to exponentiation [130], leaving terms of the form 𝛼𝑛s ln𝑛+1(𝑄/𝑞⊥),
which are the leading logarithmic (LL) terms. Next-to-leading logarithms (NLL) are
terms of the form 𝛼𝑛s ln𝑛(𝑄/𝑞⊥) and so on and so forth. A measure of the accuracy of
Sudakov resummation is the number of powers of logarithms that are resummed, giving
a logarithmic accuracy.

The 𝑝𝑇-spectrum of the 𝑍 boson is measured with high precision at the LHC [131–136].
In Fig. 2.6 measurements of the 𝑝𝑇-spectrum at

√
𝑠 = 13 TeV of 𝑝𝑝 collisions are shown

together with theoretical predictions by parton shower event generators. A pure DGLAP
calculation, not shown in the figure, is not sufficient to describe the spectrum at small
transverse momentum. With the use of MC calculation techniques, shown in the figure,
many perturbative orders can be taken into account to obtain results that agree with the
measurement also in the high-𝑝𝑇 regime.
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Figure 2.6: Data of measurements of the Z boson 𝑝𝑇 -spectrum at
√
𝑠 = 13 TeV by CMS (left) [136]

and ATLAS (right) [135] at the LHC and predictions with the parton shower Monte Carlo event
generators MINLO, amc@nlo, Powheg, Sherpa and Pythia. The RadISH calculation is based on
analytical resummation by CSS.

The accuracy of soft-gluon resummation is determined by the powers of logarithms that
are taken into account. The “logarithmic accuracy” of parton shower MCEGs is state-of-
the-art research and topic of many groups nowadays [16–26]. The improvement of the
logarithmic accuracy of the Parton Branching (PB) method (described in Chapter 3) in
terms of the Sudakov form factor that has been implemented in the Cascade3 MC event
generator (Chapter 7) is part of the new material in the dissertation and described in
Chapter 6.
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2.5.3 TMD factorization

With parton shower MCEGs, it is possible to generate transverse momentum using
DGLAP evolution (through splittings of partons). The PDFs that are used in these tools
do however not include this information. More advanced evolution equations that are
able to evolve transverse momentum dependent parton distribution functions (TMDs)
are needed.

Resummation of large logarithms and TMDs are taken into account by the theoretical
framework of transverse momentum dependent (TMD) factorization. Examples of for-
mulations of TMD factorization are the Collins-Soper-Sterman (CSS) formalism [49, 137]
(see Sec. 6.2 for more details) or variants in Soft-Collinear Effective Theory (SCET) [138].

In spite of the many applications of collinear PDFs and the fact that they have been widely
used for analyses in high-energy experiments, TMDs are the subject of intensive studies
and will increasingly contribute to applications in high-energy physics. The factorized
parts of the DY cross section in Eq. (2.24) are integrated over the transverse momentum.
This physically means that the transverse momentum stream is limited; there is no
connection of the transverse momenta from the PDFs to those in the hard scattering
part. In TMD factorization formalisms, both the hard scattering matrix element and
the PDFs are 𝑘⊥-dependent, the transverse momentum flows between these parts. An
important step forward in the community of MCEGs is to include TMDs in all elements
of the calculation. The Cascade3 Monte Carlo event generator [51] is developed with this
purpose and is the topic of Chapter 7.

The formalisms that are developed for the high energy and low transverse momentum
regions, such as BFKL, CCFM and CSS (cf. Secs. 2.5.1 and 2.5.2), express the evolution
of TMDs with perturbative kernels (like the splitting functions in DGLAP). It is hard
to apply the equations of these approaches to general collider kinematics because they
only work well for particular observables and in particular kinematic regions. Because
of this, other approaches for the evolution of TMDs have been investigated among which
the Parton Branching method is one approach for TMD evolution, discussed in the next
chapter.
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PB formulation of TMD evolution

The Parton Branching (PB) method is a recently developed method for the evolution of
TMD PDFs [38, 39]. The previous chapters motivated the urge of transverse momentum
dependence in the different elements of high energy collision calculations. PB does
not focus on an analytical formulation of the differential DY cross section. Instead, the
PB method is concerned with QCD evolution equations for collinear PDFs and TMDs
and provides a numerical implementation that can be applied to the calculation of any
process.

We start in section 3.1 from the DGLAP evolution equations for collinear PDFs where we
construct a solution that can be solved iteratively using the Monte Carlo method. This
solution has an intuitive interpretation of multiple parton branchings. To achieve this,
we introduce a soft-gluon resolution scale, real emission probabilities and the Sudakov
form factor. The use of the unitarity picture [7, 11] and the Monte Carlo method provides
a means to iteratively solve the integral-differential evolution equations, allowing for
the resummation of soft gluon emissions. The introduction of transverse momentum
dependence in the evolution equations facilitates the transition to the evolution of TMD
PDFs. The implementation of ordering conditions enables to associate evolution vari-
ables with the transverse momentum. It was demonstrated in Ref. [38] that the angular
ordering condition is crucial to incorporate transverse momentum effects and achieve
TMD evolution that is less sensitive to the resolution scale.

3.1 Parton branching

The splitting variable 𝑧, as introduced in Chapter 2, represents the ratio of longitudinal
momentum fractions of partons in an emission process. In such a process, emitted partons
that are indistinguishable from their radiator are either emitted at a small angle, referred
to as “collinear” branchings, or carry a very small fraction of the radiator’s energy, referred
to as “soft” branchings. The latter have a splitting variable 𝑧 that is close to 1. These soft
types of branchings are referred to as non-resolvable. The complementary region of the
non-resolvable part of the phase space is the resolvable phase space region, where the final
state partons are distinguishable. A physical interpretation of non-resolvable partons is
related to the expression of the evolution scale in terms of physical parameters. At large
scales 𝜇, the resolution is higher, implying that more soft branchings are resolved. The
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scale 𝜇 gets an interpretation by ordering the branchings according to a kinematical
parameter, as described in subsection 3.2.1. The resolvable and non-resolvable regions
are separated by an infrared (IR) resolution scale 𝑧𝑀 . The region where 𝑧 > 𝑧𝑀 is the
non-resolvable region and 𝑧 < 𝑧𝑀 the resolvable region of the branching phase space.
In this section we apply this concept to the DGLAP evolution equations and express the
evolution equations in terms of resolvable emission probabilities.

The splitting functions 𝑃𝑎𝑏 contain IR divergences and singularities that are associated
with particular types of non-resolvable or virtual emissions. Loop diagrams, i.e. virtual
emissions, which do not cause any change in longitudinal momentum, are included in
the splitting functions as terms containing a 𝛿(1 − 𝑧) factor. Gluon emissions can arise at
values of 𝑧 that are close to 1, producing low-energy gluons which are very soft. These
emissions occur frequently due to a divergence towards 𝑧 → 1 in the splitting function.
The terms representing these soft-gluon emissions are diagonal in flavor (as a gluon
emission does not change quark flavor) and are accompanied by a factor of 1/(1− 𝑧). The
plus-prescription presented in Eq. (2.17) deals with the divergence towards 𝑧 → 1.

The splitting functions can be decomposed into three terms: real emissions (not singular
in 𝑧), virtual emissions (at 𝑧 = 1) and soft-gluon emissions (singular towards 𝑧 → 1).
This decomposition is as follows:

𝑃𝑎𝑏(𝛼s(𝜇2), 𝑧) = 𝐷𝑎𝑏(𝛼s(𝜇2))𝛿(1 − 𝑧) + 𝐾𝑎𝑏(𝛼s(𝜇2))
(

1
1 − 𝑧

)
+
+ 𝑅𝑎𝑏(𝛼s(𝜇2), 𝑧). (3.1)

For a simplification of the notation, in the remainder of this section we define 𝛼s ≡ 𝛼s(𝜇2).
Flavor diagonality is expressed through Kronecker delta functions: 𝐷𝑎𝑏 = 𝛿𝑎𝑏𝑑𝑎 and
𝐾𝑎𝑏 = 𝛿𝑎𝑏 𝑘𝑎 . All coefficients of the splitting functions are calculable perturbatively by a
series expansion in the strong coupling, as given in Eq. (2.16).

𝑘𝑎(𝛼s) =
∞∑
𝑛=1

( 𝛼s
2𝜋

)𝑛
𝑘
(𝑛−1)
𝑎 , 𝑑𝑎(𝛼s) =

∞∑
𝑛=1

( 𝛼s
2𝜋

)𝑛
𝑑
(𝑛−1)
𝑎 ,

𝑅𝑎𝑏(𝛼s , 𝑧) =
∞∑
𝑛=1

( 𝛼s
2𝜋

)𝑛
𝑅
(𝑛−1)
𝑎𝑏

(𝑧). (3.2)

Leading order (LO) and next-to-leading order (NLO) coefficients of these functions are
given in Appendix A. The function 𝑘𝑎 that is accompanied by the factor 1/(1 − 𝑧)+ is
referred to in the literature as the cusp anomalous dimension and is also denoted by 𝛾𝐾(𝛼s) =
𝑘𝑎(𝛼s). NLO coefficients of the splitting functions 𝑃(1)

𝑎𝑏
(𝑧) are obtained by calculations of

two-loop diagrams. The radiation diagrams at this order possibly contain both quark
and gluon radiation causing the occurrence of both 𝐶𝐹 and 𝐶𝐴 in one coefficient.

Soft gluons radiate more strongly than soft quarks which is reflected by 𝑘
(0)
𝑔 > 𝑘

(0)
𝑞 . In

general, the emission of gluons is enhanced for small splitting variables 𝑧 → 1 due to
the 1/(1 − 𝑧) and 𝛿(1 − 𝑧) factors along the flavor diagonal functions, representing gluon
emissions, and the fact that 𝐶𝐴 > 𝐶𝐹 .
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3.1.1 Regulating the non-resolvable region

We follow the procedure by Ref. [38] to achieve numerically solvable evolution equations.
The DGLAP evolution equations (2.18) can be written using the decomposition of the
splitting functions given in Eq. (3.1):

𝜕 𝑓𝑎(𝑥, 𝜇2)
𝜕 ln𝜇2 =

∑
𝑏

∫ 1

𝑥

𝑑𝑧

(
𝐷𝑎𝑏(𝛼s)𝛿(1 − 𝑧) + 𝐾𝑎𝑏(𝛼s)

(1 − 𝑧)+
+ 𝑅𝑎𝑏(𝛼s , 𝑧)

)
𝑓𝑏

( 𝑥
𝑧
, 𝜇2

)
, (3.3)

where 𝑓 (𝑥, 𝜇2) = 𝑥 𝑓 (𝑥, 𝜇2) are momentum-weighted PDFs.

Resolvable and non-resolvable regions can be separated straightforwardly for the 𝑅𝑎𝑏
term:

𝜕 𝑓𝑎(𝑥, 𝜇2)
𝜕 ln𝜇2 =

∑
𝑏

∫ 1

𝑥

𝑑𝑧𝐷𝑎𝑏(𝛼s)𝛿(1 − 𝑧) 𝑓𝑏
( 𝑥
𝑧
, 𝜇2

)
+

∑
𝑏

∫ 1

𝑥

𝑑𝑧
𝐾𝑎𝑏(𝛼s)
(1 − 𝑧)+

𝑓𝑏

( 𝑥
𝑧
, 𝜇2

)
(3.4)

+
∑
𝑏

∫ 𝑧𝑀

𝑥

𝑑𝑧𝑅𝑎𝑏(𝛼s , 𝑧) 𝑓𝑏
( 𝑥
𝑧
, 𝜇2

)
+

∑
𝑏

∫ 1

𝑧𝑀

𝑑𝑧𝑅𝑎𝑏(𝛼s , 𝑧) 𝑓𝑏
( 𝑥
𝑧
, 𝜇2

)
.

All divergent terms for 𝑧 → 1 must be regulated. The term with 𝐷𝑎𝑏 only contributes
at 𝑧 = 1, indicated by the Kronecker delta, representing a virtual branching that does
not change the longitudinal momentum of the parton. That leaves the second term on
the right-hand side, 𝐾𝑎𝑏/(1 − 𝑧)+. By using the definition of the plus-prescription from
Eq. (2.17), we can write this term as follows:∫ 1

𝑥

𝑑𝑧
𝐾𝑎𝑏(𝛼s)
(1 − 𝑧)+

𝑓𝑏

( 𝑥
𝑧
, 𝜇2

)
=

∫ 1

0
𝑑𝑧
𝐾𝑎𝑏(𝛼s)
(1 − 𝑧)+

Θ(𝑧 − 𝑥) 𝑓𝑏
( 𝑥
𝑧
, 𝜇2

)
(3.5)

=

∫ 1

0
𝑑𝑧
𝐾𝑎𝑏(𝛼s)

1 − 𝑧
[
Θ(𝑧 − 𝑥) 𝑓𝑏

( 𝑥
𝑧
, 𝜇2

)
− Θ(1 − 𝑥) 𝑓𝑏(𝑥, 𝜇2)

]
=

∫ 1

𝑥

𝑑𝑧
𝐾𝑎𝑏(𝛼s)

1 − 𝑧 𝑓𝑏

( 𝑥
𝑧
, 𝜇2

)
−

∫ 1

0
𝑑𝑧
𝐾𝑎𝑏(𝛼s)

1 − 𝑧 𝑓𝑏(𝑥, 𝜇2).

Separating the resolvable and non-resolvable regions using 𝑧𝑀 gives∫ 1

𝑥

𝑑𝑧
𝐾𝑎𝑏(𝛼s)
(1 − 𝑧)+

𝑓𝑏

( 𝑥
𝑧
, 𝜇2

)
=

∫ 𝑧𝑀

𝑥

𝑑𝑧
𝐾𝑎𝑏(𝛼s)

1 − 𝑧 𝑓𝑏

( 𝑥
𝑧
, 𝜇2

)
+

∫ 1

𝑧𝑀

𝑑𝑧
𝐾𝑎𝑏(𝛼s)

1 − 𝑧 𝑓𝑏

( 𝑥
𝑧
, 𝜇2

)
(3.6)

−
∫ 𝑧𝑀

0
𝑑𝑧
𝐾𝑎𝑏(𝛼s)

1 − 𝑧 𝑓𝑏(𝑥, 𝜇2) −
∫ 1

𝑧𝑀

𝑑𝑧
𝐾𝑎𝑏(𝛼s)

1 − 𝑧 𝑓𝑏(𝑥, 𝜇2).

The integral over the non-resolvable region (from 𝑧𝑀 up to 1) still needs to be regulated.
For this, an expansion of the PDF near 𝑧 = 1 as

𝑓𝑏

( 𝑥
𝑧
, 𝜇2

)
= 𝑓𝑏(𝑥, 𝜇2) + (1 − 𝑧)𝜕 𝑓𝑏(𝑥, 𝜇

2)
𝜕 ln 𝑥

+ 𝒪((1 − 𝑧)2), (3.7)

can be inserted in the second term on the right-hand side of Eq. (3.6). The integration
over 𝑧 there gives factors (1− 𝑧𝑀)𝑛 at order 𝑛 which are very small such that higher order
terms can be neglected. Eq. (3.6) becomes:∫ 1

𝑥

𝑑𝑧
𝐾𝑎𝑏(𝛼s)
(1 − 𝑧)+

𝑓𝑏

( 𝑥
𝑧
, 𝜇2

)
=

∫ 𝑧𝑀

𝑥

𝑑𝑧
𝐾𝑎𝑏(𝛼s)

1 − 𝑧 𝑓𝑏

( 𝑥
𝑧
, 𝜇2

)
−

∫ 𝑧𝑀

0
𝑑𝑧
𝐾𝑎𝑏(𝛼s)

1 − 𝑧 𝑓𝑏(𝑥, 𝜇2) (3.8)
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All IR singularities are contained in the 𝐾𝑎𝑏 and 𝐷𝑎𝑏 functions, the 𝑅𝑎𝑏 term does not
contain these divergences and is therefore not significantly contributing at large 𝑧. By
neglecting the last term of Eq. (3.4) and inserting Eq. (3.8) the evolution equations become:

𝜕 𝑓𝑎(𝑥, 𝜇2)
𝜕 ln𝜇2 =

∑
𝑏

∫ 𝑧𝑀

𝑥

𝑑𝑧

[
𝐾𝑎𝑏(𝛼s)

1 − 𝑧 + 𝑅𝑎𝑏(𝛼s , 𝑧)
]
𝑓𝑏

( 𝑥
𝑧
, 𝜇2

)
+

∑
𝑏

{∫ 1

𝑥

𝑑𝑧𝐷𝑎𝑏(𝛼s)𝛿(1 − 𝑧) −
∫ 𝑧𝑀

0
𝑑𝑧
𝐾𝑎𝑏(𝛼s)

1 − 𝑧

}
𝑓𝑏(𝑥, 𝜇2). (3.9)

The first term with integral over 𝑧 up to 𝑧𝑀 describes evolution of real parton emis-
sions. The real-emission splitting functions (referred to as the “unregularized splitting
functions” 𝑃̂ in Ref. [7]) are therefore defined as:

𝑃
(𝑅)
𝑎𝑏

(𝛼s , 𝑧) =
𝐾𝑎𝑏(𝛼s)

1 − 𝑧 + 𝑅𝑎𝑏(𝛼s , 𝑧). (3.10)

The second term describes virtual and non-resolvable emissions. The second term of
Eq. (3.9) describes virtual and non-resolvable emissions; the parton flavor 𝑎 does not
change in this process. A splitting process 𝑏 → 𝑎𝑐 is described by 𝑃𝑎𝑏 or equivalently by
𝑃𝑐𝑏 . We can interchange the flavor indices in the second term of Eq. (3.9) since 𝐷𝑎𝑏 and
𝐾𝑎𝑏 are diagonal in flavor, such that the evolution equations become:

𝜕 𝑓𝑎(𝑥, 𝜇2)
𝜕 ln𝜇2 =

∑
𝑏

∫ 𝑧𝑀

𝑥

𝑑𝑧𝑃
(𝑅)
𝑎𝑏

(𝛼s , 𝑧) 𝑓𝑏
( 𝑥
𝑧
, 𝜇2

)
+ (3.11)

+
∑
𝑐

{∫ 1

𝑥

𝑑𝑧𝐷𝑐𝑎(𝛼s)𝛿(1 − 𝑧) −
∫ 𝑧𝑀

0
𝑑𝑧
𝐾𝑐𝑎(𝛼s)

1 − 𝑧

}
𝑓𝑎(𝑥, 𝜇2).

Starting from Eq. (3.11) and subtracting the term
∑
𝑐

∫ 1
0 𝑧𝑃𝑐𝑎(𝛼s , 𝑧)𝑑𝑧, which is zero due

to the momentum sum rule (Eq. (2.20)) gives:

𝜕 𝑓𝑎(𝑥, 𝜇2)
𝜕 ln𝜇2 =

∑
𝑏

∫ 𝑧𝑀

𝑥

𝑑𝑧𝑃
(𝑅)
𝑎𝑏
𝑓𝑏

( 𝑥
𝑧
, 𝜇2

)
+ (3.12)

+
∑
𝑐

{∫ 1

𝑥

𝑑𝑧𝐷𝑐𝑎(𝛼s)𝛿(1 − 𝑧) −
∫ 𝑧𝑀

0
𝑑𝑧
𝐾𝑐𝑎(𝛼s)

1 − 𝑧

−
∫ 1

0
𝑑𝑧 𝑧

(
𝑅𝑐𝑎(𝛼s , 𝑧) + 𝐷𝑐𝑎(𝛼s)𝛿(1 − 𝑧) + 𝐾𝑐𝑎(𝛼s)

(1 − 𝑧)+

)}
𝑓𝑎(𝑥, 𝜇2),

where the decomposition of the DGLAP splitting functions𝑃𝑎𝑏 from Eq. (3.1) was applied.
The terms with integrals over 𝐷𝑐𝑎 in Eq. (3.12) cancel against each other because the first
term in the second line is:∫ 1

𝑥

𝑑𝑧𝐷𝑐𝑎(𝛼s)𝛿(1 − 𝑧) =
∫ 1

0
𝑑𝑧𝐷𝑐𝑎(𝛼s)𝛿(1 − 𝑧)Θ(𝑧 − 𝑥) = 𝐷𝑐𝑎(𝛼s). (3.13)

Once again, the integration of 𝑅𝑐𝑎 over the non-resolvable region (𝑧𝑀 < 𝑧 < 1) can be
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neglected. Regularization of the 𝐾 term is still needed. One proceeds as follows:∫ 1

0
𝑑𝑧 𝑧

𝐾𝑐𝑎(𝛼s)
(1 − 𝑧)+

=

∫ 1

0
𝑑𝑧 𝑧

𝐾𝑐𝑎(𝛼s)
1 − 𝑧 −

∫ 1

0
𝑑𝑧
𝐾𝑐𝑎(𝛼s)

1 − 𝑧 (3.14)

=

∫ 𝑧𝑀

0
𝑑𝑧 𝑧

𝐾𝑐𝑎(𝛼s)
1 − 𝑧 −

∫ 𝑧𝑀

0
𝑑𝑧
𝐾𝑐𝑎(𝛼s)

1 − 𝑧 +
∫ 1

𝑧𝑀

𝑑𝑧 𝑧
𝐾𝑐𝑎(𝛼s)

1 − 𝑧 −
∫ 1

𝑧𝑀

𝑑𝑧
𝐾𝑐𝑎(𝛼s)

1 − 𝑧 .

The third term on the right-hand side of the last equality can be written as∫ 1

𝑧𝑀

𝑑𝑧 𝑧
𝐾𝑐𝑎(𝛼s)

1 − 𝑧 =

∫ 1

𝑧𝑀

𝑑𝑧
1 + 𝑧 − 1

1 − 𝑧 𝐾𝑐𝑎(𝛼s) =
∫ 1

𝑧𝑀

𝑑𝑧
𝐾𝑐𝑎(𝛼s)

1 − 𝑧 −
∫ 1

𝑧𝑀

𝑑𝑧𝐾𝑐𝑎(𝛼s), (3.15)

of which the first term cancels with the last term of Eq. (3.14) and the second term is of
the order of (1 − 𝑧𝑀) and thus negligible. Only the first two terms of Eq. (3.14) remain.
The evolution equations can then be written using another substitution of real-emission
splitting functions

𝜕 𝑓𝑎(𝑥, 𝜇2)
𝜕 ln𝜇2 =

∑
𝑏

∫ 𝑧𝑀

𝑥

𝑑𝑧𝑃
(𝑅)
𝑎𝑏
𝑓𝑏

( 𝑥
𝑧
, 𝜇2

)
(3.16)

+
∑
𝑐

{
−

∫ 𝑧𝑀

0
𝑑𝑧 𝑧 𝑅𝑐𝑎(𝛼s , 𝑧) −

∫ 𝑧𝑀

0
𝑑𝑧 𝑧

𝐾𝑐𝑎(𝛼s)
1 − 𝑧

}
𝑓𝑎(𝑥, 𝜇2).

In the last line we recognize again the real-emission splitting functions, with an extra
factor of 𝑧. The evolution equations then become:

𝜕 𝑓𝑎(𝑥, 𝜇2)
𝜕 ln𝜇2 =

∑
𝑏

(∫ 𝑧𝑀

𝑥

𝑑𝑧𝑃
(𝑅)
𝑎𝑏

(𝛼s , 𝑧) 𝑓𝑏
( 𝑥
𝑧
, 𝜇2

)
−

∫ 𝑧𝑀

0
𝑑𝑧 𝑧 𝑃

(𝑅)
𝑏𝑎

(𝛼s , 𝑧) 𝑓𝑎(𝑥, 𝜇2)
)
. (3.17)

3.1.2 Evolution with the Sudakov form factor

The form of Eq. (3.16) is not solvable analytically nor does it have the right structure
to be solved with the Monte Carlo techniques [139] because this coupled differential
equation depends both on 𝑓𝑎 as on 𝑓𝑏 and integration limits differ. To be suitable for
the MC approach, one makes use of unitarity [7, 11] which states that the probability of
an emission is complementary to that for no emission in any domain of the evolution
variable {𝜇2

0 , 𝜇
2}. In terms of resolvable and non-resolvable emissions this is translated

in the unity of the sum of the probabilities for resolvable branchings (𝒫𝑎) and for no

resolvable branchings (𝒫𝑛𝑜
𝑎 ):

𝒫𝑎(𝜇2 , 𝜇2
0) + 𝒫𝑛𝑜

𝑎 (𝜇2 , 𝜇2
0) = 1. (3.18)

In this subsection we first illustrate the general construction and interpretation of a no-
branching probability𝒫𝑛𝑜

𝑎 in terms of scale 𝑡 = ln𝜇2. Here, flavor indices and the splitting
variable 𝑧 are left out. Then we give the detailed form of the no-branching probability in
Eq. (3.24) that can be implemented in the PB evolution equations.

The probability for a resolvable branching at a scale 𝜇 of parton 𝑎 into parton 𝑏 by
emitting parton 𝑐 is proportional to splitting functions 𝑃(𝑡). This does not represent the
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probability for a splitting within a finite interval Δ𝑡 = 𝑡 − 𝑡0. For both forward (going
up in scale 𝑡) and backward (going down in scale 𝑡) types of evolution, the no-branching
probability has to be known over a finite interval of the evolution scale to perform a
calculation of the evolution of PDFs. A no-branching probability for identical starting
and final scale is equal to one.

The probability for no resolvable branching in an infinitesimal interval 𝑑𝑡 is

𝒫𝑛𝑜(𝑑𝑡) = 1 − 𝑑𝑡𝑃, (3.19)

where for simplicity we suppose the splitting functions 𝑃 to not dependent on the scale
𝑡. The no-branching probability over a finite scale interval {𝑡0 , 𝑡} is calculated by sub-
dividing the domain into many (𝑛) infinitesimal subintervals, multiplication of the 𝑛
no-branching probability factors and taking the limit 𝑛 → ∞:

𝒫𝑛𝑜(Δ𝑡) = lim
𝑛→∞

(
1 − Δ𝑡

𝑛
𝑃

)𝑛
= exp

(
− Δ𝑡𝑃

)
, (3.20)

where we exponentiated according to the definition exp(𝑥) = lim𝑛→∞(1 + 𝑥/𝑛)𝑛 . The
splitting functions, governing the probability for a branching, however depend on the
scale 𝜇. The no-branching probability therefore can generally be written as:

Δ(𝜇2 , 𝜇2
0) ≡ exp

{
−

∫ 𝜇2

𝜇2
0

𝑑 ln𝜇′2𝑃(𝜇′)
}
, (3.21)

where the argument of the exponent essentially is an average, or effective, splitting
probability of evolution in the interval {𝜇0 , 𝜇}.

The probability for an emission at scale 𝜇, starting from 𝜇0, is equal to the product of the
branching probability 𝑃(𝜇) and the no-branching probability Δ(𝜇, 𝜇0):

𝒫(𝜇, 𝜇0) = 𝑃(𝜇) exp

{
−

∫ 𝜇2

𝜇2
0

𝑑 ln𝜇′2𝑃(𝜇′)
}
= 𝑃(𝜇)Δ(𝜇2 , 𝜇2

0), (3.22)

from which the following differential equation can be derived:

−𝑑Δ(𝑡)
𝑑𝑡

= 𝑃(𝑡)Δ(𝑡). (3.23)

It is possible to rewrite the DGLAP evolution equations in terms of Δ by using the
property in Eq. (3.23). For this, we have to reintroduce the parton flavor indices and take
into account the 𝑧-dependence of the splitting functions.

To maintain the exact evolution dynamics as in Eq. (3.17), the Sudakov form factor Δ𝑎 for
PB is defined as [38]:

Δ𝑎(𝑧𝑀 , 𝜇2 , 𝜇2
0) = exp

{
−

∑
𝑏

∫ 𝜇2

𝜇2
0

𝑑 ln𝜇′2
∫ 𝑧𝑀

0
𝑑𝑧 𝑧 𝑃

(𝑅)
𝑏𝑎

(𝛼s(𝜇′), 𝑧)
}
, (3.24)

which can be interpreted as the probability that a parton 𝑎 does not emit any resolvable
parton (𝑏) during evolution from scale𝜇0 up to𝜇. With this object, the evolution equations
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in Eq. (3.17) can be written in terms of real-emission probabilities 𝑃(𝑅)
𝑎𝑏

and Sudakov form
factors Δ𝑎(𝜇2) as

𝜕

𝜕 ln𝜇2

(
𝑓𝑎(𝑥, 𝜇2)
Δ𝑎(𝜇2)

)
=

1
Δ𝑎(𝜇2)

∑
𝑏

∫ 𝑧𝑀

𝑥

𝑑𝑧𝑃
(𝑅)
𝑎𝑏

(𝛼s(𝜇2), 𝑧) 𝑓𝑏
( 𝑥
𝑧
, 𝜇2

)
. (3.25)

This form of the evolution equation is solvable iteratively, as explained in section 3.1.3.

The Sudakov form factor is a resummation factor, like that in the renormalization of 𝛼s
(see Eq. (1.17)) or for evolution of PDFs (see Eq. (2.13)). In this way, the non-resolvable
region of the branching phase space and multiple soft-gluon emissions are taken into
account by exponentiation.

For results that are described in Chapters 5 and 6 it is convenient to rewrite the Sudakov
form factor and perform the integration of 𝑧. The momentum sum rule for splitting
functions (Eq. (2.20)) and the decomposition of the splitting functions (Eq. (3.1)) are
useful identities to rewrite the argument of the Sudakov form factor. The momentum
sum rule can be written as:

0 =
∑
𝑎

∫ 1

0
𝑑𝑧 𝑧 𝑃𝑎𝑏(𝛼s , 𝑧) =

∑
𝑎

{∫ 𝑧𝑀

0
𝑑𝑧 𝑧 𝑃𝑎𝑏(𝛼s , 𝑧) +

∫ 1

𝑧𝑀

𝑑𝑧 𝑧 𝑃𝑏𝑎(𝛼s , 𝑧)
}

(3.26)

=
∑
𝑎

∫ 𝑧𝑀

0
𝑑𝑧 𝑧

[
𝑅𝑎𝑏(𝛼s , 𝑧) +

𝛿𝑎𝑏 𝑘𝑎(𝛼s)
1 − 𝑧

]
−

∫ 𝑧𝑀

0
𝑑𝑧
𝑘𝑎(𝛼s)
1 − 𝑧

+
∑
𝑎

∫ 1

𝑧𝑀

𝑑𝑧 𝑧 𝑅𝑎𝑏(𝛼s , 𝑧) +
∫ 1

𝑧𝑀

𝑑𝑧
𝑧 − 1
1 − 𝑧 𝑘𝑎(𝛼s) + 𝑑𝑎(𝛼s) .

The terms with integrals
∫ 1
𝑧𝑀
𝑑𝑧 can be neglected because of their small integration region

and their opposite signs. The first term of Eq. (3.26) contains the real emission splitting
functions, causing the following identity to be true:∑

𝑎

∫ 𝑧𝑀

0
𝑑𝑧 𝑧 𝑃

(𝑅)
𝑎𝑏

(𝛼s) ≃
∫ 𝑧𝑀

0
𝑑𝑧
𝑘𝑎(𝛼s)
1 − 𝑧 − 𝑑𝑎(𝛼s). (3.27)

Note that this is only fully valid when the argument of the strong coupling does not
depend on the splitting variable 𝑧. The Sudakov form factor can then approximately be
written as

Δ𝑎(𝑧𝑀 , 𝜇2 , 𝜇2
0) ≃ exp

{
−

∫ 𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2

(∫ 𝑧𝑀

0

𝑘𝑎(𝛼s)
1 − 𝑧 𝑑𝑧 − 𝑑𝑎(𝛼s)

)}
. (3.28)

To simplify the notation, Sudakov form factors are usually written only with their upper
limit argument: Δ(𝜇2) ≡ Δ(𝜇2 , 𝜇2

0).
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3.1.3 Evolution with multiple emissions

The integral-differential equation (3.25) can be solved by integration over ln(𝜇′2) from 𝜇2
0

up to 𝜇2. This results in an integral equation of the Fredholm type (Eq. (32) in Ref. [38]):

𝑓𝑎(𝑥, 𝜇2) = Δ𝑎(𝜇2) 𝑓𝑎(𝑥, 𝜇2
0) +

∑
𝑏

∫ 𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2
Δ𝑎(𝜇2)
Δ𝑎(𝜇′2)

∫ 𝑧𝑀

𝑥

𝑑𝑧𝑃
(𝑅)
𝑎𝑏

(𝛼s(𝜇′2), 𝑧) 𝑓𝑏
( 𝑥
𝑧
, 𝜇′2

)
.

(3.29)
The integrals in this equation are difficult to calculate analytically. Monte Carlo methods
are highly effective to solve these. Fredholm type equations can be solved iteratively.
Each step in the iteration represents a contribution to the evolution with an additional
branching. This also forms the foundation of a parton shower algorithm [140]. A step-
by-step iterative solution of Eq. (3.29) is explained below.

+ + + ...a

µ0

µ

b

a

µ′

µ0

µ

c

b

a

µ′

µ′′

µ0

µ

Figure 3.1: Solution of the branching equation by iteration.

The first term Δ𝑎(𝜇2) 𝑓𝑎(𝑥, 𝜇2
0) represents PDF evolution of a parton with flavor 𝑎 at a scale

𝜇2
0 without any resolvable branching, through multiplying with the Sudakov form factor

at final evolution scale 𝜇2. The starting distribution is fit to experimental data or could
be constructed with a toy model. The left diagram in Fig. 3.1 illustrates the contribution
of this term to the evolution.
The second term on the right-hand side takes into account the contributions from parton
splittings at scales between 𝜇0 and 𝜇. These splittings change the flavor from 𝑏 to 𝑎 and
the parton’s longitudinal momenta from 𝑥/𝑧 to 𝑥. The second iteration is obtained by
inserting the first solution into 𝑓𝑏 of the second term:

𝑓
(1)
𝑎 (𝑥, 𝜇2) =

∑
𝑏

∫ 𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2
Δ𝑎(𝜇2)
Δ𝑎(𝜇′2)

∫ 𝑧𝑀

𝑥

𝑑𝑧𝑃
(𝑅)
𝑎𝑏

(
𝛼𝑠(𝜇′2), 𝑧

)
Δ𝑏(𝜇′2) 𝑓𝑏

( 𝑥
𝑧
, 𝜇2

0

)
. (3.30)

This gives the contribution to evolution of one branching at scale 𝜇′ (shown in the middle
diagram of Fig. 3.1).

Inserting the second solution on the right-hand side of Eq. (3.30) into 𝑓𝑏 in Eq. (3.29)
yields the contribution of two branchings to the evolution, as illustrated in Fig. 3.1. The
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expression would be

𝑓
(2)
𝑎 (𝑥, 𝜇2) =

∑
𝑏

∫ 𝜇2

𝜇2
0

𝑑𝜇′′2

𝜇′′2
Δ𝑎(𝜇2)
Δ𝑎(𝜇′′2)

∫ 𝑧𝑀

𝑥

𝑑𝑧2𝑃
(𝑅)
𝑎𝑏

(
𝛼𝑠(𝜇′′2), 𝑧2

)
× (3.31)

×
∑
𝑐

∫ 𝜇′′2

𝜇2
0

𝑑𝜇′2

𝜇′2
Δ𝑏(𝜇′′2)
Δ𝑏(𝜇′2)

∫ 𝑧𝑀

𝑥/𝑧2

𝑑𝑧1𝑃
(𝑅)
𝑏𝑐

(
𝛼𝑠(𝜇′2), 𝑧1

)
Δ𝑐(𝜇′2) 𝑓𝑐

(
𝑥

𝑧1𝑧2
, 𝜇2

0

)
.

Repetition of this procedure infinitely would yield an exact solution:

𝑓𝑎(𝑥, 𝜇2) =
∞∑
𝑖=0

𝑓
(𝑖)
𝑎 (𝑥, 𝜇2). (3.32)

In practice, Monte Carlo methods simulate this procedure. This begins with selecting
a parton with flavor 𝑎, at scale 𝜇𝑗 , followed by generating values of 𝜇′ and 𝑧 for a
branching, solved through 𝑅 = Δ𝑎(𝑧𝑀 , 𝜇′

𝑗
, 𝜇′

𝑗+1), where 𝑅 is a random number between
0 and 1. For each generated branching scale 𝜇′ a 𝑧 value is generated according to the
splitting functions (see Eq. (37) in Ref. [38]). A new parton flavor is picked randomly
following the splitting functions as well. As 𝜇′ increases, the PDF value is ultimately
reached at scale 𝜇.

Parton branching methods employ this sequential evolution process and are applicable
in both backward evolution of parton showers from high scale 𝜇 to lower scale 𝜇0 as well
as forward evolution of the parton densities. However, it should be noted that Eq. (3.29)
solely evolves collinear PDFs, i.e. parton densities that do not contain information on
the transverse momentum. To advance towards transverse momentum dependent PDFs
(TMDs), it is crucial to monitor the transverse momentum of the partons along the
evolution procedure and ensure a proper ordering of branchings along the branching
cascade.

3.2 PB TMD evolution

When including transverse momentum (𝑘⊥) dependence to the PDFs, two degrees of
freedom (𝑘⊥,𝑥 , 𝑘⊥,𝑦) enter the evolution equations. The evolution equations for TMDs can
be written in a general form by starting from Eq. (3.29), changing the evolution variable
to a vector 𝜇′ → µ′

⊥ (with components 𝜇′
⊥,𝑥 and 𝜇′

⊥,𝑦) and inserting 𝑘⊥-dependence in
the parton densities 𝑓𝑎(𝑥, 𝜇2) → 𝒜𝑎(𝑥, 𝑘⊥ , 𝜇2):

𝒜𝑎(𝑥, 𝑘⊥ , 𝜇2) =Δ𝑎(𝜇2 , 𝜇2
0)𝒜𝑎(𝑥, 𝑘⊥,0 , 𝜇2

0) +
∑
𝑏

∫ d2µ′

⊥

𝜋𝜇′2 Θ(𝜇2 − 𝜇′2)Θ(𝜇′2 − 𝜇2
0) (3.33)

× Δ𝑎(𝜇2)
Δ𝑎 (𝜇′2)

∫ 𝑧𝑀

𝑥

d𝑧 𝑃(𝑅)
𝑎𝑏

(𝛼s , 𝑧)𝒜𝑏

( 𝑥
𝑧
, 𝑘′⊥ , 𝜇

′2
)
,

where 𝒜𝑎(𝑥, 𝑘⊥ , 𝜇2) = 𝑥𝒜𝑎(𝑥, 𝑘⊥ , 𝜇2) is the momentum-weighted TMD of a parton with
flavor 𝑎 at a longitudinal momentum fraction 𝑥 of the hadron’s momentum and transverse
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momentum 𝑘⊥ at a scale 𝜇2. The longitudinal momentum transfer at a branching is 𝑧
and the momentum scale of the branching is

𝜇′ = |µ′
⊥ | . (3.34)

In the dynamics of the evolution, it is only this absolute value of the evolution vector that
matters. When generating emissions numerically in the iterative solution process, both
a size 𝜇′ and an (random) angle 𝜙 need to be generated.

Integration limits on the size of the evolution variable are set by means of Θ-functions.
The integral over the absolute value 𝜇′ ranges between 𝜇0 and 𝜇, while the angle of the
vector in the transverse plane, 𝜙 (i.e. the azimuthal angle), represents the other degree
of freedom. The factor 1/𝜋 ensures normalization and accounts for the 𝜙 dependence.
The real emission probabilities are unchanged with respect to the collinear case1.

Integration over the transverse momentum reduces these equations to evolution of inte-
grated TMDs (iTMDs), i.e. collinear distributions:

𝑓𝑎(𝑥, 𝜇2) =
∫

d2k⊥
𝜋

𝐴𝑎(𝑥, k⊥ , 𝜇
2) , (3.35)

where the transverse momentum vector contains two degrees of freedom: |k⊥ | and 𝜙.
The evolution equations for integrated TMDs 𝑓𝑎 are given by Eq. (3.29).

Equation (3.33) does not specify how to calculate the transverse momentum of parton
𝑎, 𝑘⊥, from the transverse momentum of parton 𝑏, 𝑘′⊥. It also does not specify what
should be the scale of the strong coupling. For this, one needs an ordering condition that
associates the evolution variable µ′

⊥ with kinematic variables.

3.2.1 Ordering conditions and color coherence

The association of the evolution variable with either the virtuality of the parton or a
related parameter results in the ordering of branchings associated with a kinematic
variable. With a two-dimensional evolution variable, branchings can be ordered in
different ways.

An evolution equation for TMDs is constructed in Ref. [38] similar to that for collinear
PDFs. Various ordering conditions were investigated in this first paper on PB TMD
evolution. The ordering can affect the following three elements of the evolution dynamics:

1. calculation of the new transverse momentum 𝑘⊥𝑎(𝑧, 𝜇′),

2. scale of the running coupling 𝛼s
(
(𝑏(𝑧)𝜇′)2

)
at a branching,

3. soft-gluon resolution scale 𝑧𝑀(𝜇′).

1Recent developments of splitting functions in the case of TMD evolution, so-called “transverse momentum
dependent splitting functions”, are published in Ref. [141]
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These three elements can be included in the TMD evolution equations as parameteriza-
tions via functions 𝑎(𝑧), 𝑏(𝑧) and 𝑧𝑀(𝜇′) as follows:

𝒜𝑎(𝑥, 𝑘⊥ , 𝜇2) =Δ𝑎(𝜇2 , 𝜇2
0)𝒜𝑎(𝑥, 𝑘⊥,0 , 𝜇2

0) +
∑
𝑏

∫ d2µ′

⊥

𝜋𝜇′2
Δ𝑎(𝜇2)
Δ𝑎 (𝜇′2)

Θ(𝜇2 − 𝜇′2)Θ(𝜇′2 − 𝜇2
0)

×
∫ 𝑧𝑀 (𝜇′)

𝑥

d𝑧 𝑃(𝑅)
𝑎𝑏

(
𝛼s

(
𝑏2(𝑧)𝜇′2

)
, 𝑧

)
𝒜𝑏

( 𝑥
𝑧
, 𝑘⊥ + 𝑎(𝑧)𝜇′, 𝜇′2

)
, (3.36)

In order to determine the ordering conditions represented by 𝑎(𝑧) and 𝑏(𝑧), consider the
single parton branching of parton 𝑏 that emits parton 𝑐 and moves on in the branching
cascade as parton 𝑎 as shown in Fig. 3.2. Partons 𝑎, 𝑏 and 𝑐 have four-momenta 𝑘𝑎 , 𝑘𝑏
and 𝑘𝑐 that are of the form 𝑘𝜇 = (𝐸𝑘 , 𝑘1 , 𝑘2 , 𝑘𝑧) = (𝐸𝑘 , k⊥ , 𝑘

𝑧), where k⊥ = (𝑘1 , 𝑘2) and
𝑘⊥ = |k⊥ |. In light-cone coordinates this is 𝑘 = (𝑘+ , 𝑘− , k⊥) where 𝑘± = 1/√2(𝐸𝑘 ± 𝑘𝑧). The
transverse momentum of parton 𝑐 is denoted as q⊥.

𝑧 =
𝑥𝑏
𝑥𝑎

𝑎

𝑏

𝑐

𝑥𝑎 , 𝑘⊥𝑎

𝑥𝑏 , 𝑘⊥𝑏

(1 − 𝑧)𝑥𝑏 , 𝑞⊥

Figure 3.2: Parton branching with longitudinal momentum fractions 𝑥𝑏 , 𝑥𝑎 = 𝑧𝑥𝑏 , 𝑥𝑐 =
(1 − 𝑧)𝑥𝑏 and transverse momenta 𝑘⊥𝑎 , 𝑘⊥𝑏 , 𝑞⊥.

Conservation of the minus component of the parton momenta gives2:

𝑘2
𝑏
+ 𝑘2

⊥𝑏
2𝑘+

𝑏

=
𝑘2
𝑎 + 𝑘2

⊥𝑎
2𝑘+𝑎

+
𝑘2
𝑐 + 𝑞2

⊥
2𝑘+𝑐

. (3.37)

The plus components can be easily related through the use of the splitting variable:
𝑘+𝑎 = 𝑧𝑘+

𝑏
, 𝑘+𝑐 = (1 − 𝑧)𝑘+

𝑏
, such that Eq. (3.37) becomes:

𝑘2
𝑏
+ 𝑘2

⊥,𝑏 =
𝑘2
𝑎 + 𝑘2

⊥,𝑎
𝑧

+
𝑘2
𝑐 + 𝑞2

⊥
1 − 𝑧 . (3.38)

Virtuality and transverse momentum ordering The virtuality and transverse momen-
tum ordering conditions assume a strong ordering in transverse momenta implying that
𝑘2
⊥𝑏 ≪ 𝑘2

⊥𝑎 such that |k⊥𝒂 | = −|q⊥ |. Both the incoming particle 𝑏 and the emitted particle
𝑐 are on-shell: 𝑘2

𝑏
= 𝑘2

𝑐 = 0, assuming that the partons are massless.

2An important identity here is: 𝑘2 = 2𝑘+𝑘− − 𝑘2
⊥.
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Association of the evolution scale 𝜇′ with the virtuality of parton 𝑎 (𝜇′2 = −𝑘2
𝑎) defines

the virtuality ordering [142]:
𝑞2
⊥ = (1 − 𝑧)𝜇′2. (3.39)

The assumption 𝑧 → 0 (valid in the high-energy or small-𝑥 limit) defines the transverse
momentum ordering (𝑝𝑇 ordering):

𝑞2
⊥ = 𝜇′2. (3.40)

Angular ordering Virtuality ordering and transverse momentum ordering are not
based on quantum field theory arguments. A theoretical observation that gives an
indication for the appropriate ordering condition is the QCD color coherence phenomenon
[10, 43, 143–145]. Color coherence is the effect of destructive interference between parton
emissions within emission cones3. In the evolution calculation, only the emissions that
do not cancel need to be counted. Therefore, sequential branchings should be ordered
according to their (rapidity) angles: 𝜃𝑖+1 > 𝜃𝑖 . This is visualized in Fig. 3.3, where the
vertical line represents the evolution of a parton from the proton at a low scale up to the
hard scattering at large scale (upper grey zone). An angular ordering of the branchings
can be accomplished by use of the rescaled transverse momentum 𝑞̄⊥ [147]:

𝑞̄⊥ =
|q⊥ |
1 − 𝑧 . (3.41)

Figure 3.3: Cascade of soft gluons radiated by a parton that evolves up to the hard
scattering process. The soft gluons are ordered in their angles so that 𝜃𝑖+1 > 𝜃𝑖 . [142]

3A similar effect occurs in QED, called the Chudakov effect [146].
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With angular ordering, emissions are ordered along the branching cascade according to
their rescaled transverse momenta: 𝑞̄⊥,𝑖+1 > 𝑞̄⊥,𝑖 4. Association of this with the evolution
variable defines the angular ordering condition:

𝑞2
⊥ = (1 − 𝑧)2𝜇′2. (3.42)

The expressions for 𝑎(𝑧), 𝑏(𝑧) and 𝑧𝑀(𝜇′) in Eq. (3.36) are summarized for all ordering
conditions in Tab. 3.1. The soft-gluon resolution scale 𝑧𝑀(𝜇′) is obtained by rewriting
and maximization of the ordering condition for 𝑧. In 𝑝𝑇 ordering, the evolution scale
𝜇′ does not depend on the splitting variable implying a fixed resolution scale 𝑧𝑀 . In
virtuality and angular ordering, the upper 𝑧 limit is obtained by the use of a minimum
transverse momentum scale 𝑞min

⊥ ≡ 𝑞0. The physical interpretation of 𝑞0 is that of the
minimum emitted transverse momentum at which a parton can be resolved.

Early studies in Refs. [10, 148] have demonstrated that a coherent branching approach
requires the strong coupling scale to be the emitted transverse momentum, 𝑞⊥, which is
achieved by setting 𝑎(𝑧) = 𝑏(𝑧).

Transverse momentum IR cut-off Scale of 𝛼s
𝑎2(𝑧)𝜇′2 𝑧𝑀 𝑏2(𝑧)𝜇′2

𝑝𝑇 ordering 𝑞2
⊥ = 𝜇′2 𝑧𝑀 = 1 − 𝜖 𝛼s(𝜇′2)

Virtuality ordering 𝑞2
⊥ = (1 − 𝑧)𝜇′2 𝑧𝑀(𝜇′) = 1 −

(
𝑞0
𝜇′

)2
𝛼s

(
(1 − 𝑧)𝜇′2)

Angular ordering 𝑞2
⊥ = (1 − 𝑧)2𝜇′2 𝑧𝑀(𝜇′) = 1 − 𝑞0

𝜇′ 𝛼s
(
(1 − 𝑧)2𝜇′2)

Table 3.1: Ordering conditions of evolution, the soft-gluon resolution scale and scale of
the strong coupling. The parameters 𝑞0 and 𝜖 are constants whereas 𝜇′ and 𝑧 are variable
parameters.

In Ref. [38], TMD evolution calculations have been performed for all scenarios of 𝑎(𝑧)
and 𝑏(𝑧) in Eq. (3.36) and with fixed resolution scales 𝑧𝑀 = 1 − 𝜖 with various values
of 𝜖. Figure 3.4 shows results of these calculations for gluon TMDs using 𝑝𝑇 ordering
(left) and angular ordering (right) with different fixed values of 𝜖. From the comparison
of these two ordering conditions, the conclusion has been made in [38] that with the
implementation of angular ordering in the formalism, one obtains stable, quasi 𝑧𝑀-
independent TMDs while with 𝑝𝑇 ordering this is not the case. For this reason, reliable
phenomenological studies require the use of angular ordered evolution of TMDs.

The role of the functions 𝑎(𝑧) and 𝑏(𝑧) in angular ordering has been analyzed in Refs. [36,
37, 149] for TMD applications to DY processes. We analyze the angular ordered situation
𝑎(𝑧) = 𝑏(𝑧) = 1 − 𝑧 in dept in Chapter 5.

4The CCFM formalism also has an ordering of the evolution in the rescaled transverse momentum, but as
𝑞̄𝑖+1 > 𝑧𝑞̄𝑖
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Figure 3.4: TMDs constructed by the PB method using 𝑝𝑇 ordering (left plots) and angular ordering
(right plots). The two plots are functions of |𝑘⊥ | with fixed 𝑥 = 0.01. Three curves on each plot
differ only by values of the resolution scale: 𝑧𝑀 = 1 − 10−3, 1 − 10−5 and 1 − 10−8 which are
respectively represented by the red, blue and purple curves. [38]

3.2.2 Dealing with transverse momentum

An essential component of the PB TMD evolution algorithm involves managing trans-
verse momentum recoils by keeping track of the emitted transverse momentum 𝑞⊥,𝑖 in
each step along the branching cascade. The resulting transverse momentum at the final
scale is obtained through the vectorial sum of all transverse momentum recoils:

k⊥ = 𝑘⊥,0 −
∑
𝑖

q⊥,𝒊 . (3.43)

The starting distribution 𝒜𝑎(𝑥, 𝑘⊥,0 , 𝜇2
0) at scale 𝜇2

0 is factorized in a collinear PDF at scale
𝜇0 and a parameterization of intrinsic transverse momentum of partons in a hadron:

𝒜𝑎(𝑥, 𝑘⊥,0 , 𝜇2
0) = 𝑥 𝑓𝑎(𝑥, 𝜇2

0) · ℐ(𝑘⊥,0) . (3.44)

In principle, the function ℐ can take any form. The PB method parameterizes this by a
normalized Gaussian function with a width defined by the 𝑞𝑠 parameter that is 𝑞2

𝑠 = 2𝜎2

(with 𝜎 the standard deviation of a Gaussian distribution).

ℐGauss(𝑘2
⊥,0 , 𝑞

2
𝑠 ) =

1
𝜋𝑞2

𝑠

exp

(
−
𝑘2
⊥,0

𝑞2
𝑠

)
. (3.45)

This element of the PB evolution contains non-perturbative input because of small scales
𝜇2

0 and a transverse momentum Gaussian curve around 𝑘2
⊥,0 = 0. In non-perturbative

studies presented in Chapter 6 this is one element to take into consideration.
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The TMDlib library and PB-TMD sets

We have seen in Chapter 2 that an important ingredient for the application of QCD factor-
ization theorems to the phenomenology of high-energy colliders is given by transverse
momentum dependent parton distribution functions (TMDs).

In this short chapter1 we describe recently developed software presented in Ref. [40]
which provides a common library, TMDlib2, for such parton distributions. This allows
for easy access of commonly used TMDs, and constitutes a platform for studies of the
three-dimensional (3D) structure of hadrons.

The chapter is structured as follows. In the introduction, we sketch the current situation
regarding PDF libraries and motivate the need for a library that provides TMDs. In
Sec. 4.2, we give the main elements of the TMDlib2 library. As an example of implemented
TMDs, we explain properties of the two PB-TMD sets included in TMDlib2 in Sec. 4.3
since these are important for the subsequent studies of this thesis. Finally, in Sec. 4.4 we
describe schematically how TMD uncertainties are included in this program.

4.1 Introduction

The calculation of processes at high energy hadron colliders is based in general on the
calculation of a partonic process (matrix element) convoluted with the likelihood to find a
parton of specific flavor and momentum fraction at a given scale within the hadrons. If the
parton density depends only on the longitudinal momentum fraction 𝑥 of the hadron’s
momentum carried by a parton, and the scale 𝜇, the processes are described by collinear
factorization with the appropriate evolution of the parton densities (PDFs) given by the
DGLAP evolution equations. Such descriptions are successful for sufficiently inclusive
processes, like inclusive deep-inelastic lepton-hadron scattering (DIS).

In several less inclusive processes, on the other hand, we have discussed in Chapter 2 that
also the transverse momentum of the interacting partons plays an important role, leading
to an extension of the collinear factorization theorem to include transverse degrees of
freedom. Different factorization theorems for the inclusion of transverse momenta to

1This work has been published in N.A. Abdulov et al., “TMDlib2 and TMDplotter: a platform for 3D hadron

structure studies”, European Physical Journal C 81 (2021) 8, 752

45



46 CHAPTER 4. TMDLIB AND PB TMD SETS

the parton densities have been developed in the past, leading to transverse momentum
dependent (TMD) parton distributions and unintegrated parton distribution functions
(uPDFs) [34]. These densities provide a 3D imaging of the hadron structure, extending the
one dimensional picture given by PDFs. For semi-inclusive processes, like semi-inclusive
DIS (SIDIS), Drell-Yan (DY) production and 𝑒+𝑒− annihilation, TMD factorization has
been formulated by many groups [49, 50, 150–160]. The high-energy (small-𝑥 limit)
factorization was formulated for heavy flavor and heavy boson production in Refs. [33,
161–166] using gluon uPDFs [167–175].

Since the number of available TMD densities, obtained from parameterizations and
fits to experimental data performed by different groups, increases very rapidly, it has
been necessary to develop a common platform to access the different TMD sets in a
common form. In 2014 the first version of TMDlib (version 1) and TMDplotter was
released [41], which made several TMD sets available to the community. This library
has set a common standard for accessing TMD sets, similar to what was available for
collinear parton densities in PDFlib [176, 177] and LHAPDF [178]. TMDlib is a C++
library which provides a framework and an interface to a collection of different uPDF
and TMD parameterizations. The next section gives the main features of the TMDlib2
library.

4.2 The TMDlib framework

The TMDlib library and its new version TMDlib2 consider momentum weighted TMD
parton distributions 𝑥𝒜 𝑗(𝑥, 𝑘⊥ , 𝜇) of flavor 𝑗 as functions of the parton’s light-cone lon-
gitudinal momentum fractions 𝑥 of the hadron’s momentum, the parton’s transverse
momentum 𝑘⊥, and the evolution scale 𝜇 [34]. Besides, the library also contains inte-
grated TMDs obtained from the integration over 𝑘⊥, as follows

𝑥𝒜𝑖𝑛𝑡(𝑥, 𝜇) =
∫ 𝑘⊥,max

𝑘⊥,min

𝑑𝑘2
⊥ 𝑥𝒜(𝑥, 𝑘⊥ , 𝜇) , (4.1)

The tool TMDplotter allows for web-based plotting of distributions implemented in
TMDlib2, together with collinear PDFs as well. In Fig. 4.1 (left), we show an example of
the integrated TMDs of the PB-TMD-NLO-HERAI+II-2018-set1 [37], in which the integral
between 𝑘⊥,min = 0.01 and 𝑘⊥,max = 100 GeV is compared with the collinear PDF set
HERAPDF2.0 [179]. By construction both sets are identical. However in general Eq. (4.1)
does not converge to a collinear PDF. This is shown in the right plot of Fig. 4.1 showing
the integrated TMDs of PV17 [180] integrated over in a range where 𝑘⊥,min = 0.01 and
𝑘⊥,max = 100 GeV with the corresponding collinear distribution MMHT2014 [181].

In TMDlib2 the densities are defined more generally as momentum weighted distribu-
tions 𝑥𝒜(𝑥, 𝑥̄, 𝑘⊥ , 𝜇), where 𝑥, 𝑥̄ are the (positive and negative) light-cone longitudinal
momentum fractions [46, 182–184].
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Figure 4.1: Comparison of up-quark distributions, 𝑥 𝑓 (𝑥, 𝜇) = 𝑥𝒜𝑖𝑛𝑡 (𝑥, 𝜇) as a function of
𝑥 at 𝜇 = 100 GeV. Left: comparison of the integrated distribution PB-NLO-HERAI+II-2018-
set1 [37] with HERAPDF2.0 [179]. Right: comparison of integrated distribution PV17 [180] with
MMHT2014 [181].

4.3 PB-TMD sets

In Chapter 3 the PB method was formulated as a way to obtain TMDs for all light flavors
over a wide range of 𝑥, transverse momentum 𝑘⊥, and scale 𝜇 essentially by solving NLO
RGEs through Sudakov form factors, separating resolvable and non-resolvable branch-
ings via a soft-gluon resolution scale [7, 11] and keeping track of the transverse momenta
at each branching. Fits to experimental data of inclusive DIS precision measurements
at HERA [179] were presented in Ref. [37] by the xFitter [185, 186] framework. With
these, two TMD sets PB-TMD-NLO-HERAI+II-2018-set1 and PB-TMD-NLO-HERAI+II-
2018-set2 as well as their integrated analogues were obtained. They are evolved up to
scale 𝜇2 = 𝑄2 with the following dynamics and kinematic constraints:

• The starting distributions 𝑓𝑎(𝑥, 𝜇2
0) are taken from fits to DIS measurements from

H1 and ZEUS resulting in the PDF HERAPDF2.0 [179].

• The starting evolution scale 𝜇2
0 is 1.9 GeV2 for set1 and 𝜇2

0 = 1.4 GeV2 for set2.

• Evolution is performed with NLO splitting functions 𝑃NLO
𝑎𝑏

=
𝛼s
2𝜋𝑃

(0)
𝑎𝑏

+
( 𝛼s

2𝜋
)2
𝑃
(1)
𝑎𝑏

• In both sets, emitted transverse momentum 𝑞⊥ is associated to the evolution variable
𝜇′ according to the angular ordering condition: 𝑞⊥ = (1 − 𝑧)𝜇′.

• The scale of the strong coupling is treated differently:

– Set 1 has 𝛼s(𝜇′)
– Set 2 has 𝛼s(𝑞⊥).

For this scenario, an additional constraint to avoid approaching Λ𝑄𝐶𝐷 is
needed which is obtained by introducing a cut-off 𝑞𝑐𝑢𝑡 = 1.0 GeV and ap-
plying 𝛼s(max(𝑞2

⊥ , 𝑞
2
𝑐𝑢𝑡)).

• The soft-gluon resolution scale is fixed for both sets at 𝑧𝑀 = 1 − 10−5.
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The integrated distributions are available through LHAPDF [178] and the TMD sets are
implemented in TMDlib2.

4−10

3−10

2−10

1−10

1

10

210)µ
xf

(x
,

 = 100 GeVµup, 

 from 0.1 up to 1000 GeV
t

PB-NLO-HERAI+II-2018-set1, k
 from 0.1 up to 1000 GeV
t

PB-NLO-HERAI+II-2018-set2, k
HERAPDF20_NLO_EIG

T
M

D
pl

ot
te

r 
2.

2.
4

 = 100 GeVµup, 

4−10 3−10 2−10 1−10
x

0.9

0.95

1

1.05

1.1
4−10

3−10

2−10

1−10

1

10

210)µ
xf

(x
,

 = 1000 GeVµup, 

 from 0.1 up to 1000 GeV
t

PB-NLO-HERAI+II-2018-set1, k
 from 0.1 up to 1000 GeV
t

PB-NLO-HERAI+II-2018-set2, k
HERAPDF20_NLO_EIG

T
M

D
pl

ot
te

r 
2.

2.
4

 = 1000 GeVµup, 

4−10 3−10 2−10 1−10
x

0.9

0.95

1

1.05

1.1

Figure 4.2: Collinear parton density distributions for up quarks (PB-NLO-HERAI+II-2018-set1,
PB-NLO-HERAI+II-2018-set2 and HERAPDF2.0) as a function of 𝑥 at 𝜇 = 100 and 1000 GeV. In the
lower panel the uncertainties are shown.
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Figure 4.3: TMD parton density distributions for up quarks (PB-TMD-NLO-HERAI+II-2018-set1
and PB-TMD-NLO-HERAI+II-2018-set2) as a function of 𝑘⊥ at 𝜇 = 100 and 1000 GeV and 𝑥 = 0.01.
In the lower panels show the full uncertainty of the TMDs, as obtained from the fits [37].

In Fig. 4.2 (from [56]) the distributions of the collinear densities set1 and set2 are produced
with TMDplotter for up-quarks at evolution scales of 𝜇 = 100 and 1000 GeV. In Fig. 4.3
(from [56]) TMD distributions for up-quarks at 𝑥 = 0.01 and 𝜇 = 10 and 100 GeV are
shown, which are also produced with TMDplotter. Differences between set1 and set2 are
clearly visible in the small 𝑘⊥-region which is affected mainly by the different treatment
of 𝛼s.
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4.4 Uncertainty TMD sets

The estimation of theoretical uncertainties is an important ingredient for phenomeno-
logical applications, and uncertainties from PDFs and TMDs play a central role. The
uncertainties of TMDs are estimated usually from the uncertainties of the input parame-
ters or parameterization. There are two different methods commonly used: the Hessian
method [187] which is applied if the parameter variations are orthogonal or the Monte
Carlo method providing Monte Carlo replicas [188, 189]. The specific prescriptions on
how to calculate the uncertainties for a given TMD set should be found in the original
publication describing the TMDs.
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Figure 4.4: Transverse momentum distribution 𝑥𝒜(𝑥, 𝑘⊥ , 𝜇) at 𝑥 = 0.08 and 𝜇 = 100 GeV obtained
with PB-TMD-NLO-HERAI+II-2018-set2 [37] (left) and PV17 [180] (right).

Examples of TMDs with uncertainty bands are shown in Fig. 4.4 for the PB-TMD-Set2
and the PV17 sets. The parameters of intrinsic 𝑘⊥- distribution are part of the fit of PV17,
while they are not fitted for the PB sets (see discussion in Ref. [37]).

The uncertainties of the PB-TMD distributions in Sec. 4.3 include both experimental and
model uncertainties, as determined in Ref. [37]. In general, it is observed that those
uncertainties are small; for 𝑘⊥ > 1 GeV they are of the order of 2–3 %.
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Dynamical soft-gluon resolution scale

in transverse momentum distributions

In Chapter 3 the QCD evolution of TMD distribution functions has been formulated
in the PB formalism [38, 39]. In this approach, soft-gluon coherence effects are taken
into account by introducing the soft-gluon resolution scale and exploiting the relation
between transverse-momentum recoils and branching scales.

The content of the current chapter has been published in Ref. [42]1. Here we present in-
vestigations on the implications of dynamical, i.e. branching-scale dependent, resolution
scales. We present both analytical studies and numerical solutions of the PB evolution
equations in the presence of dynamical resolution scales. We use this to compare PB with
other approaches in the literature, and to analyze predictions for transverse momentum
distributions in 𝑍-boson production at the LHC.

5.1 Introduction

Theoretical predictions for precision physics at high-energy hadron colliders such as the
LHC require methods for QCD resummations [190] to all orders in the strong coupling.
For observables sensitive to Sudakov resummation, TMD parton distributions [34] pro-
vide a theoretical framework to both carry out resummed perturbative calculations and
incorporate systematically non-perturbative dynamics.

An important point in obtaining TMD distributions by means of the PB method concerns
the ordering variables used to perform the branching evolution. Because the transverse
momentum generated radiatively in the branching is sensitive to the treatment of the
non-resolvable region [191], a supplementary condition is needed to relate the transverse
momentum recoil and the scale of the branching. This relation embodies the well-known
property of angular ordering presented in Chapter 3, and implies that the soft-gluon
resolution scale can be dynamical.

1This work has been published in F. Hautmann, L. Keersmaekers, A. Lelek and A.M. van Kampen, “Dy-
namical soft-gluon resolution scale in transverse momentum distributions at the LHC”, Nuclear Physics B 949,
(2019) 114795
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By means of a mapping between branching scales and transverse momenta using the
angular ordering condition, we discuss the resolvable radiation regions and PB evolu-
tion equations. We solve these equations with dynamical resolution scale numerically
by applying the Monte Carlo solution techniques developed in [39, 192]. We compare
the PB results with results from two other approaches: the coherent branching approach
of Catani, Marchesini and Webber (CMW) [10, 43] and the single-emission approach of
Kimber, Martin, Ryskin and Watt (KMRW) [44–47]. We present an application of our
formalism to the 𝑍-boson transverse momentum distribution in Drell-Yan (DY) produc-
tion [126] at the LHC, and study its sensitivity to dynamical resolution scales at low
transverse momenta.

The chapter is organized as follows. In Sec. 5.2 we recapitulate the dynamical soft-gluon
resolution scale and describe the resolvable and non-resolvable emission regions of the
phase space. In Sec. 5.3 we map branching scales to transverse momenta, and give the
corresponding form of PB equations. In Sec. 5.4 we use these results to perform an analytic
comparison of the multiple-emission PB and single-emission KMRW approaches. In
Sec. 5.5 we solve the PB evolution equation with dynamical resolution scale by numerical
methods, and present predictions for the 𝑍-boson transverse momentum spectrum at
the LHC. We give conclusions in Sec. 5.6.

5.2 Soft-gluon angular ordering in PB-TMD evolution

In the PB approach, QCD color coherence is accounted for by the association of rescaled
transverse momentum recoils with the evolution variable. With that, the emissions are
ordered according to their angles by [38]

𝑞2
⊥ = (1 − 𝑧)2𝜇′2 . (5.1)

This condition implies that 𝑎(𝑧) and 𝑏(𝑧) in the general TMD evolution equation in
Eq. (3.36) take the form of 1 − 𝑧, giving:

𝒜𝑎(𝑥, 𝑘⊥ , 𝜇2) = Δ𝑎(𝜇2 , 𝜇2
0)𝒜𝑎(𝑥, 𝑘⊥,0 , 𝜇2

0) +
∑
𝑏

∫ d2µ′

⊥

𝜋𝜇′2
⊥

Θ(𝜇2 − 𝜇′2
⊥)Θ(𝜇′2

⊥ − 𝜇2
0) (5.2)

×
∫ 𝑧𝑀 (𝜇′)

𝑥

𝑑𝑧
Δ𝑎(𝜇2)
Δ𝑎(𝜇′2) 𝑃

(𝑅)
𝑎𝑏

(
𝛼s

(
(1 − 𝑧)2𝜇′2

)
, 𝑧

)
𝒜𝑏

( 𝑥
𝑧
, k⊥ + (1 − 𝑧)µ′

⊥ , 𝜇
′2
)
.

The scale of the strong coupling is associated to the transverse momentum recoil [10,
37, 43] such that 𝛼s((1 − 𝑧)2𝜇′2) = 𝛼s(𝑞2

⊥) and the Sudakov form factor Δ(𝜇2) ≡ Δ(𝜇2 , 𝜇2
0)

equals

Δ𝑎(𝜇2 , 𝜇2
0) = exp

{
−

∑
𝑏

∫ 𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2

∫ 𝑧𝑀 (𝜇′)

0
𝑑𝑧 𝑧 𝑃

(𝑅)
𝑏𝑎

(
𝛼s

(
(1 − 𝑧)2𝜇′2

)
, 𝑧

)}
. (5.3)

The function 𝑧𝑀(𝜇′) specifies the soft-gluon resolution scale [39] which separates the
region of resolvable branchings (𝑧 < 𝑧𝑀) from the region of non-resolvable branchings
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(𝑧 > 𝑧𝑀), for any given 𝜇′. We have denoted the minimum transverse momentum with
which any emitted parton can be resolved by 𝑞0, so that

𝑞⊥ > 𝑞0 . (5.4)

By inserting the angular ordering relation (5.1) into Eq. (5.4), the condition for resolving
soft gluons is given by 𝑧 < 𝑧𝑀(𝜇′) with [7, 11, 38]

𝑧𝑀(𝜇′) = 1 − 𝑞0/𝜇′ , (5.5)

where the momentum scale 𝑞0 is understood to be 𝑞0 ≃ ΛQCD. Here we concentrate on
implications of the resolution scale 𝑧𝑀(𝜇′) in Eq. (5.5).

Evolution of integrated momentum-weighted TMDs 𝑓𝑎(𝑥, 𝜇2) (Eq. (3.35)) is obtained by
the integrated analogue of Eq. (5.2):

𝑓𝑎(𝑥, 𝜇2) = Δ𝑎(𝜇2 , 𝜇2
0) 𝑓𝑎(𝑥, 𝜇2

0) +
∑
𝑏

∫ 𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2 Θ(𝜇2 − 𝜇′2)Θ(𝜇′2 − 𝜇2
0) (5.6)

×
∫ 1

𝑥

𝑑𝑧Θ

(
1 − 𝑞0

𝜇′ − 𝑧
)
Δ𝑎(𝜇2)
Δ𝑎(𝜇′2) 𝑃

(𝑅)
𝑎𝑏

(
𝛼s((1 − 𝑧)2𝜇′2), 𝑧

)
𝑓𝑏

( 𝑥
𝑧
, 𝜇′2

)
.

It has been shown in Refs. [38, 39] that for 𝑧𝑀 → 1 and 𝛼s → 𝛼s(𝜇′2) these are collinear
parton distribution functions satisfying the DGLAP evolution equations [75, 77, 78, 193].2

We depict the resolvable region of the phase space by a yellow area in the (𝜇′, 𝑧)-plane
in Fig. 5.1. The resolvable region is separated from the non-resolvable region by the red
curve that represents the dynamical resolution scale 𝑧𝑀(𝜇′). Fig. 5.1(a) represents the
case of contributions to the distribution function with 𝑥 ≥ 1 − 𝑞0/𝜇0, while Fig. 5.1(b)
represents the case of 𝑥 < 1 − 𝑞0/𝜇0.

Note that the infrared region near the QCD scale Λ𝑄𝐶𝐷 is automatically avoided by using
the dynamical resolution scale with 𝑞0 = 1 GeV.

5.3 Mapping evolution scales to transverse momenta

We next recast the PB evolution for integrated TMDs and separation between resolvable
and non-resolvable branchings in terms of longitudinal momentum fractions and trans-
verse momenta. To this end, we exploit the angular ordering relation in Eq. (5.1) to map
branching scales on to transverse momenta for the resolvable regions in Fig. 5.1.

Given the minimum transverse momentum 𝑞0 and the lowest scale 𝜇0 of the evolution,
for any 𝑥 it is useful to distinguish the two cases illustrated in Fig. 5.1, depending on
whether a) 𝜇0 ≤ 𝑞0/(1 − 𝑥) or b) 𝜇0 > 𝑞0/(1 − 𝑥). For any 𝑧 with 𝑥 ≤ 𝑧 ≤ 1, in case a) the
emitted transverse momentum spans the interval 𝑞0 ≤ 𝑞⊥ ≤ 𝜇(1 − 𝑧), while in case b) we
have 𝜇0(1−𝑧) ≤ 𝑞⊥ ≤ 𝜇(1−𝑧). This results into different forms of the branching equations
in the two cases, once they are expressed directly in terms of transverse momenta.

2The convergence to DGLAP at LO and NLO has been verified numerically in [38] against the evolution
program QCDNUM [194] at level of better than 1% over a range of five orders of magnitude both in 𝑥 and in 𝜇.
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Figure 5.1: The angular ordering condition 𝑧𝑀 (𝜇′) = 1 − 𝑞0/𝜇′ with the resolvable and non-
resolvable emission regions in the (𝜇′, 𝑧)-plane: a) the case 1 > 𝑥 ≥ 1 − 𝑞0/𝜇0; b) the case
1 − 𝑞0/𝜇0 > 𝑥 > 0.

5.3.1 Case a) 1 > 𝑥 ≥ 1 − 𝑞0/𝜇0

For 𝑥 ≥ 1 − 𝑞0/𝜇0 the resolvable emission region is mapped to the domain in the (𝑧, 𝑞⊥)
plane pictured in Fig. 5.2(a). We change the integration variable from 𝜇′ to 𝑞⊥ in the
integrated form of branching equation (5.6) using the angular ordering relation (5.1).
Then Eq. (5.6) can be recast in terms of transverse momenta as

𝑓𝑎(𝑥, 𝜇2) =Δ𝑎(𝜇2 , 𝜇2
0) 𝑓𝑎(𝑥, 𝜇2

0) +
∑
𝑏

∫
𝑑𝑞2

⊥
𝑞2
⊥

∫ 1

𝑥

𝑑𝑧 Θ(𝑞2
⊥ − 𝑞2

0) Θ(𝜇2(1 − 𝑥)2 − 𝑞2
⊥) (5.7)

× Θ(1 − 𝑞⊥/𝜇 − 𝑧)
Δ𝑎(𝜇2 , 𝜇2

0)
Δ𝑎

(
𝑞2
⊥/(1 − 𝑧)2 , 𝜇2

0
) 𝑃(𝑅)

𝑎𝑏
(𝛼s(𝑞2

⊥), 𝑧) 𝑓𝑏
(
𝑥

𝑧
,

𝑞2
⊥

(1 − 𝑧)2

)
.

5.3.2 Case b) 1 − 𝑞0/𝜇0 > 𝑥 > 0

For 𝑥 < 1 − 𝑞0/𝜇0 the resolvable emission region is mapped to the domain in the (𝑧, 𝑞⊥)
plane pictured in Fig. 5.2(b). Performing the same change of integration variable in
Eq. (5.6) as in case a) of the previous subsection, we recognize that now a subtraction
term arises from the low-𝑞⊥ region, 𝑞0 < 𝑞⊥ < (1 − 𝑥)𝜇0, so that Eq. (5.6) is rewritten in
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Figure 5.2: Resolvable and non-resolvable emission regions in the (𝑧, 𝑞⊥) plane for evolution in
the cases a) 1 > 𝑥 ≥ 1 − 𝑞0/𝜇0 and b) 1 − 𝑞0/𝜇0 > 𝑥 > 0.

terms of transverse momenta as

𝑓𝑎(𝑥, 𝜇2) = Δ𝑎(𝜇2 , 𝜇2
0) 𝑓𝑎(𝑥, 𝜇2

0) +
∑
𝑏

∫
𝑑𝑞2

⊥
𝑞2
⊥

∫ 1

𝑥

𝑑𝑧

[
Θ

(
𝑞2
⊥ − 𝑞2

0

)
Θ

(
𝜇2(1 − 𝑥)2 − 𝑞2

⊥

)
× Θ

(
1 − 𝑞⊥

𝜇
− 𝑧

)
− Θ

(
𝑞2
⊥ − 𝑞2

0

)
Θ

(
𝜇2

0(1 − 𝑥)2 − 𝑞2
⊥

)
Θ

(
1 − 𝑞⊥

𝜇0
− 𝑧

) ]
×

Δ𝑎(𝜇2 , 𝜇2
0)

Δ𝑎
(
𝑞2
⊥/(1 − 𝑧)2 , 𝜇2

0
) 𝑃(𝑅)

𝑎𝑏
(𝛼s(𝑞2

⊥), 𝑧) 𝑓𝑏
(
𝑥

𝑧
,

𝑞2
⊥

(1 − 𝑧)2

)
. (5.8)

We observe that the first term in the square bracket in Eq. (5.8) is a contribution analogous
to that in Eq. (5.7), while the second term in the square bracket provides the low-𝑞⊥
subtraction.

Alternatively, the branching kernel in the case 𝑥 < 1 − 𝑞0/𝜇0 can be expressed as a
sum of two contributions, corresponding respectively to the 𝑞⊥ < (1 − 𝑥)𝜇0 region and
𝑞⊥ > (1 − 𝑥)𝜇0 region, as follows:

𝑓𝑎(𝑥, 𝜇2) =Δ𝑎(𝜇2 , 𝜇2
0) 𝑓𝑎(𝑥, 𝜇2

0)+ (5.9)

+
∑
𝑏

∫
𝑑𝑞2

⊥
𝑞2
⊥

∫ 1

𝑥

𝑑𝑧

[
Θ

(
𝑞2
⊥ − 𝑞2

0

)
Θ

(
𝜇2

0(1 − 𝑥)2 − 𝑞2
⊥

)
× Θ

(
𝑧 + 𝑞⊥

𝜇0
− 1

)
Θ

(
1 − 𝑞⊥

𝜇
− 𝑧

)
+ Θ

(
𝑞2
⊥ − (1 − 𝑥)2𝜇2

0

)
Θ

(
𝜇2(1 − 𝑥)2 − 𝑞2

⊥

)
× Θ

(
1 − 𝑞⊥

𝜇
− 𝑧

) ]
Δ𝑎(𝜇2 , 𝜇2

0)
Δ𝑎

(
𝑞2
⊥/(1 − 𝑧)2 , 𝜇2

0
) 𝑃(𝑅)

𝑎𝑏
(𝛼s(𝑞2

⊥), 𝑧) 𝑓𝑏
(
𝑥

𝑧
,

𝑞2
⊥

(1 − 𝑧)2

)
.
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Here the two terms of the sum in the square bracket, given by products of Θ-functions,
describe the low-𝑞⊥ and high-𝑞⊥ contributions.

In the next section we will use the form for the branching equations derived above,
along with the formulas of Sec. 5.2, to carry out a comparison of the PB method [38, 39]
with other existing approaches in the literature. We will analyze in particular different
treatments of the QCD parton cascade, in which the transverse momentum is generated
either through multiple emissions or through a single emission.

5.4 Multiple-emission versus single-emission approaches

5.4.1 Comparison with the CMW approach

As an approach based on the unitarity picture [7, 11] of parton evolution and angular
ordering, the PB method [38, 39] can naturally be compared with the coherent branching
approach of Catani-Marchesini-Webber (CMW) [10, 43]. Since Refs. [10, 43] do not
construct TMD distributions, we examine branching equations in the PB and CMW
approaches at the level of integrated distributions. The evolution equation for PDFs
𝐷(𝑥, 𝑄) in scale 𝑄 in the CMW coherent branching approach is given by Eq. (42) of
Ref. [10] as:

𝜇
𝜕

𝜕𝜇
𝐷(𝑥, 𝑄) =

∫ 1−𝜖(𝑄)

𝑥

𝑑𝑧

𝑧
𝐷

( 𝑥
𝑧
, 𝑄

)
𝑃̂(𝑧)𝛼s(𝑄(1 − 𝑧))

𝜋
(5.10)

− 𝐷(𝑥, 𝑄)
∫ 1−𝜖(𝑄)

0
𝑑𝑧𝑃̂(𝑧)𝛼s(𝑄(1 − 𝑧))

𝜋
,

where 𝜖(𝑄) = 𝑄0/𝑄 and splitting functions are applied at leading order. This equation
corresponds with Eq. (3.17), where the only kernels are real-emission (or unregularized)
splitting functions 𝑃̂ = 𝑃

(𝑅)
𝑎𝑏

. We observe that at this integrated level, the PB evolution
equation (5.6) with a dynamical resolution scale and 𝛼s(𝑞2

⊥) agrees with that by CMW.
In Ref. [10] this branching equation is studied at LO with one-loop splitting kernels and
running coupling, while in Ref. [39] (and in the present chapter) it is studied at NLO with
two-loop splitting kernels and running coupling.3

5.4.2 Comparison with the KMRW approach

The Kimber-Martin-Ryskin-Watt (KMRW) approach [44–47], is designed to construct
TMD “unintegrated” parton distributions. In contrast to the PB method, in which the
transverse momentum and the branching scale are calculated at each branching, KMRW
is a one-step evolution approach: it performs evolution in one scale up to 𝑞2

⊥, while the
second scale is generated only in the last step of the evolution. The KMRW physical
picture is thus quite different from that of PB and CMW. In particular, in KMRW the

3The treatment in Ref. [39] incorporates in particular the two-loop correction to the coupling which is shown
in Ref. [43] to be required to obtain next-to-leading-logarithmic accuracy in the soft-gluon resummation.



5.4. MULTIPLE-EMISSION VERSUS SINGLE-EMISSION APPROACHES 57

transverse momentum is produced as a result of a single emission, while in PB it is built
from multiple emissions.

In the KMRW literature, the distinction between the values of the two momentum scales
𝜇0 and 𝑞0 discussed in Sec. 5.3 is not made. For the purpose of this comparison, therefore,
we set 𝑞0 ≈ 𝜇0 in the formulation of Sec. 5.3, and we will thus be using the branching
equation valid in case a) of Subsec. 5.3.1, Eq. (5.7).

In the KMRW approach the TMD distribution 𝐷𝑎 is obtained by [44–47]

𝐷𝑎(𝑥, 𝜇2 , 𝑞2
⊥) = 𝑇𝑎(𝜇2 , 𝑞2

⊥)
∑
𝑏

∫ 1−𝐶(𝑞⊥ ,𝜇)

𝑥

𝑑𝑧𝑃
(𝑅)
𝑎𝑏

(
𝛼s(𝑞2

⊥), 𝑧
)
𝑓𝑏

( 𝑥
𝑧
, 𝑞2

⊥

)
, (5.11)

where the Sudakov form factor is given by

𝑇𝑎(𝜇2 , 𝑞2
⊥) = exp

{
−

∫ 𝜇2

𝑞2
⊥

𝑑𝑞′2⊥
𝑞′2⊥

∑
𝑏

∫ 1−𝐶(𝑞′⊥ ,𝜇)

0
𝑑𝑧 𝑧 𝑃

(𝑅)
𝑏𝑎

(
𝛼s(𝑞′2⊥ ), 𝑧

)}
, (5.12)

and the collinear density 𝑓𝑎(𝑥, 𝜇2) obeys the evolution equation

𝑓𝑎(𝑥, 𝜇2) = 𝑓𝑎(𝑥, 𝜇2
0)𝑇𝑎(𝜇2 , 𝜇2

0) (5.13)

+
∫ 𝑞2

⊥𝑀

𝜇2
0

𝑑𝑞2
⊥

𝑞2
⊥

(
𝑇𝑎(𝜇2 , 𝑞2

⊥)
∑
𝑏

∫ 1−𝐶(𝑞⊥ ,𝜇)

𝑥

𝑑𝑧𝑃
(𝑅)
𝑎𝑏

(
𝛼s(𝑞2

⊥), 𝑧
)
𝑓𝑏

( 𝑥
𝑧
, 𝑞2

⊥

))
.

The phase space parameters 𝐶(𝑞⊥ , 𝜇) and 𝑞⊥𝑀 in the above formulas are assigned ac-
cording to two distinct prescriptions [44–47, 195] in the KMRW approach:

𝐶(𝑞⊥ , 𝜇) = 𝑞⊥/𝜇 , 𝑞⊥𝑀 = 𝜇(1 − 𝑥) for KMRW strong ordering (5.14)

and

𝐶(𝑞⊥ , 𝜇) = 𝑞⊥/(𝑞⊥ + 𝜇) , 𝑞⊥𝑀 = 𝜇(1 − 𝑥)/𝑥 for KMRW angular ordering. (5.15)

Having mapped the PB evolution onto transverse momenta in Sec. 5.3, we are in a position
to directly compare the PB and KMRW results. By considering Eq. (5.7) and Eq. (5.13)
with KMRW strong ordering conditions (5.14), we recognize that PB and KMRW differ in
the momentum scales at which both the Sudakov form factor and the collinear density 𝑓𝑏
are evaluated, as KMRW uses transverse momenta whereas PB uses transverse momenta
rescaled by 1/(1 − 𝑧). From Eq. (5.7) and Eq. (5.13) with KMRW angular ordering
conditions (5.15), we recognize that in this case PB and KMRW, besides differing in the
arguments of Sudakov factor and collinear density, differ also in the phase space regions
in longitudinal and transverse momenta that are populated by the radiative processes.

We thus see that, also taking into account the possible prescriptions in Eqs. (5.14) and
(5.15), the one-step picture of KMRW leads to different results from the multiple-emission
PB picture. In Sec. 5.5 we illustrate the implications of these differences by performing
numerical calculations for the TMD distributions that result from evolution in the two
approaches, and examining the corresponding predictions for the DY 𝑍-boson transverse
momentum spectra at the LHC.
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5.4.3 Remark on Sudakov form factors

It is worth noting that the definition of the Sudakov form factor itself plays a different
role in the context of the PB approach and the KMRW approach.

In the PB approach the Sudakov form factor Δ𝑎(𝜇2 , 𝜇2
0) has the interpretation of proba-

bility for no resolvable branching in a given evolution interval from 𝜇0 to 𝜇, and fulfills
the property

Δ𝑎(𝜇2 , 𝜇̃2)Δ𝑎(𝜇̃2 , 𝜇2
0) = Δ𝑎(𝜇2 , 𝜇2

0) (5.16)
for any evolution scale 𝜇̃.

For example, for the Sudakov form factor in the angular-ordered evolution we use

Δ𝑎(𝜇2 , 𝜇2
0) = exp

{
−

∑
𝑏

∫ 𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2

∫ 1−𝑞0/𝜇′

0
𝑑𝑧 𝑧 𝑃

(𝑅)
𝑏𝑎

(
𝛼s((1 − 𝑧)2𝜇′2), 𝑧

)}
, (5.17)

for which Eq. (5.16) is fulfilled. Mapping the argument of the exponent to transverse
momenta is performed by means of the angular ordering relation and requires reversing
the integrals twice as follows∫ 𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2

∫ 1−𝑞0/𝜇′

0
𝑑𝑧 = (5.18)

=

∫ 1−𝑞0/𝜇0

0
𝑑𝑧

∫ 𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2 +
∫ 1−𝑞0/𝜇

1−𝑞0/𝜇0

𝑑𝑧

∫ 𝜇2

𝑞2
0/(1−𝑧)2

𝑑𝜇′2

𝜇′2

=

∫ 1−𝑞0/𝜇0

0
𝑑𝑧

∫ (1−𝑧)2𝜇2

(1−𝑧)2𝜇2
0

𝑑𝑞2
⊥

𝑞2
⊥

+
∫ 1−𝑞0/𝜇

1−𝑞0/𝜇0

𝑑𝑧

∫ (1−𝑧)2𝜇2

𝑞2
0

𝑑𝑞2
⊥

𝑞2
⊥

=

∫ 𝜇2

𝜇2
0

𝑑𝑞2
⊥

𝑞2
⊥

∫ 1−𝑞⊥/𝜇

0
𝑑𝑧 +

∫ 𝜇2
0

𝑞2
0

𝑑𝑞2
⊥

𝑞2
⊥

∫ 1−𝑞⊥/𝜇

1−𝑞⊥/𝜇0

𝑑𝑧.

The integration regions follow from phase space diagrams such as Fig. 5.2(b) with the
difference that the lower 𝑧 limit of the Sudakov form factor is equal to 0. The Sudakov
form factor can than be written as:

Δ𝑎(𝜇2 , 𝜇2
0) = exp

{
−

∑
𝑏

[ ∫ 𝜇2

𝜇2
0

𝑑𝑞2
⊥

𝑞2
⊥

∫ 1−𝑞⊥/𝜇

0
𝑑𝑧 + (5.19)

+
∫ 𝜇2

0

𝑞2
0

𝑑𝑞2
⊥

𝑞2
⊥

∫ 1−𝑞⊥/𝜇

1−𝑞⊥/𝜇0

𝑑𝑧

]
𝑧 𝑃

(𝑅)
𝑏𝑎

(
𝛼s(𝑞2

⊥), 𝑧
) }

,

for which Eq. (5.16) is still fulfilled. In the case that 𝜇0 = 𝑞0, the second term of the
exponent is zero.

On the other hand, using the KMRW Sudakov of Eq. (5.12), Eq. (5.16) is not fulfilled.
Rather, one has

𝑇𝑎(𝜇2 , 𝑘2
⊥)𝑇𝑎(𝑘2

⊥ , 𝜇
2
0) = (5.20)

= 𝑇𝑎(𝜇2 , 𝜇2
0) exp

{∑
𝑏

∫ 𝑘2
⊥

𝜇2
0

𝑑𝑞2
⊥

𝑞2
⊥

∫ 1−𝐶(𝑞⊥ ,𝜇)

1−𝐶(𝑞⊥ ,𝑘⊥)
𝑑𝑧 𝑧 𝑃

(𝑅)
𝑏𝑎

(
𝛼s(𝑞2

⊥), 𝑧
)}

.
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This implies that, besides the different treatment of radiative processes noted in Sub-
sec. 5.4.2, we observe differences between the single-emission and multiple-emission
approaches also in the treatment of the non-resolvable processes. We may expect that
the features noted in Subsec. 5.4.2 and in this subsection will lead to different behav-
iors in transverse momentum distributions both at high transverse momenta and at low
transverse momenta.

Effects such as these noted here in Eq. (5.20) and in Ref. [42] in the context of Parton
Branching and KMRW, characterized by the breaking of the equality in Eq. (5.16), have
been studied in Refs. [196, 197] in the context of analytic resummation.

5.5 Numerical results

We investigate next the numerical implications of the analysis in the previous sections
on TMDs, iTMDs and DY spectra.

5.5.1 TMDs from PB and KMRW

In this section we present numerical results for TMD distribution functions from the PB
approach with dynamical resolution scale. We perform numerical comparisons with
KMRW TMDs. The results are shown as functions of flavor, longitudinal momentum
fraction 𝑥, transverse momentum 𝑘⊥ and evolution scale 𝜇.

KMRW TMD distribution sets have been obtained in [198] according to the KMRW an-
gular ordering prescription (5.15), using the CT10nlo PDF [199] set as a starting collinear
distribution and a flat parametrization for 𝑘⊥ < 1 GeV as an intrinsic 𝑘⊥ distribution at
starting scale 𝜇0. These distributions have been included in the TMDlib library [40, 41]
described in Chapter 4 under the name MRW-CT10nlo.4

To evaluate PB TMDs, we solve numerically Eq. (5.2) with the dynamical resolution
scale in Eq. (5.5) where we take 𝑞0 = 1 GeV, and 𝑞⊥ as the scale of 𝛼s. We use the
Monte Carlo solution method developed in [38, 39] and implemented in uPDFevolv [192].
Following Eqs. (3.44) and (3.45), we take the intrinsic 𝑘⊥ distribution given by a Gaussian
at starting scale 𝜇0 with (flavor-independent and 𝑥-independent) width 𝜎 = 𝑞𝑠/

√
2 where

𝑞𝑠 = 0.5 GeV. For the purpose of performing comparisons with the KMRW TMD set
MRW-CT10nlo, we take the same starting collinear distribution CT10nlo [199].

In addition, we introduce an approximation to the PB framework, which we refer to as
“PB last step”, which is obtained from PB by taking the same settings as the full PB
calculation but restricting the transverse momentum 𝑘⊥ to the last emission only. We use
the PB-last-step Monte Carlo simulation as a guidance to distinguish effects from single
emission and multiple emissions.

4Strictly speaking, the TMD set MRW-CT10nlo has been obtained using the differential definition of KMRW
TMDs (see e.g. [195, 198]). We have performed also studies with KMRW TMDs defined according to the integral
definition (as in Eq. (5.11)) and we have verified that our conclusions remain valid.
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Figure 5.3: Transverse momentum 𝑘⊥ = 𝑘𝑡 distributions from evolution with PB (in red),
PB last step (in blue) and KMRW (in purple) as functions of transverse momentum for
gluons and quarks and for different values of longitudinal momentum fraction 𝑥 and
evolution scale 𝜇.
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In Fig. 5.3 we show transverse momentum distributions of gluon and up-quark TMDs
obtained from PB, MRW-CT10nlo and PB-last-step calculations, at different values of 𝑥
and𝜇.5 We may distinguish three regions of low 𝑘⊥, middle 𝑘⊥ and high 𝑘⊥, characterized
by distinct behaviors. Significant numerical differences between PB and KMRW show
up especially in the extreme regions 𝑘⊥ ≪ 𝜇 and 𝑘⊥ ≫ 𝜇, while in the middle values
around 𝑘⊥ ∼ 𝜇 the two predictions tend to become closer.

In particular, we observe that at low 𝑘⊥ the smearing of the intrinsic 𝑘⊥ distribution due to
evolution gives rise to different behaviors in the single-emission and multiple-emission
cases. The kink at low 𝑘⊥ in MRW-CT10nlo is a consequence of the single-emission
picture, and is not present in the full PB case, where multiple branchings are responsible
for generating the transverse momentum.

We also observe that at high 𝑘⊥ the MRW-CT10nlo distribution is far harder than PB and
PB-last-step. This reflects the different pattern of radiative contributions in KMRW from
PB, illustrated in Sec. 5.4. As noted in [198], the treatment of the Sudakov form factor in
Eq. (5.12) for 𝑘2

⊥ > 𝜇2 influences the MRW-CT10nlo high 𝑘⊥ tail.

5.5.2 iTMDs from PB and KMRW

In Fig. 5.4 the results of integrating MRW-CT10nlo, PB and PB-last-step TMDs over the
transverse momentum 𝑘⊥ at a given evolution scale 𝜇 are shown as functions of 𝑥. Results
are shown for integrating TMDs over 𝑘⊥ < 𝜇 (Fig. 5.4(left)) and over all 𝑘⊥ (Fig. 5.4(right)).
For comparison, we also plot CT10nlo distributions at the same 𝜇. In the lower parts of
the figure the ratios of integrated TMDs to CT10nlo are plotted. As expected, we observe
that none of the distributions integrate to CT10nlo, given that the resolution scale 𝑧𝑀 is
far from 1, and the scale of the running coupling 𝛼s is 𝑞⊥ — see discussion below Eq. (5.6).
In the case of integrating over all 𝑘⊥ (Fig. 5.4 (right)) we note that MRW-CT10nlo gives
rise to a much higher distribution than all other curves, implying that the MRW-CT10nlo
high-𝑘⊥ tail has a significant impact at integrated level for most values of 𝑥. On the other
hand, when integrating over 𝑘⊥ < 𝜇 (Fig. 5.4 (left)) the deviation of MRW-CT10nlo from
collinear CT10nlo is much smaller than that of PB, which is a further manifestation of
the differences between the KMRW and PB physical pictures illustrated in Sec. 5.4.

5.5.3 𝑍 boson 𝑝𝑇 spectrum

As explained in Chapter 2, the low-𝑝𝑇 region of the 𝑍 boson transverse momentum
spectrum is sensitive to soft-gluon resummation and TMD effects. In this section we
apply TMDs to the calculation of the DY 𝑝𝑇 spectrum by means of the Cascade3 [51]
program that is explained in Chapter 7. We obtain predictions for the𝑍 boson distribution
based on PB TMDs that include effects of a dynamical soft-gluon resolution scale. We
compare them with KMRW results.

Following [37], we use on-shell LO matrix elements (in the format of LHE files [125])
generated by the Pythia8 Monte Carlo event generator [116, 200]. We are only interested

5The plots in Figs. 5.3-5.4 are obtained using the TMDplotter tool [40, 41] described in Chapter 4.
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Figure 5.4: The results of integrating TMDs over 𝑘⊥ < 𝜇 (left) and over all 𝑘⊥ (right) as
functions of 𝑥.

in the low-𝑝𝑇 region, higher order matrix element contributions are therefore left out for
simplicity.

In Fig. 5.5 predictions for the 𝑍 boson 𝑝𝑇 spectrum at
√
𝑠 = 8 TeV are shown using MRW-

CT10nlo and PB TMDs, and compared to measurements by ATLAS [131]. We see that the
MRW-CT10nlo calculation and PB calculation with dynamical 𝑧𝑀 give rise to different
shapes in the spectrum both in the region of low 𝑝𝑇 around the peak and in the region
of high 𝑝𝑇 toward the upper end of the transverse momentum range shown. There is an
interval of intermediate 𝑝𝑇 in which they are less dissimilar. The agreement of the PB
calculation with the measurements is good, while MRW-CT10nlo does not describe the
high 𝑝𝑇 region, and the slope at low 𝑝𝑇 .

For reference, we also compare PB predictions with fixed and dynamical 𝑧𝑀 shown in
Fig. 5.5. Fixed 𝑧𝑀 (𝑧𝑀 = 1 − 𝜖) predictions are obtained by using the PB-TMD-Set2 of
Ref. [37]. We see that the slope of the 𝑝𝑇 spectrum is affected by dynamical 𝑧𝑀 particularly
in the low 𝑝𝑇 region. The results indicate that measurements of the 𝑍 boson 𝑝𝑇 with high
resolution in the region 𝑝⊥ ≲ 5 - 10 GeV will allow one to probe quantitatively effects of
soft-gluon angular ordering and dynamical resolution scales.

We have limited ourselves to showing results for central values of the predictions, because
TMD uncertainties in the case of dynamical 𝑧𝑀 are not yet available.
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Figure 5.5: Predictions for the 𝑍-boson 𝑝𝑇 spectrum obtained with PB and MRW-CT10nlo
TMDs compared to the 8 TeV ATLAS measurement [131].

5.6 Conclusion

In this chapter, using the PB method described in Chapter 3 for angular-ordered TMD
evolution, we have studied physical implications of the dependence of the soft-gluon
resolution parameter on the branching scale. Mapping the phase space of resolvable and
non-resolvable emissions from (𝜇′, 𝑧) space to (𝑧, 𝑞⊥) space, we have written down the
corresponding form of the evolution kernel. We have established the comparison of the
PB formulation with other existing formulations, notably the ones known as CMW [10,
43] and KMRW [44–47].

On one hand, we find that the PB formula coincides with CMW at the level of integrated
distributions. CMW was originally developed by evaluating splitting kernels at LO,
while we evaluate the kernels at NLO. On the other hand, we find significant differences
of PB with respect to KMRW, which can be traced back to the fact that PB builds the
initial-state transverse momentum from multiple emissions, while KMRW builds it from
single emission — the last step in the initial-state evolution cascade. We examined these
differences in detail both analytically and numerically. We find that the numerical effects
are large in the extreme regions of low 𝑘⊥ and high 𝑘⊥, but small in the middle 𝑘⊥ region.

We apply the results to the evaluation of the DY 𝑍-boson 𝑝𝑇 spectrum and comparison
with LHC measurements. We compare PB versus KMRW, finding significantly different
behaviors in the low-𝑝𝑇 and high-𝑝𝑇 regions. We study the sensitivity of the 𝑍-boson
𝑝𝑇 spectrum to effects of the soft-gluon resolution scale, and observe that these could be
accessed by detailed measurements fine binning in the region 𝑝𝑇 ≲ 5 - 10 GeV.
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Chapter
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The TMD PB Sudakov form factor in

the context of TMD factorization

In this chapter, partially presented in published work1 and largely identical to a prepared
article ready for publication [48], we analyze the structure of the Parton Branching (PB)
TMD Sudakov form factor introduced in Chapter 3 and compare it to the Sudakov form
factor of the formalism by Collins, Soper and Sterman (CSS) [49, 50].

6.1 Introduction

The PB method [38, 39] is developed for the evolution of TMDs and for application
in parton shower Monte Carlo (MC) event generators to enhance numerical precision
across a wide kinematic range for all hadronic collider processes and observables. The
forward evolution of TMDs leads to precise numerical results in the small-𝑝𝑇 region of
the transverse momentum spectrum of the 𝑍 boson [36, 57], where both resummation
and a non-perturbative model are crucial.

The aim of this study is to analyze and improve the logarithmic accuracy of resummation
by the PB evolution, specifically by its Sudakov form factor. This factor is a necessary
ingredient for resummation in Monte Carlo approaches. Calculations at next-to-next-
to-leading logarithmic (NLL) accuracy by parton shower Monte Carlo calculations as in
Refs. [16–26] requires additional steps that are not the focus of this chapter. We concen-
trate on the resummation by the Sudakov form factor and we do this by first detailing
the CSS formalism in section 6.2. Analytical Sudakov resummation following the CSS
approach remains one of the main pillars in TMD factorization and QCD. Section 6.3
then presents the major novel concepts of this research. This is original work performed
during the doctorate. We discuss the resummation accuracy achieved by the PB method
using NLO splitting functions in the evolution. By implementing the physical soft-gluon
coupling [202, 203] as an extension of the CMW coupling [43], we improve the logarithmic
accuracy up to next-to-next-to-leading logarithmic (NNLL) accuracy in the PB evolution.

1Part of this chapter has been published in A. Bermudez Martinez, F. Hautmann, L. Keersmaekers, A.
Lelek, M. Mendizabal Morentin, S. Taheri Monfared and A. M. van Kampen, “The Parton Branching Sudakov and

its relation to CSS”, Proceedings of Science PoS (EPS-HEP2023) 270 [201]
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We also examine the non-perturbative contribution of the PB Sudakov when the soft-
gluon resolution scale is close to one. Results from various PB evolution scenarios are
evaluated at the level of the transverse momentum spectrum of the 𝑍 boson.

Section 6.4 contains results obtained by co-authors of the article. Here we show the effect
of different evolution scenarios with and without the non-perturbative PB Sudakov to
examine the non-perturbative aspect of the PB method by extraction of the Collins-Soper
(CS) kernel [150, 204] through the technique that was established in Ref. [205].

6.2 The CSS formalism for TMD factorization

The aim of Collins, Soper and Sterman in the 1980s was to provide an expression for the
Drell-Yan (DY) cross section differential in 𝑝𝑇 . Collinear factorization is not suitable to
calculate this differential cross section. It requires soft-gluon resummation to obtain an
accurate transverse momentum spectrum from analytical calculations (see Sec. 2.5). In
this section, we elaborate on the analytical formalism of TMD factorization that includes
the resummation of low-𝑝𝑇 enhanced logarithms.

The processes of interest in general are of the form:

ℎ1 + ℎ2 → 𝐹(𝑄2 , 𝑦, 𝑝2
𝑇) + 𝑋, (6.1)

where 𝐹 is the final-state of the hard system triggered by colliding hadrons ℎ1 and ℎ2
of which the constituent partons 𝑐 and 𝑐 interact at interaction energy 𝑄, rapidity 𝑦 and
transverse momentum 𝑝𝑇 . In general, the inclusive - i.e. for any hadronic final state 𝑋 -
cross section can be separated in two contributions:

𝑑𝜎𝐹

𝑑𝑄2𝑑𝑦𝑑𝑝2
𝑇

=

[
𝑑𝜎𝐹

𝑑𝑄2𝑑𝑦𝑑𝑝2
𝑇

]
res.

+
[

𝑑𝜎𝐹

𝑑𝑄2𝑑𝑦𝑑𝑝2
𝑇

]
fin.

, (6.2)

where the first term on the right-hand side is dominant for 𝑝2
𝑇
≪ 𝑄2 and the second

term contains contributions for 𝑝2
𝑇

≃ 𝑄2. The second term, also referred to in the
literature as “finite term” or “𝑌-term”, can be written as a convolution of a perturbatively
calculable hard function with collinear PDFs 𝑓 (𝑥, 𝜇) (similar to collinear factorization).
Instead, we are interested in the first term on the right-hand side of Eq. (6.2), which
contains all logarithmic enhancements due to multiple soft-gluon emissions. These large
logarithmic terms are of the form 𝛼𝑛s ln𝑚(𝑄2/𝑝2

𝑇
) and are resummed to all powers in the

strong coupling.

A TMD factorized cross section has a partonic matrix element 𝜎̂ and two soft factors that
are transverse momentum dependent functions (TMDs)ℱ which depend on longitudinal
momentum fractions (𝑥) and transverse coordinates (𝑏):[

𝑑𝜎𝐹

𝑑𝑄2𝑑𝑦𝑑𝑝2
𝑇

]
res.

≃ 𝑑𝜎̂𝑐𝑐

(
𝛼s(𝑄2),

𝜇2

𝑄2

)
⊗ ℱ𝑐/ℎ1 (𝑥𝑎 , 𝑏; 𝜁, 𝜇) ℱ𝑐/ℎ2 (𝑥𝑏 , 𝑏; 𝜁, 𝜇) , (6.3)

where the ⊗-symbol represents integrations over 𝑥𝑎,𝑏 , longitudinal momenta, and 𝑏, the
impact parameter. Partons 𝑐 and 𝑐 annihilate at the hard interaction scale 𝑄2.
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The TMDs ℱ depend on two scales, the renormalization scale 𝜇 and the rapidity scale 𝜁,
and obey evolution equations [206]:

𝜕 ln ℱ (𝑥, 𝑏; 𝜁, 𝜇)
𝜕 ln

√
𝜁

= 𝒟(𝑏;𝜇), (6.4)

𝑑 ln ℱ (𝑥, 𝑏; 𝜁, 𝜇)
𝑑 ln𝜇

= 𝛾𝑗(𝛼s(𝜇)) −
1
2𝛾𝐾(𝛼s(𝜇)) ln 𝜁

𝜇2 , (6.5)

where 𝛾𝑗 is the RG coefficient specific to quark with flavor 𝑗, 𝛾𝐾 is the cusp anomalous

dimension (equal to 𝑘𝑎 , see Chapter 3) and 𝒟 is the CS kernel whose evolution in 𝜇 is
determined by:

𝑑𝒟(𝑏;𝜇)
𝑑 ln𝜇

= −𝛾𝐾(𝛼s(𝜇)). (6.6)

In the formalism constructed by Collins, Soper and Sterman, published in 1985 [49],
referred to as CSS1, the TMDs can be identified as the product of three objects that
contribute to different regions in transverse momentum: collinear PDFs 𝑓 , coefficient
functions 𝐶𝑎𝑏 and a Sudakov form factor

√
𝑆. More explicitly, the differential cross

section is written as:[
𝑑𝜎𝐹

𝑑𝑄2𝑑𝑦𝑑𝑝2
𝑇

]
res.

=
∑
𝑐,𝑐

𝜎(0)𝐹
𝑐𝑐 (𝑄2)𝐻𝐹

𝑐𝑐

(
𝛼s(𝑄2), 𝜇

2

𝑄2

) ∫
𝑑2b

(2𝜋)2 𝑒
𝑖pT ·b𝑆(b, 𝜇; 𝑏max , 𝜇0) (6.7)

×
∑
𝑎

∫ 1

𝑥𝑎

𝑑𝜉𝑎
𝜉𝑎

𝐶𝑐/𝑎

(
𝑥𝑎

𝜉𝑎
, b;𝜇2

0 , 𝛼s(𝜇2
0)
)
𝑓𝑎/ℎ1

(
𝜉𝑎 , 𝜇

2
0

)
×

∑
𝑏

∫ 1

𝑥𝑏

𝑑𝜉𝑏
𝜉𝑏

𝐶𝑐/𝑏

(
𝑥𝑏
𝜉𝑏
, b;𝜇2

0 , 𝛼s(𝜇2
0)
)
𝑓𝑏/ℎ2

(
𝜉𝑏 , 𝜇

2
0

)
,

where 𝑎 and 𝑏 are initial partons from the incoming hadrons at scale 𝜇0. The partonic
cross section is written as the product of a Born cross section 𝜎(0)𝐹

𝑐𝑐 (𝑄2) and higher order
function 𝐻𝐹

𝑐𝑐 containing virtual emission diagrams. Real emission contributions are
contained in the convolution of 𝐶 with 𝑓 functions. Both 𝐻 and 𝐶 are perturbatively
calculable functions:

𝐻𝐹
𝑐 (𝛼s) =

∞∑
𝑛=0

( 𝛼s
2𝜋

)𝑛
𝐻
𝐹(𝑛)
𝑐 , (6.8)

𝐶𝑞𝑎(𝛼s , 𝑧) = 𝛿𝑞𝑎𝛿(1 − 𝑧) +
∞∑
𝑛=1

( 𝛼s
2𝜋

)𝑛
𝐶
(𝑛)
𝑞𝑎 (𝑧). (6.9)

The variables 𝑥𝑎,𝑏 are longitudinal momentum fractions and 𝜉𝑎,𝑏 are analogues of splitting
variables.

The resummed cross section is mainly written in impact parameter (𝑏) space, which is
the Fourier conjugate space of the phase space. This is crucial in the CSS formalism to
take into account momentum conservation which is expressed through

𝛿(2)(pT −
∑
𝑗

q⊥, 𝑗) =
∫

𝑑2b

(2𝜋)2 𝑒
𝑖pT ·b

∏
𝑗

𝑒−𝑖q⊥, 𝑗 ·b , (6.10)
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where q⊥, 𝑗 are the transverse momenta of (soft) parton emissions. The product of ex-
ponential factors exp(−𝑖q⊥ · b) is absorbed in 𝑆. The Sudakov form factor deals with
multiple soft-gluon emissions.

A visualization of this TMD factorized form of the hadron-hadron cross section by CSS
is shown in Fig. 6.1.

Figure 6.1: TMD factorization by the CSS formalism of two colliding hadrons (ℎ1 and
ℎ2) leading to a hard process 𝐻 producing a final state 𝐹. Evolution is determined by
coefficient functions 𝐶 and Sudakov form factor 𝑆. Fig. from Ref. [207]

Non-perturbative contributions are contained within the PDFs, which are entirely non-
perturbative, as well as the Sudakov form factor, which is partially non-perturbative. The
Sudakov form factor is a combination of a factor acting at small-𝑏, for resummation (R),
and one for large-𝑏, which contains the non-perturbative (NP) contribution:

𝑆(𝑏, 𝜇; 𝑏max , 𝜇0) = 𝑆(R)(𝑏, 𝜇) × 𝑆(NP)(𝑏; 𝑏max , 𝜇0). (6.11)

The scale 𝑏max serves as boundary between perturbative and non-perturbative contri-
butions. The perturbative part is restricted to 𝑏 < 𝑏max and the non-perturbative part
concerns 𝑏 > 𝑏max.

In the original formalism by CSS, the Drell-Yan cross section is calculated by matching
perturbative functions 𝐶𝑎𝑏(𝛼s) to collinear PDFs and resumming large logarithms from
real emissions by a Sudakov form factor that contains perturbative functions 𝐴𝑎(𝛼s) and
𝐵𝑎(𝛼s). In the year 2000, Catani et al. extended this form in Ref. [207] by incorporating
the hard functions𝐻 in order to define 𝐴𝑎 , 𝐵𝑎 , and 𝐶𝑎𝑏 in a process-independent manner.
The Sudakov form factor of this first formalism by CSS, which we refer to as CSS1,
equals [206]:

𝑆CSS1(𝑏, 𝑄; 𝑏max , 𝑄0) = exp

{
−

∫ 𝜇2
𝑄

𝜇2
𝑏∗

d𝜇′2

𝜇′2

(
𝐴𝑎(𝛼s) ln

(
𝑄2

𝜇′2

)
+ 𝐵𝐹𝑎 (𝛼s)

)}
× exp

(
−𝑔𝑎/ℎ1(𝑥𝑎 , 𝑏, 𝑏max) − 𝑔𝑏/ℎ2(𝑥𝑏 , 𝑏, 𝑏max) − 𝑔𝐷(𝑏, 𝑏max) ln 𝑄

2

𝑄2
0

)
, (6.12)
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where the scales 𝜇𝑏∗ = 𝐶1/𝑏∗ (𝐶1 proportionality constant) and 𝑏∗ = 𝑏/
√

1 + 𝑏2/𝑏2
max.

The 𝑏∗ variable is introduced to be able to combine perturbative and non-perturbative
solutions by the “𝑏∗-prescription” [49, 50]. The scale 𝑄0 is a fixed reference scale, and 𝜇𝑄
is calculated as 𝐶2𝑄, where 𝐶2 can be adjusted to optimize the calculation based on the
specific application. 𝑄0 and𝑄 have a meaning analogous to that of the DGLAP evolution
scales 𝜇0 and 𝜇.

The functions 𝑔𝑖/ℎ and 𝑔𝐷 are independent of scales 𝑄 and 𝜇 and converge to zero
as 𝑏 decreases. The 𝑔𝑖/ℎ ’s can be interpreted as analogues of the intrinsic transverse
momentum distribution ℐ(𝑘2

⊥,0) in the PB method (see Eq. (3.44)).

The factors in the cross section that have upper index 𝐹, are specific to the process. How-
ever, renormalization group transformation mix the 𝐻 function with 𝐶 and 𝐵 functions.
These functions within the TMDs can be made process independent by selecting a par-
ticular resummation scheme [207]. The PDFs 𝑓𝑗/𝐻 do not depend on the process as they
are universal.

The first exponent with perturbatively calculable functions 𝐴𝑎(𝛼s) and 𝐵𝑎(𝛼s) (of which
coefficients are given in Appendix B) resum the soft-gluon logarithms 𝛼𝑛s ln𝑚(𝑄2/𝑞2

⊥)
to all orders 𝑛 as described in Chapter 1 and illustrated in Eq. (2.13). The perturbative
calculable functions have the following series expansions:

𝐴𝑎(𝛼s) =
∞∑
𝑛=1

( 𝛼s
2𝜋

)𝑛
𝐴

(𝑛)
𝑎 , 𝐵𝑎(𝛼s) =

∞∑
𝑛=1

( 𝛼s
2𝜋

)𝑛
𝐵
(𝑛)
𝑎 . (6.13)

The logarithmic accuracy is related to the coefficients of these functions that are included
in a calculation. Note that the first term in the exponent of Eq. (6.12), which includes
𝐴𝑎(𝛼s), is accompanied by an additional logarithm. It is therefore referred to as the double

logarithmic term. The term with 𝐵𝑎(𝛼s) is referred to as the single logarithmic term.

The counting of logarithms is done as described in Sec. 2.5.22. Leading logarithmic (LL)
terms in the perturbation series are of the form 𝛼𝑛s ln𝑛+1(𝑄2/𝑞2

⊥), next-to-leading loga-
rithmic (NLL) terms are of the form 𝛼𝑛s ln𝑛(𝑄2/𝑞2

⊥), next-to-next-to-leading logarithms
(NNLL) have 𝛼𝑛s ln𝑛−1(𝑄2/𝑞2

⊥), and so on. LL accuracy is obtained by including the co-
efficient 𝐴(1), NLL accuracy is obtained by 𝐴(2) and 𝐵(1), NNLL accuracy is obtained by
𝐴(3) and 𝐵(2), etc. In short, to achieve N𝑚LL accuracy, the coefficients 𝐴(𝑚+1) and 𝐵(𝑚) are
required.

In a more recent version of the TMD factorization approach, referred to as CSS2 [50], the
Sudakov form factor is structured differently compared to that in CSS1. The separation
of non-perturbative contributions and resummation terms is no longer as distinct. How-
ever, CSS2 offers several other advantageous features [206], e.g. new, modified definitions
of TMDs in terms of gauge-invariant operator matrix elements. These definitions utilize
the exact TMD evolution equations as given in Eqs. (6.4) and (6.5), without power sup-
pressed corrections, resulting in a clearer relation between fits and TMDs. The Sudakov
form factor of CSS2 can be written using the functions 𝛾𝑗 , 𝛾𝐾 and 𝒟 in manner highly

2We do not take into account any contributions from 𝐶𝑎𝑏 coefficients in counting resummed logarithms.
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comparable to Eq. (6.12) as

𝑆CSS2(𝑏, 𝑄, 𝑏max , 𝑄0) = exp

{
−

∫ 𝜇2
𝑄

𝜇2
0

d𝜇′2

𝜇′2

(
𝛾𝐾(𝛼s) ln

(
𝑄2

𝜇′2

)
− 𝛾𝑗(𝛼s)

)}
× exp

(
𝒟(𝑏, 𝜇0) ln 𝑄

2

𝑄2
0

)
, (6.14)

where 𝜇0 = 𝐶2𝑄0 is a reference scale. The coefficients of functions 𝐴 and 𝛾𝐾 as well
as those from 𝐵 and 𝛾𝑗 do not correspond at all orders, which is referred to as the
collinear anomaly found by Becher and Neubert in Ref. [208]. These functions are linked
by derivatives of the Collins-Soper (CS) kernel 𝒟(𝑏, 𝜇0), proven by Collins and Rogers
in Ref. [206]. The CS kernel consists of both perturbative and non-perturbative contribu-
tions. By introducing the 𝑏∗-notation, the second exponential function of Eq. (6.14), i.e.
the non-perturbative Sudakov of CSS2, is

exp

(
𝒟(𝑏, 𝜇0) ln 𝑄

2

𝑄2
0

)
≃ exp

(
𝒟(𝑏∗ , 𝜇𝑏∗) ln 𝑄

2

𝜇2
𝑏∗

)
× (6.15)

exp

{
−𝑔𝑎/𝐴(𝑥𝑎 , 𝑏, 𝑏max) − 𝑔𝑏/𝐵(𝑥𝑏 , 𝑏, 𝑏max) − 𝑔𝐷(𝑏, 𝑏max) ln 𝑄

2

𝑄2
0

}
,

where the functions 𝑔𝑎/𝐴 and 𝑔𝐷 are identical to those in the CSS1 formalism.

6.3 The PB Sudakov; NNLL resummation and non-

perturbative Sudakov

This section is devoted to revealing the logarithmic structure of the PB method that arises
from the Sudakov form factor, increasing the logarithmic accuracy of the PB method by
introducing the physical soft-gluon coupling 𝛼

phys
s and analyzing the ultra-soft phase

space region treated by the PB Sudakov.

To study the resummation accuracy, we use the PB Sudakov with virtual splitting func-
tions as introduced in Eq. (3.28):

Δ𝑎(𝜇2 , 𝜇2
0) = exp

{
−

∑
𝑏

∫ 𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2

∫ 𝑧𝑀

0
𝑧𝑃

(𝑅)
𝑏𝑎

(𝛼s , 𝑧)𝑑𝑧
}

(6.16)

≃ exp

{
−

∫ 𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2

(∫ 𝑧𝑀

0
𝑘𝑎(𝛼s)

1
1 − 𝑧 𝑑𝑧 − 𝑑𝑎(𝛼s)

)}
, (6.17)

where the last approximation becomes an equality in the case that 𝑧𝑀 = 1 and the scale of
the strong coupling is equal to the branching scale, 𝛼s(𝜇′2). Coefficients of the functions
𝑘𝑎 and 𝑑𝑎 are given in Appendix A. For the purpose of this study, we investigate different
scenarios where the value of 𝑧𝑀 and the scale of 𝛼s differ.

When integrating up to 𝑧𝑀 = 1−𝜖 with 𝜖 = 10−5, as in the PB-TMD sets Set 1 and Set 2 [37,
38], emissions are generated in the non-resolvable region. We separate resolvable from
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non-resolvable regions in this Sudakov form factor by using the dynamical resolution
scale 𝑧dyn

𝑀
= 1 − 𝑞0/𝜇′, which was introduced and studied in Chapter 5:

Δ𝑎(𝜇2 , 𝜇2
0) = exp

{
−

∫ 𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2

(∫ 1−𝑞0/𝜇′

0

𝑘𝑎(𝛼s)
1 − 𝑧 𝑑𝑧 − 𝑑𝑎(𝛼s)

)}
× exp

{
−

∫ 𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2

∫ 1−𝜖

1−𝑞0/𝜇′

𝑘𝑎(𝛼s)
1 − 𝑧 𝑑𝑧

}
(6.18)

This separation is similar to the separation of the resummation and non-perturbative
Sudakov by CSS. Instead of regions in impact parameter separated by 𝑏max, the separation
here is in terms of emitted transverse momenta through the angular ordering relation
with a separation scale 𝑞0.

Δ𝑎(𝜇2 , 𝜇2
0) = Δ

(R)
𝑎 (𝜇2 , 𝜇2

0 , 𝑞
2
0) · Δ

(NP)
𝑎 (𝜇2 , 𝜇2

0 , 𝜖, 𝑞
2
0) . (6.19)

In the following we show that these two factors of the PB Sudakov have a similar inter-
pretation as the two factors of the CSS Sudakov as given in Eq. (6.11), both analytically
and numerically. Moreover, we will improve the logarithmic accuracy that is given by
the first factor.

6.3.1 NNLL resummation with the physical soft-gluon coupling

We show that Δ(R)
𝑎 resums logarithmically enhanced terms 𝛼𝑛s ln𝑚(𝑄2/𝑞2

⊥) identically to
CSS. For this, we need to map the evolution variable 𝜇′

⊥ to the transverse momenta 𝑞⊥
with the angular ordering condition, 𝑞⊥ = (1−𝑧)𝜇′

⊥, similar to the procedure in Chapter 5.
This allows us to compare the PB Sudakov directly to that from CSS. The resummation
part of the PB Sudakov can then be written as in Eq. (5.19)3:

Δ
(R)
𝑎 (𝜇2 , 𝜇2

0 , 𝑞
2
0) = exp

{
−

∫ 𝜇2

𝑞2
0

𝑑𝑞2
⊥

𝑞2
⊥

(∫ 1−𝑞⊥/𝜇

0

𝑘𝑎(𝛼s)
1 − 𝑧 𝑑𝑧 − 𝑑𝑎(𝛼s)

)
+

∫ 𝜇2
0

𝑞2
0

𝑑𝑞2
⊥

𝑞2
⊥

∫ 1−𝑞⊥/𝜇0

0
𝑑𝑧
𝑘𝑎(𝛼s)
1 − 𝑧

}
. (6.20)

Clearly, the phase space covered by this Sudakov is that where |𝑞⊥ | > 𝑞0. The second
term in the exponent can be neglected since 𝜇0 ≈ 𝑞0 = 𝒪(1 GeV). With 𝑞2

⊥ as the scale of
𝛼s, the 𝑧-integral can be performed to obtain:

Δ
(R)
𝑎 (𝜇2 , 𝑞2

0) = exp

{
−

∫ 𝜇2

𝑞2
0

𝑑𝑞2
⊥

𝑞2
⊥

(
1
2 𝑘𝑎(𝛼s) ln

(
𝜇2

𝑞2
⊥

)
− 𝑑𝑎(𝛼s)

)}
. (6.21)

Note that this structure bears a strong resemblance to the perturbative part of the Sudakov
form factor of CSS, i.e. the first exponential factor in Eq. (6.12). For this, we assume that
the scales 𝜇𝑏∗ and 𝑞0 can be set equal.

3Note that the integration limits differ because by starting from 𝑞0 in the first term, a subtraction of a phase
space element is required, whereas in Chapter 5 an addition was needed.
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If the coefficients of the 𝐾 and 𝐷 parts of the splitting functions 𝑃𝑎𝑏 were to agree
with the CSS functions 𝐴 and 𝐵 respectively, one would gain N𝑚LL accuracy in PB by
including 𝑘(𝑚) and 𝑑(𝑚−1). The PB-TMD sets have implemented splitting functions with
NLO accuracy (in powers of 𝛼s), resulting in negligible sub-leading logarithms.

LL accuracy in PB is obtained by the 𝑘(0)𝑎 coefficient of the LO splitting functions since
it coincides with 𝐴(1)

𝑎 . The 𝑑(0)𝑎 coefficient coincides with 𝐵(1)
𝑎 providing the single loga-

rithmic term at NLL accuracy4. The double logarithmic term at NLL is obtained by the
NLO splitting function coefficients, where 𝑘(1)𝑎 is equal to 𝐴(2)

𝑎 , sub-leading terms are then
included due to presence of the 𝑑(1)𝑎 coefficient.

6.3.1.1 NNLL at single logarithmic level

Differences can be found between the single logarithmic terms at NNLL, 𝐵(2) and 𝑑(1)

(App. A & B). We devote attention to the cause of this apparent discrepancy in function
values, which turns out to be due to a scheme choice.

The partonic cross section 𝐻𝐹
𝑐𝑐 causes a dependence of the 𝐵𝐹𝑎 function of the CSS for-

mula (6.7) to the process and the resummation scheme [207] through renormalization
group transformations. An RGE (for the definition, see Eq. (1.15)) of the hard scattering
function can be written generally as:

𝜕 ln𝐻𝐹
𝑐𝑐(𝛼s(𝜇2))

𝜕 ln𝜇2 = 𝛽(𝛼s)
𝜕 ln𝐻𝐹

𝑐𝑐(𝛼s(𝜇2))
𝜕𝛼s

≡ 𝛾𝐻(𝛼s(𝜇2)), (6.22)

which follows from renormalization group invariance of the total cross section. Integra-
tion over ln𝜇2 from ln𝜇2

0 up to ln𝑄2 gives

𝐻𝐹
𝑐𝑐(𝛼s(𝑄2)) = exp

{∫ 𝑄2

𝜇2
0

𝑑𝜇2

𝜇2 𝛾𝐻(𝛼s(𝜇2))
}
𝐻𝐹
𝑐𝑐(𝛼s(𝜇2

0)). (6.23)

The argument of the exponent is of the same (logarithmic) structure as the 𝐵 function.
The resummation part of the Sudakov form factor can then schematically be written as:

𝑆(𝑏, 𝑄) = exp

{
−

∫ 𝑄2

1/𝑏2

𝑑𝜇′2

𝜇′2

(
𝐴𝑎(𝛼s) ln

(
𝑄2

𝜇′2

)
+ 𝐵𝑎(𝛼s) − 𝛾𝐻(𝛼s(𝜇2))

)}
. (6.24)

The 𝐵𝑎(𝛼s) function from Eq. (6.12) then shifts like:

𝐵𝑆𝑎 (𝛼s(𝜇2)) = 𝐵𝑆̃𝑎 (𝛼s(𝜇2)) − 𝛾𝐻(𝛼s(𝜇2)). (6.25)

from one certain resummation scheme (𝑆) to another (𝑆̃). Using the perturbative expan-
sions in the strong coupling of the QCD beta-function (Eq. (1.18)) and the hard scattering
function (Eq. (6.8)), the relation of coefficients at order 𝛼2

s can be written explicitely as
[207]:

𝐵
𝑆(2)
𝑎 = 𝐵

𝑆̃(2)
𝑎 + 𝛽0𝐻

𝑆𝑆̃(1)
𝑎 . (6.26)

4Being precise, 𝑑(0)𝑎 = −1/2𝐵
(1)
𝑎 , since a factor of 1/2 arises due to the presence of two TMDs 𝒜̃ in a cross

section calculated with PB, while only one factor of 𝑆𝑎 is present in the CSS cross section.
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There exists a resummation scheme in which the process dependence is contained en-
tirely in the hard function, 𝐻𝑆𝑆̃

𝑎 , and the 𝐵𝑎 coefficients are universal and equivalent
to coefficients of the DGLAP splitting functions, as demonstrated in Ref. [207]. This
resummation scheme, where 𝐵(2)

𝑎 corresponds to 𝑑
(1)
𝑎 , is that of the “MS resummation

scheme” [207]. CSS applications commonly use the 𝐵(2)
𝑎 coefficient from the “DY scheme”.

A straightforward comparison of the (quark) coefficients 𝑑(1)𝑞 and 𝐵(2)
𝑞 from Appendices A

and B respectively gives:

𝐵
(2)
𝑞 − (−2) · 𝑑(1)𝑞 = 16𝐶𝐹𝜋𝛽0(𝜁2 − 1). (6.27)

The factor −2 on the left-hand side is applied due to differently defined Sudakov form
factors of PB (Eq. (6.21)) and CSS (Eq. (6.12)) and the occurrence of two TMDs in the
calculation with PB whereas CSS includes one factor of 𝑆𝑎 in the cross section.

We observe that the difference between the single logarithmic coefficients at NNLL
accuracy is a single factor of the form 𝛽0 · 𝐻, that corresponds to the form of Eq. (6.26).

6.3.1.2 NNLL at double logarithmic level

The NNLO coefficient 𝐴(3)
𝑞 that contributes to NNLL accuracy does not coincide with

the cusp anomalous dimension 𝑘
(2)
𝑞 = 2𝐶𝐹𝛾(2)

𝐾
(see Eq. (6.28)). This difference cannot

be explained by the choice of the resummation scheme, since 𝐴(𝛼s) is a resummation
scheme independent function. This difference is due to the collinear anomaly [208]. We
note that the difference between the NNLL double logarithmic quark coefficient 𝐴(3)

𝑞 and
the cusp anomalous dimension is contained in the perturbative part of the CS kernel
𝒟(𝑏, 𝜇) from Eq. (6.15):

𝐴
(3)
𝑞 − 𝑘(2)𝑞 = 𝐶𝐹𝜋𝛽0

[
𝐶𝐴

(
808
27 − 28𝜁3

)
− 112

27 𝑁 𝑓

]
(6.28)

= −𝜋𝛽0

𝛼2
s
𝒟(𝑏𝜇 = 2𝑒−𝛾𝐸 ). (6.29)

To arrive at the second equality, we use Eq. (69) from Ref. [206].

NNLL accuracy can be achieved through the physical soft-gluon coupling (referred to as
the “physical coupling”) described in Refs. [202, 203], which extends the CMW coupling
that was developed for NLL resummation [43]. The physical soft-gluon coupling is
essentially an effective coupling that incorporates effects of multiple soft gluons. We
apply the physical coupling:

𝛼
phys
s = 𝛼s

(
1 +

∞∑
𝑛=1

𝒦 (𝑛)
( 𝛼s

2𝜋

)𝑛)
(6.30)

to modify the PB Sudakov and obtain correct higher order Sudakov resummation:

Δ𝑎(𝜇2 , 𝜇2
0) = exp

{
−

∫ 𝜇2

𝑞2
0

𝑑𝑞′2⊥
𝑞′2⊥

(∫ 𝑧𝑀

0
𝑘𝑎(𝛼phys

s ) 1
1 − 𝑧 𝑑𝑧 − 𝑑𝑎(𝛼

phys
s )

)}
. (6.31)
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The first order coefficient of 𝒦 is [202]:

𝒦 (1) =𝐶𝐴

(
67
18 − 𝜋2

6

)
− 5

9𝑁 𝑓 (6.32)

and the second order coefficient is [202]:

𝒦 (2) =𝐶2
𝐴

(
245
24 − 67

9 𝜁2 +
11
6 𝜁3 +

11
5 𝜁2

2

)
+ 𝐶𝐹𝑁 𝑓

(
−55

24 + 2𝜁3

)
(6.33)

+ 𝐶𝐴𝑁 𝑓

(
−209

108 + 10
9 𝜁2 −

7
3𝜁3

)
− 1

27𝑁
2
𝑓
+ 𝜋𝛽0

2

(
𝐶𝐴

(
808
27 − 28𝜁3

)
− 224

54 𝑁 𝑓

)
.

By using a combination of DGLAP splitting functions with the physical soft-gluon cou-
pling at appropriate orders we obtain PB predictions without subleading logarithms
from the Sudakov form factor.

Pure NNLL We gain NNLL accuracy in the PB Sudakov by the use of NLO splitting
functions and including the physical coupling as:

𝛼NNLL
s = 𝛼s

(
1 +𝒦 (2)

( 𝛼s
2𝜋

)2
)
. (6.34)

The coefficient 𝒦 (1) is not included in Eq. (6.34) because it is equal to 𝑘(1)𝑞 (being a part of
the implemented NLO splitting functions). With that, Eq. (6.21) becomes:

ln
(
Δ
(NNLL)
𝑎 (𝜇2 , 𝑞2

0)
)
= −

∫ 𝜇2

𝑞2
0

𝑑𝑞2
⊥

𝑞2
⊥

(
𝛼NNLL

s
2𝜋

) [
ln

𝜇2

𝑞2
⊥

(
𝑘
(0)
𝑎 + 𝛼NNLL

s
2𝜋 𝑘

(1)
𝑎

)
− 𝑑(0)𝑎 − 𝛼NNLL

s
2𝜋 𝑑

(1)
𝑎

]
= −

∫ 𝜇2

𝑞2
0

𝑑𝑞2
⊥

𝑞2
⊥

𝛼s
2𝜋

[
ln

𝜇2

𝑞2
⊥

(
𝑘
(0)
𝑎 + 𝛼s

2𝜋 𝑘
(1)
𝑎

)
− 𝑑(0)𝑎 − 𝛼s

2𝜋 𝑑
(1)
𝑎 +

+
( 𝛼s

2𝜋

)2
𝒦 (2)

(
𝑘
(0)
𝑎

1
2 ln

𝜇2

𝑞2
⊥
− 𝑑(0)𝑎

)]
, (6.35)

where 𝒦 (2) · 𝑘(0)𝑎 = 𝐴
(3)
𝑎 .

Pure NLL We have also obtained, for the first time, a pure NLL prediction with PB
by combining LO splitting functions with an implementation of the physical coupling
truncated at 𝒦 (1):

𝛼CMW
s = 𝛼s

(
1 +𝒦 (1)

( 𝛼s
2𝜋

))
. (6.36)

With that, Eq. (6.21) gives:

ln
(
Δ
(NLL)
𝑎 (𝜇2 , 𝑞2

0)
)
= −

∫ 𝜇2

𝑞2
0

𝑑𝑞2
⊥

𝑞2
⊥

(
𝛼CMW

s
2𝜋

) [
1
2 𝑘

(0)
𝑎 ln

𝜇2

𝑞2
⊥
− 𝑑(0)𝑎

]
(6.37)

= −
∫ 𝜇2

𝑞2
0

𝑑𝑞2
⊥

𝑞2
⊥

[
𝛼s
2𝜋

(
1
2 𝑘

(0)
𝑎 ln

𝜇2

𝑞2
⊥
− 𝑑(0)𝑎

)
+

( 𝛼s
2𝜋

)2
𝒦 (1)

(
1
2 𝑘

(0)
𝑎 ln

𝜇2

𝑞2
⊥
− 𝑑(0)𝑎

)]
,

where 𝒦 (1) · 𝑘(0)𝑎 = 𝐴
(2)
𝑎 and 𝑘

(0)
𝑎 = 2𝐶𝑎 with 𝐶𝑎 = 𝐶𝐹 for quarks and 𝐶𝑎 = 𝐶𝐴 for gluons.
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6.3.2 The non-perturbative Sudakov of PB

Here we argue that the PB Sudakov given in Eq. (6.31) and maintaining a fixed resolu-
tion scale close to one, not only allows for soft-gluon resummation at NNLL precision,
but also achieves a non-perturbative description in TMD evolution that surpasses the
incorporation of intrinsic transverse momentum.

We consider the very small transverse momentum region, |𝑞⊥ | < 𝑞0 where the non-
perturbative Sudakov (i.e. the second factor of Eq. (6.19)) governs the emissions5:

Δ
(NP)
𝑎 (𝜇2 , 𝜇2

0 , 𝜖, 𝑞0) = exp

{
−

∫ 𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2

∫ 1−𝜖

1−𝑞0/𝜇′

𝑑𝑧
𝑘𝑎 (𝛼s)
1 − 𝑧

}
. (6.38)

In this (non-resolvable) region, we set the argument of the strong coupling to 𝑞2
0.

When the running coupling is not dependent on 𝑧 and 𝜇′, the integrals in Eq. (6.38)
straightforwardly lead to:

Δ
(NP)
𝑎 (𝜇2 , 𝜇2

0 , 𝜖, 𝑞
2
0) = exp

{
− 𝑘𝑎(𝛼s)

2 ln

(
𝜇2

𝜇2
0

)
ln

(
𝑞2

0
𝜖2𝜇0𝜇

)}
. (6.39)

Although the Sudakov form factor is significantly influenced by the value of 𝜖, it should
be noted that the PB TMDs are infrared safe [39] and independent of 𝜖 because of angular
ordering.

An analytical comparison of Eq. (6.39) with the CSS Sudakov form factor in Eqs. (6.12),
(6.14) and (6.15) demonstrates that there are corresponding logarithms of 𝜇2/𝜇2

0 (or
𝑄2/𝑄2

0) in the exponent. This observation inspires the study performed in section 6.4
where we extract the CS kernel from the PB approach using both models with and
without the non-perturbative Sudakov.

6.3.3 Numerical results

Figure 6.2 depicts the effect of the physical soft-gluon coupling presented in Eq. (6.34)
and Eq. (6.35) on the (i)TMDs of gluons and down quarks. This is compared to the
standard PB evolution of PB-TMD-set2 with NLO splitting functions and without the
physical coupling.

In all curves, the value of the coupling constant 𝛼s is determined by the scale of 𝑞2
⊥

and a fixed value of 𝑧𝑀 = 1 − 10−5 is applied. The starting evolution scale is 𝜇0 = 1.3
GeV. The Sudakov form factor’s separation scale is established by 𝑞0 = 1.0 GeV, i.e. for
|𝑞⊥ | < 1.0 GeV 𝛼s is set to the value 𝛼s(𝑞0). The investigation comprises three evolution
scenarios:

1. NLO: PB evolution of HERAPDF2.0 with NLO splitting functions and 2-loop 𝛼s;

5The arguments presented in this section apply to both models with standard running coupling 𝛼s and
physical coupling 𝛼

phys
s .
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2. NLL: PB evolution of HERAPDFLO with LO splitting functions and 1-loop 𝛼s with
the implementation of the CMW coupling through Eq. (6.36);

3. NNLL: PB evolution of HERAPDF2.0 with NLO splitting functions and 2-loop 𝛼s
with the implementation of the physical coupling through Eq. (6.34).

In the third scenario, the physical coupling has been included in both the Sudakov form
factor and the real emission probabilities to preserve momentum conservation [141].
It is apparent that the disparity between NLL and NLO for both TMDs and iTMDs is
considerable, while the discrepancy between NLO and NNLL predictions is only about
2%. This is to be expected, as the NLO calculation includes already the 𝑑(1) coefficient that
contributes to NNLL resummation. Moreover, in the NLL calculation only LO splitting
functions govern the dynamics of resolvable branchings.
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Figure 6.2: iTMDs (top) and TMDs (bottom) for down-quark and gluon at 𝜇 = 100 GeV acquired
through the PB methodology for different evolution scenarios described in section 6.3.3. The NLO
prediction (red curve) serves as the reference for the ratio plots in the bottom panels.



6.4. THE COLLINS SOPER KERNEL OF PB 77

The numerical impact on a given physical parameter by including the physical cou-
pling can be estimated by calculating the transverse momentum spectrum of the 𝑍
boson in DY events. Figure 6.3 shows simulations with the three differently obtained
TMDs as previously discussed. NLO matrix elements have been generated using Mad-
Graph5_amc@nlo [55] with Herwig6 subtraction terms and the iTMD PB-NLO-2018-
set2 [37]. Cascade3 [51] matches the TMDs of interest to these matrix elements [36] (see
Chapters 7, 8 and 9). Also at the physical level, there is a significant difference between
the NLL and NLO results while going from NLO to NNLL results again in only a 2%
difference.

NLO
NLL
NNLL1

10 1

Z → ee, dressed level, 66 GeV ≤ mℓℓ < 116 GeV, |yℓℓ| < 2.4

d
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/
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R
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Figure 6.3: 𝑍 boson transverse momentum spectrum calculations at
√
𝑠 = 8 TeV obtained at

different orders of logarithmic accuracy described in detail in section 6.3.3. The ratios are shown
relative to the NLO prediction (in red).

6.4 The Collins Soper kernel of PB

The CS kernel, 𝒟(𝑏, 𝜇0) in Eq. (6.14), is a part of the TMD factorization theorem that was
introduced in Refs. [150, 204]. Its evolution in 𝜇 is determined by the cusp anomalous
dimension as given in Eq. (6.6). In Refs. [50, 208–210] it was shown that the CS kernel
contains information on the exchange of non-perturbative and soft gluons and that it
also determines the evolution of TMD parton distributions. A self-contained definition
of the CS kernel was found in Ref. [211], providing the scaling of the kernel through
the matrix elements without referring to the TMDs. In Ref. [205], a first direct method
to numerically extract the CS kernel from scattering cross sections was provided and
applied to the PB approach. In this work, this method was followed to study in detail
the behavior of the CS kernel extracted from different PB predictions depending on the
evolution details.
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6.4.1 TMD models

Four PB models evolved with NLO splitting functions and 2-loop 𝛼s are studied. In all
models, the emitted transverse momentum is calculated following the angular ordering
relation 𝑞2

⊥ = (1 − 𝑧)2𝜇′2. The models differ in the settings of the soft-gluon resolution
scale and scale of the strong coupling. The evolution settings of four models are the
following:

1. with 𝛼s(𝑞2
⊥) and 𝑧𝑀 = 1 − 10−5, where the intermediate 𝑞0 = 1.0 GeV is used for

separating the perturbative and non-perturbative regions. In the non-perturbative
region, 𝛼s is frozen to 𝛼s(𝑞2

0);

2. with 𝛼s(𝜇′2) and 𝑧𝑀 = 1 − 10−5, where the initial evolution scale, 𝜇0 = 1.3 GeV, is
the lowest scale in 𝛼s;

3. with 𝛼s(𝑞2
⊥) and 𝑧𝑀 = 1− 𝑞0/𝜇′ with 𝑞0 = 1.0 GeV (i.e. there is no non-perturbative

Sudakov form factor).

4. with 𝛼s(𝑞2
⊥) and 𝑧𝑀 = 1− 𝑞0/𝜇′ with 𝑞0 = 0.5 GeV (i.e. there is no non-perturbative

Sudakov form factor).

In scenarios 3 and 4, 𝑞0 serves as the lowest emitted transverse momentum as well as
the lowest scale of the strong coupling. All parton distributions are obtained with the
same starting parametrization (PB-NLO-HERAI+II-2018-set2 [37]), i.e. all the differences
between the TMDs come purely from the evolution. Evolution with the first scenario
corresponds to that of PB-TMD-NLO-HERAI+II-2018-set2 (denoted by PB-TMD-Set2).

In Fig. 6.4 we show integrated parton distributions (iTMDs) obtained with the PB ap-
proach of gluon and down quark flavours for these four different evolution scenarios.
In particular, one can see the role of the amount of branchings in the different evolution
scenarios.

Changing the scale of 𝛼s from the transverse momentum of the emitted parton 𝑞2
⊥ =

(1 − 𝑧)2𝜇′2 to the scale of the branching 𝜇′2 decreases the amount of branchings if other
elements of the evolution are kept the same. This is well reflected in the shape of the
iTMDs for the scenarios 1 and 2 in Fig. 6.4 where the red curve corresponds to more
branchings than the blue one. That is why the red curve is higher at small and middle
𝑥 and lower in the very large 𝑥 region compared to the blue curve. Similarly, altering
𝑧𝑀 from a fixed value ∼ 1 to a dynamical one decreases the amount of branchings by
eliminating the soft radiation if other elements of the evolution are kept the same, which
can be seen by comparing the red and purple curves. A larger dynamical resolution
scale allows more branchings, which results into the difference between the orange and
purple curves. When comparing the orange curve with the purple one, it is evident that
the orange curve exhibits a higher number of branchings, arising from both a lower cut
in 𝛼s and a higher 𝑧𝑀 compared to the purple scenario.

In Fig. 6.5 the transverse momentum distributions obtained with the PB-approach are
shown for the same configurations as in Fig. 6.4. The TMDs show very clearly the effect of
applying different evolution scenarios, in the whole 𝑘⊥ range. The shapes have a natural
explanation in PB through the determination of transverse momentum as a vectorial sum
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Figure 6.4: Gluon and down-quark iTMDs at 𝜇 = 10 GeV (left column) and 𝜇 = 100 GeV
(right column) obtained from the PB approach for different evolution scenarios with toy
models. The red curve serves as the reference for the ratio plots in the bottom panels.

of the intrinsic 𝑘⊥,0 and all the momenta emitted in the evolution. Other details of the
evolution such as the value of 𝑧𝑀 and the scale of 𝛼s play important roles, which was
already observed in the previous chapter.

6.4.2 CS kernel extractions with TMD scenarios

To extract the CS kernel from PB predictions, we use the expression provided in [205]:

𝒟(𝑏, 𝜇0) =
ln(Σ1(𝑏)/Σ2(𝑏)) − ln𝑍(𝑄1 , 𝑄2) − 2Δ𝑅(𝑄1 , 𝑄2;𝜇0)

4 ln(𝑄2/𝑄1)
− 1. (6.40)

We calculate the DY transverse momentum distributions at different DY masses (𝑄1 and
𝑄2) and adjust the values of the center-of-mass energy

√
𝑠 such that the same ranges
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Figure 6.5: TMDs for gluon and down-quarks at 𝜇 = 10 GeV (left column) and 𝜇 = 100
GeV (right column) obtained from the PB approach for different evolution scenarios.

of longitudinal momentum fractions are probed. Σ1 and Σ2 are Hankel transformed
transverse momentum distributions of the 𝑍 boson and

Δ𝑅(𝑄1 , 𝑄2;𝜇0) =
∫ 𝑄1

𝑄2

𝑑𝜇

𝜇
𝛾𝑗(𝜇, 𝑄1) − 2 ln 𝑄1

𝑄2

∫ 𝑄2

𝜇0

𝑑𝜇

𝜇
𝛾𝐾(𝜇). (6.41)

The function 𝑍 is given by

𝑍(𝑄1 , 𝑄2) =
𝛼2

em(𝑄1)|𝐶𝑉 (𝑄1 , 𝜇𝑄1)|2

𝛼2
em(𝑄2)|𝐶𝑉 (𝑄2 , 𝜇𝑄2)|2

(6.42)

where 𝛼em is the electromagnetic coupling and 𝐶𝑉 is the hard coefficient function. All
terms in Eq. (6.40) except Σ1/Σ2 are perturbative and known up to up to N3LO.

We have used the integrated TMD PB-NLO-HERAI-II-2018-set2 from LHAPDF in Mad-
Graph5_amc@nlo [55] to generate DY events in 𝑝𝑝 collisions at NLO with Herwig6 sub-
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traction terms for masses 𝑄 = 12, 16, and 20 GeV, at centre-of-mass energies
√
𝑠 = 655.2,

873.6, and 1092 GeV respectively, with a maximum rapidity of 𝜂𝑙𝑙max = 4. With these
values we ensure that the same region in the longitudinal momentum fraction is probed,
as specified in [205]. We have matched NLO matrix elements to TMDs according to
the procedure from Ref. [36] using the mc@nlo method and Cascade3. Discrete Hankel
transforms of the obtained distributions give cross section distributions in 𝑏-space. The
CS kernels for all four models are extracted at a scale 𝜇0 = 2 GeV employing perturbative
terms of 𝑍 and Δ𝑅 at N3LO accuracy. They are shown in the top panel of Fig. 6.6. Sta-
tistical uncertainties are shown as bands around the curves and obtained from the cross
sections using the bootstrap method.
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Figure 6.6: Top: Comparison of CS kernels extracted from PB predictions using different dynamical
and fixed 𝑧𝑀 scenarios and different treatments for the strong coupling. Bottom: Comparison of
CS kernels obtained from different PB models and several example extractions obtained in the
literature.

The obtained CS kernels are shown on the top panel of Fig. 6.6. They are sensitive to
the treatment of radiation: PB-TMD-Set2 (red curve), which uses 𝛼s(𝑞⊥) and includes
the region of 𝑧dyn

𝑀
< 𝑧 < 1 − 𝜖, provides a linear behavior in the kernel at large 𝑏 as

was observed in Ref. [205], while with the dynamical resolution scale with 𝑞0 = 1 GeV
(purple curve) the behavior in this region seems to be flat. When the minimal resolved
emitted transverse momentum is lowered to 𝑞0 = 0.5 GeV (orange curve), there are
additional branchings originating from the lower cut in 𝛼s and from the region 1−1/𝜇′ <
𝑧 < 1 − 0.5/𝜇′ compared to the purple curve, which leads to a significant change in the
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large 𝑏 region. Interestingly, despite having no non-perturbative Sudakov in the sense of
Eq. (6.38) (i.e. no very soft gluons but more soft gluons than the model with 𝑞0 = 1 GeV),
the orange curve becomes close to the red one. The model with 𝛼s(𝜇′) (blue curve) has a
contribution from very soft radiation, yet a smaller amount than PB-TMD-Set2 due to the
higher scale in the strong coupling, leading to a much lower slope at large 𝑏. Moreover,
the scale of the coupling also leads to a different treatment of harder radiation, therefore
this model differs from the other models already at small values of 𝑏.

The curves extracted from different PB models can be compared with the CS kernel
extracted by other methods and groups. In the lower panel of Fig. 6.6 we compare the PB
extractions from the top panel to several extractions of other groups which can be found
in the literature: phenomenological MAP22 [212], ART23 [213], SV21MSHT [213] and
lattice LPC22 [214], SVZES [215] and ETMC21 [216]. The spread of the PB results is quite
large and covers a significant fraction of other extractions. The results with flattening
behavior at large 𝑏 are especially interesting since most of the extractions in the literature
assume a rising behavior.

6.4.3 CS kernel dependence on intrinsic 𝑘⊥

Finally, the impact of the intrinsic transverse momentum on the PB CS kernel is studied.
Again four different models applying PB TMD evolution are considered, all with 𝛼s(𝑞2

⊥),
but now varying the width of the Gaussian (the 𝑞𝑠 parameter) that represents intrinsic
transverse momentum (see Eq. (3.45)):

1. 𝛼s(𝑞2
⊥), 𝑧𝑀 = 1 − 𝜖 and 𝑞𝑠 = 0.5 GeV,

2. 𝛼s(𝑞2
⊥), 𝑧𝑀 = 1 − 𝜖 and 𝑞𝑠 = 0.1 GeV,

3. 𝛼s(𝑞2
⊥), 𝑧𝑀 = 1 − 𝑞0/𝜇′ and 𝑞𝑠 = 0.5 GeV,

4. 𝛼s(𝑞2
⊥), 𝑧𝑀 = 1 − 𝑞0/𝜇′ and 𝑞𝑠 = 0.1 GeV,

where 𝑞0 = 1.0 GeV and 𝜖 = 10−5. Fig. 6.8 shows the cross sections in momentum(𝑝𝑇)- and
coordinate(𝑏)-space for these different kinematical selections. The choice of 𝑞𝑠 influences
the results in the cross sections, both in 𝑝𝑇- and 𝑏-space. The prediction in the low
𝑝𝑇 region is especially sensitive to the intrinsic transverse momentum in the case of a
dynamical resolution scale where a kink is visible for the scenario with small 𝑞𝑠 , reflecting
the shapes of the TMDs (Fig. 6.7) contributing to this region.

We determine the CS kernel for the four PB-TMD cases. The results are shown in Fig. 6.9.
We observe no significant dependence on the intrinsic 𝑘⊥. This is understood by the
parametrization of the starting distribution for TMD evolution by PB (see Eq. (3.44)).
The intrinsic transverse momentum currently is a flavor- and x-independent Gaussian
function and the intrinsic 𝑘⊥ distributions cancel out in the ratio of cross sections in
Eq. (6.40).
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Figure 6.7: The impact of intrinsic 𝑘𝑇 variation on TMDs for evolution scenario with
𝛼𝑠(𝑞2

⊥), 𝑧𝑀 = 1 − 10−5 and 𝛼𝑠(𝑞⊥)2, dynamical 𝑧𝑀 with 𝑞0 = 1.0 GeV.

6.5 Conclusion

In this study, we conducted a comprehensive investigation of the PB Sudakov form factor
and resummation by the PB method within the context of TMD factorization.

The PB TMD evolution equation resums Sudakov logarithms. The logarithmic accuracy
and comparison with analytic resummation methods by CSS have been discussed exten-
sively. We conclude that previous calculations in the PB TMD approach were performed
with leading-logarithmic (LL) and next-to-leading logarithmic (NLL) accuracy and did
contain subleading logarithms from next-to-next-to-leading logarithmic (NNLL) accu-
racy. The subleading logarithms come from the 𝐵(2) coefficient that is included in the PB
method by incorporating NLO splitting functions (via 𝑑(1)). However, the form of 𝐵(2)

found in literature can differ from 𝑑(1) because of the resummation scheme dependence
of 𝐵(𝛼s). Results by applying NLO splitting functions for TMD evolution in this chapter
were labeled by “NLO”.
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Figure 6.8: The impact of intrinsic transverse momentum on cross sections of the di-lepton pair in
momentum and position spaces for models with 𝛼s(𝑞⊥) with dynamical and fixed 𝑧𝑀 scenarios.
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Figure 6.9: Dependence of the CS kernels on the intrinsic transverse momentum, 𝑞𝑠 , for evolution
with 𝛼s(𝑞⊥) with dynamical and fixed 𝑧𝑀 scenarios.

The logarithmic accuracy gained by the Sudakov form factor can be systematically im-
proved to NNLL by means of an effective soft-gluon coupling, referred to as the “physical
coupling”. In this way, the double logarithmic NNLL 𝐴(3) coefficient is incorporated. We
discussed the implications of this new term on parton distributions and the 𝑝𝑇 spectrum
of the 𝑍 boson. We observed that its effect is rather small. This small effect is due to
subleading logarithms that are present in an NLO calculation, i.e. this already contains
a part of the NNLL resummation accuracy. PB-TMDs including the effective coupling
have not been fitted to data and are not yet available in TMDlib for wide use. To gain
NNLL accuracy in parton showers, future work is required to treat recoil effects similarly
as done in [17, 21, 22].

Motivated by the soft-gluon resolution scale 𝑧𝑀 associated with angular ordering, we
introduced an intermediate scale - denoted as 𝑧dyn - into the PB Sudakov form factor.
This led to the division of the phase space into two distinct regions: |𝑞⊥ | > 𝑞0 and
|𝑞⊥ | < 𝑞0, which we referred to as the perturbative and non-perturbative Sudakov regions,
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respectively.

Our observations revealed that the non-perturbative component of the PB factorized
Sudakov form factor denoted as Δ(NP)

𝑎 , exhibits a logarithmic structure resembling the CS
kernel. In the numerical investigations, four PB models that vary in terms of the amount
of radiation were explored. The modeling of radiation involves parametrizing 𝛼s using
different arguments of the running coupling and freezing it at different scales as well as
considering the inclusion or exclusion of Δ(NP)

𝑎 in the calculations. We demonstrated the
impact of these different evolution models on parton distributions at both integrated and
𝑘⊥-dependent levels.

Encouraged by the observation that Δ(NP)
𝑎 resembles the CS kernel, in the last part of

this chapter, the method of [205] was used to extract the CS kernel from four different
PB models. From the obtained kernels we conclude that what contributes in PB to the
extracted kernel is more than just the ΔNP

𝑎 : it is a cumulative effect of many branchings,
governed in our models by 𝛼s and 𝑧𝑀 . The obtained curves spread over a wide range in
(𝑏, 𝒟) space, covering other extractions from the literature. We conclude that different
modelling of radiation can lead to a very different kernel behavior, including different
slopes.
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Chapter
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The Cascade Monte Carlo event

generator

This chapter1 is dedicated to describing Cascade3, a Monte Carlo event generator based
on transverse momentum dependent (TMD) parton distribution functions, as it is de-
scribed in Ref. [51]. In this numerical program, hard processes which can be generated
externally in collinear factorization with leading order (LO) multileg or next-to-leading
order (NLO) parton level generators are treated by including transverse momenta of the
initial partons according to TMD densities and applying dedicated TMD parton showers
and hadronization. The initial state parton shower is tied to the TMD parton distribution,
with all parameters fixed by the TMD distribution itself. Final state parton showering and
hadronization models are included as well, creating a tool that can provide calculations
of partonic as well as hadronic level events.

We describe the new developments in Cascade3 for a full PB-TMD parton shower and the
matching of TMD parton densities to collinear hard process calculations. The chapter is
organized as follows. In the introduction, we motivate the need for a Monte Carlo event
generator based on TMDs. In Sec. 7.2, the matching of TMDs to the incoming partons
in the case of on-shell matrix element input is explained. Section 7.3 elaborates on the
initial state TMD parton shower, which has the dynamics of PB evolution discussed in
Chapter 3. Section 7.4 briefly mentions all elements of the program that are important
for generating fully showered and hadronized events. On top of the hard process input
and initial state radiation, there are input TMD sets, final state radiation, hadronization,
scale and TMD uncertainties, and multi-jet merging. With these, the program has all the
necessary ingredients for phenomenological analyses of the implied theory. This is the
basis for the following chapters, which make extensive use of Cascade3.

7.1 Introduction

The simulation of processes for high energy hadron colliders has been improved signif-
icantly in the past years by automation of NLO calculations and matching of the hard

1This work has been published in S. Baranov et al., “CASCADE3 A Monte Carlo event generator based on

TMDs”, European Physical Journal C 81 (2021) 5, 425.
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processes to parton shower Monte Carlo event generators which also include a simula-
tion of hadronization. Among those automated tools are the MadGraph5_amc@nlo [55]
generator based on the mc@nlo [95–98] method or the Powheg [100] generator for the
calculation of the hard process. The results from these packages can then combined with
the Herwig [119], Sherpa [121, 122] or Pythia8 [116, 117] packages for parton showering
and hadronization. Different jet multiplicities can be combined at the matrix element
level and then merged with special procedures, like the MLM [104–106] or CKKW [107]
merging for LO processes, the FxFx [110] or MiNLO method [111] for merging at NLO,
among others. While the approaches of matching and merging matrix element calcula-
tions and parton showers are very successful, the matrix elements are calculated with
collinear dynamics and in general purpose MCEGs, only the inclusion of initial state
parton showers results in a net transverse momentum of the hard process.

The Cascade3 Monte Carlo event generator covers a large kinematic domain of currently
relevant high-energy physics processes by applying the PB method, explained in Chap-
ter 3, and the corresponding PB TMD parton densities [38, 39]. The initial state evolution
is fully described and determined by the TMD density for all flavor species, including
quarks, gluons and photons at small and large 𝑥 and any scale 𝜇.

With the current advances in determination of PB TMDs, it is natural to develop a scheme,
where the initial parton shower follows as close as possible the TMD parton density and
where either collinear (on-shell) or 𝑘⊥-dependent (off-shell) hard process calculations
can be included at LO or NLO. In order to be flexible and to use the latest developments
in automated matrix element calculations of the hard process at higher order in the
strong coupling 𝛼s, events available in the LHE file format [125], which contains all the
information of the hard process including the color structure, can be further processed
for parton shower and hadronization in Cascade3.

7.2 The hard process

The cross section for the scattering process of two hadrons 𝐴 and 𝐵 can be written in
collinear factorization as a convolution of the partonic cross section of partons 𝑎 and 𝑏,
𝑎 + 𝑏 → 𝑋, and the densities 𝑓𝑎(𝑏)(𝑥, 𝜇) of partons 𝑎 (𝑏) inside the hadrons 𝐴 (𝐵),

𝜎(𝐴 + 𝐵 → 𝑌) =
∫

𝑑𝑥𝑎

∫
𝑑𝑥𝑏 𝑓𝑎(𝑥𝑎 , 𝜇) 𝑓𝑏(𝑥𝑏 , 𝜇) 𝜎(𝑎 + 𝑏 → 𝑋) , (7.1)

where 𝑥𝑎(𝑥𝑏) are the fractions of the longitudinal momenta of hadrons 𝐴, 𝐵 carried by
the partons 𝑎(𝑏), 𝜎(𝑎 + 𝑏 → 𝑋) is the partonic cross section, and 𝜇 is the factorization
scale of the process. The final state 𝑌 contains the partonic final state 𝑋 and the recoils
from the parton evolution and hadron remnants.

In Cascade3 we extend collinear factorization to include transverse momenta in the ini-
tial state by adding transverse momentum to incoming partons in an on-shell process.
The hard processes in collinear factorization can be calculated by standard automated
methods like MadGraph5_amc@nlo [55] for multi-leg processes at LO or NLO accu-
racy. The matrix element processes are calculated with collinear PDFs, as provided by
LHAPDF [178].
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Collinear parton densities 𝑓 (𝑥, 𝜇) in the factorization formula given in Eq. (7.1) are
replaced by TMD densities 𝒜(𝑥, 𝑘⊥ , 𝜇) with 𝑘⊥ being the transverse momentum of the
interacting parton. Integration over the transverse momenta then gives the total cross
section as in Eq. (7.1). However, when the hard process is to be combined with a TMD
parton density, these 𝑘⊥ integrals of the TMD densities must agree with the collinear
(𝑘⊥-integrated) densities; this feature is guaranteed by construction for the PB-TMDs
(also available as integrated PDFs in LHAPDF).

In a LO partonic calculation the TMD or the parton shower can be included respecting
energy momentum conservation, as described below. In an NLO calculation based on the
mc@nlo method [95–98], the contribution from collinear and soft partons is subtracted, as
this is added later with the parton shower. For the use with PB TMDs, the Herwig6 [217,
218] subtraction terms are best suited as the angular ordering conditions coincide with
those applied in the PB-method (a thorough discussion and numerical demonstration of
this are given in Chapter 9).

When transverse momenta of the initial partons from TMDs are to be included to the hard
scattering process, which was originally calculated under the assumption of collinear ini-
tial partons, care has to be taken that energy and momentum are still conserved. When
the initial state partons have transverse momenta, they also acquire virtual masses. The
procedure adopted in Cascade3 is the following: for each initial parton, a transverse
momentum is assigned according to the TMD density, and the parton-parton system
is boosted to its center-of-mass frame and rotated such that only the longitudinal and
energy components are non-zero. The energy and longitudinal component of the initial
momenta 𝑝𝑎,𝑏 can be recalculated by taking into account the virtual masses𝑄2

𝑎 = 𝑘2
⊥,𝑎 and

𝑄2
𝑏
= 𝑘2

⊥,𝑏 , incorporating energy-momentum conservation by conserved quantity 𝑠, as-
suming massless partons 𝑝2

𝑎,𝑏
= 0 and exploiting relations between lightcone momentum

components, as [219]

𝐸𝑎,𝑏 =
1

2
√
𝑠

(
𝑠 ± (𝑄2

𝑏
−𝑄2

𝑎)
)

(7.2)

𝑝𝑧 𝑎,𝑏 = ± 1
2
√
𝑠

√
(𝑠 +𝑄2

𝑎 +𝑄2
𝑏
)2 − 4𝑄2

𝑎𝑄
2
𝑏

(7.3)

with 𝑠 = (𝑝𝑎 + 𝑝𝑏)2 with 𝑝𝑎(𝑝𝑏) being the four-momenta of the interacting partons 𝑎
and 𝑏. The partonic system is then rotated and boosted back to the overall center-of-
mass system of the colliding particles. By this procedure, the parton-parton mass

√
𝑠 is

exactly conserved, while the rapidity of the partonic system is approximately restored,
depending on the transverse momenta.

In Fig. 7.1 a comparison of the Drell-Yan (DY) mass, transverse momentum and rapidity
is shown from an NLO calculation of DY production in pp collisions at

√
𝑠 = 13 TeV in

the mass range 30 < 𝑚DY < 2000 GeV. The curve labelled NLO(LHE) is the calculation
of MadGraph5_amc@nlo with the subtraction terms, the curve NLO(LHE+TMD) is
the prediction after the transverse momentum is included according to the procedure
described above. In the 𝑝𝑇 spectrum one can clearly see the effect of including transverse
momenta from the TMD distribution. The DY mass distribution is not changed, and
the rapidity distribution is almost exactly reproduced, only at large rapidities small
differences are observed.
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Figure 7.1: Distributions of Drell-Yan mass, transverse momentum and rapidity for 𝑝𝑝 → DY + 𝑋
at

√
𝑠 = 13 TeV. The hard process is calculated with MadGraph5_amc@nlo. NLO(LHE) is the

prediction including subtraction terms, NLO(LHE+TMD) includes transverse momenta of the
interacting partons according to the description in the text.

The transverse momenta 𝑘⊥ are generated according to the TMD density 𝒜(𝑥, 𝑘⊥ , 𝜇),
at the original longitudinal momentum fraction 𝑥 and the hard process scale 𝜇. In
a LO calculation, the full range of 𝑘⊥ is available, but in an NLO calculation via the
mc@nlo method a “shower scale”, also referred to as “matching scale”, defines the
boundary between parton shower and real emissions from the matrix element, limiting
the transverse momentum 𝑘⊥. Technically the factorization scale 𝜇 is calculated within
Cascade3 (see parameter lhescale) as it is not directly accessible from the LHE file,
while the shower scale is given by SCALUP. There are five options for the factorization
scale: 1) using SCALUP, the lowest transverse momentum scale in the LHE file, 2) using
the centre-of-mass energy of the partonic system 𝑠, 3) using half the scalar sum of all
final state parton’s transverse momenta squared, 4) using 𝑠 for LO processes and the
sum of transverse momenta 𝑞2

⊥ of final state partons in case of higher order emissions,
5) using 𝑠 for LO processes and the maximum transverse momentum 𝑞⊥ of the emitted
parton for higher order events. The limitation of the transverse momenta coming from
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the TMD distribution and TMD shower to be smaller than the shower scale guarantees
that the overlap with real emissions from the matrix element is minimized according to
the subtraction of counterterms in the mc@nlo method. The shower scale is also referred
to as the “matching scale”.

The advantage of using TMDs for the complete process is that the kinematics are fixed,
independent of simulating explicitly the radiation history from the parton shower. For
inclusive processes, for example inclusive Drell-Yan processes, the details of the hadronic
final state generated by a parton shower do not matter, and only the net effect of the
transverse momentum distribution is essential. However, for processes which involve
jets, the details of the parton shower become also important. The parton shower, as
described in Sec. 7.3.2, follows very closely the transverse momentum distribution of the
TMD and thus does not change any kinematic distribution after the transverse momenta
of the initial partons are included.

All hard processes available in MadGraph5_amc@nlo can be used in Cascade3. The
treatment of multi-jet merging via the recently developed TMD merging method is
described in Chapter 10.

Cascade3 also has the ability to treat effects subleading to the leading powers in 𝛼s
by using off-shell matrix elements. In this mode, the incoming partons already have
non-zero transverse momentum at the level of the hard scattering cross section and the
transverse boost is not applied. This is done by setting lheHasOnShellPartons=0 in the
steering card of the program (given in Appendix C).

7.3 Initial state TMD parton shower

The initial state parton shower in Cascade3 that simulates initial state radiation (ISR)
follows consistently the parton evolution of the TMDs. By this we mean that the splitting
functions 𝑃𝑎𝑏 , the order and the scale of 𝛼s, as well as kinematic restrictions are identical
to both the parton shower and the evolution of the parton densities.

7.3.1 The PB TMD backward Sudakov form factor

The PB method formulates an angular ordered evolution of momentum weighted TMD
PDFs (cf. Eq. (3.36) in Chapter 3) that is iteratively solvable by

𝒜̃𝑎(𝑥, 𝑘2
⊥ , 𝜇

2) = Δ𝑎(𝜇2) 𝒜̃𝑎(𝑥, 𝑘2
⊥ , 𝜇

2
0) +

∑
𝑏

∫
𝑑𝜇′2

𝜇′2
𝑑𝜙

2𝜋
Δ𝑎(𝜇2)
Δ𝑎(𝜇′2) Θ(𝜇2 − 𝜇′2) Θ(𝜇′2 − 𝜇2

0)

×
∫ 𝑧𝑀

𝑥

𝑑𝑧 𝑃
(𝑅)
𝑎𝑏

(
𝛼s((1 − 𝑧)2𝜇′2), 𝑧

)
𝒜̃𝑏

( 𝑥
𝑧
, 𝑘′2⊥ , 𝜇

′2
)
, (7.4)

where k⊥ is the transverse momentum vector of the propagating parton after branching
(particle 𝑎 on the right of Fig. 7.2) and 𝑘⊥ = |k⊥ |. Furthermore

𝑘′⊥ = |k⊥ + (1 − 𝑧)µ′
⊥ | (7.5)
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is the transverse momentum of the parton before branching (particle 𝑏 on the right of
Fig. 7.2) with µ′

⊥ = qt,c/(1 − 𝑧) the rescaled transverse momentum vector of the emitted
parton. The integration over the two-dimensional evolution variable µ′

⊥ in Eq. (7.4) is
split in an integral over the absolute value 𝜇′ = |µ′

⊥ | and an integral over the azimuthal
angle 𝜙 between qt,c and k⊥.

The argument in 𝛼s is dependent on the evolution variable 𝜇′. For coherent branch-
ing [145] this should be the emitted transverse momentum 𝑞𝑡 ,𝑐 .

The Sudakov form factor is given by (see Eq. 3.24):

Δ𝑎(𝜇2) = exp

(
−

∑
𝑏

∫ 𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2

∫ 𝑧𝑀

0
𝑑𝑧 𝑧 𝑃

(𝑅)
𝑏𝑎

(𝛼s , 𝑧)
)
. (7.6)

Dividing Eq. (7.4) by Δ𝑎(𝜇2) and differentiating with respect to 𝜇2 yields the differen-
tial expression of the evolution equation which describes the probability of resolving a
parton with transverse momentum k⊥

′ and momentum fraction 𝑥/𝑧 into a parton with
momentum fraction 𝑥 and emitting another parton during a small decrease in 𝜇:

𝜇2 𝑑

𝑑𝜇2

( 𝒜̃𝑎(𝑥, 𝑘2
⊥ , 𝜇

2)
Δ𝑎(𝜇2)

)
=

∑
𝑏

∫ 𝑧𝑀

𝑥

𝑑𝑧
𝑑𝜙

2𝜋 𝑃
(𝑅)
𝑎𝑏

(𝛼s , 𝑧)
𝒜̃𝑏

(
𝑥
𝑧 , 𝑘

′2
⊥ , 𝜇

2)
Δ𝑎(𝜇2) . (7.7)

The normalized probability is then given by

Δ𝑎(𝜇2)
𝒜̃𝑎(𝑥, 𝑘2

⊥ , 𝜇
2)
𝑑

( 𝒜̃𝑎(𝑥, 𝑘2
⊥ , 𝜇

2)
Δ𝑎(𝜇2)

)
=

∑
𝑏

𝑑𝜇2

𝜇2

∫ 𝑧𝑀

𝑥

𝑑𝑧
𝑑𝜙

2𝜋 𝑃
(𝑅)
𝑎𝑏

(𝛼s , 𝑧)
𝒜̃𝑏

(
𝑥
𝑧 , 𝑘

′2
⊥ , 𝜇

2)
𝒜̃𝑎

(
𝑥, 𝑘2

⊥ , 𝜇
2) . (7.8)

This equation can be integrated between 𝜇2
𝑖−1 and 𝜇2 to give the no-branching probability

(Sudakov form factor) for the backward evolution Δ𝑏𝑤 :

Δ𝑏𝑤(𝑥, 𝑘2
⊥ , 𝜇

2 , 𝜇2
𝑖−1) ≡

Δ𝑎(𝜇2)
Δ𝑎(𝜇2

𝑖−1)
𝒜̃𝑎(𝑥, 𝑘2

⊥ , 𝜇
2
𝑖−1)

𝒜̃𝑎(𝑥, 𝑘2
⊥ , 𝜇

2)
(7.9)

= exp

{
−

∑
𝑏

∫ 𝜇2

𝜇2
𝑖−1

𝑑𝜇′2

𝜇′2
𝑑𝜙

2𝜋

∫ 𝑧𝑀

𝑥

𝑑𝑧 𝑃
(𝑅)
𝑎𝑏

(𝛼s , 𝑧)
𝒜̃𝑏

(
𝑥′, 𝑘′2⊥ , 𝜇

′2)
𝒜̃𝑎(𝑥, 𝑘2

⊥ , 𝜇
′2)

}
,

with 𝑥′ = 𝑥/𝑧. This Sudakov form factor is very similar to the Sudakov form factor in
ordinary parton shower approaches, with the difference that for the PB TMD shower the
ratio of PB TMD densities [𝒜̃𝑏

(
𝑥′, 𝑘′2⊥ , 𝜇

′2)]/[𝒜̃𝑎(𝑥, 𝑘2
⊥ , 𝜇

′2)] is applied, which includes a
dependence on 𝑘⊥.

In Eq. (7.9) a relation between the Sudakov form factor Δ𝑎 used in the evolution equation
and the Sudakov form factor Δ𝑏𝑤 used for the backward evolution of the parton shower
is made explicit. A similar relation was also studied in Refs. [220, 221]. In Ref. [220] the
𝑧𝑀 limit was identified as a source of systematic uncertainty when using conventional
showers with standard collinear PDFs; in the PB approach, especially when using PB-
TMD-Set2, the 𝑧𝑀 limits of forward and backward TMD evolution coincide. This allows
for a consistent formulation of the parton shower with PB TMDs that follows the dynamics
of the initial construction of the TMD.

The advantage of utilizing the PB TMD shower is that setting the parameters of the parton
shower through TMD distributions allows for associating the parton shower uncertainties
with the TMD uncertainties arising from systematic global fits to experimental data.
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7.3.2 The initial state TMD shower algorithm

A backward evolution method, as now common in Monte Carlo event generators, is
applied for the initial state parton shower. It evolves from the hard scale of the matrix-
element process in a backwards manner down to the soft scale of the incoming hadron.
However, unlike the conventional parton shower, which generates transverse momenta
of the initial state partons during the backward evolution, the transverse momenta of the
initial partons of the hard scattering process are fixed by the TMD. The parton shower
does not alter the kinematics, and the transverse momenta during the backward cascade
adhere to the behavior of the TMD.

The starting value of the evolution scale 𝜇 is calculated from the hard scattering process
(lhescale). In case of on-shell, NLO matrix elements, the transverse momentum of the
hardest parton in the parton shower evolution is limited by the shower-scale.

qt, µ

qt i−1, µi−1

kt i−2, zi−2

kt i−1, zi−1

kt, z

qt i−2, µi−2

a

cz = x/x′

x′p+, k′
t

xp+, kt

qt,c

b

Figure 7.2: Left: Schematic view of a parton branching process. Right: Branching process 𝑏 → 𝑎+𝑐.

Starting at the hard scale 𝜇 = 𝜇𝑖 , the parton shower algorithm generates a new scale 𝜇𝑖−1
at which a resolvable branching occurs (see Fig. 7.2 left). This scale 𝜇𝑖−1 is selected from
the Sudakov form factor Δ𝑏𝑤 as given in Eq. (7.9) (see also [52]). In the parton shower
language, the selection of the next branching comes from solving 𝑅 = Δ𝑏𝑤(𝑥, 𝑘⊥ , 𝜇𝑖 , 𝜇𝑖−1)
for 𝜇𝑖−1 using uniformly distributed random numbers 𝑅 for given 𝑥 and 𝜇𝑖 . Solving
the integrals from Eq. (7.9) numerically for every branching is not efficient, instead the
“veto-algorithm” [219, 222] is applied. The splitting variable 𝑧𝑖−1 for the branching is
then obtained from the splitting functions following the standard methods (see Eq. (2.37)
in [38]) by: ∫ 𝑧𝑖−1

𝑧𝑚𝑖𝑛

𝑑𝑧′𝑃(𝑅)
𝑏𝑎

(𝛼s(𝜇𝑖−1), 𝑧′). (7.10)

In the parton shower, we treat resolvable branchings, defined via a cut in 𝑧 < 𝑧𝑀 , by real
splitting functions 𝑃(𝑅), and virtual or non-resolvable branchings, with 𝑧 > 𝑧𝑀 , by the
Sudakov form factor Δ𝑏𝑤 .

The calculation of the transverse momentum 𝑘⊥ is sketched in Fig. 7.2 (right). The
transverse momentum of the emitted parton 𝑞𝑡 ,𝑐 is calculated by applying the angular
ordering condition (see Eq. (3.42)):

𝑞2
𝑡 ,𝑐 = (1 − 𝑧)2𝜇′2 . (7.11)
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Ordering in 𝜇′ is then identical to ordering in the angle Θ of the emitted parton with
respect to the beam directions since also 𝑞𝑡 ,𝑐 = (1 − 𝑧)𝐸𝑏 sinΘ

Once the transverse momentum of the emitted parton qt,c is known, the transverse
momentum of the propagating parton can be calculated from

k⊥
′ = k⊥ + qt,c (7.12)

with a uniformly distributed azimuthal angle 𝜙 assumed for the vector components of
k⊥ and qt,c. The generation of the parton momenta is performed in the center-of-mass
frame of the collision (in contrast to conventional parton showers, which are generated
in different partonic frames).

The whole procedure is iterated until one reaches a scale 𝜇𝑖−1 < 𝑄0, with 𝑄0 being a
cut-off parameter, which can be chosen to be the starting evolution scale of the TMD. It
is of advantage to continue the parton shower evolution to lower scales 𝑄0 ∼ Λ𝑄𝐶𝐷 .

The final transverse momentum of the propagating parton k⊥ is the sum of all transverse
momenta qt,c (see the right figure in Fig. 7.2):

k⊥ = kt,0 −
∑
𝑐

qt,c . (7.13)

with kt,0 being the intrinsic transverse momentum.

This initial state TMD shower differs significantly from ordinary parton showers be-
cause PB TMD distributions are determined from fits to experimental data, which places
constraints on fixed-scale inputs to evolution, while in ordinary parton showers instead
non-perturbative physics parameters and showering parameters are tuned. No MC tun-
ing is performed in the PB TMD case.

7.4 Main elements of the Monte Carlo program

To conclude this chapter, we provide a brief summary of the building blocks of the
Cascade Monte Carlo program and its functionalities. A detailed technical description
of the program, including its installation and operation, is given in Appendix C.

The main elements of the program are the following.

Hard process See section 7.2.

Initial state parton showers See section 7.3.

TMD parton densities All available TMD parton density sets can be accessed through
the TMD library TMDlib [40, 41] (see also Chapter 4). These parton densities can be se-
lected in Cascade via PartonDensitywith a value > 100000. For example the TMDs from
the Parton Branching method [37] are selected via PartonDensity=102100 (102200) for
PB-TMD-NLO-HERAI+II-2018-set1 (set2).
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Final state parton showers The final state parton shower uses the parton shower
routine PYSHOW of Pythia. Leptons in the final state, coming for example from Drell-Yan
decays, can radiate photons, which are also treated in the final state parton shower. Here
the method from PYADSH of Pythia is applied, with the scale for the QED shower being
fixed at the virtuality of the decaying particle (for example the mass of the Z-boson). The
default scale for the QCD final state shower is 𝜇2 = 2 · (𝑚2

1 ⊥+𝑚
2
2 ⊥) (ScaleTimeShower=1),

with 𝑚1(2) ⊥ being the transverse mass of the hard parton 1(2). Other choices are pos-
sible: 𝜇2 = 𝑠 (ScaleTimeShower=2) and 𝜇2 = 2 · (𝑚2

1 + 𝑚2
2) (ScaleTimeShower=3).

In addition a scale factor can be applied: ScaleFactorFinalShower×𝜇2 (default:
ScaleFactorFinalShower=1).

Hadronization The hadronization (fragmentation of the partons in colorless systems)
is done exclusively by Pythia. Hadronization (fragmentation) is switched off by
Hadronization = 0 (or NFRA = 0 for the older steering cards). All parameters of the
hadronization model can be changed via the steering cards.

Uncertainties Uncertainties of QCD calculations mainly arise from missing higher or-
der corrections, which are estimated by varying the factorization and renormalization
scales up and down by typically a factor of 2. The scale variations are performed when
calculating the matrix elements and are stored as additional weights in the LHE file,
which are then passed directly via Cascade3 to the HEPMC [81] output file for further
processing. The uncertainties coming from the PDFs can also be calculated as additional
weight factors during the matrix element calculation. However, when using TMDs, ad-
ditional uncertainties arise from the transverse momentum distribution of the TMD. The
PB-TMDs come with uncertainties from the experimental uncertainties as well as from
model uncertainties, as discussed in Ref. [37]. These uncertainties can be treated and
applied as additional weight factors with the parameter Uncertainty_TMD=1.

Multi-jet merging Showered multi-jet LO matrix element calculations can be merged
using the TMD merging prescription [58, 59], which we will discuss in Chapter 10. The
merging performance is controlled by the three parameters Rclus, Etclus, Etaclmax.
Final-state partons with pseudorapidity 𝜂 <Etaclmaxpresent in the event record after the
shower step but before hadronization are passed to the merging machinery if Imerge = 1.
Partons are clustered using the kt-jet algorithm with a cone radius Rclus and matched
to the PB evolved matrix element partons if the distance between the parton and the jet
is 𝑅 < 1.5×Rclus. The hardness of the reconstructed jets is controlled by its minimum
transverse energy Etclus (merging scale). The number of light flavor partons is defined
by the NqmaxMerge parameter. Heavy flavor partons and their corresponding radiation
are not passed to the merging algorithm. All jet multiplicities are treated in exclusive
mode except for the highest multiplicity MaxJetsMerge which is treated in inclusive
mode.
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Chapter

8888888888888888888888888888888888888888888888888888888888888888888888888
Application of NLO + PB TMD

matching to di-jet azimuthal correlations

In Chapter 3 we have discussed the PB TMD formalism, and in Chapter 7 we have
described the implementation of PB in the TMD Monte Carlo event generator Cascade3.
In this chapter1 and the next one we combine the TMD PB evolution with next-to-leading
order (NLO) perturbative matrix elements through an appropriate “matching" procedure
and apply this to specific processes of interest at the LHC, namely di-jet production (in
this chapter) and 𝑍-boson plus jet production (in the next chapter). We focus in particular
on final-state azimuthal correlations in the di-jet and boson-jet cases, and illustrate that
they provide sensitive probes of TMD dynamics.

Experiments at the LHC carry out accurate measurements of azimuthal correlationsΔ𝜙12
in multi-jet [223–227] and vector-boson plus jets [228, 229] final states. When two jets, or
a boson and a jet, recoil nearly back-to-back, reliable QCD predictions call for soft-gluon
resummation (see recent studies of Refs. [230–233] in the di-jet case and Refs. [234–240]
in the boson-jet case). This region is probed by TMDs [34, 40, 41] in the initial state.

With the increase in luminosity at the LHC, it becomes possible to explore this region
experimentally over a wide kinematic range in the hard scale of the process, set by the
leading jet’s transverse momentum 𝑝𝑇,𝑗1, from 𝑝𝑇,𝑗1 ≈ 𝒪(100 GeV) to 𝑝𝑇,𝑗1 ≈ 𝒪(1000 GeV).
In particular, at the highest scales the nearly back-to-back region accessible with the exper-
imental angular resolution of about 1 degree is characterized by transverse momentum
imbalances of a few ten GeV, which can be investigated by analyzing jets with measurable
transverse momenta, reconstructable with experimental techniques. Observables in this
kinematic region can be calculated with perturbation theory and require resummation
of multiple soft gluons.

The combined study of the leading jet 𝑝𝑇 and 𝑝𝑇-imbalance dependence of TMD dynam-
ics is especially important, because the production of colored states near the back-to-back
region may be influenced by factorization-breaking effects [241–244], due to interferences of
gluons emitted in the initial and final state. An indirect strategy to explore the potential
impact of these effects is to compare calculations which assume factorization with high-
precision measurements. The observations regarding factorization-breaking effects in

1This work has been published in M. I. Abdulhamid et al., “Azimuthal correlations of high transverse momentum

jets at next-to-leading order in the parton branching method”, European Physical Journal C 82 (2022) 1, 36 [56].
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multi-jet and boson-jet production are discussed in Chapter 9. In the boson-jet scenario,
the final state is less colored than in the di-jet case, making the comparison between these
studies interesting.

In this chapter we explore in detail high-𝑝𝑇 di-jet production and calculate azimuthal
correlations, using NLO-matched PB TMD predictions. In Chapter 9 we perform an
analogous study for boson-jet azimuthal correlations, based on Ref. [57].

8.1 Introduction

The description of the cross section of high-𝑝𝑇 jets in 𝑝𝑝 collisions is one of the most
important tests of predictions obtained in QCD. Much progress has been achieved by
experimental collaborations at the LHC in the description of inclusive jets [245–256] by
applying next-to-leading (NLO) [99, 257–259] and next-to-next-to-leading-order (NNLO)
calculations [260–263]. In multi-jet production, the azimuthal angle Δ𝜙12 between the
two highest transverse momentum jets is an inclusive measurement of additional jet
radiation. At leading order (LO) in the strong coupling 𝛼s, where only two jets are
present, the jets are produced back-to-back, with Δ𝜙12 = 𝜋, while a deviation from this
back-to-back configuration indicates the presence of additional jets, and only higher-
order calculations can describe the observations. The azimuthal correlation between two
jets has been measured in 𝑝𝑝̄ collisions at the Tevatron and at the LHC at center-of-mass
energies going from

√
𝑠 = 1.96 TeV up to

√
𝑠 = 13 TeV by multiple collaborations in

e.g. [223–227, 264, 265]. When measurements of azimuthal correlations of di-jets are
compared with LO or NLO computations supplemented by parton showers, deviations
of 50% are observed in the medium Δ𝜙12 region even at NLO (see e.g. [225, 226]), which
requires a more detailed understanding. In the Δ𝜙12 → 𝜋 region, deviations of up to
10% are observed [227], significantly larger than the experimental uncertainties.

Since initial state parton radiation moves the jets away from the Δ𝜙12 = 𝜋 region, it
is appropriate to investigate the implications of TMDs in the description of the Δ𝜙12
measurements. Kinematic effects of the initial-state transverse momenta in the interpre-
tation of jet measurements were pointed out in [29, 30]. A calculation based on TMD
distributions is found in Ref. [230, 231] and further investigated in [232, 233].

In this chapter, based on Refs. [56, 266, 267], we calculate azimuthal correlations of
high-𝑝𝑇 di-jets by applying the PB formulation of TMD evolution together with NLO
calculations of the hard scattering process in the mc@nlo [55] framework. We compare
the predictions with CMS data from [226, 227]. The chapter is organized as follows. We
first describe in Sec. 8.2 how TMDs and TMD parton showers are matched to fixed NLO
perturbative calculations. We show predictions using PB-TMDs together with the TMD
parton shower of Cascade3 in Sec. 8.3. We compare these predictions with the one using
the Pythia8 parton shower [116, 117]. We give conclusions in Sec. 8.4.
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8.2 Matching PB TMDs to NLO events

Matching PB TMDs to NLO matrix elements was performed for the first time in Ref. [36]
for inclusive 𝑍-boson production by exploiting the mc@nlo method [98]. NLO match-
ing is crucial to avoid double counting of parton emissions (transverse momentum)
between the matrix element generator, MadGraph5_amc@nlo [55], and the TMD PDF.
The mc@nlo method is a subtraction method, where soft and collinear contributions to the
NLO cross section are subtracted from the matrix element in the form of subtraction terms

(also referred to as counterterms). In order to produce a physical cross section, this needs
to be supplemented by a parton shower or with PB TMD evolution. The subtraction
terms therefore depend on the parton shower (or TMD) that is used. In the PB-TMD case
provided by Cascade3, the TMD fills the infrared phase space region. For the PB-TMDs
and the PB-TMD parton shower, Herwig6 [217, 218] subtraction terms are applied to the
hard scattering events which is motivated by the angular ordering in the PB evolution2.

The predictions for multi-jet production at NLO are obtained using the Mad-
Graph5_amc@nlo [55] framework. We used MadGraph5_amc@nlo in two different
modes: i) the fixed NLO mode, in which only partonic events are produced, without
parton shower and hadronization, and ii) the mc@nlo mode, in which infrared
subtraction terms are included to avoid double counting of parton emissions between
matrix-element and parton-shower calculations.

In the fixed NLO mode, MadGraph5_amc@nlo produces event files with the partonic
configuration in LHE format [125] which are then processed through Cascade3. In this
mode, the hard scattering event record is kept without any modification. Processing
through Cascade3 has the significant advantage that a fixed NLO calculation can be
obtained making use of all the analyses coded in Rivet [82, 83].

In the mc@nlo mode, subtraction terms are included which depend on the parton shower
used. MadGraph5_amc@nlo [55] is used for NLO calculation of di-jet production with
the input of integrated NLO PB parton distributions with 𝛼s(𝑚𝑍) = 0.118. The LHE files
including subtraction terms are combined with PB-TMD sets available in TMDlib2, PB-
TMD-NLO-HERAI+II-2018-set1 and PB-TMD-NLO-HERAI+II-2018-set2 (hereafter de-
noted by PB-TMD-Set1 and PB-TMD-Set2, respectively), through Cascade3.

The matching scale 𝜇𝑀 , which limits the contribution from PB-TMDs and TMD showers
(𝜇𝑀 = SCALUP included in the LHE file), guarantees that the overlap with real emissions
from the matrix element is minimized according to the subtraction of counterterms in the
mc@nlo method. The factorization and renormalization scales at matrix element level
are set to

𝜇𝑅,𝐹 =
1
2

∑
𝑖

√
𝑚2
𝑖
+ 𝑞2

⊥,𝑖 (8.1)

both in mc@nlo as well as in the PB-TMDs in Cascade3. The index 𝑖 runs over all particles
in the matrix element final state.

In Cascade3, as described in detail in Chapter 7, the transverse momentum of the initial
state partons is calculated according to the 𝑘⊥ distribution provided by the PB-TMD at

2A comparison of applying PB-TMDs with application of the angular ordered Herwig6 parton shower on
transverse momentum and rapidity spectra is presented in Chapter 9 (Sec. 9.3).
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given longitudinal-momentum fraction 𝑥 and evolution scale 𝜇. This transverse momen-
tum is used for the initial state partons provided by MadGraph5_amc@nlo, and their
longitudinal momentum is adjusted such that the mass and the rapidity of the di-jet
system is conserved, similar to what has been done in the DY case [268]. The initial
state TMD parton shower does not change the kinematics of the hard process, after the
𝑘⊥ from the TMD is included. The final state parton shower is obtained with the cor-
responding method implemented in Pythia6 [269], by vetoing emissions which do not
satisfy angular ordering (MSTJ(42)=2).
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Figure 8.1: Transverse momentum spectrum of the di-jet system 𝑝𝑇,12 (left) and Δ𝜙12 distribution
(right). The predictions are shown for fixed NLO (mc@nlo(fNLO), the (unphysical) LHE level
(mc@nlo(LHE)) and after inclusion of PB-TMDs (mc@nlo+CAS3).

In Fig. 8.1 we show results for the transverse momentum distribution of the di-jet system
𝑝𝑇,12 and the azimuthal correlation Δ𝜙12 between the two leading jets as obtained from
the calculations at fixed NLO (blue curve), at the level including subtraction terms (LHE
level, green curve) and after inclusion of PB-TMDs (red curve). We note the rising
cross section of the fixed NLO calculation towards small 𝑝𝑇,12 (or at large Δ𝜙12). This
is the region in 𝑝𝑇,12 and Δ𝜙12 where the subtraction terms are relevant and a physical
prediction is obtained when PB-TMDs and parton showers are included. The jets are
defined with the anti-𝑘𝑇 jet algorithm [93], as implemented in the FastJet package [270],
with a jet cone resolution parameter of 𝑅 = 0.4 and a leading jet transverse momentum
𝑝𝑇,𝑗 > 200 GeV. The use of jets (instead of partons) is the reason for the tail towards small
Δ𝜙12 in the MCatNLO(LHE) and MCatNLO(fNLO) calculation.

8.3 Azimuthal correlations in multi-jet production

We apply the framework described in the previous section, based on the matching of PB-
TMDs with NLO matrix elements, to describe the measurement of azimuthal correlations
Δ𝜙12 obtained by CMS at

√
𝑠 = 13 TeV [226] and in the back-to-back region [227]. Only

leading jets with a transverse momentum of 𝑝𝑇,𝑗1 > 200 GeV are considered. We show
distributions of Δ𝜙12 for 𝑝𝑇,𝑗1 > 200 GeV as well as for the very high 𝑝𝑇 region of 𝑝𝑇,𝑗1 >
1000 GeV , where the jets appear very collimated. We apply the collinear and TMD PDF
of Set2, unless explicitly specified different, with running coupling 𝛼s(𝑚𝑍) = 0.118.

We may estimate the theoretical systematics by considering two kinds of uncertainties:
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those that come from variation of the arbitrary scales that appear in the various factors
entering the jet cross section, and those that come from the determination of the TMD
parton distributions and showers. The former include the renormalization scale in the
strong coupling, the factorization scale used in the parton distribution and the matching
scale to combine the matrix element and PB TMD. The latter include both experimental
and model uncertainties in the TMD extraction.

As regards the scale variations, we present results corresponding to the 7-point scheme
variation around the central values for the renormalization and factorization scale. This
7-point scheme involves varying these scales (𝜇𝑅,𝐹) by a factor of 2 up and down, avoiding
the extreme cases of variation {0.5,2} and {2,0.5}. The dependence on the matching scale
𝜇𝑀 has been studied by co-authors who found that the resulting uncertainties are within
the band of variation of factorization and renormalization scales.

The experimental and model uncertainties on the determination of the TMD distributions
as described in Chapter 4 and Ref. [37] are included as well.

In Fig. 8.2 we show a comparison of the measurement by CMS [226] for different values of
𝑝𝑇,𝑗1 (denoted in the figures by 𝑝leading

𝑇
) with the calculation of Cascade3 (mc@nlo+CAS3)

including PB-TMDs, parton shower, and hadronization. The uncertainties from scale
variation and TMD determination are shown separately. The central values of the two
curves are identical.
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Figure 8.2: Azimuthal correlation Δ𝜙12 for 200 < 𝑝𝑇,𝑗1 < 300 GeV (left) and 1000 < 𝑝𝑇,𝑗1 < 1200
GeV (right) as measured by CMS [226] compared with predictions from mc@nlo+CAS3. Scale-
and TMD-uncertainties are shown in both plots.

In Fig. 8.3 the measuredΔ𝜙12 distribution [227] in the back-to-back region (170𝑜 < Δ𝜙12 <
180𝑜) is compared with the predictions by Cascade3. Again, TMD and scale uncertainties
are shown separately and central values are identical.

The measurements are described very well in the back-to-back region. The scale uncer-
tainty is significantly larger than the TMD uncertainty, especially in the low 𝑝𝑇,𝑗1 region.
A difference between the measurement and the prediction is observed at small Δ𝜙12 due
to missing higher orders in the matrix element calculation. Even at high 𝑝𝑇,𝑗1 > 1000 GeV
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Figure 8.3: Azimuthal correlation Δ𝜙12 in the back-to-back region for 𝑝𝑇,𝑗1 > 200 GeV (left) and
𝑝𝑇,𝑗1 > 1000 GeV (right) as measured by CMS [227] compared with predictions from mc@nlo+CAS3.
Scale- and TMD-uncertainties are shown in both plots.

the prediction is in agreement with the measurements (within uncertainties), while only
in the highest Δ𝜙12 bin (Δ𝜙12 > 179𝑜) a deviation of about 10% is observed.

8.3.1 Effect on Δ𝜙12 of the scale in the strong coupling

In Figs. 8.4 and 8.5, we compare the predictions using PB-TMD-Set1 with those from
PB-TMD-Set2, which differ in their treatment of scale in 𝛼s. Both are compared to
measurements as well and the ratio of predictions to this data is shown in the bottom
panel. The differences between PB-TMD-Set1 and PB-TMD-Set2 become significant in
the back-to-back region, which is sensitive to the low 𝑘⊥-region of the TMD. As already
observed in the case of 𝑍-boson production in Ref. [36], PB-TMD-Set2 with the transverse
momentum as a scale for 𝛼s(which is required from the angular ordering condition)
allows a better description of the measurement. It has been explicitly checked that
the choice of the collinear parton density function (in contrast to the choice of the TMD
densities) does not matter for theΔ𝜙 distributions, since they are normalized. The region
of low Δ𝜙12 in Figs. 8.2 and 8.4 is not well described with an NLO di-jet matrix element
calculation supplemented with TMD densities and TMD parton shower because in the
low Δ𝜙12 region higher-order hard emissions play a significant role. These higher-order
hard emissions could for example be merged with PB-TMDs and TMD showers by means
of the TMD merging method described in chapter 10 and Ref. [59] in order to describe
well the low Δ𝜙12 region.

8.3.2 Comparison with Pythia8 and study of underlying event

In Fig. 8.6 predictions obtained with mc@nlo+Pythia8 are compared with mc@nlo+CAS3.
In the calculation of mc@nlo+Pythia8, the Pythia8 subtraction terms are used and
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Figure 8.4: Azimuthal correlation Δ𝜙12 for 𝑝𝑇,𝑗1 > 200 GeV (left) and 𝑝𝑇,𝑗1 > 1000 GeV (right) as
measured by CMS [226] compared with predictions from mc@nlo+CAS3. Both scale uncertainties
as well as TMD uncertainties are shown.
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Figure 8.5: Azimuthal correlation Δ𝜙 in the back-to-back region for 𝑝𝑇,𝑗1 > 200 GeV (left) and 𝑝𝑇,𝑗1
> 1000 GeV (right) as measured by CMS [227] compared with predictions from mc@nlo+CAS3.
Both scale uncertainties as well as TMD uncertainties are shown.

the NNPDF3.0 [271] parton density and tune CUETP8M1 [272] are applied. The
uncertainties of the Pythia8 prediction are derived by combining the fixed-order scale
variation from mc@nlo with renormalization scale variations in the parton shower.
We use the method of [273] together with the guidelines of [274] to obtain consistent
scale variations where possible. In particular, this means that the renormalization scale
variation at fixed order and in the parton shower are fully correlated3. The factorization
scale variation is only applied at fixed order, as argued in [274]. We observe a significant

3This also ensures that for fixed-order-dominated observables, the cancellation between the expansion of
the shower and the subtraction in mc@nlo also occurs for non-central renormalization scales without significant
deformation of the – there fully appropriate – fixed-order uncertainties.
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dependence on the matching scale 𝜇𝑀 , the details of matching in case of di-jets needs
further investigation.

Fig. 8.6 also shows the contribution from multi-parton interactions in the scenario of a
Pythia8 calculation, which is very small for jets with 𝑝𝑇,𝑗1 > 200 GeV. The prediction
obtained with mc@nlo+Pythia8 is in all Δ𝜙12 regions different from the measurement
and mc@nlo+CAS3, illustrating the role of the treatment of parton showers.
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Figure 8.6: Azimuthal correlation Δ𝜙12 over a wide range and (left) in the back-to-back region
(right) for 𝑝𝑇,𝑗1 > 200 GeV compared with predictions from mc@nlo+Pythia8 and mc@nlo+CAS3.
The uncertainties in the mc@nlo+Pythia8 calculation are obtained from scale and associated shower
variations, as described in the main text.
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8.4 Conclusion

We have investigated the azimuthal correlation of high transverse momentum jets in 𝑝𝑝
collisions at

√
𝑠 = 13 TeV by applying PB-TMD distributions to NLO calculations via

mc@nlo . We use the same PB-TMDs and mc@nlo calculations which have been used for
𝑍 production at LHC energies in Ref. [36].

The predictions of mc@nlo+CAS3 obtained with PB-TMD-Set2 distributions [37] and
TMD parton shower are in reasonable agreement with the measurements in the larger
Δ𝜙12 regions. Only in the very high 𝑝𝑇,𝑗1 region, a deviation from the measurement is
observed.

The uncertainties of the predictions are dominated by the scale uncertainties of the matrix
element calculations, while the PB-TMD and TMD shower uncertainties are very small,
as they are directly coming from the uncertainties of the PB-TMDs. No uncertainties, in
addition to those from the PB-TMD, come from the PB-TMD parton shower.

Significant differences are observed between predictions with PB-TMD-Set2, using the
transverse momentum as scale in 𝛼s, and PB-TMD-Set1, which uses the evolution scale
as an argument in 𝛼s. This observation confirms the importance of consistently handling
the soft-gluon coupling in angular ordered parton evolution.

The uncertainties of the predictions are dominated by the scale uncertainties of the matrix
element, while uncertainties coming from the PB-TMDs and the corresponding PB-TMD
shower are very small. No other uncertainties, in addition to those of the PB-TMD, come
from the PB-TMD shower, since it is directly correlated with the PB-TMD density.

We have also investigated predictions using mc@nlo with Pythia8 to illustrate the im-
portance of details of the parton shower.
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Chapter

9999999999999999999999999999999999999999999999999999999999999999999999999
Application of NLO + PB TMD

matching to boson-jet azimuthal

correlations

In this chapter1 we continue the exploration of final-state azimuthal correlations which
we started in the previous chapter, by applying the same kind of analysis of the previous
chapter to the case of 𝑍-boson + jet production. We compare in detail high-𝑝𝑇 di-jet
and 𝑍+jet production by applying the PB TMD method [38, 39] matched to NLO matrix
elements.

In Chapter 8 the NLO PB TMD predictions have been found to describe well the mea-
surements of di-jet azimuthal correlations [226, 227]. In the present chapter we apply
the same method to the calculation of 𝑍+jet production, and present the corresponding
predictions. In 𝑍 boson production the final state is less colored than in multi-jet produc-
tion, causing the possible factorization breaking effects to be less strong. It is therefore
interesting to compare the results to those from di-jet events. We use the same kinematic
region for the high-𝑝𝑇 di-jet and 𝑍+jet production to allow a direct comparison of the
angular observables in the two cases.

This chapter is structured as follows. We start by an introduction and motivation
of the study of boson-jet azimuthal correlations with TMDs in Sec. 9.1. We then re-
cap the basic elements of the method to match PB-TMDs to NLO matrix elements via
mc@nlo+Cascade3 in Sec. 9.2. A study performed by collaborators on the matching pro-
cedure with mc@nlo is presented in Sec. 9.3 where the use of Herwig6 subtraction terms
is defended by comparing results of initial state TMD shower with Herwig6 showering.
In Sec. 9.4 we present results obtained with PB for the 𝑍+jet azimuthal correlations and
compare them with the di-jet case. We summarize in Sec. 9.5.

1This work has been published in H. Yang et al., “Back-to-back azimuthal correlations in Z+jet events at high

transverse momentum in the TMD parton branching method at next-to-leading order”, European Physical Journal C
82 (2022) 8, 755 [57].
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9.1 Introduction

The description of jet production in association with a 𝑍 boson in hadron-hadron colli-
sions is another important test of predictions obtained in QCD, and provides a relevant
background to Higgs boson studies and to new physics searches. The associated 𝑍 boson
plus jet production has been measured by CDF and D0 in proton-antiproton collisions
at a center-of-mass energy

√
𝑠 = 1.96 TeV [275, 276]. At the LHC, the ATLAS and CMS

collaborations have published measurements in 𝑝𝑝 collisions at a center-of-mass energy√
𝑠 = 7 TeV [277–279], 8 TeV [228] and 13 TeV [229, 280]. Azimuthal correlations

between 𝑍 bosons and jets have been measured at 8 TeV [228] and 13 TeV [229].

The distribution in the azimuthal angleΔ𝜙 between the𝑍 boson and the jet is an especially
sensitive observable, probing several aspects of QCD physics. At leading order in the
strong coupling 𝛼s, one has Δ𝜙 = 𝜋. The smearing of this delta-like distribution is a
measure of higher order QCD radiation. In the region near Δ𝜙 = 𝜋, this is primarily soft
gluon radiation, while in the region of small Δ𝜙 it is primarily hard QCD radiation. The
large-Δ𝜙 region of nearly back-to-back 𝑍 boson and jet is influenced by both perturbative
and non-perturbative QCD contributions. The relative significance of these contributions
depends on the scale of the transverse momentum imbalance between the boson and the
jet. Importantly, the resummation of soft multi-gluon emissions in the nearly back-to-back
region probes the transverse momenta of the initial state partons, which can be described
by transverse momentum dependent (TMD) [34] parton distribution functions (PDFs).
Theoretical predictions for 𝑍 boson + jet production including soft gluon resummation
have recently been given in Refs. [234–240].

All the experimental measurements of boson-jet azimuthal correlations that have been
performed so far are in the kinematical range of transverse momenta of the 𝑍 boson and
the jets of the order 𝑝𝑇 ≈ 𝒪(100) GeV . In this kinematical range, fixed-order perturbative
corrections beyond next-to-leading order (NLO) are sizeable, and at small Δ𝜙 NLO
calculations are usually not sufficient for reliable predictions. For the large-Δ𝜙 region
of nearly back-to-back 𝑍 boson and jet, the boson-jet 𝑝𝑇 imbalance scale is of order a
few GeV, which is significantly influenced by both perturbative resummation and non-
perturbative effects. It is worth noting that all the experimental measurements performed
up to now do not cover the large Δ𝜙, nearly back-to-back, region with sufficiently fine
binning to investigate detailed features of QCD.

With the increase in luminosity at the LHC, it becomes possible to measure 𝑍+jet pro-
duction in the high 𝑝𝑇 range, with 𝑝𝑇 ≈ 𝒪(1000) GeV . We observe again, as in the di-jet
scenario, that in this kinematical range the resummation of soft gluons and TMD dynam-
ics in the nearly back-to-back region can be explored in a new regime, characterized by
boson-jet 𝑝𝑇 imbalance scales on the order of a few ten GeV. The large-Δ𝜙 region, involv-
ing deviations of the order of the experimental angular resolution of about 1 degree from
Δ𝜙 = 𝜋, can be investigated by analyzing jets with measurable transverse momenta.

Based on the above observation, in this chapter we propose experimental investigations
of back-to-back azimuthal correlations in the 𝑝𝑇 ≈ 𝒪(1000) GeV region, with a systematic
scan of the large-Δ𝜙 regime from this high 𝑝𝑇 region down to 𝑝𝑇 ≈ 𝒪(100) GeV – a
regime which is completely unexplored experimentally up to now. We present dedicated
phenomenological studies of this Δ𝜙 region as a function of 𝑝𝑇 , enabling one to explore
boson-jet transverse momentum imbalances from a jet scale of several ten GeV down
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to the few GeV scale. We use the PB approach to TMD evolution, matched to NLO
calculations of 𝑍+jet production with MadGraph5_amc@nlo [55] that has shown to be
successful in the scenario of the di-jet Δ𝜙12 spectrum (presented in Chapter 8), for the
𝑍 boson 𝑝𝑇 spectrum at the LHC (in Ref. [36]) and to the Drell-Yan (DY) 𝑝𝑇 spectrum at
lower fixed-target energies (in Ref. [268]). The investigation of the same method in the
𝑍+jet case is therefore compelling.

Vector boson + jet production is also, as for di-jet production, believed to be sensitive
to factorization - breaking [241–244] effects [242] that become important in the case of
colored final states. We will see that, in the region of leading transverse momenta of the
order 𝑝𝑇 ≈ 𝒪(100 GeV), the boson-jet final state is more strongly correlated azimuthally
than the jet-jet final state. As the transverse momenta increase above the electroweak
symmetry breaking scale, 𝑝𝑇 ≈ 𝒪(1000 GeV), this difference is reduced, and the boson-jet
and jet-jet become more similarly correlated. We connect this behavior to features of the
partonic initial state and final state radiation in the boson-jet and jet-jet cases.

In order to investigate factorization - breaking effects, we propose in Ref. [57] measure-
ments of azimuthal correlations in 𝑍+jet processes scanning the phase space from low
transverse momenta 𝑝𝑇 ≈ 𝒪(100 GeV) to high transverse momenta 𝑝𝑇 ≈ 𝒪(1000 GeV) to
systematically compare them to measurements of di-jet azimuthal correlations. A thor-
ough investigation of azimuthal correlations in the back-to-back region in 𝑍+jet events
has been performed in Ref. [235], addressing the issue of factorization - breaking.

9.2 Calculation of 𝑍+jet azimuthal correlation with PB-

TMDs

In this section, we recap the importance of PB-TMDs in the calculation of DY production
and motivate the use of PB-TMD Set 2 in the calculations for 𝑍+jet azimuthal correlations.
Then we provide technical details on the matching procedure for calculation of Δ𝜙𝑍𝑗by
processing NLO matrix elements with Cascade3 using the mc@nlo framework, matching
PB TMDs to fixed-NLO.

TMDlib2, as described in Chapter 4, includes two TMD sets evolved with PB evolu-
tion: PB-TMD-NLO-HERAI+II-2018-set1 and PB-TMD-NLO-HERAI+II-2018-set2, here-
after denoted by PB-TMD-Set1 and PB-TMD-Set2 respectively. It has been shown in
Refs. [36, 268] that PB-TMD-Set2 provides a better description of experimental measure-
ments for the 𝑍-boson spectrum at low-𝑝𝑇 . Also, it has been shown in Chapter 8 that the
transverse momentum scale in the running coupling 𝛼s is important for a good descrip-
tion of data on di-jet angular correlations. Therefore, we concentrate in this chapter on
PB-TMD-Set2 only.

In Fig. 9.1 we show the transverse momentum distributions for up quarks and gluons at
𝑥 = 0.01 and 𝜇 = 100 and 1000 GeV for PB-TMD-Set2. The 𝑘⊥ distribution of gluons is
broader than that of quarks, due to gluon self-coupling and the different color factors.
In Fig. 9.1 also the uncertainties of the distributions, as obtained from the fit [37], are
shown. The differences in the transverse momentum spectra of quarks and gluons will
show up in differences in azimuthal correlation distributions.
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Figure 9.1: Transverse momentum distributions for up quarks (red curve) and gluons (blue curve)
from PB-TMD-Set2 at 𝜇 = 100 and 1000 GeV and 𝑥 = 0.01. The lower panels show the full
uncertainty of the TMDs, as obtained from the fits [37].

The mc@nlo+Cascade3 framework to combine PB TMD resummation with fixed-order
NLO matrix elements has been developed in [36, 268] and is explained in Chapter 8.
The 𝑍+jet process at NLO is calculated with MadGraph5_amc@nlo using the collinear
PB-NLO-HERAI+II-2018-set2, as obtained in Ref. [37] applying 𝛼s(𝑚𝑍) = 0.118. The
matching of NLO matrix elements with PB TMD parton distributions based on Refs. [36,
51, 268] and the extension to di-jet production are described in Chapter 8. Predictions
are obtained by processing the MadGraph5_amc@nlo event files in LHE format [125]
through Cascade3 [51] for an inclusion of TMD effects in the initial state and for simula-
tion of the corresponding parton shower (labeled mc@nlo+CAS3 in the following).

Fixed order NLO 𝑍+jet production is calculated in a procedure similar to the one applied
for di-jet production (labeled mc@nlo(fNLO)). Fully matched NLO calculations are cal-
culated in the mc@nlo mode, where Herwig6 [217, 218] subtraction terms are included.
The matching scale 𝜇𝑀 limits the contribution from PB-TMDs and TMD showers in these
calculations. The use of Herwig6 subtraction terms together with Cascade3 is justified
in the following section.

Factorization and renormalization scales in PB-TMD-Set2 are set to

𝜇𝑅,𝐹 =
1
2

∑
𝑖

𝑝T,𝑖 , (9.1)

where the index 𝑖 runs over all particles in the matrix element final state. This scale
is also used in the PB-TMD parton distribution 𝒜(𝑥, 𝑘⊥ , 𝜇). Scale uncertainties of the
predictions are obtained from variations of the scales around the central value in the
7-point scheme.

In Fig. 9.2 we show the distributions of the transverse momentum of the 𝑍+jet system,
𝑝𝑇,𝑍𝑗 , and the azimuthal correlation in the 𝑍+jet system, Δ𝜙𝑍𝑗 , for a fixed NLO calcu-
lation, for the full simulation including PB-TMD PDFs and parton showers as well as
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for the mc@nlo calculation at the level where subtraction terms are included without
addition from parton shower (LHE-level). We require a transverse momentum 𝑝𝑇 > 200
GeV for the 𝑍 boson and define jets with the anti-𝑘⊥ jet-algorithm [93], as implemented in
the FastJet package [270], with a distance parameter of 𝑅 = 0.4. The effect of including
PB-TMD PDFs and parton showers can be clearly seen from the difference to the fixed
NLO and LHE-level calculations.

In the low 𝑝𝑇,𝑍𝑗 region one can clearly see the expected steeply rising behavior of the
fixed NLO prediction. In the Δ𝜙𝑍𝑗 distribution the phase space needed for Δ𝜙𝑍𝑗 < 2/3𝜋
is not filled by fixed NLO, since at most two jets in addition to the 𝑍 boson appear in the
fixed NLO calculation. At large Δ𝜙𝑍𝑗 , the fixed NLO prediction rises faster than the full
calculation including resummation via PB-TMDs and parton showers.
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Figure 9.2: Transverse momentum spectrum of the 𝑍+jet-system 𝑝𝑇,𝑍𝑗 (left) andΔ𝜙𝑍𝑗 distribution
(right). Shown are predictions from fixed NLO (fNLO), the (unphysical) distribution at LHE-level
and the full simulation (after inclusion of PB-TMDs and TMD showers, mc@nlo+CAS3).

9.3 Comparison of Cascade3 and Herwig6

Matching PB-TMDs to NLO partonic events from MadGraph5_amc@nlo is done by using
Herwig6 (H6) subtraction terms in the matrix elements. In this section, we summarize
investigations presented in Ref. [57] about the contribution of the parton shower used
in Cascade3. Predictions obtained with mc@nlo+CAS3 are compared with predictions
from mc@nlo+H6, using identical LHE files produced with MadGraph5_amc@nlo for 𝑍
boson production. The NLO accuracy of the calculations is preserved by construction,
since the use of PB-TMD distributions and TMD shower, as well as the ordinary parton
shower, does not change the inclusive cross section. The 𝑍 boson is reconstructed from
two oppositely charged leptons with 𝑝𝑇 > 20 GeV in |𝜂| < 2.4 and di-lepton masses near
the 𝑍 mass peak. We also show jet observables where jets are clustered with the anti-𝑘⊥
algorithm with distance parameter 0.4 with 𝑝𝑇 > 30 GeV and |𝜂| < 5.

In H6, the allowed region of the splitting variable 𝑧 for a branching 𝑞 → 𝑞𝑔 in the final
state shower is 𝑄𝑞/𝑄 < 𝑧 < 1 − 𝑄𝑔/𝑄 (e.g. A.2.2 in Ref. [96]), with 𝑄𝑞 = 𝑚𝑞 + VQCUT
and 𝑄𝑔 = 𝑚𝑔 + VGCUT, and 𝑚𝑞 , 𝑚𝑔 being the quark and gluon effective masses, and
VQCUT,VGCUT the minimum virtuality parameters. Similar cuts are applied for the initial
state shower.
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First we investigate final state parton showers. We compare transverse momentum
distributions of the two leading jets in 𝑍+jet events: the first (highest 𝑝𝑇) jet is part of
the lowest order process, while the second (highest 𝑝𝑇) jet is the real correction and
therefore subject to subtraction terms (keeping in mind that the highest 𝑝𝑇 jet in the
NLO calculation can also come from the 𝛼2

s real emission diagram). In Cascade3, the
Pythia6 final state shower is used (the PB method has not yet been applied for final
state radiation), with the angular ordering veto condition. Since final state radiation is
independent of parton densities, a direct comparison of mc@nlo+CAS3 and mc@nlo+H6,
using the same LHE files, while only simulating final state radiation, is possible.

In Fig. 9.3 we show a comparison of predictions of the transverse momentum distributions
of the two leading jets in 𝑍+jet events where only final state radiation has been applied,
i.e. no initial state radiation and no hadronization are included. The uncertainty coming
from different parameter settings in the H6 final state parton shower is estimated by
changing the light quark masses from the default to 𝑚𝑙 = 0.32 GeV and VQCUT,VGCUT
from the default to 0.1(1.5), labelled as 𝑉𝑐𝑙(𝑉𝑐ℎ), respectively.
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Figure 9.3: Comparison of predictions obtained with mc@nlo+CAS3 and mc@nlo+H6 for 𝑍+jet
obtained with mc@nlo. Shown are predictions using only the final state parton shower. The band
of mc@nlo+CAS3 shows the uncertainties obtained from scale variation.

In Fig. 9.4 a comparison is shown for the pseudorapidity 𝜂 of the first two highest 𝑝𝑇
jets. Within the variation of the parameters, the prediction of mc@nlo+CAS3 agrees well
with the one of mc@nlo+H6, justifying the application of the Pythia6 final state parton
shower algorithm.

Next we include the contribution of PB - TMDs and the PB - TMD parton shower in the
initial state (ISR) and compare the predictions with H6 calculations. In Fig. 9.5 we show
the transverse momentum of the 𝑍 boson, its rapidity distribution and the transverse
momentum of the leading reconstructed jet with 𝑝𝑇 > 30 GeV and |𝜂| < 5. Here the
rapidity 𝑦 of the 𝑍 boson is used, since it is related to the momentum fractions of the
initial partons (instead of the pseudorapidity 𝜂 which is used for jets as it is related
to the scattering angle 𝜃). We show a comparison of mc@nlo+CAS3 and mc@nlo+H6
predictions (including the same parameter variations for H6 as for the final state shower).
In the region of low transverse momentum of the 𝑍 boson the sensitivity to the parameter
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Figure 9.4: Comparison of predictions obtained with mc@nlo+CAS3 and mc@nlo+H6 for 𝑍+jet
obtained with mc@nlo. Shown are predictions using only final state parton shower. The band of
mc@nlo+CAS3 shows the uncertainties obtained from scale variation (as described in the text).

choice in H6 is largely visible.

Finally, we show 𝑍+jet events with both initial and final state radiation. In Fig. 9.6 we
show a comparison of mc@nlo+CAS3 and mc@nlo+H6 predictions (including the same
parameter variations for H6 as for the final state shower) for the transverse momentum
of the first two highest 𝑝𝑇 jets. In Fig. 9.7 the corresponding comparison is shown for the
pseudorapidity distributions. The transverse momentum distributions agree well within
the uncertainties coming from parameter variations, while for the 𝜂-distributions some
differences in the very forward/backward regions are seen. However, one can see that
a variation of VQCUT,VGCUT has a significant effect especially in the forward/backward
region.

In conclusion, we observe agreement between predictions obtained by mc@nlo+CAS3
and mc@nlo+H6 within the band of parton shower parameter variation in H6, confirming
the use of H6 subtraction terms in mc@nlo together with PB-TMDs and PB-TMD initial
state parton shower, as applied in mc@nlo+CAS3.

9.4 Back-to-back azimuthal correlations in𝑍+jet and di-jet

production

In this section, we present predictions, obtained in the framework described above, for
𝑍+jet and di-jet production. 2 The selection of events follows the one of azimuthal
correlations Δ𝜙12 in the back-to-back region (Δ𝜙12 → 𝜋) in di-jet production at

√
𝑠 =

13 TeV as obtained by CMS [227]: jets are reconstructed by FastJet with the anti-𝑘⊥
algorithm [93] with a distance parameter of 0.4 in the rapidity range of |𝑦 | < 2.4. We

2A framework based on CCFM evolution [52] was described in [281, 282] for di-jet and vector boson + jet
correlations.
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Figure 9.5: Comparison of predictions obtained with mc@nlo+CAS3 and mc@nlo+H6 for 𝑍
production obtained with mc@nlo. Shown are predictions using initial state parton shower. The
band of mc@nlo+CAS3 shows the uncertainties obtained from scale variation (as described in the
text).

require either two jets with 𝑝𝑇,𝑗1> 200 GeV or a 𝑍 boson and a jet as leading or subleading
objects with a transverse momentum 𝑝𝑇,𝑗1> 200 GeV.

We consider distributions of the azimuthal correlation between the 𝑍 boson and the
leading jet, Δ𝜙𝑍𝑗 , for 𝑝𝑇,𝑗1> 200 GeV as well as for the very high 𝑝𝑇 region of 𝑝𝑇,𝑗1>
1000 GeV. The calculations are performed with mc@nlo+CAS3 using the collinear and
TMD parton densities PB-NLO-2018-HERAI+II-set2 and PB-TMD-Set2 with the running
coupling 𝛼s(𝑚𝑍) = 0.118 and the PB-TMD initial state parton shower.

In Fig. 9.8, the prediction for the azimuthal correlations Δ𝜙𝑍𝑗 for 𝑍+jet production in
the back-to-back region is shown.3 In the same figure we show, for comparison, the
prediction of azimuthal correlations Δ𝜙12 for di-jet production in the same kinematic
region, compared to the measurement of multi-jets obtained by CMS [227]. We observe

3Predictions for the region of small Δ𝜙 require including the contribution of higher parton multiplicities
via a calculation including multi-jet merging [59].
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Figure 9.6: Comparison of predictions obtained with mc@nlo+CAS3 and mc@nlo+H6 for 𝑍+jet
obtained with mc@nlo. Shown are predictions using initial and final state parton shower. The
band of mc@nlo+CAS3 shows the uncertainties obtained from scale variation (as described in the
text).
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Figure 9.7: Comparison of predictions obtained with mc@nlo+CAS3 and mc@nlo+H6 for 𝑍+jet
obtained with mc@nlo. Shown are predictions using initial and final state parton shower. The
band of mc@nlo+CAS3 shows the uncertainties obtained from scale variation (as described in the
text).

that the distribution of the azimuthal angle Δ𝜙𝑍𝑗 in 𝑍+jet-production for 𝑝𝑇,𝑗1>200
GeV is more strongly correlated towards 𝜋 than the distribution of angle Δ𝜙12 in di-
jet production. This difference is reduced for 𝑝𝑇,𝑗1> 1000 GeV .

Differences inΔ𝜙 between 𝑍+jet and di-jet production can result from the different flavor
composition of the initial state and therefore different initial state transverse momenta
and initial state parton shower, as well as from differences in final state showering since
both processes have a different number of colored final state partons. Effects coming
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Figure 9.8: Predictions of the azimuthal correlation Δ𝜙𝑍𝑗(Δ𝜙12) for 𝑍+jet and di-jet processes

in the back-to-back region for 𝑝leading
𝑇

≡ 𝑝𝑇,𝑗1> 200 GeV (left) and 𝑝
leading
𝑇

≡𝑝𝑇,𝑗1> 1000 GeV
(right) obtained from mc@nlo+CAS3. Shown are the uncertainties obtained from scale variation.
The measurements of di-jet correlations as obtained by CMS [227] are shown as data points, for
comparison.

from factorization-breaking, interference between initial and final state partons, would
depend on the final state structure and the number of colored final state partons. In the
following subsections, we discuss separately the initial state and final state effects in the
Δ𝜙 distributions and show theoretical uncertainties that come from the matching scale.

9.4.1 Contribution from initial state radiation to 𝑝𝑇

We first investigate the role of initial state radiation and the dependence on the transverse
momentum distributions coming from the TMDs, which gives a large contribution to the
decorrelation in Δ𝜙. The 𝑘⊥-distribution obtained from a gluon TMD PDF is different
from the one of a quark TMD PDF as shown in Fig. 9.1 for 𝑥 = 0.01 and scales of
𝜇 = 200(1000) GeV . In Fig. 9.9 we show the probability of 𝑔𝑔, 𝑞𝑔 and 𝑞𝑞 initial states (𝑞
stands for both quark and antiquark) as a function of the leading jet transverse momentum
𝑝𝑇,𝑗1 for 𝑍+jet and di-jet production obtained with mc@nlo+CAS3. At high 𝑝𝑇,𝑗1> 1000
GeV the 𝑞𝑞 channel becomes important for both 𝑍+jet and di-jet final states, while at
lower 𝑝𝑇,𝑗1> 200 GeV the 𝑔𝑔 channel is dominant in di-jet production, leading to larger
decorrelation effects, since gluons radiate more compared to quarks.
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Figure 9.9: The probability of 𝑔𝑔, 𝑞𝑔 and 𝑞𝑞 initial states in 𝑍+jet and di-jet production as a
function of 𝑝𝑇,𝑗1. The predictions are calculated with mc@nlo+CAS3.
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9.4.2 Comparison of final states from Cascade3 and Pythia8

The role of final state radiation in the correlation in Δ𝜙 distributions is more difficult
to estimate, since the subtraction terms for the NLO matrix element calculation also
depend on the structure of the final state parton shower. In order to estimate the effect
of final state shower we compare a calculation of the azimuthal correlations in the back-
to-back region obtained with mc@nlo+CAS3 with a calculation with mc@nlo+Pythia8
(labeled mc@nlo+P8). Results are shown in Fig. 9.10. For the calculation mc@nlo+P8 we
apply the Pythia8 subtraction terms in the MadGraph5_amc@nlo calculation, use the
NNPDF3.0 [271] parton density and CUETP8M1 tune [272].
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Figure 9.10: Predictions for the azimuthal correlation Δ𝜙𝑍𝑗(Δ𝜙12) in the back-to-back region for
𝑍+jet and di-jet production obtained with mc@nlo+CAS3 (left column) and mc@nlo+P8 (right
column). Shown are different regions in 𝑝𝑇,𝑗1> 200 GeV (upper row) and 𝑝𝑇,𝑗1> 1000 GeV (lower
row). The bands show the uncertainties obtained from scale variation.

The distributions in Fig. 9.10 of results from Cascade3 and Pythia8 differ due to different
parton showers, but the ratio of the distributions for 𝑍+jet and di-jet production are
similar: 𝑍+jet-production gives a steeper (more strongly correlated) distribution at low
𝑝𝑇,𝑗1, while at high 𝑝𝑇,𝑗1 the distributions become similar in shape. We conclude, that
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the main effect of the Δ𝜙 decorrelation comes from initial state radiation, and the shape
of the Δ𝜙 decorrelation in the back-to-back region becomes similar between 𝑍+jet and
di-jet processes at high 𝑝𝑇,𝑗1 where similar initial partonic states are important.

9.4.3 Theoretical uncertainties from matching

The matching scale 𝜇𝑀 limits the hardness of parton-shower emissions, and is thus
typically a non-negligible source of variation in matched calculations (see e.g. Ref. [283]
for a detailed discussion). It is thus interesting to assess the robustness of the previous
findings under variations of the matching scale. Assessing matching scale variations
in both an angular-ordered shower – such as Cascade3 – and a 𝑝𝑇-ordered shower –
such as Pythia8– additionally tests the interpretation and role of the matching scale. In
transverse-momentum ordered showers, the matching scale sets the maximum transverse
momentum of the first shower emission, while branchings beyond the first emission are
not explicitly affected by the matching scale. In an angular-ordered shower, however,
the matching scale is applied as "veto scale" to avoid larger transverse momenta for any
branching, i.e. the matching scale directly affects all branchings. The result of changing
the matching scale to half or twice the central value is shown in Fig. 9.11. As expected, the
value of the matching scale has an impact on the prediction (∼ 5%). This is particularly
apparent when 𝜇𝑀 is used to set the maximal transverse momentum of the first emission
in Pythia8. Overall, we find that interpreting the matching scale as veto scale in Cascade3
leads to apparently more robust predictions. Interestingly, the matching scale uncertainty
becomes smaller for higher-𝑝𝑇,𝑗1 jet configurations in Cascade3. The size of the matching
scale variation is comparable to scale variations, and should thus be carefully studied
when designing uncertainty estimates.

In order to experimentally probe effects which could originate from factorization-
breaking in the back-to-back region we propose to measure the ratio of distributions in
Δ𝜙𝑍𝑗 for 𝑍+jet and Δ𝜙12 for di-jet production at low and very high 𝑝𝑇,𝑗1, and compare
the measurement with predictions assuming that factorization holds. The number of
colored partons involved in 𝑍+jet and di-jet events is different, and deviations from
factorization will depend on the structure of the colored initial and final state. In order
to minimize the effect of different initial state configurations, a measurement at high
𝑝𝑇,𝑗1, hint more clearly at possible factorization-breaking effects.

9.5 Conclusion

We have investigated azimuthal correlations in 𝑍+jet production and compared predic-
tions with those for di-jet production in the same kinematic range. The predictions are
based on PB-TMD distributions with NLO calculations via mc@nlo supplemented by
PB-TMD parton showers via Cascade3. The azimuthal correlations Δ𝜙𝑍𝑗 , obtained in
𝑍+jet production are steeper compared to those in di-jet production (Δ𝜙12) at transverse
momenta 𝒪(100) GeV , while they become similar for very high transverse momenta,
𝒪(1000) GeV , which is a result of similar initial parton configuration of both processes.

In 𝑍+jet production the color and spin structure of the partonic final state is different
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Figure 9.11: The dependence on the variation of the matching scale 𝜇𝑚 in predictions for the
azimuthal correlation Δ𝜙𝑍𝑗 in the back-to-back region. Shown are predictions obtained with
mc@nlo+CAS3 (left column) and mc@nlo+Pythia8 (right column) for 𝑝𝑇,𝑗1> 200 GeV (upper row)
and 𝑝𝑇,𝑗1> 1000 GeV (lower row). The predictions with different matching scales 𝜇𝑚 varied by a
factor of two up and down are shown.

compared to the one in di-jet production, and differences in the azimuthal correlation
patterns can be used to search for potential factorization - breaking effects, involving ini-
tial and final state interferences. We cannot conclude about any violation of factorization
since there are no experimental data to compare the predictions of 𝑍+jet with. In order to
experimentally investigate those effects, we propose to measure the ratio of the distribu-
tions in Δ𝜙𝑍𝑗 for 𝑍+jet- and Δ𝜙12 for di-jet production at low and at very high 𝑝𝑇,𝑗1, and
compare the measurements to predictions obtained assuming that factorization holds.

We have studied the matching scale dependence in the PB-TMD predictions and com-
pared it with the case of NLO-matched calculations based on the Pythia8 shower. We
find that variations of the matching scale lead to more stable predictions in the PB-TMD
case, with the relative reduction of the matching scale theoretical uncertainty becoming
more pronounced for increasing 𝑝𝑇,𝑗1 transverse momenta.
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TMD multi-jet merging: basic elements

and 𝑍 + jets results

In Chapters 8 and 9 we have discussed applications of the “matching” approach to
combining the PB TMD evolution, implemented in the Cascade3 event generator de-
scribed in Chapter 7, with finite-order perturbative matrix elements for hard scattering
processes, such as di-jet and 𝑍 + jet production. In this chapter we begin the discussion
of another approach, the “multi-jet merging” approach, to performing calculations for
collider processes based on the PB TMD formalism.

The present chapter is devoted to briefly introduce the basic elements of the TMD multi-
jet merging method, which has recently been proposed in the literature, and to illustrate
it in the case of the first application which has been examined, the production of 𝑍-boson
+ jets final states. The next two chapters will be devoted to two new studies of TMD
merging, one on multi-jet production and event shapes and one on the merging scale
dependence on the physical hard-scattering scale, which are based on original work that
has been undertaken in this thesis.

The content of this chapter is as follows. In sections 10.1 and 10.2 we closely follow
Refs. [58, 59, 284] to motivate and concisely describe TMD merging. In section 10.3 we
present our own TMD-merged calculations for 𝑍 + jets production, which reproduce the
results of Ref. [58]. In section 10.4 we give a summary.

10.1 Introduction

Final states with large multiplicities of jets constitute some of the most important pro-
duction channels in high-energy collisions (at the LHC as well as at future colliders), and
are used both in precision measurements within the Standard Model and in searches for
possible physics signals beyond the Standard Model.

For the last twenty years, theoretical predictions for multi-jet observables have relied on
“merging” algorithms to combine matrix-element and parton-shower event generators.
Such algorithms have been developed and extensively used initially at LO [104–109,
285–287] and later at NLO [110–115]. A comparison of some of these algorithms can

121
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be found in Ref. [288]. In a calculation based on merging, the matrix elements describe
the underlying hard process with bare partons providing the primary sources for widely
separated jets; the parton showers describe the evolution of partons by radiative processes
predominantly at small angles; the two are sewn together via a “merging scheme” using a
merging scale, to prevent double counting or exclusion of multi-jet phase space volumes.

Neither matrix element nor parton shower descriptions are exact: the merging scheme
has the purpose of ensuring that, at any given point of phase space, the best possible
approximation is used, i.e. either by matrix element or by parton shower contribution.
The scheme and its parameters select the approximation to be used and correct the event
weight accordingly1. The choice of the merging parameters introduces an important the-
oretical systematic uncertainty, which reflects the mismatch between the matrix-element
and parton-shower weights assigned to a given final state. The larger the mismatch, the
larger the uncertainty. The phase space regions that are most affected by this are those
describing final states for which the jet multiplicity can vary under minor changes of the
merging parameters. This mostly happens if a jet is soft or close to another hard jet. A
better modeling of the emission probability for such jets by the parton shower evolu-
tion would reduce the difference with the weight assigned to these events by the matrix
element description, reducing the mismatch and the relative systematic uncertainty.

This has been the motivation of Refs. [58, 59] to consider the TMD Parton Branching
method [38, 39] and the associated parton shower [51] (described in Chapters 3 and 7) to
devise a TMD multi-jet merging algorithm based on this. The main idea is that, compared
to standard collinear merging algorithms, a better treatment of the transverse momentum
recoils, that are taken into account by the TMD shower, can influence the theoretical
uncertainty associated with merging matrix-element and parton-shower contributions.
This method then leads to a reduction of the systematics associated with the dependence
of multi-jet cross sections on the merging scale. In the next section a concise description
of the method [58, 59] is given.

10.2 Basic elements of the TMD merging method

10.2.1 General concepts

Following Ref. [58], we start by considering general multi-jet events. A matrix element
calculation generates 𝑛-jet configurations where 𝑛 represents the number of final state
partons. The corresponding (𝑛+1)-jet configuration can be generated by a parton shower
emission. However, the corresponding accuracy is limited to emissions in the soft and
collinear phase space regions. A hard, wide-angle emission from an 𝑛-jet configuration
will be better described by an (𝑛+1)-jet matrix element calculation. The naive sum of the
𝑛- and (𝑛 + 1)-jet calculations would not be correct due to regions of the (𝑛 + 1)-jet phase
space which would be doubly populated, both by the (𝑛 + 1)-jet matrix elements and by
the parton shower emissions off the 𝑛-jet configuration. Furthermore the (𝑛+1)-jet partial
cross section would be unstable, with its value strongly depending on the phase space

1In some merging schemes, as e.g. the MLM approach, events are either accepted or rejected and event
weights of accepted events remain unchanged.
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cut which prevents the extra parton from approaching the divergent soft or collinear
regions.

As discussed in Ref. [58], the goal of a jet merging algorithm is to enforce exclusivity
of the (𝑛 + 𝑚)-jet matrix element calculations above a merging scale 𝐸⊥,clus, except for
the highest available multiplicity which will remain inclusive. For instance, if the 𝑛-jet
matrix element configuration is made exclusive, double counting with the (𝑛 + 1)-jet
matrix element configuration will be avoided. This can be achieved by means of the
Sudakov form factor which will suppress emissions from the 𝑛-jet configuration. When
properly applied to the (𝑛 + 1)-jet matrix element configuration, the Sudakov will also
suppress the divergent phase space region, making the partial (𝑛 + 1)-jet cross section
stable.

In order to construct a TMD jet merging algorithm, PB TMD Sudakov form factors
(discussed in Chapters 3 and 6) can be used. The inclusion of TMD evolution effects
in a merging algorithm is then performed according to the procedure given in the next
subsection, which extends the standard MLM algorithm [104–106, 288].

10.2.2 TMD merging algorithm

The TMD merging procedure consists of the following items [58].

1. Generation of matrix elements 𝜎𝑛 with 𝑛 = 0, 1, .., 𝑁 real emissions, and generation
cut 𝜇𝑐 . The generation cut 𝜇𝑐 gives a lower limit to the emitted partons’ transverse
momentum. Parton samples are generated by matrix elements, with a probability
proportional to the respective cross section.

2. Reweight the strong coupling in the matrix elements according to the values from
the corresponding shower history, as prescribed in Ref. [107] and implemented in
the MLM algorithm [288].

3. For each of the two initial state partons of a given event, extract values of k⊥,𝑖
(𝑖 = 1, 2) distributed according to the PB TMD evolution equation, setting the
factorization scale to the hard scale of the event. If k⊥,𝑖

2 ≥ 𝜇2
𝑚𝑖𝑛

for any 𝑖 = 1, 2,
the event is rejected, and its contribution to the sample cross section is subtracted.
𝜇2
𝑚𝑖𝑛

corresponds to the minimum energy scale for the event, defined by 𝜇2
𝑚𝑖𝑛

=

min{𝑞2
⊥,𝑖 , 𝑞

2
⊥,𝑖 𝑗} where 𝑖 , 𝑗 = 1, . . . , 𝑛, 𝑞⊥,𝑖 is the transverse momentum of parton 𝑖,

and 𝑞2
⊥,𝑖 𝑗 (𝑖 ≠ 𝑗) is a measure of the relative transverse momentum between partons

𝑖, 𝑗. The overall kinematics of the final state is reconstructed by including the
transverse boost induced by the transverse momentum k = k⊥,1 + k⊥,2.

4. Initial-state partons of the generated events are showered using the PB TMD
backward shower evolution. Final-state partons are showered using the standard
Pythia [117, 269] or Herwig [118, 217] showers.

5. The MLM prescription [104, 288] is applied, comparing the jets in showered events
to the jets in parton-level events after the k boost. This differs from the standard
MLM procedure, where the final state of the parton-level event has no overall
transverse momentum. The merging scale 𝐸⊥,clus is a fundamental parameter in



124 CHAPTER 10. TMD MULTI-JET MERGING

this step, that gives a maximum transverse energy for emitted partons within a jet.
The strong condition 𝐸⊥,clus > 𝜇𝑐 needs to be respected.

In MadGraph5_amc@nlo [55], the generation cut 𝜇𝑐 is set by the xqcut parameter. This
defines a minimum in relative transverse momentum 𝑞2

⊥,𝑖 𝑗 between two final state partons
𝑖 and 𝑗:

𝑞2
⊥,𝑖 𝑗 = 2 min

(
𝑞2
⊥,𝑖 , 𝑞

2
⊥, 𝑗

) [
cosh(𝜂𝑖 − 𝜂 𝑗) − cos(𝜙𝑖 − 𝜙 𝑗)

]
. (10.1)

The same definition for relative transverse momentum is applied in step 3.

The LO method2 described above is referred to as the “TMD merging method” [59].
This uses the MLM merging prescription. In the MLM style, the event weights are not
changed by a suppression factor, as is done for example in CKKW by the Sudakov form
factor. Instead, the parton shower is applied from the hard interaction scale of the event.
A jet clustering algorithm (e.g. the anti-𝑘𝑡 algorithm [93]) constructs jets. Jets are defined
by a cone size 𝑅clus, a minimum transverse energy 𝐸clus

⊥ and a maximum pseudo-rapidity
𝜂clus

max. Partons are then iteratively “matched” onto the jets. If the distance in (𝜂, 𝜙) between
the parton and the jet centroid is smaller than 𝑐 × 𝑅clus (𝑐 = 1.5 in TMD merging), the
parton and the jet match. The event is fully matched if all partons match to jets. If events
are not fully matched, they are rejected.

If the maximum jet multiplicity for which matrix elements are calculated is 𝑁𝑚𝑎𝑥 , MLM
merging requires that the total number of matched jets equals the number of partons
for all 𝑛-parton samples up to 𝑛 = 𝑁𝑚𝑎𝑥 − 1 (“exclusive” multiplicity samples), while
extra jets are allowed when 𝑛 = 𝑁𝑚𝑎𝑥 , provided they are softer than the jets matched to
the original partons (“inclusive” multiplicity sample). If the number of matched jets in
exclusive modes does not correspond to the jet multiplicity in the parton-level sample,
the event is rejected.

In the next section, we will apply the TMD merging method to the case of 𝑍 + jets final
states. We will start by analyzing differential jet rates (DJRs) in 𝑍+jets final states. A DJR

is a distribution of the variable 𝑑𝑖 ,𝑖+1 that is the square of the energy scale at which an 𝑖-jet event is

resolved as an (𝑖 + 1)-jet event. It requires an infrared safe definition of jets to calculate 𝑑𝑖 𝑗 ,
which, in this work, is ensured by clustering the events with the 𝑘𝑡 jet algorithm [90–92].
The DJR definition has a strong connection to the jet clustering algorithm. In sequential
jet clustering like the 𝑘𝑡 algorithm, partons are grouped together one-by-one based on
a “distance” measure between two partons 𝑑𝑖 𝑗 and one between a parton and the beam
direction 𝑑𝑖𝐵. Two partons are clustered if 𝑑𝑖 𝑗 < 𝑑𝑖𝐵, while they belong to different jets
when 𝑑𝑖 𝑗 > 𝑑𝑖𝐵. In the 𝑘𝑡 clustering algorithm, these measures are defined by:

𝑑𝑖𝐵 = 𝑞2
⊥,𝑖 (10.2)

𝑑𝑖 𝑗 = min(𝑞2
⊥,𝑖 , 𝑞

2
⊥, 𝑗)

𝑅2
𝑖 𝑗

𝑅2 , (10.3)

where
𝑅2
𝑖 𝑗 = (𝜂𝑖 − 𝜂 𝑗)2 + (𝜙𝑖 − 𝜙 𝑗)2 , (10.4)

and 𝑅 is the clustering radius. The differential jet rate is equal to 𝑑𝑖 𝑗 in the case that there
are max(𝑖 , 𝑗) clustered protojets in the event. The condition that all jets have 𝑑𝑖 𝑗 > 𝑑𝑖𝐵

2Virtual emissions are not yet included in the TMD merging algorithm.
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does not necessarily have to be fulfilled. The DJR is therefore calculated within the jet
clustering process.

DJRs have always been considered powerful means to test the consistency and systematic
uncertainties of multi-jet merging algorithms [105]. Once DJRs are checked, we will
examine jet multiplicity and transverse momentum distributions in 𝑍+jets final states.

10.3 Application of the TMD merging method to 𝑍+jets

production

To illustrate the effectiveness of TMD merging, studies from [58] on𝑍+jets are reproduced
which show clearly the effects of merging. Matrix elements containing 𝑍 + 0𝑗, 1𝑗, 2𝑗 and
3𝑗 samples are generated in LHE format by MadGraph5_amc@nlo [55]. The generation
cut is 𝜇𝑐 = 16 GeV, the maximum pseudo-rapidity 𝜂𝑚𝑎𝑥 = 5.0 and a minimum di-lepton
mass of 𝑚min

𝑙𝑙
= 40 GeV ensures that most of the events have invariant masses around the

𝑍 mass. The collinear PDF for the hard scattering events is the default set provided by
MadGraph5_amc@nlo: NNPDF23_lo_as_0130_qed [289].

The transverse momentum from forward evolution is sampled from PB-TMD-set2. The
factorization scale 𝜇 at which the TMD distribution is evaluated is equal to the center-of-
mass energy for Born processes (𝑍+0𝑗):

𝜇2 = 𝑠 = 𝑥𝑎𝑥𝑏𝑠 (10.5)

and equals the scalar sum of jet transverse momenta in the case of other matrix element
samples (𝑍+1𝑗, 𝑍+2𝑗, 𝑍+3𝑗):

𝜇2 =
1
2

𝑛hard∑
𝑖=1

𝑞2
⊥,𝑖 . (10.6)

The LHC center-of-mass energy at time of writing is
√
𝑠 = 14 TeV. Analysed data and

relevant analyses from earlier runs at lower energies are publicly available. Calculations
of 𝑍 + jets with TMD merging are compared to measurements at

√
𝑠 = 8 and 13 TeV.

Measurements of the 𝑍 boson transverse momentum spectrum at 8 TeV by ATLAS [290]
and at 13 TeV by CMS [136] are compared to the analysed pseudo-data. The jet multiplicity
spectra and jet transverse momentum spectra have been extracted from the generated
and merged events and compared with measurements by ATLAS at 13 TeV [280]. First,
we study differential jet rates in these cases.

10.3.1 Differential Jet Rates

Differential jet rates are calculated from the hard scattering samples of 𝑍 + jets at
√
𝑠 = 13

TeV. We apply TMD merging with a merging scale of 𝐸⊥,clus = 23 GeV, cone radius
𝑅clus = 1.4 and maximum pseudo-rapidity 𝜂clus = 5.0. The results are shown in Fig. 10.1.
Events originating from the different matrix element samples are shown in separate
curves and the sum of all samples (labeled “TMD merging”) is given by the red curve. The
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exclusive mode is applied to all matrix element samples containing less than three final
state partons. Three jet events are treated inclusively and are allowed by the algorithm
to gain additional jets by parton showering. This enables the description of 4- and 5-jet
events needed for 𝑑34 and 𝑑45.

The normalized differential cross section is plotted against the logarithm of
√
𝑑𝑖 ,𝑖+1. The

merging scale lies at log(
√
𝑑𝑖 𝑗) = 1.36. At this scale, the transition from parton shower

contribution to matrix element contribution is strongly visible in the curves with a sample
selection. Jet samples with less than 𝑖 + 1 hard partons have 𝑖 + 1 resolved jets only due
to parton shower emissions below the merging scale. Soft emissions from the shower
that have a transverse energy above the merging scale namely result in new jets. This
generally results in rejection of the event. Hard emissions from the matrix element are
limited by the generation cut and do not cause issues in the merging. By choosing too
large merging scales, the parton shower will not be able to fill the region below and close
to the merging scale properly causing a discontinuity in the sum of jet samples.

10.3.2 Jet multiplicity

The jet multiplicity is calculated according to the analysis of Ref. [280] where the physical
jets are clustered with a clustering radius of 0.4, the transverse momentum of the jets is
𝑝
𝑗

𝑇
≥ 30 GeV and the rapidity |𝜂| ≤ 2.5. Jet multiplicity spectra show the abundance of

number of jets in the final state. Two resulting distributions are shown in Fig. 10.2 for
DY production at

√
𝑠 = 13 TeV. The left plot shows the exclusive multiplicity distribution,

where only events with exactly 𝑁jets jets fill the distribution. The right plot shows the
inclusive multiplicity distribution in which each bin is filled with events that at least
have 𝑁jets jets. In both scenarios, the TMD merging prediction falls within experimental
uncertainties in all bins. The TMD merged calculation has no contributions from virtual
diagrams, making a scaling factor necessary to normalize the overall distribution to
the NNLO cross section. The Monte Carlo predictions are multiplied with a 𝐾 factor
(normalization factor, see Chapter 2) of 1.29 for a normalization to the theoretical NNLO
cross Sec. [291].

It is remarkable that, with TMD showering and TMD merging, a maximum multiplicity
of three jets in the hard scattering events, much higher jet multiplicities (at least up to
seven accompanying jets) can be described accurately.

10.3.3 𝑍 boson transverse momentum

Figure 10.3 shows the data from the ATLAS measurement and two theory calculations
for the inclusive 𝑝𝑇 spectrum of the di-lepton system at

√
𝑠 = 8 TeV. The MC calculations

contain different approaches for combining higher order matrix elements with TMDs
described in the following two paragraphs.

The blue curve is the result of matching PB-TMD-set2 to a next-to-leading order DY cal-
culation with Herwig6 subtraction terms by MadGraph5_amc@nlo. The matrix elements
are inclusive, parton showers and hadronization are not applied for this prediction. The
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Figure 10.1: Differential jet rates from merging Z+jet samples at
√
𝑠 = 13 TeV with TMD and parton

showers.
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Figure 10.2: Jet multiplicity spectra for Z+jets at
√
𝑠 = 13 TeV in comparison with ATLAS data

[280]. Exclusive jet multiplicity is shown on the right plot and the inclusive jet multiplicity is shown
on the left. This is a recalculation of results from [58].

matched calculation is performed in the same fashion as the calculations for azimuthal
correlations described in Chapters 8 and 9.

The red curve shows the result of TMD merging PB-TMD-set2 to LO matrix elements
containing higher jet multiplicities to sample events with DY + 0𝑗, 1𝑗, 2𝑗 or 3𝑗. For this
prediction, a generation cut 𝜇𝑐 = 16 GeV, merging scale 𝐸⊥,clus = 23 GeV and clustering
radius 𝑅clus = 1.4 have been applied. The error bars of the merged prediction (red)
represent statistical uncertainties (Monte Carlo errors). The uncertainty band of the NLO
matched prediction (blue) represents scale uncertainties that are calculated by varying
the renormalization and factorization scales by a factor of 2 up and down. This cannot
be done in a leading-order calculation because of the lack of 𝛼s(𝜇𝑅) in the matrix element
calculation and the only scale in the hard event being the di-lepton mass 𝑚𝑙𝑙 . Systematic
uncertainties due to TMD merging are estimated by varying the merging scale 𝐸⊥,clus.

Matching the TMD evolution to fixed NLO cross sections as described in Ref. [36] and
applied in Chapters 8 and 9 results in an accurate description of the low-𝑝𝑇 region
(1 - 10 GeV) due to the soft-gluon resummation guaranteed by the TMD evolution.
The intermediate-𝑝𝑇 region (between 10 and 40 GeV) is well-described due to all 𝒪(𝛼s)
contributions in the matrix element and the rejection of double counted events by means
of subtraction terms and the mc@nlo method. The high-𝑝𝑇 region cannot be described
with an NLO calculation due to missing higher multiplicities of hard parton emissions.
Figure 10.3(a) illustrates clearly that at high transverse momentum (𝑝 𝑙𝑙

𝑇
> 200 GeV), the

2𝑗 and 3𝑗 samples that are not included at NLO give the largest contribution to the
distribution. High precision at high transverse momentum can only be achieved by
merging the soft calculation to higher order matrix element calculations. The result of
TMD merging in Fig. 10.3(b) shows that the small and intermediate-𝑝𝑇 regions are still
well described and that a good description of the high-𝑝𝑇 region is obtained.
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Figure 10.3: MC calculations of transverse momentum spectrum of the di-lepton system in DY
production by 𝑝𝑝 collisions at

√
𝑠 = 8 TeV in comparison with ATLAS data [290]. The left plot (a)

shows separate contributions of individual ME jet samples to the TMD merging sum (in red). The
right plot (b) shows a comparison of TMD merging (red) with PB matching to NLO (blue).

10.3.4 Jet transverse momentum

The same set of TMD merged events are used to extract the transverse momentum of
the leading, i.e. hardest, jet. Four jet transverse momentum distributions for different jet
multiplicities are shown in Fig. 10.4. Small jet transverse momenta can only be described
with the inclusion of resummation, in this case with the PB TMD, but also require
inclusion of higher fixed orders in 𝛼s. This is seen from the substantial contributions
of multiple jet samples at low 𝑝

jet
𝑇

. A fixed-order calculation would not be sufficient to
describe these observables.

10.4 Summary

In this chapter we have introduced the TMD jet merging method [59], and have repro-
duced the TMD merged results of [58] for 𝑍 + jets. The method complements standard
algorithms, based on merging samples of different parton multiplicity showered through
emissions in the collinear approximation, with the use of PB TMD evolution for the initial
state. Compared to standard algorithms, it has been shown in [58] that the method leads
to a reduced systematic uncertainty with respect to the merging parameters, and an im-
proved description of high-order emissions, giving a better agreement with experimental
measurements for final states with jet multiplicity larger than the largest multiplicity used
in the generation of the matrix-element samples.

Having reproduced the results [58] for the case of 𝑍 + jets production, in the next chapter
we turn to the application of TMD merging to a different process, the production of pure
QCD multi-jets, and the computation of multi-jet event shapes.
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Figure 10.4: Differential cross section of the leading jet transverse momentum in different event
selection scenarios in comparison with 13 TeV ATLAS data [280]. (a) exclusively 𝑍 plus 1 jet events,
(b) 𝑍 plus at least one accompanying jet, (c) 𝑍 plus at least two accompanying jets, (d) 𝑍 plus at
least three accompanying jets.
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Multi-jet events at the Large Hadron

Collider with TMD merging

The case of exclusive Drell-Yan production in the accompaniment of jets has been studied
in detail in Ref. [58]. The results have been reproduced and reported in chapter 10. In the
DY case, jets are initiated solely by initial-state radiation and there are no color charges
in the final state of the leading-order process (i.e., at LO, there are no powers of 𝛼s),
which is a great simplification of a fully inclusive description of 𝑝𝑝 collisions. In practice
at hadron colliders, a large fraction of the events have final states consisting purely of
hadronic matter only. A substantial fraction of these final states are produced by strong
interactions alone. It is this category of processes that is of interest in this chapter.

The leading order process with two incoming and two outgoing partons, called the
“Born level” process, is the di-jet scenario. One of the possible Feynman diagrams of this
leading order hard scattering process is shown in Fig. 11.1 where two quarks annihilate
and produce a new quark-antiquark pair that radiates and hadronizes into jets. For the
first time, the PB TMD evolution is studied at the multi-jet level. We have calculated jet
multiplicity spectra and jet transverse momenta as well as event shapes; distributions
that describe the energy flow of the jets in the final state. These studies are important
because of their high frequency at hadron colliders and the need for more precision.

𝑞

𝑞̄

𝑞̄

𝑞

Figure 11.1: Leading order diagram of di-jet production from quark-antiquark annihila-
tion.

In this chapter1 we present original TMD merging results for pure QCD multi-jet events
at the LHC. The structure in which this is presented is as follows. Section 11.1 describes
the setup of the calculations performed. As a cross-check and validation of the method,

1This work is based on a paper in preparation A. Bermudez Martinez, F. Hautmann, A. M. van Kampen,
“Multi-jets from TMD merging” [60]
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we show in Sec. 11.2 extracted differential jet rates for two investigated scenarios. Sec-
tions 11.3 and 11.4 concern multi-jet processes at

√
𝑠 = 7 TeV, while section 11.5 focuses

only on multi-jet production at
√
𝑠 = 13 TeV. Important standard multi-jet observables

include jet multiplicities and transverse momenta, which are presented in Sec. 11.3. This
section also includes a study of the TMD merging systematic uncertainties in the de-
scription of multi-jet production as well. Section 11.4 elaborates on a comparison of the
obtained TMD merging calculations with results that are obtained by the MLM merging
algorithm that is implemented in Pythia8 [116, 117] . Studies with Pythia8 have allowed
studies of the effect of the underlying event in these processes, which are also presented
in this section. We have calculated and studied hadronic event shapes at the LHC at√
𝑠 = 13 TeV with TMD merging for the first time. These results are given in Sec. 11.5.

Finally, conclusions are given in Sec. 11.6.

11.1 Technical setup of the calculations

In Refs. [292] and [293] multi-jet events at the ATLAS detector were studied at center-of-
mass energies of

√
𝑠 = 7 TeV and

√
𝑠 = 13 TeV, respectively.

The 7 TeV studies select events where the physically measured jets have transverse mo-
menta 𝑝⊥, 𝑗 ≥ 60.0 GeV, the leading jets have 𝑝⊥, 𝑗1 ≥ 80.0 GeV and the rapidity of the jets
is |𝜂| < 2.8.

At 13 TeV, all jets are required to have transverse momenta 𝑝⊥, 𝑗 ≥ 100.0 GeV. Furthermore,
only events with leading jet transverse momenta of 𝑝⊥, 𝑗1 ≥ 460.0 GeV are selected and
the scalar sum of the transverse momenta of the two leading jets, 𝐻𝑇2 = | ®𝑝⊥, 𝑗1 | + |®𝑝⊥, 𝑗2 |,
must be 𝐻𝑇2 ≥ 1000.0 GeV. Here the rapidity of the jets is |𝜂| < 2.4.

These kinematical cuts in the measurement are crucial for the generation parameters and
the merging scales.

11.1.1 Matrix elements

Calculations of jet observables with TMD merging require the generation of on-shell,
leading-order matrix elements. Hard scattering multi-jet events are produced with Mad-
Graph5_amc@nlo [55] in LHE format. In these processes, partons from each incoming
proton interact through the strong interaction to form at least two jets in the final state:

𝑝1 + 𝑝2 → 𝑗 + 𝑗 + 𝑋, (11.1)

with 𝑋 representing zero, one or two hard, real parton emissions. The 4-jet samples are
treated inclusively. Real higher order emissions are generated by initial state radiation,
final state radiation or a combination of both.

To compare predictions with measurements at both center-of-mass energies, two sets of
hard scattering events are required. The generation parameters, which that allow to fill
the whole measured phase space, are as follows:
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• Di-jets + 0, 1, 2 jets at

√
𝑠 = 7.0 TeV

– Generation cut: 𝜇𝑐 = 20.0 GeV
– Jet transverse momenta: 𝑝⊥, 𝑗 ≥ 20.0 GeV
– Leading jet transverse momentum: 𝑝⊥, 𝑗1 ≥ 70.0 GeV
– Second leading jet transverse momentum: 𝑝⊥, 𝑗2 ≥ 50.0 GeV
– Maximum jet rapidity |𝜂max | = 3.2
– PDF: NNPDF2.3_LO_as0130

• Di-jets + 0, 1, 2 jets at

√
𝑠 = 13.0 TeV

– Generation cut: 𝜇𝑐 = 50.0 GeV
– Jet transverse momenta: 𝑝⊥, 𝑗 ≥ 50.0 GeV
– Sum of transverse momenta of two leading jets: 𝐻𝑇2 ≥ 800.0 GeV
– Maximum jet rapidity |𝜂max | = 2.8
– PDF: NNPDF3.1_NLO_as0118

The generation cuts are large compared to the 𝑍+jets situation because the physically
measured jets in the current measurements have larger transverse momenta compared
to the physical jets in the DY case described in Chapter 10.

We have observed that the generation cut xqcut in MadGraph5_amc@nlo is a matrix
element cut that was not applied by the original MLM merging approach. This parameter
sets a lower bound on the relative transverse momentum 𝑘⊥,𝑖 𝑗 given in Eq. (10.1), which
combines the absolute parton momenta and the angular distance. The combination of
this generation cut and the merging parameters could lead to gaps in the phase space or
to false rejections of events. We have tested the differences between applying xqcut and
the original MLM parameters 𝑝min

𝑇
and 𝑅min and found that the differences are negligible.

11.1.2 TMD merging of multi-jet events

The procedure of Cascade3 to treat the multi-jet hard scattering events differs from that of
the 𝑍+jets scenario as described in section 10.3. In the multi-jet scenario, the factorization
scale 𝜇2 at which PB-TMD-NLO-HERAI+II-2018-set2 (PB-TMD-Set2) is probed is equal
to the scalar sum of the transverse momenta of the final state partons 𝑖:

𝜇2 =
1
2

𝑛∑
𝑖=1

𝑞2
⊥,𝑖 . (11.2)

Initial state and final state radiation are applied by the PB TMD initial state backward
evolution described in Chapter 7 and the PYTHIA6 final state shower, respectively. In
addition to these parton showers, time-like initial state splittings are applied. The effect
of this type of splittings is smaller than the statistical uncertainties.

The merging parameters that work well for the multi-jet events are the following:
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• Di-jets + 0, 1, 2 jets at

√
𝑠 = 7 TeV

– Merging scale 𝐸⊥,clus = 35.0 GeV
– Clustering radius 𝑅clus = 0.7
– Maximum pseudorapidity 𝜂clus,max = 3.2

• Di-jets + 0, 1, 2 jets at

√
𝑠 = 13 TeV

– Merging scale 𝐸⊥,clus = 65.0 GeV
– Clustering radius 𝑅clus = 0.7
– Maximum pseudorapidity 𝜂clus,max = 2.8

The merging scales are larger than those in the 𝑍+jets scenario because of the larger
generation cuts 𝜇𝑐 (and the condition 𝐸⊥,clus > 𝜇𝑐). Note also that the clustering radius
in these pure jet scenarios is half of the clustering radius used for the 𝑍+jets scenario.
The merging of multi-jet events with high-𝑝⊥ jets is most effective when jets are required
to be narrower than in the DY case.

After showering and merging, Cascade3 hadronizes the remaining events for color-
neutral and observable final states.

11.1.3 Analyses

Showered and merged events in HEPMC format [81] are analyzed with Rivet3 [82, 83]
identical to the analyses of data from ATLAS measurements at

√
𝑠 = 7 TeV [292] and√

𝑠 = 13 TeV [293]. For the analyses, the jets in the showered, merged and hadronized
events are clustered with the anti-𝑘𝑡 jet clustering algorithm [93] in FastJet [270] with a
jet cone resolution parameter 𝑅 = 0.4. The analyses have identical kinematic boundaries
to the measurement cuts.

11.2 Differential Jet Rates

A crucial check on the reliability of merged events is to calculate DJRs (described in
Sec. 10.2). Discontinuities in these distributions could indicate missing phase space or
the double population of phase space regions. The results in this section are obtained at
partonic level; no hadronization has been applied to the HEPMC events for the purpose
of calculating DJRs. FastJet clusters showered events into jets using the 𝑘𝑡 jet clustering
algorithm [91, 92] with a jet cone radius of 𝑅 = 0.6.

11.2.1 DJRs at

√
𝑠 = 7 TeV

Three differential jet rate distributions of the multi-jet events at
√
𝑠 = 7 TeV are shown

in Fig. 11.2 together with the contributions from all matrix element samples. The two
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leading jets are part of the Born level process causing 𝑑01 and 𝑑12 not to be relevant for
observing merging effects.

With the merging parameters from Sec. 11.1.2, no discontinuities are observed in the
relevant DJRs 𝑑23, 𝑑34 and 𝑑45. The dominant contributions of parton shower emissions
and matrix element emissions are visible in Figs. 11.2(a) and 11.2(b).
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Figure 11.2: Differential jet rates of TMD merged multi-jet samples at
√
𝑠 = 7 TeV, with a generation

cut at 𝜇𝑐 = 20 GeV and a merging scale at log(𝐸⊥,clus/GeV) = log(35) = 1.54.

11.2.1.1 Systematic uncertainties

Systematic uncertainties can be estimated by varying the merging scale. In the logarith-
mic scale of the horizontal axis, the three merging scales have log(𝐸⊥,clus/GeV) values of
1.48, 1.54, and 1.60. In Fig. 11.3 we show the effect of varying the merging scale by 5 GeV
up and down (corresponding to a variation of more than 10%) on the distributions. The
results show that varying the merging scale leads to small differences that are localized
near the merging scale region itself. The fluctuations in the outer regions of the DJRs are
due to low statistics in these phase-space regions. The statistical errors generally overlap
in these regions.
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Figure 11.3: Differential jet rates with three merging scales for TMD merging of multi-jet samples
at

√
𝑠 = 7 TeV.

11.2.2 DJRs at

√
𝑠 = 13 TeV

Fig. 11.4 shows 𝑑23, 𝑑34 and 𝑑45 from TMD merging of the second set of hard scattering
events at

√
𝑠 = 13 TeV (described in Sec. 11.1). The DJRs are smooth, but a little kink is

observed near the merging scale. Clearly, the merging of these highly energetic jets to
TMDs and TMD parton showers is not trivial. Other merging scales around the current
value have been tested and show similar behavior in the DJRs. The overall shape of the
DJRs is effectively not disrupted by this.

11.3 Jet-multiplicities and jet transverse momenta

Pure multi-jet events are complex event types that involve many different scales. In
DY events, some observables are well understood, such as the invariant di-lepton mass
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Figure 11.4: Differential jet rates of TMD merged multi-jet samples at
√
𝑠 = 13 TeV, with a generation

cut 𝜇𝑐 = 50 GeV and a merging scale log(𝐸⊥,clus/GeV) = log(65) = 1.81.

distribution 𝑚𝑙𝑙 and the transverse momentum 𝑝 𝑙𝑙
𝑇

. In multi-jet events, analogues of
these quantities would be jet masses𝑚 𝑗 , jet transverse momenta 𝑝⊥, 𝑗 , or scalar sums of jet
transverse momenta 𝐻𝑇 . However, since jets are bunches of hadrons formed by soft and
collinear colored radiation, the predictability of such observables is much lower than for
clean signal events such as resonance decays into leptons.

In this section we present calculations with TMD merging of jet multiplicity and jet
transverse momentum spectra. With the change in cross sections due to merging scale
variations, we show that TMD merging gives reasonably small systematic uncertainties.

11.3.1 Jet-multiplicity spectrum

Calculations of the jet multiplicity spectra at both center-of-mass energies and compar-
isons with data provide a second solid check of the TMD merging method. Of particular
interest is the calculation of jet multiplicities beyond the inclusive multiplicity of the
matrix element 𝑁𝑚𝑎𝑥 . In both sets of multi-jet hard scattering events, 𝑁𝑚𝑎𝑥 = 4.

Figure 11.5 shows jet multiplicity spectra calculated with TMD merging. Since TMD
merging is applied at LO, total cross section scaling (𝐾) factors are required. In the√
𝑠 = 7 TeV scenario the scaling factor is 1.28, for

√
𝑠 = 13 TeV the scaling factor is 1.53.

The sum of all samples in red describes the data well for all jet multiplicities up to𝑁jet = 6.



138 CHAPTER 11. MULTI-JETS WITH TMD MERGING

b

b

b

b

b

bData
TMD merging

2j (exc)
3j (exc)
4j (inc)

1

10 1

10 2

10 3

10 4

10 5

10 6
Inclusive jet multiplicity (R = 0.4)

σ
[p

b]

b b b b b

2 3 4 5 6
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

Njet

M
C

/D
at

a

(a)

b

b

b

b

b

b Data
TMD merging
2j (exc)
3j (exc)
4j (inc)

10−4

10−3

10−2

10−1

1

10 1

10 2

Jet multiplicity for 1.0 TeV < HT2 < 1.5 TeV

dσ
/

dn
je

t
[p

b]

b b b b b

2 3 4 5 6 7
0.4
0.6
0.8

1
1.2
1.4
1.6

njet

M
C

/D
at

a
(b)

Figure 11.5: Jet multiplicity spectra for multi-jet events merged with TMD merging for different
kinematic regimes. (a)

√
𝑠 = 7 TeV, data and analysis from [292], (b)

√
𝑠 = 13 TeV, data and analysis

from [293].

11.3.2 Jet transverse momentum spectra

Individual jet transverse momenta 𝑝⊥, 𝑗 =
√
®𝑝2
⊥, 𝑗 are formed primarily by hard parton

emissions in the matrix element. This observable is closely related to the branching scale
of the partons, similar to the association of the evolution scale with the emitted transverse
momentum of the partons via the angular ordering condition. Transverse momentum
recoils and radiation of wide angle parton emissions can cause this initial transverse
momentum to change in the shower process.

The transverse momentum distributions of the four hardest jets are calculated from the
events at

√
𝑠 = 7 TeV and the results are shown in Fig. 11.6. Although the four hardest

emissions are included in the matrix elements, the final jet transverse momentum is
influenced by the transverse TMD boost, which implements soft and collinear parton
emission recoils. Parton showers follow the dynamics of the TMD and generate the
explicit soft parton radiation within the jet cones.

Since the leading and subleading jets come from the Born level process (𝑞𝑞 → 𝑔 → 𝑗 𝑗),
only the TMD boost and the final state shower affect their 𝑝⊥ distributions. The third and
fourth jets come from higher order emissions from any leg. The analysis and data from
ATLAS require that all jets have 𝑝⊥, 𝑗 ≥ 60 GeV. In addition, only events where the leading
jet has a transverse momentum 𝑝⊥, 𝑗1 ≥ 80 GeV are selected. Because of these analysis
selection criteria, it is valid to have matrix elements with 𝑝⊥, 𝑗1 ≥ 70 GeV and 𝑝⊥, 𝑗2 ≥ 50
GeV. The lower value of the transverse momentum in all plots of Fig. 11.6 corresponds to
that of the analysis cuts.

The result of the third jet 𝑝⊥ fluctuates the most and statistical uncertainties are not as
large as the observed fluctuations. This observable is complicated because it is the first
higher order contribution to the Born process. Shower contributions to the third leading
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jet occur at large scales. Relatively hard, wide-angle emissions would quickly lead to
additional jets in the analysis where 𝑅 = 0.4. Predictions fall within the experimental
uncertainties in nearly all bins.
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Figure 11.6: Transverse momentum spectra of four leading jets in pure jet events at
√
𝑠 = 7 TeV

merged with TMD merging. Comparison to data from [292].

11.3.3 TMD merging systematics

As mentioned in Chapter 10, transverse momentum recoils in parton evolution affect
the theoretical systematics. Here we show that the systematic uncertainties arising from
TMD merging in the case of multi-jet events are small (in Ref. [59] it was already shown
that the systematics of TMD merging in 𝑍+jets are small).

Varying the merging scale gives a reliable estimate of the uncertainties arising from
merging (in the same way as varying the factorization and renormalization scales gives
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estimates of the systematics). Variations of 5 GeV up and down are performed with
respect to the previously applied value of 𝐸⊥,clus = 35 GeV. The systematic uncertainty is
then represented by the relative difference between the values of the cross section as:

Syst. unc. =

���𝜎(𝐸(−)
⊥,clus) − 𝜎(𝐸(+)

⊥,clus)
���

1
2

(
𝜎(𝐸(−)

⊥,clus) + 𝜎(𝐸(+)
⊥,clus)

) , (11.3)

where 𝐸(±)
⊥,clus represents the upward (+) and downward (-) variations of the merging

scale. The cross sections for four inclusive jet multiplicities at a center-of-mass energy
of

√
𝑠 = 7 TeV are given in Tab. 11.1 for the two variations of the merging scale. The

systematic uncertainties given in the bottom row are less than 2%.

Merging scale 𝜎[tot] 𝜎[≥ 3 jet] 𝜎[≥ 4 jet] 𝜎[≥ 5 jet] 𝜎[≥ 6 jet]
[GeV] [nb] [nb] [nb] [nb] [nb]
30.0 519.0 40.24 4.115 0.381 0.031
40.0 517.6 40.76 4.100 0.381 0.030

Syst. unc. (%) 0.28 1.30 0.38 0.09 4.04

Table 11.1: Inclusive cross sections of pure jets events at 7 TeV with TMD merging. The clustering
radius is fixed at 𝑅clus = 0.7.

The result of varying the merging scale on the jet transverse momentum spectra is shown
in Fig. 11.7. The Monte Carlo errors that are shown in this figure overlap, indicating that
the systematic uncertainty is smaller than the statistical uncertainty. No 𝐾 factors have
been applied to these curves.
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Figure 11.7: Estimation of TMD merging systematics by varying the merging scale in jet transverse
momenta. The solid curve is the main TMD merging result presented before. The dashed and
dotted curves are obtained by variations of the merging scale.



142 CHAPTER 11. MULTI-JETS WITH TMD MERGING

11.4 Comparison of TMD merging with collinear merging

We compare the results of TMD merging of multi-jet events with the results of collinear
MLM merging [104–106, 288]. For this purpose, Pythia8 [116, 117] is used for MLM
merging. Hard scattering events generated for TMD merging (with the generation cuts
given in Sec. 11.1) are also used for showering and MLM merging with Pythia8. The
merging parameters are kept the same (as in Sec. 11.1.2), the merging scale is 𝐸⊥,clus = 35
GeV. Since the MLM merging calculation also deals with the LO matrix elements, a
scaling factor is calculated according to the total cross section with respect to the data.
This results in a scaling factor of 1.38 for MLM merging predictions and 1.28 for TMD
merging predictions.

Figure 11.8 shows the inclusive jet multiplicity spectrum 𝑁jet. Since this observable is not
sensitive to TMD effects, it serves well as a cross check for both merging methods. The
first bin represents the total cross section (hence both predictions fall exactly together
with the data point due to the scaling factors applied).
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Figure 11.8: Inclusive jet-multiplicity calculated with TMD merging (in Cascade3) and MLM
merging (in Pythia8).

Figure 11.9 shows curves for jet transverse momenta by TMD merging in red and curves
from MLM merging in blue. These comparisons are made without simulating multiple
partonic interactions (MPI). Both predictions describe the data quite well and are within
experimental uncertainties for the vast majority of transverse momenta. It is noteworthy
that the shape of the MLM prediction is slightly more off than the shape of the TMD
merging. The statistical errors of the MLM prediction are generally larger than those of
the TMD merging calculations. This could be the result of more event rejections in the
merging algorithm.

The differences cannot be attributed to TMD effects alone, since both the initial and final
parton showers of Pythia8 differ from those of Cascade3. The showers differ in the
ordering of the branching scales: the applied parton showers of Pythia8 are 𝑝𝑇-ordered
dipole showers.
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Figure 11.9: Jet transverse momenta at
√
𝑠 = 7 TeV with TMD merging (by Cascade3) and MLM

merging (by Pythia8).

11.4.1 Systematics

It is of interest to compare the systematics of TMD merging with that of collinear merging.
For this purpose, the merging scale was varied in the MLM calculation and the systematic
uncertainty was calculated as in Eq. (11.3). The results of the inclusive jet cross sections
and systematic uncertainties are given in Tab. 11.2. The total cross section differs by more
than 10%, while the uncertainty on the total cross section with TMD merging is less than
1%. Inclusive cross sections from MLM at a selection of higher jet multiplicities have
larger systematic uncertainties compared to TMD merging.

To compare the systematics of MLM merging and TMD merging, a comparison of the
subfigures 11.10(a) and 11.10(b) shows the systematics in the jet multiplicity spectrum.
This is done by comparing the tables 11.1 and 11.2. We also consider systematics in the
jet 𝑝⊥-spectra by comparing Fig. 11.11 with Fig. 11.7. The systematics of MLM merging
in the 𝑝⊥-spectra are smaller than 10% in most bins. Strikingly, at low 𝑝⊥ the curves differ
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Merging scale 𝜎[tot] 𝜎[≥ 3 jet] 𝜎[≥ 4 jet] 𝜎[≥ 5 jet] 𝜎[≥ 6 jet]
[GeV] [nb] [nb] [nb] [nb] [nb]
30.0 443.8 34.10 4.202 0.357 0.030
40.0 512.7 37.48 4.263 0.362 0.031

Syst. unc. (%) 14.41 9.46 1.45 1.26 2.28

Table 11.2: Inclusive cross sections of pure jets events at 7 TeV with MLM merging. The clustering
radius is fixed at 𝑅clus = 0.7.
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Figure 11.10: Systematics of TMD merging and MLM merging in the inclusive jet-multiplicity
spectrum with 𝑅clus = 0.7.

most and statistical errors do not overlap. This effect is not seen in the TMD merging
(Fig. 11.7), where at small 𝑝⊥ the different curves are very similar.

11.4.2 Effect of the underlying event

In Pythia8 it is possible to include effects of the underlying event by modeling multiple
parton interactions (MPI). We have investigated whether this significantly affects the
result by MLM merging as shown in Fig. 11.9. Figure 11.12 shows the jet momentum
spectra with MLM merging calculations with and without the MPI model from Pythia8.
Note that MPI in Pythia8 is interleaved (i.e. run in parallel) with ISR and FSR, which
can influence the merging procedure. The merging parameters in both calculations are
the same, so the blue curves correspond to the blue curves in Fig. 11.9. No significant
difference due to MPI is observed, since the statistical errors of the two results generally
overlap.
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Figure 11.11: Systematics of MLM merging with Pythia8 in jet transverse momentum spectra with
𝑅clus = 0.7.
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Figure 11.12: Effect of MPI in combination with MLM merging with Pythia8 for jet transverse
momentum spectra.



11.5. MULTI-JET EVENT SHAPES 147

11.5 Multi-jet event shapes

Event shapes are observables that represent the spatial distributions of jet energies in
an event, sensitive to all final state particles of an event. Event shapes are infrared and
collinear safe and should therefore be computable using Monte Carlo event generator
techniques. Both hard emissions and multiple soft-gluon emissions are crucial for a
complete description of the event shapes. Reliable predictions require a proper merging
procedure of matrix element calculations and parton showers. In general, low values of
event shapes correspond to di-jet-like configurations. In these regions, collinear and soft
radiation need to be resummed. Large values of the event shapes are dominated by hard,
well-separated jets [294] and can be described by fixed-order calculations.

The event shape distributions are defined only for a fixed jet multiplicity, since the shapes
change greatly with the number of jets in an event. All event shapes vanish in the di-jet
scenario due to the back-to-back configuration. Therefore, only events with three or more
jets are of interest2.

Recently, event shapes from 𝑝𝑝 collisions at
√
𝑠 = 13 TeV have been measured by ATLAS

and the results presented in Ref. [293]. Six event shapes were measured in three different
regions of𝐻𝑇2 (the scalar sum of the transverse momentum of two leading jets). This sec-
tion is devoted to studies of the application of PB and TMD merging and the extraction of
event shapes from multi-jet events. Forward evolution with PB-TMD-Set2 and backward
evolution with showers from Cascade3 have been combined with the multi-jet matrix
elements at 13 TeV (described in Sec. 11.1) by TMD merging with 𝐸⊥,clus = 65 GeV. The
event shapes are then extracted from the analyses in Ref. [293] using their Rivet plugin.

In this section, we show results of event shape calculations with TMD merging and for
comparison we also insert the figures with results from general purpose Monte Carlo
(GPMC) event generators given in [293]. A selection criterion to the phase space based
on the scalar sum of leading jet transverse momenta is given by 1 TeV < 𝐻𝑇2 < 1.5 TeV.
With a lower cut on 𝐻𝑇2 of 800 GeV in the generation of hard scattering events, there is a
margin to avoid cutting in the analyzed phase space region.

11.5.1 Transverse thrust and thrust minor

The first type of event shape examined is that of projections of parton transverse momenta
®𝑞⊥,𝑖 onto the thrust axis. The thrust axis 𝑛̂𝑇 is a unit vector in the direction for which the
projections of all jet momenta are maximized. Two observables are constructed with the
thrust axis: (i) the transverse thrust 𝜏⊥ = 1 − 𝑇⊥ by a scalar product of parton momenta
with the thrust axis and (ii) the thrust minor 𝑇𝑚 by a cross product of parton momenta
with the thrust axis:

𝜏⊥ = 1 − 𝑇⊥ = 1 −
∑
𝑖 |®𝑞⊥,𝑖 · 𝑛̂𝑇 |∑
𝑖 |®𝑞⊥,𝑖 |

(11.4)

𝑇𝑚 =

∑
𝑖 |®𝑞⊥,𝑖 × 𝑛̂𝑇 |∑

𝑖 |®𝑞⊥,𝑖 |
, (11.5)

2This concerns showered events; the Born level events with two hard emissions can still contribute at higher
multiplicities.
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with the summation over all 𝑛 final state partons. These observables provide information
about the distribution of the jets in space. The transverse thrust 𝜏⊥ becomes large (the
maximum value is 1 − 2/𝜋 [293]) when the energy flow orthogonal to 𝑛̂𝑇 increases and
is small (with a minimum value of 0) when the shape is close to that of a back-to-back
configuration (i.e., all jets are close to 𝑛̂𝑇). The thrust minor provides information about
the energy flow with respect to the plane that is formed by the thrust axis and the beam
axis, known as the event plane. Large values of 𝑇𝑚 indicate a large energy flow outside the
event plane (with a maximum value of 2/𝜋) and 𝑇𝑚 = 0 indicates that all energy flows
within this plane. The transverse thrust and the thrust minor will therefore always be
zero for two-jet configurations.

Results of 𝜏⊥ and 𝑇𝑚 with TMD merging are shown in Figs. 11.13 and 11.15. Different
jet-multiplicity samples from the matrix element are shown in dotted lines. Low 𝜏⊥ and
𝑇𝑚 are the most non-trivial regions to describe because there jets are very close to each
other. It is noteworthy that in the 𝑛jet = 4 panels, the 3-jet samples contribute more to
the event shape at the lowest values of 𝜏⊥ and 𝑇𝑚 than the 4-jet samples do. Possibly this
is the effect of jet merging with a larger cone radius than the cone radius that is used for
clustering in the analysis of the final events. In the lowest bins, deviations from the data
up to 20% are observed. For most observables the deviation is only 10%. The predictions
agree very well with the data even for the highest jet multiplicities (𝑛jet = 5 and 𝑛jet = 6).

For comparison, we show figures of both event shapes calculated with GPMC event
generators from Ref. [293]. The transverse thrust GPMC results are given in Fig. 11.14
and those of the thrust minor are given in Fig. 11.16.
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Figure 11.13: Transverse thrust 𝜏⊥ with TMD merging (red) in comparison with ATLAS data
(black).
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Figure 11.14: Figure from [293]. Transverse thrust 𝜏⊥ with general purpose Monte Carlo event
generators and ATLAS data (black).
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Figure 11.15: Thrust minor 𝑇𝑚 with TMD merging (red) in comparison with ATLAS data.
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Figure 11.16: Figure from [293]. Thrust minor 𝑇𝑚 with general purpose Monte Carlo event
generators and ATLAS data (black).



11.5. MULTI-JET EVENT SHAPES 151

11.5.2 Sphericity and aplanarity

The sphericity 𝑆 is constructed from the eigenvalues 𝜆𝑖 of the sphericity tensor (a 3x3
matrix):

Θ𝛼𝛽 =
1∑𝑛

𝑖=1 |®𝑞𝑖 |

𝑛∑
𝑖=1

®𝑞𝑖𝛼®𝑞𝑖𝛽
|®𝑞𝑖 |

, (11.6)

where 𝛼 and 𝛽 are the spatial coordinates. The three eigenvalues 𝜆𝑘 of this matrix are
normalized so that

∑3
𝑘=1 𝜆𝑘 = 1. If two eigenvalues are zero, all jet momenta are collinear

and the event has a back-to-back configuration (that of di-jets). If only one eigenvalue is
zero, the event has three jets lying in one plane. If all eigenvalues have the same value
(1/3), the event is as spherical as possible. [295]

With 𝜆1 ≥ 𝜆2 ≥ 𝜆3 the sphericity (0 ≤ 𝑆 ≤ 1) is defined for each jet multiplicity as follows

𝑆 =
3
2 (𝜆2 + 𝜆3), (11.7)

such that fully spherical events have𝑆 = 1 and di-jet-like events have𝑆 = 0. The transverse
sphericity 𝑆⊥ (0 ≤ 𝑆⊥ ≤ 1) - extracted by the ATLAS measurement - is computed from
the transverse component of the sphericity tensor (a 2x2 matrix), which has eigenvalues
𝜇1 and 𝜇2 (𝜇1 > 𝜇2):

𝑆⊥ =
2𝜇2

𝜇1 + 𝜇2
. (11.8)

Fully spherical (in the transverse plane) jet energies have 𝜇1 = 𝜇2 = 1/2 and contrary
back-to-back jets have 𝜇2 = 0 and 𝜇1 = 1.

Numerical results of the transverse sphericity with TMD merging are shown in Fig. 11.17.
Results with general purpose Monte Carlo event generators are shown in Fig. 11.18.

The aplanarity (0 ≤ 𝐴 ≤ 1/2) is defined as

𝐴 =
3
2𝜆3 , (11.9)

such that planar events have 𝐴 = 0, and the larger 𝐴, the more the jets are outside a
common plane.

A proper calculation of the aplanarity requires a rescaling of the final result (according
to the erratum in [293]) due to an error in the original Rivet analysis and the plugin that
is used. With a scaling factor of 1.376, the TMD merging calculation shown in Fig. 11.19
results in properly normalized cross sections.
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Figure 11.17: Transverse sphericity 𝑆⊥ from TMD merging in comparison with data from ATLAS.
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Figure 11.18: Figure from [293]. Transverse sphericity 𝑆⊥ with general purpose Monte Carlo event
generators and ATLAS data (black).
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Figure 11.19: Aplanarity with TMD merging in comparison with ATLAS data.
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Figure 11.20: Figure from [293]. Aplanarity 𝐴with general purpose Monte Carlo event generators
and ATLAS data (black).
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11.5.3 𝐶 and 𝐷 parameters

Event shapes 𝐶 and 𝐷 have been studied in great detail in 𝑒+𝑒− processes in Refs. [296–
298]. They can be calculated in the same way for 𝑝𝑝 collision processes. The distri-
butions of both parameters provide information about the fixed-order calculation, the
resummation and the non-perturbative physics within the jet events.

𝐶 was originally defined in [296] as the rotationally invariant observable 𝐻2 by using the
spherical harmonics 𝑌𝑚2 and all parton three-momenta ®𝑞𝑖 .

𝐶 =
4𝜋
5

2∑
𝑚=−2

�����∑
𝑖

𝑌𝑚2 (Ω𝑖)
|®𝑞𝑖 |√
𝑠

�����2 . (11.10)

Angles of momenta with respect to fixed axes are contained in Ω𝑖 . Eq. (11.10) can be
rewritten as:

𝐶 =
3
𝑠

∑
𝑖< 𝑗

��®𝑞𝑖 �� ��®𝑞 𝑗 �� sin2 𝜃𝑖 𝑗 , (11.11)

where 𝜃𝑖 𝑗 is the relative angle between particles 𝑖 and 𝑗. The nominator of Eq. (11.11)
is similar to the relative transverse momentum used in jet clustering algorithms. Wider
spread jets or many jets lead to larger 𝐶 values. Narrower jets or fewer jets result in small
𝐶.

𝐷 was originally defined in [296] as 𝐻3 and equal to:

𝐷 =
4𝜋
7

3∑
𝑚=−3

�����∑
𝑖

𝑌𝑚3 (Ω𝑖)
|®𝑞𝑖 |√
𝑠

�����2 . (11.12)

It can also be written as in [298]:

𝐷 =
27
𝑠3/2

∑
𝑖< 𝑗<𝑘

|®𝑞𝑖 · (®𝑞 𝑗 × ®𝑞𝑘)|2

|®𝑞𝑖 |
. (11.13)

Both 𝐶 and 𝐷 can be written as projections of parton momenta as in Eqs. (11.11)
and (11.13), like the thrust parameters. In contrast to thrust, no extremization is re-
quired, as it is only needed for the thrust axis, which is not used for calculating 𝐶 and 𝐷.
Instead, there is a double (for 𝐶) or triple (for 𝐷) summation over the parton momenta.

The eigenvalues of the sphericity tensor contain all the information needed for both the
𝐶 and 𝐷 parameters. They are easily computed as

𝐶 = 3(𝜆1𝜆2 + 𝜆2𝜆3 + 𝜆1𝜆3), (11.14)
𝐷 = 27𝜆1𝜆2𝜆3 , (11.15)

which are identical to the definitions above. The numerical integer factors are inserted
to enforce a range of values between 0 and 1.

The 𝐶 parameter takes values larger than 0.75 only in the case of 3 or more jets and
aplanar configurations. It is zero for back-to-back di-jets and it is exactly equal to 0.75
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for three jets in a plane. The 𝐶 = 0.75 is a so-called “integrable singularity” and shows
a slight discontinuity at all jet multiplicities as can be seen in Fig. 11.21. This observable
is very non-trivial to describe, as can be seen from the results of general-purpose Monte
Carlo generators shown in [293]. Results from Sherpa, Herwig, MG5_aMC and Pythia8
that apply collinear jet merging do not accurately describe data of this event shape, see
Fig. 11.22.

𝐶 is very sensitive to the value of 𝛼s (hence it is well suited to determine the strong cou-
pling), to non-perturbative power corrections and to large double Sudakov logarithms.
The 𝐶 > 0.75 region is dominated by the matrix element, as can be seen from the 3-jet
sample contribution in Fig. 11.21(a) and the 4-jet sample contribution in Fig. 11.21(b).
The intermediate 𝐶 region (3𝜋Λ𝑄𝐶𝐷 ≪ 𝐶 < 0.75) is dominated by resummation and the
low 𝐶 region is described by non-perturbative physics [297]. The intermediate and large
𝐶 regions are described quite accurately. However, the non-perturbative region shows
some discrepancies. Here the deviations from the data are of the order of 10% in the case
of 𝑛jet = 3, 20 % in the case of 𝑛jet = 4 and for 𝑛jet = 5 and 6 the first bin is not filled at all.

b

b

b b b b b b b b b b b b b b b b b b

b

b

b

b

b Data
TMD merging
2j (exc)
3j (exc)
4j (inc)

10−4

10−3

10−2

10−1

C for njet = 3, 1.0 TeV < HT2 < 1.5 TeV

(1
/

σ
(n

je
t
≥

2)
dσ

/
dC

b b b b b b b b b b b b b b b b b b b b b b b b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7
0.8
0.9

1
1.1
1.2
1.3

C

M
C

/D
at

a

b

b

b

b

b
b

b
b

b b b b b b b b b b b b
b

b

b

b

b Data
TMD merging
2j (exc)
3j (exc)
4j (inc)

10−4

10−3

10−2

10−1

C for njet = 4, 1.0 TeV < HT2 < 1.5 TeV

(1
/

σ
(n

je
t
≥

2)
dσ

/
dC

b b b b b b b b b b b b b b b b b b b b b b b b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7
0.8
0.9

1
1.1
1.2
1.3

C

M
C

/D
at

a

b

b

b

b

b

b
b

b
b

b b b b b b b b b b b b
b

b

b

b Data
TMD merging
2j (exc)
3j (exc)
4j (inc)

10−7

10−6

10−5

10−4

10−3

10−2

C for njet = 5, 1.0 TeV < HT2 < 1.5 TeV

(1
/

σ
(n

je
t
≥

2)
dσ

/
dC

b b b b b b b b b b b b b b b b b b b b b b b b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

C

M
C

/D
at

a

b

b

b

b

b

b

b

b
b

b
b

b b
b b b b b b b

b

b

b

bData
TMD merging

2j (exc)
3j (exc)
4j (inc)

10−6

10−5

10−4

10−3

10−2

C for njet ≥ 6, 1.0 TeV < HT2 < 1.5 TeV

(1
/

σ
(n

je
t
≥

2)
dσ

/
dC

b b b b b b b b b b b b b b b b b b b b b b b

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

C

M
C

/D
at

a

Figure 11.21: 𝐶 parameter with TMD merging in comparison with ATLAS data.
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Figure 11.22: Figure from [293]. 𝐶 parameter with general purpose Monte Carlo event generators
and ATLAS data (black).

Results of predictions for the 𝐷 parameter with TMD merging are shown in Fig. 11.233.
These agree very well with the data for all jet multiplicity bins over the entire range of
𝐷.

3The same rescaling factor is used as for aplanarity.
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Figure 11.23: 𝐷 parameter with TMD merging in comparison with ATLAS data.
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Figure 11.24: Figure from [293]. 𝐷 parameter with general purpose Monte Carlo event generators
and ATLAS data (black).
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11.5.4 Non-perturbative input in matrix elements

The sensitivity to the non-perturbative input and the value of the strong coupling in
the matrix element is tested by varying the collinear PDF input. Two sets of multi-
jet hard scattering samples that differ in the PDF input have been merged by TMD
merging and the results for the event shapes are compared. The first set has an LO
PDF (NNPDF2.3_as0130) with one-loop 𝛼s (𝛼s(𝑚𝑍) = 0.130) and the second set has
an NLO PDF (NNPDF3.1_as0118) with two-loop 𝛼s (𝛼s(𝑚𝑍) = 0.118). Other generation
parameters and the merging parameters are identical to those given in Sec. 11.1. Fig. 11.25
shows the results for the transverse thrust and the 𝐶 parameter for 𝑛jet = 3 and 𝑛jet = 4
with the two PDFs. Results for higher jet multiplicities show the same behavior but with
larger statistical errors.
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Figure 11.25: 𝜏⊥ and 𝐶 parameter from two sets of matrix elements merged identically with TMD
merging. 1.0 TeV < 𝐻𝑇2 < 1.5 TeV.

The choice of PDF in the matrix element has a rather large influence on the result. The
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statistical errors do not overlap. Primarily it is the overall normalization that improves
by going from LO to NLO for both the transverse thrust and the 𝐶 parameter.

11.5.5 Effect of the underlying event

The dependence of event shapes on the underlying event is investigated. Cascade3
does not have any underlying event implementation. We ask ourselves whether the
underlying event influences the results significantly. For answering this, the event shapes
are computed with collinear, MLM merging in Pythia8. The merging calculation with
matrix elements from Sec. 11.1 is done twice: once with MPI and once without MPI. The
merging parameters are the same as for TMD merging: 𝐸⊥,clus = 65 GeV and 𝑅clus = 0.7.
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Figure 11.26: Effect of MPI modelling on the transverse thrust event shape 𝜏⊥ for jet multiplicities
𝑛jet = 3 up to 𝑛jet ≥ 6. Results are obtained with MLM merging in Pythia8 with MPI switched on
and off. The di-jet transverse momentum selection criterium is: 1.0 TeV < 𝐻𝑇2 < 1.5 TeV.

The results in Figs. 11.26 and 11.27 show that the event shapes are not sensitive to multi-
parton interactions in these kinematic regions of the phase space. Regions of the event
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Figure 11.27: Effect of MPI modelling on the 𝐶 event shape for jet multiplicities 𝑛jet = 3 up to
𝑛jet ≥ 6. Results are obtained with MLM merging in Pythia8 with MPI switched on and off. The
di-jet transverse momentum selection criterium is: 1.0 TeV < 𝐻𝑇2 < 1.5 TeV.

shapes that are not accurately described are unlikely to be improved by implementing MPI
effects in Cascade3. Although the non-perturbative regions require improvement, due
to an overestimation of the low 𝐶 region, MPI will not provide the necessary correction.

11.6 Conclusion

The results presented in this chapter are new and very promising. With the generation
of matrix elements up to four hard partons in the final state, complicated multi-jet
event structures can be accurately described using forwardly evolved TMDs, (TMD)
parton showers, a hadronization model, and TMD merging to avoid double counting
in the resummation region. Jet multiplicity spectra are accurately described beyond the
multiplicity of the matrix elements. Predictions for jet transverse momentum spectra
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are also accurate. We have shown that even more complicated and global observables
describing the overall event shape of QCD jets in the final state are accurately described
with this method.

The general purpose Monte Carlo event generators that were applied for predictions by
the experimental groups require input parameters additional to the merging parameters
which are needed for the tuning of non-perturbative models to the perturbative (parton
shower) calculations. The PB method and its implementation in Cascade3 does not
require such tuning to obtain similar or higher accuracy.

The matrix elements that are used for the studies at 7 TeV from [292] contain higher
order emissions than used in our presented results by TMD merging. In [292] the
jet-multiplicity in hard scattering events goes up to 𝑛hard = 6, while in TMD merging
𝑛hard = 4 is treated inclusively. Nevertheless, the jet multiplicity spectrum is accurately
described at least up to 𝑛jet = 6.

We have shown that TMD merging is very well suited to calculate event shapes. The
results presented are increasingly more accurate than the predictions from the general
purpose Monte Carlo programs. It is particularly interesting to compare the results
of TMD merging with those of MG5_aMC, since the same matrix element generator
is used with the same number of hard final state partons, also with NNPDF3.0_NLO
and 𝛼s(𝑚𝑍) = 0.118. In [293], MG5_aMC matrix elements are showered by Pythia8
and merged according to the CKKW-L prescription. Deviations in the jet multiplicity
spectra with the MG5_aMC+Pythia8 prediction appear already at 𝑛jet = 4, while the
TMD merging results show discrepancies only at 𝑛jet ≥ 6.

Large values of transverse thrust and thrust minor are largely underestimated by collinear
factorization-based Monte Carlo programs, while they are generally well described by
TMD merging (with only small deviations in a few bins). The shape of these distributions
is better described by TMD merging than by any of the results given in [293]. The
conclusion in Ref. [293] on event shape studies with general purpose (collinear) Monte
Carlo event generators is that "none of the MC predictions investigated provide a good
description of the data in all regions of the phase space". In this chapter we have shown
that TMD merging improves the accuracy and shape of event shape distributions and is
highly suitable for experimental studies.
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A sliding merging scale

This chapter focuses on analyzing the merging scale’s correlation with the hard scale of
the process. Phenomenological studies and measurements of extremely hard interactions
that are accompanied by soft jets are common more and more nowadays, eg. Ref. [299].
This is made possible by accurate jet clustering algorithms and sophisticated triggering
systems at increasingly precise detectors. These studies are important for an increase in
the accuracy and precision of parton branching methods, not only at the level of TMD
merging, but also in the case of collinear event generators. To comprehend these physics,
it is crucial to conduct accurate theoretical predictions.

In these multi-jet processes where typical scales differ by several orders of magnitude,
precise calculations require merging of higher order matrix elements with parton show-
ers. The merging scale is a key factor in accomplishing this level of accuracy. Chapters
10 and 11 demonstrate that variations of the merging scale provide insight into the
systematic uncertainty of the merging procedure. In this chapter, we present a study to
determine the appropriate central value for the merging scale. We developed a method to
quantitatively analyze the merging algorithm and merging scale dependence on typical
event scales in DY plus jets production.

This chapter1 aims to guide the reader through the process of formalizing an appropriate
merging scale. First, we present the situation and technical setup in section 12.1. Then, in
section 12.2 we explain the method we constructed to quantify the impact of the merging
scale value. Results from multiple scenarios are presented in sections 12.2.2 and 12.4.2.
Eventually, section 12.5 summarizes the conclusions.

12.1 Introduction

The merging scale, similar to the factorization scale, is regarded as an arbitrary scale and
is, therefore, not an observable quantity. Although associated to transverse energy, it acts
as a separation between hard matrix element and soft parton shower contributions. The
merging scale is denoted as

𝜇𝑚 ≡ 𝐸⊥,clus . (12.1)

1Part of this chapter has been published in A. M. van Kampen, A. Bermudez Martinez and F. Hautmann,
“Merging scale in Z + multi-jet events for varying masses”, Proceedings of Science PoS (EPS-HEP2023) 255 [61]
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A poorly selected merging scale can result in inaccurately filled phase spaces due to
double counting events or missing events. According to Ref. [288], the first rigorous
criterion for the merging scale given is that it should not be smaller than the generation
cut 𝜇𝑐 to prevent exclusion of phase space regions. A rough guideline for determining a
suitable merging scale in the MLM procedure was given in Ref. [288] by

𝜇𝑚 = 𝜇𝑐 + max(5 GeV, 0.2 · 𝜇𝑐) . (12.2)

Following this guideline, the minimum merging scale should be 1.2 · 𝜇𝑐 .

Possible relations of the merging scale to hard scales of processes remain an unexplored
subject. The authors of MG5_aMC provide a rough estimate on the merging scale: "This
value should be related to the hard scale (e.g. the mass of produced particle, 𝐻𝑇 cut,
or similar) in the process, and set to ∼(1/6-1/3 x hard scale)."2. This problem concerns
the definition of softness of jets. The merging scale distinguishes between soft and hard
emissions. As the hard interaction scale 𝑄2 shifts, there is a need for a corresponding
shift in the definition of hard and soft jets. This study hypothesizes that the merging
scale 𝜇𝑚 is dependent on 𝑄. For this study, we investigate differential jet rates (DJRs)
at different hard interaction scales in Drell-Yan processes and different merging scale
values.

To establish the connection between the merging scale and the hard scale, we merge 𝑍
+ jets events at various di-lepton masses using TMD merging. These merged events are
then utilized for in-depth studies on the merging scale variations. We conduct these
studies on DY events as the hard scale in this process is equivalent to the mass of the
di-lepton system:

𝑄2 = 𝑚2
𝑙𝑙
. (12.3)

An increase in the hard scale 𝑄 is achieved through the application of a large lower
limit on the di-lepton mass 𝑚min

𝑙𝑙
≫ 𝑚𝑍 during the generation of hard scattering events.

The DY mass spectrum rapidly decreases (approximately as 1/𝑚4
𝑙𝑙
) in these high mass

regions, indicating that the majority of the events have masses close to the lower limit.
As a result, no upper limit on the mass has been imposed. These studies also incorporate
the effect of a decreasing hard scale. In this scenario, it is necessary to establish an upper
mass limit to prevent the occurrence of a large spread of hard scales in a single set of
hard scattering events. However, the use of a merging procedure at lower energies may
not be required.

High-mass DY events have been repeatedly merged using the TMD merging technique
with varying merging scales. An algorithm has been developed to analyze the DJRs in
order to identify the most appropriate merging scale. To achieve this, Cascade3 [51]
is utilized to apply TMD merging to DY events that are generated with MG5_aMC,
with hadronization being turned off since it does not affect DJRs and only impacts jet
substructure. Transverse momentum is added according to PB-TMD-NLO-HERAI+II-
2018-set2 [38] from TMDlib [40]. The calculation of the DJRs, which are analyzed, is
performed using Rivet3 [82, 83]. Jet clustering is performed at the partonic level during
the merging process with the anti-kt algorithm and at the analysis level using the kt
algorithm, both within FastJet [270].

2Citation from the MG5_aMCwiki page: https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Matching
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12.2 Differential jet rates and the merging scale

In this section, we will explain the step-by-step procedure for quantifying the effectiveness
of the merging process and the merging scale. We will illustrate our results using the
scenario of 𝑄 = 𝑚min

𝑙𝑙
= 800 GeV.

12.2.1 Measure of discontinuity

Double counting of events (overpopulation of the phase space) or missing events (leaving
gaps in filling of the phase space) due to a misplaced merging scale can cause discontin-
uous DJRs. A discontinuity in the DJR manifests close to the merging scale. As shown
in Chapter 10, when the di-lepton mass is close to the 𝑍 boson mass, 𝑚𝑙𝑙 ≃ 𝑚𝑍 , and the
merging scale is 𝜇𝑚 = 23 GeV, there are no significant discontinuities in the DJRs of 𝑍
+ jets events from TMD merging (cf. Fig. 10.1). By applying this procedure to events
with higher DY masses, discontinuities are observed in the region of this merging scale.
Fig. 12.1 illustrates this, with all generating and merging parameters being identical to
the examples in Chapter 10, except that the di-lepton mass of the generated events is
increased to 𝑚min

𝑙𝑙
= 800 GeV. A merging scale of 𝜇𝑚 = 23 GeV is no longer sufficient for

merging these events to TMD PDFs and TMD shower. A distinct discontinuity is visible
near this merging scale.
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Figure 12.1: DJRs of TMD merged Z+jet events at masses 𝑚min
𝑙𝑙

= 800 GeV with a merging scale of
𝜇𝑚 = 23 GeV (located at log(23) ≈ 1.36).

We associate the magnitude of the discontinuity with the inadequacy of the merging
procedure and quantify the level of “non-smoothness” of a DJR by a parameter 𝐷. Our
goal is to identify the minimum value of this discontinuity, which is associated with an
“optimal” merging scale.

The discontinuity quantity has been constructed by taking into account both the 0th-
and 1st-order discontinuities to eliminate influences of the shape of the DJR near the
discontinuity. A priori it is unknown what type of discontinuity occurs in the DJRs due
to the finite bin size. Two conceivable types are: 1) a removable discontinuity or 2) a
jump discontinuity. Due to the discretisation of the DJR distributions, it is preferable
to consider a removable discontinuity. In order to calculate it correctly, limits should
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be taken towards the discontinuity at the merging scale 𝜇𝑚 from both the left and right
sides:

𝐷(𝑄, 𝜇𝑚) = lim
𝜇→𝜇−

𝑚

[
1
𝜎

d𝜎
d

(
log(𝜇/GeV)

) ] − lim
𝜇→𝜇+

𝑚

[
1
𝜎

d𝜎
d

(
log(𝜇/GeV)

) ] , (12.4)

with 𝜇 =
√
𝑑𝑖 𝑗 .

In practice, an interpolation of the DJR is necessary due to the binned results. Tangent
lines, denoted as 𝑙(𝜇), are fitted on both sides of the discontinuity based on either two or
four data points of 𝑑𝑖 𝑗 depending on the bin size (see section 12.3).

𝑙(𝜇) = 𝑎 log(𝜇) + 𝑏 . (12.5)

The absolute difference at the merging scale between the fits on the left and right side
of the discontinuity, denoted as |𝑙left(𝜇𝑚) − 𝑙right(𝜇𝑚)|, is a zeroth order effect. The dif-
ference in the slope is a first order effect and is accounted for by shifting one bin width,
represented as 𝛿 = Δ log(𝜇): |𝑎left · Δ − 𝑎right · Δ|. An object 𝐿𝑖 is defined as:

𝐿𝑖(𝜇) = 𝑙𝑖(𝜇) + 𝑎𝑖 · 𝛿 , (12.6)

which consists of a tangent fit 𝑙 on either the left (𝑖 = 𝑙) or right (𝑖 = 𝑟) side of the merging
scale, along with the first order correction. The difference between 𝐿𝑟 and 𝐿𝑙 serves
as reasonable estimation of the discontinuity. Normalizing the quantity 𝐷 is achieved
through dividing it by the average:

𝐷(𝑄, 𝜇𝑚) =
|𝐿𝑙(𝜇𝑚) − 𝐿𝑟(𝜇𝑚)|

(𝐿𝑙(𝜇𝑚) + 𝐿𝑟(𝜇𝑚))/2
. (12.7)

Illustrative plots of the determination of discontinuities from 𝑑01 using multiple merging
scales (𝜇𝑚 = {40, 70, 100, 150} GeV) are shown in Fig. 12.2. To increase efficiency and
reduce higher order effects, we have only included 𝑍+0j and 𝑍+1j samples in the DJRs.
The discontinuity values are provided in the legends.

A set of discontinuities for a fixed hard scale can be plotted against the merging scale
value. Figure 12.3 shows the discontinuities for twelve distinctive merging scale values.

12.2.2 Determination of the merging scale

The optimal merging scale is the one that minimizes the discontinuity distribution 𝐷
and produces the smoothest DJR. By minimizing 𝐷 at a fixed hard scale 𝑄, the optimal
merging scale 𝜇(0)

𝑚 (𝑄) can be determined. The distribution𝐷(800, 𝜇𝑚), shown in Fig. 12.3,
in both linear scale (left) and logarithmic scale (right), provides visual evidence of a min-
imum near 𝜇𝑚 ≃ 75 GeV. As the merging scale increases, the discontinuity distribution
starts to fluctuate more, but a general upward trend is apparent.

To determine the minimum value, a polynomial fit through the data in logarithmic scale
is performed. A second order polynomial is adequate for this fit using a set of points
near the minimum:

𝐷fit(𝑄, 𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 , (12.8)
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Figure 12.2: A close-up view of 𝑑01 with 𝑄 = 800 GeV, 𝜇𝑐 = 16 GeV and 𝜂max = 2.7. A clustering
radius of 𝑅clus = 1.4 is utilized for merging and the results are shown on four panels for different
merging scales 𝜇𝑚 . The bin width is set at 𝛿 = 0.03. The tangent line fits through two points next
to the discontinuity are shown in blue (left) and red (right).

with 𝑥 = log(𝜇𝑚). To achieve a proper fit, at minimum, three data points near the
minimum are necessary. The selection of data points is based on the 𝜒2-value of the fit,
and we aim to utilize more than three points for all scenarios. Selections in which 𝜒2 is
close to 1 are employed to determine 𝜇(0)

𝑚 . Figure 12.4 shows the parabolic fits through
the discontinuity distributions in the analyses of 𝑑01 and 𝑑12 with a hard scale of𝑄 = 800
GeV.

12.3 Theoretical uncertainties

The calculation of the discontinuity must consider theoretical uncertainties.

Systematic uncertainties arise from the bin size 𝛿 used in the calculation of the DJR.
Additionally, statistical uncertainties were computed in the analysis, although they seem
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Figure 12.3: Discontinuity in 𝑑01 with a bin width of 𝛿 = 0.03 obtained from merging 𝑍 + jets
events with 𝑄 = 800 GeV, 𝜇𝑐 = 16 GeV, 𝜂max = 2.7. Merging parameters used were 𝑅clus = 1.4,
𝜂max

clus = 2.7 and 𝜇𝑚 ∈ {23, 30, 40, 50, 60, 70, 80, 90, 100, 130, 150, 200} GeV.
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Figure 12.4: Fits to discontinuity distributions for 𝑄 = 800 GeV.

considerably smaller than the variation in uncertainty due to different bin sizes for all
di-lepton masses under consideration.

12.3.1 Bin size uncertainty

The default calculation is performed in a domain 0.1 < log(
√
𝑑𝑖 𝑗/GeV2) < 3.1, which is

homogeneously divided into 100 bins. Each bin has a width 𝛿 ≡ Δ(log(𝜇)) = 0.030. The
merging scale, where the discontinuity occurs, typically falls within a single bin. The
degree of smoothing increases with the distance of the merging scale from the nearest
bin border. Increasing bin sizes tend to reduce discontinuities and decrease the value of
𝐷. However, minimizing the bin size is also not optimal. Because of numerical effects
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and impurities in the merging algorithm, the DJR becomes blurred around the merging
scale and starts to become significant at smaller bin sizes.

To estimate the uncertainty caused by the bin size, we varied the bin size by ±0.015. This
produced three data sets with bin widths 𝛿 ∈ {0.015, 0.030, 0.045}. We recalculated DJR
discontinuities following the above procedure. For 𝛿 = 0.015, we fitted tangent lines 𝑙𝑖
through four data points, and for 𝛿 = 0.030 and 𝛿 = 0.045, we fitted 𝑙𝑖 lines through two
data points.

Figure 12.5 shows the 𝑑01 distribution in four scenarios that differ in bin size (including
𝑘 = 4, which was not used in further calculations). The analysis was performed with
𝑄 = 800 GeV and a merging scale of 𝜇𝑚 = 40 GeV. Each scenario’s discontinuity 𝐷 is
calculated using Eq. (12.7) and shown in the legend. The results for the three smallest
bin sizes (𝑘 ∈ {1, 2, 3}) are 𝐷𝑘(40 GeV) = {0.155, 0.156, 0.124}.
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Figure 12.5: 𝑑01 with different bin sizes 𝛿 at a hard scale 𝑄 = 800 GeV and merging scale 𝜇𝑚 = 40
GeV.

Various distributions 𝐷𝑘(𝜇𝑚) are calculated for each hard scale, which differ based on
the bin width of the DJRs used to calculate the discontinuities. Figure 12.6 shows the
discontinuities from 𝑑01 (left) and 𝑑12 (right), plotted against the merging scale (in log
scale). The data from different bin sizes are represented by different colors. These
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distributions are obtained with the method described in section 12.2.2. From three
results, we derive the average optimal merging scale ⟨𝜇(0)

𝑚 ⟩ and the associated systematic
bin uncertainty 𝜎bin obtained by:

⟨𝜇(0)
𝑚 ⟩(𝑄) ± 𝜎bin(𝑄) = 1

𝑛

𝑛∑
𝑘=1

𝜇(0)
𝑚,𝑘

(𝑄) ± 1
2

(
max
𝑘

𝜇(0)
𝑚,𝑘

− min
𝑘

𝜇(0)
𝑚,𝑘

)
, (12.9)

with 𝑛 = 3.

Results of the optimal merging scale 𝜇(0)
𝑚 at 800 GeV for three bin sizes using 𝑑01 are

𝜇(0)
𝑚,𝑘

= {74.14, 73.75, 65.16} GeV and using 𝑑12 these are 𝜇(0)
𝑚,𝑘

= {61.23, 66.55, 70.35} GeV.
These yield a final, ideal merging scale of:

⟨𝜇(0)
𝑚 ⟩(800GeV) ± 𝜎bin = 71.0 ± 4.5 GeV , (12.10)

from calculations with 𝑑01 and

⟨𝜇(0)
𝑚 ⟩(800GeV) ± 𝜎bin = 66.0 ± 4.6 GeV , (12.11)

from calculations with 𝑑12.

12.3.2 Statistical uncertainty

A limited number of events in each bin of the DJR causes an uncertainty on the result for
𝜇(0)
𝑚 . The statistical error 𝜎stat. is calculated by altering the DJR values near the merging

scale, following a Gaussian distribution with a standard deviation equal to the Monte
Carlo error 𝜎𝑀𝐶 = 1√

𝑁
, with 𝑁 being the number of events in that bin. The DJR value

𝑑𝑖 𝑗(𝑄, 𝜇𝑚) is varied based on 𝜎𝑀𝐶 by selecting a random number 𝑅 uniformly from the
range [0, 1] and using it to determine 𝑥(𝑅):

𝑅 =

∫ 𝑥(𝑅)

−∞
𝑑𝑥 exp

{
(𝑥 − 𝑑𝑖 𝑗(𝑄, 𝜇𝑚))2

2𝜎2
𝑀𝐶

}
. (12.12)

The DJR is randomly varied 𝑛 times using a random number 𝑅. For each variation, we
calculate the discontinuity 𝐷 according to Eq. (12.7). We obtain 𝑛 = 100 distributions
of 𝐷(𝜇𝑚), from which we compute the minima 𝜇(0)

𝑚 . Although this symmetric statistical
variation has no effect on the average merging scale result given by Eq. (12.9), it does
introduce an additional uncertainty 𝜎stat. associated with the final outcome:

𝜎stat.(𝑄) = 1
𝑛

√√
𝑛∑
𝑖=1

(
𝜇(0)
𝑚,𝑖

(𝑄) − ⟨𝜇(0)
𝑚 (𝑄)⟩

)2
. (12.13)

12.3.3 Total theoretical uncertainty

The total uncertainty on the result of an optimal merging scale is determined by calcu-
lating the sum of squares:

𝜎tot.(𝑄) =
√
𝜎2

stat.(𝑄) + 𝜎2
bin(𝑄) . (12.14)
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Figure 12.6: Discontinuity distributions from different bin sizes 𝛿, with a hard scale of 𝑄 = 800
GeV. The results of all tested merging scales 𝜇𝑚 are shown. Parabolic fits are shown in the lower
plots together with the merging scale values at the minima in the legends.

12.4 Multi-jet merging for DY+jets with varying masses

12.4.1 Jets associated with DY from 60 to 800 GeV

We have generated six sets of hard scattering Drell-Yan events in LHE format using
MadGraph5_amc@nlo [55]. These sets differ in the invariant mass of the di-lepton pairs
which allows us to determine the relation between the optimal merging scale and the
hard scale of the process.

The hard scattering events with a 𝑍 boson that decays to two leptons along with 0, 1,
2 or 3 jets are generated at a center-of-mass energy of

√
𝑠 = 13 TeV. A generation cut of

𝜇𝑐 = 16 GeV is applied and the pseudorapidity of the leptons is limited to 𝜂max
𝑙

= 2.7. The
default PDF used by MG5_aMC for generating momentum fractions and selecting parton
flavours is NNPDF23_nlo_as_0119, which is globally fitted and has 𝛼s(𝑚𝑍) = 0.119.

Each set of LHE files contains 103 × 105 events, differing solely in the selection of hard
scales𝑄, achieved by applying selection limits on the invariant di-lepton mass𝑚𝑙𝑙 . With a
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small lower limit𝑚min
𝑙𝑙

= 40 GeV, the majority of the events have a di-lepton invariant mass
close to the resonance (𝑍 boson) mass,𝑚𝑙𝑙 ≃ 𝑚𝑍 = 91.2 GeV. For hard scale selections that
are significantly larger than the mass of the 𝑍 boson, there is no need for an upper limit.
This is due to the rapid fall-off of the mass distribution (1/𝑚4

𝑙𝑙
) such that the majority of

events occur at masses close to the lower limit. However, for hard scale selections below
the 𝑍 boson mass, both lower and upper limits on 𝑚𝑙𝑙 are necessary.

The following six large-scale scenarios are generated and analyzed in accordance with
the previous subsections:

Q = 60 GeV. At this scale, the DY mass distribution is relatively uniform. The generation
of di-lepton masses near this value is only assured by imposing both lower and upper
limits that are close to 𝑄. We confine the di-lepton invariant mass between 𝑚min

𝑙𝑙
= 58

GeV and 𝑚max
𝑙𝑙

= 62 GeV. The generation cut is decreased to 𝜇𝑐 = 10 GeV to enable us to
lower the merging scale down to 16 GeV in this scenario.

Q = mZ = 91.2 GeV. With a lower di-lepton mass limit smaller than 𝑚𝑍 and no upper
mass limit, inclusion of the resonance peak automatically guarantees that the majority
of the events have 𝑚𝑙𝑙 ≃ 91.2 GeV. To avoid generating numerous hard virtual photons, a
lower mass limit of 𝑚min

𝑙𝑙
= 40 GeV is used.

Q = 250 GeV, Q = 400 GeV, Q = 600 GeV and Q = 800 GeV. These hard scattering
events were achieved through lower mass limits of 𝑚min

𝑙𝑙
= 250 GeV, 𝑚min

𝑙𝑙
= 600 GeV and

𝑚min
𝑙𝑙

= 800 GeV, respectively.

Transverse momentum boosting, showering, and TMD merging are performed by Cas-
cade3 with PB-TMD-Set2 and merging parameters of 𝑅clus = 1.4 and 𝜂𝑚𝑎𝑥clus = 5.0. We
performed this calculation multiple times with different merging scales within a wide
range of values from 16 GeV up to 200 GeV.

DJRs are calculated for all six sets and applying the algorithm described in section 12.1
yields three sets of discontinuities for each hard scale. The differential cross sections
d𝜎/d log(

√
di,(i+1)/GeV2) only include data from the 𝑖-jet and (𝑖+1)-jet samples. Parabolic

curves are fitted near the minimum of these distributions to determine a merging scale
𝜇(0)
𝑚,𝑘

. We calculated the bin size uncertainty using the formula presented in Eq. 12.9.
Additionally, we performed statistical variations to determine statistical errors. The
figures illustrating the results can be found in Fig. 12.7. Tabulated presentations of the
results are detailed in Tab. 12.1 from the 𝑑01 analysis and in Tab. 12.2 from the analysis
of 𝑑12.

Overestimation of the merging scale appears to be less harmful than an underestimation
of the merging scale because the discontinuity distribution has a less steep slope towards
higher scales on the right of the minimum compared to the slope on the left. However,
in logarithmic scale (as shown in Figs. 12.4 and 12.6), this picture gets shifted and the
curve becomes more symmetric. At hard scales below and near the 𝑍 boson mass,
specifically 𝑄 = 60 GeV and 𝑄 = 91.2 GeV, a large merging scale is unfavorable due to
large discontinuities.
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Figure 12.7: Discontinuity in 𝑑01 for samples of merging scales and a quadratic fit through points
near the minimum.

The statistical uncertainty is small due to the large number of events in the DJRs 𝑑01
and 𝑑12. The decision to use these DJRs was made to minimize the uncertainty and to
eliminate additional dependence on the parton shower. The uncertainties associated with
the bin size are large compared to the statistical fluctuations. On average, the uncertainty
resulting from bin size variation is 3.4% for 𝑑01 and 2.7% for 𝑑12.



174 CHAPTER 12. A SLIDING MERGING SCALE

Δ log
(√
𝑑01/GeV2

)
𝑄 (GeV) 0.015 0.030 0.045 𝜎𝑏𝑖𝑛. 𝜎𝑠𝑡𝑎𝑡. ⟨𝜇(0)

𝑚 ⟩ ± 𝜎𝜇𝑚 (GeV)
60.0 26.28 25.38 23.66 1.31 0.01 25.1 ± 1.4
91.2 30.25 29.41 28.13 1.06 0.03 29.3 ± 1.1

250.0 57.17 55.98 52.93 2.12 0.31 55.4 ± 2.2
400.0 57.11 58.75 56.47 1.14 0.28 57.4 ± 1.2
600.0 70.10 68.68 60.00 5.05 0.55 66.3 ± 5.1
800.0 74.14 73.75 65.16 4.49 0.34 71.0 ± 4.5

Table 12.1: Results of 𝜇(0)𝑚 for different bin sizes within 𝑑01 distributions. The final central value
⟨𝜇(0)𝑚 ⟩ is obtained by averaging results from different bin sizes. The total uncertainty is given by
𝜎𝜇𝑚 .

𝑄 (GeV) ⟨𝜇(0)
𝑚 ⟩ ± 𝜎𝜇𝑚 (GeV)

60.0 20.1 ± 1.4
91.2 26.2 ± 1.0

250.0 43.6 ± 2.0
400.0 58.4 ± 6.4
600.0 62.7 ± 4.4
800.0 66.0 ± 4.6

Table 12.2: Results of ⟨𝜇(0)𝑚 ⟩ obtained from 𝑑12 distributions. The total uncertainty is given by 𝜎𝜇𝑚
including bin size uncertainties and statistical uncertainties.

12.4.2 Mass dependence of the merging scale

The results for ⟨𝜇(0)
𝑚 ⟩ at various hard scales yield distributions 𝜇(0)

𝑚 (𝑄) that are shown in
Fig. 12.8. Our analysis shows that the merging scale results are non-linearly dependent
on the hard scale, which contradicts the ansatz given in Sec. 12.1, stating that the merging
scale should be between one-sixth and one-third of the hard scale. A suppression of the
merging scale towards large𝑄 is observed. Thus, we propose a new ansatz that depends
on the di-lepton mass as follows:

𝜇(0)
𝑚 (𝑚𝑙𝑙) = 𝑚𝑍

(
𝑎 + 𝑏 ln

(
𝑚𝑙𝑙

𝑚𝑍

))
(12.15)

where the 𝑍 boson mass serves as a regulator to fix the units.

Fitting the functional form presented in Eq. (12.15) to the data yields values for 𝑎 and 𝑏.
When applied to the data from 𝑑01, the fit produces:

𝜇(0)
𝑚 (𝑚𝑙𝑙) = 𝑚𝑍

(
0.34 + 0.20 ln

(
𝑚𝑙𝑙

𝑚𝑍

))
. (12.16)

A fit to the data from 𝑑12 results in:

𝜇(0)
𝑚 (𝑚𝑙𝑙) = 𝑚𝑍

(
0.29 + 0.20 ln

(
𝑚𝑙𝑙

𝑚𝑍

))
. (12.17)

The formulae (12.16) and (12.17) possess multiple characteristics, which we outline here.
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Figure 12.8: Data of ideal merging scales 𝜇(0)𝑚 against the hard scale 𝑄 obtained from minimum
discontinuities in 𝑑01 (left) and 𝑑12 (right).

• In the limit of Q approaching𝑚𝑍 , the merging scale is approximately 30 GeV, which
is equivalent to one-third of the 𝑍 boson’s mass. This aligns with the merging scale
that has been used in earlier studies where the 𝑍 boson’s mass was included in the
phase space. In this scenario, there is no logarithmic correction. It is crucial to note
that these results serve as guidelines for the merging scale, and a slight variance
should not significantly impact the outcome.

• When the hard scale reaches 20 GeV, the merging scale becomes zero and interaction
energies below 20 GeV would imply negative merging scales. At these energies,
calculating DY cross sections using multi-jet merging is not considered appropriate.

• There is a singularity present at the value of 𝑄 = 0. This is an unphysical hard
scale, i.e. no interaction takes place at 0 GeV, let alone an interaction including jets.

These are all limits and properties that confirm the accuracy of the obtained relations.
Figure 12.9 shows the data points and results from Eqs. (12.16) and (12.17) together.
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Figure 12.9: Merging scale distribution versus the hard scale.

12.5 Conclusion

For the first time, a method has been developed to quantify the discontinuity in differen-
tial jet rates. This is a means to study the effect of the merging scale in extreme kinematic
configurations in the LO TMD merging approach that is partially based on MLM. Other
effects that might cause discontinuities in DJRs, such as the mismatch of parton shower
resolution scales and matrix element generation cuts causing gaps in the phase space
that can be overcome by applying truncated showers [108], have not been addressed in
this study and are assumed to be uncorrelated to the dependence of the merging scale
on the hard scale.

The studies presented in this chapter have been performed in the Drell-Yan framework,
where the hard scale is equivalent to the di-lepton invariant mass. Multiple hard scales,
as in the case of pure QCD multi-jet events, increase the complexity of the issue. Similar
examinations may be carried out on pure multi-jet events. However, identification of the
hard scale becomes more challenging. It is unclear what the characteristic scale is, or
whether multiple scales must be accounted for in these situations. A possible factor to
consider would be the scalar sum of transverse momenta of the leading di-jet system.

High mass DY events indicate that a merging scale that is logarithmically dependent on
the di-lepton mass is consistent. This yields fits with Chi-squared values that are near 1,
and the fits resulting from analyses of 𝑑01 and 𝑑12 are highly similar.

We conclude that for DY events, the merging scale depends logarithmically on the di-
lepton mass, or equivalently, on the process’s hard scale.



Conclusions

In this thesis we have explored several strands of research into the Parton Branching
approach to TMD dynamics at high energy colliders, and obtained new results which
advance significantly the accuracy of transverse momentum dependent parton branching
methods and their applications.

After the first three introductory review chapters (Chapters 1, 2 and 3), the thesis’ key
achievements have been the following.

i) The study of phase-space constraints from soft-gluon angular ordering in PB TMD
evolution equations in Chapter 5, particularly concerning the soft-gluon resolution
scale [42], has allowed us to establish the relationship of PB TMD results with re-
sults from two widely-used approaches, the coherent-branching CMW approach and
the single-emission KMRW approach. Furthermore, this study has allowed us to de-
compose the PB TMD Sudakov form factor [48] into perturbative and non-perturbative
components, which we have analyzed in Chapter 6. Perturbatively, we have advanced
the Sudakov logarithmic accuracy of the PB TMD method to NNLL level, by exploiting
the physical soft-gluon coupling and its relationship with the collinear anomaly, on one
hand, and with the Collins-Soper kernel, on the other hand. Non-perturbatively, we have
performed the numerical determination of the large-distance, non-perturbative Sudakov
effects embodied in the Collins-Soper kernel, based on the PB TMD evaluation of DY
cross sections at small transverse momenta and varying masses.

A software tool providing a collection of fits and parameterizations of non-perturbative
TMD distributions, TMDlib2 [40], has been presented in Chapter 4.

ii) A parton shower MC event generator, Cascade3 [51], has been presented in Chapter 7,
based on the PB TMD approach investigated in the previous chapters. Here the Sudakov
form factor for backward initial-state showering is given, dependent on TMD distribu-
tions. This is the key ingredient to construct the TMD parton shower. The Cascade3
MC is a full hadron-level generator, including final-state showering, hadronization, and
options for interfacing the showers with hard scattering matrix elements, such as “match-
ing” and “merging” algorithms. Both such algorithms have been used to compute PB
TMD predictions for LHC processes.

iii) NLO “matched” predictions have been obtained for azimuthal Δ𝜙 correlations of
di-jet and 𝑍+jet final states in Chapters 8 and 9, respectively, focusing on TMD effects
near the back-to-back region across a broad kinematic range in the leading transverse
momentum. Experimental measurements of nearly back-to-back di-jets at the LHC have
been shown to be described well by theoretical predictions in which the form of the QCD
running coupling dictated by soft-gluon angular ordering is used [56].

Possible factorization-breaking effects have long been conjectured to arise in the back-to-
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back region due to soft-gluon interactions between initial and final states. It has been
proposed that the combined analysis of Δ𝜙 correlations in di-jet and 𝑍+jet events can
afford further insight into this, by exploiting the fact that at low 𝑝𝑇 the boson-jet state
is more strongly correlated azimuthally than the jet-jet state, while for 𝑝𝑇 far above
the electroweak scale the behaviors become more similar, and performing systematic
measurements for the cases of strong and weak azimuthal correlations [57].

iv) TMD “merging” has been applied to multi-jet final states in Chapter 11 and to 𝑍+jets
final states in Chapter 12 (after a brief introduction of the method in Chapter 10). In
Chapter 11, merged predictions have been computed for several observables in multi-jet
production at the LHC: jet transverse momenta, multiplicities and event shapes, including
thrust, sphericity, aplanarity, 𝐶- and𝐷-parameters. A phenomenological comparison has
been carried out with measurements performed by LHC experiments. This illustrates
that, by incorporating TMD evolution, the TMD merging approach is able to capture
detailed features of multi-jet events also at high multiplicities, well beyond the number
of partons generated in the fixed-order matrix element samples [60]. In Chapter 12 an
investigation has been performed into the dependence of merged predictions on the hard
scale of the underlying hard scattering process, using the example of 𝑍+jets production
with varying vector-boson invariant mass, from below the 𝑍 mass up to 800 GeV. The
main finding has been the determination of a “sliding”, i.e. hard scale dependent, merging
scale [61]. By a thorough analysis of the differential jet rates associated with 𝑍 production
across the examined mass range, we have determined a logarithmic increase in the
merging scale with invariant mass.
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Coefficients of perturbative functions of

the DGLAP splitting functions

In this appendix we denote the perturbative coefficients of the virtual terms of the DGLAP
splitting functions and the cusp anomalous dimension which are used throughout this
work. These are taken from the literature [38, 208, 300] and determined with identi-
cal conventions. We use an expansion in powers of 𝛼s/2𝜋 whereas in the literature,
expansions in 𝛼s/4𝜋 or 𝛼s/𝜋 are also commonly used.

The splitting functions 𝑃𝑎𝑏 were subdivided in three functions that can be written as
series expansions in the running coupling 𝛼s:

𝑑𝑎(𝛼s) =
∞∑
𝑛=1

( 𝛼s
2𝜋

)𝑛
𝑑
(𝑛−1)
𝑎 , 𝑘𝑎(𝛼s) =

∞∑
𝑛=1

( 𝛼s
2𝜋

)𝑛
𝑘
(𝑛−1)
𝑎 , (A.1)

𝑅𝑎𝑏(𝛼s , 𝑧) =
∞∑
𝑛=1

( 𝛼s
2𝜋

)𝑛
𝑅
(𝑛−1)
𝑎𝑏

(𝑧), (A.2)

where 𝑎 and 𝑏 are flavor indices for either quarks 𝑎 = 𝑞, antiquarks 𝑎 = 𝑞̄ or gluons 𝑎 = 𝑔.

The cusp anomalous dimension, as defined in the CSS2 formalism, has the following
perturbative expansion

𝛾
cusp
𝐾

(𝛼s) =
∞∑
𝑛=1

( 𝛼s
2𝜋

)𝑛
𝛾(𝑛−1)
𝐾

. (A.3)

The leading order coefficients of the DGLAP splitting functions for both quark and gluon
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splittings are given by

𝑘
(0)
𝑞𝑖 = 2𝐶𝐹 = 𝛾(0)

𝐾
/2, 𝑘

(0)
𝑔 = 2𝐶𝐴 , (A.4)

𝑑
(0)
𝑞𝑖 =

3
2𝐶𝐹 , 𝑑

(0)
𝑔 =

11
6 𝐶𝐴 − 2

3𝑇𝐹𝑁 𝑓 , (A.5)

𝑅
(0)
𝑔𝑔(𝑧) = 2𝐶𝐴

(
1 − 𝑧
𝑧

+ 𝑧(1 − 𝑧) − 1
)
, (A.6)

𝑅
(0)
𝑔𝑞𝑖 (𝑧) = 𝑅

(0)
𝑔𝑞̄𝑖

(𝑧) = 𝐶𝐹
1 + (1 − 𝑧)2

𝑧
, (A.7)

𝑅
(0)
𝑞𝑖 𝑔(𝑧) = 𝑅

(0)
𝑞̄𝑖 𝑔

(𝑧) = 𝑇𝑅
(
𝑧2 + (1 − 𝑧)2

)
, (A.8)

𝑅
(0)
𝑞𝑖 𝑞 𝑗 (𝑧) = 𝑅

(0)
𝑞̄𝑖 𝑞̄ 𝑗

(𝑧) = −𝐶𝐹(1 + 𝑧)𝛿𝑖 𝑗 , 𝑅
(0)
𝑞̄𝑖 𝑞 𝑗

= 𝑅
(0)
𝑞𝑖 𝑞̄ 𝑗

= 0, (A.9)

with the quark color factor 𝐶𝐹 =
𝑁2
𝑐 −1

2𝑁𝑐
= 3/2, gluon color factor 𝐶𝐴 = 3 and trace invariant

𝑇𝐹 = 1/2.

At next-to-leading order (NLO), the coefficients of 𝑘𝑎(𝛼s) and 𝑑𝑎(𝛼s) are given by

𝑘
(1)
𝑞 = 2𝐶𝐹𝛾(1)

𝐾
= 2𝐶𝐹𝐶𝐴

(
67
18 − 𝜋2

6

)
− 20

9 𝐶𝐹𝑇𝑅𝑁 𝑓 , (A.10)

𝑘
(1)
𝑔 = 2𝐶𝐴𝛾(1)

𝐾
= 2𝐶2

𝐴

(
67
18 − 𝜋2

6

)
− 20

9 𝐶𝐴𝑇𝑅𝑁 𝑓 , (A.11)

𝑑
(1)
𝑞 = 𝐶2

𝐹

(
3
8 − 𝜋2

2 + 6𝜁(3)
)
+ 𝐶𝐹𝐶𝐴

(
17
24 + 11

18𝜋
2 − 3𝜁(3)

)
− 𝐶𝐹𝑇𝑅𝑁 𝑓

(
1
6 + 2

9𝜋
2
)
, (A.12)

𝑑
(1)
𝑔 = 𝐶2

𝐴

(
8
3 + 3𝜁(3)

)
− 4

3𝐶𝐴𝑇𝑅𝑁 𝑓 − 𝐶𝐹𝑇𝑅𝑁 𝑓 . (A.13)

The two-loop contributions 𝑅(1)
𝑎𝑏

are given for quark-gluon and gluon-gluon cases by

𝑅
(1)
𝑔𝑞(𝑧) = 𝐶2

𝐹

[
− 5

2 − 7
2 𝑧 +

(
2 + 7

2 𝑧
)

ln 𝑧 +
(1

2 𝑧 − 1
)

ln2 𝑧 − 2𝑧 ln(1 − 𝑧)

−
(
3 ln(1 − 𝑧) + ln2(1 − 𝑧)

)
𝑝𝑔𝑞(𝑧)

]
+ 𝐶𝐹𝐶𝐴

[28
9 + 65

18 𝑧 +
44
9 𝑧2

+
(
− 12 − 5𝑧 − 8

3 𝑧
2
)

ln 𝑧 + (4 + 𝑧) ln2 𝑧 + 2𝑧 ln(1 − 𝑧) + 𝑝𝑔𝑞(𝑧)

×
(
− 2 ln 𝑧 ln(1 − 𝑧) + 1

2 ln2 𝑧 + 11
3 ln(1 − 𝑧) + ln2(1 − 𝑧) − 𝜋2

6 + 1
2

)
+ 𝑝𝑔𝑞(−𝑧)𝑆2(𝑧)

]
+ 𝐶𝐹𝑇𝑅𝑁 𝑓

[
− 4

3 𝑧 −
(20

9 + 4
3 ln(1 − 𝑧)

)
𝑝𝑔𝑞(𝑧)

]
, (A.14)
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𝑅
(1)
𝑞𝑔(𝑧) =

1
2𝐶𝐹𝑇𝑅

[
4 − 9𝑧 + (−1 + 4𝑧) ln 𝑧 + (−1 + 2𝑧) ln2 𝑧 + 4 ln(1 − 𝑧)

+
(
− 4 ln 𝑧 ln(1 − 𝑧) + 4 ln 𝑧 + 2 ln2 𝑧 − 4 ln(1 − 𝑧) + 2 ln2(1 − 𝑧)

− 2
3𝜋

2 + 10
)
𝑝𝑞𝑔(𝑧)

]
+ 1

2𝐶𝐴𝑇𝑅
[182

9 + 14
9 𝑧 + 40

9𝑧 +
(136

3 𝑧 − 38
3

)
ln 𝑧

− 4 ln(1 − 𝑧) − (2 + 8𝑧) ln2 𝑧 +
(
− ln2 𝑧 + 44

3 ln 𝑧 − 2 ln2(1 − 𝑧)

+ 4 ln(1 − 𝑧) + 𝜋2

3 − 218
9

)
𝑝𝑞𝑔(𝑧) + 2𝑝𝑞𝑔(−𝑧)𝑆2(𝑧)

]
(A.15)

and

𝑅
(1)
𝑔𝑔(𝑧) = 𝐶𝐹𝑇𝑅𝑁 𝑓

[
− 16 + 8𝑧 + 20

3 𝑧2 + 4
3𝑧 + (−6 − 10𝑧) ln 𝑧 + (−2 − 2𝑧) ln2 𝑧

]
+ 𝐶𝐴𝑇𝑅𝑁 𝑓

[
2 − 2𝑧 + 26

9 𝑧2 − 26
9𝑧 − 4

3 (1 + 𝑧) ln 𝑧 − 20
9

( 1
𝑧
− 2 + 𝑧 − 𝑧2

)]
+ 𝐶2

𝐴

[27
2 (1 − 𝑧) + 67

9

(
𝑧2 − 1

𝑧

)
+

(
− 25

3 + 11
3 𝑧 − 44

3 𝑧2
)

ln 𝑧

+ 4(1 + 𝑧) ln2 𝑧 + 2𝑝𝑔𝑔(−𝑧)𝑆2(𝑧) +
(
−4 ln 𝑧 ln(1 − 𝑧) + ln2 𝑧

)
𝑝𝑔𝑔(𝑧)

+
(67

9 − 𝜋2

3

) ( 1
𝑧
− 2 + 𝑧 − 𝑧2

)]
. (A.16)

𝑅
(1)
𝑞𝑞 (𝑧) = 𝐶2

𝐹

[
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2 𝑧
)

ln 𝑧 − 1
2

(
1 + 𝑧
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ln2 𝑧 + 2𝑝𝑞𝑞(−𝑧)𝑆2(𝑧)
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]
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2 ln2 𝑧
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𝑝𝑞𝑞(𝑧)
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6
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+ 𝐶𝐹𝑇𝑅𝑁 𝑓

[
− 16

3 + 40
3 𝑧 +

(
10𝑧 + 16

3 𝑧2 + 2
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× ln 𝑧 − 112
9 𝑧2 + 40
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3 ln 𝑧𝑝𝑞𝑞(𝑧) +

10
9 (𝑧 + 1)

]
. (A.17)

The next-to-next-to-leading order (NNLO) coefficients 𝑘
(2)
𝑎 are related to the cusp-

anomalous dimension and given by [300]

𝑘
(2)
𝑞 = 2𝐶𝐹𝛾(2)

𝐾
= 2𝐶𝐹

[
𝐶2
𝐴

(
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(
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54𝜋
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3𝜁(3)
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27𝑁
2
𝑓

]
(A.18)

and
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𝑘
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Coefficients of perturbative functions of

the CSS Sudakov form factor

The CSS coefficients are taken from [207]. To make the comparison with Appendix A
easier, we redefine them slightly by using the following definition of the perturbative
functions:

𝐴𝑎(𝛼s) =
∞∑
𝑛=1

( 𝛼s
2𝜋

)𝑛
𝐴

(𝑛)
𝑎 , 𝐵𝑎(𝛼s) =

∞∑
𝑛=1

( 𝛼s
2𝜋

)𝑛
𝐵
(𝑛)
𝑎 , (B.1)

instead of the originally [207] used 𝐴𝑎(𝛼s) =
∑∞
𝑛=1

( 𝛼s
𝜋

)𝑛
𝐴

(𝑛)
𝑎 (and analogous for 𝐵𝑎).

The LO coefficients of these functions are:

𝐴
(1)
𝑞 = 2𝐶𝐹 , 𝐴

(1)
𝑔 = 2𝐶𝐴 (B.2)

𝐵
(1)
𝑞 = −3𝐶𝐹 , 𝐵

(1)
𝑔 = −1

3 (11𝐶𝐴 − 2𝑁 𝑓 ). (B.3)

The NLO coefficients are:

𝐴
(2)
𝑎 = 2𝐶𝑎𝐶𝐴

(
67
18 − 𝜋2

6

)
− 20

9 𝐶𝑎𝑁 𝑓𝑇𝑅 , (B.4)

𝐵
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𝑞 = 𝐶2

𝐹

(
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9𝜋
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(B.5)

𝐵
(2)
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𝐴
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(
1
3 + 4

9𝜋
2
)
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2 𝐶𝐹𝐶𝐴 (B.6)

where the 𝐵(2)
𝑎 coefficients are given in DY resummation scheme [207]. The color index

𝑎 = {𝑞, 𝑔} indicates that for quarks 𝑎 = 𝑞, the colour factor is 𝐶𝐹 and for gluons 𝑎 = 𝑔,
the colour factor is 𝐶𝐴.

The NNLO coefficient of 𝐴𝑞(𝛼s) is

𝐴
(3)
𝑞 =𝐶2

𝐴

(
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+ 𝜋𝛽0

2

(
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(
808
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)
.
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Appendix

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
Cascade3 documentation

In Cascade3 all variables are declared as Double Precision. With Cascade3 the source
of Pythia6.428 is included to avoid difficulties in linking.

Random Numbers

Cascade3 uses the RANLUX [301] random number generator, with luxory level LUX = 4.
The random number seed can be set via the environment variable CASEED, the default
value is CASEED=12345.

Event Output

When HEPMC is included, generated events are written out in HEPMC [81] format for
further processing. The environment variable HEPMCOUT is used to specify the file name,
by default this variable is set to HEPMCOUT=/dev/null.

The HEPMC events can be further processed, for example with Rivet [83].

Input parameters

The input parameters are steered via steering files. The new format of steering is dis-
cussed in the next subsection and should be used when reading LHE files, while the
other format, which is appropriate for the internal off-shell processes, is discussed in the
subsection after that.

Examples for steering files are under $install_path/share/cascade/LHE.
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Steering file

&CASCADE_input
NrEvents = -1 ! Nr of events to process
Process_Id = -1 ! Read LHE file
Hadronisation = 0 ! Hadronisation (on =1, off = 0)
SpaceShower = 1 ! Space-like Parton Shower
SpaceShowerOrderAlphas=2 ! Order alphas in Space Shower
TimeShower = 1 ! Time-like Parton Shower
ScaleTimeShower = 4 ! Scale choice for Time-like Shower
! 1: 2(m^2_1t+m^2_2t)
! 2: shat
! 3: 2(m^2_1+m^2_2)
! 4: 2*scalup (from lhe file)
!ScaleFactorFinalShower = 1. ! scale factor for Final State Parton Shower
PartonEvolution = 2 ! type of parton evolution in Space-like Shower
! 1: CCFM
! 2: full all flavor TMD evolution
! EnergyShareRemnant = 4 ! energy sharing in proton remnant
! 1: (a+1)(1-z)**a, <z>=1/(a+2)=1/3
! 2: (a+1)(1-z)**a, <z>=1/(a+2)=mq/(mq+mQ
! 3: N/(z(1-1/z-c/(1-z))**2), c=(mq/mQ)**2
! 4: PYZDIS: KFL1=1
! Remnant = 0 ! =0 no remnant treatment
PartonDensity = 102200 ! use TMDlib: PB-TMDNLO-set2
! PartonDensity = 102100 ! use TMDlib: PB-TMDNLO-set1
! TMDDensityPath= ’./share’ ! Path to TMD density for internal files
Uncertainty_TMD = 0 ! calculate and store uncertainty TMD pdfs
lheInput=’MCatNLO-example.lhe’ ! LHE input file
lheHasOnShellPartons = 1 ! = 0 LHE file has off-shell parton configuration
lheReweightTMD = 0 ! Reweight with new TMD given in PartonDensity
lheScale = 2 ! Scale defintion for TMD
! 0: use scalup
! 1: use shat
! 2: use 1/2 Sum pt^2 of final parton/particles
! 3: use shat for Born and 1/2 Sum pt^2 of final parton(particle)
! 4: use shat for Born and max pt of most forward/backward
! parton(particle)
lheNBornpart = 2 ! Nr of hard partons (particles) (Born process)
ScaleFactorMatchingScale = 2. ! Scale factor for matching scale when including TMDs
&End

&PYTHIA6_input
P6_Itune = 370 ! Retune of Perugia 2011 w CTEQ6L1 (Oct 2012)
! P6_MSTJ(41) = 1 ! (D = 2) type of branchings allowed in shower.
! 1: only QCD
! 2: QCD and photons off quarks and leptons
P6_MSTJ(45) = 4 ! Nr of flavors in final state shower: g->qqbar
P6_PMAS(4,1)= 1.6 ! charm mass
P6_PMAS(5,1)= 4.75 ! bottom mass
P6_MSTJ(48) = 1 ! (D=0), 0=no max. angle, 1=max angle def. in PARJ(85)
! P6_MSTU(111) = 1 ! = 0 : alpha_s is fixed, =1 first order; =2 2nd order;
! P6_PARU(112) = 0.2 ! lambda QCD
P6_MSTU(112)= 4 ! nr of flavours wrt lambda_QCD
P6_MSTU(113)= ! min nr of flavours for alphas
P6_MSTU(114)= 5 ! max nr of flavours for alphas
&End
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Program Summary

Title of Program: Cascade3.1.0

Computer for which the program is designed and others on which it is operable: any
with standard Fortran77 (gfortran)

Programming Language used: FORTRAN77

High-speed storage required: No

Keywords: QCD, TMD parton distributions.

Method of solution: Since measurements involve complex cuts and multi-particle
final states, the ideal tool for any theoretical description of the data is a Monte Carlo
event generator which generates initial state parton showers according to Transverse
Momentum Dependent (TMD) parton densities, in a backward evolution, which follows
the evolution equation as used for the determination of the TMD.

Restrictions on the complexity of the problem: Any LHE file (with on-shell or off-
shell) initial state partons can be processed.

Other Program used: Pythia (version > 6.4) for final state parton shower and hadronization,
Bases/Spring 5.1 for integration (both supplied with the program package),
TMDlib as a library for TMD parton densities.
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