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Samenvatting

X-stralen Computer Tomografie (CT) is een krachtige beeldvormingstechniek die

visualisatie van de interne structuur van een object mogelijk maakt door het op-

nemen van een reeks X-stralen projecties vanuit verschillende projectierichtingen.

Fase Contrast Computer Tomografie (PCCT) is een uitbreiding van X-stralen CT

waarmee zowel de verdeling van de imaginaire brekingsindex als de verstrooiing in

een object gevisualiseerd kunnen worden. Beide technieken hebben veel toepas-

singen in verschillende domeinen zoals medische beeldvorming, materiaal weten-

schap, inspectie, etc.

De kwaliteit van een reconstructie is sterk afhankelijk van het aantal opgenomen

X-stralen projecties en hun angulaire verdeling. Vaak kan slechts een beperkt aan-

tal X-stralen projecties opgenomen worden waardoor conventionele reconstructie-

algorithmes (zoals FBP en SIRT) er niet in slagen goede reconstructies te maken.

Bovendien zorgen niet-conventionele acquisitiegeometrieën voor extra uitdagingen

in het reconstructieproces. Na de reconstructie en voor de beeldanalyse worden

vaak nabewerkingsalgoritmes toegepast op de reconstructiedata om de analyse te

vereenvoudigen. Segmentatie- en beeldfusie-algoritmes in het geval van PCCT zijn

frequent gebruikte voorbeelden. Echter, de beelden na de nabewerking hebben dik-

wijls dezelfde artefacten als de gereconstrueerde beelden en de algoritmes vragen

extra tijd.

De rode draad doorheen deze thesis is de zoektocht naar reconstructie-algoritmes

die adequate reconstructies kunnen opleveren in het geval dat slechts een beperkt

aantal projectiebeelden opgenomen kunnen worden. De sleutel hiertoe is het ver-

rijken van de algoritmes met voorkennis over de objecten die gëınspecteerd worden.

Deze voorkennis kan komen van de vorm of de materiaalsamenstelling van het ob-

ject of van vorige scans van gelijkaardige objecten. De thesis is onderverdeeld

in drie delen. In het eerste deel worden de basisconcepten van transmissie CT

en PCCT uitgelegd. Het tweede deel focust op inline inspectie van objecten met

transmissie X-stralen CT. Het reconstructie-algoritme dat hiervoor werd ontwik-

keld werd toegepast op twee verschillende applicaties. In het derde deel is PCCT de

belangrijkste beelvormingstechniek. Hier wordt een alternatief voorgesteld voor de

wieg van Euler en worden beeldfusie en segmentatie gebruikt om de reconstructie

kwaliteit te verbeteren van data die opgenomen is met een lage kwaliteit.

Deel I: Introductie

In de eerste twee hoofdstukken zal de lezer kennis maken met de basis van trans-

missie Computer Tomografie (hoofdstuk 1) en Fase Contrast Computer Tomografie
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SAMENVATTING

(hoofdstuk 2). Zowel de basis fysica achter X-stralen tomografie als de meest con-

ventionele reconstructie-algoritmes worden besproken. De concepten die aange-

raakt worden in deze hoofdstukken zijn cruciaal om de volgende hoofdstukken te

begrijpen.

Deel II: Inline X-stralen inspectie

In dit deel staat de ontwikkeling van reconstructie-algoritmes voor inline kwaliteitsin-

spectie van producten centraal.

Hoofdstuk 3 – NN-hFBP voor snelle inline X-stralen inspectie

Door de hoge eisen van klanten in de voedingsindustrie stijgt de vraag naar in-

dividuele X-stralen inspectie van producten. De haalbaarheid van deze vraag

hangt af van de snelheid van de acquisitie en de daaropvolgende reconstructie.

Meestal wordt een afweging gemaakt tussen de reconstructietijd en de reconstruc-

tiekwaliteit. Conventionele reconstructie algoritmes zijn dikwijls ofwel snel maar

presteren slecht met beperkte data ofwel vereisen ze te veel reconstructietijd.

In dit hoofdstuk introduceren we een snel reconstructie-algoritme voor de inline

inspectie van objecten dat voorkennis gebruikt om de reconstructie te verbeteren.

Data van eerder gescande objecten met reconstructies van goede kwaliteit wordt

gebruikt om de filters van verschillende hFBP reconstructie algoritmes te trainen

met een neuraal netwerk. De combinatie van deze hFBP reconstructies resulteert

in een finaal reconstructiebeeld.

Het algoritme werd gevalideerd met simulatie data van appels en paprika's
en reële scans van walnoten. D resultaten tonen dat het NN-hFBP algoritme

in staat is om adequate reconstructies te verkrijgen in een zeer korte tijd die

de reconstructie kwaliteit verkregen met FBP and SIRT overstijgen, waardoor

individuele X-stralen inspectie haalbaar wordt.

Hoofdstuk 4 – Inline detectie van barsten

In een productie proces is het cruciaal dat defecten in individuele onderdelen vroeg

gedetecteerd worden alvorens de componenten samengesteld worden in een groter

product. Hierdoor kan het weggooien van andere, goede componenten vermeden

worden. De inspectietijd is een belangrijke factor die mede bepaald of de individu-

ele inspectie haalbaar is.

In dit hoofdstuk wordt een detectieprocess voorgesteld dat bestaat uit twee

stappen: een stap waarin de objecten gereconstrueerd worden en daarop volgend

een classificatiestap. In de eerste stap wordt het NN-hFBP algorithme, dat ont-

wikkeld werd in het vorige hoofdstuk, aangepast voor de inline inspectiegeometrie
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van SVS adaptors. Vervolgens is een methode ontwikkeld om de barsten te de-

tecteren op de gereconstrueerde afbeeldingen. Beide stappen moeten uitgevoerd

worden in een zeer korte tijd.

Het algorithme werd gevalideerd op reële scans van SVS adaptors. De resul-

taten tonen dat de NN-hFBP voldoet aan de vereisten voor het inline reconstructie-

algorithme en dat de detectie van de barsten uitgevoerd kan worden binnen een

acceptabele tijd met een gelijkaardige accuraatheid.

Deel III: TLGI Reconstructie algoritmes

In dit deel worden twee methoden gëıntroduceerd die als doel hebben om de re-

constructiekwaliteit van TLGI data te verbeteren.

Hoofdstuk 5 – Dubbele-as Tomografie

Met een TLGI kunnen verstrooiing en faseveranderingen die veroorzaakt worden

door een object enkel gemeten worden in één richting. Bovendien is de correctheid

van de gemeten faseveranderingen sterk afhankelijk van de hoeveelheid verstrooi-

ing. Hierdoor is de informatie in de projectiedata vaak onvolledige waardoor de

resulterende reconstructies van lage kwaliteit zijn. Een wieg van Euler is een toes-

tel waarmee veel projecties in verschillende vlakken opgenomen kunnen worden

maar ten koste van een hoge acquisitietijd.

In dit hoofdstuk wordt een dubbele-as scan voorgesteld als een alternatief voor de

wieg van Euler voor CFRP stalen. Hier wordt projectiedata van twee loodrechte

oriëntaties opgenomen om de vezelbundels te visualiseren waardoor de acquisitie-

tijd aanzienlijk daalt. Op basis van de opgenomen projectie data kan ook een

verstrooiingstensor geconstrueerd worden in elke voxel.

Een eerste validatie van de method is gedaan op een CFRP staal. De dubbele-as

reconstructies van DFC en DPC data bevatten duidelijk meer informatie en een

hogere beeldkwaliteit in vergelijking met de conventionele reconstructies om één

as.

Hoofdstuk 6 – Discrete Fase Contrast Computer Tomografie: MV-DART

Voor de detectie van vezelbundels in een CFRP staal wordt beeldsegmentatie uit-

gevoerd in PCCT op de gereconstrueerde AC, DFC en DPC beelden of op het

gecombineerde beeld verkregen door beeldfusie. Hierdoor worden artefacten in

de gereconstrueerde beelden doorgegeven naar het gefuseerde beeld en het geseg-

menteerde beeld.

In dit hoofdstuk wordt het MV-DART algoritme met en zonder DFC weging

voorgesteld waarmee een discreet reconstructiebeeld gecreëerd wordt gebaseerd

op de gecombineerde informatie van de AC, DPC en DFC projectie data. Door
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de combinatie van de verschillende modaliteiten in het reconstructie-algoritme,

kunnen artefacten in een van de modaliteiten gecorrigeerd worden om een gefuseerd

reconstructiebeeld te creëren. Omdat dit beeld discreet is, is geen additioneel

segmentatie-algoritme vereist.

Eerste testen zijn uitgevoerd met het algoritme op simulatie en reële data. Ze

tonen aan dat de combinatie van de modaliteiten in het reconstructie-algoritme de

reconstructie kwaliteit significant verbetert in het geval dat geen onderscheid kan

gemaakt worden tussen verschillende materialen in een modaliteit of wanneer de

data van slechte kwaliteit is door artefacten.

Deel IV: Conclusies en Appendices

In dit deel worden algemene conclusies gepresenteerd over het werk dat besproken

werd in de vorige hoofdstukken.
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Summary

X-ray Computed Tomography (CT) is a very powerful imaging technique that al-

lows to visualize the internal structure of an object non-destructively by acquiring

a set of X-ray projection images at various projection directions. Phase Contrast

Computed Tomography (PCCT) is an extension to X-ray CT in which both the

distribution of the whole imaginary refractive index and the scattering inside an

object are visualized. Both techniques have many applications in various fields

such as medical imaging, materials science, inspection, etc.

The quality of a reconstruction is highly dependent on the number of X-ray

projections and their angular distribution. Often, only limited projection data

can be acquired, for which conventional reconstruction algorithms (like FBP and

SIRT) fail to provide good reconstructions. Moreover, non-conventional acqui-

sition geometries impose extra challenges on the reconstruction process. After

reconstruction and prior to image analysis, post-processing algorithms are often

performed on the reconstruction data that aid the analysis. Segmentation and

image fusion algorithms in case of PCCT are frequently used examples. How-

ever, the images after post-processing often suffer from the same artefacts as the

reconstructed images and the algorithms require additional time.

The central theme throughout this thesis is the search for reconstruction al-

gorithms that still provide adequate reconstructions in case of limited projection

data. The key here is to enrich the algorithm with prior knowledge on the ob-

jects that are inspected. This prior knowledge can be obtained from the shape

or material composition of the object, or from previous scans of similar objects.

The dissertation is divided into three parts. In the first part, the basic concepts

of transmission CT and PCCT are explained. The second part focuses on inline

inspection of objects with transmission X-ray CT. The algorithm is engineered for

two different applications. In the third part, the main imaging method is PCCT.

An alternative to the Eulerian cradle is proposed and image fusion and segmenta-

tion are used to improve the reconstruction quality of highly corrupted data.

Part I: Introduction

In the first two chapters, the reader will become familiar with the basics of trans-

mission Computed Tomography (chapter 1) and Phase Contrast Computed To-

mography (chapter 2). The basic physics behind X-ray imaging as well as the

most conventional reconstruction algorithms are discussed. The concepts touched

upon in these chapters are crucial to understand the remaining chapters.
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Part II: Inline X-ray Inspection

This part focusses on the development of reconstruction algorithms for inline qua-

lity inspection of objects.

Chapter 3 – NN-hFBP for fast inline X-ray inspection

Due to high consumer demands in the food industry, the need for individual X-

ray inspection of products arises. The feasibility of this demand depends on the

speed of the imaging and subsequent reconstruction. Typically a trade-off is made

between the reconstruction time and quality. Conventional reconstruction algo-

rithms are often either fast but perform poorly with limited data or require too

much reconstruction time.

In this chapter, we introduce a very fast reconstruction algorithm for inline

inspection of objects that uses prior knowledge to improve the reconstruction.

Data from previously scanned object with high quality reconstructions is used to

train the filters of several hFBP reconstruction algorithms with a neural network.

Combination of the hFBP reconstructions provides the final reconstruction image.

The algorithm is validated on simulation data of apples and bell peppers and

real scans of walnuts. Results show that the NN-hFBP algorithm is capable of

providing adequate reconstructions which surpass the reconstructions of FBP and

SIRT in a very short time, making individual X-ray inspection feasible.

Chapter 4 – Inline Crack Detection

Early detection of defects in individual parts during the manufacturing process

is crucial before the components are composed into a larger products. If early

detection can be achieved, wasting other, good components can be avoided. The

inspection time is an important factor indicating the feasibility of individual inline

inspection.

In this chapter, a detection process is proposed consisting of two steps: an

object reconstruction step and a classification step. In the first step, the NN-hFBP

algorithm, developed in the previous chapter, is adapted for the inline inspection

set-up of SVS adapters. Secondly, a crack detection method is developed that can

be applied on the reconstructed images. Both steps should be performed in a very

limited time.

The algorithm is validated on real scans of SVS adapters. Results show that

the NN-hFBP meets the requirements for the inline reconstruction algorithm and

the crack detection can be performed in an acceptable time frame with similar

accuracy.
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Part III: TLGI Reconstruction Algorithms

In this part, two methods are introduced that aim to improve the reconstruction

quality of TLGI data.

Chapter 5 – Dual-axis Tomography

With a TLGI, the small angle scattering and phase shifts induced by the sample can

only be measured in one direction. The accuracy of the phase shift measurement

is furthermore highly dependent on the amount of scattering. The information in

the projection data is therefore incomplete, which results in poor reconstructions.

An Eulerian cradle is a piece of equipment that allows to acquire many projections

in various planes but at the cost of a very large acquisition time.

In this chapter, a dual-axis scan is proposed as an alternative to the Eulerian cradle

for CFRP samples. Projection data of two perpendicular orientations is acquired

to visualize the fiber bundles, which highly reduces the acquisition time. Based on

the projection data, a scattering tensor in each voxel can be constructed.

A first validation of the method is performed on a CFRP sample. The dual-axis

reconstructions of DFC and DPC data clearly show additional information and an

improved image quality compared to the single-axis reconstructions.

Chapter 6 – Discrete Phase Contrast Computed Tomography: MV-DART

For detection of fibre bundles in CFRP samples, posterior image segmentation

is performed in PCCT on the reconstructed AC, DFC and DPC images or on a

combined image obtained with posterior image fusion. As a result, artefacts in the

reconstructed images propagate to the fused image and the segmented image.

In this chapter, the MV-DART algorithm with and without DFC weighting is pro-

posed in which a discrete reconstruction image is created based on the combined

information of the AC, DPC and DFC projection data. Due to combination of the

different modalities in the reconstruction algorithm, artefacts in one modality can

be corrected for in time before a fused reconstructed image is created. Since the

fused image is discrete, no additional segmentation algorithm is required.

Preliminary tests are performed with the algorithm on simulated and real data.

They indicate that combination of the modalities in the reconstruction algorithm

can improve the reconstructed image in case different materials cannot be distin-

guished in one modality or when the data is of low quality due to artefacts. Further

testing is however required for proper validation.
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Part IV: Conclusions and Appendices

In this part, general conclusions on the work discussed in the previous chapters

are presented.
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CHAPTER 1. TRANSMISSION X-RAY TOMOGRAPHY

In this chapter, a brief introduction is given on the physical processes un-

derpinning X-ray imaging and the mathematical algorithms behind transmission

Computed Tomography (CT). X-ray CT is an advanced imaging technique which

allows to visualize the interior structure of objects non-destructively. A set of

X-ray images or radiographic projections are taken around an object at different

projection directions as shown in Fig. 1.1a. Based on the information enclosed

in the projections, mathematical algorithms are used to reconstruct the interior

structure of the object. The process is visualised in Fig. 1.1b. The chapter starts

with a brief history on X-ray imaging and transmission CT. In Section 1.2, the

physical process of how the X-ray projections are acquired is explained. After the

generation of X-rays is discussed, a closer look is taken at their interactions with

materials and finally the detection of X-rays is explained. The section ends with

a description of the most common X-ray scanning geometries. The mathematical

algorithms that can be used to obtain reconstructions are described in Section 1.3.

They are divided in analytical, algebraic and statistical algorithms. Finally, the

chapter ends with an overview of several applications of transmission X-ray CT.

1.1 History of transmission X-ray tomography

In 1895, the German physicist Wilhelm Conrad Röntgen (Fig. 1.2a) discovered an

unknown type of radiation while experimenting with vacuum tubes. After placing

a Crookes tube covered with cardboard in a dark room, he applied an electrical

charge on it and discovered a fluorescent effect on a barium platinocyanide screen

one meter away from the tube. He concluded that invisible rays were passing

through the cardboard to make the screen glow, which he named X-rays. Röntgen

published his work in a very short time frame [1] and received the Nobel Price for

his discovery in 1901[2].

The first medical radiograph was made several weeks later when he photographed

the hand of his wife with the newly discovered X-rays. The photograph is shown

in Fig. 1.2b. Only then, the medical significance of his discovery became clear.

In the next couple of years, X-ray scanners were widely used in everyday life,

for example for shoe fitting and medical investigations. However, little by little,

the dangourous side-effects of the X-rays became clear when people started com-

plaining about bold spots, deformations, tumors etc. Soon it was understood that

radiation with X-rays could be harmful and should be used with caution.

Despite their danger, X-rays are still valuable for diagnostic medical purposes. To

improve their diagnostic value, it would be interesting to image slices through the

body instead of radiographs. This is the concept of CT. To do tomography, one

single radiograph is not sufficient. Several radiographs from different directions

around the body have to be acquired to create good reconstructions of the body

4
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(a) Acquisition of several radiographic projections.

?

(b) Reconstrution of the interior structure based on the acquired
projections.

Figure 1.1: Conceptual visualization of the two steps involved in X-ray CT of a bell pepper.
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(a) (b)

Figure 1.2: (a) Wilhelm Conrad Röntgen (b)The first X-ray image of the hand of Anna
Bertha, Röntgen’s wife [3].

slices. The basis for Computed Tomography was made by an Austrian mathemati-

cian Johann Radon through the introduction of the Radon Transform in 1917 [4].

This transform creates 1D projections from an object function f(x, y) defined on

a plane by taking line integrals. He also provided the inverse Radon Transform,

which he knew could be used to reconstruct the original object function f . Further

details on the Radon transform and its inverse will be given in Section 1.3.1.1.

In the 1930s, the first type of tomography, focal plane tomography, was developed

by an Italian radiologist Alessandro Vallebona [5]. In focal plane tomography, the

source and detector move simultaneously between two radiographs but in such a

way to keep a consistent exposure of the plane of interest. This results in a re-

duction of the superposition of structures and a sharper plane of interest. The

method has later on further developed to e.g. tomosynthesis. Despite this first

type of tomography, it took until 1963 and 1964, before an American physicist

Allan MacLeod Cormack published two papers on the theoretical substantiation

of computed tomography [6, 7]. The publications initially only got little atten-

tion. The attention came when in 1967, Sir Godfrey Hounsfield invented the first

commercial CT scanner [8], which put Cormack’s theoretical underpinning in a

real application. For their work, Cormack and Hounsfield recieved a Nobel Prize

in 1979. Hounsfield first tested his CT scanner on a preserved human brain. In

6
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1971, the scanner was introduced in medical practice, scanning a cerebral cyst of

a patient in London.

Throughout the years, the world of medicine has gone through seven generations of

CT scanners to obtain the high quality scans that are available today [9, 10]. First

generation scanners existed of a single source and a single detector pixel at which a

ray was casted as shown in Fig. 1.3a. To acquire a scan of one projection angle, the

source and detector pixel performed a linear translation. This way the exact num-

ber of parallel rays could be defined manually. In the second generation scanners,

the single detector pixel was replaced by several detector pixels placed in a line.

As a result, a fan beam was captured. In the scanner, translation of the source and

detector array was still needed for each projection angle to cover the whole field

of view. The third generation scanner has a fan-beam geometry. Fig. 1.3b shows

a schematic. In this scanner, the source is fixed in the middle and a large array

of detector pixels is placed on the opposite side. The fan-beam from the source to

the detector pixels covers the whole region of interest, and therefore, translation is

not necessary, causing a great decrease in scanning time. A fourth generation CT-

scanner is shown in Fig. 1.3c. The detectors form a fixed ring around the object to

be scanned and the source rotates in between. The scanner has a higher detector

efficiency, but the results are compromised by scattering. The fifth generation CT

scanner is an electron beam computed tomography (EBCT) scanner. An electron

beam swipes around a semicircular tungsten anode target so that the focal spot

moves around the patient and generates X-rays that are collimated in a fan-beam

and pass through the patient. The X-rays are detected on a large detector ring as

in the fourth generation scanners. The advantage of the method is that the scan-

ning is very fast and the source and detector do not rotate, but the system is very

expensive. The sixth generation CT scanner (Fig. 1.3d) is called the helical CT.

Here, the source and detector rotate around the patient as in the third or fourth

generation CT scanner, while the patient translates through the source detector

plane. In this way, several planes throughout the body can be scanned simultane-

ously. The seventh generation CT scanner is the multislice CT and emerges from

the need for scanning multiple slices at the same time. The detector has expanded

to multiple rows of detector pixels, which are all at the same time irradiated as

demonstrated in Fig. 1.3e. The scanner is called a cone-beam CT scanner. Details

on the parallel-beam, fan-beam and cone-beam scanning geometries will be given

in Section 1.2.4. Finally, nowadays the helical and cone-beam scanner are often

combined as in Fig. 1.3f to further reduce the scanning time.

Today, X-ray CT is also an important technique for biomedical research and

material science. For these applications, scanning is performed by a µCT scanner.

The scanners are often from the seventh generation or combine the cone-beam

and helical CT scanner and have a very high spatial resolution. An example

7
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source

detector pixel

source translation

source rotation

(a) First generation scanner: parallel beam

source

(b) Third generation scanner: fan beam

source

(c) Fourth generation scanner

source
(d) Sixth generation scanner: helical scan

source

(e) Seventh generation scanner: circular
cone beam

source
(f) Combination of sixth and seventh gen-
eration scanner: helical cone beam

Figure 1.3: Different generations of scanners
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of a µCT scanner is shown in Fig. 1.4a. Another way to scan biomedical and

material samples is at a synchrotron facility. A schematic of a synchrotron facility

is shown in Fig. 1.4b. There, electrons are accelerated to very high velocities

that approximate the speed of light. When these electrons are forced to change

direction, the emitted energy is in the X-ray wavelength. The resulting X-ray

beam is quasi monochromatic and has a high signal-to-noise ratio, which allows

high quality reconstructions [11].

(a) (b)

Figure 1.4: (a) micro-CT scanner of Bruker MicroCT: Bruker micro-CT Skyscan 1272 (b)
A photograph of the ESRF synchrotron facility near Grenoble in France.

Although very high quality scanners are available today, challenges remain.

Driven by time, cost and ethical constraints, a short scan time with few projec-

tions is often preferred with the drawback of a noisy reconstruction corrupted

with artefacts. Therefore, much work is done on improving the reconstruction

algorithms which translate the recorded projection data into a 3D rendering of the

scanned volume. In Section 1.3.1 and Section 1.3.2, more details will be given on

these reconstruction algorithms.

1.2 Image Acquisition

In this section, the acquisition process for an X-ray image or radiograph is con-

sidered. Therefore, the physics behind X-ray imaging are explained. First, the

generation of X-rays is discussed in Section 1.2.1. Then in Section 1.2.2 a closer

look is taken at the interactions that X-rays undergo when they pass through a

sample. Section 1.2.3 describes the detection of X-rays. And since the measured

projection images are dependent on the type of projection geometry in the scanner,

in Section 1.2.4, different projection geometries are studied.

9
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1.2.1 X-rays generation

X-rays are a type of electromagnetic radiation with an energy range between 100eV

and 100keV, wavelength between 10pm and 10nm and a frequency between 30 ·
1012Hz and 30 · 1015 Hz. They have wave-like properties that can be measured by

studying their interference pattern. On the other hand, they also exhibit particle-

like properties. In that case, they are described by a flow of photons with a specific

energy spectrum. In this chapter, we focus on the particle behaviour of the X-rays,

while the wave properties will be discussed in the next chapter.

The first X-rays were produced with a Crookes tube in 1895. Modern X-ray tubes

are a variant of the improved Coolidge tube [12]. An X-ray tube is a vacuum tube

with a tungsten filament that functions as a cathode through which an electric

current is sent and an anode that is often made of molybdenum coated with a

rhenium-alloyed tungsten. Fig. 1.6a shows a schematic of an X-ray tube. Through

a process called thermionic emission, the filament is heated until the thermal energy

exceeds the binding energy of the electrons of the filament and they are discharged

in a cloud around the filament. When a high voltage is then applied on the

anode, the electrons are accelerated towards the anode, creating a tube current

typically between 1 and 1200mA. When the electrons hit the anode, they interact

with the rhenium-tungsten material and emit a spectrum of X-rays. Two types of

interactions occur at the tungsten surface of the anode [9]:

• The incoming electron interacts with the nuclei of the surrounding atoms.

The positive charge of a nucleus attracts the moving electron causing the elec-

tron to bend and decelerate. The loss in kinetic energy is converted to elec-

tromagnetic photons. When the electron hits the nucleus, this energy loss is

maximum and equal to the anode-cathode potential. Typically, a continuous

spectrum of radiation is obtained which is referred to as brehmsstrahlung. It is

the smooth part of the X-ray spectrum in Fig. 1.5. Due to brehmsstrahlung,

X-ray sources are polychromatic. Photons with a very low energy are more

likely to be created but are often absorbed by the anode itself, causing the

brehmsstrahlung outside the tube to be zero at these energies. The intensity

of the brehmsstrahlung increases with the energy of the incident electron and

with the atomic number of the atom with which it interacts.

• The incoming electron ionizes the atom by collision with a K-shell electron.

Electrons from other shells can then fill in the vacancy of the missing electron,

while radiating an electromagnetic wave with a specific energy equal to the

difference in binding energy between the two shells. The binding energies of

the electrons on the different shells is fixed, giving the photons discrete energy

levels. The emitted photons are called characteristic x-rays and represent

the peaks in Fig. 1.5. For characteristic X-rays to be generated, the energy

10



1.2. IMAGE ACQUISITION

of the electrons should be sufficient to eject K-shell atoms. For a tungsten

anode, this energy should be at lease 57.984 keV.
nu

m
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Energy [keV] Emax

Brehmsstralung

Characteristic peaks

Figure 1.5: Schematic of the spectrum of X-rays that leave the X-ray tube.

An important issue of X-ray tubes is the production of heat. The filament is

made of Tungsten since it has a very high melting point (3370◦C), but the largest

problem occurs at the side of the anode. When the electrons accelerate towards

the anode, they are focused on a small spot of the anode, the focal spot. The size

of this spot is inversely related to the clarity of the measured projection images. A

larger spot size causes penumbra blurring and decreases the spatial resolution of the

X-ray projection. The modulation transfer function is a mathematical expression

that measures the image quality of the projection images. When the electron

beam hits the focal spot, only 1% of its kinetic energy is converted to X-rays, the

other 99% is converted to heat. By using a rotating anode disk, the heat can be

distributed more evenly over the anode. This anode is often used in medical CT.

The focal spot size that can be achieved with a rotating anode is however too large

for microCT applications. Microfocus X-ray tubes can achieve focal spot sizes of

5-20µm but at the cost of a very low power [13]. For instance, an X-ray tube with

a focal spot size of 10µm can only reach a power of 4-10W. An alternative is to

use a metal-jet-anode microfocus X-ray tube, where the anode is replaced by a jet

of liquid metal for better heat dissipation. With this X-ray tube, small focal spot

sizes can be achieved with a higher power [14, 15]. A metal-jet-anode microfocus

X-ray tube with the same focal spot size of 10µm as in the previous example can

now reach a power of 30-60W. The importance of the focal spot size is shown in

Fig. 1.6b.

A different way to generate X-rays is with a synchrotron light source. There,
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electron bundles are accelerated to a very high speed and then forced into a circular

path by magnets. Due to this deviation from a straight path, X-rays are emitted

with a energy directly related to the velocity of the electron bundle. The main

advantages of the resulting X-rays beams are that they are monochromatic and

have a high flux and brilliance [11, 16].

e-
e-

e-e-
cathode anode

window useful X-rays

vacuum

(a)

}

} Penumbra

Penumbra

source

(b)

Figure 1.6: (a) schematic of an X-ray tube (b) Penumbra blurring

1.2.2 X-ray - matter interactions

Visualization of internal structures with X-rays is possible due to their interacting

behaviour when passing through material. When the X-rays leave the X-ray tube,

they have an initial intensity I0. This intensity decreases along their path through

interactions with material. The intensity at each point along the path can be

written as I(ξ) where ξ denotes the position along the path of the X-rays. The

most important interactions that can occur between a photon and matter are:

• The Photoelectric effect: The incident photon interacts with the Coulomb

field of the nucleus. It is completely absorbed by the atom, causing the ejec-

tion of a photoelectron with an energy equal to the difference between the

energy of the photon and the electron’s binding energy. The vacancy in the

atom is then filled with an electron from a higher shell, creating another

photon (Fig. 1.7a).

• Coherent scattering: The energy of the incident photon is not enough to

eject an electron from its orbit as in Compton scattering. Therefore, the

energy of the photon remains unchanged but the photon changes direction.

Thomson scattering and Rayleigh scattering are two examples of coherent

scattering (Fig. 1.7b).

• Compton Scattering: The incident photon strikes a valence electron and
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ejects it from its orbit. Hereby, it changes direction and part of its energy is

transferred to the recoil electron (Fig. 1.7c).

• Pair production: By incidence of a photon with an energy that exceeds

twice the electron rest mass energy, the photon is absorbed and an electron-

positron pair is created. The kinetic energy of the pair is dependent on the

difference between the energy of the photon and twice the electron rest mass

energy [17] (Fig. 1.7d).

X-ray

Photoelectron

Photon

(a) The Photoelectric effect

X-ray X-ray

(b) Coherent scattering

X-ray
recoil electron

(c) Compton scattering

X-ray

electron

positron

(d) Pair Production

Figure 1.7: Various types of interactions between X-rays and material

From the four interactions, pair production never occurs for medical inspection

since the required energy of the incident photon clearly exceeds the photon energy

of clinical X-rays. Coherent scattering occurs very rarely and is therefore not rel-

evant for transmission X-ray inspection. However, in the next chapter, scattering

inside the object will be measured and visualized. Therefore, this type of interac-

tion is included in the list. For transmission X-ray imaging, the photoelectric effect

and Compton scattering are the two main interactions that reduce the measured

X-ray intensity. The likelihood of all previous effects happening in a material is

captured in the attenuation coefficient µ of the material, which depends on its
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atomic number. When an X-ray beam passes a distance ∆ξ through a material

where the attenuation factor is constant, the radiation intensity before the mate-

rial I(ξ) is then decreased based on the distance and the attenuation factor. The

radiation intensity after the distance becomes:

I(ξ + ∆ξ) = I(ξ)− µ(ξ)∆ξI(ξ).
�� ��1.1

From this equation, the Lambert-Beer law can be derived. The law describes the

exponential reduction of the intensity along an X-ray beam when it passes through

a material.

I = I0e
−

∫ s
0
µ(ξ)dξ.

�� ��1.2

Here, the intensity of the X-rays exponentially decreases along the line of the line

integral and the initial intensity I0 is known.

1.2.3 X-ray detection

After passing through an object, the X-ray beam has a certain intensity I. This

intensity is measured by a detector. The X-ray detector that Röntgen used was

a photographic plate. The first digital detector for radiography was a phosphor

plate, on which X-rays were recorded using photostimulated luminescence [18].

Nowadays, in CT, flat panel detectors are widely used. They either directly con-

vert X-ray photons into an electrical charge or convert X-ray photons into visible

light, which is subsequently converted to an electrical charge. From the electrical

charge, a digital image is created. Some important parameters for an X-ray de-

tector are its size, frame rate, spatial resolution, cost, dynamic range, uniformity,

noise characteristic, sensitivity, quantum efficiency and cost [19, 20].

The intensity that is measured at the detector can be described by the Beer-

Lambert law. However, ultimately, we are interested in the attenuation values µ

along the projection line. Therefore, before applying a reconstruction algorithm

to obtain these values, two preprocessing steps are performed. The first step is

a flatfield correction step, where the measured intensity is divided by the initial

intensity. In the second step, the negative logarithm is taken of the flatfield cor-

rected projections. This step is called log correction. Finally, the projection data

p that is used for image reconstruction is given in Eq. 1.3.

p =

∫ s

0

µ(ξ)dξ = −ln

(
I

I0

)
.

�� ��1.3

Eq. 1.2 and 1.3 are given for a monochromatic X-ray beam.
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1.2.4 Projection geometries

A reconstruction algorithms allows to create an image which visualizes the distri-

bution of the attenuation coefficients inside a volume. The form of the algorithm

depends on the projection geometry with which the X-ray images are acquired. In

this subsection, the most common projection geometries are discussed.

In 2D imaging, the most common geometries are a parallel beam or a fan beam

geometry. Typically, in both geometries, the source and detector rotate around

the object along a circular path. In parallel beam, the rays from source to detector

are parallel to each other. This can in practice only be achieved in a lab when the

source translates in a direction perpendicular to the casted rays (Fig. 1.3a). In a

fan beam geometry, the rays start from one point and open towards the detector

in the shape of a fan (Fig. 1.3b).

The equivalents of a parallel beam and fan beam geometry in 3D imaging are a par-

allel beam geometry in 3D and a cone beam geometry. The parallel beam geometry

is similar to the 2D equivalent, only the rays are now emitted on a plane instead of

a detector line. This geometry can be achieved at a synchrotron facility. In a cone

beam geometry, the photons form a cone from the source towards a 2D detector.

Two types of cone beam geometries are often used: a circular cone beam geometry

(Fig. 1.3e) and a helical cone beam geometry (Fig. 1.3f). In the first geometry,

the source and detector perform a circular path around the object. In the second

geometry, the source and detector describe a helical path around the object. The

last one is commonly used in medical CT. The geometries described here are the

most common X-ray scanning geometries. They are however not limited to these

examples. In Chapter 3 another scanning geometry will be described.

1.3 Reconstruction Methods

In the previous section, the acquisition of X-ray images or radiographs has been

discussed. Although X-ray images are valuable for example in different types of

inspection [21, 22, 23, 24], they do not provide detailed spatial information on the

scanned object since the projection accumulates all the attenuation values along a

line and projects them onto one detector pixel. To retreive the 3D information of

a sample, a reconstruction algorithm is required. This is an algorithm that takes

the 2D projections along many projection directions as an input and generates 3D

spatial information on the distribution of the attenuation coefficients at the inside

of an object as an output. Typically, reconstruction algorithms are divided into

3 types: analytical, algebraic and statistical reconstruction algorithms. These will

be discussed in Section 1.3.1-1.3.3.
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1.3.1 Analytical reconstruction methods

Analytical reconstruction methods tend to reconstruct an object function f(x, y),

which contains the attenuation coefficients µ at positions (x, y). The Radon trans-

form, described in Section 1.3.1.1 provides the mathematical basis for analytical

reconstruction methods. An important theorem for the Filtered Back Projection

is described in Section 1.3.1.3. After which the Filtered Back Projection is de-

scribed in Section 1.3.1.4 for parallel beam and in Section 1.3.1.5 for fan beam

data. The main advantage of analytical reconstruction methods is their short re-

construction time. Therefore, they are commonly used. Their major drawbacks

are that their projection geometry should be fixed and that they are inflexible in

terms of incorporating prior knowledge. The section ends with a description of

some 3D reconstruction methods and some analytical methods that try to exploit

prior knowledge.

1.3.1.1 Radon transform

In 2D parallel beam X-ray imaging, X-rays are passing through a sample as parallel

rays. Hereby, a 2D image f(x, y) is mapped onto a 1D projection. The process

is mathematically described by the Radon Transform [4, 25], where each ray is

represented as a line L. Each line L is then characterized by a certain projection

angle θ and a distance l to the origin. The projection angle θ is measured counter-

clockwise with respect to the y-axis. The lines are defined in 2D space as:

L(l, θ) = {(x, y) ∈ R2|xcosθ + ysinθ = l}.
�� ��1.4

The line integral through the function f(x, y) along line L(l, θ) is then given by:

pθ(l) =

∫
L(l,θ)

f(x, y)ds,
�� ��1.5

which can also be written as:

pθ(l) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(xcosθ + ysinθ − l)dxdy.
�� ��1.6

This projection function pθ(l) is equal to the log- and flatfield corrected projection

data recorded in X-ray imaging, since the projection data is the line integral of

the attenuation coefficients µ corresponding to each point (x, y) (Eq. 1.3). The

projection function is also the Radon transform Rf of f(x, y) at position (l, θ).

More generally, the Radon transform R is a transformation that maps the function
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Figure 1.8: Creation of a sinogram by an off-center point.

f(x, y) on the complete set of projection data:

f(x, y)
R←→ {pθ(l)|θ ∈ [0, π[, l ∈ R}.

�� ��1.7

The projection data is often called a sinogram, since an off-center point in the

object function describes a sinusoid in the projection data as shown in Fig. 1.8.

1.3.1.2 Simple Back Projection

The Radon transform provides useful information in the projection process of CT.

It is however the inverse problem that should be solved for reconstruction. It is

not straightforward to retrieve the attenuation values of the object function based

on the measured projection data. The most basic way to do so, is to smear out

the projection data as a constant value along the lines of the line integrals. The

reconstruction formula then becomes:

f(x, y) =

∫ π

0

p(l, θ)|l=xcosθ+ysinθdθ.
�� ��1.8

The reconstructions obtained with a simple back projection are blurry. After all,

the smearing operation is not the exact inverse of the Radon transform. A recon-

struction of the Shepp-Logan phantom [26] made with the Simple Back Projection

algorithm is shown in Fig. 1.11a. To obtain better reconstructions, more advanced
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methods are considered in the next sections. A simple back projection however

often serves as a base for more complex reconstruction algorithms.

1.3.1.3 Fourier slice theorem

Another way to retrieve the attenuation values of an object function based on its

projection data is by exploiting the Fourier Slice Theorem. This theorem is the key

to most analytical tomographic reconstruction algorithms. It states that the 1D

Fourier transform of the projection data pθ(l) is equal to a slice of the two dimen-

sional Fourier transform of the original object at angle θ [27, 28]. Theoretically,

based on the projection data, the original object can then be recovered by per-

forming a 2D inverse Fourier Transform. To proof the the Fourier Slice Theorem,

one starts with the two-dimensional Fourier transform of the object function:

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−i2π(ux+vy)dxdy.
�� ��1.9

Likewise, the one dimensional Fourier transform of a projection at angle θ is defined

as:

Pθ(ω) =

∫ ∞
−∞

pθ(l)e
−i2πωldl.

�� ��1.10

The projection data pθ(l) can be replaced by the line integral of Eq. 1.6:

Pθ(ω) =

∫ ∞
−∞

[∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(xcosθ + ysinθ − l)dxdy
]
e−i2πωldl,

�� ��1.11

Pθ(ω) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−i2πω(xcosθ+ysinθ)dxdy.
�� ��1.12

Comparing this equation to the two-dimensional Fourier transform of the object

function yields the following equality:

Pθ(ω) = F (ωcosθ, ωsinθ).
�� ��1.13

This proves that the one dimensional Fourier transform of a projection slice equals

a slice through the two-dimensional Fourier transform of the object function and it

is exactly the slice at angle θ. Fig. 1.9 shows a visual representation of the Fourier

Slice Theorem.

In tomography, various projections around the object are taken. When an

infinite number of projections could be acquired, the whole frequency space would

be sampled and F (u, v) would be known at all points in the uv-plane. In that

case, the original object function could be retrieved by performing an inverse
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Figure 1.9: The Fourier Slice Theorem

Fourier Transform on F (u, v). In practice however, the number of projections is

always finite causing F (u, v) to be known only along a finite number of radial

lines as shown by the grey circles in Fig. 1.10. To perform the inverse Fourier

transform on the Fourier data by the Fast Fourier Transform (FFT) algorithm

[29], the datapoints should be positioned on a regular grid, shown by the squares

in Fig. 1.10. Therefore, to reconstruct the data, interpolation in the Fourier space

is first required. Since the measured data points are positioned on radial lines, the

density of the radial points gets sparser for higher frequencies. This implies an

increase in the interpolation error for higher frequencies and reconstructions made

with the interpolated inverse FFT will be degraded and blurry. Although this

reconstruction method is not the preferred choice, other reconstruction algorithms,

like the Filtered Back Projection discussed in the next section, are built upon the

Fourier Slice Theorem.

1.3.1.4 Filtered Back Projection for parallel beam

To overcome the problems of the Fourier Slice Theorem, the Filtered Back Pro-

jection (FBP) algorithm is introduced [27, 28] . This algorithm incorporates an

extra filtering operation and replaces the inverse Fourier Transform by the previ-

ously introduced simple back projection. To derive the FBP algorithm, one starts

from the inverse Fourier Transform, but instead of using the squared coordinate

system (u, v), a polar coordinate system (q, θ) is considered implying the following
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u

v

Figure 1.10: Sampling of the Fourier space. Grey dots: radial sampling obtained by a FFT
of the projection data. Squares: regular sampling needed for inverse FFT.

(a) Simple Back Projection (b) Filtered Back Projection

Figure 1.11: Two different back projection algorithms.
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conversions:

u = qcosθ,
�� ��1.14

v = qsinθ,
�� ��1.15

dudv = qdqdθ.
�� ��1.16

The reconstruction formula then becomes:

f(x, y) =

∫ 2π

0

∫ ∞
0

F (q, θ)ei2πq(xcosθ+ysinθ)qdqdθ.
�� ��1.17

Since F (q, θ + π) = F (−q, θ), the equation can be rewritten as:

f(x, y) =

∫ π

0

∫ ∞
−∞

F (q, θ)|q|ei2πq(xcosθ+ysinθ)dqdθ.
�� ��1.18

In a final step, the two-dimensional Fourier transform can be replaced by the

Fourier transform of the projection data as stated by the Fourier Slice Theorem

(Eq. 1.13).

f(x, y) =

∫ π

0

[∫ ∞
−∞

Pθ(q)|q|ei2πq(xcosθ+ysinθ)dq

]
dθ.

�� ��1.19

Eq. 1.19 is the reconstruction equation for the Filtered Back Projection algorithm.

As can be derived from the equation, the reconstruction algorithm consists of four

steps, which are visually illustrated in Fig. 1.12:

1. The one-dimensional Fourier transform of the projection data is taken to

obtain Pθ(q).

2. The Fourier transformed projection data is filtered with the ramp filter |q|.
The filter is a high-pass filter which compensates for the lower sampling of

the data in the high frequencies. This way, the blurring is minimised and

the contrasts are accentuated.

3. The inverse Fourier transform of the filtered projection data is taken.

4. For a pixel (x, y), the projection data at l = xcosθ + ysinθ for all projection

angles θ is summed to obtain the reconstruction value f(x, y). The is done

by back projecting the projection data along the lines l = xcosθ + ysinθ as

explained in Section 1.3.1.2.

The FBP can both be applied in the Fourier domain and in the spatial domain

as shown in Fig. 1.12. In the latter, the filtering is done by a convolution of
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Sinogram

Fourier Transform
of sinogram

Filtered 
Fourier Transform Filtered Sinogram

Reconstruction
Filter

Filter

Filtered Sinogram

Fourier Domain

Spatial Domain

Figure 1.12: A reconstruction scheme for the FBP algorithm, applied in both the Fourier
and the Spatial Domain

the projection data with the inverse Fourier transform of the ramp filter. The

reconstruction algorithm then becomes:

f(x, y) =

∫ π

0

[∫ ∞
−∞

pθ(l)g(xcosθ + ysinθ − l)dl
]
dθ,

�� ��1.20

where g(xcosθ+ysinθ− l) in the spatial domain is the inverse Fourier transform of

the ramp filter |q| in the Fourier domain. In practical implementations of the FBP,

the algorithm is often calculated on all coordinate pixels at the same time. Hence,

the FBP is a very fast reconstruction algorithm. This is the main advantage of the

technique and therefore, it is widely used in practice. Another advantage is that

the algorithm is mathematically correct. If an infinite number of projections could

be taken and the size of a detector pixel could be infinitesimal, then the exact

object could be reconstructed. In practice, the number of projections is finite and

a detector pixel has a certain size. Therefore, the reconstruction formula should be

discretized. Fortunately, this has little impact on the reconstruction quality. The

FBP algorithm is a good choice to reconstruct images if the following conditions

apply to the situation:

• The number of projections is directly related to the sampling of the frequency

space. When the sampling is too low, artefacts appear in the reconstructions

in the form of streaks and stripes as shown in Fig. 1.13a. To obtain high

quality reconstructions with the FBP algorithm, the number of projections

should be sufficiently high.

• It is important that the projections sample the whole angular range of θ:

22



1.3. RECONSTRUCTION METHODS

(a) (b) (c) (d) (e)

Figure 1.13: Artefacts that appear in the FBP reconstruction image under non-ideal cir-
cumstances: (a) Limited number of projection (b) Missing wedge artefacts (c) Non-equally
sampled projections (d) Truncation artefacts and (e) Noisy projection data.

[0, π[. If the angular range is smaller than π, part of the Fourier space is

not sampled. This results in missing wedge artefacts in the reconstructions

(Fig. 1.13b).

• The projections should be equally sampled over the range [0, π[. When the

sampling is nonuniformly distributed, some parts of the Fourier space are

more densely sampled than others. This also leads to artefacts in the recon-

structions which are demonstrated in Fig. 1.13c.

• The object that is scanned should be completely in the field of view of the

source and detector. When part of the object is not irradiated in a pro-

jection, the final reconstruction image will suffer from truncation artefacts

(Fig. 1.13d).

• The signal-to-noise ratio of the acquired scans should be very high. The

FBP is very susceptible to noise in the projection data. Noisy projection

data result typically in noisy reconstruction images (Fig. 1.13e).

A disadvantage of the FBP and analytical reconstruction methods in general

is that they are not flexible. It is very difficult to impose prior knowledge on the

algorithm. In experimental scans, where prior knowledge can improve the recon-

structions, the FBP is therefore rarely the best choice.

On a side note, the FBP can also be rewritten to create the Hilbert transform

based FBP. To do so, one rewrites the ramp filter |q| as q sign(q) where

sign(q) =


1 if q > 0.

0 if q = 0.

−1 if q < 0.

�� ��1.21
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The inner integral of Eq. 1.19 can then be multiplied by (2π2i/2π2i) and rewritten

as

hθ(l) =
1

2π2

∫ ∞
−∞

i2πqPθ(q)
(π
i

sign(q)
)
ei2πq(xcosθ+ysinθ)dq.

�� ��1.22

In the space domain, Eq. 1.22 is equal to the convolution of the inverse Fourier

transform of (i2πqPθ(q)) and the inverse Fourier transform of (πi sign(q)). These

inverse Fourier transforms are:

2πiqPθ(q)
F−1

−−−→ dpθ(l)

dl
,

�� ��1.23

π

i
sign(q)

F−1

−−−→ 1

l
.

�� ��1.24

Eq. 1.22 can then be rewritten in the space domain as:

hθ(l) =
1

2π2

(
1

l
∗ dpθ(l)

dl

)
,

�� ��1.25

=
1

2π2

∫ ∞
−∞

1

l − t
dpθ(t)

dt
dt,

�� ��1.26

=
1

2π
H
{
dpθ(l)

dl

}
.

�� ��1.27

Eq. 1.27 is the Hilbert transform of the derivative of the projection data. Inserting

this equation in Eq. 1.20 gives the following reconstruction formula:

f(x, y) =
1

2π2

∫ π

0

∫ ∞
−∞

1

l − t
dpθ(t)

dt
dtdθ =

1

2π

∫ π

0

H
{
dpθ(l)

dl

}
dθ,

�� ��1.28

where l = xcosθ + ysinθ. This is the reconstruction formula for the Hilbert trans-

form based FBP algorithm for parallel beam.

1.3.1.5 Filtered Back Projection algorithms for fan beam

The FBP algorithms described in the previous section, as well as the Fourier Slice

Theorem, are only applicable to parallel beam data. For lab-based X-ray sources,

a fan beam geometry is more realistic as 2D variant. To make reconstructions

based on a fan beam geometry, the algorithms should be adapted. Since a part of

this thesis is focussed on fan beam reconstruction algorithms, three FBP-like re-

construction algorithms for fan beam projection data are discussed in this section.

Rebinned FBP for fan beam In the first algorithm, the FBP is not directly

applied on the measured projection data. Here, the projection data is converted
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into parallel beam data. This is a process called rebinning and can be done by

linear interpolation. After the rebinning, the parallel beam FBP can be applied

on the rebinned projection data.

FBP algorithm for fan-beam data To perform the FBP on fan-beam data, a

coordinate transformation should be applied. Assume that pβ(s) is the measured

projection data with β the angle between the central ray and the y-axis and s the

coordinate along the detector axis. The parallel beam coordinates (l, θ) can then

be expressed in terms of the fan-beam coordinates (s, β).

l =
sD√
D2 + s2

, θ = β + arctan(
s

D
).

�� ��1.29

Here, without loss of generality, a virtual detector in the origin is assumed and

D is the distance from the source to the origin. The infinitesimal surface element

then becomes:

dldθ =

(
D√

s2 +D2

)3

dsdβ.
�� ��1.30

Substituting this in Eq. 1.20 gives:

f(x, y) =
1

2

∫ 2π−arctan( s
D2 )

− arctan( s
D2 )

∫ ∞
−∞

pβ(s)×
(

D√
s2 +D2

)3

·
�� ��1.31

g(x cos(β + arctan(
s

D
)) + y sin(β + arctan(

s

D
))− sD√

D2 + s2
)dsdβ.

Eq. 1.31 can be simplified to Eq. 1.32. The steps to obtain the new equation can

be found in [28].

f(x, y) =
1

2

∫ 2π

0

∫ ∞
−∞

pβ(s)
s2 +D2

(D − x sinβ + y cosβ)2
g(s′ − s)

(
D√

s2 +D2

)3

dsdβ,�� ��1.32

=
1

2

∫ 2π

0

1

U2

∫ ∞
−∞

(
pβ(s)

D√
s2 +D2

)
g(s′ − s)dsdβ.

�� ��1.33

Here, s′ is the detector pixel corresponding to the projection of pixel coordinate

(x, y) at angle β and U = D/D−x sin β+y cos β . In conclusion, to perform the FBP

on fan-beam projection data, three steps should be completed:

1. For each fan-beam projection pβ(s), the corresponding modified projection
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p′β(s) should be generated according to:

p′β(s) = pβ(s)
D√

s2 +D2
.

�� ��1.34

2. To generate the filtered projection, the modified projection is filtered by the

inverse Fourier Transform of the ramp filter.

3. A weighted back projection with weight 1/U2 is performed along the fan-

beam. The sum of the weighted back projections from all projection angles

is the reconstruction image.

Hilbert transform based FBP algorithm for fan-beam data Also the

Hilbert transform based FBP can be converted to a Hilbert transform based FBP

reconstruction algorithm for fan-beam data as described in [30]. Using the same

coordinates as in the FBP, the reconstruction equation for fan-beam data with a

flat panel detector is given by:

f(x, y) =
1

4π

∫ 2π

0

[(
∂

∂s′
pH(s′, β)

D2 + s′2

D
+

∂

∂β
pH(s′, β)

)
× D2 + s′2

D2

]
dθ,�� ��1.35

where s′ is the detector pixel corresponding to the projection of pixel coordinate

(x, y) at angle β and pH(s′, β) is the Hilbert transformed projection data [31]:

pH(s′, β) =
D2 + s′2

π

∫ ∞
−∞

pβ(s)ds

(s′ − s)
√
D2 + s2

.
�� ��1.36

Fig. 1.14 shows fan beam reconstructions of the Shepp-Logan phantom made with

the different reconstruction algorithms discussed here. Both the rebinned FBP

and the Hilbert transform based FBP suffer from interpolation artefacts. A fourth

Heuristic Hilbert transform FBP is added. This algorithms does not suffer from

interpolation artefacts since it avoids the interpolation in the algorithm. More

information on the heuristic approach will be given in Chapter 3.

1.3.1.6 3D reconstruction methods

In the previous sections, 2D analytical reconstruction methods are discussed. An

important next step is the extension towards 3D. For parallel beam data, the

Radon transform and Fourier Slice Theorem are extensible to 3D and therefore a

3D Filtered Back Projection algorithm is available. For a circular cone beam ge-

ometry, the most common reconstruction algorithm is the Feldkamp-Davis-Kress
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(a) (b) (c) (d)

Figure 1.14: Reconstructions of the Shepp-Logan phantom made with different fan beam
reconstruction algorithms: (a) Rebinned FBP (b) FBP for fan beam (c) Hilbert transform
based FBP (d) Heuristic Hilbert transform FBP

(FDK) algorithm[32]. This is an approximation of the exact reconstruction prob-

lem since the complete set of Radon data is not available in a circular cone beam

geometry. As long as the angle aperture of the X-ray beam is small, the method

yields acceptible results. Several variations of the algorithm exist. For helical cone

beam CT, the complete set of Radon data is available which allows more accu-

rate reconstruction algorithms. Several reconstruction algorithms are proposed by

Kudo[33], Proksa[34] and Katsevich [35].

1.3.1.7 Prior knowledge based analytical reconstruction methods

Although incorporating prior knowledge into an analytical reconstruction algo-

rithm is not straightforward, recent developments have succeeded to do so. Pelt et

al [36, 37] introduced in 2013 the Neural Network based FBP algorithm. In this

algorithm, several FBP reconstructions are combined. Their filters are trained in

advance by a neural network. The NN-FBP algorithm is the basis for the inline

NN-hFBP algorithm introduced in Chapter 3. In another algorithm, also by Pelt,

the filter of FBP is constructed in such a way that the final reconstruction image

approximates a SIRT reconstruction [38].

1.3.2 Algebraic reconstruction methods

Algebraic reconstruction methods are divided into two groups: Landweber me-

thods and Krylov subspace methods. In this section, examples of both groups

are explained. First, in Section 1.3.2.1, the discrete projection model used in al-

gebraic reconstruction methods is discussed. Then a Landweber reconstruction

method, the Simultaneous Iterative Reconstruction Technique is described in Sec-
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x1 x2

xN

x

ypi =
∑
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Figure 1.15: The Discrete Projection Model

tion 1.3.2.2 and a Krylov subspace based reconstruction method, the Conjugate

Gradient Least Squares (CGLS) in Section 1.3.2.3. This subsection ends with

some algebraic reconstruction methods that are based on prior knowledge. Com-

mon about algebraic reconstruction methods is that it is possible to exploit prior

knowledge in the form of some constraints. Moreover, the methods are very flexi-

ble, allowing scan geometries that deviate from the conventional circular or helical

scan geometry. The drawback of these methods is that they often come with a

high computation cost.

1.3.2.1 Discrete projection model

In algebraic reconstruction methods, the reconstructed image is often represented

on a grid by a certain number of pixels or voxels N with a non-zero volume and

the projection data is represented by a number of pixels M with a certain width

and height. A discretized version of the Radon Transform can then be obtained:

pi =

N∑
j=1

ai,jxj ,

l l l
�� ��1.37

pβ(s) = R{f(x, y))},
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x1

xN

pi

aij

(a) Line Kernel

aij

x1

xN
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Figure 1.16: Illustration of two kernels that can be used to calculate the projection data in
the discrete projection model

where ai,j is the contribution of the pixel or voxel xj to the detector pixel pi.

An illustration of this projection model is shown in Fig. 1.15. More general, the

projection data as well as the reconstruction data are represented as columnvectors

p = (pi) ∈ RM×1 and x = (xi) ∈ RN×1 respectively and a system matrix A =

(ai,j) ∈ RN×M contains the contributions of all the voxels to the projection data.

The acquisition process can therefore be modelled as a system of linear equations

written in matrix form:

p = Ax.
�� ��1.38

The system matrix A is a sparse matrix and it is almost singular. The matrix

can be calculated in several ways. In a strip-kernel projection model, shown in

Fig. 1.16a, the weight ai,j is calculated as the area of pixel j illuminated by ray i

divided by the total area of pixel j. Its value is always between 0 and 1. A less

computationally expensive model is a line-kernel where the weight is determined

by the length of a single line passing though pixel j [39]. This kernel is shown in

Fig. 1.16b. A third way to model the system matrix is by a linear kernel, known

as Joseph’s method [40]. In Joseph’s method, the weights are calculated by linear

interpolating between the two nearest pixels of the intersection of the ray and the

row or column. The reconstruction image x does not necessarily need to be a pixel

based function. It can also be defined as a set of radial basis functions such as the

modified Kaiser-Bessel window [41].

In computed tomography, one’s goal is to retrieve x, knowing p and A. However,

the inverse of A almost never exists and the system of equations is polluted with

noise and discretization effects. Therefore, in algebraic reconstruction algorithms,

29



CHAPTER 1. TRANSMISSION X-RAY TOMOGRAPHY

the reconstruction image is often optimized by minimizing the projection distance

‖Ax−p‖ for some norm ‖·‖. Various iterative methods exist that try to solve this

minimization problem. One of them is the Simultaneous Iterative Reconstruction

Technique (SIRT), which will be discussed in the next section.

1.3.2.2 Simultaneous Iterative Reconstruction Technique (SIRT)

The SIRT algorithm iteratively updates an initial reconstruction according to the

following update step [28, 42]:

x(k+1) = x(k) + CATR(p−Ax(k)).
�� ��1.39

Let us look at the different parts of the equation individually. Assume x(0) = 0 is

the initial estimate of the reconstruction and k is the number of iterations.

1. In the first step of the algorithm, a forward projection Ax(k) is taken of the

current estimate of the reconstruction.

2. Secondly, the projection difference is calculated: r(k) = p−Ax(k).

3. Then, an update value is obtained by weighting the projection difference

with the inverse row sums, back projecting or ‘smearing out’ this weighted

projection difference on the reconstruction grid and finally weighting the

update value with the inverse column sums.

u(k) = CATR(p−Ax(k)).
�� ��1.40

R and C are diagonal matrices containing the inverse row sums and column

sums of the matrix A, i.e. rii = 1/∑
j aij

and cjj = 1/∑
i aij

.

4. Finaly the update step is added to the reconstruction of the previous iteration

to obtain the current reconstruction image: x(k+1) = x(k) + u(k).

The stopping criteria for the algorithm is often either a pre-set number of iterations

or a threshold value for the projection difference. A schematic of the different SIRT

steps is given in Fig. 1.17. The full update step of SIRT for each iteration and

each component is given by:

x
(k+1)
j = x

(k)
j +

1∑M
i=1 aij

M∑
i=1

(
aij(pi −

∑N
h=1 aihx

(k)
h )∑N

h=1 aih

)
.

�� ��1.41

It can be proven that SIRT converges and that its reconstruction is the optimal

solution for the weighted least-squares optimization problem:

arg min
x
‖Ax− p‖R,

�� ��1.42
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Figure 1.17: A reconstruction scheme for the SIRT algorithm.

where ‖Ax− p‖R = (Ax− p)TR(Ax− p).

In each SIRT iteration, all projection data from each projection direction is

taken into account. Two other reconstruction algorithms, the algebraic recon-

struction technique (ART) [43] and the Simultaneous Algebraic Reconstruction

Technique (SART) [44] follow a similar reconstruction scheme as SIRT, but do

not incorporate all projection data for each iteration. In ART only one single

projection value is processed during an iteration and in SART, all projection data

from one projection direction is used. ART typically needs less iterations over the

complete projection data than SIRT to converge to a solution, but the algorithm

is less stable with respect to noise. SART tries to profit from both ART and SIRT:

obtaining a stable optimal solution with fewer iterations. The order in which the

projection data is processed in ART and SART has however an important influence

on the final reconstruction quality [45].

1.3.2.3 Conjugate Gradient Least Squares (CGLS)

Conjugate Gradient Least Squares (CGLS) [46] is a Krylov Subspace iterative re-

construction method. It performs an iterative Conjugate Gradient (CG) algorithm
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(a) (b)

Figure 1.18: A (a) SIRT and (b) CG reconstruction of the Shepp-Logan phantom made with
200 and 30 iterations respectively over 180 degrees.

to solve the least squares problem

x∗ = argmin
x

(‖ATAx−ATp‖22).
�� ��1.43

The method converges to a possible solution much faster than SIRT. Assume

r0 = p0, z0 = ATp and x0 = ATp, the algorithm then exists of three steps that

are executed in each iteration:

r(k+1) = r(k) − ‖z(k)‖2
‖Ax(k)‖2

Ax(k),
�� ��1.44

z(k+1) = ATr(k+1),
�� ��1.45

x(k+1) = z(k+1) +
‖z(k+1)‖2
‖z(k)‖2

x(k).
�� ��1.46

A comparison of a SIRT reconstruction with 200 iterations and a CGLS recon-

struction with 30 iterations of the Shepp-Logan phantom is shown in Fig. 1.18.

1.3.2.4 Prior knowledge-based algebraic reconstruction methods

Prior knowledge can be incorporated in a reconstruction algorithm to improve

the final reconstructed image. One way of incorporating prior knowledge is by

means of a regularization term R in the optimization problem and a regularization

parameter λ > 0 that controls the strength of the regularization.

x∗ = argmin
x

(‖Ax− p‖+ λR(x)).
�� ��1.47
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Typically, prior knowledge imposed by the regularization term is a smoothness

[47, 48], total variation [49], non-negativity [48] or non-local means [50] constraint.

Another way to incorporate prior knowledge in the reconstruction is by applying

an advanced reconstruction algorithm that is designed only for specific applica-

tions. An advanced algorithm in the field of discrete tomography is the Discrete

Algebraic Reconstruction Technique (DART) [51], which deals with the reconstruc-

tion of samples that exist of only a few discrete grey levels. When conventional

reconstructions are tempered by metal artefacts, special algorithms like the Nor-

malized Metal Artefact Reduction (NMAR)[52] algorithm exist to reduce the arte-

facts caused by the metal. And in dynamic CT, where object motion is present

during the scans, specific algorithms exist like the MoVIT algorithm [53]. Some

other examples are algorithms for porous samples [54] and for Region of Interest

(ROI) [55] tomography. In the latter, a useful approach is to adapt the projection

model to a continuous gantry rotation [56].

1.3.3 Statistical reconstruction methods

Statistical reconstruction algorithms try to estimate the solution that maximizes

the likelihood of observing the measured projections, while taking into account

the statistical processes at the source, object and detector. It is the best choice in

case of a low photon count and a high amount of noise. Statistical reconstruction

algorithms are also good in reducing beam hardening artefacts since they take

the polychromaticity of the source into account. In general, the data is often

modelled by a Poisson distribution and several reconstruction algorithms exist

like the maximum likelihood expectation maximization (ML-EM) algorithm [57],

the ordered subset convex algorithm, [58, 59] and the iterative coordinate descent

algorithm [60]. A drawback of these methods is that the polychromatic spectrum

of the source is assumed to be prior knowledge and long computation times are

needed.

1.4 Applications of transmission X-ray CT

In this section, an overview is given of the different fields in which CT has appli-

cations.

• Medical Imaging A CT scanner is best known in a medical context. For

years, CT scanners have been used to imagine various parts of the human

body. To aid the medical diagnosis, abdominal [61], dental [62], cerebral [63],

pulmonary [64] and cardiac [65] imaging amongst others are performed. To

improve the contrast in the image, contrast fluids are sometimes used [66].

33



REFERENCES

Apart from helping to obtain a diagnosis, X-ray imaging can also be used to

guide surgery [67] or as a radiation therapy [68].

• Biomedical Imaging A µ-CT scanner for small animal scanning is used in

biomedical research to test the effect of various drugs and diseases on rats

and mice [69, 70, 71]. In this scanners a trade-off should be made between

the spatial resolution, the radiation dose and the time between consecutive

scans.

• Material Science To inspect the properties of materials, not only µ-CT

systems are used, but materials are often inspected with an electron micro-

scope [72, 73] or at a synchrotron facility. Due to this imaging modalities,

much process is made in the discovery, study and design of materials [74].

• Inspection Inspecting the interior of objects is an important part of X-ray

tomography. Two important applications are food inspection [23, 75, 76] and

luggage inspection [77, 78]. In the first, the quality of food is inspected before

it is sold to assure delivery of good quality products. In the latter, baggage

is scanned at the airport for example to check for dangerous goods. Further-

more, also metrology is a type of inspection where the sizes of materials are

measured with CT to check the manufacturing process [79, 80].

• Others On a much larger scale, CT is used to reconstruct waves of earth-

quakes [81] or the corona of the sun [82].
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CHAPTER 2. PHASE CONTRAST X-RAY IMAGING

In the previous chapter, a brief introduction to transmission X-ray imaging

was given. As discussed, X-rays can be used to inspect the spatial distribution

of materials inside an object in a non-destructive way by acquiring several pro-

jections from various projection directions, and combining them into one image

by the use of a reconstruction algorithm. A major disadvantage of transmission

X-ray image is however that the variations in the linear attenuation coefficients of

soft tissues are very small. As a result, soft tissues and other materials with simi-

lar linear attenuation coefficients cannot be well separated in the reconstruction.

In recent years, a new type of X-ray imaging, namely Phase Contrast Computed

Tomography (PCCT) has been developed. In PCCT, not only the linear attenua-

tion coefficient caused by the decrease in intensity of the X-rays is reconstructed,

but also the phase shift induced when an X-ray beam passes through material.

This phase shift is linked to the real part of the refractive index of a material

and is much more sensitive than the linear attenuation coefficient. Therefore, it

allows to distinguish materials that are not distinguishable in transmission CT.

Furthermore, PCCT also provides information on the scattering that occurs inside

a sample.

In this chapter, a brief overview of PCCT will be given. In Section 2.1, diffe-

rent imaging methods are discussed that all provide phase contrast data to the

user. Then, in Section 2.2, one of these imaging methods is studied more into

detail. Finally in the last section, PCCT tomographic reconstruction methods are

discussed.

2.1 Phase Contrast Imaging Methods

In this section, a closer look is taken at the five major imaging modalities that are

commonly used to obtain information about the phase-shift of the X-rays induced

by the sample.

2.1.1 Crystal Interferometry

Bonse and Hart [1, 2] published the design of the first three-crystal X-ray inter-

ferometer in 1965. In this interferometer, three beam splitting crystals are aligned

parallel to eachother. Fig. 2.1a shows a schematic of the interferometer. The first

crystal splits the beam in two coherent X-ray beams. The second crystal causes

the beams to converge again. One of the two beams then passes through a sample

while the other one remains unchanged. The two beams come together at the third

crystal where an interference pattern arises. The pattern is measured at a detector

behind the third crystal. With the interferometer, both an absorption and a phase

signal can be measured. Particular about the crystal interferometer is the direct
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2.1. PHASE CONTRAST IMAGING METHODS

measurement of the phase, opposed to the derivative measurements in the other

modalities. Later in 2003, Momose [3] showed the possibility of tomography with

this setup. The largest constraints of the method are its spatial resolution, the need

for a very stable setup and the high flux dependency. The low spatial resolution is

caused by the blurring of the beam in the last crystal [4]. To obtain an interference

pattern at the third crystal, the difference in path length between the two beams

should be smaller than the wavelength of the X-rays. Therefore the alignment of

the crystals should be very precise. To achieve the required precision, the beam

splitter crystals are often cut out of one big crystal. This, however, clearly limits

the field of view and the size of the sample that can be scanned[5]. Furthermore,

the crystals filter a large part of the radiation, which means that a long exposure

time or a high photon flux is necessary to acquire images with a sufficient SNR. For

this reason, crystal interferometers are often used at a synchrotron source where

this condition is met.

2.1.2 Analyzer based Imaging

In analyzer based imaging (ABI) or diffraction enhanced imaging (DEI) [6, 7, 8],

a parallel X-ray beam is generated by a monochromator. This X-ray beam passes

through a sample and hits an analyzer crystal which acts as an angular filter by

reflecting part of the beam onto a detector (Fig. 2.1b). Only the X-rays with an

incident angle for which the Bragg diffraction condition [9] is fulfilled are reflected

on the detector. By rotating the crystal, X-rays from a range of incident angles

are measured. Starting from several images obtained with different rotation angles

of the crystal, a rocking curve can be constructed. A rocking curve describes

the relation between the intensity of the reflected rays and the incident angles.

Placing a sample in the setup will cause a shift in the rocking curve, from which

the first derivative of the phase can be derived, whereas a dark-field image can be

constructed from the variations in the shape of the rocking curve [10, 11]. ABI has

a high phase sensitivity and it requires good stability of the crystals, although the

reconstruction quality depends less on the stability of the crystal than in crystal

interferometry. The technique can be used for tomography, but only the component

of the phase parallel to the tomographic axis is detected. Due to its high phase

sensitivity, ABI is especially of interest for soft tissue imaging and is already used

for example in mammography for detection of microcalcifications [12].

2.1.3 Propagation based Imaging

The simplest kind of phase contrast imaging was invented by Snigirev in [13] and is

called propagation based imaging. This method relies on the appearance of Fresnel

fringes in the diffraction pattern due to free space propagation of the wave after
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passing through the sample. Therefore, no extra hardware is necessary to obtain

information about the phase of the object. The only requirement is an increase in

the distance between the object and the detector. The pattern of the fringes that

appear at the detector is related to the Laplacian of the phase [14]. By obtaining

images at several object-detector distances, the phase can be derived. [15]. A

schematic of the setup with a moving detector is given in Fig. 2.1c. Limitations of

the method are that a high spatial coherence of the beam is necessary and that the

detector needs to have a high resolution to detect subtle changes in the interference

pattern [16]. Unfortunately, a high resolution detector usually only has a small

field of view. The method is good at enhancing boundaries and therefore suited for

imaging of fibers or foams [15], but less suitable for soft tissue imaging or imaging

of highly scattering samples. It is furthermore only possible to retrieve a phase

and absorption contrast image from the detector and no information is present on

the scattering.

2.1.4 Edge Illumination based Imaging

Edge Illumination (EI) based Imaging was developed at the Elettra synchrotron

by Olivo et al. [17] by illuminating only the edge of a detector pixel. EI aims

to reproduce the high phase sensitivity of ABI, but without the crystal [18]. At

UCL, the feasibility of EI for polychromatic and divergent X-ray beams acquired

from a lab-based X-ray source was demonstrated by using two masks, one before

the object and one before the detector (Fig. 2.1d). As a consequence, only an

edge of the detector is illuminated when no sample is present. An illumination

curve describes the relation between the measured intensity at the detector and

the relative positions of the two masks [19]. When an object is placed in the

sample, deviations of this curve are recorded, from which the first derivative of

the phase can be derived. A major advantage is that the phase can be retrieved

from only one projection, so that scanning is no longer required and tomography

can be done with the setup [20, 21]. The method has several more advantages

like a reduced exposure time, a reduced radiation dose and robustness against

environmental vibrations. Good results are for instance obtained for imaging of

biological tissue [22].

2.1.5 Grating based Imaging

The last type of phase contrast imaging is Grating based imaging (GBI) [23, 24].

In GBI, the first derivative of the phase is measured by the use of two gratings.

The first grating, the beam splitter grating, causes interference downstream of the

splitter known as the Talbot Effect [25]. When a sample is placed in the scanner,

the interference pattern shifts. By subsequently shifting the second grating in
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several positions, the interference pattern is sampled and the derivative of the

phase can be derived. Furthermore, the method also provides information on the

absorption and scattering inside the sample [26] and tomography can be performed

[27, 28]. To obtain a spatially coherent X-ray beam, a third grating is often placed

after the source as shown in Fig. 2.1e. In this thesis, PCCT is performed with

GBI. Hence, the technique is discussed in detail in the remainder of this chapter.

2.2 Grating based Interferometer

The algorithms for PCCT that are developed in Chapter 5 and Chapter 6 of

this dissertation are all validated on phase data acquired with a Talbot-Lau Gra-

ting based Interferometer (TLGI). Therefore, GBI is discussed more into detail in

this section. Before going into detail on the principle of the TLGI, an important

material property, the refractive index, is discussed in Section 2.2.1. In the re-

fractive index, both the absorption of X-rays and the phase shift imposed to the

X-rays induced by a material is contained. Then the Talbot effect is explained

in Section 2.2.2 as a building block of the Talbot Lau Grating Interferometer of

Section 2.2.3. The section ends with a description of the different signals that can

be derived from the measured interference pattern.

2.2.1 Refractive Index

When X-rays pass trough an object, several types of interactions occur as described

in the previous chapter. The intensity and type of interactions depend both on

the type of material and on the type of X-rays and is captured by the complex

refractive index :

n = (1− δ) + iβ.
�� ��2.1

The refractive index consists of a real part (1− δ) and an imaginary part β. These

two parts will be looked at separately. In order to do so, the wave properties of

X-rays are studied. An X-ray beam can be described by a plane electromagnetic

wave. When k is the wave number, with k = 2π/λ and λ is the wavelength of the

X-rays, a wave travelling in the y-direction can be described as:

E = E0e
i(nky−ωt) = E0e

i((2πny)/λ−ωt) = E0e
i((2π((1−δ)+iβ)y)/λ−ωt),

�� ��2.2

= E0e
−2πyβ/λei(2πy(1−δ)/λ−ωt).

�� ��2.3

The amplitude of the wave follows an exponential decay. In Fig. 2.2, the difference

between the amplitude before and after the object is given by ∆|E| = E0(1 −
e−2πyβ/λ). When the X-ray beam now passes through different materials with
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∆|E|
∆Φ

α
n = 1

n = (1− δ) + iβ

Figure 2.2: Influence of a material with refractive index n on a wave that passes through.

different refractive indices, the amplitude of the wave is given by:

|E| = E0e
−

∫
kβ(y)dy.

�� ��2.4

Since the intensity of a wave is proportional to the square of the amplitude, the

intensity of the beam is equal to:

I = I0e
−

∫
2kβ(y)dy.

�� ��2.5

Substituting the linear absorption coefficient µ = 2kβ in Eq. 2.5 gives the Lambert-

Beer law described in Section 1.2.2.

In this chapter, more attention is given to the real part of the refractive index

δ, since it is a measure for the phase shift that an X-ray beam undergoes when it

passes through a medium. The phase shift appears because the wavelength of X-

rays inside a material changes depending on the refractive index of that material.

The phase shift is given by ∆Φ = 2πLδ/λ, where L is the length of the path

over which the phase shift occurs. When the X-ray beam passes through different

materials with different refractive indices, a more general equation can be derived:

∆Φ = k

∫
δ(x, y)dy.

�� ��2.6

The phase shift is indicated in Fig. 2.2. The shift in phase also causes a shift in

the direction of the x-rays. This angular shift is proportional to the first derivative

of the phase in the direction opposite to the propagation direction [29]:

α(x) =
∂

∂x

∫
δ(x, y)dy.

�� ��2.7

In PCCT, a multiple of the angular shift is measured at the detector.
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In Als-Nielsen & McMorrow [30] a relationship between the real and imaginary

part of the refractive index is described:

δ

β
=

σp
2σa

,
�� ��2.8

where σp and σa are the absorption and phase-shift cross sections, respectively. An

argument in favour of phase contrast imaging is that this ratio is in the range of

102−104 [31], which means that the probability of a phase shift in the X-ray beam

is much higher than the probability of absorption of X-rays. The ratio typically

decreases with an increasing atomic number. Certainly for soft tissue, that mainly

consists of materials with a low atomic number, phase contrast imaging can thus

provide much more insight in the material than conventional transmission X-ray

imaging.

2.2.2 Talbot Effect

To measure the angular shift and intensity loss caused by a sample, the TLGI relies

on the properties of wave propagation. In free space, the propagation of a wave

front in the near-field or Fresnel regime can be calculated by the multiplication of

the Fourier transform of the wave front and a propagator function. Hence, due to

the propagation of the wave, an interference pattern in constructed. Talbot dis-

covered in 1836 [25] that a periodic wavefront, obtained by illuminating a grating,

repeats itself at certain distances. Rayleigh [32] proved that this phenomenon was

a consequence of diffraction interference. An extensive study of the properties of

Fresnel diffraction behind a periodic object was done by Cowley and Moodie [33].

The distance over which the wave front is repeated is called the Talbot distance

defined as:

dT =
2p2

λ
,

�� ��2.9

where p is the period of the wave front and λ is the wavelength of the incoming

wave. At certain fractions of this Talbot distance, the pattern of the wave front is

also repeated but with only a fraction of the initial period. The idea behind the

TGBI is built on this Talbot effect.

2.2.3 Talbot Lau Grating Based Interferometer

With a TLGI [34, 24], the intensity decay of the X-rays as well as the phase

shift and the scattering inside a sample are detected by a set-up consisting of a

temporally coherent source, a detector and 2 gratings. The first grating, G1 is

a phase shifting gradient where part of the X-rays are transmitted while on the

other part, a phase shift π is imposed. Behind this grating, a periodic wave front
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g21
8λ

5g21
8λ

3g21
8λ

G1

Figure 2.3: The Talbot effect at fractional Talbot distances.1

is created, which is a prerequisite for the Talbot effect to occur as seen in the

previous section. To induce the phase shift π, the depth of the grating should be

designed based on the energy of the incoming X-rays. The period of the grating

should depend on the distance L from the source to the first grating and on the

distance d between the two gratings. The gratings used in this work all have a

duty cycle of 0.5, meaning that half of the signal undergoes a phase shift. After

the grating, a Talbot carpet will be constructed with a scaled repetition of the

wave front at uneven fractional Talbot distances. Here, the intensity variations

are maximal and the period of the wave front is half the original period. The

fractional Talbot distances are defined as:

d
(f)
T = f

g2
1

8λ
,

�� ��2.10

where g1 is the period of the first grating, λ is the wavelength of the X-rays and f

is the uneven fraction f ∈ 1, 3, 5, .... Fig. 2.3 shows a Talbot carpet with the first

three uneven fractional Talbot distances.

To detect the interference pattern at one of the fractional Talbot distances,

theoretically, a very high resolution detector should be used. This is however

not feasible in practice. Therefore, an absorption grating G2 is placed before

the detector with a period equal to half the period of the first grating. As a

result, the period of the grating matches the period of the wave front at that

location. The grating absorbs half of the interference pattern, while the other half

is transmitted towards a detector with a lower spatial resolution. The interference

1Image of the Talbot Carpet made by J. Sanctorum
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Figure 2.4: The Talbot Lau Grating based Interferometer. 2

pattern is then detected by acquiring several X-ray images at the same projection

direction where the absorption grating has undergone a small shift xi for every

image. By combining the information of all the images, the interference pattern

can be constructed as will be discussed in Section 2.2.4. Fig. 2.4 gives a schematic

of a Talbot-Lau grating based interferometer with different positions xi of the

absorption grating. The idea behind GBI is now that when an object is placed

before grating G1 or between gratings G1 and G2, the interference pattern at the

absorption grating will change. By recording the interference pattern with and

without object at various projection directions, the differences can be studied and

a tomographic image of the object can be reconstructed.

To use the grating interferometer as described above, two important require-

ments hold for the X-ray beam: the X-rays should not diverge and the beam

should have a sustainable transverse coherence [35]. Divergence is a problem that

arises both in a lab-based set-up and to a lesser extent also at the synchrotron.

As discussed before, an X-ray tube emits X-rays in the form of a cone beam. To

account for the divergence, the magnification caused by the fan from the source

to the detector should be taken into account:

M =
L+ d

d
.

�� ��2.11

Here, L is again the distance from the source to the first grating and d is the

distance between the two gratings. Both the fractional Talbot distance and the

2Image of the Talbot Carpet made by J. Sanctorum
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period of the second grating should then be altered to:

d
(f)∗
T = M · d(f)

T =
L

L− d(f)
T

d
(f)
T ,

�� ��2.12

g∗2 = M · g1

2
=
L+ d

(f)
T

2L
g1.

�� ��2.13

At a synchrotron, the cone angle and therefore also the magnification are often

very small but taking them into account can still improve the reconstruction.

Regarding the second requirement, transverse coherence of the beam is necessary

to create the expected interference pattern. At the synchrotron, this requirement

is met, but for lab-based X-ray sources, the coherence puts a limit on the size of

the source. One of the disadvantages of small X-ray sources is that they have a

low flux. Therefore, another solution is found where a third grating G0 is placed

right behind the source as shown in Fig. 2.4. The period g0 of the source grid

should be:

g0 =
L

d
(f)
T

g2,
�� ��2.14

so that the interference patterns of two neighbouring source slits overlap at the

absorption grating, which will increase the total signal intensity.

2.2.4 Measured Signals

In the previous section, we explained that the interference pattern at the detector

is measured by taking multiple X-ray projections, each with a shifted absorption

grating. This way, the intensity of the interference pattern in every projection can

be written as [35]:

I(px, py, xg) =

∞∑
n=0

an(px, py) cos

(
2πnxg
g2

− φn(px, py)

)
,

�� ��2.15

where (px, py) is a pixel on the detector, xg is the position of the absorption

grating, an are the coefficients of the amplitude and φn are the phase coefficients.

The amplitude and phase coefficients of the intensity curves can either be obtained

by cosine fitting with least squares or by Fourier analysis. The latter is much faster

and often only requires the first order expansion:

I(px, py, xg) = a0(px, py) + a1(px, py) cos(
2πxg
g2
− φ1(px, py)).

�� ��2.16
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Figure 2.5: Intensity curves of a pixel obtained with the reference scan (blue line) and with
the object scan (red line).

In this intensity curve, a0 describes the average intensity of the interference pat-

tern, a1 describes the amplitude of the oscillation and φ1 the (shifted) position of

the pattern. To interpret a0,a1 and φ1 when an object is scanned with a TLGI,

a reference signal should be recorded as well. This way, the average intensity, the

oscillation amplitude and the position of the pattern can be compared to their

reference values to understand the influence of the scanned sample on the X-rays.

The parameters are referred to as as0, a
s
1, φ

s
1 for the scans with sample and ar0, a

r
1, φ

r
1

for the reference scans. The intensity curves of one pixel of the reference and the

object scan is shown in Fig. 2.5. From the obtained parameters, three images can

be created: an absorption contrast image, a differential phase contrast image and

a dark field contrast image.

Absorption contrast image

The absorption contrast (AC) image can be formed with the average intensities of

the intensity curves. It corresponds to the intensity decay measured in transmission

X-ray imaging. The transmission of the X-rays in a pixel (px, py) is given by:

T (px, py) =
as0
ar0
.

�� ��2.17
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(a) Absorption Image (b) Differential Phase Image (c) Dark Field Image

Figure 2.6: An absorption contrast, differential phase contrast and dark field contrast image
of a CFRP laminate T-piece obtained with the information enclosed in the measured intensity
curves at the detector.

The transmission is related to the linear attenuation coefficient µ and the imaginary

part of the refractive index β as follows:

− log(T (x)) =

∫
µ(x, y)dy =

∫
2kβ(x, y)dy.

�� ��2.18

An absorption contrast image from a scan of a CFRP laminate T-piece is shown

in Fig. 2.6a.

Differential phase contrast image

The transverse shift of the interference pattern is given by:

S(px, py) = φ1(px, py)
g2

2π
.

�� ��2.19

Since the angular shift α(px, py) is equal to S(px, py)/dT and is defined as in

Eq. 2.7, the derivative of the phase Φ of the pattern is given by:

∂Φ(px, py)

∂x
= kα(px, py) = k

g2

2πdT
(φs1 − φr1) .

�� ��2.20

An extra integration step is needed to obtain the actual phase shift caused by the

sample. In relation to the refractive index, we also recall that:

Φ(px, py) =

∫
kδ(x, y)dy.

�� ��2.21

Fig. 2.6b gives an example of a differential phase contrast (DPC) image derived

from the measured interference pattern. In the figure, dark regions appear in the
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(a) (b)

Figure 2.7: (a) Wrapped differential phase image and (b) Unwrapped differential phase
image

left upper corner and at the right hand side. These regions are caused by phase

wrapping. The differential phase signal is wrapped in the interval [0, 2π], which

causes sudden jumps between 0 and 2π at the borders. To retrieve the original

differential phase, a phase unwrapping algorithm, like the ones proposed by Van

der Jeught [36] or Blinder [37] can be applied on the data. Fig. 2.7 shows the

wrapped DPC image as well as the DPC after phase unwrapping.

Dark field contrast image

A third image that can be obtained is a dark field contrast (DFC) image. In this

image, the incoherent scattering due to the object, also known as the visibility, is

visualized. In Eq. 2.16, a1 gives the amplitude of the oscillation. When incoherent

scattering occurs, this amplitude is reduced and the interference pattern is smeared

out. The visibility is then defined as

V (px, py) =
as1/a

s
0

ar1/a
r
0

.
�� ��2.22

Consequently, the value will be reduced when incoherent scattering occurs. A DFC

image is given in Fig. 2.6c.

2.3 Tomographic Reconstructions

In the previous section, three images were derived from three different signals:

the absorption contrast image, the differential phase contrast image and the dark

field contrast image. The images can now be used to generate tomographic re-

constructions. For the AC image, the process on how to obtain the tomographic

reconstructions and several reconstruction algorithms were already discussed in

54



2.3. TOMOGRAPHIC RECONSTRUCTIONS

the previous chapter and will therefore not be repeated here. An example of a 2D

reconstruction of the AC data of a CFRP laminate T-piece is shown in Fig. 2.8a.

In Section 2.3.1, a FBP like algorithm is discussed for the reconstruction of phase

shifts inside a material based on DPC data. Furthermore, the scattering through-

out the material can be visualised in a DFC reconstruction image by making some

assumptions on the scattering model, which will be explained in Section 2.3.2.

2.3.1 Differential phase data

If the total phase shift could directly be measured by the projection data, the

phase shift caused by each voxel of the reconstruction could be obtained with

similar techniques as the linear attenuation coefficient. However, with the TLGI,

the derivative of the phase shift is measured. The most straightforward way to

reconstruct the actual phase shift is by integration of the measured data. This

integration will undoubtedly introduce errors in the phase data since the constant

of integration is missing. A better way to reconstruct DPC data is to adapt the

reconstruction scheme. The FBP is an algorithm where this can simply be done.

Recall that for the FBP reconstruction, the projection data is Fourier transformed

and then filtered with a Ram-Lak filter before the inverse Fourier transform is

applied and the projection data is backprojected. Luckily, the Fourier transform

of a derivative of a function has a very fortunate form:

FT {df(x)

dx
} = 2πiqF (q),

�� ��2.23

where F (q) is the Fourier transform of f(x). To compensate for the extra fac-

tor 2πiq, the Ram-Lak filter can be replaced by an imaginary filter where the

denominator is equal to:

H(q) =
|q|

2πiq
.

�� ��2.24

Multiplication of the Fourier transform of the derivative of the phase shift with

this filter will then be the same as filtering the Fourier transform of the phase shift

with the Ram-Lak filter. The imaginary filter was first introduced by Pfeiffer in

[28].

As seen before, the transverse phase shift that is measured at the detector is related

to the angular shift by αθ(px, py) = S(px, py)/dT , with S(px, py) the transverse

shift and dT the distance between the two gratings. Since the angular shift is equal

to the derivative with respect to x of the integration of the contributions of the

real parts δ of the refractive index in every detector pixel along the projection line,

the angular shift is the signal that we start from to reconstruct the real part of

the refractive index. The 2D FBP reconstruction of the differential phase contrast
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data then exists of four steps:

1. The Fourier transform of the measured angular shift α(x) is calculated:

A(q, θ) =

∫
α(x, θ)e−i2πxqdx = 2πiqD(q, θ),

�� ��2.25

where A is the Fourier transform of α and D is the Fourier transform of δ.

2. In a second step, the Fourier transformed angular shift is filtered by the

imaginary filter:

F (q, θ) = A(q, θ)H(q) = 2πiqD(q, θ)
|q|

2πiq
= |q|D(q, θ).

�� ��2.26

3. Then the inverse Fourier transform of the data is taken:

f(x, θ) =

∫ ∞
−∞

F (q, θ)e2πixqdq.
�� ��2.27

4. Finally, the data is back projected onto the reconstruction grid:

δ(x, y) =

∫ π

0

f(x cos θ + y sin θ, θ)dθ.
�� ��2.28

An FBP reconstruction of the DPC data of a CFRP laminate T-piece of Fig. 2.6

is shown in Fig. 2.8b. Iterative reconstruction algorithms like Conjugate Gradient

also succeed in reconstructing DPC data. Therefore, the system matrix A should

be multiplied by an extra matrix D, which models the differentiation. More details

are given in Chapter 6.

2.3.2 Dark field data

To perform tomography with DFC data, the small angle scattering inside a mate-

rial should be modelled. A very simple model that appears to work well assumes

that when an X-ray beam passes through a material, the X-rays are scattered

in an angular distribution and while passing through the material, the scattering

distributions are accumulated. The angular probability distribution of the small

angle scattering in that model is assumed to be Gaussian [38, 39]:

A(θ) =
1

σ
√

2π
exp

(
− θ2

2σ2

)
.

�� ��2.29
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(a) Absorption Reconstruction (b) Phase Reconstruction (c) Dark Field Reconstruction

Figure 2.8: The three reconstruction images that can be obtained from the measured pro-
jection data.

Here σ is the total scattering width, composed of the scattering width of the

angular distribution function at each pixel that the ray passes through.

σ =
√
σ2

1 + σ2
2 + ...+ σ2

N .
�� ��2.30

The intensity of the beam is then a convolution of the intensity pattern of Eq. 2.16

and the angular scattering distribution propagated over a distance l from the

sample to the analyzer grating G2 and can be described as:

Is(x) = ar0 + ar1 exp

(
−2π2

g2
2

σ2l2
)

cos

(
2πx

g2
− φ1

)
,

�� ��2.31

assuming the absorption contrast is zero. The amplitude of the modulation is

now multiplied with an exponential term. Consequently, the visibility can be

formulated as:

V =
as1a

r
0

ar1a
s
0

= exp

(
−2π2

g2
2

σ2l2
)
.

�� ��2.32

To be able to apply linear tomographic reconstruction methods, the linear diffusion

coefficient ε is now introduced. This coefficient describes the small angle scattering

width per unit of length and is material dependent. The scattering width along a

beam path can then be calculated by integration of the linear diffusion coefficients:

σ2 =

∫
ε(y)dy.

�� ��2.33
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Rewriting the visibility gives:

V (x) = exp

(
−2π2l2

g2
2

∫
ε(x, y)dy

)
.

�� ��2.34

In tomography, the goal is now to reconstruct this linear diffusion coefficient ε for

each reconstruction voxel. Therefore, the integration of the coefficients over the

beam path can be written as:∫
ε(x, y)dy =

−g2
2

2π2l2
log V (x).

�� ��2.35

There is a high similarity between this linear diffusion coefficient and the linear

attenuation coefficient. As a result, the reconstruction algorithms for absorption

data can also be applied to dark field data provided that the right hand side

of Eq. 2.35 is used as projection data. A reconstruction of the linear diffusion

coefficient of a CFRP laminate T-piece is shown in Fig. 2.8c.

2.4 Conclusion

In this chapter, a brief introduction on PCCT with a TLGI was given. It was shown

that acquisition geometry of a TLGI allows to retrieve information on the real and

imaginary part of the refractive index as well as on the small angle scattering

inside the sample, which is a great advantage compared to transmission CT. By

making some assumptions on the scattering profile, the reconstruction algorithms

of Section 1.3 can be used to visualize the small angle scattering distribution and

small adaptations to the analytical reconstruction algorithm FBP allow to create

DPC tomographic reconstructions.
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CHAPTER 3. NN-HFBP FOR FAST INLINE X-RAY INSPECTION

3.1 Introduction

In industry, there is a great demand for fast X-ray inspection and quality control.

To make X-ray inspection time efficient, an inline X-ray system is often preferred.

Ideally, it should allow individual inspection of every single sample, while pre-

serving a sufficiently high throughput. Inline inspection techniques are already

used in different industries, such as agriculture [1, 2], powder metallurgy [3], log

scanning [4], dynamic processes [5], metrology [6], and baggage inspection [7].

The fastest and easiest way of inspecting objects inline with X-rays is radiogra-

phy. To acquire a radiograph, a side-view arrangement is employed with a source

and detector on opposite sides of the conveyor belt. Based on the radiograph, in-

terior features of a sample, like dense materials or foreign objects, can be detected

[8, 9] or components can be inspected [3]. A high efficiency and a relatively in-

expensive infrastructure are the main advantages of X-ray radiography. However,

plain radiography comes with a substantial disadvantage: due to the accumulation

of the attenuation coefficients along the direction of the projection, depth infor-

mation is lost and possible defects cannot be spatially resolved in 3D. Moreover,

defects may render invisible, hidden behind or in front of materials with a higher

attenuation coefficient.

The need for 3D information can be met by using CT. CT is widely used in

the field of offline inspection and dimensional metrology [10, 11, 12, 13]. However,

full rotation of the object between a fixed source and detector is not possible in

an inline setup and full rotation of the source and detector around the object is

difficult or even impossible to realise in an inline setup when reconstruction speed

and geometrical constraints are an issue. Furthermore, these conventional CT

systems come with a high infrastructure cost (>500k euro [14]).

A more cost-friendly X-ray setup that still allows fast and spatially resolved

imaging is a side-view arrangement consisting of a fixed cone beam source and a

detector moving along with the object, while the object traverses through to the

X-ray beam (Fig. 3.2). From the (limited) angular range from which projections

are acquired, image reconstruction is possible. However, these images will typically

suffer from smearing artefacts due to the missing wedge. Several attempts have

been made to reduce these artefacts with iterative reconstruction. Sidky et al., for

example, derived a volume image reconstruction technique for a finite straight-line

source trajectory [15]. Zhang et al. [16] performed a feasibility study for X-ray

tomography in a straight-line trajectory scan based on a total variation iterative

procedure. The same group introduced an image reconstruction technique based

on total variation minimization and alternating directions to reconstruct images

in a linear scan [17]. Despite the improved image quality that can be obtained

with these techniques, their usefulness is limited for fast inspection due to the long
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computation time of iterative reconstruction methods.

Recently, we introduced an alternative solution to the angular range problem

by adding a rotation of the sample around an axis perpendicular to the conveyor

belt [18, 19, 20], which largely solves missing wedge artefacts. Nevertheless, even in

this scanning geometry the number of projections must be kept small to keep the

reconstruction time limited, which may lead to undersampling artefacts. There-

fore, in this work, we propose a new type of fast fan beam reconstruction algorithm,

analogous to the parallel beam neural network approach of [21, 22]. Our algorithm

is based on the Hilbert transform FBP (hFBP) [23] for which the filter is trained by

a neural network (NN-hFBP). An advantage of the method is that the NN-hFBP

reconstructions can be computed directly from fan-beam data, without the need

for rebinning. The algorithm is validated using both simulated and experimental

inline scans of agricultural products. It will be shown that the NN-hFBP allows

for fast and high quality reconstructions of images in an inline environment from

a limited number of projections.

3.2 Methods

In this section, the proposed NN-hFBP algorithm is introduced. The algorithm

is based on two existing algorithms: the NN-FBP and the hFBP. The NN-FBP

introduced by Pelt et al. [21, 22] creates an image by combining multiple FBP

reconstructions, each obtained with a different filter. These filters are trained

beforehand in a neural network based on an existing training dataset. High quality

images can be reconstructed in a very short time with the NN-FBP. However, the

method is only applicable to parallel beam data, which restricts its application

for X-ray imaging mainly to synchrotron beamlines. For most X-ray sources, the

X-rays are emitted in a cone beam. When only considering the central slice of a

cone beam dataset, a fan beam dataset can be obtained. Although rebinning from

fan to parallel beam would allow direct application of NN-FBP, it slows down the

reconstruction and often introduces interpolation artifacts. Therefore, we chose to

adapt the NN-FBP algorithm for direct application to fan beam data. To do this,

the hFBP [23] was used instead of the conventional FBP. In the hFBP algorithm,

the differential of the Hilbert transform of the projection data is backprojected

onto the reconstruction plane to create the reconstructed image. In this paper,

the hFBP is first adapted for an inline acquisition geometry [18, 19, 20] in section

3.2.1. Next, an introduction into neural networks as well as a description of the

NN-FBP are given in section 3.2.2. Finally, position- and angle independent filters

are derived in section 3.2.3, to form the NN-hFBP reconstruction. A schematic of

the structure is shown in Fig. 3.1.
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hFBP
NN-hFBP

NN-FBP

Inline hFBP
Inline geometry

ANN

Figure 3.1: Schematic of the structure describing how the NN-hFBP is formed in this paper.

X ray source

y

X ray source

Figure 3.2: Inline inspection with a flat panel detector that moves along with the object
while it transverses and rotates.

3.2.1 Inline Hilbert transform based FBP

The inline acquisition geometry that we will work with consists of an object that

rotates and translates on a conveyor belt while passing a fixed source and detector

system. The detector can either be steady at a fixed position opposite to the source

or it can move along with the object over a certain distance. The disadvantage

of a fixed detector is its limited field of view, forcing objects to rotate faster

to obtain projections from a large angular range. On the other hand, a moving

detector should return to its starting position after every sample, therefore slowing

down the inspection process and inducing mechanical difficulties. Without loss of

generality, we chose the acquisition geometry with a moving detector as shown in

Fig. 3.2 for the remainder of the paper.

To adapt the hFBP algorithm so that it can be used for an inline inspection

geometry, we start from the Hilbert transform based reconstruction algorithm

for parallel beam data. Here, the Hilbert transform is applied on the detector
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�

Figure 3.3: Acquisition geometry for inline inspection. (a) Point of view of the fixed source
and a rotating and translating object, (b) Point of view of a fixed object and a rotating source
and detector.

coordinate. The parallel beam reconstruction formula is given by [23]:

f(r, φ) =
1

8π

∫ 2π

0

∂pH(l, θ)

∂l
dθ,

�� ��3.1

where pH is the Hilbert transformed projection data, f is the reconstructed image,

(r, φ) are polar coordinates, and (l, θ) represent the parameters of a parallel beam

geometry: the detector pixel and the projection angle, respectively. Our inline ac-

quisition geometry is characterized by the detector pixel u, the translation distance

h between the source and the center of the object and the rotation angle γ of the

object (cfr Fig. 3.3). Fig. 3.3a shows a projection in the geometry from the point

of view of a fixed source and rotating and translating object, while Fig. 3.3b shows

the same projection from the point of view of a fixed object where the source and

detector are rotating around the object. In Fig. 3.3, D is the distance between

the source and the plane of the detector, OD is the distance from the detector

to the origin, SO the distance between the origin and a plane through the source

parallel to the detector and P a pixel that we want to reconstruct. It is important

to notice that the translation distance h is positive when the object is in front of

the central position and negative behind the central position.

If the rotation speed ω of the object, expressed in rad/m, is constant, the

object’s rotation angle γ can be written in terms of this rotation speed and the
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translation distance h so that only two independent parameters remain:

γ = −h · ω.
�� ��3.2

Note that the rotation angle γ is zero when the object is at the central position.

Our new reconstruction formula for inline data will be derived from Eq. 3.1. There-

fore, we must express Eq. 3.1 in terms of parameters h and u instead of l and θ.

To do this, l and θ are first written in terms of u and h:

l =
uSO + hOD√
D2 + (u− h)2

,
�� ��3.3

θ = −hω + arctan
u− h
D

.
�� ��3.4

To simplify the notation of the upcoming equations, we now introduce a variable

t = u − h. The Hilbert transform for inline data can now be defined similarly to

the Hilbert transform of fan-beam data with a flat panel detector described in [24].

Only in the inline setup, the object is not positioned in the center of the beam.

Therefore, we replace the detector pixel u with t, which results in the following

Hilbert transform for inline data:

pinl
H (ui, hj) =

√
t2i,j +D2

π

∫
pinl(ui − τ, hj)dτ
τ
√

(ti,j − τ)2 +D2
,

�� ��3.5

where pinl is the inline projection data, pinl
H is the Hilbert transformed inline pro-

jection data, and ti,j = ui − hj , then Eq. 3.6 holds:

pinl
H (u, h) = pH

(
uSO + hOD√

D2 + t2
,−hω + arctan

t

D

)
.

�� ��3.6

A proof, similar to appendix A in [24] for Eq. 3.6 can easily be derived.

To create the reconstruction formula for inline data, Eq. 3.6 is used to adapt

equation Eq. 3.1. To express the derivative of the parallel Hilbert transform in

terms of the derivatives of the inline Hilbert transform, first the partial derivatives

of pinl
H with respect to u and h are calculated based on Eq. 3.6:

∂pinl
H

∂u
(u, h) =

D2SO −Dht√
(D2 + t2)3

∂pH(l, θ)

∂l
+

D

D2 + t2
∂pH(l, θ)

∂θ
,

�� ��3.7

∂pinl
H

∂h
(u, h) =

D2OD +Dut√
(D2 + t2)3

∂pH(l, θ)

∂l
−
(
ω +

D

D2 + t2

)
∂pH(l, θ)

∂θ
.

�� ��3.8
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This system of equations can now be solved for ∂pH(l, θ)/∂l :

∂pH(l, θ)

∂l
=

√
D2 + t2

D + ω(DSO − ht)

[
∂pinl

H

∂h
(u, h) +

ω(D2 + t2) +D

D

∂pinl
H

∂u
(u, h)

]
,�� ��3.9

= pinl
F0

(u, h).
�� ��3.10

The reconstruction formula for inline data can now be derived from Eq. 3.1 by

inserting Eq. 3.9 in Eq. 3.1. This results in the hFBP reconstruction algorithm for

fan-beam data in an inline environment where the object rotates with a constant

speed ω:

f(r, φ) =
1

8π

∫ 2π

0

∂pH
∂l

dθ,

=
1

8π

∫ 2π

0

√
D2 + t2

D + ω(DSO − ht)

[
∂pinl

H

∂h
(u, h) +

ω(D2 + t2) +D

D

∂pinl
H

∂u
(u, h)

]
dθ.�� ��3.11

Here, f is the reconstructed image and u corresponds to the detector pixel where

the ray through (r, φ) hits the detector at displacement h and t = u − h. To

compute the integral, the projection data is interpolated in u and h to obtain data

corresponding to the desired parallel beam θ values. Therefore, Eq. 3.3 and Eq. 3.4

should be converted to expressions for u and h. To do this, the arctan(u−hD ) was

approximated by u−h
D since u−h

D was small. After discretization of Eq. 3.11, the

discrete reconstruction algorithm for inline inspection with a constant rotation

speed consists of 4 steps and is described in 3.4.

In the case of equiangular data acquisition, the rotation speed of the object is

dependent on its position on the conveyor belt. The rotation angle γ can then be

written as:

γ = Γ
arctan(−h

SO )−arctan(−hst
SO )

arctan(−he
SO )−arctan(−hst

SO )
− γmin,

�� ��3.12

= ω′
(
arctan

(−h
SO

)
− a
)
− γmin.

�� ��3.13

Here, Γ is the total angular range over which the object will rotate, γmin is the

angle over which the object rotates from the first projection until the central

position and ω′ and a are constants defined as: ω′ = Γ

arctan(−he
SO )−arctan(−hst

SO )
and

a = arctan
(−hst

SO

)
with he the last h-value and hst the first h-value. The positions

hi on the conveyor belt at which projections are taken are distributed in such

a way that, without rotation of the object, the projections would be acquired
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equiangularly:

hi = SO · tan (αmin + (i− 1) ·∆α) .
�� ��3.14

In Eq. 3.14, αmin = arctan(−hst

SO ) and ∆α is the angle between two successive

projections. The partial derivative with respect to l of the Hilbert transformed

parallel projection data, similar to Eq. 3.9 or step 2 of the reconstruction algorithm

then becomes:

pinl
F0

(ui, hj) =

√
D2 + t2i,j

D(SO2 + h2
j ) + ωSO(DSO − hjti,j)

·[
(SO2 + h2

j )
∂pinl

H (ui, hj)

∂h
+

(D(SO2 + h2
j ) + ωSO(D2 + t2i,j))

D

∂pinl
H (ui, hj)

∂u

]
.�� ��3.15

3.2.2 Neural Network based FBP

In this section, a brief introduction into artificial neural networks is given, after

which the NN-FBP of Pelt et al. is discussed concisely.

3.2.2.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are mathematical models with a learning ca-

pacity inspired by the human brain. They are used to approximate a certain

unknown function f : Rn → Rm in different application domains like prediction

[25], classification [26], object detection [27] and identification [28]. One type of

neural network is the multilayer perceptron (MLP) [29, 30]. Here, we define a per-

ceptron consisting of 3 different layers as shown in Fig. 3.4: an input layer with n

nodes for an input x ∈ Rn, a layer of N hidden nodes and an output layer with m

output nodes generating output z ∈ Rm. The MLP is fully connected: every input

node is connected to every hidden node with weight matrix W ∈ Rn×N and every

hidden node is connected to all the output nodes with weight matrix Q ∈ Rm×N .

To allow the ANN to describe non-linear functions, two activation functions σ(.)

and σ0(.) are incorporated. They are applied to every hidden node and output

node, respectively. In this work, the sigmoid function is used for both activation

functions. The decision boundary of this sigmoid function is centered around 0.

By subtracting biases b0 and bi from every hidden node and output node before

applying the activation function, this decision boundary can be changed, which

allows to approximate many more functions [30]. The output of the network can
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Figure 3.4: A multilayer perceptron consisting of three layers with one output node
Every input node is connected to every hidden node with weight matrix W and every hidden
node is connected to the output node with weight matrix Q. On every hidden and output
node, an activation function is applied and biases are subtracted.

then be written as:

zQ,W,b,b0(x) = σ0

(
N∑
i=1

qiσ
(
wT
i x− bi

)
− b0

)
.

�� ��3.16

Here, qi and wi are the columns of the weight matrices Q and W , respectively.

To use the network to approximate an unknown non-linear function f given

a certain input x, the weights wi and qi and biases b and b0 of the network

must be trained. To this end, the network is trained in a supervised way, which

requires a training and validation dataset. For these two sets, both the inputs

xk and the corresponding correct outputs yk should be available. The network

then trains the weights and biases by minimizing the sum of the squared errors

between the correct outputs yk of the training dataset and the outputs obtained

by the network zk using the Levenberg-Marquardt algorithm (LMA) [31]. Algo-

rithm 1 [22] describes the different steps performed to train the neural network.

Algorithm 1: Training

1. Create training and validation dataset

2. Initialize parameters W and Q, b and b0 of the network.

3. Iterate

73



CHAPTER 3. NN-HFBP FOR FAST INLINE X-RAY INSPECTION

(a) Perform one LMA iteration on the training dataset

(b) Calculate the squared error of the validation dataset

(c) If the validation error does not improve for Nstop iterations, stop iter-

ating

4. Return parameters W and Q, b and b0 with the lowest validation error

Choosing the number of hidden nodes N in a multilayer perceptron is a difficult

task. If N is chosen too small, the network will not be able to approximate the

required function correctly, which is called underfitting. For a large N , on the

other hand, the network will be more prone to overfitting to the training data.

The validation set is used to prevent the network from the latter. Several factors

influence the choice of N : the number of inputs and outputs, the training algo-

rithm, the architecture of the network, the training set, the noise in the data, and

the type of activation functions. Throughout the years, much research is done to

determine the best choice of hidden nodes in an ANN. The most basic methods

follow one of three thumb rules: N should be between the size of the input layer

and the size of the output layer, N should be 2/3th of the sum of the sizes of the

input and output layer and the number of hidden nodes should be less than twice

the size of the input layer [32, 33]. More advanced methods are described in [33],

in which Gnana Sheela and Deepa made a thorough review of the main research in

this domain for the last twenty years. In this review, the selection of the number

of hidden nodes is done by minimizing the error between the true output and the

network output. In our work, not only the validation error should be minimized

but also the calculation time from input to output is an important parameter to

take into account. Therefore, a balance should be found between these two values

and for every specific application, this balance should be evaluated.

An example for which the neural network can be used to approximate a func-

tion is the reconstruction of an image based on X-ray projection data. Several

methods have been proposed to use an ANN for image reconstruction with X-rays.

The easiest way is to give the projection data as an input to the neural network

and the reconstruction image pixels as the output. This is done by Paschalis et al.

in [34], but it results in a neural network with many input and output nodes where

a very large dataset is required to train the network. Cierniak [35, 36, 37] uses

another type of neural network, a Hopfield neural network, to reconstruct images

based on the projection data. Here, the number of neurons in each layer is equal

to the number of reconstructed pixels, so that the network easily becomes very

large with increasing image sizes. Another method is applied in [38, 39] where the

image pixel positions are the input of the neural network and the output is the

74



3.2. METHODS

value of the reconstructed image at that pixel. The networks are trained based

on the difference between the projection data of the reconstructed image and the

original projection data. It can be used in cases where no training data is available.

The major drawback is, however, that the network is image specific, so for every

reconstruction image, the network should be reset.

3.2.2.2 NN-FBP

Pelt et al. [21, 22] combined the multilayer perceptron and the FBP algorithm to

introduce the Neural Network Filtered Back Projection (NN-FBP) algorithm for

parallel beam data. This algorithm enables fast reconstruction of 2D images from

a set of parallel beam X-ray projections. Instead of reconstructing the whole image

as an output, the network is trained to reconstruct only 1 pixel value (i.e., only 1

output node). Since the FBP is shift invariant, the input is created by first shifting

the projection data, then summing it over all projection angles and reflecting the

final result. Multiplication of this input with a filter is then actually the same

as a filtered backprojection which reconstructs only 1 pixel. The network trains

different filters, contained in the columns of the weight matrix W of the multilayer

perceptron, as well as the weights qi and biases b and b0. To create a final recon-

struction image, the NN-FBP performs several FBP reconstructions, each with a

different filter from matrix W , applies a non-linear activation function on each of

them, and combines them according to the weights qi of the network. The final

reconstruction image is then obtained after applying the second activation func-

tion. Algorithm 2 [22] describes the NN-FBP reconstruction algorithm stepwise.

Algorithm 2: NN-FBP

1. Train the network for W , Q, b and b0.

2. Perform N FBP reconstructions, each with a different filter (the columns of

matrix W ) trained by the ANN.

3. Subtract a bias bi from every image and apply an activation function σ(.) on

every pixel.

4. Add the different FBP reconstructed images pixel by pixel with weights qi
of the ANN.

5. Subtract a bias b0 from the combined image and apply the same activation

function σ(.) to obtain the final reconstructed image.
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3.2.3 NN-hFBP

The inline hFBP reconstruction of section 3.2.1 can now be combined with the

NN-FBP of Pelt et al. to provide fast, high quality reconstructions for fan-beam

data in an inline environment. This is, however, only possible when the hFBP is

written as the product of a certain input with a position and angle independent

filter. In 3.4, it is shown that the inline hFBP can be written as the sum of two

terms with each term the convolution of a datavector (I1 and I2) of size n (the

number of detector pixels) and a filter (f1 and f2):

f(r, φ) =
∑
τ

f1(τ)I1(u− τ) + f2(τ)I2(u− τ),
�� ��3.17

where u represents the detector pixel where the ray through (r, φ) hits the detector.

Since the neural network performs a convolution of an input with a filter, this

means that the hFBP can be implemented in a neural network to create the NN-

hFBP. To do this, first the correct datavectors I1 and I2 should be generated based

on the acquired projection data to train the filters (see 3.4). For every detector

pixel, two datavectors are generated which are stored in one input vector of size

2n so that the total length of the input of the neural network is twice the size of

the detector. Once these datavectors are obtained, instead of using the normal

filters of the hFBP (described in Eq. 3.25 and Eq. 3.26), the network is trained

so that the weight matrices W1 ∈ Rn×N and W2 ∈ Rn×N between the 2n input

nodes and the N hidden nodes of the multilayer perceptron define new filters

w1i ∈ Rn and w2i ∈ Rn for the hFBP reconstructions, which are the columns

of the weight matrices W1 and W2 (replacing the filters f1 and f2). This means

that after training the network, several hFBP reconstructions can be computed

with these new filters instead of the filters of Eq. 3.25 and Eq. 3.26. Finally, the

reconstructions are combined using the activation functions σ and σ0 (in our case

sigmoid functions), the trained weights q ∈ RN , and the biases b ∈ RN and b0 of

the neural network, as shown in Fig. 3.5. The final reconstruction formula then

becomes:

f(r, φ) = σ0

(
N−1∑
k=0

qkσ(
∑
τ

(w1k(τ)I1(u− τ) + w2k(τ)I2(u− τ))− bk)− b0

)
,�� ��3.18

where w1k and w2k are the filters trained by the neural network.
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Figure 3.5: Scheme of the NN-hFBP reconstruction: For training, inputs I1 and I2 are
created from the projection data with which the filters w1i and w2i are trained in the top
row. For reconstruction, the filters w1i and w2i are combined and used as the new filters to
perform several hFBP reconstructions in the second row.

3.3 Experiments and Results

In this section, the performance of the NN-hFBP algorithm is evaluated with both

simulated and real inline data. First, using simulation experiments, the acquisition

settings and NN-hFBP network parameters are optimized for maximal image qua-

lity. In particular, the influence of equiangular versus non-equiangular sampling,

the rotation speed of the sample and the number of hidden nodes of the network

was studied in terms of image quality. Secondly, the reconstruction quality of the

(optimized) NN-hFBP was compared to that of the conventional reconstruction

algorithms FBP and SIRT with 500 iterations. Finally, the performance and image

quality of NN-hFBP versus conventional reconstruction algorithms were evaluated

using real data experiments. The evaluation of the image quality was done by 4

different evaluation methods:

The Root Mean Squared Error (RMSE) evaluates the reconstructed image

pixelwise and combines the pixelwise differences into one final RMSE value.

The RMSE is defined as

RMSE =

√∑
i=1..M (rec(i)−GT (i))2

M
,

�� ��3.19

where rec is the reconstructed image, GT is the ground truth image and M

is the number of pixels in the image. The RMSE measure was used twice:

once when evaluating on the whole image (global RMSE) and once when
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evaluating only on the apple, bell pepper or walnut region (local RMSE).

The Most Apparent Distortion (MAD) compares two images based on a com-

bination of the detection-based strategy and the appearance-based strategy

of the human visual system (HVS). The detection-based strategy describes

the phenomenon when the distortions in an image are near-threshold so that

the HVS tends to look past the image to the distortions. The appearance-

based strategy describes the phenomenon when the distortions are most ap-

parent so that the HVS tends to look past the distortions to see the image.

The distortions from the first strategy are calculated based on local lumi-

nance and contrast masking, the second type of distortions are calculated by

looking at the changes in the local statistics of spatial-frequency components.

Combining these two measures results in a MAD value, which should be as

low as possible [40].

The Feature Similarity Index (FSIM) takes into account that the HVS un-

derstands an image based on its low-level features. The two features that are

exploited here are the phase congruency and the image gradient magnitude.

Combining these features results in a value between 0 and 1, where the FSIM

is 1 if the two images are identical [41].

For all experiments, reconstructions were made using the ASTRA Toolbox [42, 43,

44] where all forward and backprojections were calculated on an NVIDIA GeForce

GTX 580 GPU.

3.3.1 Simulation Experiment

To evaluate the performance of the NN-hFBP algorithm on simulation data, inline

experiments were simulated that mimic the behavior of a real inline scan. X-ray

CT scans of apples and bell peppers were used as test samples, for which the de-

tection of small structural changes such as holes or browning are of interest. Inline

CT data were created starting from conventional circular CT scans of apples and

bell peppers from respectively 470 and 632 equiangular projections of 1024× 1024

pixels. From these scans, inline scans were simulated by reorganizing correspon-

ding rays. Such simulated inline projection data naturally accounts for a realistic

polychromatic source as well as realistic noise behaviour.

Specifications of the geometry are given in 3.1. The translation distance is

expressed as the distance in mm compared to the central position on the conveyor

belt opposite to the source. For the experiments, four types of apples and one type

of bell pepper were used. The number and types of apples and bell peppers used

for training, validation and testing in the different experiments is shown in 3.2.
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Table 3.1: Specifications scanning geometry.

Simulations Real Data
Detector pixels 1148 1146
Detector pixel size 127µm 127µm
Translation distance [mm] [-250, 250] [-250, 250]
Object Detector distance 84.500mm 84.527mm
Source Object distance 900mm 563mm
Downsampling 4 2
Image pixels 256× 256 400× 400
Image pixel size 400µm 200µm

Table 3.2: Datasets.

Training Set Validation Set Test Set
Braeburn 1 8 4 4
Braeburn 2 20 7 10
Jonagored 10 6 7
Jonagold 15 6 10
Bell Pepper 15 5 10

For each experiment, 10 instances of every network were trained by randomly

selecting different sets of pixels of the same image data. Each ANN was trained

based on 100.000 random pixels for training and validated with 10.000 random

pixels. For each of the four apple types, 100 slices of the training datasets were

used for training and 10 slices of the validation datasets for validation. In case of

the bell peppers, only the central slice of each bell pepper was used for training

and validation since the scan quality was not good enough to make fan-beam

reconstructions of non-central slices. For the bell peppers, the ANN was trained

based on 15 training images and 5 validation images. The reconstruction quality

was tested on 50 images for the apple datasets and on 10 images for the bell

peppers.

Before describing the first experiment, we note that the hFBP and the NN-

hFBP both require an interpolation step. This step causes higher reconstruc-

tion times and introduces blurring in the reconstruction in few-view acquisitions.

Therefore, in this paper, we propose a heuristic approach where we omit the in-

terpolation step and directly backproject the data along the inline fan-beam pro-

jection geometry. This means that for every pixel in the reconstruction grid, data

from slightly different parallel projection angles θ is summed up. Although this is

an approximation, avoiding the interpolation step makes the reconstruction much

faster with only a slight loss of reconstruction quality. The effects of interpolation
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(a) (b) (c) (d) (e) 

Figure 3.6: Comparison of the interpolation and the heuristic method. (a) ground truth
image, (b) hFBP reconstruction with interpolation from 32 projections over 2π, (c) heuristic
hFBP reconstruction from 32 projections, (d) hFBP reconstruction with interpolation from
128 projections, (e) heuristic hFBP reconstruction from 128 projections.

on the hFBP and the NN-hFBP reconstruction quality can be seen in Fig. 3.6b

and Fig. 3.7b, respectively on two inline scanned apples with ground truth images

in Fig. 3.6a and Fig. 3.7a. To avoid the blurring and to further reduce the com-

putation time, we propose to omit the interpolation step and directly backproject

the data along the inline fan-beam projection geometry. In Fig. 3.6, NN-hFBP

is compared to hFBP with interpolation and the heuristic hFBP reconstruction

for 32 and 128 projection angles. The hFBP with interpolation provides good

image quality when a sufficiently high (in this case 128) number of projections are

available, but blurring artifacts appear when only a small number of projections

are present. With the heuristic approach, the holes are less blurred than with the

interpolation approach for 32 projections. For 128 projections, streaking artefacts

appear in the heuristic reconstructions, but the reconstruction is less blurred and

the holes and brown spots are still clearly visible. In Fig. 3.7, a similar compari-

son is made between an inline NN-hFBP reconstruction with interpolation and a

heuristic inline NN-hFBP reconstruction for 32 and 128 projection angles. With

the heuristic approach, streak artefacts appear again at the outside of the apple,

but the small holes are detected with 32 projections, which is not the case for

the conventional NN-hFBP method. Fig. 3.6 and Fig. 3.7 clearly indicate that a

choice should be made between blurring or streaks in the reconstructions made

with only few projections. Based on the capacity of the heuristic NN-hFBP to

better detect the holes with less blurriness for a small number of projections and

the faster reconstruction time, we decided to use the heuristic approach in the rest

of this paper.

In the first experiment, we optimize the acquisition and network parameters

to evaluate the reconstruction quality of the NN-hFBP. Important parameters

for data acquisition are the rotation speed and rotation direction of the objects.

Therefore, in this experiment, we first evaluate the reconstruction quality (in terms

of the global RMSE) of the NN-hFBP of the Braeburn 1 apples as a function of
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(a) (b) (c) (d) (e) 

Figure 3.7: Comparison of the interpolation and the heuristic method in a neural network. (a)
ground truth image, (b) NN-hFBP reconstruction with interpolation from 32 projections over
2π, (c) heuristic NN-hFBP reconstruction from 32 projections, (d) NN-hFBP reconstruction
with interpolation from 128 projections, (e) heuristic NN-hFBP reconstruction from 128
projections.

the rotation speed when 128 projections are acquired equiangularly (cfr: Fig. 3.8).

The rotation speed is expressed in terms of the angular range Γ over which the

apple has rotated from the first projection to the last projection and ranges be-

tween −π and π. The corresponding reconstructed images are shown in Fig. 3.9.

From the graph and the images, it is immediately clear that rotation substantially

improves the reconstruction quality. Without rotating the object, substantial lim-

ited wedge artefacts appear. Furthermore, there is an obvious difference between

a counterclockwise and clockwise rotation. When the object rotates counterclock-

wise at a slow rotation speed, the different intrinsic projection angles at which the

projections are required without rotation are counteracted by the rotation so that

the reconstruction is similar to no rotation. A clockwise rotation however allows

to substantially increase the angular range, resulting in a higher reconstruction

quality.

Secondly, we inspect the influence of two different types of sampling of the

projections on the final reconstruction quality. Unless prior knowledge is available

about the object to be inspected, equiangular sampling is expected to be optimal.

On the other hand, a constant rotation speed and equidistantly acquired projec-

tions may have a practical advantage. Hence, we investigate the difference between

the reconstruction quality of the NN-hFBP for Braeburn 2 apples that rotate with

a constant rotation speed (non-equiangular projections) versus apples that rotate

with a varying rotation speed so that the acquired projections are equiangular.

The results in terms of the global RMSE as a function of the number of projec-

tions, both with equiangular (EA) and non-equiangular (NEA) projections, are

compared in Fig. 3.10. It can be seen that the reconstruction quality is very si-

milar. Hence, in this acquisition setup, there is not a large gain by acquiring the

projections equiangularly. This is a desired characteristic since it facilitates the

data acquisition. Projections can then be taken at equidistant positions and the
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Figure 3.8: The global RMSE of the NN-hFBP reconstruction for different angular
ranges.
The x-axis gives the total angular range Γ over which the apple has rotated.

(a) (b) (c) 

(d) (e) (f)

(g) (h) (i)

Figure 3.9: Reconstruction images of the apples made with the NN-hFBP for angular ranges
Γ equal to (a) −π, (b) −3π/4, (c) −π/2, (d) −π/4, (e) 0, (f) π/4, (g) π/2, (h) 3π/4, (i) π
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Figure 3.10: Global RMSE for non-equiangular and equiangular NN-hFBP reconstructions
in function of the number of projections.

rotational speed of the apple can be kept constant.

Finally, we optimize the number of hidden nodes and thus the number of hFBP

reconstructions that are combined in the neural network as it represents a trade-

off between reconstruction quality and speed. We therefore examine the influence

of the number of hidden nodes N of the ANN on the reconstruction quality of

the NN-hFBP evaluated on Jonagored apples with a constant rotation speed and

N = 1, 2, 4 and 8. Fig. 3.11a shows the RMSE over the whole image and Fig. 3.11b

the reconstruction time in function of the number of projections. The four graphs

represent the cases of 1,2,4 and 8 hidden nodes. From the graphs, one can see

that increasing the number of hidden nodes improves the reconstruction quality.

However, it also increases the reconstruction time. For 32 and 128 projections,

the reconstructed images are shown in Fig. 3.12. To balance the reconstruction

quality and reconstruction time, we have chosen to use 4 hidden nodes, aiming to

optimize the reconstruction quality while preserving a reconstruction time of less

than 100ms for 128 projections.

From the three experiments, optimal conditions can be derived for the NN-

hFBP reconstructions. Now, the reconstruction quality of the NN-hFBP is com-

pared to the quality of the conventional algorithms SIRT and FBP. Results of a

comparison with hFBP were omitted, as NN-hFBP clearly outperforms hFBP in

terms of reconstruction quality. Fig. 3.13 shows the reconstruction quality of FBP,

SIRT and the NN-hFBP as a function of the number of projections in terms of

the global RMSE (a), the local RMSE (b), MAD (c) and FSIM (d). As is clear

from the plots, the reconstruction quality of NN-hFBP is significantly better than
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Figure 3.11: Evaluation of the reconstruction quality in terms of the global RMSE (a) and
reconstruction time (b) of the NN-hFBP evaluated on Jonagored apples based on 1, 2, 4 and
8 hidden nodes for different number of projections.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3.12: (a) ground truth image of a Jonagored slice, (b-e) NN-hFBP reconstructions of
32 projections with 1 (b), 2 (c), 4 (d) and 8 (e) hidden nodes, (f-i) NN-hFBP reconstructions
of 128 projections with 1 (f), 2 (g), 4 (h) and 8 (i) hidden nodes.
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Figure 3.13: Evaluation of the reconstruction quality for FBP, SIRT and NN-hFBP in terms
of the global RMSE (a), local RMSE (b), MAD (c) and FSIM (d), both for Jonagold apples
and bell peppers.

that of FBP and SIRT for all number of projections, both for the Jonagold apples

and the bell peppers. In particular, the quality of the NN-hFBP reconstructions

in terms of the FSIM is much better than that of FBP and SIRT. This might

be because the NN-hFBP is capable of clearly detecting the shape of the object

and important features like holes and the core of the apple even with a very small

number of projections, in contrast to FBP and SIRT.

A comparison of the reconstructed Jonagold and bell pepper slices from 32

projections with the different methods is shown in Fig. 3.14. One can clearly see

that the NN-hFBP outperforms the other reconstruction algorithms since much

more noise is present in the FBP reconstruction (signal-to-noise ratio of 13.44 vs

4.91 for bell peppers and 9.72 vs 4.80 for apples) and the SIRT reconstruction

is slightly blurred. Example images for comparing the reconstruction quality of

the NN-hFBP with different numbers of projections are shown in Fig. 3.15 for

16, 32, 64 and 128 projections. On the images made with 16 projections, many

artifacts appear which make the detection of undesired regions impossible. The

black regions at the outside of the apple might suggest that there are holes as

well. Also for the bell pepper, not much information can be obtained with 16

projections. However, from the images obtained with 64 projections, the holes

are clearly visible in the reconstruction. Despite the radial lines at the outside
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(a) (c) (d) (e)

(b) (f) (g) (h)

Figure 3.14: Ground truth images of an apple slice (a) and a bell pepper slice (b) and their
reconstructions for 32 projections made with FBP (c and f), SIRT (d and g) and NN-hFBP
(e and h).

of the apple, this image can certainly be used for the detection of holes. Further

increasing the number of projections naturally leads to a better reconstruction

quality. Fig. 3.16 shows the reconstruction times of FBP with and without the

rebinning time, SIRT and NN-hFBP. NN-hFBP is 16 to 28 times faster than

SIRT and 3 to 9 times faster than FBP with rebinning time but slower than FBP

without the rebinning. Therefore it can be concluded that the long reconstruction

time of FBP is caused by rebinning from a fan-beam to a parallel-beam geometry.

The overhead time due to the rebinning step scales linearly with the number of

projections. Furthermore, the training time of the NN-hFBP has not been taken

into account since the NN-hFBP will mainly be used for inspection of a large

number of samples, for which the training phase can be done in advance. Once

the network is trained, similar samples can be scanned very fast.

3.3.2 Real Data Experiment

To test the performance on real X-ray data, a mock-up was built for an inline

scanning environment where the sample rotates and translates at the same time,

closely mimicking an inline environment with a conveyor belt [20]. Specifications

of the scanning geometry are given in 3.1. The positions at which projections were

taken on the conveyor belt ranged from -250 mm to 250 mm relative to the central

ray and intermittent projections were acquired at positions so that the angles were

equiangularly distributed.

With this mock-up, five walnuts were scanned. For each walnut, 512 projections
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.15: NN-hFBP reconstructions of the apple and bell pepper slices of Fig. 3.14 for
16 (a and e), 32 (b and f), 64 (c and g) and 128 (d and h) projections.
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Figure 3.16: Reconstruction times of FBP (with and without rebinning time included), SIRT
and NN-hFBP for apples with 256×256 reconstruction pixels.
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were taken. Based on the 512 projections, 400 × 400 pixel reconstructions of 30

slices around the central slices were made with the SIRT algorithm. The recon-

structed images were used to train the NN-hFBP. The network was trained with

300.000 pixels chosen from 90 images obtained from three training walnuts. Vali-

dation was done on 10.000 pixels of 30 images. The results were obtained from 10

images of the last remaining walnut dataset. A subset of the available projections

was used and the reconstruction quality of FBP, SIRT and NN-hFBP as a function

of the number of projections was compared.

Fig. 3.17 shows the quality of the FBP, SIRT and NN-hFBP reconstructions based

on the real data acquired from the walnuts, in terms of the RMSE (a,b), MAD (c)

and FSIM (d). As can be observed from these plots, the NN-hFBP outperforms

the FBP method, independent of the number of projections. For less than 48

projections, the SIRT algorithms creates however better reconstructions than the

NN-hFBP. This might be due to the limited training data available. The recon-

struction quality of the NN-hFBP is highly dependent on the amount and quality

of the training data. Fig. 3.18 shows the reconstruction time of FBP with and

without rebinning time, SIRT and NN-hFBP. Here, we see again that the NN-

hFBP algorithm is faster than FBP with rebinning but slower than FBP without

rebinning. Despite its lower reconstruction quality than SIRT for a low number

of projections, it is still much faster than SIRT. It is therefore better suited for

implementation in an inline environment where speed is critical. Fig. 3.19 shows

the reconstructed walnut slices from 32 and 128 projections with the different

reconstruction algorithms. The NN-hFBP manages to remove the background ar-

tifacts and increase the signal-to-noise ratio of the reconstructions (2.65, 4.25 and

4.87 for reconstructions made with 32 projections with FBP, SIRT and NN-hFBP,

respectively) while preserving the important features of the walnuts.

3.4 Conclusion

The NN-hFBP introduced in this work is a fast reconstruction method suitable

to inline inspection where only a limited number of projections are available. Our

method works directly on the fan-beam data, without the need for rebinning to

parallel beam data. Simulation and real data studies showed that NN-hFBP out-

performs the conventional FBP with respect to image quality. NN-hFBP is an

order of magnitude faster than SIRT and for at least 48 projections, it also outper-

forms the SIRT algorithm in terms of reconstruction quality. The reconstruction

time is approximately 200 ms for a reconstruction of 400 × 400 pixels from 128

projections when the forward and backprojection are calculated on an NVIDIA

GeForce GTX 580 GPU with the ASTRA Toolbox.
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Figure 3.17: Evaluation of the FBP, SIRT and NN-hFBP reconstruction algorithms for
walnuts with the (a) global RMSE, (b) local RMSE, (c) MAD and (d) FSIM.
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Figure 3.18: Reconstruction times of FBP (with and without rebinning time included), SIRT
and NN-hFBP for walnuts with 400×400 reconstruction pixels.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.19: Ground truth image (a) of a walnut and reconstructions made with FBP (b),
SIRT (c) and NN-hFBP (d) from 32 projections and FBP (e), SIRT (f) and NN-hFBP (g)
from 128 projections.

Appendix A: hFBP algorithm for inline inspection with

a constant rotation speed

1. Discrete Hilbert Transform

pinl
H (ui, hj) =

∆u

√
t2i,j +D2

π

∑
τ

pinl(ui − τ, hj)
τ
√

(ti,j − τ)2 +D2
.

�� ��3.20

2. Differential by central difference

pinl
F0

(ui, hj) =

√
D2 + t2i,j

D + ω(DSO − hjti,j)

(
pinl

H (ui, hj+1)− pinl
H (ui, hj−1)

2∆h

)
+√

D2 + t2i,j(D + ω(D2 + t2i,j))

D2 + ωD(DSO − hjti,j)

(
pinl

H (ui+1, hj)− pinl
H (ui−1, hj)

2∆u

)
.�� ��3.21

where ∆h is the sampling grid interval with respect to h and ∆u the sampling

grid interval with respect to u.
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3. Interpolation of u and h

4. Backprojection

The values at pixels (x, y) with polar coordinates (r, φ) are then reconstructed

by:

f(x, y) =
∆h

8π

∑
m

pinl
F0

(um, hm),
�� ��3.22

where um is the detector coordinate at projection hm where the ray through

pixel (x, y) hits the detector.

Appendix B: Reformulation of the hFBP

In this appendix, we will reformulate the reconstruction formula for an inline hFBP

reconstruction Eq. 3.11 so that it fits the form of Eq. 3.17:

f(r, φ) =
∑
τ

f1(τ)I1(u− τ) + f2(τ)I2(u− τ).
�� ��3.23

Then it will be possible to use the hFBP in a neural network to create the NN-

hFBP. To start with, after discretization, the reconstruction formula of the hFBP

for inline inspection with a constant rotation speed Eq. 3.11 can be written in full

as:

f(r, φ) =
∆h

16π

∑
hj∈H

√
D2 + t2j ·

[(
(D + ω(D2 + t2j ))

D + ω(DSO − hjtj)

)
1

D∆u
·

∑
τ


√

(t+∆u
j )2 +D2pinl(u+ ∆u − τ, hj)

τ
√

(t+∆u
j − τ)2 +D2

−

√
(t−∆u
j )2 +D2pinl(u−∆u − τ, hj)

τ
√

(t−∆u
j − τ)2 +D2


+

1

D + ω(D · SO − hjtj)
1

∆h∑
τ


√
t2j+1 +D2pinl(u− τ, hj+1)

τ
√

(tj+1 − τ)2 +D2
−

√
t2j−1 +D2pinl(u− τ, hj−1)

τ
√

(tj−1 − τ)2 +D2

 . �� ��3.24

where H is the set of all displacement values h, tj = u−hj , t−∆u
j = u−∆u−hj and

t+∆u
j = u+ ∆u− hj . To implement this reconstruction method into the NN-FBP,
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Eq. 3.24 is reformulated into Eq. 3.23 so that the first matrix multiplication of the

ANN, the input nodes I1 and I2 times the weights w1i and w2i of Fig. 3.5, can

be replaced by an hFBP reconstruction. In the NN-FBP, the same filters are used

to reconstruct every pixel, independent of the angular position of the projection.

Therefore, from the two terms in Eq. 3.24, two position and angle independent

filters are derived:

f1(τ) =
∆h

16πτD∆u
,

�� ��3.25

f2(τ) =
∆h

16πτ∆h
.

�� ��3.26

The remaining input of the neural network is then defined by two datavectors of

size N:

I1(u− τ) =
∑
hj∈H

a(j)pinl(u+ ∆u − τ, hj)√
(t
′+∆u
j − τ)2 +D2

− b(j)pinl(u−∆u − τ, hj)√
(t−∆u
j − τ)2 +D2

 ,
�� ��3.27

I2(u− τ) =
∑
hj∈H

(
c(j)pinl(u− τ, hj+1)√

(tj+1 − τ)2 +D2
− d(j)pinl(u− τ, hj−1)√

(tj−1 − τ)2 +D2
)

)
,

�� ��3.28

with

a(j) =
(D + ω(D2 + t2j ))

D + ω(DSO − hjtj)

√√√√ D2 + t2j

(t+∆u
j )2 +D2

,
�� ��3.29

b(j) =
(D + ω(D2 + t2j ))

D + ω(DSO − hjtj)

√√√√ D2 + t2j

(t−∆u
j )2 +D2

,
�� ��3.30

c(j) =

√
D2 + t2j

√
D2 + t2j+1

D + ω(DSO − hjtj)
,

�� ��3.31

d(j) =

√
D2 + t2j

√
D2 + t2j−1

D + ω(DSO − hjtj)
.

�� ��3.32

So that Eq. 3.24 can be rewritten as:

f(r, φ) =
∑
τ

f1(τ)I1(u− τ) + f2(τ)I2(u− τ).
�� ��3.33

To generate the data vectors for a certain pixel, first the corresponding detector

pixel is defined for every projection. We further on denote this pixel as the central
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detector pixel. Then, the two datavectors I1 and I2 are generated as described by

Eq. 3.27 and Eq. 3.28. For both datavectors, the projection data is shifted so that

the central pixel is at the center of the detector as explained in [22] and the data

from all projection angles is summed.
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CHAPTER 4. INLINE CRACK DETECTION

4.1 Introduction

An SVS adapter is a small medical device that is one of the several parts of which

certain syringes are composed. During production, an ultrasonic welding process

is performed that welds two plastic parts together [1, 2]. However, at the welding

surface, undesired cracks can appear. Detection of these cracks is essential for a

safe functioning of the syringe. Unfortunately, the cracks are not visible from the

outside. Currently, they are detected by a leak detection system that puts pressure

on the final product after assembly and monitors the decay. This method has some

major disadvantages. Since the pressure test can only be applied on the assembled

syringe, all the other good components of the syringe are also thrown away when

a leakage is detected. The technique is furthermore very time consuming and the

detection rate is at a maximum around 80%.

X-ray imaging and tomography can offer an alternative for the detection of cracks.

Many algorithms are developed over the year that aim to improve the detection of

welding defects on radiographic data [3, 4, 5] and on reconstructed data [6]. In case

of the SVS adapters, the defects of interest can be very small, making them appear

invisible on the projection data. Considering inspection on the reconstructed data,

X-ray inspection is only profitable if it can be applied on every adapter separately

before the assembly process. This puts high requirements on the reconstruction

and inspection time.

In this work, a fast, accurate and flexible inspection method is developed on the

reconstruction data for the detection of cracks in SVS adapters that can be in-

serted in the inline production process of the adapters. During the inspection,

the adapters are translating on a conveyor belt in specific holders where several

samples are stacked behind each other. When the holder reaches the central po-

sition on the conveyor belt between the source and detector, the conveyor belt

stops, the adapters start rotating and projections from a limited number of diffe-

rent projection directions are acquired. After the acquisition, a two-step detection

algorithm is applied on the data. In a first step, an adapted version of the NN-

hFBP [7] algorithm discussed in Chapter 3 is applied on the inline inspection data

to generate reconstructions of the samples of sufficient quality. In the second step,

when the reconstructions are performed, an inspection method is applied on the

reconstructed images that classifies the data into SVS-adapters with and without

cracks. The major advantages of the detection method are its speed, its ability

to be incorporated in the manufacturing pipeline and its direct application on

the SVS-adapters before the assembly of the syringe. This way, when a crack is

present, only the adapter has to be replaced.

The remainder of this chapter is divided as follows: in the next section, the applied

method is described. The method is subdivided in the reconstruction part and the
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actual detection part. In Section 4.3 the performed experiments are shown and the

chapter ends with a general conclusion and some remarks for further improvement

of the method in Section 4.4.

4.2 Methods

In this section, the followed methodology for crack detection is discussed. The de-

tection process consists of two subsequent steps: in the first step, a reconstruction

is made of the adapters with a limited number of projections. The reconstruction

algorithm is an adapted version of the NN-hFBP algorithm described in the previ-

ous chapter. In Section 4.2.1, the algorithm is adapted to the scanning geometry

of the adapters. Secondly, in Section 4.2.2, the crack detection algorithm that will

be applied on the inline reconstructions, is explained.

4.2.1 NN-hFBP for crack reconstruction

In the production line of SVS adapters, an X-ray inspection method can be in-

stalled for detection of cracks inside the samples. The scanning geometry is how-

ever slightly different as in the previous chapter. The adapters are stacked in

groups of five in a multi-object holder. This holder translates on a conveyor belt

towards the X-ray source and detector and stops at the central position. At that

position, several projections are taken with a rotation of the five samples in be-

tween. The number of projections is limited by the maximal acquisition time,

which is limited in an inline process. When all projection data is acquired, the

sample holder translates further on the conveyor belt and out of the field of view,

while another holder with new samples arrives. Since five samples are scanned at

the same time, their acquisition geometry is slightly different, dependent on their

position on the sample holder. Consequently, five different neural networks should

be trained to reconstruct the data of the corresponding positions. Each network

is linked to a certain displacement value H of the object position compared to the

central position between source and detector. The value H is however constant for

a neural network, opposed to the displacement h of the NN-hFBP in Chapter 3

which changes for every projection. Fig. 4.1 shows the scanning geometry at pro-

jection angle β. In the figure, D is the distance between the source and detector

and SO is the source-object distance.

As in Section 3.2.1, the scanning geometry can be described by two parameters

u and β, where u is the detector position and β the rotation angle of the object. The

parallel beam coordinates (l, θ) corresponding to the detector pixel and projection

angles of the equivalent parallel projection can again be formulated in terms of u
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�

Figure 4.1: Inline acquisition geometry of the adapters

and β:

l =
uSO +HD√
D2 + u2

.
�� ��4.1

θ = β + arctan
u

D
.

�� ��4.2

In this case, the Hilbert transform of the data can simply be described by the

Hilbert transform of fan-beam data with a flat panel detector as written by You

et al. in [8] and a similar equation as Eq. 3.6 between the Hilbert transform of the

inline data and the Hilbert transform of the parallel beam projection data holds:

pmoh
H (u, h) = pH

(
uSO +HD√
D2 + u2

, β + arctan
u

D

)
.

�� ��4.3

In Eq. 4.3, pH is the Hilbert transformed parallel beam projection data and pmoh
H is

the Hilbert transform of the projection data of the multi-object holder. To adapt

the NN-hFBP to the specific geometry of the holder, the same procedure has to

be followed as in the previous chapter. First, the partial derivatives of pmoh
H with

respect to u and β are calculated based on Eq. 4.3:
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∂pmoh
H

∂u
(u, β) =

D2SO −DHu√
(D2 + u2)3

∂pH(l, θ)

∂l
+

D

D2 + u2

∂pH(l, θ)

∂θ
.

�� ��4.4

∂pmoh
H

∂β
(u, β) =

∂pH(l, θ)

∂θ
.

�� ��4.5

After solving the system of equations for ∂pH(l,θ)
∂l , the reconstruction formula of

the hFBP for inline inspection with the multi-object holder is formulated as:

f(r, φ) =
1

8π

∫ 2π

0

∂pH
∂l

dθ,

=
1

8π

∫ 2π

0

√
D2 + u2

DSO −Hu)

[
∂pmoh

H

∂β
(u, β) +

(D2 + u2)

D

∂pmoh
H

∂u
(u, β)

]
dθ.

�� ��4.6

Here, f is the reconstructed image and u corresponds to the detector pixel where

the ray through (r, φ) hits the detector at projection angle β. To perform the

reconstruction, interpolation in u and β is required to obtain the values correspon-

ding to the parallel projection angles θ.

In a last step, the hFBP reconstruction algorithm should be incorporated in the

NN-FBP algorithm of Pelt [9, 10]. Therefore, discretization of Eq. 4.6 is necessary

and the reconstruction equation is written as the convolution of two datavectors,

which will serve as the input of the neural network, and two filters. The same

procedure is followed as in Section 3.2.3 to derive the NN-hFBP. Since also here

interpolation of the data is required, we again work with an heuristic approach

where the interpolation is omitted.

4.2.2 Crack detection

As second part of the crack detection method, a classification algorithm is required

to label the adapters as good or broken. In this section, a basic classification algo-

rithm is described with which acceptable results can be obtained. At this point,

the algorithm only takes the reconstructed slices into account at the part of the

assembly surface where the adapter has the shape of a disk. Most of the cracks

are visible on these slices.

The classification algorithm consists of five different steps that will now be de-

scribed in detail:

1. In a first step, the reconstructed image is transformed into polar coordinates.

This way, the image can easily be inspected radially, which is of interest since

the cracks mainly have a more circular shape.
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Figure 4.2: Steps 1–4 of the classification algorithm.

2. On the image in polar coordinates, the region of the adapter is marked.

3. In the region of the adapter, the pixels which have a value less than a pre-

defined threshold are highlighted. For the selection of the threshold, recon-

structions of adapters without cracks are considered. The mean grey value

as well as the mean of the standard deviations over circles with increasing

radii are selected and the threshold is defined as the mean grey value minus

4 times the standard deviation.

4. For each of the highlighted pixels, a 3×3×3 region is studied around the

pixel by taking the previous and next slice into account. The number of

highlighted pixels in this region should be at least 4 to cathegorize the pixel

as part of a crack.

5. Since cracks originate from the assembly surface, they are more likely to be

detected in the images close to the surface. An adapter is labelled broken if a

certain number of successive images have pixels that are classified as part of

a crack. The number of successive images increases with increasing distance

from the assembly surface.

Fig. 4.2 gives a visual representation of the first four steps of the classification

algorithm. After application of the algorithm, the broken adapters can be removed

from the conveyor belt to improve the quality of the final products.

4.3 Experiments and Results

In this section, the performance of the crack detection method is evaluated. The

reconstruction step and the detection step are discussed separately. First, the
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Table 4.1: Specifications scanning geometry.

Projection Data
Detector pixels 1000
Detector pixel size 150µm
Translation distance [mm] [-250, 250]
Object Detector distance 713.11mm
Source Object distance 792.94mm
Image pixels 20× 200
Image pixel size 75µm

NN-hFBP is evaluated as an inline reconstruction algorithm that meets both an

acceptable image quality and a limited reconstruction time. Then, based on the

reconstructions acquired in the first step, the crack detection algorithm is evalu-

ated.

4.3.1 NN-hFBP crack reconstruction

To use the NN-hFBP as an algorithm for inline crack detection of samples in a

multi-object holder, it has to fulfill two important requirements: the reconstruction

must be fast and the reconstruction quality should be sufficient to still detect the

cracks. Obviously, the crack detection efficiency will increase with a larger number

of projections, but that automatically also leads to a longer reconstruction time as

well as a longer acquisition time. Therefore, a trade-off should be made between

the two requirements.

To evaluate the performance of the NN-hFBP, 30 adapters with cracks of different

(unknown) sizes were scanned by XRE nv. The samples were all scanned at the

central position of the object holder, resulting in H = 0 in the algorithm. Similar

experiments could however also be performed for H 6= 0. The adapters were

scanned with 1500 projections on a detector of 668 × 1000 detector pixels. Because

of the small cone angle, from each projection 50 slices were taken on which the

algorithm was applied since no cone beam artefacts were visible. Specifications on

the geometry are given in Table 4.1.

Before evaluating the reconstruction quality in function of the number of pro-

jections, a closer look is taken at the selection of the training pixels. The available

adapters are subdivided into 20 adapters for training, five adapters for validation

and five adapters for testing. Of these adapters, 1.000.000 pixels of 600 images

were used for training and 10.000 pixels of 100 images for validation. Since in this

application not the overall image quality is of interest but only the reconstruction
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(a) (b) (c)

Figure 4.3: (a)Adapter slice, (b) the training disk and (c) a crack map

quality of the cracks, a smart selection of the training and validation pixels is of

interest. Therefore, three different selection methods are compared based on the

knowledge that the cracks mainly appear at the inner surface. In the first method,

the pixels are randomly selected in the image. In the second method, the pixels are

randomly selected on a disk with an inner radius of 18 pixels and an outer radius

of 50 pixels. In the third method, for every image a crack map is constructed

where the regions of the cracks have value 1 and the adapter region inside a radius

of 50 pixels value 2. To select the number of pixels in an image, first the pixels

which have value 1 on the crack image are considered and when all those pixels

are chosen, the remainder of the pixels is chosen from the adapter pixels where

the crack map has value 2. Fig. 4.3 shows an image, the disk of which pixels

are chosen in the second case and its corresponding crack map. In Table 4.2, the

RMSE in the crack region of the crack map and on the whole adapter region of the

map (values 1+2) is given for different selection methods and different number of

projections. For 25 and 50 projections, it is shown that a smarter selection method

improves the RMSE in the crack region as well as the total RMSE. Fig. 4.4 shows

reconstructions of two slices of two different adapters based on 50 projections with

the three different training methods. It can be seen that there is a better contrast

between the cracks and the adapters when training is performed with the crack

maps.

In a second experiment, a trade-off is made between the reconstruction quality

of the NN-hFBP and the reconstruction time based on the number of projections.

Based on the results of the different selection methods, the NN-hFBP will further

on be trained with the crack maps. Fig. 4.5 shows the RMSE on the crack regions of

the crack map and on the whole crack map as function of the number of projections

as well as the reconstruction time for 10 to 150 projections. The overall RMSE

only slightly decreases when the number of projections is higher than 50, while
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Table 4.2: RMSE in the crack and adapter region for different number of projections and
different training methods.

Random pixels Disk Crack Map
crack region 25 proj 6.4275·10−4 6.4220·10−4 6.4156·10−4

adapter 25 proj 2.2108·10−4 2.2108·10−4 2.1798·10−4

crack region 50 proj 6.2946·10−4 6.2506·10−4 5.6711·10−4

adapter 50 proj 2.2160·10−4 2.1011·10−4 1.9522·10−4

crack region 100 proj 4.8019·10−4 4.7388·10−4 4.7729·10−4

adapter 100 proj 1.8501·10−4 1.8314·10−4 1.8554·10−4

(a) random pixels (b) disk (c) crack map

(d) random pixels (e) disk (f) crack map

Figure 4.4: NN-hFBP reconstructions of two adapter slices obtained with different training
methods: random pixel selection, disk selection and crack map selection.
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(a) (b)

Figure 4.5: RMSE on the crack region and on the adapter region (a) and reconstruction
time (b) in function of the number of projections

the RMSE in the crack region keeps improving when more projections are taken

into account. As expected, the reconstruction time increases with the number of

projections. Based on these two graphs, we chose 50 projections to perform the

inline crack detection on since the total RMSE from here on only slightly improves

and the reconstruction time is below 100ms. In Fig. 4.6 an FBP reconstruction of

an adapter slice with 1500 projections is compared to NN-hFBP reconstructions

of the same slice with an increasing number of projections. When 50 projections

are used, the crack can clearly be detected.

4.3.2 Crack Detection

To evaluate the performance of the detection algorithm, four measures are used:

the precision, accuracy, recall and specificity [11]. Their values can be calculated

with the following formulas:

precision =
TP

TP + FP
,

�� ��4.7

accuracy =
TP+TN

TP+TN+FP+FN
,

�� ��4.8

recall =
TP

TP+FN
,

�� ��4.9

specificity =
TN

TN+FN
.

�� ��4.10
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(a) (b) 10 proj (c) 25 proj (d) 50 proj

(e) 75 proj (f) 100 proj (g) 125 proj (h) 150 proj

Figure 4.6: a) Ground truth FBP reconstruction with 1500 projections, (b)-(h) NN-hFBP
reconstructions of the same adapter slice with an increasing number of projections
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Table 4.3: Precision, accuracy, recall, specificity and classification time of the classification
algorithm after application on a high-quality dataset made with 1500 projections an on the
reconstructed dataset with 50 projections.

High-quality dataset Inline reconstructions
precision 0.9643 0.8519
accuracy 0.9412 0.8038
recall 0.9310 0.7931
specificity 0.9130 0.7500
classification time [s] 0.1975 0.1975

In the equations, TP stands for True Positives, TN for True Negatives, FP for False

Positive and FN for False Negatives. True Positives are the broken detectors that

are classified as broken, true negatives are the good adapters that are classified

as good, false positives are good adapters that are classified as broken and false

negatives are broken adapters that are classified as good.

The algorithm is applied on a dataset of 51 adapters scanned by XRE with the

same parameters as described in the previous section. Of the adapters, 29 contain

a crack and 22 are good adapters and of each adapter 30 consecutive slices are

inspected. Before the classification algorithm is applied on the reconstructed data,

its performance is tested on high-quality reconstructions of the SVS adapters made

with 1500 projection images. The results for the recall, accuracy, precision and

specificity for application of the algorithm on both the high-quality dataset an on

the inline reconstructed dataset are shown in Table 4.3.

Despite the large difference in amount of projection data, still 80% of the

adapters are classified correctly and 79% of the adapters with cracks are detected

on the inline reconstructed data. This value is similar to the percentage of cracks

that can be detected with the currently used pressure tests. The advantage of this

method is its applicability in the inline production process before the syringe is

assembled, allowing the inspection of every adapter individually. The classifica-

tion time of the algorithm is also given in Table 4.3. The time easily fits into the

timeframe for inline inspection.

Despite the good results, it is always interesting to study the adapters that were

detected incorrectly. For the high-quality dataset, two false negatives and one false

positive was obtained. In Fig. 4.7, reconstruction images of the wrongly classified

adapters are shown. Even through visual inspection, no crack can be detected in

the false negative images. There is a high chance that the sizes of the cracks are of

subpixel resolution in these adapters, making them impossible to detect with the

algorithm. The last adapter is falsely detected as broken because the clear spot

at the border of the inner circle moves towards the center of adapter, causing the

108



4.4. CONCLUSION

(a) FN (b) FN (c) FP

Figure 4.7: Images of wrongly classified adapters with the classification algorithm applied on
the high-quality dataset

detection of crack pixels in the small region between the adapter and the small

spot. This problem can be solved by a small adaptation of the algorithm.

With the inline dataset, 6 false negatives and 4 false positives are generated.

Among them are the adapters that were also wrongly classified with the high-

quality dataset. The other adapters are shown in Fig. 4.8. Here again, no cracks

can be visually detected in the false negative adapters. The resolution of the

NN-hFBP reconstruction with 50 projections is not high enough to visualize the

cracks. Therefore, the algorithm cannot classify the adapters correctly. For the

false positive adapters, artefacts that originate from the limited data are wrongly

detected as cracks.

4.4 Conclusion

In this chapter, the feasibility of inline crack detection is demonstrated by a two-

step detection procedure. First, 2D reconstructions of the adapter slices are made

with a slightly altered NN-hFBP algorithm. Secondly, the reconstructed images are

used for classification of the adapters with a basic classification algorithm. Both

the reconstruction and classification can be performed very fast so they can be

used for inline inspection purposes. At this point, the accuracy of the classification

algorithm is 80%, which is equal to the accuracy of the offline pressure tests that are

currently used. The two major advantages of the inline algorithm are the ability to

fit the algorithm in the inline manufacturing line and the detection of cracks before

the different components are assembled. Interesting topics for further research are

extending the classification algorithm for all slices in the assembly region and the

use of deep learning to classify the images automatically.
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(a) FN (b) FN (c) FN (d) FN

(e) FP (f) FP (g) FP

Figure 4.8: Images of wrongly classified adapters with the classification algorithm applied on
the inline dataset
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5.1 Introduction

Carbon Fiber Reinforced Polymer (CFRP) is a high-tech material used for many

applications like sports goods [1], aerospace [2, 3] and civil engineering [4]. It owes

its success to its macroscopic properties, for instance its high strength-to-weight

ratio. CFRP is made of bundles of carbon fibers, which provide the strength of

the material, as well as a resin matrix acting as a glue component. For most appli-

cations, it is important to know both the positions and the directions of the fibers

or fiber bundles, as well as the positions of the pores between the fiber bundles

where the resin matrix is situated [5].

To link the macroscopic properties to the microscopic structure of CFRP, non-

destructive inspection is preferred. In transmission CT, the difference between the

attenuation coefficients of the carbon fiber bundles and the resin matrix is how-

ever often very small, resulting in a low contrast image on which segmentation is

challenging. To visualize the fiber bundles, PCCT is more recommended since the

phase shifts induced by the fibers and the resin matrix are substantially different.

Also small angle scattering can be of interest since the resin matrix hardly causes

any scattering, while the fibers induce a lot of scattering when the direction of the

fiber is parallel to the X-ray path.

As discussed in Chapter 2, in PCCT with a TLGI, the interference pattern at the

detector is measured by recording several projection images with a translation of

the absorption grating G2 in between [6, 7]. Due to the orientation of the grating,

the change in the interference pattern can only be measured in the direction per-

pendicular to the grating. Therefore, only the small angle scattering in the plane

perpendicular to the grating can be measured. As a consequence, fiber bundles

parallel to the grating will hardly be detected since the scattering mainly occurs

when the fiber bundles are oriented parallel to the X-ray path. To overcome this

limitation, an Eulerian cradle is often used [8, 9]. With the cradle, a sample can

be oriented in any possible direction to acquire scattering information in many

different planes. Combination of the different planes with scattering information

allows to make a good estimation of the scattering profile in each pixel. Despite

its large possibilities, an Eulerian cradle is a specialized piece of equipment that

is not present in every lab. In addition, the extended scanning trajectory easily

leads to very long scan times.

In this chapter, an alternative approach is proposed based on the knowledge that

the fibers are oriented in two perpendicular directions. In the approach only two

scans are performed for which the object is rotated over 90 degrees around an axis

perpendicular to the gratings in between the two scans. We refer to this approach

as a dual-axis scan. A dual-axis scan has less demanding requirements on the

experimental hardware side compared to an Eulerian cradle, since no additional
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equipment is required. Nevertheless, it is still sufficient to visualize the scattering

in the fibers in two different directions which allows to greatly improve the 3D

DFC reconstructions of scanned CFRP samples.

Apart from the small angle scattering, with a TLGI, also the differential phase shift

can only be measured in the direction perpendicular to the gratings. Since the me-

thod is very sensitive to small phase shifts, the fibers parallel to the gratings are

often detected best. The measured differential phase shifts from the fiber bundles

perpendicular to the grating are less reliable when the fibers lie along the X-ray

path because the large amount of small angle scattering caused by these fibers flat-

tens out the measured interference pattern which makes the sinusoid fitting and

the detection of the correct phase shift harder. Hence, the DPC reconstructions

of CFRP samples can also benefit from a dual axis scan where information of the

two scan are combined to improve the 3D DPC reconstruction.

5.2 Methods

Several steps are required to improve 3D DFC and DPC tomographic reconstruc-

tions with a dual-axis approach. The different steps are described in detail in this

section.

Step 1: Data acquisition For the acquisition of a full dual-axis dataset, a sam-

ple was scanned twice with the TLGI with the same scanning parameters

but once rotated over an angle of approximately 90 degrees around the axis

connecting the source with the detector. This way, scattering information

from two perpendicular directions was available as well as DPC information

from two different directions.

Step 2: Holder Substraction AC To generate one tomographic reconstruction

of the DPC and DFC data from the complete scan data of the dual-axis scan,

the separate reconstructions of the two single datasets first have to be regis-

tered. However, since the holder is still at the same position while scanning

the object in the rotated position, it is located at a different orientation

relative to the sample for each of the two scans. It should therefore be sub-

tracted from the projection data prior to the registration. The subtraction

was performed by first generating two separate reconstructions of the AC

data. Then, the holder was segmented out of the reconstructions and for-

ward projections were simulated of the holder. These simulated projections

were finally subtracted from the original projections.

Step 3: Dataset registration With the projection data without holder, two re-

constructions of the AC data of both the scans were made. The two recon-

structions were then registered using ASTRA toolbox [10] based alignment
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software to find a good approximation of the orientations of the scans com-

pared to one another. [11, 12] The software aims to minimize the projection

distance between the measured projections and simulated projections of the

sample made with an estimated projection geometry. Based on the projec-

tion distance, the projection geometry is altered in an attempt to find the

optimal geometry vector.

Step 4: Holder Substraction DFC and DPC Since the ASTRA Toolbox is

not capable of simulating DFC projection data of the segmented holder,

the same procedure as for the AC data could not be followed. A more

rudimentary approach is used instead in which certain pixels of the projection

data are simply set to zero. These are pixels of which we are certain that the

measured data is only from the holder and not from the sample. At detector

pixels where the holder overlaps with the sample, the data from the holder

cannot be subtracted. This has a small influence on the final reconstruction

but does not affect the fiber detection. The same procedure was followed for

the DPC data.

Step 5: Dual-axis reconstruction Several reconstruction algorithms were used

to generate 3D reconstructions of the dual-axis scans of the DFC and DPC

data. Hereby, the projections without holder as well as the correct projection

geometry obtained after registration were considered.

5.3 Experiments and Results

A CFRP sample was scanned twice at the University of Applied Sciences in Wels

with a TLGI. For each orientation of the sample, 1200 equiangular projections were

acquired over a range of 360 degrees. After registration, we found that the second

scan was obtained after a rotation of around 87.3 degrees and a slight translation

and tilt. In the remainder of this section, the first scan will be referred to as the

scan at zero degrees and the second scan at 90 degrees. The results for the DFC

data and the DPC data are discussed separately.

5.3.1 DFC data

The reconstruction algorithms applied on the DFC data are SIRT for the single axis

reconstructions and both SIRT and a maximum reconstruction algorithm for the

dual-axis reconstructions. The maximum reconstruction algorithm takes for every

voxel in the reconstruction image the maximum of the zero degrees reconstruction

and the 90 degrees reconstruction. Since the small angle scattering is direction

dependent and only one direction can be detected at the gratings, SIRT is, however,
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not an optimal algorithm to reconstruct the dual-axis scan. Therefore, the dual-

axis scan is also reconstructed with a directional SIRT algorithm used in X-ray

tensor tomography. The directional SIRT takes into account the direction of the

gratings, X-rays and scattering to adapt the projection model and predict values at

the detector. It makes several reconstructions, each showing the scattering inside

a pixel in a predefined direction. This way, a scattering tensor is reconstructed in

every voxel [13, 14].

In Fig. 5.1, 3D DFC reconstructions and two orthogonal slices throughout the

corresponding volumes are compared for single-axis and dual-axis scans based on

1200 projections. Similar reconstructions of the same samples are shown in Fig. 5.2

in case the reconstructions were made with 300 projections. In the single-axis

scans, only the scattering of fibers oriented in one direction is detected. These

are the fibers that lie in the scanning plane. In subimage (c),(g) and (k), a dual-

axis reconstruction is shown where for each pixel, the maximum value of the two

separate reconstructions is taken. Since the two images reveal information from

two different directions, the result nicely shows all the pixels where small angle

scattering occurs in these directions. The pixels can thus be classified as part

of the fiber bundles. Subimages (d),(h) and (l) show a dual axis reconstruction

where SIRT is performed on the data of the two scans together. Also here, more

scattering information from different directions is visible in one image, allowing to

see the fiber bundles in two directions in subimage (d). However, the projection

model is not correct when simply applying SIRT on the data since the scattering

is direction-dependent. The results are therefore not as good as the reconstruction

that uses the maximum. The advantage of the dual reconstruction is that only

one reconstruction needs to be made instead of two. When only limited projection

data can be acquired due to physical or time constraints, Fig. 5.2 shows that it

is better to acquire two scans with less projections to get an image of the small

angle scattering inside the sample than performing only one scan with many more

projections as shown in Fig. 5.1.

As mentioned earlier, the projection model for dual-axis reconstruction with

SIRT is incorrect since it does not take the directionality of the scattering into

account. Fig. 5.3 shows reconstructions of the scattering inside the sample in

different directions for two orthogonal slices (left and right) obtained with the

method of Malecki [8]. The scattering directions are:

[(1, 0, 0), (0, 1, 0), (1, 1, 0), (1,−1, 0), (0, 0, 1), (1, 0, 1), (−1, 0, 1)].
�� ��5.1

Here, the small angle scattering in different directions is nicely visualized. Based

on the reconstructions, a scattering profile of the fiber bundles can be constructed,

which gives a lot more insight into the fiber structure compared to the maximum

or dual SIRT reconstruction mentioned before.
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(a) 0◦ (b) 90◦ (c) max (d) dual-SIRT

(e) slice 1 - 0◦ (f) slice 1 - 90◦ (g) slice 1 - max (h) slice 1 - dual-SIRT

(i) slice 2 - 0◦ (j) slice 2 - 90◦ (k) slice 2 - max (l) slice 2 - dual-SIRT

Figure 5.1: 3D reconstructions and two orthogonal slices throughout the volumes obtained
with SIRT from 1200 projections for the zero degrees scans [(a)(e) and (i)], the 90 degrees
scan [(b),(f) and (j)], a dual scan with maximum reconstruction [(c),(g) and (k)] and the
dual axis scan with SIRT reconstruction [(d),(h) and (l)]
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(a) 0◦ (b) 90◦ (c) max (d) dual-SIRT

(e) slice 1 - 0◦ (f) slice 1 - 90◦ (g) slice 1 - max (h) slice 1 - dual-SIRT

(i) slice 2 - 0◦ (j) slice 2 - 90◦ (k) slice 2 - max (l) slice 2 - dual-SIRT

Figure 5.2: 3D reconstructions and two orthogonal slices throughout the volumes obtained
with SIRT from 300 projections for the zero degrees scans [(a)(e) and (i)], the 90 degrees
scan [(b),(f) and (j)], a dual scan with maximum reconstruction [(c),(g) and (k)] and the
dual axis scan with SIRT reconstruction [(d),(h) and (l)]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

Figure 5.3: Two orthogonal slices through 3D reconstructions of small angle scattering in
seven different directions: (a=b) (1,0,0), (c-d) (0,1,0), (e-f) (1,1,0), (g-h) (1,-1,0), (i-j)
(0,0,1) (k-l) (1,0,1) and (m-n) (-1,0,1)
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(a) slice 1 - 0◦ (b) slice 2 - 0◦ (c) sl 1 - 0◦DFCw (d) sl 2 - 0◦DFCw

(e) slice 1 - 90◦ (f) slice 2 - 90◦ (g) sl 1 - 90◦DFCw (h) sl 2 - 90◦DFCw

(i) slice 1 max (j) slice 2 max (k) sl 1 max DFCw (l) sl 2 max DFCw

(m) slice 1 dual (n) slice 2 dual (o) sl 1 dual DFCw (p) sl 2 dual DFCw

Figure 5.4: Images of two orthogonal slices through several 3D reconstructions based on
1200 projections. First row: 1st scan at 0◦rotation, second row: 2nd scan at 90◦rotation,
third row: max of first and second scan, fourth row: dual axis reconstruction. Left two
columns: DPC reconstruction, right two columns: DPC reconstruction with DFC weighting
(DFCw)

5.3.2 DPC data

Due to the measurement of the differential phase shift, CG was used as a re-

construction algorithm for the DPC data. Reconstructions were made with and

without DFC weighting. In DFC weighting, the DPC projection data is replaced

by a scaled version of the AC projection data at detector pixels were the scattering

exceeds a certain threshold. The replacement is performed because the measure-

ment of the differential phase is very unreliable at these pixels. The method was

proposed by Jerjen in [15].

Fig. 5.4 and 5.5 show two orthogonal slices through DPC reconstructions with and

without DFC weighting of the two single-axis scans and dual-axis scans for 1200

en 300 projections. In the single axis scans, the fiber bundles that are best visual-

ized are perpendicular to the ones visualized in DFC. These are the ones of which

the measurement is least affected by scattering. In case of DFC weighting, the

reconstructions all look very similar since the information of the absorption recon-

struction is incorporated into the reconstruction. The reconstruction is therefore

similar to the absorption reconstruction which is direction invariant and the added
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value of a dual-axis scan is limited.

For DPC data without DFC weighting, a dual axis scan improves the reconstruc-

tion. Here, little difference is found between the maximum reconstruction and

the dual CG reconstruction. DPC is however less direction dependent than DFC.

A single DPC reconstruction of 1200 projections generally obtains better recon-

structions than a dual reconstruction of 300 projections. Fig. 5.6 shows 3D re-

constructions of the single-axis and dual-axis DPC reconstructions without DFC

weighting for 1200 and 300 projections. On these reconstructions, one can see that

the dual-axis CG reconstruction is clearly better in capturing information on the

phase shift caused by the fiber bundles in two directions opposed to the single axis

reconstructions, certainly for 1200 projections.

(a) slice 1 - 0◦ (b) slice 2 - 0◦ (c) sl 1 - 0◦DFCw (d) sl 2 - 0◦DFCw

(e) slice 1 - 90◦ (f) slice 2 - 90◦ (g) sl 1 - 90◦DFCw (h) sl 2 - 90◦DFCw

(i) slice 1 max (j) slice 2 max (k) sl 1 max DFCw (l) sl 2 max DFCw

(m) slice 1 dual (n) slice 2 dual (o) sl 1 dual DFCw (p) sl 2 dual DFCw

Figure 5.5: Images of two orthogonal slices through several 3D reconstructions based on 300
projections.

5.4 Conclusion

For visualization of the fiber structure inside a CFRP sample, it is beneficial to

scan the sample twice, with a 90 degrees rotation in between, and use both sets of

projection data to make one 3D reconstruction of the DPC and DFC data. This

way, fiber bundles with different orientations can be visualized in one reconstruc-

tion. With the dual-axis scans, sufficient information on the small angle scattering
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(a) 0◦ (b) 90◦ (c) dual-axis

(d) 0◦ (e) 90◦ (f) dual-axis

Figure 5.6: 3D reconstructions of the first dataset acquired at 0◦(left) and the second dataset
acquired at approximately 90◦(middle) and dual-axis reconstruction (right) for 1200 (top) and
300 (bottom) projections

and phase shifts inside the sample can be acquired to detect fiber bundles in or-

thogonal directions, which drastically decreases the need for an Eulerian cradle. In

this work, SIRT and CG were used as reconstruction algorithms as well as a more

realistic directional SIRT algorithm. Further work should however be performed

to improve the models with even more realistic scattering profiles.
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CHAPTER 6. DISCRETE PHASE CONTRAST COMPUTED
TOMOGRAPHY: MV-DART

6.1 Introduction

In tomography, a 3D reconstruction of the inside of a sample is made by applying

a reconstruction algorithm on a set of 2D measured projection data. In general,

the reconstructed values are continuous and no prior knowledge exists about the

sample. For some applications, discretization of the final reconstruction is of inter-

est. For instance for Fiber Reinforced Polymer (FRP) samples, it can be used to

segment out the fibers or fiber bundles. In discrete tomography, the reconstructed

values are all elements of a discrete set of output values of the algorithm. This set

may be known in advance as prior knowledge, or it can be constructed during the

reconstruction. Discrete tomography has important applications in multivalued

imaging such as TLGI imaging. With a TLGI, three different imaging modalities

can be recorded, resulting in three images with information on the absorption, dif-

ferential phase shift and small angle scattering present in a sample as discussed in

Chapter 2. When the material distribution inside a sample is of interest, the infor-

mation on the different modalities should be combined to allow optimal material

segmentation. The field of image fusion copes with the combination of different

modalities into one fused image. Until now, the most common way of fusing the

AC, DPC and DFC information is by performing separate reconstructions and af-

terwards combining the reconstructions for analysis. A two-step fusion process was

proposed by Stampanoni et al. [1] in 2013 where first the absorption and differen-

tial image were fused into a single grey value image and afterwards, a color-coded

dark field image was superimposed on the fused image. Scholkmann et al. [2] in-

troduced a two-step fusion method based on the shift-invariant wavelet transform,

while Haas et al. [3] proposed to use a linear combination of the three imaging

modalities with specially designed weights. Recently, Gusenbauer et al. [4] used a

simple image fusion method which combines both high-pass and low-pass filtered

AC, DPC and DFC images with their corresponding image masks to highlight

desired features.

Instead of fusing the images after they are reconstructed, in this work, the images

are already fused during the reconstruction process by exploiting discrete tomog-

raphy. For multimodal images, Nielsen [5] proposed to improve the quality of the

segmentation by using multivariate segmentation with the Euclidean norm on the

AC and DPC reconstructions. Hereby, he also performed a kind of discrete image

fusion. It would however be interesting if the segmentation could steer the recon-

struction and vice versa. Batenburg and Sijbers [6] proposed in 2011 the DART

algorithm, which is an iterative reconstruction technique that provides discrete

reconstructions by exploiting prior knowledge on the grey levels and performing

intermediate segmentations to steer the reconstruction.

In this dissertation, a Multivariate DART (MV-DART) algorithm is presented that
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combines the steered discrete reconstruction method of Batenburg and Sijbers with

the multivariate segmented image fusion of Nielsen. The algorithm performs two

DART reconstructions on the AC and DPC data, in which the segmentation step

is replaced by a multivariate segmentation step that fuses the two modalities. In

addition, also an MV-DART algorithm with DFC weighting is proposed to exploit

all information captured in the TLGI data. In the algorithm, the DFC data is

used to steer the segmentation towards the AC segmentation in case of high small

angle scattering inside the sample.

6.2 Methods

The most important building block of the MV-DART algorithm is the discrete

reconstruction algorithm DART. In this section, the DART algorithm is first ex-

plained, before going into more detail on the new MV-DART algorithm. Last,

an extension of the MV-DART algorithm, the MV-DART algorithm with DFC

weighting, is discussed.

6.2.1 Discrete Algebraic Reconstruction Technique

The Discrete Algebraic Reconstruction Technique or DART algorithm was first

developed by K.J. Batenburg and J. Sijbers in 2011 [6]. It is an iterative re-

construction algorithm that results in a segmented reconstruction of the scanned

object by imposing prior knowledge on the reconstruction. The prior knowledge

exploited in the algorithm is the value of the attenuation coefficients or grey values

of the different materials inside the object. Knowing these values, the reconstruc-

tion can be steered towards them. The algorithm consists of several steps over

which is iterated:

1. First, an initial reconstruction is made with an algebraic reconstruction me-

thod, often SIRT or SART, that aims to converge to a solution of :

xopt = arg min
x

(‖Ax− p‖22),
�� ��6.1

where p ∈ RM×1 is the measured projection data, A ∈ RM×N is the projec-

tion matrix and x ∈ RN×1 is the reconstructed image.

2. The reconstruction is segmented by global thresholding based on the available

prior knowledge on the grey values.

3. The segmented image is subdivided into a set of fixed and a set of free pixels.
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4. Several iterations of the algebraic reconstruction method are performed on

the set of free pixels while the fixed pixels are kept constant.

5. As long as a certain stopping criteria is not met, the reconstruction is

smoothed and the algorithm jumps back to step 2, otherwise, the final re-

construction image is obtained.

The division of the free and fixed pixels in step 2 is made based on ‘how certain’

one is that the segmentation value of a pixel is correct. In general, this certainty is

high inside a material but lower at the boundaries. Therefore, boundary pixels are

classified as free pixels and bulk pixels are classified as fixed pixels. A boundary

pixel is defined as a pixel of which the value is different from at least one of its

neighbouring pixels. Since this segmentation prevents detection of holes inside an

object, a percentage of randomly selected pixels are added to the set of free pixels.

These random pixels, together with the last smoothing step, also help the algo-

rithm cope with noise. In the smoothing step, a Gaussian smoothing filter with

radius 1 is applied.

The strength of the DART algorithm is the substantial reduction of unknowns

due to the set of fixed pixels and the intermediate segmentations. Therefore, the

algorithm is capable of obtaining good segmented reconstructions, even in case

of limited wedge or truncation artefacts. The performance of the algorithm is

however limited when the projection data is corrupted with noise. Also when the

number of grey values is too high or when they are close together, the segmentation

is less reliable which reduces the performance of the algorithm.

An important challenge for DART is to obtain the correct grey values as prior

knowledge. In case of experimental data, this is not a straightforward task. There-

fore, among others, the PDM-DART algorithm was introduced by van Aarle et al.

[7] in which the correct grey values are automatically estimated by projection

distance minimization. Furthermore, the last years several other algorithms are

derived from DART like SDART [8], PDART [9], TVR-DART [10], DIPS-DART

[11],... all aiming to improve the DART algorithm for specific situations.

6.2.2 Multivariate DART

Based on the DART algorithm described in the previous section, the Multivariate

DART (MV-DART) algorithm is now introduced. With the MV-DART algorithm,

one segmented reconstruction of an object is made, based on the combined informa-

tion of the AC and DPC data. On a side note, the method could for example also

be used on two datasets acquired in a dual energy scan. However, in this thesis, the

focus lies on the application of MV-DART on PCCT data. Instead of reconstruct-

ing and segmenting the AC and DPC signals separately and combining the final

132



6.2. METHODS

results, here, the aim is to combine the signals during reconstruction to obtain an

improved final segmented image. The basis for MV-DART are two separate DART

algorithms: one for the AC data and one for the DPC data. The two algorithms

are combined in the segmentation step where the two individual segmentations are

replaced by a multivariate segmentation step. In this thesis, a basic multivariate

segmentation method is applied, namely the Euclidean norm. For each material

inside the object, the corresponding grey value pair r = (ρ, φ) for the AC and DPC

reconstruction is assumed to be known in advance. Suppose the set of known grey

value pairs to be R = {r1, r2, ..., rK} = {(ρ1, φ1), (ρ2, φ2)...(ρK , φK)} with K the

number of materials inside the object. For every point in the reconstructed AC

and DPC image denoted by q = (x, y), the corresponding segmented reconstructed

point S = (Sx, Sy) is calculated by the minimal Euclidean norm as follows:

S = arg min
rj∈R

‖q− rj‖2.
�� ��6.2

Since the attenuation coefficient and the phase shift are often not of the same order

of magnitude, a better approach is to use a weighted Euclidean norm. This norm

can cope with scaling differences and can be tuned to favour either the contribution

of the AC signal or the DPC signal.

S = arg min
rj∈R

‖(q− rj)w‖2,
�� ��6.3

where w = (ω, 1−ω)T , ω ∈ [0, 1] specifies the contribution of each imaging modality

to the weighted Euclidean norm.

All the PCCT data in this thesis is acquired with a TLGI. The interferometer

measures the differential phase. In order to perform the DART algorithm on the

differential phase data, the algebraic reconstruction method on which the algorithm

is built, should be able to handle the differential data. Therefore, in the MV-

DART algorithm, the Conjugate Gradient (CG) algorithm [12] has been chosen

as algebraic reconstruction method. The algorithm can reconstruct both the AC

and DPC data. Concerning the DPC data, the algorithm aims to converge to a

solution of:

xopt = arg min
x

(‖ATDTDAx−ATDTp‖22),
�� ��6.4

where D ∈ RM×M is a derivative matrix, modelling the forward, central or back-

ward derivative of the projection data. For CG, the number of iterations is critical

on real data: too many iterations introduces artefacts in the reconstruction. Hence,

the number of initial and intermediate iterations should be kept low, typically less

than 100. Furthermore, as with conventional DART, selecting the correct grey

values as prior knowledge remains a very difficult task.
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6.2.3 Multivariate DART with Dark Field weighting

In PCCT with a TLGI, also a DFC image can be reconstructed which is not yet

incorporated in the MV-DART algorithm despite its valuable information on the

small angle scattering inside an object. The measured sinusoid at the detector

pixels that contain information on regions with a lot of small angle scattering has

a decreased amplitude which makes the detection of the phase shift harder and

the DPC image at voxels with high scattering less reliable. At these voxels, the

AC data gives a better representation of the underlying structure, which can be

exploited to improve the MV-DART algorithm. Jerjen et al [13] already performed

phase weighting on the DPC data in the projection space by replacing the DPC

data with a weighted version of the AC data at those detector pixels where the

small angle scattering was above a certain threshold. A disadvantage of the tech-

nique is that a conversion factor from the absorption projection space towards the

differential phase contrast projection space is required. In the proposed MV-DART

with DFC weighting, the weighting is performed in the reconstruction space at the

segmentation step. At the reconstruction voxels where the DFC signal is high, the

weight of the AC reconstruction in the Euclidean norm is higher than the weight

of the DPC reconstruction. One can choose to either use a hard threshold or a

softer weighting. In case of a hard threshold, the segmentation is purely based on

the AC image when the DFC image exceeds the threshold. Define d as the value

of a pixel in the DFC image and t as a predefined threshold. The value of the

segmented image at that pixel will then be defined as:

S =

{
arg minrj∈R |x− ρj | d ≥ t,
arg minrj∈R ‖q− rj‖2 d < t.

In a softer version, an extra weighting factor can be added to the weighted Eu-

clidean norm which favours the absorption segmentation in case of a higher DFC

reconstruction signal. The segmented value will then be:

S = arg min
rj∈R

‖(q− rj)w
′‖2,

�� ��6.5

where w′ = (αω, 1 − ω)T , ω ∈ [0, 1] specifies the contribution of each imaging

modality to the weighted Euclidean norm, multiplied by a factor α that favours

AC segmentation in case of high scattering. In this work, experiments are only

performed with a hard threshold due to the low quality of the DPC data.

In the DART algorithm, the acquisition process of X-ray interactions with matter

is modelled by the forward model of the ASTRA toolbox [14, 15] extended with

a derivative when applied to the DPC data. Unfortunately, the model does not

take into account the scattering that occurs inside the sample. Minimization of
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Figure 6.1: Schematic of the MV-DART algorithm with DFC weighting.

the DPC projection error is therefore unreliable at detector pixels which measure

high scattering. A solution for the problem is to omit these pixels from the re-

construction problem when the DFC image exceeds another predefined threshold.

Therefore, the projection matrix should be altered by setting the corresponding

rows to zero. The MV-DART algorithm with DFC weighting requires two addi-

tional thresholds on the DFC data. Although introducing extra parameters makes

the optimization of the algorithm even harder, significantly better results can be

obtained. Fig. 6.1 gives a schematic overview of the MV-DART algorithm with

DFC weighting.

6.3 Experiments and Results

The performance of the MV-DART algorithm is evaluated in this section. First,

simulation experiments are performed on which the Relative Number of Misclas-

sified Pixels (RNMP) can be used as a measure for the reconstruction quality.

Afterwards, the MV-DART without and with DFC weighting is tested on a real

CFRP dataset.
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(a) (b)

Figure 6.2: Simulation phantom for (a) absorption contrast data and (b) differential phase
contrast data.

6.3.1 Simulation Data

The best way to evaluate the performance of the MV-DART algorithm, is by

simulating a real data scan. With the ASTRA toolbox, it is however not possible at

the moment to accurately simulate data acquired with a TLGI. The toolbox can not

simulate the scattering inside the sample. In this section, a 2D sample is simulated

consisting of four different materials, but the simulation can easily be extended to

3D. The simulated data is shown in Fig. 6.2 and the corresponding values for the

simulated attenuation coefficients and phase shifts are given in the last row of Table

6.1. In the AC image, one of the fiber materials has the same attenuation coefficient

as the simulated resin matrix and in the DPC image, the same material cannot be

distinguished from one of the other simulated fiber materials. Reconstructing only

one of the modalities will not provide enough information on the materials inside

the sample. Assume that a reconstruction pixel has a size of 1µm by 1µm, then all

the projection data simulated from the phantom in this section is acquired over a

range of 2π with 500 detector pixels of 1µm, a source-object distance of 1000µm

and an object-detector distance of 400µm.

Before comparing the MV-DART algorithm to another reconstruction algo-

rithm, in a first experiment the weight factor ω which determines the contributions

of each modality, is studied. In the right column of Table 6.1, the values for the

different parameters of the MV-DART algorithm are specified. The smoothing

parameter and the fraction of random pixels are chosen empirically. For DPC

data, the number of initial CG iterations depends on the number of projections

and decreases with an increasing number of projections. The number of DART

iterations is chosen so that the RNMP approximately stagnates. In Table 6.1, I is

a measure for the noise that is added to the projection data. In case of the DPC

data, the noise was added right before the differential was taken. A higher value
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Figure 6.3: Evaluation of the RNMP in function of the weight factor ω for 40 and 100
projections.

of I means less noise is added to the data. Since the grey values of the AC data are

much closer together than those of the DPC data, less noise is added to make sure

that the underlying structure can still be detected. Fig. 6.3 shows the RNMP for

MV-DART reconstructions with 40 and 100 projections where the weight factor

ω has a value between 0.95 and 0.999. This high value is caused by the differ-

ence in magnitude between the grey values of the AC data and those of the DPC

data. Since the noise added to the data and the random pixels selected during

the DART algorithm are different for every reconstruction, the results are never

identical and therefore the RNMP can slightly fluctuate. The optimal value lies

between ω = 0.98 and ω = 0.999 and in the remainder of this chapter, ω = 0.997

is chosen.

In a second step, the simulated data is reconstructed both with the conventional

DART algorithm on the AC and DPC data and with the combined MV-DART

algorithm for an increasing number of projections. Additionally, the influence of a

median filter is evaluated. The median filter is applied during the algorithm after

each segmentation step. Specifications of the parameters for DART are given in

Table 6.1. Fig. 6.4 shows the RNMP for the DART and MV-DART reconstructions

of the AC and DPC data with and without a median filter. Based on the graph, the

MV-DART algorithm outperforms the single DART algorithms in reconstruction

quality for both AC and DPC data when evaluated with the RNMP. Addition of the
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Table 6.1: Specifications (MV-)DART algorithm.

DART AC DART DPC MV-DART
volume size 250×250 pix 250×250 pix 250×250 pix
ARM algorithm CG CG CG
smoothing parameter 0.6 0.6 0.6
fraction random pixels 0.4 0.4 0.4
initial CG iterations 20 65-249 [20,65-249]
intermediate CG iterations 5 5 5
DART iterations 30 30 30
I (Poison noise) 500000 100000 [500000,100000]
weight Euclidean norm ω - - 0.999
differentiation method - - central

material values


0

0.0011
0.0012
0.0019




0
0.016
0.020
0.025




0 0
0.0011 0.016
0.0011 0.025
0.0012 0.025
0.0019 0.020



median filter improves the reconstruction quality of the DART algorithm for both

modalities but does not improve the performance of the MV-DART algorithm.

Fig. 6.5 and Fig. 6.6 show the reconstruction images made with the DART and

MV-DART algorithm for 100 and 40 projections as well as the maps with misclas-

sified pixels. The MV-DART algorithm clearly improves the reconstruction quality

by reducing the noise and the classification of the boundary pixels at the border

of the simulated fiber bundles is more accurate. In the DART reconstructions,

the boundary pixels are badly classified since for certain simulated fiber bundles

another grey value is present between the grey value of the fiber bundle and the

grey value of the background. At this boundary, the pixels are classified into the

intermediate value. In the MV-DART algorithm, the combined segmentation step

avoids this situation. For the AC and DPC data, the median filter reduces the

noise, but for the MV-DART, it reduces the spatial resolution, therefore better

reconstructions are obtained without the median filter. The observations are in

accordance with the results obtained from the graphs in Fig. 6.4. The reconstruc-

tion quality of MV-DART for 40 projections is similar or even better than the

reconstruction quality of DART for 100 projections, therefore, the algorithm has

potential to solve limited data problems.

An advantage of the MV-DART algorithm is that a combined segmentation of

the sample is made simultaneously. This segmentation shows the different materi-

als that are present inside the sample, which should normally be done afterwards

as a post-processing step. Validation of the material identification is of most in-
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Figure 6.4: Relative Number of Misclassified Pixels (RNMP) in function of the number of
projections for the absorption and DPC reconstructions with DART and MV-DART with and
without median filter.

terest for the user. Therefore, in Fig. 6.7, the RNMP is plotted in function of

the number of projections for the final material segmentation of MV-DART com-

pared to a material segmentation of DART obtained with a post-processing step.

The MV-DART algorithm clearly obtains better reconstructions. For all number

of projections, the reconstructions made with MV-DART have a lower RNMP

compared to the DART reconstructions, both when a median filter is applied and

without the median filter. Again, the median filter does not provide added value

to the MV-DART algorithm.

Fig. 6.8 shows the material segmentation reconstructions for the MV-DART

algorithm and for the combination of the AC and DPC DART algorithm in case

of 100 and 40 projections. In the combined DART reconstructions, white spots

appear in the reconstructions. These are pixels in which the combination of the

absorption and DPC reconstruction values does not correspond to one of the five

materials defined at the beginning (see the third column of table 6.1). They

represent other materials that are not present in the sample and a more complex

classification method should be used to classify them into one of the five pre-set

categories. In case of 40 projections, the combined DART reconstruction is highly

corrupted with noise compared to the MV-DART reconstruction. Applying the

median filter reduces the difference but from the images it is still clear that a better

reconstruction quality can be obtained with the MV-DART algorithm.
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(a) DART AC (b) DART DPC (c) MV-DART AC (d) MV-DART DPC

(e) DART AC (f) DART DPC (g) MV-DART AC (h) MV-DART DPC

(i) DART AC (j) DART DPC (k) MV-DART AC (l) MV-DART DPC

(m) DART ABS (n) DART DPC (o) MV-DART AC (p) MV-DART DPC

Figure 6.5: Reconstructions and error maps based on 100 projections without (first and
second row) and with (third and fourth row) a median filter.
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(a) DART AC (b) DART DPC (c) MV-DART AC (d) MV-DART DPC

(e) DART AC (f) DART DPC (g) MV-DART AC (h) MV-DART DPC

(i) DART AC (j) DART DPC (k) MV-DART AC (l) MV-DART DPC

(m) DART AC (n) DART DPC (o) MV-DART AC (p) MV-DART DPC

Figure 6.6: Reconstructions and error maps based on 40 projections without (first and second
row) and with (third and fourth row) a median filter.
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Figure 6.7: Relative Number of Misclassified Pixels (RNMP) in function of the number of
projections for the combined AC and DPC reconstructions with DART and the MV-DART
algorithm with and without median filter.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.8: Reconstructions based on 100 (top row) and 40 (bottom row) projections: (a)
and (e) combined DART reconstruction of AC and DPC data, (b) and (f) combined DART
reconstruction with median filtering, (c) and (g) MV-DART reconstruction, (d) and (h) MV-
DART reconstruction with median filtering.
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(a) (b)

Figure 6.9: CG reconstructions based on 1200 projections for (a) absorption contrast data
and (b) differential phase contrast data.

6.3.2 Real Data

For the real data experiments, a sample in which different materials had the same

attenuation coefficient or phase shift was not at hand. However, the method also

works when DPC data is corrupted with artefacts due to small angle scattering.

Therefore, a CFRP sample was chosen for the real data scans in which the fibers

could be distinguished from the resin matrix in the AC reconstruction made with

1200 projections but at a very low contrast, which makes segmentation hard. In

the DPC data, the contrast between the fibers and the resin matrix is higher, but

the reconstruction is corrupted with streaking artefacts as shown in Fig. 6.9. The

CFRP sample was scanned at the University of Applied Sciences in Wels with a

TLGI. Specifications of the scan can be found in Table 6.2. For all the DART

algorithms used in this section, the Gaussian kernel width was set to 0.3 pixels

and the fraction of randomly selected pixels to 0.6. Other parameters of the DART

and MV-DART algorithm used are mentioned together with the images as they

vary from image to image. When multiple t0 values (initial ARM iterations) or

t values (intermediate ARM iterations) are shown for the MV-DART algorithm,

they correspond to the iterations for the AC, DPC and DFC reconstructions in

that order. When DFC weighting is applied, two extra thresholds are present: the

threshold tDFrec which is the threshold for small angle scattering in the recon-

struction domain and tDFproj which is the threshold for small angle scattering in

the projection domain.

Before DART or MV-DART can be used to obtain a segmented reconstruc-

tion of the sample, the grey values of the materials inside the sample should be

determined. Very little prior knowledge exists on the sample, therefore the grey

values is determined based on the CG reconstructions of 1200 projections. To de-

termine the values, a segmentation of the reconstruction was performed. Several

methods were evaluated like manual segmentation, Otsu segmentation, kmeans

segmentation and PDM-DART segmentation. For the absorption reconstruction,

all methods generated very similar results for the segmentation values, which gave
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Table 6.2: Specifications of CFRP scan

SOD 140mm
SDD 286mm
detector row width 11.6um
detector column width 11.6um
binning 4
number of projections 1200
angular range 2π
number of detectors in 1 row 500
reconstruction voxel size 22.8um
number of reconstruction voxels 150×500×500

an indication that the chosen segmentation values are close to the actual grey val-

ues. In the DPC data, the high absorbing glue on top of the sample had a similar

phase shift as the fiber bundles. Thus, only three different values for the phase

shifts were chosen. With Otsu and kmeans segmentation, detection of the correct

grey values gave unsatisfactory results. The final grey values were determined by

the PDM-DART algorithm where high scattering pixels were omitted from the

projection data. It is however very hard to decide whether these values are accu-

rate since similar results can be found with other segmented grey values.

Fig. 6.10 shows the central slice of the reconstructed sample obtained with diffe-

rent reconstruction methods. For 1200 projections, the segmented CG and DART

reconstructions are very similar for the AC data. On the images it can be seen

that when all DPC data is used and small angle scattering is not taken into ac-

count, the DART algorithm does not provide a good segmented reconstruction for

the DPC data. Better segmentations could be obtained with other grey values,

although the reconstructions would still be distorted by artefacts. The MV-DART

reconstruction is very similar to the DART reconstruction of the AC data. Since

the DPC data is corrupted with artefacts, the segmentation is mainly based on

the AC data causing the presence of the same artefacts from ring artefact correc-

tion in MV-DART as in DART for AC. However, when DFC weighting is applied,

the artefacts in the DPC reconstruction are largely removed. As a result, the

DPC data can be used to improve the AC segmentation and a better segmented

reconstruction is obtained with MV-DART. Similar results are obtained for the re-

constructions made with 300 projections as shown in Fig. 6.11. The images show

that the MV-DART algorithm with DFC weighting is capable of reconstructing

fiber bundles inside the CFRP sample, which is not possible when only the AC or

DPC data is taken into account. Fig. 6.11(f) shows that after application of the
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(a) (b)

(c) (d)

(e) (f)

Figure 6.10: Reconstructions made of 1200 projections: (a) segmented CG for AC data,
(b) DART for AC data [t0=20, t=10], (c) segmented CG for DPC data, (d) DART for
DPC data [t0=20, t=1], (e) MV-DART [t0=[15,25],t=[10,1],ω=0.997](f) MV-DART with
DFC-weighting [t0=[15,18,10],t=[10,1], ω=0.997, tDFrec=0.2, tDFproj=2].

MV-DART algorithm with DFC weighting on 300 projections, the reconstruction

image has a similar or even better quality for further fiber segmentation compared

to the single DART reconstructions of Fig. 6.10(a) and (c) on AC and DPC data of

1200 projections. This indicates that the MV-DART algorithm is a valid method

when only limited projection data is available.

6.4 Conclusions & Work in progress

Based on the simulations and experiments performed in the previous section, the

MV-DART algorithm with DFC weighting can be considered a promising technique

for fiber segmentation which combines the fields of discrete tomography and image

fusion for PCCT. It can be used to improve the reconstruction quality both in

cases where different materials have the same attenuation coefficient or phase shift

and in cases where the DPC image is corrupted by artefacts that originate from

small angle scattering. In our lab, much effort is done at the moment to create
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(a) (b)

(c) (d)

(e) (f)

Figure 6.11: Reconstructions made of 300 projections: (a) segmented CG for AC data,
(b) DART for AC data [t0=20, t=10], (c) segmented CG for DPC data, (d) DART for
DPC data [t0=20, t=1], (e) MV-DART [t0=[15,25],t=[10,1],ω=0.997](f) MV-DART with
DFC-weighting [t0=[15,25,10],t=[10,1], ω=0.997, tDFrec=0.1, tDFproj=2].
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a simulator for TLGI PCCT data. Once this simulator is available, it will be

interesting to perform more simulation studies with more accurately simulated

data.

A possible improvement of the current MV-DART algorithm with DFC weighting

can be obtained by studying the segmentation step. Currently, a very simple

weighted Euclidean norm is chosen as a metric for segmentation. More accurate

and complex segmentation methods like Markov Random Fields [16] exist of which

the algorithm could benefit.
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T. Weber, L. Wucherer, J. Durst, T. Michel, G. Anton, and J. Hornegger, “Image

fusion in X-ray differential phase-contrast imaging,” in Proc. SPIE 8314, Medical

Imaging 2012: Image Processing, p. 83143U, 2012.

[4] C. Gusenbauer, M. Reiter, B. Plank, S. Senck, C. Hannesschläger, S. Renner,
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7
Conclusions

Numerous CT and PCCT applications deal with limited data problems caused by

a limited projection geometry or a limited acquisition time. When classical recon-

struction algorithms are exploited to solve these problems, the reconstructions are

typically deteriorated by limited data artefacts.

In this thesis, multiple new reconstruction algorithms that cope with limited data

artefacts have been proposed for use in tomography. Although the algorithms

developed in this thesis are very different, they share the following characteristics:

1. For all methods, prior knowledge about the scanned object is incorporated

into the acquisition model or reconstruction algorithm to improve the quality

of the reconstructed images.

2. All methods are developed for a specific application, but can be generalized

for application in other fields.

All methods described in this work can be divided into two cathegories: transmis-

sion computed tomography and phase contrast computed tomography. Hereafter,

the main conclusions of Chapters 3-6 are discussed.

Part II: Inline X-ray inspection

Chapter 3 – NN-hFBP for fast inline X-ray inspection

In this chapter, the NN-hFBP (Neural Network Hilbert transform based Filtered

Back Projection) algorithm was introduced. It is a fast and flexible algorithm

for inline inspection of objects, in this case agricultural products. The algorithm

combines several hFBP reconstructions into one final reconstruction image. The

hFBP reconstructions are distinguishable by their filters, which are trained in

advance in a neural network. Prior knowledge is used to train the neural network.
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The proposed approach was validated on both simulated and experimental data,

indicating its ability to generate reconstructions of sufficient quality in a realistic

time frame which proves the feasibility of inline inspection.

Chapter 4 – Inline Crack Detection

In this chapter, an inline crack detection method for SVS adapters was proposed.

The method consists of two consecutive steps. In the first step, reconstructions of

the adapters with cracks are acquired with an adapted version of the NN-hFBP of

Chapter 3. The method is able to provide acceptable reconstructions with highly

limited projection data in a very short time frame. Secondly, a crack detection

algorithm is applied on the reconstructions for classification of the adapters. The

proposed technique was validated on a set of scanned adapters with and without

cracks. The results reveal that the technique is able to detect cracks inside the

adapters with a similar accuracy as the currently used offline pressure tests.

Part III: TLGI reconstruction Algorithms

Chapter 5 – Dual-axis Tomography

In this chapter, a dual-axis tomographic scan is proposed as an alternative to scans

with an Eulerian cradle for the application of CFRP samples based on the know-

ledge that the fibers are oriented in two perpendicular directions. The samples are

scanned twice with an intermediate rotation of 90 degrees. After holder substrac-

tion and registration of the absorption reconstructions, dual axis reconstructions

of the DPC and DFC data are obtained with several reconstruction algorithms.

For a dual-axis scan, no special equipment is acquired but directional information

can still be recorded in more than one plane. The method was applied on a CFRP

sample and results indicate that a dual-axis scan improves the reconstruction qua-

lity of the images for fiber detection even when the number of projections is greatly

reduced.

Chapter 6 – Discrete Phase Contrast Computed Tomography: MV-DART

In this chapter, the MV-DART (MultiVariate Discrete Algebraic Reconstruction

Technique) algorithm is proposed. The algorithm exploits both the AC and DPC

projection data to generate a segmented reconstruction of the scanned object,

highlighting the different materials inside the object. Two separate DART recon-

structions are performed that are combined in the segmentation step where the

Euclidean Norm is used for multivariate segmentation. The algorithm is validated

both on simulation experiments and experimental data. The results show that the

algorithm is able to significantly improve the discrete reconstruction. Furthermore,
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the MV-DART algorithm with DFC weighting was proposed and validated on real

data where the small angle scattering information is used to steer the segmentation

towards the AC reconstruction. Results reveal an improved reconstruction quality

compared to separate segmentation techniques.

Overall, with this work a step forward has been made in the field of fast inline

inspection as well as in reconstruction algorithms for limited data with TLGI

imaging. Results show that incorporating prior knowledge in the reconstruction

or acquisition model can significantly improve the reconstruction quality for limited

data problems.
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List of common abbreviations

Common abbreviations

AC Absorption Contrast

ART Algebraic Reconstruction Technique

ASTRA All Scales Tomographic Reconstruction Antwerp

CFRP Carbon Fibre Reinforced Polymer

CG Conjugate Gradient

CGLS Conjugate Gradient Least Squares

CT Computed Tomography

DART Discrete Algebraic Reconstruction Technique

DFC Dark Field Contrast

DPC Differential Phase Contrast

FBP Filtered Back Projection

FDK Feldkamp-David-Kress algorithm

FSIM Functional Similarity Index

GBI Grating Based Interferometer

GPU Graphics Processing Unit

hFBP Hilbert transform based Filtered Back Projection

MAD Most Apparent Distortion

MV-DART Multivariate Discrete Algebraic Reconstruction Technique

NN-hFBP Neural Network Hilbert transform based Filtered Back Projection

PCCT Phase Contrast Computed Tomography

RMSE Root Mean Squared Error

RNMP Relative Number of Misclassified Pixels

SART Simultaneous Algebraic Reconstruction Technique

SIRT Simultaneous Iterative Reconstruction Technique

TLGI Talbot Lau Grating based Interferometer
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canti, I.J. Tsang, and J. Sijbers, “Fast X-ray Computed Tomography via Image
Completion”, 6th Conference on Industrial Computed Tomography (iCT), Wels,
Austria, 2016.

• E. Janssens, S. Senck, C. Heinzl, J. Kastner, J. De Beenhouwer, and J. Sijbers,
“Fast Reconstruction of CFRP X-ray Images based on a Neural Network Filtered
Backprojection Approach”, 7th Conference on Industrial Computed Tomography
(iCT), Leuven, Belgium, 2017.

• T. De Schryver, J. Dhaene, M. Dierick, M. Boone, E. Janssens, J. Sijbers,
M. Van Dael, P. Verboven, B. Nicola, and L. Van Hoorebeke, “In-line non-
destructive evaluation of food with X-ray computed tomography using a non-
standard conveyor belt trajectory”, 7th Conference on Industrial Computed To-
mography (iCT), Leuven, Belgium, 2017.

Conference abstracts

• E. Janssens, J. De Beenhouwer, T. De Schryver, L. Van Hoorebeke, M. Van
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