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Abstract

Monoidal topology is a research area in mathematics providing a common frame-
work for convergence. Two parameters, a Set-monad T and a quantale V , to-
gether with an extension of the monad T to V-Rel, provide us with a category
of lax algebras, denoted (T,V)-Cat. Suitable choices for T and V result in a lax
algebraic description of ordered spaces, metric spaces, topological spaces and ap-
proach spaces.

Our interest goes out to approach spaces and a first lax algebraic description
of approach spaces was given by Clementino and Hofmann [CH03] by defin-
ing an extension � of the ultrafilter monad � to numerical relations resulting in
(�,P+)-Cat ∼= App.

In this work we look for relational representations of App, i.e. lax alge-
braic representations only using the quantale 2. We introduce the functional
ideal monad I, which is power-enriched, and using the theory of power-enriched
monads developed in [HST14] we are able to prove that (I, 2)-Cat ∼= App. We also
look at the prime functional ideals and their corresponding monad B. We show
that B is a submonad of I satisfying those properties needed in order to conclude
(I, 2)-Cat ∼= (B, 2)-Cat.

We also turn our attention to NA-App, the full subcategory of App consisting of
non-Archimedean approach spaces. We answer the question of determining which
parameters T and V should be used in order to capture NA-App as a category of
lax algebras. It turns out that the answer lies in switching the quantale P+ in the
presentation of App as lax algebras by Clementino and Hofmann to P∨, which
results in the isomorphism NA-App ∼= (�,P∨)-Cat.

The relational descriptions of App by means of the functional ideal monad and
the prime functional ideal monad, and the description of NA-App as a category
of lax algebras are the main instruments for an in depth study of new approach
invariants. These approach invariants will arise as topological properties in lax
algebras depending on the monad T and the quantale V . We study Hausdorff
separation, compactness and regularity to name only a few.
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Introduction

Monoidal topology is an active research area in mathematics providing a common
framework for “convergence”.

A first root of the theory of monoidal topology is Barr’s relational representa-
tion of topological spaces [Bar70], which forms a generalization of Manes’ proof
that compact Hausdorff topological spaces are the Eilenberg-Moore algebras of
the ultrafilter monad � = (β,m, e) [Man69]. In this description, a compact Haus-
dorff topological space is a set X equipped with a map a : βX //X assigning to
every ultrafilter on X its unique point of convergence in X , satisfying two axioms
that can be represented by the following diagrams

β2X
βa //

mX
��

βX

a

��
βX a // X

X
eX //

1X !!

βX

a
��
X.

In the work of Barr [Bar70], in order to obtain a characterization of all topo-
logical spaces, the map a : βX //X was replaced by a relation a : βX−→7 X .
Now it is no longer assured that every ultrafilter converges (compactness) and that
there has to be at most one point of convergence (Hausdorffness). Of course, one
knows what βa is when a : βX // X a map, but not when a : βX−→7 X a
relation, so in order for the next definitions to make sense, the ultrafilter monad
� = (β,m, e) now has to be extended to Rel, the category of sets and relations, as
� = (β,m, e). Considering a lax version of the diagrams above, this gives us

ββX
βa //

mX

��

| βX

a

��

X
eX //

1X

≤

��

βX

a

��

≥ − −

βX a
//| X X

1
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or, in pointwise form, with a and βa denoted by→, we get:

transitivity: X→ U &U → z ⇒ mXX→ z

and
reflexivity: eX(x)→ x,

for all X ∈ ββX,U ∈ βX and z, x ∈ X .
Barr showed that a setX equipped with a relation a : βX−→7 X satisfying the

two axioms above, transitivity and reflexivity, is a topological space and that ev-
ery topological space can be represented in such a way. Together with continuous
maps described as the convergence preserving maps, this gives a relational pre-
sentation of the category Top, the category of topological spaces and continuous
maps, which we denote

(�, 2)-Cat ∼= Top.

The terminology “transitivity” and “reflexivity” preserves the meaning of tran-
sitivity and reflexivity for ordered spaces. The axioms above applied to the iden-
tity monad 1 instead of the ultrafilter monad � yield a pair (X, a) with a : X−→7 X
a relation, which can be denoted by ≤ satisfying

∀x, y, z ∈ X : x ≤ y& y ≤ z ⇒ x ≤ z,

the usual transitivity axiom, and

∀x ∈ X : x ≤ x,

the usual reflexivity axiom. Hence

(1, 2)-Cat ∼= Ord,

where Ord is the category of ordered sets and order preserving maps. Remark that
anti-symmetry is not assumed for ordered sets and in literature these structures are
often referred to as preordered sets.

A second important step in the development of monoidal topology was the
description of metric spaces as (small individual) categories enriched over the
extended non-negative real half-line by Lawvere [Law73]. In more familiar terms,
this means that if we apply the axioms above to the identity monad 1 and change
relations to multi-valued relations, one gets a lax algebraic description of quasi-
metric spaces. To see this, consider [0,∞] equipped with the reversed order and
structured by + and 0. We denote this by

P+ =
(
[0,∞],≤op,+, 0

)
.
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A quasi-metric space (X, a) is a set X equipped with a map a : X×X // [0,∞],
or equivalently a [0,∞]-valued relation a : X−→7 X satisfying the transitivity
axiom

∀x, y, z ∈ X : a(x, y) + a(y, z) ≥ a(x, z),

and the reflexivity axiom

∀x ∈ X : a(x, x) = 0.

Hence, the category qMet of quasi-metric spaces and non-expansive maps is pre-
sented by

(1,P+)-Cat ∼= qMet.

Quasi-metric structures do not behave well with respect to the formation of
initial structures, in particular products. The product in qMet of an infinite fam-
ily of quasi-metric spaces is not compatible with the topological product of the
associated underlying topologies. As a remedy to this defect, the common super-
category App (the objects of which are called approach spaces) of Top and qMet
was introduced [Low15]. The basic difference between approach spaces and met-
ric spaces is that in the former, one specifies and axiomatizes point-set distances,
where such a point-set distance, unlike the situation for quasi-metric spaces, is not
necessarily derivable from the point-point distances.

An approach space is a set X endowed with a function

δ : X × 2X // [0,∞],

called a distance satisfying the following properties:

(D1) ∀x ∈ X, ∀A ⊆ X : x ∈ A⇒ δ(x,A) = 0.

(D2) ∀x ∈ X : δ(x, ∅) =∞.

(D3) ∀x ∈ X, ∀A,B ⊆ X : δ(x,A ∪B) = min
(
δ(x,A), δ(x,B)

)
.

(D4) ∀x ∈ X, ∀A ⊆ X, ∀ε ≥ 0 : δ(x,A) ≤ δ
(
x,A(ε)

)
+ ε,

with A(ε) :=
{
x ∈ X | δ(x,A) ≤ ε

}
.

The value δ(x,A) is interpreted as the distance from the point x to the set A.
The morphisms in the category App are called contractions and a contraction

is a map
f : (X, δX) // (Y, δY )

between two approach spaces such that

∀x ∈ X, ∀A ⊆ X : δY
(
f(x), f(A)

)
≤ δX(x,A).
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Approach spaces can be equivalently defined by a set X equipped with a limit
operator

λ : FX // [0,∞]X ,

on the set FX of filters on X and satisfying appropriate axioms, where the value
λF(x) is interpreted as the distance that x is away from being a limit point of the
filter F . An approach space can also be defined by a tower

(tε)ε∈R+ ,

an ordered family of pretopologies on X indexed by the positive real numbers
fulfilling certain coherence conditions, a gauge

G ⊆ qMet(X),

an ideal of quasi-metrics on X satisfying a saturation property, or many other
equivalent structures.

The category App of approach spaces and contractions contains both Top and
qMet as fully embedded subcategories, Top is a concretely coreflective and re-
flective subcategory, and qMet is a concretely coreflective subcategory of App.
Preliminaries on approach spaces will be presented in Section 1.1.

A first lax algebraic characterization of approach spaces was given by Cle-
mentino and Hofmann [CH03] by defining an extension � of the ultrafilter monad
� to numerical relations. Using the description of approach spaces in terms of the
limit operator, an approach space can be described as (X, a) where X is a set and
a : βX−→7 X is a multi-valued relation satisfying the transitivity axiom

a
(
mXX, z

)
≤ βa(X,U) + a(U , z),

for all X ∈ ββX,U ∈ βX and z ∈ X , and the reflexivity axiom

a
(
eX(x), x

)
= 0,

for all x ∈ X . Hence,
(�,P+)-Cat ∼= App.

In general, the two parameters of monoidal topology are a Set-monad T =
(T,m, e) and a quantale V together with a lax extension T̂ of the monad T to the
category V-Rel of sets and V-valued relations. This provides us with the category

(T,V)-Cat

where an object (X, a) is a set X equipped with a V-relation

a : TX−→7 X



INTRODUCTION 5

satisfying transitivity and reflexivity.

TTX T̂ a //

mX

��

| TX

a

��

X
eX //

1X

≤

��

TX

a

��

≥ − −

TX a
//| X X

So far we have seen monoidal topology provides a common setting to describe
ordered spaces, metric spaces, topological spaces and approach spaces. Prelimi-
naries on monoidal topology will be recalled in Chapter 1.

In Chapter 2 we turn our attention to NA-App, the full subcategory of App
with objects the non-Archimedean approach spaces. Non-Archimedean approach
spaces were introduced by Brock and Kent [BK98] and were also considered by
Colebunders, Mynard and Trott in [CMT14] and by Boustique and Richardson
[BR17] as certain limit tower spaces.

Non-Archimedean approach spaces are those approach spaces X where the
distance δ satisfies the strong triangular inequality

(D4∨) ∀x ∈ X, ∀A ⊆ X, ∀ε ≥ 0 : δ(x,A) ≤ δ
(
x,A(ε)

)
∨ ε.

They can easily be characterized in terms of the tower. Non-Archimedean ap-
proach spaces are those approach spaces with a tower of topologies

(Tε)ε∈R+

satisfying the coherence condition: ∀ε ∈ R+ : Tε =
∨
γ>ε Tγ .

We investigate a characterization of non-Archimedean approach spaces in
terms of the gauge. It turns out that non-Archimedean approach spaces are those
approach spaces with a gauge basis consisting of quasi-ultrametrics, i.e. quasi-
metrics d : X ×X // [0,∞] satisfying the strong triangular inequality

∀x, y, z ∈ X : d(x, z) ≤ d(x, y) ∨ d(y, z).

In Section 2.2 we answer the question of determining which parameters T
and V should be used in order to capture NA-App as a category of lax algebras.
Inspired by the known fact that

(1,P∨)-Cat ∼= qMetu,
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where qMetu is the full subcategory of qMet consisting of all quasi-ultrametric
spaces, we succeed in proving that the solution lies in replacing the quantale P+
by P∨ in the representation of App as (�,P+)-Cat. We find the representation

(�,P∨)-Cat ∼= NA-App.

In what we discussed so far, App could only be represented as a category of
lax algebras by extending the ultrafilter monad to numerical relations. In Chapter
3 we answer the question whether some representation of App is possible in terms
of relational algebras. This means we want to focus on lax-algebraic presentations
of App using only the quantale V = 2.

Our guiding example is again Top. In [Sea05] Seal described topological
spaces as F-monoids for the power-enriched filter monad F. The key to this de-
scription is the map

X // FX : x 7→ V(x)

which sends every point x of a topological spaceX to its neighborhood filter V(x).
Moreover, since convergence in topological spaces is completely determined by(
V(x)

)
x∈X , the representation of topological spaces as F-monoids for the power-

enriched filter monad F was shown by Seal to imply the presentation in terms of
relational algebras

(F, 2)-Cat ∼= Top.

In order to tackle the question whether App can be described in terms of rela-
tional algebras for some power-enriched monad T = (T,m, e), we first focus on
finding a description of App in terms of T-monoids for a suitable power-enriched
monad. The clue to the solution of this problem is the map

x 7→ A(x),

sending every point x of an approach space X to its local approach system, where
A(x) can be derived from the gauge of the approach space by appropriate satura-
tion of the collection

{d(x, ·) | d ∈ G}.

We introduce the monad I = (I,m, e) of functional ideals and we prove that
it is power-enriched. These investigations lead to the presentation of approach
spaces as I-monoids. Moreover as convergence of functional ideals in an approach
space X is completely determined by its local approach system

(
A(x)

)
x∈X , we

can apply a general theorem from [HST14] about the relation between categories
of T-monoids and of relational T-algebras, in order to conclude that

(I, 2)-Cat ∼= App,
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describing a representation of App as a category of relational algebras and thus
giving a positive answer to the question put forward in this chapter.

We finish this chapter by studying prime functional ideals and their monad B
[LVOV08], [LV08], which is not power-enriched. We show that B is a submonad
of I satisfying exactly those properties formulated in [HST14] needed to conclude
that (B, 2)-Cat ∼= (I, 2)-Cat, thus recovering the results from [LV08] that

(B, 2)-Cat ∼= App.

The new descriptions of NA-App as a category of lax algebras obtained in
Chapter 2 and of App as a category of relational algebras as developed in Chapter
3 are the main instruments for an in depth study of new approach invariants in
the final chapter, Chapter 4. These approach invariants will arise as topological
properties of the lax algebras (or relational algebras in case V = 2) involved.
Looking at lax algebras (X, a) as spaces and denoting the convergence relation
on X by a : TX−→7 X as before, topological properties for such spaces were
introduced based on the convergence notion a and depending on the monad T,
the quantale V and the extension of T to V-Rel, [HST14]. These notions were
applied to the guiding examples (�, 2)-Cat ∼= Top, where they coincide with the
usual notions of the respective properties and to (�,P+)-Cat ∼= App where they
also coincide with some known approach invariants.

In this introduction we limit ourselves to the discussion of new approach in-
variants based on Hausdorff separation (at most one point of convergence), com-
pactness (at least one point of convergence) and regularity (reversing the transi-
tivity axiom of a) for lax algebras, but other invariants have also been studied in
this thesis.

First we discuss new invariants for non-Archimedean approach spaces. Based
on the representation (�,P∨)-Cat ∼= NA-App, a non-Archimedean approach space
X is (�,P∨)-Hausdorff if and only if for the convergence relation a having finite
values a(U , x) and a(U , y), with U an ultrafilter on X , implies x = y. On the
other hand looking at the tower of X which consists of an indexed family of level
topologies (Tε)ε∈R+ , we can consider three other notions, “strongly” Hausdorff
(all level topologies are Hausdorff), “almost strongly” Hausdorff (all the level
topologies at strictly positive levels are Hausdorff) and the property that the topo-
logical coreflection (X, T0) of X is Hausdorff. It appears that all properties are
equivalent except for the last one which is strictly weaker.

We use similar definitions for “strongly” compact, “almost strongly” compact
and the topological coreflection (X, T0) being compact. It appears that (�,P∨)-
compact is equivalent to almost strongly compact, both being equivalent to the
known 0-compactness for approach spaces [Low15]. Strongly compact is equiv-
alent to the topological coreflection (X, T0) of X being compact and both are
strictly stronger than the former.
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We investigate similar links for regularity. The property “strongly” regular was
first introduced by Brock and Kent [BK98] and this property was also studied in
the context of contractive extensions in [CMT14]. It appears that strongly regular
and almost strongly regular are both equivalent to (�,P∨)-regularity. Regularity
for approach spaces as introduced in [Rob92] by Robeys is strictly weaker and
implies the topological coreflection (X, T0) of X being regular.

Next we turn our attention to relational algebras describing App. We investi-
gate topological properties in App induced by the representation (I, 2)-Cat ∼= App
for the power-enriched monad I. Since the improper functional ideal PXb consist-
ing of all bounded functions from X to [0,∞], converges to all points of X , only
trivial results can be expected when studying some of the topological properties
listed above. Therefore in some cases we will abandon the improper element and
restrict to proper functional ideals on X by considering the subfunctor Ip defined
by IpX = IX \ {PXb }.

The (Ip, 2)-Hausdorff property explicitly means that when some proper func-
tional ideal converges to both points x and y, then x = y. This notion turns out to
be equivalent to the approach invariant stating that the topological coreflection of
X is Hausdorff.

For a study of compactness, it turns out that abandoning the improper ele-
ment does not have any effect on the topological property and when considering
(I, 2)-compactness in App, this explicitly means that every functional ideal has a
point of convergence. In particular there exists x ∈ X such that {0} � x, or
equivalently there exists x ∈ X such that A(x) = {0}. This notion will be called
supercompactness in App.

The most extensive study in this thesis is the one for regularity. First of all
we prove some general results for power-enriched monads. We show that a rela-
tional T-algebra (X, a), for T power-enriched, is (T, 2)-regular if and only if it is
indiscrete, even when restricting to proper elements. For our particular monad I
in order to obtain some interesting invariant related to regularity, we restrict our-
selves to functional ideals generated by certain selections. In doing so we obtain
a property equivalent to regularity for approach spaces, as introduced by Robeys
[Rob92], for which we provide a characterization in terms of functional ideals.

Finally we investigate topological properties in App induced by the represen-
tation (B, 2)-Cat ∼= App. Since B is not a power-enriched monad, the situation
will be different. However, the improper functional ideal PXb is a prime functional
ideal, hence in some cases we will again abandon the improper element and re-
strict to proper prime functional ideals on X by considering the subfunctor Bp
defined by BpX = BpX \ {PXb } in order to get interesting results.

The notion (Bp, 2)-Hausdorff means that when some proper prime functional
ideal converges to both points x and y then x = y. This notion turns out to be
equivalent to the (Ip, 2)-Hausdorff property.
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Considering (B, 2)-compactness we get a different property than (I, 2)-com-
pactness. Whereas we called (I, 2)-compactness of X supercompactness in App,
(B, 2)-compactness gives different results since {0} is not a prime functional ideal.
An approach space X is (B, 2)-compact if and only if its topological coreflection
is compact.

Due to the fact that there are improper elements, (B, 2)-regularity is uninter-
esting, since an approach space X is (B, 2)-regular if and only if it is indiscrete.
Contrary to the case for the functional ideal monad, restricting to proper prime
functional ideals already gives an interesting property. We prove that (Bp, 2)-
regularity is equivalent to the approach space being topological and regular. It
requires further weakening of the concept to obtain a characterization of the usual
regularity property in App [Rob92] in terms of convergence of prime functional
ideals.
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Chapter 1

Preliminaries

1.1 Approach spaces

Topologists prefer to work in a category like Top (topological spaces and continu-
ous maps), even if this means that they have to abandon an originally metric setup
in the category qMet (quasi-metric spaces and non-expansive maps). A reason
why we prefer to look at the underlying topology is given by the fact that it is the
topology which provides us with the framework in which most of the basic con-
cepts of analysis are defined, such as, for example, convergence, continuity and
compactness. The most fundamental problem which arises in this transition is the
fact that metric initial structures do not necessarily accord with topological initial
structures: the countable product of metrizable spaces is metrizable, but there is
no canonical metric for the product topology, and for uncountable products there
simply is no metric at all for the product topology. This is the main motivation
for looking at a common supercategory of Top and qMet, namely App (the topo-
logical construct of approach spaces and contractions), in which we are able to
find a suitable solution to cope with this problem. Approach spaces thus are a
generalization of both metric spaces and topological spaces.

Approach theory was introduced by Lowen in various papers between 1988
and 1995, resulting in a first book [Low97]. In 2015 a second book on approach
theory was published, [Low15] and we refer to this work as a comprehensive
source on approach theory.

In this section we give an introduction to approach theory. We list all required
results from [Low15] without proofs and we refer to this work for more informa-
tion.

11
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1.1.1 The objects: equivalent descriptions of approach spaces
Approach spaces can be defined by conceptually very different, but nevertheless
equivalent structures. Here we will introduce the structures needed in this work.
More information on these structures, and various other structures defining ap-
proach spaces, can be found in Sections 1.1 and 1.2 of Index Analysis [Low15].

A. Distances

The first structure which we will be considering is that of a distance between
points and sets. In a metric space (X, d) a distance between pairs of points is
given and a distance between points and sets can be derived using the following
formula

δd(x,A) := inf
a∈A

d(x, a) ∀x ∈ X, ∀A ⊆ X.

Here we start from a concept of distance between points and sets.
The unbounded closed interval [0,∞] will be denoted by P.

Definition 1.1.1.1. (Distance) A function

δ : X × 2X // P

is called a distance if it satisfies the following properties.

(D1) ∀x ∈ X, ∀A ⊆ X : x ∈ A⇒ δ(x,A) = 0.

(D2) ∀x ∈ X : δ(x, ∅) =∞.

(D3) ∀x ∈ X, ∀A,B ⊆ X : δ(x,A ∪B) = min
(
δ(x,A), δ(x,B)

)
.

(D4) ∀x ∈ X, ∀A ⊆ X, ∀ε ≥ 0 : δ(x,A) ≤ δ
(
x,A(ε)

)
+ ε,

with A(ε) :=
{
x ∈ X | δ(x,A) ≤ ε

}
.

The value δ(x,A) is interpreted as the distance from the point x to the set A.
The following proposition contains some fundamental properties which will

be useful in the sequel and can be found as Proposition 1.1.2 in Index Analysis
[Low15].

Proposition 1.1.1.2. If δ : X×2X //P is a distance, then the following properties
hold:

1. ∀x ∈ X, ∀A,B ⊆ X : A ⊆ B ⇒ δ(x,B) ≤ δ(x,A).

2. ∀x ∈ X, ∀A ⊆ 2X ,A finite: δ
(
x,
⋃
A
)

= minA∈A δ(x,A).

3. ∀x ∈ X, ∀A,B ⊆ X : δ(x,A) ≤ δ(x,B) + supb∈B δ(b, A).
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For a given subset A ⊆ X , we define

δA : X // P : x 7→ δ(x,A)

and we call such functions distance functionals.

B. Limit operators

The second structure which we will need is the one of a limit operator.
We will use the following notations. FX stands for the set of all filters on X ,

and βX stands for the set of all ultrafilters on X . If F is a given filter on X , then
we will denote by F(F) the collection of all filters on X which are finer than F ,
and by β(F) the collection of all ultrafilters on X which are finer than F .

If A is a collection of subsets of X , then the stack of A is defined as

stackA := {B ⊆ X | ∃A ∈ A : A ⊆ B}. (1.1)

If F is a filter on X then the sec of F is defined as

secF :=
⋃

U∈β(F)

U = {A ⊆ X | ∀F ∈ F : A ∩ F 6= ∅}, (1.2)

where sec stands for secant. If A is a filterbasis, then stackA is the filter gen-
erated by A. Not to overload notations, we often omit writing stack before a
filterbase. In case A reduces to a single set A, we write stackA, or even shorter
Ȧ, instead of stack{A}, and in case the single set A furthermore reduces to a
single point a we write ȧ.

Consider a filter F ∈ FX . For a function f : X // Y , we define the image
of a filter as the filter on Y generated by {f(F ) | F ∈ F}, i.e.

f(F) := stack{f(F ) | F ∈ F}. (1.3)

This definition makes sure that we do not always have to write stack when con-
sidering images of filters, making our formulas easier to digest.

We define a diagonal operation for filters. Early references on the Kowalsky di-
agonal operation are Kent [Ken64], Kowalsky [Kow54] and Lowen-Colebunders
[LC89].

Given a filter F on FX , i.e. F ∈ F2X , we define ΣF as follows

ΣF =
⋃
A∈F

⋂
W∈A

W = {A ⊆ X | Ã ∈ F}, (1.4)

with Ã = {W ∈ FX | A ∈ W}. We can even particularize this definition to
ultrafilters X on βX , i.e. X ∈ β2X . Here ΣX is defined in exactly the same way:

ΣX =
⋃
A∈X

⋂
W∈A

W = {A ⊆ X | Ã ∈ X}, (1.5)



14 CHAPTER 1. PRELIMINARIES

with Ã = {W ∈ βX | A ∈ W}. In case all filters involved are ultrafilters, the
Kowalsky sum is again an ultrafilter.

Consider now a non-empty set J and a function σ : J // FX . This function
gives us a family of filters

(
σ(j)

)
j∈J on X . If we now consider a filter F on J ,

then we are able to apply the Kowalsky diagonal operation Σ to σF . This gives
us

Σσ(F) = {A ⊆ X | Ã ∈ σF}
=

⋃
A∈σF

⋂
W∈A

W

=
⋃
F∈F

⋂
W∈σF

W

=
⋃
F∈F

⋂
j∈F

σ(j).

Before defining the structure of a limit operator, we give two useful purely
filter-theoretic result, which we will require multiple times throughout this work.
These results can be found in Index Analysis [Low15] as Lemma 1.1.4 and Lemma
1.1.5.

Lemma 1.1.1.3. IfF is a filter, and for each ultrafilter U ∈ β(F) we have selected
a set S(U) ∈ U , then there exists a finite set US ⊆ β(F) such that⋃

U∈US

S(U) ∈ F . (1.6)

The following formula allows us to interchange liminf and limsup in several
instances.

Lemma 1.1.1.4. If U is an ultrafilter onX and f : X //P is an arbitrary function,
then

sup
U∈U

inf
y∈U

f(y) = inf
U∈U

sup
y∈U

f(y). (1.7)

In [Low15] various equivalent definitions of limit operators are given. We
introduce the one which is most interesting for our work.

Definition 1.1.1.5. (Limit operator) A function

λ : FX // PX

is called a limit operator if it satisfies the following properties.

(L1) ∀x ∈ X : λẋ(x) = 0.
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(L2) For a (non-empty) family (Fj)j∈J of filters on X

λ

(⋂
j∈J

Fj

)
= sup

j∈J
λFj.

(L∗) For any set J , for any ψ : J //X , for any σ : J //FX and for anyF ∈ FJ

λΣσ(F) ≤ λψ(F) + inf
F∈F

sup
j∈F

λσ(j)
(
ψ(j)

)
.

The value λF(x) is interpreted as the distance that the point x is away from
being a limit point of the filter F . The smaller the value λF(x), the closer x
becomes to being a limit point of F . Notice also that it immediately follows from
(L2) that

∀F ,G ∈ FX : G ⊆ F ⇒ λF ≤ λG.
We also mention the following result, which shows that a limit operator can

equivalently be defined using ultrafilters instead of filters. For more detail, we
refer to Theorem 1.1.11 in Index Analysis [Low15].

Theorem 1.1.1.6. Given a function λ : βX // PX satisfying (L1), the extension
to FX defined by

λ : FX // PX : F 7→ sup
U∈β(F)

λU

is a limit operator if and only if it satisfies the following property:

(Lβ∗) For any set J , for any ψ : J // X , for any σ : J // βX and for any
U ∈ βJ

λΣσ(U) ≤ λψ(U) + inf
U∈U

sup
j∈U

λσ(j)
(
ψ(j)

)
.

C. Approach systems

Approach systems can be thought of as a localization of the notion of metric. In
each point of the space X we give a collection of P-valued functions, called local
distances, each of which measures a distance from the given point to any other
point of the space.

A non-empty subset A of P-valued functions on a given set X is called an
ideal in PX if it is closed under the operation of taking finite suprema and under
the operation of taking smaller functions.

Given a collection of functions A ⊆ PX and a function ϕ ∈ PX , we will say
that ϕ is dominated by A if

∀ε > 0,∀ω <∞ : ∃ϕωε ∈ A such that ϕ ∧ ω ≤ ϕωε + ε. (1.8)
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We will then also say that the family (ϕωε )ε>0,ω<∞ dominates ϕ.
Further we will say that a collection of functions A ⊆ PX is saturated, if any

function which is dominated by A already belongs to A.

Definition 1.1.1.7. (Approach system) A collection of ideals
(
A(x)

)
x∈X in PX ,

indexed by the points of X , is called an approach system if for all x ∈ X the
following properties hold:

(A1) ∀ϕ ∈ A(x) : ϕ(x) = 0.

(A2) A(x) is saturated.

(A3) ∀ϕ ∈ A(x),∀ε > 0, ∀ω <∞,∃(ϕz)z∈X ∈
∏

z∈X A(z) such that

∀z, y ∈ X : ϕ(y) ∧ ω ≤ ϕx(z) + ϕz(y) + ε.

For any x ∈ X , a function in A(x) is called a local distance in x. (A3)
will be referred to as the mixed triangular inequality. The value ϕ(y) of a local
distance ϕ ∈ A(x) at a point y ∈ X is interpreted as the “distance from x to y
according to ϕ”. The set of local distances in a point can be compared to the set of
neighborhoods of a point in a topological space. Each neighborhood determines
its own set of points which are considered close by (in the neighborhood of) the
given point. In the same way each local distance makes its own measurement of
the distance other points in the space lie from the given point.

Often one can determine collections B(x), x ∈ X , which would be natural
candidates to form an approach system, but not all required properties are fulfilled.
In particular property (A2) is not often automatically fulfilled. To handle this we
introduce a type of basis for approach systems. We recall that a subset B of PX

is called an ideal basis in PX if, for any ϕ, ψ ∈ B, there exists µ ∈ B such that
ϕ ∨ ψ ≤ µ.

Definition 1.1.1.8. A collection of ideal bases
(
B(x)

)
x∈X in PX is called an ap-

proach basis if, for all x ∈ X , the following properties hold:

(B1) ∀ϕ ∈ B(x) : ϕ(x) = 0.

(B2) ∀ϕ ∈ B(x), ∀ε > 0,∀ω <∞,∃(ϕz)z∈X ∈
∏

z∈X B(z) such that

∀z, y ∈ X : ϕ(y) ∧ ω ≤ ϕx(z) + ϕz(y) + ε.

Since (B1) corresponds to (A1) and (B2) to (A3), an approach system is also
an approach basis, and any result for approach bases will also hold for approach
systems. In order to derive the set of all local distances from an approach basis



1.1. APPROACH SPACES 17

we will also require the following saturation operation. Given a subset B ⊆ PX

we define
B̂ :=

{
ϕ ∈ PX | B dominates ϕ

}
. (1.9)

Definition 1.1.1.9. A collection of ideal bases
(
B(x)

)
x∈X is called a basis for an

approach system
(
A(x)

)
x∈X , if for all x ∈ X ,A(x) equals the saturation of B(x),

i.e. A(x) = B̂(x). In this case we also say that
(
B(x)

)
x∈X generates

(
A(x)

)
x∈X .

Proposition 1.1.1.10. If
(
B(x)

)
x∈X is an approach basis, then

(
B̂(x)

)
x∈X is an

approach system with
(
B(x)

)
x∈X as basis and if

(
B(x)

)
x∈X is a basis for an ap-

proach system
(
A(x)

)
x∈X , then it is an approach basis.

Definition 1.1.1.11. It follows from the saturation condition that the set Ab(x) of
all bounded functions in A(x) is a particularly interesting basis. It satisfies the
saturation condition in a simpler form, which says that for all µ ∈ PX bounded:

∀ε > 0,∃ϕ ∈ Ab(x) : µ ≤ ϕ+ ε⇒ µ ∈ Ab(x). (1.10)

We refer to this collection as the bounded approach basis or bounded approach
system.

D. Gauges

Given a setX , a map d : X×X //P which vanishes on the diagonal and satisfies
the triangle inequality

d(x, z) ≤ d(x, y) + d(y, z), (1.11)

for all x, y, z ∈ X will be called a quasi-metric. If the map is moreover symmetric
then it is called a metric. If the underlying topology is Hausdorff, the quasi-metric
will be called separated. A map f : (X, d) // (X ′, d′) between quasi-metric
spaces is called non-expansive if

∀x, y ∈ X : d′
(
f(x), f(y)

)
≤ d(x, y). (1.12)

The collection of all quasi-metrics on a set X will be denoted by qMet(X). The
category of all quasi-metric spaces (respectively metric spaces) equipped with
non-expansive maps as morphisms is denoted qMet (respectively Met).

Given a collection D ⊆ qMet(X) and a quasi-metric d ∈ qMet(X), we will
say that d is locally dominated by D if for all x ∈ X, ε > 0 and ω < ∞ there
exists a dε,ωx ∈ D such that

d(x, ·) ∧ ω ≤ dε,ωx (x, ·) + ε. (1.13)

Further we say that a collection of quasi-metrics D is locally saturated, if any
quasi-metric d which is locally dominated by D already belongs to D.
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Definition 1.1.1.12. (Gauge) A subset G of qMet(X) is called a gauge if it is an
ideal in qMet(X) which fulfills the following property:

(G1) G is locally saturated.

Similar to the case for approach systems here too, it regularly happens that
one has a collection of quasi-metrics which would be a natural candidate to form
a gauge but not all conditions are fulfilled. The following type of collection will
often be encountered.

Definition 1.1.1.13. A subset H of qMet(X) is called locally directed if for any
H0 ⊆ H finite we have that supd∈H0

d is locally dominated byH.

By definition, a gauge, being an ideal, is locally directed and similar to the
situation for approach systems and approach bases, here too, any result shown to
hold for locally directed sets will also hold for gauges.

In order to derive the gauge from a locally directed set we will also require
a local saturation operation which is perfectly similar to the one for approach
systems.

Given a subset D ⊆ qMet(X) we define

D̂ := {d ∈ qMet(X) | D locally dominates d}. (1.14)

We call D̂ the local saturation of D.

Definition 1.1.1.14. A set H in qMet(X) is called a basis for the gauge G if
Ĥ = G. In this case we also say thatH generates G or that G is generated byH.

Proposition 1.1.1.15. If H is a locally directed set, then Ĥ is a gauge with H as
basis and ifH is a basis for the gauge G, then it is locally directed.

Definition 1.1.1.16. Here too it is useful to mention that a particularly interesting
basis for a gauge G is given by the set Gb of all bounded quasi-metrics in G. This
set satisfies the saturation condition in a simpler form, namely for any bounded
quasi-metric d

∀x ∈ X, ∀ε > 0,∃dεx ∈ Gb : d(x, ·) ≤ dεx(x, ·) + ε⇒ d ∈ Gb. (1.15)

We refer to this collection as the bounded gauge basis.
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E. Towers

A tower is an ordered family of pre-topologies on X , indexed by the positive real
numbers and fulfilling certain coherence conditions. Towers will turn out to be
the most interesting characterization of the so called non-Archimedean approach
spaces, which will be introduced in Section 2.1.

Definition 1.1.1.17. (Tower) A family of functions

tε : 2X // 2X , ε ∈ R+

is called a tower if it satisfies the following properties:

(T1) ∀A ∈ 2X ,∀ε ∈ R+ : A ⊆ tε(A).

(T2) ∀ε ∈ R+ : tε(∅) = ∅.

(T3) ∀A,B ∈ 2X ,∀ε ∈ R+ : tε(A ∪B) = tε(A) ∪ tε(B).

(T4) ∀A ∈ 2X ,∀ε, γ ∈ R+ : tε(tγ(A)) ⊆ tε+γ(A).

(T5) ∀A ∈ 2X ,∀ε ∈ R+ : tε(A) =
⋂
ε<γ tγ(A).

Note that by (T3) and (T5) we have

∀A ⊆ B ⊆ X, ∀α, β ∈ R+ : α ≤ β ⇒ tα(A) ⊆ tβ(B).

F. Functional ideal convergence

In this section we define our last structure, functional ideal convergence. The
idea behind this is to embed the numerical information of the theory into ideals of
functions in PX and to use these rather than filters to describe convergence.

This type of structure will be of particular interest in Chapter 3.

Definition 1.1.1.18. An (order theoretic) ideal I in PX is called a functional ideal
(on X) if it fulfills the following properties:

(I1) Each function ϕ ∈ I is bounded.

(I2) I is saturated in the sense that for all µ ∈ PX :

∀ε > 0,∃ϕ ∈ I : µ ≤ ϕ+ ε⇒ µ ∈ I. (1.16)
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Note that condition (I1) implies that we are actually considering ideals in PXb .
Given a functional ideal I we define its characteristic value as

c(I) := sup
µ∈I

inf
x∈X

µ(x) = sup{α | α constant, α ∈ I}. (1.17)

It follows immediately from the definition that there is only one functional
ideal which has an infinite characteristic value and this is the functional ideal
consisting of all bounded functions, i.e. PXb . We denote this functional ideal
ZX . A functional ideal with a finite characteristic value will be called a proper
functional ideal and ZX will be called the improper functional ideal.

If B ⊆ PXb is an ideal, then we can saturate it, similarly to the saturation
introduced for approach systems:

B̂ := {µ ∈ PXb | ∀ε > 0,∃ϕ ∈ B;µ ≤ ϕ+ ε}. (1.18)

This is a functional ideal and we say that B is a basis for B̂.

Definition 1.1.1.19. Given a proper functional ideal I onX such that c(I) ≤ α <
∞ we define

fα(I) :=
{
{µ < β} | µ ∈ I, α < β

}
,

with
{µ < β} := {x ∈ X | µ(x) < β}.

This is a filter on X . We will denote fc(I)(I) simply by f(I). If F is a filter on X
then we define

ιX(F) :=
{
µ ∈ PXb | ∀α ∈]0,∞[: {µ < α} ∈ F

}
.

This is a proper functional ideal with characteristic value equal to zero and it is
generated by {θωF | F ∈ F , ω < ∞}. For A ⊆ X and ω < ∞, θωA : X // P is a
two-valued map defined by

θωA(x) :=

{
0 x ∈ A,
ω x /∈ A.

When F = PX is the improper filter, ιX(F) = ZX . In particular when A ⊆ X
and F = Ȧ, then we get ιX(Ȧ) = {µ ∈ PXb | µ|A = 0}.

If I is a functional ideal on X and α ∈ P, then we define

I⊕ α :=

{
{ν ∈ PXb | ∃µ ∈ I : ν ≤ µ+ α} α finite,
ZX α =∞. (1.19)

Obviously c(I⊕ α) = c(I) + α.
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If X is a set, we let IX be the set of all functional ideals on X . The collection
of functional ideals onX , IX , is a “conditional” lattice in the following sense. Ar-
bitrary infima always exist and are proper as long as at least one of the functional
ideals involved is proper. If (Ii)i∈I is a family of functional ideals on X , then the
infimum is given by

inf
i∈I

Ii =
⋂
i∈I

Ii =
{

inf
i∈I

µi | ∀i ∈ I : µi ∈ Ii
}
. (1.20)

In general the union of an arbitrary family of proper functional ideals on X is no
longer a functional ideal on X . The supremum however always exists. If (Ii)i∈I
is a family of proper functional ideals the supremum of the family is given by

sup
i∈I

Ii = Â, (1.21)

where
A =

{
sup
k∈K

µk | K ⊆ I finite, ∀k ∈ K : µk ∈ Ik
}
.

This supremum need not be proper.
For a map f : X //Y if I is a functional ideal on X we define and denote its

image If(I) as
If(I) := {µ ∈ PYb | µ · f ∈ I}. (1.22)

It is immediately verified that this is indeed a functional ideal on Y with basis
given by

{(fν)η | ν ∈ I, η <∞} (1.23)

where

(fν)η(y) :=

{
infy=f(x) ν(x) y ∈ f(X),
η y /∈ f(X).

(1.24)

For the following proposition, we refer to Proposition 1.1.46 in Index Analysis
[Low15].

Proposition 1.1.1.20. The following properties hold with f : X // Y a given
map:

1. ∀Ik ∈ IX, k ∈ K: If(
⋂
k∈K Ik) =

⋂
k∈K If(Ik).

2. ∀I ∈ IX : c
(
If(I)

)
= c(I).

3. ∀I ∈ IX, ∀α ∈ [c(I),∞[: fα
(
If(I)

)
= f

(
fα(I)

)
.

4. ∀F ∈ FX : If
(
ιX(F)

)
= ιY

(
f(F)

)
.
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We require a diagonal operation for functional ideals which will be crucial in
Section 3.1.2. For this we need the definition of the map l : PXb

// PIX
b : µ 7→ lµ

where I ∈ IX is mapped to

lµ(I) := inf{α ∈ P | µ ∈ I⊕ α}. (1.25)

l is well-defined, furthermore, by saturatedness the infimum in the definition is
actually a minimum so that for any µ ∈ PXb and I ∈ IX we have µ ∈ I⊕ lµ(I).

We list some properties of the map l for which we refer to Proposition 1.1.57
in Index Analysis [Low15].

Proposition 1.1.1.21. The following properties hold.

1. For any µ, ν ∈ PXb and I ∈ IX : lµ∨ν(I) = lµ(I) ∨ lν(I).

2. For any I ∈ IX , if θ is constant then lθ(I) = θ 	 c(I) and in particular
lθ ≤ θ.

3. For any I ∈ IX and for any µ ∈ PXb , if θ is constant then

lµ+θ(I) ∨ θ = lµ(I) + θ and lµ	θ(I) = lµ(I)	 θ.

4. lµ is an extension of µ in the sense that lµ
(
ιX(ẋ)

)
= µ(x), for any x ∈ X .

5. For any I ∈ IX and µ ∈ PXb : lµ(I) = 0 if and only if µ ∈ I and in particular
lµ(ZX) = 0.

Given sets J and X , a map s : J // IX and a functional ideal I ∈ IJ then we
define the diagonal functional ideal of s with respect to I as

mX

(
I s(I)

)
:= {µ ∈ PXb | lµ ∈ I s(I)}. (1.26)

The following useful alternative characterization of mX

(
I s(I)

)
can be found

in Theorem 1.1.58 in Index Analysis [Low15].

Theorem 1.1.1.22. If X and J are sets, s : J // IX and I ∈ IJ then

mX

(
I s(I)

)
=
⋃
µ∈I

⋂
j∈J

s(j)⊕ µ(j).

Definition 1.1.1.23. (Functional ideal convergence) A relation�⊆ IX ×X is
called a functional ideal convergence if it satisfies the following properties.

(F1) For every x ∈ X : ιX(ẋ)� x.
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(F2) If (Ii)i∈I is a family of functional ideals then
⋂
i∈I Ii � x if and only if

Ii� x for every i ∈ I .

(F3) If s : X // IX is a selection of functional ideals such that s(z)� z for all
z ∈ X and I is a functional ideal such that I� x, then mX

(
Is(I)

)
� x.

In Theorem 1.1.67 of [Low15] a useful alternative characterization of func-
tional ideal convergence is established, which entails a weakening of (F2) and a
strengthening of (F3).

Theorem 1.1.1.24. A relation�⊆ IX × X satisfying (F1) is a functional ideal
convergence if and only if it satisfies the properties

(F2w) For any K ⊆ J and any x ∈ X : K� x⇒ I� x.

(F) For any set A, for any ψ : A // X , for any s : A // IX , for any I ∈ IA
and for any x ∈ X(

∀a ∈ A : s(a)� ψ(a) and Iψ(I)� x
)
⇒ mX

(
Is(I)

)
� x.

G. Transition formulas

In spite of the fact that all concepts which were defined are both conceptually and
technically very different from each other, they are all equivalent. One type of
structure unambiguously determines a unique structure of each of the other types.
A structure derived from another one by such a transition will be referred to as
an associated structure. The proofs that all these structures are equivalent, can be
found in [Low15]. For easy reference, we will list the transition formulas between
the various introduced structures.

1. Transition formulas from a distance δ

λF(x) = sup
A∈sec(F)

δ(x,A). (1.27)

A(x) =
{
ϕ ∈ PX | ∀A ⊆ X : inf

y∈A
ϕ(y) ≤ δ(x,A)

}
. (1.28)

G =
{
d ∈ qMet(X) | ∀A ⊆ X : inf

a∈A
d(·, a) ≤ δA

}
. (1.29)

tε(A) = A(ε) = {x ∈ X | δ(x,A) ≤ ε}. (1.30)

2. Transition formulas from a limit operator λ
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δ(x,A) = inf
U∈β(A)

λU(x). (1.31)

A(x) =
{
ϕ ∈ PX | ∀U ∈ β(X) : sup

U∈U
inf
y∈U

ϕ(y) ≤ λU(x)
}
.(1.32)

G =
{
d ∈ qMet(X) | ∀U ∈ β(X) :

sup
U∈U

inf
y∈U

d(·, y) ≤ λU
}
. (1.33)

tε(A) = {x ∈ X | ∃F ∈ F(A) : λF(x) ≤ ε}. (1.34)
I� x ⇔ ∀α ∈ [c(I),∞[: λfα(I)(x) ≤ α. (1.35)

3. Transition formulas from an approach system A

δ(x,A) = sup
ϕ∈A(x)

inf
y∈A

ϕ(y). (1.36)

λF(x) = sup
ϕ∈A(x)

inf
F∈F

sup
y∈F

ϕ(y). (1.37)

G =
{
d ∈ qMet(X) | ∀x ∈ X : d(x, ·) ∈ A(x)

}
. (1.38)

I� x ⇔ Ab(x) ⊆ I. (1.39)

4. Transition formulas form a gauge G

δ(x,A) = sup
d∈G

inf
y∈A

d(x, y). (1.40)

λF(x) = sup
d∈G

inf
F∈F

sup
y∈F

d(x, y). (1.41)

A(x) =
{
ϕ ∈ PX | {d(x, ·) | d ∈ G} dominates ϕ

}
. (1.42)

5. Transition formulas from a tower t

δ(x,A) = inf{ε ∈ R+ | x ∈ tε(A)}. (1.43)
λF(x) = sup

A∈sec(F)

inf{ε ∈ R+ | x ∈ tε(A)}. (1.44)

A(x) =
{
ϕ ∈ PX | ∀A ⊆ X, ∀ε > 0 :

x ∈ tε(A)⇒ inf
y∈A

ϕ(y) ≤ ε
}
. (1.45)

G =
{
d ∈ qMet(X) | ∀A ⊆ X :

tε(A) ⊆ { inf
y∈A

d(·, y) ≤ ε}
}
. (1.46)
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6. Transition formulas from a functional ideal convergence�

λF(x) = inf{α | ιX(F)⊕ α� x}. (1.47)

Ab(x) =
⋂
{I ∈ IX | I� x}. (1.48)

H. Approach spaces

All introduced structures are equivalent and for proofs we refer to Section 1.2 in
Index Analysis [Low15]. The following definition makes sense.

Definition 1.1.1.25. A set X endowed with a distance δ, a limit operator λ, an
approach system

(
A(x)

)
x∈X , a gauge G, a tower (tε)ε∈R+ or a functional ideal

convergence� is called an approach space, which is again denoted by X .

1.1.2 The morphisms: contractions
The morphisms which are naturally associated with the structures defined in the
foregoing section can most intuitively be defined in terms of distances, but we
will immediately give characterizations of the morphisms in terms of each of the
introduced structures.

Definition 1.1.2.1. A function f : X // X ′ between two approach spaces is
called a contraction if for all A ⊆ X and x ∈ X

δ′
(
f(x), f(A)

)
≤ δ(x,A).

The following theorem gives a characterization of contractions in terms of
limit operators, approach systems, gauges, towers and functional ideal conver-
gence. The proof can be found in Theorem 1.3.3 in [Low15].

Theorem 1.1.2.2. For a function f : X //X ′ between two approach spaces the
following properties are equivalent:

(i) f is a contraction.

(ii) ∀F ∈ FX : λ′
(
f(F)

)
· f ≤ λF .

(iii) ∀U ∈ βX : λ′
(
f(U)

)
· f ≤ λU .

(iv) ∀x ∈ X, ∀ϕ′ ∈ A′
(
f(x)

)
: ϕ′ · f ∈ A(x).

(v) ∀d′ ∈ G ′ : d′ · (f × f) ∈ G.

(vi) ∀A ⊆ X, ∀ε ∈ R+ : f
(
tε(A)

)
⊆ t′ε

(
f(A)

)
.

(vii) ∀I ∈ IX, ∀x ∈ X : I� x⇒ If(I)� f(x).
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1.1.3 The topological construct App
Definition 1.1.3.1. Approach spaces form the objects and contractions form the
morphisms of a category which we denote App.

For the fundamental theory of topological constructs, we refer to [AHS06].
App is a topological construct. In the following theorem we list the formulas

for the initial approach structures which we will need further on in this work. We
refer to Theorem 1.3.12 and Theorem 1.3.18 in Index Analysis [Low15].

Theorem 1.1.3.2. Given approach spaces (Xj)j∈J , consider the source

(fj : X //Xj)j∈J

in App.

- Suppose that, for each j ∈ J , λj is the limit operator onXj . Then the initial
limit operator on X is given by

λF = sup
j∈J

λ
(
fj(F)

)
· fj.

- Suppose that, for each j ∈ J ,�i is the functional ideal convergence of Xj .
Then the initial functional ideal convergence on X is given by

I� x⇔ ∀j ∈ J : Ifj(I)�j fj(x).

In any topological construct, on any set there are discrete and indiscrete struc-
tures. A structure is called discrete if any function defined on a set with that
structure is a morphism and indiscrete if any function to a set with that structure
is a morphism.

Given a set X the discrete approach structure is determined by any (and all)
of the following structures:

1. Distance: δ : X × 2X // P where, for all x ∈ X and A ⊆ X,

δ(x,A) =

{
0 x ∈ A,
∞ x /∈ A.

2. Limit operator: λ : FX // PX where, for all x ∈ X and F ∈ FX ,

λF(x) =

{
θx F = ẋ,
∞ F 6= ẋ.
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3. Approach system:
(
A(x)

)
x∈X where, for all x ∈ X ,

A(x) = {ϕ ∈ PXb | ϕ(x) = 0}.

4. Gauge: G = qMet(X).

5. Tower: (tε)ε∈R+ where, for all ε ∈ R+ and A ⊆ X ,

tε(A) = A.

6. Functional ideal convergence: If I = ι(ẋ) ⊕ α for some x ∈ X and α ∈
[0,∞[ then I � x and otherwise I does not converge to any point. The
improper functional ideal ZX converges to all points.

Given a set X the indiscrete approach structure is determined by any (and all)
of the following structures:

1. Distance: δ : X × 2X // P where, for all x ∈ X and A ⊆ X,

δ(x,A) =

{
0 A 6= ∅,
∞ A = ∅.

2. Limit operator: λ : FX // PX where, for all F ∈ FX , λF = 0.

3. Approach system:
(
A(x)

)
x∈X where, for all x ∈ X , A(x) = {0}.

4. Gauge: G = {0}.

5. Tower: (tε)ε∈R+ where, for all ε ∈ R+ and A ⊆ X ,

tε(A) =

{
X A 6= ∅,
∅ A = ∅.

6. Functional ideal convergence: For all I ∈ IX and x ∈ X: I� x.

1.1.4 Topological and metric approach spaces
Both topological and metric spaces can be viewed as special types of approach
spaces. More precisely, both Top and qMet can be embedded as full and iso-
morphism-closed subcategories of App. For Top the embedding will turn out to
be both concretely reflective and concretely coreflective. For qMet the embedding
will turn out to be concretely coreflective but not reflective.
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A. Topological approach spaces

Given a topological space (X, T ) we associate with it a natural approach space in
the following way:

λT : FX // PX ,

where

λTF(x) =

{
0 F → x in (X, T ),
∞ elsewhere

is a limit operator on X .
An approach space of type (X,λT ) for some topology T on X will be called

a topological approach space. The following proposition gives an internal char-
acterization of these spaces.

Proposition 1.1.4.1. An approach space (X,λ) is topological if and only if for
any filter F ∈ FX we have that λF(X) ⊆ {0,∞}.

This shows that topological spaces can be viewed as certain types of approach
spaces. That Top is moreover concretely embedded in App is a consequence of
the fact that given topological spaces (X, T ), (X ′, T ′) and a map between them
f : X // X ′ we have that f is continuous as a map between topological spaces
if and only if it is a contraction as a map between the associated approach spaces,
as follows from the following observation:

f(clT A) ⊆ clT ′
(
f(A)

)
⇔ ∀ε ∈ R+ : f

(
A(ε)

)
⊆ f(A)(ε′).

Hence the concrete functor from Top to App which takes (X, T ) to (X,λT ) is
a full embedding of Top in App.

Moreover, Top is embedded as a concretely reflective and coreflective subcat-
egory of App. As a corollary of this theorem, we get that Top is closed under
the formation of limits and initial structures in App, as well as colimits and final
structures. In particular, a product or coproduct in App of a family of topologi-
cal approach spaces is a topological approach space and, likewise, a subspace or
quotient in App of a topological approach space is a topological approach space

The topological coreflection of an approach space will be frequently used in
this work. For any approach space (X, δ), its Top-coreflection is determined by
the distance δtc associated with the topological closure operator given by

clδ(A) := {x ∈ X | δ(x,A) = 0}. (1.49)

As far as notation is concerned, we will denote the topological coreflection of
an approach space X by CTopX .
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B. Quasi-metric approach spaces

Given a quasi-metric space (X, d), we associate with it a natural approach space
in the following way:

δd : X × 2X // P

where
δd(x,A) = inf

a∈A
d(x, a)

is a distance on X .
An approach space of type (X, δd) for some quasi-metric d onX will be called

a quasi-metric approach space. The following proposition gives an internal char-
acterization of these spaces.

Proposition 1.1.4.2. An approach space (X, δ) is quasi-metric if and only if for
all x ∈ X and A ⊆ X , we have δ(x,A) = infa∈A δ

(
x, {a}

)
.

This shows that quasi-metric spaces can be viewed as certain types of ap-
proach spaces. That qMet is moreover concretely embedded in App is a con-
sequence of the fact that given quasi-metric spaces (X, d), (X ′, d′) and a map
f : X // X ′ between them, we have that f is non-expansive as a map between
quasi-metric spaces if and only if it is a contraction as a map between the associ-
ated approach spaces. Hence the concrete functor from qMet to App which takes
(X, d) to (X, δd) is a full embedding of qMet in App.

Moreover, qMet is embedded as a concretely coreflective subcategory of App.
For any approach space (X, δ), its qMet-coreflection is determined by the distance
δqm associated with the quasi-metric

d : X ×X // P : (x, y) 7→ δ(x, {y}). (1.50)

As a corollary of this theorem we get that qMet is closed under the formation
of colimits and final structures in App. In particular, a coproduct in App of a family
of quasi-metric approach spaces is a quasi-metric approach space and, likewise, a
quotient in App of a quasi-metric approach space is a quasi-metric approach space.

If (X, d) is a quasi-metric space, then the Top-coreflection of (X, δd) is (X, δTd),
where Td is the topology generated by d.

A fundamental relationship among the different types of structures which we
are considering in approach theory is that of a topology generated by a metric.
It is the failure of this relationship to be well behaved with respect to products
which is one of the main motivations for considering approach spaces. What the
foregoing results tell us is that this relationship is recaptured in App as a canonical
functor, namely the Top-coreflector restricted to qMet. In the case of a quasi-
metric space the Top-coreflector gives us the underlying topological space. It is
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therefore natural to extend this interpretation to the whole of App. The situation
is clarified in the following diagram.

qMet F //

E
��

Top

App
CTop

;;

The functor E is the embedding of qMet in App, F is the functor associating
with each quasi-metric space its underlying topological space and CTop is the Top-
coreflector. The diagram commutes and CTop thus is an extension of F .

1.2 Monads
Nothing seems to be more benign in algebra than the notion of a monoid, that is,
of a setM that comes with an associative binary operationm : M×M //M and
a neutral element, written as a nullary operation 1 : 1 //M . In particular a monad
on Set can be seen as a monoid in the monoidal category of all endofunctors on
Set [ML98]. A monad T = (T,m, e) on Set is given by a functor T : Set // Set
and two natural transformations, the multiplication and unit of the monad, m :
TT // T and e : 1 // T , satisfying the multiplication law and right and left unit
laws m ·mT = m · Tm and m · eT = 1T = m · Te.

Monoids and their actions on monads occur not only everywhere in algebra but
also provide the basic ingredients of what is called monoidal topology [HST14].

In this section we introduce the concept of a monad on the category Set and
give various important examples.

1.2.1 Monads
Monads can be defined on an arbitrary category X. In this work, however, we
restrict ourselves to Set-monads, with Set the category of sets and maps between
them. First of all we give the definition of a so called Set-monad.

Definition 1.2.1.1. A monad T = (T,m, e) on the category Set is given by a
functor T : Set // Set and two natural transformations, the multiplication and
the unit of the monad

m : TT // T, e : 1Set
// T,

satisfying the multiplication law and the right and left unit laws

m ·mT = m · Tm, m · eT = 1T = m · Te; (1.51)
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equivalently, these equalities mean that the diagrams

TTT
Tm //

mT
��

TT

m
��

TT m // T

and T
eT //

1T !!

TT

m
��

T
Teoo

1T}}
T

commute. A morphism of monads α : S // T (where S = (S, n, d) is another
Set-monad) is a natural transformation α : S // T that preserves the monad
structure:

α · n = m · (α ∗ α), α · d = e. (1.52)

Here α ∗ α stands for the so called horizontal composition of natural transfor-
mations with components defined by

(α ∗ α)X = TαX · αSX = αTX · SαX . (1.53)

We list the most important examples of Set-monads.

Examples 1.2.1.2. 1. The identity monad on Set: 1 = (1Set, 1, 1).

We should note that in most books, the identity monad is denoted I. How-
ever, we choose to use the notation 1, since in our work I will be used to
denote the so called functional ideal monad, introduced in Chapter 3.

2. The covariant powerset functor P : Set // Set, together with the union
mX : PPX // PX and singleton maps eX : X // PX , defined by

mX(A) =
⋃
A, eX(x) = {x},

for all A ∈ PPX , x ∈ X , form the powerset monad P = (P ,m, e).

3. The filter functor F on Set, defined by

FX = {F ⊆ PX | F filter on X}

and
Ff : FX // FY : F 7→ f(F),

as defined in (1.3), for all sets X, Y and maps f : X // Y , together with
multiplication

mX : FFX // FX : X 7→ ΣX,

given by the Kowalsky diagonal operation (1.4) and unit

eX : X // FX : x 7→ ẋ,

where the components are given by the principal filters, form the filter
monad F = (F,m, e).
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4. Similar to the filter functor, the ultrafilter functor β on Set, defined by

βX = {U ⊆ PX | U ultrafilter on X}

and
βf : βX // βY : U 7→ f(U),

for all sets X, Y and maps f : X // Y together with multiplication

mX : ββX // βX : X 7→ ΣX,

given by the Kowalsky diagonal operation (1.5) and unit

eX : X // βX : x 7→ ẋ,

form the ultrafilter monad � = (β,m, e).

1.3 Lax algebras
In this section we introduce the key category of interest throughout this work, the
category (T,V)-Cat for a quantale V and a monad T on Set, laxly extended to
the category V-Rel of sets and V-valued relations. The objects of the category
(T,V)-Cat will be called (T,V)-categories, (T,V)-spaces or lax algebras. These
categories provide a common setting to describe ordered sets, metric spaces, topo-
logical spaces and approach spaces in a natural way.

We will introduce all required concepts and examples in this section without
proofs. All results in this section can be found in [HST14], unless explicitly stated
otherwise. We refer the reader to [HST14] for more detailed information.

1.3.1 Quantales
A quantale V = (V ,⊗, k) is a complete lattice V which carries a monoid structure
with neutral element k such that, when the binary operation is denoted as a tensor
⊗,

a⊗ (−) : V // V , (−)⊗ b : V // V
are sup-maps, for all a, b ∈ V; hence the tensor distributes over suprema:

a⊗
∨
i∈I

bi =
∨
i∈I

(a⊗ bi),
∨
i∈I

ai ⊗ b =
∨
i∈I

(ai ⊗ b). (1.54)

A lax homomorphism of quantales f : V //W is a monotone map satisfying

f(a)⊗ f(b) ≤ f(a⊗ b), l ≤ f(k), (1.55)
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for all a, b ∈ V and with l the neutral element of W . Monotonicity of f means
equivalently lax preservation of joins, i.e.∨

f(A) ≤ f
(∨

A
)

(1.56)

for all A ⊆ V .
A quantale V is commutative if it is commutative as a monoid.
In a quantale V , for every a ∈ V , the sup-map a⊗ (−) is left adjoint to a map

a−•(−) : V // V which is uniquely determined by

a⊗ v ≤ b⇔ v ≤ a−•b, (1.57)

for all v, b ∈ V; hence

a−•b =
∨
{v ∈ V | a⊗ v ≤ b}. (1.58)

Likewise, for all a ∈ V , the sup-map (−)⊗ a is left adjoint to a map (−)•−a :
V // V . In the case where V is commutative, a−•(−) and (−)•−a coincide, and
either of the two notations may be used.

We list some examples of quantales which we will use frequently throughout
this work.

Examples 1.3.1.1. 1. The two-chain 2 = {false |= true} = {⊥,>} with
⊗ = ∧, k = >. Here a−•b is the Boolean truth value of the implication
a→ b.

2. Allowing for an interval of truth values, we consider the extended real
halfline P = [0,∞] which is a complete lattice with respect to its natural
order ≤. We reverse its order, so that 0 = > is the top and ∞ =⊥ is
the bottom element. We consider it a quantale with ⊗ given by addition
extended via

a+∞ =∞+ a =∞
for all a ∈ P and k = 0 = >. We denote this quantale

P+ =
(
[0,∞]op,+, 0).

Here we have

b•−a = b	 a := inf{v ∈ P | b ≤ a+ v}

so that

b	 a =


b− a a ≤ b <∞,
0 b ≤ a,
∞ a < b =∞.
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When working with [0,∞]op and forming infima or suprema, we will denote
these by infop,

∧op, supop or
∨op. It means that we will deviate slightly

from the conventions made in [HST14], since we will use both the symbols
inf and

∧
when forming infima and sup and

∨
when forming suprema,

referring to the natural order on [0,∞].

3. Since [0,∞]op is a chain, it is a frame, and we may consider it a quantale

P∨ =
(
[0,∞]op,∨, 0

)
with its meet operation (which, according to our conventions is the supre-
mum with respect to the natural order of [0,∞] and will be denoted by ∨)
and neutral element 0. In [HST14], this quantale is called Pmax.

Again, we use the same conventions as introduced for P+ when forming
infima or suprema.

The map a∨ (−) : P∨ //P∨ is left adjoint to the map a−•(−) : P∨ //P∨
defined by

a−•b := inf{v ∈ P | b ≤ a ∨ v} =

{
0 a ≥ b,
b a < b.

The quantales 2, P+ and P∨ are all commutative.
For the quantale P∨, we list the following properties of the operation −•. We

also add the proofs of these results, since they cannot be found in [HST14].

Proposition 1.3.1.2. The following properties hold.

1. ∀a, b, c ∈ P∨ : (c−•a) ∨ (a−•b) ≥ c−•b,

2. ∀a, b, c ∈ P∨ : (a ∨ b)−•c = (a−•c) ∧ (b−•c).

Proof. To prove the first property, suppose that (a−•b) ∨ (c−•a) = γ. Then, for
ε > 0, we have that (a−•b) < γ + ε and (c−•a) < γ + ε. Hence, there exist
v1, v2 < γ + ε such that b ≤ a ∨ v1 and a ≤ c ∨ v2. So we get b ≤ c ∨ (v1 ∨ v2),
with v1∨v2 ≤ γ+ ε. This proves that c−•b ≤ γ+ ε and by arbitrariness of ε > 0,
we get c−•b ≤ γ.

To prove the second property, note that the right-hand side is c when a < c
and b < c. In this case a ∨ b < c and thus the left-hand side is c as well. In all
other cases, the right-hand side is equal to zero. Clearly, a ≥ c or b ≥ c implies
a ∨ b ≥ c, so the left-hand side is zero as well.
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1.3.2 V-relations
A relation r : X−→7 Y from a set X to a set Y distinguishes those elements
x ∈ X and y ∈ Y that are r-related. We write x r y if x is r-related to Y . We can
display r as a two-valued function via

r : X × Y // {true, false} = 2.

In order to model situations where quantitative information is available, r can
be allowed to take values in any quantale V = (V ,⊗, k) rather than just 2 =
(2,∧,>). A V-relation r : X−→7 Y from X to Y is therefore presented by a map
r : X × Y // V . As for ordinary relations, a V-relation r : X−→7 Y can be
composed with another V-relation s : Y−→7 Z via “matrix multiplication”

(s · r)(x, z) =
∨
y∈Y

r(x, y)⊗ s(y, z), (1.59)

for all x ∈ X, z ∈ Z, to yield a V-relation s · r : X−→7 Z. This composition is
associative and the V-relation 1X : X−→7 X that sends every diagonal element
(x, x) to k, and all other elements to the bottom element ⊥ of V , serves as the
identity morphism on X . Thus, sets and V-relations form a category denoted by

V-Rel.

The set V-Rel(X, Y ) of all V-relations from X to Y inherits the pointwise
order induced by V . Given r, r′ : X−→7 Y , then

r ≤ r′ ⇔ ∀(x, y) ∈ X × Y : r(x, y) ≤ r′(x, y). (1.60)

The canonical isomorphism X × Y ∼= Y × X induces a bijection between
V-Rel(X, Y ) and V-Rel(Y,X) so that for every V-relation r : X−→7 Y one has
the opposite V-relation r◦ : Y−→7 X defined by

r◦(y, x) = r(x, y), (1.61)

for all x ∈ X, y ∈ Y . This operation preserves the order on V-Rel(X, Y ):

r ≤ r′ ⇒ r◦ ≤ (r′)◦, (1.62)

and one has 1◦X = 1X as well as r◦◦ = r. The equality

(s · r)◦ = r◦ · s◦ (1.63)

holds when V is commutative.
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Examples 1.3.2.1. 1. 2-Rel ∼= Rel, the category of sets and relations between
them.

2. For P+-Rel, the composition of two P+-relations r : X × Y // P+ and
s : Y × Z // P+ yields

s · r(x, z) = inf{r(x, y) + s(y, z) | y ∈ Y } (1.64)

for all x ∈ X and z ∈ Z.

3. For P∨-Rel , the composition of two P∨-relations r : X × Y // P∨ and
s : Y × Z // P∨ yields

s · r(x, z) = inf{r(x, y) ∨ s(y, z) | y ∈ Y }. (1.65)

1.3.3 V-categories and V-functors
Definition 1.3.3.1. A V-category (X, a) is a set X together with a transitive and
reflexive V-relation a : X−→7 X , meaning it is a map a : X×X //V satisfying

a(x, y)⊗ a(y, z) ≤ a(x, z) and k ≤ a(x, x) (1.66)

for all x, y, z ∈ X . A V-functor f : (X, a) // (Y, b) is a map f : X // Y
satisfying

a(x, x′) ≤ b
(
f(x), f(x′)

)
, (1.67)

for all x, x′ ∈ X . Since identity maps and composition of V-functors are V-
functors, V-categories and V-functors form a category

V-Cat.

Examples 1.3.3.2. 1. For V = 2 = {true, false}, writing x ≤ y for a(x, y) =
true, the transitivity and reflexivity conditions become

(x ≤ y& y ≤ z ⇒ x ≤ z) and x ≤ x,

for all x, y, z ∈ X . Thus, a 2-category (X,≤) is just an ordered set. A
2-functor f : (X,≤) // (Y,≤) is a map f : X // Y with

x ≤ x′ ⇒ f(x) ≤ f(x′),

for all x, x′ ∈ X . So we can conclude that

2-Cat ∼= Ord,

where Ord is the category of ordered sets and order-preserving maps be-
tween them.
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2. For V = P+ , a transitive and reflexive P+-relation is a map a : X ×X //P+
such that

a(x, y) + a(y, z) ≥ a(x, z) and a(x, x) = 0,

for all x, y, z ∈ X . Hence a P+-category (X, a) is a quasi-metric space. A
P+-functor f : (X, a) // (Y, b) is a map f : X // Y such that

a(x, x′) ≥ b
(
f(x), f(x′)

)
,

i.e. it is a non-expansive map. We conclude

P+-Cat ∼= qMet.

3. For V = P∨, a transitive and reflexive P∨-relation is a map a : X×X //P∨
such that

a(x, y) ∨ a(y, z) ≥ a(x, z) and a(x, x) = 0,

for all x, y, z ∈ X . Hence a P∨-category (X, a) is a quasi-ultrametric space.
A P∨-functor f : (X, a) // (Y, b) is a map f : X // Y such that

a(x, x′) ≥ b
(
f(x), f(x′)

)
,

i.e. it is a non-expansive map. We conclude

P∨-Cat ∼= qMetu.

1.3.4 Lax extensions of functors and monads
For a given monad T on Set, we now consider extensions of T to V-Rel. For this,
we first concentrate on the underlying Set-functor T .

Definition 1.3.4.1. For a quantale V and a functor T : Set //Set, a lax extension
T̂ : V-Rel // V-Rel of T to V-Rel is given by functions

T̂X,Y : V-Rel(X, Y ) // V-Rel(TX, TY )

for all sets X, Y (with T̂X,Y simply written as T̂ ), such that

1. r ≤ r′ ⇒ T̂ r ≤ T̂ r′,

2. T̂ s · T̂ r ≤ T̂ (s · r),

3. Tf ≤ T̂ f and (Tf)◦ ≤ T̂ (f ◦),
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for all sets X, Y, Z, V-relations r, r′ : X−→7 Y , s : Y−→7 Z, and maps f :
X // Y .

Let us now turn our attention to e and m that we wish to extend from Set to
V-Rel together with the functor T .

Definition 1.3.4.2. A triple T̂ = (T̂ ,m, e) is a lax extension of the monad T =
(T,m, e) if T̂ is a lax extension of T which makes both m : T̂ T̂ // T̂ and
e : 1V-Rel // T̂ oplax, i.e.

4. mY · T̂ T̂ r ≤ T̂ r ·mX ,

5. eY · r ≤ T̂ r · eX ,

for all V-relations r : X−→7 Y .

These inequalities yield the following pointwise expressions:

4*. T̂ T̂ r(X,Y) ≤ T̂ r
(
mX(X),mY (Y)

)
,

5*. r(x, y) ≤ T̂ r
(
eX(x), eY (y)

)
,

for all x ∈ X, y ∈ Y,X ∈ TTX,Y ∈ TTY , and V-relations r : X−→7 Y .
We say that the extension T̂ = (T̂ ,m, e) of the monad T is flat if the lax

extension T̂ of the functor T is flat, i.e. if

T̂1X = T1X = 1TX . (1.68)

1.3.5 (T,V)-categories and (T,V)-functors

Let V be a quantale and let T̂ = (T̂ ,m, e) be a lax extension to V-Rel of a monad
T = (T,m, e) on Set.

A (T,V)-relation a : TX−→7 X is transitive if it satisfies

a · T̂ a ≤ a ·mX . (1.69)

In pointwise notation, the transitivity condition becomes

T̂ a(X,Y)⊗ a(Y , z) ≤ a
(
mX(X), z), (1.70)

for all X ∈ TTX,Y ∈ TX and z ∈ X . A (T,V)-relation a : TX−→7 X is
reflexive if it satisfies

1X ≤ a · eX . (1.71)

In pointwise notation, the reflexivity condition becomes

k ≤ a
(
eX(x), x

)
, (1.72)

for all x ∈ X .
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Definition 1.3.5.1. A (T,V)-category, also referred to as a (T,V)-algebra or a
(T,V)-space, is a pair (X, a) consisting of a set X and a transitive and reflexive
(T,V)-relation a : TX−→7 X; i.e. it is a set X with a relation a : TX−→7 X
satisfying (1.69) and (1.71).

TTX T̂ a //

mX

��

| TX

a

��

X
eX //

1X

≤

��

TX

a

��

≥ − −

TX a
//| X X

A map f : X // Y between (T,V)-categories (X, a) and (Y, b) is a (T,V)-
functor if it satisfies

f · a ≤ b · Tf. (1.73)

TX
Tf //

a

��

TY

b

��

− ≤ −

X
f

// Y

We can transcribe this condition equivalently as a ≤ f ◦ ·b·Tf,which, in pointwise
notation, reads as

a(X , x) ≤ b
(
Tf(X ), f(x)

)
, (1.74)

for all X ∈ TX and x ∈ X .

The identity map 1X : (X, a) // (X, a) is a (T,V)-functor, and so is the
composite of (T,V)-functors. Hence, (T,V)-categories and (T,V)-functors form
a category, denoted by

(T,V)-Cat.

When T = 1 is identically extended to V-Rel, we get

(1,V)-Cat = V-Cat.

In order to compose compose (T,V)-relations r : TX−→7 Y and s : TY−→7 Z,
we introduce the Kleisli convolution.
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Definition 1.3.5.2. Given a lax extension T̂ = (T̂ ,m, e) of a monad T = (T,m, e),
the Kleisli convolution s ◦ r : TX−→7 Z of (T,V)-relations r : TX−→7 Y and
s : TY−→7 Z is the (T,V)-relation defined by

s ◦ r := s · T̂ r ·m◦X

The (T,V)-relation e◦X : TX−→7 X is a lax identity for this composition: one
has

e◦Y ◦ r = e◦Y · T̂ r ·m◦X ≥ r · e◦TX ·m◦X = r,

with equality holding if e◦ = (e◦X)X : T̂ // 1 is a natural transformation, and

r ◦ e◦X = r · T̂ (e◦X) ·m◦X ≥ r · (TeX)◦ ·m◦X = r,

with equality holding when T̂ is flat.
We determine the (T,V)-relations for which the opposite inequalities hold.

These will be called unitary (T,V)-relations.

Definition 1.3.5.3. A (T,V)-relation r : TX−→7 Y is right unitary if

r ◦ e◦X ≤ r,

and it is left unitary if
e◦Y ◦ r ≤ r.

In terms of the relational composition, these conditions amount to the following
inequalities

r · T̂1X ≤ r and e◦Y · T̂ r ·m◦X ≤ r,

respectively, and hence equalities.

For a (T,V)-category (X, a), the transitive and reflexive relation a : TX−→7 X
is unitary, i.e. it is both right unitary

a · T̂1X ≤ a, (1.75)

and left unitary
e◦X · T̂ a ·m◦X ≤ a (1.76)

The Kleisli convolution is not necessarily associative. Associativity of this
operation turns out to depend on the lax extension of the monad.

Definition 1.3.5.4. A lax extension T̂ to V-Rel of a monad T = (T,m, e) is asso-
ciative whenever the Kleisli convolution of unitary (T,V)-relations is associative,
i.e.

t ◦ (s ◦ r) = (t ◦ s) ◦ r,
for all unitary (T,V)-relations r : TX−→7 Y, s : TY−→7 Z and t : TZ−→7 W .
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The following turns out to be an easy characterization of associative lax ex-
tensions.

Proposition 1.3.5.5. Let T̂ be a lax extension to V-Rel of a monad T = (T,m, e)
on Set. The following are equivalent:

(i) T̂ is an associative lax extension of the monad T,

(ii) T̂ : V-Rel // V-Rel preserves composition and m◦ : T̂ // T̂ T̂ is natural.

1.3.6 A lax-algebraic characterization of Top

Inspired by the work of Manes [Man69] on the role of the ultrafilter monad
� = (β,m, e) on Set in the characterization of compact Hausdorff spaces, Barr
[Bar70] observed that for describing convergence in an arbitrary topological space
one needs convergence relations instead of maps, thus obtaining a lax-algebraic
characterization of topological spaces as relational �-algebras, by means of two
convergence axioms, transitivity

a
(
βa(U )

)
≤ a
(
mX(U )

)
and reflexivity

x ≤ a
(
eX(x)

)
for all U ∈ ββX and x ∈ X with a : βX−→7 X the convergence relation. These
conditions make sense after extending the ultrafilter monad to the category Rel.
With convergence preserving morphisms, the category (�, 2)-Cat of relational �-
algebras, is isomorphic to Top.

The Barr extension of the filter and the ultrafilter monad

In [HST14] the Barr extension of a functor T is introduced and it is shown under
which conditions this results in a lax extension of a monad T = (T,m, e) on
Set to Rel. We will not give the technical details, but simply give the needed
constructions for the filter monad F = (F,m, e) and the ultrafilter monad � =
(β,m, e). In these cases the Barr extension yields a lax extension of the monads
F and � to Rel.

For the filter functor F : Set // Set, the Barr extension F is obtained as
follows. For filters A ∈ FX,B ∈ FY , and a relation r : X−→7 Y we define

A (Fr)B ⇔ ∃C ∈ FR (π1(C) = A&π2(C) = B), (1.77)
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where R denotes the representation of the relation r : X−→7 Y as a subset of
X × Y . If such a filter C exists, then, for all A ∈ A, one has: C := π−1

1 (A) ∈ C,
and the set

r(A) := {y ∈ Y | ∃y ∈ A (x r y)} (1.78)

must be in B, as it contains π2(C) and π2(C) ∈ π2(C) = B. Similarly, one
observes that r◦(B) ∈ A for all B ∈ B. Conversely, if r(A) ∈ B and r◦(B) ∈ A
for all A ∈ A and B ∈ B, the sets CA,B = π−1

1 (A)∩π−1
2 (B) form a filter base for

C ∈ FR such that π1(C) = A and π2(C) = B.
Therefore, the Barr extension of the filter functor is given by

A (Fr)B ⇔ r(A) ⊆ B& r◦(B) ⊆ A, (1.79)

for all A ∈ FX and B ∈ FY , and relations r : X−→7 Y , where r(A) is the filter
generated by the filter base {r(A) | A ∈ A}.

If both A and B are ultrafilters, then

r(A) ⊆ B ⇔ r◦(B) ⊆ A. (1.80)

The Barr extension of the ultrafilter functor β is therefore described by

A (βr)B ⇔ r(A) ⊆ B ⇔ r◦(B) ⊆ A, (1.81)

for all A ∈ βX,B ∈ βY and relations r : X−→7 Y , or equivalently

A (βr)B ⇔ ∀A ∈ A, B ∈ B ∃x ∈ A, y ∈ B : x r y. (1.82)

The Barr extensions F and β both result in lax extensions F = (F ,m, e) and
� = (β,m, e) of the corresponding monads to Rel.

Topological spaces as relational algebras

Any topological space (X, T ) can be equivalently described as a pair (X, a), with
a : βX−→7 X a relation representing convergence which, when we denote both a
and βa by→, satisfies

X→ U &U → z ⇒ ΣX→ z and ẋ→ x,

for all z, x ∈ X,U ∈ βX and X ∈ ββX . In this context, the continuous maps
f : (X, a) // (Y, b) are exactly convergence preserving maps, i.e. the maps
f : X // Y such that

U → x⇒ f(U)→ f(x),

for all x ∈ X and U ∈ βX .
This results in the following theorem.
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Theorem 1.3.6.1. The category (�, 2)-Cat of relational algebras for the Barr ex-
tension � = (β,m, e) to Rel of the ultrafilter monad � = (β,m, e) on Set is
isomorphic to Top:

(�, 2)-Cat ∼= Top.

1.3.7 A lax-algebraic characterization of App
A first lax-algebraic description of approach spaces was established by Clementino
and Hofmann in [CH03]. The construction involves the ultrafilter monad � =
(β,m, e), the quantale P+ and an extension of � to P+-Rel. It was shown that,
using the appropriate extension, we get

(�,P+)-Cat ∼= App.

This will be our guiding example in Section 2.2 to find a lax-algebraic de-
scription of the so called non-Archimedean approach spaces. Therefore, we will
give the construction of the isomorphism. The proof of Clementino and Hofmann
makes a detour via distances. We choose to follow the alternative proof by Lowen
[Low15], which gives a direct link between lax algebraic structures for the ultra-
filter monad and limit operators describing approach spaces.

The lax extension of the ultrafilter monad to P+-Rel

We start by describing the lax extension of the ultrafilter monad � = (β,m, e) to
P+-Rel.

For a P+-relation r : X−→7 Y and α ∈ P, we define the relation rα : X−→7 Y
by

x rα y ⇔ r(x, y) ≤ α. (1.83)

For A ⊆ X we put rα(A) = {y ∈ Y | ∃x ∈ A : x rα y}, and for A ⊆ P(X) we
let rα(A) =

{
rα(A) | A ∈ A

}
. Then, for r : X−→7 Y a P+-relation, we let

βr(U ,W) := inf{α ∈ P | U β(rα)W}, (1.84)

for U ∈ βX andW ∈ βY , where β in this formula stands for the Barr-extension
as defined in (1.81).

� = (β,m, e) is a lax extension of � = (β,m, e) to P+-Rel.
The following formula, which can be found both in [Low15] and [HST14] will

be useful for further calculations.

Lemma 1.3.7.1. Consider a P+-relation a : βX−→7 X . Then, for all X ∈ ββX
and U ∈ βX , we have

βa(X,U) = sup
A∈X

sup
U∈U

inf
W∈A

inf
x∈U

a(W , x). (1.85)
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Approach spaces as lax algebras

The following theorem gives a lax algebraic characterization of approach spaces
via the ultrafilter monad � = (β,m, e), laxly extended to P+-Rel.

Theorem 1.3.7.2. The category (�,P+)-Cat of lax algebras for the P+-Rel-extension
of the ultrafilter monad is isomorphic to App:

(�,P+)-Cat ∼= App.

The proof from [Low15] is based on the fact that given a (�,P+)-algebra
(X, a), the reflexive and transitive P+-relation a : βX−→7 X can be identified as a
limit operator on X satisfying all axioms stated in Theorem 1.1.1.6. Given a limit
operator λ on X satisfying those axioms, this map can be seen as a relation sat-
isfying the reflexivity and transitivity condition. Once objects in both categories
are identified, it is an easy consequence of the characterization of contractions via
ultrafilters in Theorem 1.1.2.2 to see that morphisms in both categories coincide
as well.

1.4 Kleisli monoids

1.4.1 Power-enriched monads
For a morphism τ : P //T of monads on Set, the underlying set TX is equipped
with the separated order given by

X ≤ Y ⇔ mX · τTX
(
{X ,Y}

)
= Y , (1.86)

for all X ,Y ∈ TX . The hom-sets Set(X,TY ) become separated ordered sets via
the induced point-wise order:

f ≤ g ⇔ ∀x ∈ X : f(x) ≤ g(x),

for all f, g : X // TY .

Definition 1.4.1.1. A power-enriched monad is a pair (T, τ) composed of a monad
T on Set and a monad morphism τ : P // T such that

f ≤ g ⇒ mY · Tf ≤ mY · Tg, (1.87)

for all f, g : X // TY .
A morphism α : (S, σ) // (T, τ) of power-enriched monads is a monad mor-

phism α : S // T such that τ = α · σ :

P
σ

��

τ

��
S α // T
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For maps f : X //TY and g : Y //TZ, we introduce the following notations
which will simplify some formulas in the sequel.

fT := mY · Tf, (1.88)

and
g ◦ f := gT · f = mZ · Tg · f. (1.89)

For a power-enriched monad, the order (1.86) makes TX a complete lattice
and turns mX : TTX // TX and Tf : TX // TY into sup-maps, for all sets
X, Y and maps f : X //Y . We recall the following formula that can be deduced
from IV.1.5.1 in [HST14].

mX · τTX =
∨
TX

, (1.90)

where the supremum on the right-hand side is taken in TX with respect to the
order defined in (1.86).

Examples 1.4.1.2. 1. The filter monad F is power-enriched via the principal
filter natural transformation τ : P // F which yields a monad morphism
τ : P // F. The order on FX defined by (1.86) is the refinement order

F ≤ G ⇔ F ⊇ G, (1.91)

and suprema in FX are given by intersections.

2. The ultrafilter monad � is not power-enriched: for the set X = ∅, one
observes that βX = ∅ cannot be a complete lattice.

1.4.2 T-monoids
We introduce the category T-Mon of T-monoids and T-morphisms for a power-
enriched monad T.

Definition 1.4.2.1. Let (T, τ) be a power-enriched monad on Set. The category
T-Mon of T-monoids (or Kleisli monoids) has as objects pairs (X, ν), where X is
a set, and its structure ν : X // TX is transitive and reflexive:

ν ◦ ν ≤ ν, eX ≤ ν (1.92)

(where ◦ is the composition as defined in (1.89)). A T-morphism f : (X, ν) //(Y, µ)
is a map f : X // Y satisfying:

Tf · ν ≤ µ · f. (1.93)

The order on the hom-sets in the formulas above depends on τ .
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In the presence of the reflexivity condition, transitivity can be expressed as an
equality ν ◦ ν = ν, since

ν = ν ◦ eX ≤ ν ◦ ν ≤ ν. (1.94)

We also have
νT · νT = (ν ◦ ν)T = νT. (1.95)

1.4.3 Kleisli extension
A power-enriched monad can be extended to Rel by means of the Kleisli extension.

For a relation r : X−→7 Y , we put r[ : Y // PX the map defined by

x ∈ r[(y)⇔ x r y, (1.96)

and rτ : TY // TX the map defined by

rτ := mX · T (τX · r[). (1.97)

Definition 1.4.3.1. Given a power-enriched monad (T, τ), the Kleisli extension Ť
of T to Rel with respect to τ is described by the functions

Ť = ŤX,Y : Rel(X, Y ) // Rel(TX, TY ),

with
X (Ť r)Y ⇔ X ≤ rτ (Y) (1.98)

for all relations r : X−→7 Y , and X ∈ TX,Y ∈ TY , or equivalently

(Ť r)[ =↓TX ·rτ : TY // PTX. (1.99)

The Kleisli-extension Ť to Rel of a power-enriched monad (T, τ) is not only a
lax-extension of T , but yields a lax extension of the monad T to Rel.

Proposition 1.4.3.2. Given a power-enriched monad (T, τ), the Kleisli extension
Ť of T to Rel yields a lax extension Ť = (Ť ,m, e) of T = (T,m, e) to Rel.

Since the Kleisli extension provides the monad T with a lax extension, there
is a natural order on TX associated with Ť :

X ≤ Y ⇔ X (Ť1X)Y . (1.100)

There is also the order (1.86) induced by the monad morphism τ . Both orders on
TX are equivalent.

The following theorem gives a crucial connection between the category T-Mon,
for a power-enriched monad (T, τ) and its corresponding category of relational al-
gebras for the Kleisli extension.

Theorem 1.4.3.3. Given a power-enriched monad (T, τ) equipped with its Kleisli
extension Ť , there is an isomorphism

(T, 2)-Cat ∼= T-Mon.
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1.4.4 Topological spaces as F-monoids and relational F-algebras
In 1.3.6 we recalled that topological spaces can be characterized in terms of con-
vergence of ultrafilters by means of two axioms, transitivity and reflexivity.

The natural question, whether similar results can be obtained in terms of filter
convergence, was answered positively by Seal in [Sea05].

We know that the filter monad F = (F,m, e) is power-enriched. Hence, we
know by Theorem 1.4.3.3 that

(F, 2)-Cat ∼= F-Mon.

So instead of giving an explicit description of the isomorphism between Top and
(F, 2)-Cat, one can look at Top and F-Mon instead.

The solution starts from the description of Top in terms of neighborhood fil-
ters, namely by axioms for maps ν : X // FX , into the set of all filters on X , as
observed by Gähler in [Gäh92].

Given a topological space (X, T ), we define a map

ν : X // FX : x 7→ ν(x),

sending a point of the space to its neighborhood filter defined by

A ∈ ν(x)⇔ ∃U ∈ T : x ∈ U ⊆ A.

Then clearly

ν(x) ⊆ eX(x) = ẋ = {A ⊆ X | x ∈ A},

for all x ∈ X , and therefore by (1.91)

eX ≤ ν.

For A ⊆ X we define

AF = {F ∈ FX | A ∈ F}.

By the fact that an open set is a neighborhood of each of its points we get for all
x ∈ X and A ⊆ X

A ∈ ν(x) ⇔ ∃B ∈ ν(x)∀y ∈ B : A ∈ ν(y)

⇔ ∃B ∈ ν(x)∀y ∈ B : ν(y) ∈ AF

⇔ ∃B ∈ ν(x) : B ⊆ ν−1(AF)

⇔ ν−1(AF) ∈ ν(x)

⇔ AF ∈ F ν · ν(x)

⇔ A ∈ mX · F ν · ν(x) = ν ◦ ν(x).
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Again by (1.91) we get
ν ◦ ν ≤ ν.

Conversely, if (X, ν) is an object in F-Mon, we can define a topology T on X
by

U ∈ T ⇔ ∀x ∈ X :
(
x ∈ U ⇒ U ∈ ν(x)

)
.

Now consider two topological spaces (X, T ) and (Y,S) with ν : X // FX
and µ : Y // FY the corresponding neighborhood filter maps. Now consider a
map f : X // Y . Suppose f is continuous. Then

B ∈ µ
(
(f(x)

)
⇒ f−1(B) ∈ ν(x)

and by
f−1(B) ∈ ν(x)⇔ B ∈ F f · ν(x),

we get µ · f(x) ⊆ F f · ν(x) for all x ∈ X , which by (1.91) means

F f · ν ≤ µ · f.

Conversely, if f : X // Y satisfies F f · ν ≤ µ · f , we get that U ∈ S implies
f−1(U) ∈ T .

These constructions give us two functors

Top→ F-Mon and F-Mon→ Top

whose composites are the identities on Top and F-Mon.

Theorem 1.4.4.1. The category Top and the category F-Mon are isomorphic.

Top ∼= F-Mon

Applying Theorem 1.4.3.3, we get

Top ∼= (F, 2)-Cat.

This gives a description of topological spaces in terms of convergence of filters
by means of two axioms, transitivity and reflexivity. A topological space is a pair
(X, a) with a : FX−→7 X a relation representing convergence which, when we
denote both a and F̌a by→, satisfies

F→ F &F → z ⇒ ΣF→ z and ẋ→ x,

for all F ∈ F FX,F ∈ FX and x, z ∈ X , where F̌ is the Kleisli extension of F to
Rel.



Chapter 2

NA-App as a category of lax algebras

In this chapter we investigate the full subcategory NA-App of App with objects the
non-Archimedean approach spaces. Non-Archimedean approach spaces were first
introduced by Brock and Kent [BK98] and were also considered by Colebunders,
Mynard and Trott in [CMT14] and by Boustique and Richardson as certain limit
tower spaces [BR17].

In the first section of this chapter we introduce various equivalent ways to
define a non-Archimedean approach space as given by Brock and Kent [BK98].
To the known structures defining these spaces, we add a characterization in terms
of the gauge. We show that non-Archimedean approach spaces are those approach
spaces whose gauge has a basis consisting of quasi-ultrametrics.

In the second section we investigate whether we can find parameters, i.e. a
monad T and a quantale V , such that the category of non-Archimedean approach
spaces NA-App can be represented as (T,V)-Cat. Our solution is inspired by
the known fact that the category of quasi-ultrametric spaces qMetu is isomor-
phic to (1,P∨)-Cat [HST14]. We adapt the result from Clementino and Hofmann
[CH03], App ∼= (�,P+)-Cat by replacing the quantale P+ to P∨ to find a lax alge-
braic characterization of NA-App.

We will locate the category NA-App ∼= (�,P∨)-Cat relative to more famil-
iar categories qMetu ∼= P∨-Cat, Top ∼= (�, 2)-Cat and App ∼= (�,P+)-Cat via
reflective and/or coreflective embeddings.

Furthermore we describe the construction of coproducts and quotients in the
category NA-App.

We end this chapter by giving three initially dense objects in the category
NA-App, which shows that NA-App is finitely generated.

49
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2.1 Equivalent descriptions of non-Archimedean ap-
proach spaces

In this section we define equivalent characterizations of non-Archimedean ap-
proach spaces, in terms of distances, limit operators, towers and gauges.

2.1.1 Non-Archimedean limit operators
Non-Archimedean limit operators were first introduced by Brock and Kent in
[BK98] by strengthening the triangular inequality in the definition of a limit op-
erator. This corresponds to strengthening axiom (L∗) in the definition of a limit
operator which we use, see Definition 1.1.1.5 and it is also equivalent to strength-
ening axiom (Lβ∗) from Theorem 1.1.1.6, which is of special interest throughout
this work.

Definition 2.1.1.1. A limit operator λ : βX // PX on a set X satisfying the
strong triangular inequality

(Lβ∗∨) For any set J , for any ψ : J //X , for any σ : J //βX and for any U ∈ βJ

λΣσ(U) ≤ λψ(U) ∨ sup
U∈U

inf
j∈U

λσ(j)
(
ψ(j)

)
,

is called a non-Archimedean limit operator.

Definition 2.1.1.2. A set X equipped with a non-Archimedean limit operator λ :
βX // PX is called a non-Archimedean approach spaces. NA-App is the full
subcategory of App consisting of all non-Archimedean approach spaces.

2.1.2 Non-Archimedean distances
First we associate with a limit operator λ of an approach space X , its unambigu-
ously defined distance δ : X × 2X // P. When starting with a non-Archimedean
limit operator, we get a non-Archimedean distance, i.e. a distance which satisfies
a stronger triangular inequality. Non-Archimedean distance operators were also
considered by Brock and Kent [BK98].

Theorem 2.1.2.1. If λ : βX //PX is the limit operator of a non-Archimedean ap-
proach space X , then the associated distance, given by (1.31) satisfies the strong
triangular inequality (D4∨)

δ(x,A) ≤ δ
(
x,A(ε)

)
∨ ε,
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for all x ∈ X,A ⊆ X and ε ∈ P, with A(ε) := {x ∈ X | δ(x,A) ≤ ε}.
If δ : X × 2X //P is a distance of an approach space X satisfying the strong

triangular inequality (D4∨), then the associated limit operator, given by (1.27) is
a non-Archimedean limit operator.

Proof. In order to prove that δ satisfies (D4∨), take A ⊆ X , ε ∈ R+ and W ∈
β
(
A(ε)

)
arbitrary. As in 1.2.2 in [Low15] for all y ∈ A(ε), there exists σ(y) ∈ βA

such that λσ(y)(y) ≤ ε. For y /∈ A(ε), let σ(y) = ẏ and set
ε′ := supW∈W infy∈W λσ(y)(y). Since A ∈

⋂
y∈A(ε) σ(y) we obtain Σσ(W) ∈

βA. Hence

δ(x,A) ≤ λΣσ(W)(x) ≤ λW(x) ∨ ε′ ≤ λW(x) ∨ ε,

where the second inequality follows from (Lβ∗∨) with J = X and ψ = id.
Now suppose that δ is a distance satisfying the strong triangular inequality

(D4∨). We show that the associated limit operator λ satisfies (Lβ∗∨). Take a set J ,
a map ψ : J // X , a selection σ : J // βX and an ultrafilter U ∈ βJ and put
ε := supU∈U infj∈U λσ(j)

(
ψ(j)

)
. Take D ∈ Σσ(U) arbitrary. Then, as in 1.2.1

in [Low15], there exists U ∈ U such that for all y ∈ U we get that D ∈ σ(y).
Hence, for y ∈ U , we have δ

(
ψ(y), D

)
≤ infU∈U supj∈U λσ(j)

(
ψ(j)

)
= ε and

thus ψ(y) ∈ D(ε). This shows D(ε) ∈ ψ(U). From (D4∨) we get

δ(x,D) ≤ δ
(
x,D(ε)

)
∨ ε ≤ λψ(U)(x) ∨ ε

and by arbitrariness of D ∈ Σσ(U),

λΣσ(U)(x) = sup
D∈Σσ(U)

δ(x,D) ≤ λψ(U)(x) ∨ ε.

Distances satisfying the strong triangular inequality (D4∨) will be called non-
Archimedean distances.

The following inequality is a strengthening of the third property in Proposition
1.1.1.2. It will be useful later on and has a straightforward proof.

Proposition 2.1.2.2. If δ : X × 2X //P is a non-Archimedean distance, then the
following inequality holds

δ(x,A) ≤ δ(x,B) ∨ sup
b∈B

δ(b, A),

for all x ∈ X and A,B ⊆ X .

We give an example of a non-Archimedean approach space on P∨ which will
play an important role later on in Section 2.5.
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Example 2.1.2.3. Define δP∨ : P∨ × 2P∨ // P∨ by

δP∨(x,A) :=

{
supA−•x A 6= ∅,
∞ A = ∅.

=


0 A 6= ∅ and x ≤ supA,
x A 6= ∅ and x > supA,
∞ A = ∅.

Then δP∨ is a non-Archimedean distance on P∨. The associated non-Archimedean
limit operator is defined as follows. Given an ultrafilter U on P∨ and an element
x ∈ X , then

λP∨U(x) = supU∈U(supU−•x)

=

{
0 ∀U ∈ U : x ≤ supU,
x ∃U ∈ U : x > supU.

2.1.3 Non-Archimedean towers
Next, with a distance of an approach spaceX , we associate its unambiguously de-
fined tower (tε)ε∈R+ of closure operators. When starting from a non-Archimedean
distance, we get the so called non-Archimedean towers. These structures also ap-
pear in [BK98] under the name ‘strongly approachable limit towers’. Since the
notations and the context in this paper differ from our work, for completeness
we add the proof which clarifies the explicit transition between non-Archimedean
distances and non-Archimedean towers.

Theorem 2.1.3.1. If δ : X × 2X // P is the distance of a non-Archimedean ap-
proach space X , then all levels of the associated tower (tε)ε∈R+ , given by (1.30),
are topological closure operators.

If (tε)ε∈R+ is the tower of an approach space X , where all levels are topo-
logical closure operators, then the associated distance, given by (1.43), is a non-
Archimedean distance on X .

Proof. Consider a non-Archimedean distance. We prove that all levels of the cor-
responding tower are topological closure operators, meaning tε

(
tε(A)

)
= tε(A),

for all ε ∈ R+ and A ⊆ X . One inclusion is clear, the other follows from (D4∨).

x ∈ tε
(
tε(A)

)
⇔ δ

(
x,A(ε)

)
≤ ε

⇒ δ(x,A) ≤ δ
(
x,A(ε)

)
∨ ε ≤ ε

⇒ x ∈ tε(A).
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To prove the converse, suppose (tε)ε∈R+ is the tower of an approach space X
where all levels are topological closure operators. We show that the associated
distance satisfies (D4∨). For x ∈ X and α with

δ
(
x,A(ε)

)
= inf{β ∈ R+ | x ∈ tβ

(
A(ε)

)
} < α,

we have
x ∈ tα

(
A(ε)

)
= tα

(
tε(A)

)
⊆ tα∨ε

(
tα∨ε(A)

)
= tα∨ε(A)

and therefore δ(x,A) ≤ α ∨ ε.

Towers of approach spaces that satisfy the stronger condition of the previous
theorem are called non-Archimedean towers. At each level the closure operator
tε defines a topology Tε, so we will denote the structure also by (Tε)ε∈R+ , when
working with open sets at each level, or (Cε)ε∈R+ , when using closed sets.

We now get the following characterization of non-Archimedean approach spaces
in terms of towers.

Corollary 2.1.3.2. A collection (Tε)ε∈R+ of topologies on a set X defines a tower
for some non-Archimedean approach space if and only if it satisfies the coherence
condition

Tε =
∨
γ>ε

Tγ, (2.1)

where the supremum is taken in Top.

We include more examples of non-Archimedean approach spaces that will be
useful in Section 4.2. The construction of the non-Archimedean approach spaces
in the following examples is based on Corollary 2.1.3.2.

Example 2.1.3.3. Let X be a set and S a given topology on X . Let (Tε)ε∈R+ be
defined by

Tε =


P(X) whenever 0 ≤ ε < 1,
S whenever 1 ≤ ε < 2,
{X, ∅} whenever 2 ≤ ε.

Clearly the coherence condition is satisfied and so
(
X, (Tε)ε∈R+

)
defines a

non-Archimedean approach space which we will denote by XS .

Example 2.1.3.4. Let X =]0,∞[, endowed with a topology T with neighbor-
hoodfilters

(
V(x)

)
x∈X and assume T is finer than the right order topology. We

define (Tε)ε∈R+ with T0 = T and Tε at level ε > 0 having neighborhoodfilters

Vε(x) =

{
{X} whenever x ≤ ε,
V(x) whenever ε < x,
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at x ∈ X .
For a fixed level ε and ε < x the set

{
G ∈ T | x ∈ G,G ⊆]ε,+∞[

}
is an

open base of Vε(x). So clearly (Tε)ε∈R+ is a descending chain of topologies. To
check the other inclusion of the coherence condition, let 0 ≤ ε and x ∈]0,∞[.
Either x ≤ ε and then Vε(x) = {X} ⊆ Vγ(x) for every γ. Or ε < x, then choose
γ with ε < γ < x. We have Vε(x) = Vγ(x) = V(x). So

(
X, (Tε)ε∈R+

)
defines a

non-Archimedean approach space.

2.1.4 Non-Archimedean gauges
Finally, we look at gauges. We introduce a new and very elegant characterization
of non-Archimedean approach spaces in terms of the gauge.

Theorem 2.1.4.1. Consider a non-Archimedean approach space X with tower
of topologies (Tε)ε∈R+ . Then the associated gauge, given by (1.46), has a basis
consisting of quasi-ultrametrics.

Proof. For n ∈ N0 a strictly positive natural number we consider
{
k
n
| k ∈

{0, · · · , n2}
}

on [0, n]. At level k
n

we choose a finite T k
n

-open cover C k
n

in such
a way that for k > 0 the finite T k−1

n
-open cover C k−1

n
is a refinement of C k

n
. The

following notations are frequently used in the setting of quasi-uniform spaces. For
x ∈ X and k ∈ {0, · · · , n2}

AxC k
n

=
⋂
{C | C ∈ C k

n
, x ∈ C}

and
UC k

n

=
⋃
x∈X

{x} × AxC k
n

.

We employ a standard technique as used with developments in [Low15] to con-
struct a function depending on n and on the choice of C 1

n
, · · · , Cn2

n

by letting

pn =
n2

inf
k=1

(k − 1

n
+ θUC k

n

)
∧ n, (2.2)

where for Z ⊆ X, we use the notation

θZ : X → P : x 7→

{
0 x ∈ Z
∞ x 6∈ Z.

Clearly for k ∈ {1, · · · , n2} we have UC k−1
n

⊆ UC k
n

and every UC k
n

is a preorder
on X . This implies that pn is a quasi-ultrametric on X . That pn is zero on the
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diagonal is clear. We check the nontrivial case of the strong triangular inequality.
If p(x, y) = i−1

n
and p(y, z) = j−1

n
then (x, y) ∈ UC i

n

and (y, z) ∈ UC j
n

. Hence

(x, y) ∈ UC i∨j
n

and (y, z) ∈ UC i∨j
n

. This implies (x, z) ∈ UC i∨j
n

from which we

conclude p(x, z) ≤ (i∨j)−1
n
≤ i−1

n
∨ j−1

n
.

Next we show that each pn belongs to the gauge G. Fix ε ≥ 0 and α > ε.
Either ε ≥ n and then the open ball Bp(x, α) = X ∈ Tε, or ε ∈ [k−1

n
, k
n
[ for

some k ∈ {1, · · · , n2}. Then for y ∈ AxC k
n

we have (x, y) ∈ UC k
n

which implies

pn(x, y) ≤ k−1
n
≤ ε < α. So AxC k

n

⊆ Bp(x, α) and again Bp(x, α) ∈ Tε.
Let H be the collection of all quasi-ultrametrics pn, for arbitrary choices of n

and C 1
n
, · · · , Cn2

n

. We prove that H is a basis for the gauge G. Let d ∈ G, x ∈ X
and n ∈ N0. Consider

{
k
n
| k ∈ {0, · · · , n2}

}
on [0, n] and at level k

n
choose the

cover
C k
n

=
{
Bd

(
x,
k

n
+

1

2n

)
, X
}
.

Since d ∈ G the inclusion T dk
n

⊆ T k
n

holds, so the cover C k
n

is T k
n

-open for every k.
Moreover, C k−1

n
refines C k

n
at each level. Let pn be the associated quasi-ultrametric

as in (2.2). We show that

d(x, ·) ∧ n ≤ pn(x, ·) +
2

n
. (2.3)

Let y ∈ X . Either pn(x, y) + 2
n
≥ n and then we are done, or pn(x, y) + 2

n
= α ∈

[ k
n
, k+1

n
[ for some k. In this case pn(x, y) = α − 2

n
∈ [k−2

n
, k−1

n
[ which implies

(x, y) ∈ UC k−1
n

. So we have y ∈ Bd(x,
k−1
n

+ 1
2n

), by which d(x, y) < k−1
n

+ 1
2n
<

k
n
≤ α. Since (2.3) holds for every n ∈ N0 it now follows that also (1.13) is

fulfilled for every ε > 0 and ω <∞, so we can conclude that Ĥ = G.

Theorem 2.1.4.2. Consider an approach space X with gauge G, having a ba-
sis H consisting of quasi-ultrametrics. Then the associated distance is a non-
Archimedean distance.

Proof. The distance δ associated with the gauge G can be derived directly from
the basisH by

δ(x,A) = sup
d∈H

inf
a∈A

d(x, a).

We only have to show that this distance satisfies (D4∨). Take x ∈ X,A ⊆ X and
ε ∈ P arbitrary. Then, for any b ∈ A(ε), d ∈ H and θ > 0, there exists ad ∈ A
such that d(b, ad) < ε+ θ. Consequently,

d(x, ad) ≤ d(x, b) ∨ d(b, ad) ≤ d(x, b) ∨ (ε+ θ),
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which proves that

inf
a∈A

d(x, a) ≤ inf
b∈A(ε)

d(x, b) ∨ (ε+ θ).

Since this holds for all d ∈ H, it follows that δ(x,A) ≤ δ
(
x,A(ε)

)
∨ ε.

A gauge with a basis consisting of quasi-ultrametrics will be called a non-
Archimedean gauge.

2.2 A lax-algebraic characterization of NA-App
In this section we answer the question whether parameters T and V can be found
such that NA-App can be described as a category of lax algebras (T,V)-Cat. As
an inspiration, we look at the known result qMetu ∼= P∨-Cat.

2.2.1 Change-of-base functors
Before generalizing the constructions of P+-Cat and (�,P+)-Cat established in Ex-
amples 1.3.3.2 and Section 1.3.7 to the quantale P∨, as introduced in Examples
1.3.1.1, we give some information concerning change-of-base functors. More de-
tails can be found in [HST14].

Given a monad T = (T,m, e), we can consider lax extensions T̂ and Ť of T
to V-Rel and W-Rel, respectively. Let ϕ : V //W be a lax homomorphism of
quantales. Then ϕ induces a lax functor

ϕ : V-Rel //W-Rel

which leaves objects unchanged and sends r : X×Y //V to ϕr : X×Y //W .
For a Set-map f , we have

f ≤ ϕf and f ◦ ≤ ϕ(f ◦)

where f and f ◦ are considered asW-relations when appearing on the left of the
inequality sign, and as V-relations when appearing on the right. Furthermore, we
assume that ϕ is compatible with the respective lax extensions T̂ and Ť of T to
V-Rel andW-Rel, that is Ť (ϕr) ≤ ϕ(T̂ r), for all V-relations r.

V-Rel T̂ //

ϕ

��

V-Rel

ϕ

��

≤

W-Rel
Ť

//W-Rel



2.2. A LAX-ALGEBRAIC CHARACTERIZATION OF NA-APP 57

Under these conditions, ϕ induces a functor

Bϕ : (T,V)-Cat // (T,W)-Cat,

called a change-of-base functor associated with ϕ, sending (X, a) to (X,ϕa) and
leaving maps unchanged. Indeed (X,ϕa) is a (T,W)-category, since

e◦X ≤ ϕ(e◦X) ≤ ϕa,

and

ϕa · Ť (ϕa) ·m◦X ≤ ϕa · ϕ(T̂ a) · ϕ(m◦X)

≤ ϕ(a · T̂ a ·m◦X)

≤ ϕ(a).

Moreover, given a (T,V)-functor f : (X, a) // (Y, b), f : (X,ϕa) // (Y, ϕb)
is a (T,W)-functor, since

f · ϕa ≤ ϕf · ϕa ≤ ϕ(f · a) ≤ ϕ(b · Tf) = ϕb · Tf.

2.2.2 P∨-Cat
The map ϕ : P∨ // P+ with ϕ(v) = v, for all v ∈ P∨ is a lax homomorphism
of quantales. This induces a lax-functor ϕ : P∨-Rel // P+-Rel, which leaves
objects unaltered and sends r : X × Y // P∨ to ϕ · r : X × Y // P+ . Ob-
viously, ϕ is compatible with the identical lax extension of the identity monad 1
to P∨-Rel and P+-Rel. Hence, this lax-functor induces a change-of-base functor
Bϕ : P∨-Cat // P+-Cat. Moreover, this change-of-base functor is an embedding.
In Examples 1.3.3.2, we recalled that P+-Cat ∼= qMet, the category of extended
quasi-metric spaces and non-expansive maps, and P∨-Cat ∼= qMetu, the category
of extended quasi-ultrametric spaces and non-expansive maps.

2.2.3 The extension of the ultrafilter monad to P∨-Rel
We will define the extension of the ultrafilter monad � = (β,m, e) to P∨-Rel
analogously to the extension of � to P+-Rel, constructed in 1.3.7.

The result in this section follow from more general results by Clementino and
Tholen [CT03]. For completeness we add these results to the thesis, clarifying the
constructions needed further on in this work.

For a P∨-relation r : X−→7 Y and α ∈ P, we can define the relation rα :
X−→7 Y by

x rα y ⇔ r(x, y) ≤ α. (2.4)
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For A ⊆ X we put rα(A) = {y ∈ Y | ∃x ∈ A : x rα y}, and for A ⊆ P(X) we
let rα(A) =

{
rα(A) | A ∈ A

}
. Then, for r : X−→7 Y a P∨-relation, we let

βr(U ,W) := inf{α ∈ P | U β(rα)W}, (2.5)

for U ∈ βX andW ∈ βY , which can be equivalently expressed by

βr(U ,W) = sup
A∈U ,B∈W

inf
x∈A,y∈B

r(x, y). (2.6)

The following result is a special instance of a more general result from [CT03].
We only provide a proof of this theorem to keep the text self-contained.

Theorem 2.2.3.1. [CT03] The extension of the ultrafilter monad � to P∨-Rel is a
flat and associative lax extension, which we again denote by � = (β,m, e).

Proof. First of all, we show that � is indeed a lax extension of � to P∨-Rel. The
only difference with the P+-situation, is that P∨-relations follow a different compo-
sition rule. Since the extension of � is defined analogously to the P+-case, the only
axiom of a lax extension of monads needed to be checked is 2. from Definition
1.3.4.1, since this is the only axiom where composition of relations is involved.

Hence, take two arbitrary P∨-relations r : X−→7 Y and s : Y−→7 Z. Then we
show that

βs · βr ≤op β(s · r).
Take U ∈ βX andW ∈ βZ arbitrary. Let

α1 := β(s · r)(U ,W)

and
α2 := βs · βr(U ,W) = inf

{
βr(U ,V) ∨ βs(V ,W) | V ∈ βY

}
.

We have to prove that α1 ≤ α2. Take ε > 0 arbitrary. There exists V ∈ βY such
that βr(U ,V) ∨ β(V ,W) < α2 + ε. Let

γ1 := βr(U ,V) = inf{α ∈ P | rα(U) ⊆ V}
and
γ2 := βs(V ,W) = inf{α ∈ P | sα(V) ⊆ W}.

This implies that rγ1+ε(U) ⊆ V and sγ2+ε(V) ⊆ W . For U ∈ U arbitrary, we
have

sγ2+ε

(
rγ1+ε(U)

)
∈ W .

Now we claim that

sγ2+ε

(
rγ1+ε(U)

)
⊆ (s · r)(γ1∨γ2)+ε(U).
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Indeed, for z ∈ sγ2+ε

(
rγ1+ε(U)

)
, we get

z ∈ sγ2+ε

(
rγ1+ε(U)

)
⇔ ∃y ∈ rγ1+ε(U) : y sγ2+ε z

⇒ ∃y ∈ Y, ∃x ∈ U : x rγ1+ε y& y sγ2+ε z

⇔ ∃y ∈ Y ∃x ∈ U : r(x, y) ≤ γ1 + ε& s(y, z) ≤ γ2 + ε

⇒ ∃x ∈ U : (s · r)(x, z) = inf
{
r(x, y) ∨ s(y, z) | y ∈ Y

}
≤ (γ1 ∨ γ2) + ε

⇒ ∃x ∈ U : x (s · r)(γ1∨γ2)+ε z

⇔ z ∈ (s · r)(γ1∨γ2)+ε(U).

This gives us (s · r)(γ1∨γ2)+ε(U) ∈ W . By arbitrariness of U ∈ U , we get

inf
{
α ∈ P | (s · r)α(U) ⊆ W

}
≤ (γ1 ∨ γ2) + ε.

Hence, we conclude

α1 ≤ (γ1 ∨ γ2) + ε < (α2 + ε) + ε,

and by arbitrariness of ε, we get

α1 ≤ α2.

Next we show that this is an associative lax extension. We do this using the
characterization in Proposition 1.3.5.5.

First we show that � : P∨-Rel // P∨-Rel preserves composition. To this end,
take two arbitrary P∨-relations r : X−→7 Y and s : Y−→7 Z. We already showed
that β(s · r) ≤ βs · βr.

To prove the other inequality, take U ∈ βX,W ∈ βZ and u ∈ P such that

β(s · r)(U ,W) = sup
A∈U ,C∈W

inf
x∈A,z∈C

s · r(x, z) < u.

Hence, for every A ∈ U and C ∈ W there exist x ∈ A, z ∈ C and y ∈ Y such
that

r(x, y) ∨ s(y, z) < u.

Define

BA,C :=
{
y ∈ Y | ∃x ∈ A,∃z ∈ C : r(x, y) ∨ s(y, z) < u

}
6= ∅.

Since BA∩A′,C∩C′ ⊆ BA,C ∩BA′,C′ , the set

{BA,C | A ∈ U , C ∈ W}
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is a filterbase on Y . Let V be an ultrafilter on Y containing it.
Then

βr(U ,V) = sup
A∈U ,B∈V

inf
x∈A,y∈B

r(x, y) ≤ u,

because for A ∈ U and B ∈ V one has B ∩BA,C 6= ∅. Similarly

βs(V ,W) ≤ u

and thus

βs · βr(U ,W) = inf
{
βr(U ,V) ∨ β(V ,W) | V ∈ βY

}
≤ u.

Next we show that m◦ is natural. Since β commutes with the involution on
P∨-Rel, for m◦ : β // ββ to be natural, we only need to show the equality
mY · β βr = βr ·mX . One inequality already follows from the fact that � is a lax
extension of �. To show that mY · β βr ≤ βr ·mX , let X ∈ ββX and V ∈ βY
such that

βr(mXX,V) < u′′ < u′ < u.

Since the Barr extension of β to Rel is associative, there is some Y ∈ ββY with
X (β βru′′)Y, so that one has Xβ(βr)u′Y and X(β βr)uY, i.e. β βr(X,Y) ≤ u.

To prove that � is a flat extension, it suffices to note that the lax extension
of � to P+-Rel is flat. Hence, since both extensions are defined analogously, we
immediately get

β(1X) = β1X = 1βX .

2.2.4 (�,P∨)-Cat
Now (�,P∨)-Cat is the category of lax algebras (X, a) for the P∨-Rel-extension
of the ultrafilter monad. Given a (�,P∨)-category (X, a), then a : βX−→7 X is a
P∨-relation which is reflexive, meaning

a(ẋ, x) = 0, (2.7)

for all x ∈ X , and transitive, meaning

a
(
mX(X), x

)
≤ βa(X,U) ∨ a(U , x), (2.8)

for all X ∈ ββX,U ∈ βX and x ∈ X . A (�,P∨)-functor f : (X, a) // (Y, b) is
a map satisfying

b
(
f(U), f(x)

)
≤ a(U , x),
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for all U ∈ βX and x ∈ X .
It is clear that the lax-homomorphism of quantales ϕ : P∨ // P+ , as defined

in 2.2.2, is compatible with the lax-extension of the ultrafilter monad � to P∨-Rel
and P+-Rel. Hence, this induces another change-of-base functor

Cϕ : (�,P∨)-Cat // (�,P+)-Cat.

Again, this change-of-base functor is an embedding. In 1.3.7, we already ex-
plained that the category (�,P+)-Cat is isomorphic to App.

Theorem 2.2.4.1. The category (�,P∨)-Cat of lax algebras for the P∨-Rel-extension
of the ultrafilter monad is isomorphic to NA-App.

Proof. This proof is similar to the proof of Theorem 2.2.4.1, for which we refer
to Theorem 12.7.2 in [Low15].

Reflexivity clearly is equivalent to (L1). So all that remains to be shown is that
transitivity is equivalent to (Lβ∗∨).

Let λ be a non-Archimedean limit operator on X and let X ∈ ββX and U ∈
βX . Put

ε := βa(X,U) = sup
A∈X

sup
U∈U

inf
W∈A

inf
x∈U

a(W , x).

Let ρ > 0 and put

J :=
{

(G, y) ∈ βX ×X | λG(y) ≤ ε+ ρ
}
,

and consider the projections

J
ψ:=pr2 //

σ:=pr1
��

X

βX

Note that by definition of ε and ρ, the filter X × U has a trace on J and con-
sequently we can choose an ultrafilter R ∈ βJ finer than X × U . It then follows
that

X = pr1(R) = σ(R) and U = pr2(R) = ψ(R),

and because (Lβ∗∨) holds we obtain, for any x ∈ X

λΣσ(R)(x) ≤ λψ(R)(x) ∨ sup
R∈R

inf
z∈R

λσ(z)
(
ψ(z)

)
and thus

λmX(X)(x) ≤ λU(x) ∨ sup
R∈R,R⊆J

inf
(G,y)∈R

λG(y)

≤ λU(x) + ε+ ρ.
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Consequently, by arbitrariness of ρ and the definition of ε it follows that λ satisfies
the transitivity axiom.

Conversely let a : βX−→7 X satisfy the transitivity axiom and let J be a set,
ψ : J //X, σ : J // βX and F ∈ βJ . Put

X := σ(F) and U := ψ(F).

Then it follows that, for any x ∈ X

a
(
mX

(
σ(F)

)
, x
)
≤ a

(
ψ(F), x

)
∨ sup
A∈σ(F)

sup
U∈ψ(F)

inf
V∈A

inf
y∈U

a(V , y)

≤ a
(
ψ(F), x

)
∨ sup
F∈F

inf
V∈σ(F )

inf
y∈ψ(F )

a(V , y)

≤ a
(
ψ(F), x

)
∨ sup
F∈F

inf
z∈F

a
(
σ(z), ψ(z)

)
= a

(
ψ(F), x)

)
∨ inf
F∈F

sup
z∈F

a
(
σ(z), ψ(z)

)
,

where we used Lemma 1.1.1.4 to interchange inf and sup, since F ∈ βJ . This
shows that a satisfies (Lβ∗∨).

That via identification of lax algebraic structures on the one hand with non-
Archimedean limit operators on the other hand, the morphisms in both categories
coincide is an immediate consequence of the characterization of contractions via
ultrafilters and the definitions of the morphisms in (�,P∨)-Cat.

2.3 NA-App related to more familiar categories

2.3.1 The embedding qMetu ↪→ NA-App
Restricting the coreflector App //qMet from Section 1.1.4(B) to NA-App, a non-
Archimedean approach space X with limit operator λ (distance δ) is sent to its
underlying quasi-ultrametric space (X, dλ) ((X, dδ)) given by

dλ(x, y) = λ(ẏ)(x) = δ(x, {y}) = dδ(x, y) (2.9)

for x, y in X . Moreover restricting the embedding qMet ↪→ App from Sec-
tion 1.1.4(B) to qMetu, a quasi-ultrametric space (X, d) is mapped to a non-
Archimedean approach space X with limit operator defined by

λd(U)(x) = sup
U∈U

inf
u∈U

d(x, u), (2.10)

for all U ∈ βX and x ∈ X and distance

δd(x,A) = inf
a∈A

d(x, a) (2.11)
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for all A ⊆ X and x ∈ X. We can conclude that qMetu is concretely coreflec-
tively embedded in NA-App and the coreflector is the restriction of the well known
coreflector App // qMet.

Considering the lax extension � to P∨-Rel, the lax extension of the identity
monad 1 to P∨-Rel and the associated morphism (1, 1) //(β, β) of lax extensions,
the induced algebraic functor

(�,P∨)-Cat −→ P∨-Cat, (2.12)

sends a (�,P∨)-algebra (X, a) to its underlying P∨-algebra (X, a · eX), as in-
troduced in section III.3.4 of [HST14]. Using the isomorphisms described in
2.2.2 and in Theorem 2.2.4.1, this functor sends a (�,P∨)-algebra (X, a), cor-
responding to a non-Archimedean approach space X with limit operator λ, to
its underlying quasi-ultrametric space (X, d−λ ). This functor has a left adjoint
P∨-Cat ↪→ (�,P∨)-Cat, which associates with a P∨-algebra (X, d), the (�,P∨)-
algebra corresponding to (X,λd−).

2.3.2 The embedding Top ↪→ NA-App
We consider the lax homomorphism ι : 2 // P∨, sending > to 0 and ⊥ to ∞,
which is compatible with the lax extensions of the ultrafilter monad to Rel and
P∨-Rel. Analogous to the situation for P+ [HST14] the change-of-base functor
associated with the lax homomorphism ι constitutes an embedding (�, 2)-Cat ↪→
(�,P∨)-Cat. Using the isomorphisms described in 2.2.2, Theorem 2.2.4.1, and
the well known isomorphism (�, 2)-Cat ∼= Top (see Section 1.3.6) this gives an
embedding of Top in NA-App.
In terms of the limit operator or the distance the embedding Top ↪→ NA-App
associates the limit operator λT (distance δT ) with a topological space (X, T ) by
λT U(x) = 0 if U converges to x in (X, T ) (δT (x,A) = 0 if x ∈ A) and with
values∞ in all other cases, for U ∈ βX,A ⊆ X, x ∈ X . Later on we will also
make use of the embedding of Top described in terms of the tower. All levels
of the approach tower (X, (tε)ε≥0) associated with a topological space (X, T )
coincide, so we have Tε = T for all ε ≥ 0. These formulations of the embedding
Top ↪→ NA-App are the codomain restrictions of the embedding of Top in App as
described in Section 1.1.4(A).

The map ι has a right adjoint p : P∨ −→ 2, where p(0) = > and p(v) =⊥
otherwise, that is again a lax homomorphism of quantales. The map p is also
compatible with the lax extensions of the ultrafilter monad � to Rel and P∨-Rel
and provides the embedding with a right adjoint (�,P∨)-Cat −→ (�, 2)-Cat. This
functor can also be obtained by restricting the coreflector CTop : App // Top,
as described in Section 1.1.4(A) to NA-App and we will continue to use the no-
tation CTop. This coreflector sends a non-Archimedean approach space X to a
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topological space CTop(X) in which an ultrafilter U converges to a point x pre-
cisely when λU(x) = 0 or in which a point x is in the closure of a set A precisely
when δ(x,A) = 0. In terms of the tower (Tε)ε≥0 the topological space CTop(X)
is precisely (X, T0).

Now define the map o : P∨ // 2 by o(v) = > if and only if v < ∞. Anal-
ogous to the situation of P+ in [HST14] the map o is a lax homomorphism of
quantales, however it is not compatible with the lax extensions of the ultrafil-
ter monad. Nevertheless, given a (�,P∨)-algebra (X, a), one can still consider
the pair (X, oa), where oa : βX−→7 X is defined by U oa x precisely when
a(U , x) <∞. This structure satisfies the reflexivity but not the transitivity condi-
tion. In other words, (X, oa) is a pseudotopological space. Now we can apply the
left adjoint of the full reflective embedding Top ↪→ PsTop to (X, oa) to obtain a
topological space and thereby a left adjoint (�,P∨)-Cat −→ (�, 2)-Cat to the em-
bedding (�, 2)-Cat ↪→ (�,P∨)-Cat. This functor can also be obtained by restrict-
ing the reflector App −→ Top, as described in Section 1.1.4(A) to NA-App,where
the Top-reflection of a non-Archimedean approach space (X, δ) is determined by
the non-Archimedean distance associated with the topological reflection of the
pretopological closure operator cl, defined by cl(A) := {x ∈ A | δ(x,A) <∞}.

2.3.3 The embedding NA-App ↪→ App

Based on the characterization of non-Archimedean approach spaces in terms of
non-Archimedean gauges, we can also say something more about the embedding
of NA-App in App corresponding to the change of base functor

Cϕ : (�,P∨)-Cat // (�,P+)-Cat.

Theorem 2.3.3.1. NA-App is a concretely reflective subcategory of App. If X is
an approach space with gauge G, then its NA-App-reflection 1X : X // Xu is
given by the approach space Xu having G ∩ qMetu(X) as basis for its gauge.

Proof. Since G ∩ qMetu(X) is stable under finite suprema, it is locally directed
and therefore Ĝ ∩ qMetu(X) defines a gauge. Let Xu be the associated approach
space. Suppose f : X // Y is a contraction with Y ∈ NA-App with a gauge
basis H consisting of quasi-ultrametrics. Then d ∈ H clearly implies d · f × f ∈
G ∩ qMetu(X). By the characterization of a contraction in terms of a gauge basis,
we have that f : Xu // Y is contractive.

The results in this section can be summarized in the following diagram.
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Top ∼= (�, 2)-Cat �
� // NA-App ∼= (�,P∨)-Cat �

� // App ∼= (�,P+)-Cat

Ord ∼= 2-Cat �
� //

?�

OO

qMetu ∼= P∨-Cat �
� //

?�

OO

qMet ∼= P+-Cat
?�

OO

2.4 Coproducts and quotients in NA-App
In Theorem 2.3.3.1, we showed that NA-App is embedded as a concretely re-
flective subconstruct of App. This shows that NA-App is closed under formation
of limits and initial structures in App. In particular, a product in App of a fam-
ily of non-Archimedean approach spaces is a non-Archimedean approach space
and, likewise, a subspace in App of a non-Archimedean approach space, is a non-
Archimedean approach space.

In this section, we will give a construction for coproducts and quotients of
non-Archimedean approach spaces. In order to create coproducts and quotients
in NA-App, we recall the constructions of coproducts and quotients in qMetu

[Lem84].

2.4.1 Coproducts of non-Archimedean approach spaces
We recall the construction of coproducts in qMetu[Lem84].

Proposition 2.4.1.1. Let
(
(Xi, di)

)
i∈I be a family of quasi-ultrametric spaces.

The coproduct in qMetu,
∐

i∈I Xi =
⋃
i∈I
(
Xi×{i}

)
, is structured by the follow-

ing quasi-ultrametric:∐
i∈I

di
(
(x, j), (y, k)

)
:=

{
dj(x, y) j = k,
∞ j 6= k.

Given this result, we can construct coproducts of non-Archimedean approach
spaces.

Theorem 2.4.1.2. Let
(
(Xi,Gi)

)
i∈I be a family of non-Archimedean approach

spaces withHi a gauge basis for Gi, for all i ∈ I , consisting of quasi-ultrametrics.
The coproduct in NA-App,

∐
i∈I Xi =

⋃
i∈I
(
Xi × {i}

)
, is structured by the fol-

lowing non-Archimedean gauge basis:∐
i∈I

Hi :=
{∐

i∈I

di | ∀i ∈ I : di ∈ Hi

}
↓,

where
∐

i∈I di is defined as in Proposition 2.4.1.1.
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Proof. It is clear that
∐

i∈I Hi is a basis for a non-Archimedean gauge on
∐

i∈I Xi.
Next we show that the canonical injections ink : (Xk,Hk) //(

∐
i∈I Xi,

∐
i∈I Hi)

are contractions, for all k ∈ I . Take a member
∐

i∈I di in the gauge basis
∐
Hi.

For x, y ∈ Xk arbitrary, we have∐
i∈I

di
(

ink(x), ink(y)
)

=
∐
i∈I

di
(
(x, k), (y, k)

)
= dk(x, y),

hence
∐

i∈I di · ink× ink ∈ Hk.
Finally, we show that the sink(

ink : (Xk, dk) // (
∐
i∈I

Xi,
∐
i∈I

Hi)
)
k∈I

is final. Therefore, consider a non-Archimedean approach space Y with gauge
basisHY consisting of quasi-ultrametrics and a map

f : (
∐
i∈I

Xi,
∐
i∈I

Hi) // (Y,HY ).

If f is a contraction, then it is clear that all maps f · ink are contractions, for all
k ∈ I . To prove the converse, take e ∈ HY arbitrary. Take (x, j), (y, k) ∈

∐
i∈I Xi

arbitrary. If j = k, then

e
(
f(x, j), f(y, k)

)
= e
(
f(inj(x)), f(inj(y))

)
,

and since f · inj is a contraction, there exists
∐

i∈I di ∈
∐

i∈I Hi such that e ·
(f · inj ×f · inj) ≤

∐
i∈I di. If j 6= k, then

∐
i∈I di

(
(x, j), (y, k)

)
= ∞, for all∐

i∈I di ∈
∐

i∈I Hi. Hence, we can conclude that for all e ∈ HY , there exists∐
i∈I di ∈ Hi such that e · f × f ≤

∐
i∈I di and thus

e ∈
{∐

i∈I

di | ∀i ∈ I : di ∈ Hi

}
↓ .

It follows immediately from the foregoing construction and proof that NA-App
is closed under coproducts in App.

2.4.2 Quotients of non-Archimedean approach spaces

We recall the construction of quotients in qMetu [Lem84].
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Proposition 2.4.2.1. Let (X, d) be a quasi-ultrametric space. A surjective map f :
X // Y is a quotient in qMetu if Y is endowed with the largest quasi-ultrametric
ugd such that ugd ≤ gd, where

gd : Y × Y // P : (y, y′) 7→ inf
x∈f−1(y),x′∈f−1(y′)

d(x, x′).

Theorem 2.4.2.2. Let (X,GX) be a non-Archimedean approach space with gauge
basis HX consisting of quasi-ultrametrics. A surjective map f : X // Y is a
quotient in NA-App if Y is endowed with the gauge basis

HY = {ugd | d ∈ HX} ↓,

where ugdis defined as in Proposition 2.4.2.1.

Proof. First, we argue that f : (X,HX) //(Y,HY ) is a contraction. Take d ∈ HX

arbitrary. For x, x′ ∈ X arbitrary, we have

ugd
(
f(x), f(x′)

)
≤ gd

(
f(x), f(x′)

)
≤ d(x, x′),

hence ugd · f × f ∈ HX , for every d ∈ HX .
To prove that f : (X,HX) // (Y,HY ) is final, consider a non-Archimedean

approach space (Z,HZ) and a map h : (Y,HY ) // (Z,HZ). It is clear that if h is
a contraction, h · f is a contraction as well. To prove the converse, suppose h · f
is a contraction and take e ∈ HZ arbitrary. Then e ·

(
(h · f)× (h · f)

)
∈ GX and

thus for all x ∈ X, ε > 0 and ω <∞, there exists dε,ωx ∈ HX such that

e
(
h
(
f(x)

)
, h
(
f(·)

))
∧ ω ≤ dε,ωx (x, ·) + ε.

Now take y ∈ Y, ε > 0 and ω <∞ arbitrary. Then, by surjectivity of f ,

e
(
h(y), h(·)

)
∧ ω ≤ dε,ωx (x, ·) + ε,

for every x ∈ f−1(y). Set dε,ω = infx∈f−1(y) d
ε,ω
x ∈ HX . Then

e
(
h(y), h(·)

)
∧ ω ≤ dε,ω(x, ·) + ε.

Since this holds for any x ∈ f−1(y), we get

e
(
h(y), h(·)

)
∧ ω ≤ inf

x∈f−1(y)
dε,ω(x, ·) + ε.

Hence
e
(
h(y), h(·)

)
∧ ω ≤ gdε,ω(y, ·) + ε,

and by definition of ugdε,ω we find

e
(
h(y), h(·)

)
∧ ω ≤ ugdε,ω (y, ·) + ε.

Since ugdε,ω ∈ HY , this shows e · (h× h) ∈ GY .
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2.5 Initially dense objects in NA-App

At this point, we can introduce two new examples of non-Archimedean approach
spaces.

Example 2.5.1.3. Consider the quasi-ultrametrics dP∨ and d−P∨ on P∨ defined by

dP∨ : P∨ × P∨ // P∨ : (x, y) 7→ x−•y,

and
d−P∨ : P∨ × P∨ // P∨ : (x, y) 7→ y−•x.

In this section we show that each of the non-Archimedean approach spaces
(P∨, δP∨) of Example 2.1.2.3 and (P∨, dP∨) and (P∨, d

−
P∨

) as introduced above,
are initially dense objects in NA-App.

Given a source
(
fi : X // (Xi, λi)

)
i∈I , the formulas for the initial approach

structure on X can be found in Theorem 1.1.3.2.

Proposition 2.5.1.4. For any non-Archimedean approach space X with distance
δ and for A ⊆ X , the distance functional

δA : (X, δ) // (P∨, δP∨) : x 7→ δ(x,A)

is a contraction.

Proof. Let x ∈ X and B ⊆ X . By application of Proposition 2.1.2.2 for B 6= ∅
and A 6= ∅, we have

δP∨
(
δA(x), δA(B)

)
=

(
sup
b∈B

δ(b, A)
)
−•δ(x,A)

≤
(

sup
b∈B

δ(b, A)
)
−•
(
δ(x,B) ∨ sup

b∈B
δ(b, A)

)
≤ δ(x,B).

Theorem 2.5.1.5. (P∨, δP∨) is initially dense in NA-App. More precisely, for any
non-Archimedean approach space X , the source(

δA : X // (P∨, δP∨)
)
A∈2X

is initial.
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Proof. If λin stands for the initial limit operator on X , then we already know by
Proposition 2.5.1.4 that λin ≤ λ. Conversely, take U ∈ βX and x ∈ X . Then

λinU(x) = sup
A∈2X

λP∨
(
δA(U)

)(
δA(x)

)
= sup

A∈2X
sup
U∈U

δP∨
(
δA(x), δA(U)

)
≥ sup

U∈U
δP∨
(
δU(x), δU(U)

)
= sup

U∈U
δP∨
(
δU(x), {0}

)
= sup

U∈U
δ(x, U)

= λU(x).

Theorem 2.5.1.6. Both (P∨, dP∨) and (P∨, d
−
P∨

) are initially dense objects in
NA-App.

Proof. Since we already know that (P∨, δP∨) is initially dense in NA-App, it suf-
fices to show that we can obtain it via an initial lift of sources of either of the two
objects above.

First of all, consider the following source(
gα : (P∨, δP∨) // (P∨, δdP∨ )

)
α∈R+ ,

where gα is defined as follows:

gα : (P∨, δP∨) // (P∨, δdP∨ ) : x 7→
{

0 x > α,
α x ≤ α.

To show that gα is a contraction, for any α ∈ R+, take x ∈ P∨ and B ⊆ P∨
arbitrary. For B 6= ∅, we consider two cases. First suppose x ≤ α, then

δdP∨
(
gα(x), gα(B)

)
= inf

b∈B
gα(x)−•gα(b) = inf

b∈B
α−•gα(b) = 0.

In case x > α, we have

δdP∨
(
gα(x), gα(B)

)
= inf

b∈B
gα(x)−•gα(b) = inf

b∈B
0−•gα(b).

If there exists b ∈ B, such that b > α, then δdP∨
(
gα(x), gα(B)

)
= 0 ≤ δP∨(x,B).

If for all b ∈ B we have that b ≤ α, then supB ≤ α < x, and thus

δdP∨
(
gα(x), gα(B)

)
= α < x = δP∨(x,B).
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It remains to show that the source (gα)α∈R+ is initial. Let λin stand for the
initial limit operator on P∨, then we know that λin ≤ λP∨ . To prove the other in-
equality, take U ∈ βP∨ and x ∈ P∨ arbitrary. If λP∨U(x) = 0, then the inequality
is clear. In case λP∨U(x) = x, there exists A ∈ U such that x > supA. Take α
arbitrary in the interval [supA, x[. Then

λdP∨gα(U)
(
gα(x)

)
= sup

U∈U
inf
y∈U

dP∨
(
gα(x), gα(y)

)
≥ inf

y∈A
dP∨
(
gα(x), gα(y)

)
= 0−•α
= α.

Hence

λinU(x) = sup
α∈R+

λdP∨gα(U)
(
gα(x)

)
≥ sup

α∈[supA,x[

α = x = λP∨U(x).

So we can conclude that the source is initial.
In a similar way, we can prove that the source(

fα : (P∨, δP∨) // (P∨, δd−P∨
)
)
α∈R+ ,

with

fα : (P∨, δP∨) // (P∨, δd−P∨
: x 7→

{
α x > α,
0 x ≤ α,

is initial as well.



Chapter 3

Approach spaces as relational
algebras

In Section 1.3.7 we recalled how to describe approach spaces as lax algebras for
the ultrafilter monad, as developed by Clementino and Hofmann [CH03]. Here
we focus on presentations of App only using the quantale 2, i.e. presentations of
App as relational T-algebras for a suitable monad T.

By Theorem 1.4.3.3, we know that in order to find App ∼= (T, 2)-Cat for some
monad T, it suffices to describe approach spaces as Kleisli monoids for a power-
enriched monad T,

App ∼= T-Mon.

In Section 3.1 we introduce the monad I = (I,m, e) on Set which we call
the functional ideal monad. We prove that I is power-enriched which leads us to
the category I-Mon of all I-monoids with structure preserving maps. We show
that this category is isomorphic to App. Through the concrete isomorphism an
I-monoid (X, ν) corresponds to an approach space

(
X, (Ab(x))x∈X

)
described in

terms of its bounded local approach system.
We extend I to Rel using the Kleisli extension Ǐ and since I is a power-enriched

monad, by Theorem 1.4.3.3 we conclude that I-Mon and (I, 2)-Cat are isomor-
phic. We obtain the result that App can be isomorphically described in terms of
convergence of functional ideals using two axioms, transitivity and reflexivity. We
compare these axioms to the ones on convergence of functional ideals put forward
in [Low15].

In Section 3.2 we focus on prime functional ideals and introduce the prime
functional ideal monad B. The case of the prime functional ideal monad is com-
pletely different, since it is not power-enriched. We show that it is a submonad
of the functional ideal monad I and that it is both sup-dense and interpolating in
I. From general results in [HST14] we get that (I, 2)-Cat and (B, 2)-Cat are iso-
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morphic. We recover the result from [LV08] that App is isomorphic to (B, 2)-Cat.
To the known axioms describing App in terms of functional ideal convergence,
we add some equivalent new characterizations in terms of prime functional ideal
convergence.

3.1 Functional ideal convergence

3.1.1 Functional ideals
In this section we add some new results to the theory of functional ideals, as
introduced in Section 1.1.1.

The following proposition provides us with an easy characterization of certain
types of proper functional ideals.

Proposition 3.1.1.1. For a proper functional ideal I onX the following are equiv-
alent:

(i) There exists a filter G on X such that I = ιX(G)⊕ c(I).

(ii) For all α, γ with c(I) ≤ α <∞, c(I) ≤ γ <∞ : fα(I) = fγ(I).

Proof. The proof of (i)⇒ (ii) is straightforward.
In order to prove (ii) ⇒ (i) let G = fα(I) for all c(I) ≤ α < ∞. We show

that I = ιX(G)⊕ c(I). For µ ∈ I put ω = supµ. For ε arbitrary and β such that
c(I) < β < c(I) + ε we have µ ≤ θω{µ<β} + c(I) + ε.

For the other inclusion let G ∈ G and ω <∞. Choose ω + c(I) < α and then
α < β and µ ∈ I such that {µ < β} ⊆ G. Then we have θωG + c(I) ≤ µ ∨ c(I)
and hence θωG + c(I) ∈ I.

For Φ ∈ I IX , a functional ideal on IX , the diagonal operation in formula
(1.26), using J = X and s = id, becomes

mX(Φ) = {µ ∈ PXb | lµ ∈ Φ}.

Let I be a functional ideal on X , we define the functional ideal m∗X(I) on IX
generated by

{lµ | µ ∈ I}.

Proposition 3.1.1.2. mX and m∗X fulfill the following properties:

1. mX : I IX // IX and m∗X : IX // I IX are both well defined and mono-
tone.

2. mX ·m∗X = 1IX and m∗X ·mX ≤ 1IX .
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3. mX is right adjoint and therefore preserves intersections in the sense that
for any family (Φi)i∈I of functional ideals on IX we have

mX

(⋂
i∈I

Φi

)
=
⋂
i∈I

mX(Φi).

Proof. We check the inequality in 2. mX(m∗X(I)) ⊆ I for a functional ideal
I ∈ IX , the rest follows easily from the definitions. Take ν ∈ PXb then lν ≤ lµ+ε
for µ ∈ I implies that

l((ν−ε)∨0) ≤ (lν − ε) ∨ 0 ≤ lµ.

This yields ν − ε ≤ µ and ν ≤ µ+ ε for arbitrary ε > 0 and thus ν ∈ I.

There are various ways to expressmX(Φ), as we already mentioned in Section
1.1.1. We add some new formulas, which were published in [CVO16].

Proposition 3.1.1.3. For Φ ∈ I IX , we have

mX(Φ) =
⋃
ϕ∈Φ

⋂
I∈IX

I⊕ ϕ(I) (3.1)

and the characteristic value of mX(Φ) is given by

c
(
mX(Φ)

)
= sup

ϕ∈Φ
inf
I∈IX

c(I) + ϕ(I). (3.2)

In both expressions the union or the supremum respectively, can be restricted to a
basis for Φ.

Proof. To prove the first equality, we start with some µ bounded for which there
exists ϕ ∈ Φ such that µ ∈ I ⊕ ϕ(I) for every I ∈ IX . It follows that lµ(I) ≤
ϕ(I) for every I ∈ IX and therefore lµ ∈ Φ. For the other direction, suppose
µ ∈ mX(Φ). Then we have µ ∈

⋂
I∈IX I⊕ lµ(I).

Next we calculate the characteristic value

c
(
mX(Φ)

)
= sup

ϕ∈Φ
sup
µ∈Kϕ

inf
x∈X

µ(x)

with Kϕ =
⋂

I∈IX I⊕ ϕ(I). So we have

c
(
mX(Φ)

)
= sup

ϕ∈Φ
sup

ψ∈
∏

I∈IX I

inf
x∈X

inf
I∈IX

(
ψ(x) + ϕ(I)

)
= sup

ϕ∈Φ
inf
I∈IX

sup
ψ∈I

inf
x∈X

(
ψ(x) + ϕ(I)

)
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and using the fact that c(Φ) = supϕ∈Φ infI∈IX ϕ(I) we get the result.
In order to prove that the first expression can be restricted to a basis B for Φ,

for µ ∈
⋃
ϕ∈Φ

⋂
I∈IX I ⊕ ϕ(I) choose ϕ ∈ Φ and for I ∈ IX some νI ∈ I such

that µ = infI∈IX νI + ϕ(I). For ε > 0 there exists ψε ∈ B with ϕ ≤ ψε + ε. So
we have µ ≤ infI∈IX νI +ψε(I) + ε from which the result follows. The proof for
the second expression is analogous.

Proposition 3.1.1.4. For every Φ ∈ I2X , we have the inclusion

mX(Φ) ⊆
∨
A∈f(Φ)

⋂
I∈A

I⊕ c(Φ).

Whenever Φ = ιIX(F) ⊕ c(Φ) for some filter F on IX and c(Φ) < ∞, the
formulas simplify to

mX(Φ) =
∨
A∈F

⋂
I∈A

I⊕ c(Φ), (3.3)

and
c
(
mX(Φ)

)
= sup
A∈F

inf
I∈A

c(I) + c(Φ). (3.4)

Proof. In order to prove the inclusion, first note that when Φ is improper, then by
definition so is the filter f(Φ) and consequently also the right-hand side. Next let
µ ∈ mX(Φ) and ε > 0. Then

Aε = {lµ < c(Φ) + ε} ∈ f(Φ).

For I ∈ Aε we have lµ(I) < c(Φ) + ε and hence µ ∈ I ⊕
(
c(Φ) + ε

)
. Put

νε = (µ− ε) ∨ 0 then we have µ ≤ νε + ε and νε ∈
⋂

I∈Aε I⊕ c(Φ).
Under the extra assumptions made on Φ let µ ∈

∨
A∈F

⋂
I∈A I ⊕ c(Φ) and

ε > 0. Choose νε and Aε ∈ F such that νε ∈ I ⊕ c(Φ), for all I ∈ Aε and such
that µ ≤ νε + ε. Then we have Aε ⊆ {lνε ≤ c(Φ)} and hence {lνε ≤ c(Φ)} ∈ F .
It follows that lµ ≤ lνε + ε with lνε ∈ Φ.

Next we calculate the characteristic value:

c
(
mX(Φ)

)
= sup

A∈F ,ω<∞
inf
I∈IX

(
c(I) + θωA(I) + c(Φ)

)
= sup

A∈F ,ω<∞

(
inf
I∈A

(
c(I) + c(Φ)

)
∧ inf

I/∈A

(
c(I) + ω + c(Φ)

))
= sup

A∈F
inf
I∈A

(
c(I) + c(Φ)

)
∧∞

= sup
A∈F

inf
I∈A

(
c(I) + c(Φ)

)
.
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Remark that from the previous formula it immediately follows that mX(Φ)
can be improper, even if Φ is proper. For instance, take X = N and I = ιINF for
F a filter on IN with basis {Am | m ∈ N} and

Am = {ιX(ṅ)⊕ n | n ≥ m}.

Then c
(
mX(Φ)

)
= supm∈N infn≥m n =∞.

In some cases the ideal Φ is generated by a selection s : A // IX and some
I ∈ IA such that Φ = I s(I). In this case the formulas in Proposition 3.1.1.3
can be further simplified and coincide with the expressions considered in Section
1.1.1.

Proposition 3.1.1.5. In case Φ is the image of a selection on A, s : A // IX
and Φ = I s(I) for some functional ideal I on A, the formulas have the following
form

mX(Φ) =
∨
ν∈I

⋂
a∈A

s(a)⊕ ν(a), (3.5)

c
(
mX(Φ)

)
= sup

ν∈I
inf
a∈A

c
(
s(a)

)
+ ν(a). (3.6)

If moreover I is of a special type I = ιA(G)⊕ c(I), for G ∈ FX , then

mX(Φ) =
∨
G∈G

⋂
a∈G

s(a)⊕ c(I), (3.7)

c
(
mX(Φ)

)
= sup

G∈G
inf
a∈G

c
(
s(a)

)
+ c(I). (3.8)

Proof. The proofs for the various expressions are analogous. We give the explicit
calculations for the characteristic value in equation (3.6). We apply Proposition
3.1.1.3 to the basis {(sν)η | ν ∈ I, η <∞} of I s(I).

c
(
mX

(
I s(I)

))
= sup

ν∈I,η<∞
inf

K∈IX
c(K) + (sν)η(K)

= sup
ν∈I,η<∞

[ inf
K∈s(A)

c(K) + (sν)η(K) ∧ inf
K/∈s(A)

c(K) + η]

= sup
ν∈I

inf
K∈s(A)

(
c(K) + inf

K=s(a′)
ν(a′)

)
∧ sup
η<∞

(
inf

K/∈s(A)
c(K) + η

)
= sup

ν∈I
inf
a∈A

(
c
(
s(a)

)
+ inf

s(a′)=s(a)
ν(a′)

)
= sup

ν∈I
inf
a∈A

c
(
s(a)

)
+ ν(a).
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Next we suppose that σ : A // FX is a selection of proper filters and G is a
filter on A. Assume that the ideals s(a) in a selection s : A // IX are defined as
s(a) = ιX

(
σ(a)

)
⊕ c
(
s(a)

)
. Then we have the following result.

Proposition 3.1.1.6. Let Φ = I s(I) be generated by I ∈ IA and by a selection
s : A // IX with s(a) = ιX

(
σ(a)

)
⊕ c
(
s(a)

)
, whenever a ∈ A for a selection

of proper filters σ : A // FX .
Suppose c

(
mX(Φ)

)
= c(I) < ∞, then for α with c(I) ≤ α < ∞ and

infF∈fα(I) supa∈F c
(
s(a)

)
= 0 we have

fα
(
mX(Φ)

)
⊆ Σσ

(
fα(I)

)
. (3.9)

Let Φ = I s(I) be generated by I ∈ IA and by a selection s : A // IX with
s(a) = ιX

(
σ(a)

)
⊕ c
(
s(a)

)
, whenever a ∈ A for a selection of proper filters σ :

A //FX . Suppose I = ιA(G)⊕c(I) for some filter G onA and c
(
mX(Φ)

)
<∞,

then for α with c
(
mX(Φ)

)
≤ α <∞ we have the other inclusion

Σσ(G) ⊆ fα
(
mX(Φ)

)
. (3.10)

Proof. Under the first assumptions, let µ ∈ mX(Φ) and α < β. By (3.5) choose
ϕ ∈ I such that µ ∈ ιX

(
σ(a)

)
⊕
(
c
(
s(a)

)
+ ϕ(a)

)
, whenever a ∈ A. For a ∈ A

choose Sa ∈ σ(a) and ω <∞ such that µ ≤ θωSa + c
(
s(a)

)
+ ϕ(a).

Choose ε > 0 with α+2ε < β and F ∈ fα(I) with supa∈F c
(
s(a)

)
< ε. Then

there exist η > α and ψ ∈ I with {ψ < η} ⊆ F .
Let ζ = ϕ ∨ ψ ∈ I and choose α < ρ < η, ρ < α + ε then {ζ < ρ} ∈ fα(I).

We now claim that for a ∈ A with ζ(a) < ρ we have {µ < β} ∈ σ(a).
Indeed for such a we have that ψ(a) < η implies a ∈ F and thus c

(
s(a)

)
< ε.

Since also ϕ(a) < ρ, it follows that Sa ⊆ {µ < β}.
Under the second assumptions first note that since mX(Φ) is proper, also Φ,

the filter G and the functional ideal I are proper.
Let Z ∈ Σσ(G), G ∈ G with Z ∈

⋂
a∈G σ(a) and let α < γ < ω. By (3.7) for

θωZ we have

θωZ ∈
⋂
a∈G

ιX
(
σ(a)

)
⇒ θωZ + c(I) ∈ mX(Φ)⇒ {θωZ + c(I) < γ} ∈ fα

(
mX(Φ)

)
.

It follows that Z ∈ fα
(
mX(Φ)

)
.

From the previous result, we obtain the following easy form.

Proposition 3.1.1.7. Let Φ = I s(I) be generated by I ∈ IA and by a selection
s : A // IX with s(a) = ιX

(
σ(a)

)
⊕ c
(
s(a)

)
, whenever a ∈ A for a selection
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of proper filters σ : A // FX . Suppose I = ιX(W) ⊕ c(I) for some ultrafilter
W on A, then we have

mX(Φ) = ιX
(
Σσ(W)

)
⊕
(
c(I) + sup

W∈W
inf
w∈W

c
(
s(w)

))
. (3.11)

Proof. By (3.8) for the characteristic value we have

c
(
mX(Φ)

)
= sup

W∈W
inf
w∈W

c
(
s(w)

)
+ c(I).

If mX(Φ) is improper then (3.11) clearly holds.
In case mX(Φ) is proper, for every α with c

(
mX(Φ)

)
≤ α < ∞, by appli-

cation of (3.10) we get Σσ(W) ⊆ fα
(
mX(Φ)

)
and since the left-hand side is an

ultrafilter, both filters coincide. Applying Proposition 3.1.1.1 we are done.

3.1.2 The functional ideal monad
The functional ideal monad I = (I,m, e) on Set with

I : Set // Set :

{
X 7→ IX,
f 7→ I f,

where IX and I f are defined as in Section 1.1.1, has multiplication and unit de-
fined by the components

mX : I IX // IX : Φ 7→ mXΦ = {µ ∈ PXb | lµ ∈ Φ}

and
eX : X // IX : x 7→ ιX(ẋ).

Considering the identity functor 1 : Set // Set together with the functors I :
Set // Set and I2 : Set // Set it is easily verified (see also [CLR11]) that e and
m are indeed natural transformations

e : 1 // I and m : I2 // I

and that the following diagrams commute.

X
eX //

µ
!!

IX

lµ
��
P

IX
I f //

l(µ·f) !!

IY

lµ
��
P
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Lemma 3.1.2.1. For any µ ∈ PXb , we have lµ ·mX = llµ .

Proof. Indeed, for the improper functional ideal PIX
b the result follows easily and

if Φ ∈ I2X is proper, then lµ ∈ Φ ⊕ α if and only if there exists ζ such that
µ ≤ ζ + α and lζ ∈ Φ and hence the result follows.

Proposition 3.1.2.2. I = (I,m, e) is a monad on Set.

Proof. That
I3X

mIX //

ImX
��

I2X

mX
��

I2X
mX // IX

commutes follows from the fact that all maps preserve being improper and that
for any proper Γ ∈ I3X , by Lemma 3.1.2.1

µ ∈ mX ·mIX(Γ) ⇔ lµ ∈ mIX(Γ)

⇔ llµ ∈ Γ

⇔ lµ ·mX ∈ Γ

⇔ lµ ∈ ImX(Γ)

⇔ µ ∈ mX · ImX(Γ).

That
IX

I eX //

1IX ""

I2X

mX
��

IX
eIXoo

1IX||
IX

commutes, for the left triangle follows from the fact that for any µ ∈ PXb we have
that

µ ∈ mX · I eX(I) ⇔ lµ ∈ I eX(I)

⇔ lµ · eX ∈ I

⇔ µ ∈ I,

and for the right triangle it follows from

µ ∈ mX · eIX(I) ⇔ lµ ∈ eIX(I)

⇔ lµ(I) = 0

⇔ µ ∈ I.
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3.1.3 The functional power monad
We give an isomorphic description of the monad I as a submonad of the super-
monad introduced in [CLR11] which was called the functional power monad. In
order to avoid confusion in notation with the powerset monad P introduced ear-
lier we change the name of this functional power monad (which was called P in
[CLR11]) to FP. Let FPX stand for the set of all functions

f : PXb // P

that satisfy the following conditions:

(FP1) f is order-preserving.

(FP2) For any µ ∈ PXb and α constant: f(µ	 α) = f(µ)	 α.

(FP3) f(0) = 0.

From (FP2) and (FP3) it follows that for any α constant also f(α) ≤ α. Ap-
plying (FP1) it follows that with µ ≤ α also f(µ) ≤ α, whenever f ∈ FPX . We
use the following notations. For x ∈ X we let

evx : PXb // P : ν 7→ ν(x)

and for ν ∈ PXb we let

evν : FPX // P : f 7→ f(ν).

Note that in view of the previous observations, both functions are bounded. We
define the triple (FP, µ, η) as follows:

FP : Set //Set :

{
X 7→ FPX,
(f : X // Y ) 7→

(
FP f : FPX // FPY : f 7→ f(− · f)

)
.

For any set X , let

ηX : X // FPX : x 7→ evx

and
µX : FP2X // FPX : F 7→

(
PXb // P : ν 7→ F(evν)

)
.

The triple (FP, µ, η) is a monad, called the functional power monad on Set
and denoted by FP.

Definition 3.1.3.1. For any set X consider the following extra condition on the
functions f ∈ FPX
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(FPI) f preserves binary suprema.

The subset of FPX of all maps f : PXb
// P satisfying (FPI) will be denoted

by FPI X .

Let aX : FPI X // FPX be the canonical subset injection.
Observe that for any f : X // Y we have that FPI(f) : FPI X // FPI Y

is well defined as being the restriction of FP(f) to FPI X . Moreover for any set
x ∈ X we have evx ∈ FPI X for every x ∈ X . With evIν the restriction of evν to
FPI we have the following result.

Proposition 3.1.3.2. FPI = (FPI , µ
I , ηI) with

ηIX : X // FPI X : x 7→ evx

and
µIX : FP2

I X // FPI X : F 7→
(
PXb // P : ν 7→ F(evIν)

)
is a submonad of FP.

Proposition 3.1.3.3. For any set X there is a one-to-one correspondence between
functional ideals on X and functions f ∈ FPI X . This correspondence is given by

IX // FPI X : I 7→ l(−)(I) and FPI X // IX : f 7→ Z(f)

with Z(f) the zeroset determined by f. Moreover

l(−)

(
Z(f)

)
= f and Z

(
l(−)(I)

)
= I, (3.12)

for every f ∈ FPI X and I ∈ IX .

Proof. First we need to show that for any f ∈ FPI X which satisfies the given
properties Z(f) is a functional ideal on X . The ideal properties follow from the
fact that f is order- and binary sup-preserving. To prove the saturation property,
let ν ∈ PXb be such that for all ε > 0 there exists a νε ∈ Z(f) with ν ≤ νε + ε. By
(FP2), we get

0 = f(νε) = f(νε + ε)	 ε

so that f(νε + ε) ≤ ε and hence by (FP1) and the arbitrariness of ε it follows that
f(ν) = 0.

Conversely, that for any I ∈ IX , l(−)(I) satisfies (FP1), (FP2), (FP3) and
(FPI) was shown in Proposition 1.1.1.21.
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Finally, given f ∈ FPI X and making use of the appropriate properties, we
have

lν
(
Z(f)

)
= inf{α ∈ P | ν ∈ Z(f)⊕ α}
= inf{α ∈ P | ∃µ ∈ PXb such that f(µ) = 0 : ν ≤ µ+ α}
= inf{α ∈ P | f(ν) ≤ α}
= f(ν).

Given I ∈ IX it follows from the saturation property of functional ideals that

Z
(
l(−)(I)

)
= {ν ∈ PXb | lν(I) = 0} = {ν ∈ PXb | ν ∈ I} = I.

Theorem 3.1.3.4. The monads I = (I,m, e) and FPI = (FPI , µ
I , ηI) are isomor-

phic.

Proof. Let σ : FPI
// I have components

σX : FPIX // IX : f 7→ Z(f).

Then σ is a natural transformation. Indeed, for f : X // Y the diagram

FPIX
FPI f //

σX
��

FPI Y

σY
��

IX
I f // IY

commutes. To see this, take f ∈ FPIX arbitrary, then

σY
(
FPI f(f)

)
= Z

(
FPI f(f)

)
= Z

(
f(− · f)

)
= I f

(
Z(f)

)
= I f

(
σX(f)

)
,

where the third equality follows from the fact that

ν ∈ Z
(
f(− · f)

)
⇔ f(ν · f) = 0

⇔ ν · f ∈ Z(f)

⇔ ν ∈ I f
(
Z(f)

)
,

for ν ∈ PYb arbitrary.
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σ : I // FPI is a morphism of monads. Therefore we check that

σ · µI = m · (σ ∗ σ) (3.13)

and
σ · ηI = e, (3.14)

where the formula for σ ∗ σ can be found in (1.53).
We start with (3.13). The following diagram commutes

FP2
I X

µIX //

(σ∗σ)X
��

FPIX

σX

��
I2X

mX // IX

To see this, first note that for ν ∈ PXb and f ∈ FPI X we have

lν · σX(f) = lν
(
Z(f)

)
= inf{α ∈ P | ν ∈ Z(f)⊕ α}
= f(ν)

= evI
ν(f).

Therefore, for F ∈ FP2
I X arbitrary, we have

mX

(
(σ ∗ σ)X(F)

)
= {ν ∈ PXb | lν ∈ (σ ∗ σ)X(F)}
= {ν ∈ PXb | lν ∈ σIX(FPI σX(F))}
= {ν ∈ PXb | lν ∈ Z(FPI σX(F))}
= {ν ∈ PXb | FPI σX(F)(lν) = 0}
= {ν ∈ PXb | F(lν · σX) = 0}
= {ν ∈ PXb | F(evIν) = 0}
= {ν ∈ PXb | µIX(F)(ν) = 0}
= Z

(
µIX(F)

)
= σX

(
µIX(F)

)
.

That (3.14) holds, follows from the fact that the diagram

X
ηIX //

eX ##

FPIX

σX
��

IX
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commutes as well. Take x ∈ X arbitrary, then

σX(ηIX(x)) = Z(evx)

= {ν ∈ PXb | evx(ν) = 0}
= {ν ∈ PXb | ν(x) = 0}
= eX(x).

That σ is a natural isomorphism follows from Proposition 3.1.3.3 which shows
that all components are isomorphisms.

3.1.4 I is power-enriched
Proposition 3.1.4.1. We consider τ : P // I defined by its components

τX : PX // IX : A 7→ ιX(Ȧ) = {µ ∈ PXb | µ|A = 0}.

1. τ is a monad morphism.

2. The order on IX associated with τ is the opposite of the inclusion order of
functional ideals.

3. (I, τ) is power-enriched.

Proof. 1. That τ is a natural transformation is straightforward. Moreover for
x ∈ X we clearly have τX

(
{x}
)

= ιX(ẋ) = eX(x). Next consider A ⊆
PX . We have

(τ ∗ τ)X(A) =
{
ϕ ∈ PIX

b | ∀A ∈ A : ϕ
(
ιX(Ȧ)

)
= 0
}
.

It follows that

τX(
⋃
A) = {µ ∈ PIX

b | µ|⋃A = 0}

= {µ ∈ PIX
b | ∀A ∈ A : µ|A = 0}

= {µ ∈ PIX
b | ∀A ∈ A : lµ

(
ιX(Ȧ)

)
= 0}

= mX · (τ ∗ τ)X(A).

So we can conclude that τ preserves the monad structure.

2. For I,K ∈ IX , we have

I ≤ K⇔ mX · τIX
(
{I,K}

)
= K.
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For A ⊆ IX we have mX · τIX(A) = {µ ∈ PXb | lµ ∈ ιIX(Ȧ)} =
⋂

I∈A I.
So in particular, for A = {I,K} we obtain for the order ≤ associated with
τ

I ≤ K⇔ I ∩ K = K⇔ K ⊆ I.

So it coincides with the reversed inclusion order on functional ideals.

3. Let f ≤ g for f, g : X // IY and let I ∈ IX . For µ ∈ mY · I g(I) and
x ∈ X we have g(x) ⊆ f(x) and so

lµ · f(x) = inf{α | ∃ν ∈ f(x) : µ ≤ ν + α}
≤ inf{α | ∃ν ∈ g(x) : µ ≤ ν + α}
= lµ · g(x).

It follows that µ ∈ mY · I f(I). Hence we have mY · I g(I) ⊆ mY · I f(I).

3.1.5 Approach spaces as I-monoids
In this section we prove that the categories I-Mon and App are isomorphic. The
constructed isomorphism links I-monoids to approach spaces in terms of their
bounded local approach systems, see Definition 1.1.1.11.

First of all we prove that an I-monoid gives rise to a bounded local approach
system. We will need the following preliminary result.

Proposition 3.1.5.1. For any ν : X // IX , for µ ∈ PXb and x ∈ X the following
are equivalent:

(i) ∃β ∈ ν(x),∀z ∈ X : µ ∈ ν(z)⊕ β(z).

(ii) lµ · ν ∈ ν(x).

Proof. (i) ⇒ (ii): Suppose (i). For z ∈ X determine η ∈ ν(z) such that µ ≤
η + β(z). This implies

lµ · ν(z) = inf{α ∈ P | ∃η ∈ ν(z) : µ ≤ η + α} ≤ β(z)

for any z ∈ X . Since β ∈ ν(x) we get lµ · ν ∈ ν(x).
(ii)⇒ (i): Suppose lµ · ν ∈ ν(x). So there exists β ∈ ν(x) with lµ · ν ≤ β.

For z ∈ X we have lµ · ν(z) ≤ β(z) which implies lµ · ν(z) ≤ α for every α with
β(z) ≤ α. By definition of lµ it follows that

β(z) ≤ α⇒ µ ∈ ν(z)⊕ α,

so we can conclude µ ∈ ν(z)⊕ β(z).
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Theorem 3.1.5.2. If (X, ν) with ν : X // IX is an I-monoid, then
(
ν(x)

)
x∈X is

a bounded local approach system on X .

Proof. By definition ν(x) is a functional ideal and by reflexivity ν(x) ⊆ {µ ∈
PXb | µ(x) = 0} for every x ∈ X . By transitivity we have ν · ν ≤ ν, hence for all
x ∈ X : ν(x) ⊆ mX · I ν · ν(x) and thus

µ ∈ ν(x) ⇒ µ ∈ mX · I ν · ν(x)

⇒ lµ · ν ∈ ν(x).

By Proposition 3.1.5.1 this means that there exists β ∈ ν(x) such that for all
z ∈ X

µ ∈ ν(z)⊕ β(z).

For z ∈ X choose ϕz ∈ ν(z) such that µ ≤ ϕz + β(z) and put ψz = ϕz for z 6= x
and ψx = ϕx ∨ β. For z and y arbitrary we now have

µ(y) ≤ ψz(y) + ψx(z).

In order to prove the reverse implication we first need a preliminary result
from [Low15] which we formulate without proof.

Proposition 3.1.5.3. If an approach space is given by its bounded local approach
system

(
Ab(x)

)
x∈X then the operator u : PXb

// PXb defined by

u(µ)(x) = inf
ϕ∈Ab(x)

sup
y∈X

(
µ(y)− ϕ(y)

)
and called the upper hull operator, is expansive and idempotent, preserves finite
suprema and satisfies u(0) = 0 and u(µ+ α) = u(µ) + α, for every α <∞.

Moreover the bounded approach system can be recovered from u by means of
the following equivalence:

ϕ ∈ Ab(x)⇔ u(ϕ)(x) = 0

for every x ∈ X .

Proposition 3.1.5.4. Let
(
Ab(x)

)
x∈X be a bounded local approach system on X .

For x ∈ X and ϕ ∈ Ab(x) there exists β ∈ Ab(x) such that for all z ∈ X

ϕ ∈ Ab(z)⊕ β(z).
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Proof. Given ϕ ∈ Ab(x) let β = u(ϕ) be the upper hull of ϕ in the sense of
Proposition 3.1.5.3. In view of Theorem 1.2.40 in [Low15] it follows that β ∈
Ab(x).

Next since u(β) = β, for z ∈ X arbitrary, we have

β(z) = inf
ϕ∈Ab(z)

sup
y∈X

(
β(y)− ϕ(y)

)
.

This means that for ε > 0 there exists ϕε ∈ Ab(z) such that(
β − β(z)

)
∨ 0 ≤ ϕε + ε.

So we have
(
β−β(z)

)
∨0 ∈ Ab(z) and using the fact that ϕ ≤ β ≤

(
β−β(z)

)
∨

0 + β(z) we are done.

Theorem 3.1.5.5. Let
(
Ab(x)

)
x∈X be a bounded approach system on X , then

Ab : X // IX : x 7→ Ab(x)

is an I-monoid.

Proof. Reflexivity follows easily from the fact that Ab(x) ⊆ ιX(ẋ) for every x ∈
X . In order to prove transitivity let µ ∈ Ab(x). Apply Proposition 3.1.5.4 to find
β ∈ Ab(x) such that µ ∈ Ab(z)⊕ β(z) for all z ∈ X and then Proposition 3.1.5.1
to conclude lµ · Ab ∈ Ab(x). It follows that

µ ∈ mX · IAb · Ab(x).

Theorem 3.1.5.6. The categories I-Mon and App are isomorphic.

Proof. By Theorem 3.1.5.2 and Theorem 3.1.5.5, the objects of I-Mon and App
correspond.

To see that the morphisms correspond as well, let f : X // Y be a map and
supposeX and Y are endowed with I-monoids νX : X // IX and νY : Y // IY
respectively. Based on Theorem 3.1.5.2 and Theorem 3.1.5.5 these structures
are in bijective correspondence with bounded approach systems

(
νX(x)

)
x∈X and(

νY (y)
)
y∈Y . Clearly we have

I f · νX ≤ νY · f ⇔ ∀x ∈ X, ∀ϕ ∈ νY
(
f(x)

)
: ϕ · f ∈ νX(x).
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3.1.6 Approach spaces as relational algebras
Let Ǐ be the Kleisli extension of I to Rel, as introduced in (1.98), which is a lax
extension of the monad I. The monad I and its Kleisli extension to Rel give the
category of relational I-algebras, (I, 2)-Cat, with objects pairs (X, a) with X a set
and a : IX−→7 X a relation that satisfies transitivity

Φ (̌Ia)K & K a x⇒ mX(Φ) a x, (3.15)

for any Φ ∈ I IX,K ∈ IX and x ∈ X , and reflexivity

ιX(ẋ) a x, (3.16)

for any x ∈ X , and morphisms f : (X, aX) // (Y, aY ) satisfying

f · aX ≤ aY · I f. (3.17)

By Theorem 1.4.3.3, we get I-Mon ∼= (I, 2)-Cat and the isomorphism between
the categories I-Mon and (I, 2)-Cat is built on the following equivalence. For an
I-monoid (X, ν) the corresponding relational I-algebra (X, a) is given by

I a x⇔ I ≤ ν(x).

For a relational I-algebra (X, a) the corresponding I-monoid (X, ν) is given by

ν(x) =
⋂
I a x

I.

Theorem 3.1.6.1. The categories App and (I, 2)-Cat are isomorphic,

App ∼= (I, 2)-Cat.

Proof. This follow from Theorem 3.1.5.6 were we showed

App ∼= I-Mon

and from Theorem 1.4.3.3 which implies

(I, 2)-Cat ∼= I-Mon.

Since in App convergence of functional ideals is defined by

I� x⇔ Ab(x) ⊆ I,

and by Theorems 3.1.5.5 and 3.1.5.2, we get that functional ideal convergence
coincides with the reflexive and transitive relation a : IX−→7 X as above. In
what follows we will be writing

I� x instead of I a x.

Using this notation, it is clear that (3.17) coincides with the definition of a
contraction in terms of functional ideal convergence.
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3.1.7 Approach spaces via functional ideal convergence
On one hand functional ideal convergence is characterized by the two axioms
(3.15) and (3.16) above. In Section 1.1.1, we have seen that functional ideal con-
vergence is described using the axioms (F1), (F2) and (F3), or equivalently, (F1),
(F2w) and (F).

In order to explain the direct connection between the two equivalent axiom
systems, for a relation r : X−→7 Y , we give an explicit description of Ǐr appearing
in (3.15). Given r : X−→7 Y , for ν ∈ PY and µ ∈ PX we define

r∧ν(x) := inf
(x,y)∈r

ν(y)

where as usual the value is∞ if no such y exists, and

r∨µ(y) := sup
(x,y)∈r

µ(x)

where as usual the value is 0 if no such x exists.
The following verifications are easy.

Proposition 3.1.7.1. For any r : X−→7 Y , for ν ∈ PY and µ ∈ PX we have

1. r∧ : PY // PX and r∨ : PX // PY are well defined and monotone.

2. r∧ · r∨µ ≥ µ and r∨ · r∧ν ≤ ν.

3. r∧ is right adjoint and therefore preserves infima.

4. r∨ is left adjoint and therefore preserves suprema.

For a relation r : X−→7 Y and B ⊆ PYb we define

r∧B := {µ ∈ PXb | ∃ν ∈ B : µ ≤ r∧ν}.

Proposition 3.1.7.2. If K is a functional ideal on Y , then the collection r∧K is a
functional ideal on X .

Proof. That r∧K is an ideal follows immediately from Proposition 3.1.7.1. To see
that it is saturated let µ be bounded on X and suppose that for every ε > 0 there
is some µε bounded and νε ∈ K with µ ≤ µε + ε ≤ r∧νε + ε = r∧(νε + ε). For
ν = infε>0(νε + ε) and again applying Proposition 3.1.7.1, we have

µ ≤ inf
ε>0

r∧(νε + ε) = r∧(inf
ε>0

νε + ε) = r∧(ν)

and hence we can conclude that µ ∈ r∧K.
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Proposition 3.1.7.3. If f : X // Y is a map then

1. For any ν ∈ PYb : f∧ν = ν · f and f∧ν ∈ PXb .

2. I f : IX // IY is right adjoint since for any I ∈ IX and K ∈ IY , f∧K ⊆ I
if and only if K ⊆ I f(I).

Proof. 1. is immediate. To prove 2. let ν ∈ K ⊆ I f(I) then obviously we have
ν · f ∈ I and thus f∧K ⊆ I. Conversely if ν ∈ K and f∧K ⊆ I then this implies
ν · f ∈ I and thus ν ∈ I f(I).

Proposition 3.1.7.4. Let r : X−→7 Y be a relation, I a functional ideal on X and
B an ideal basis in PYb . If r∧B ⊆ I then r∧B̂ ⊆ I.

Proof. Let r∧B ⊆ I. Take ν ∈ B̂, ω < ∞ and ε > 0. There is ν ′ ∈ B such that
ν ≤ ν ′ + ε. This yields

r∧ν ∧ ω ≤ r∧(ν ′ + ε) ∧ ω
= (r∧ν ′ + ε) ∧ ω
≤ r∧ν ′ ∧ ω + ε.

Because r∧ν ′ ∧ ω ∈ I and ε was arbitrary we obtain r∧ν ∧ ω ∈ I.

Proposition 3.1.7.5.

(I,K) ∈ Ǐr if and only if r∧K ⊆ I.

Proof. Let r : X−→7 Y and for y ∈ Y let

Iy = {η ∈ PXb | η(x) = 0 whenever (x, y) ∈ r}

with Iy = PXb if no such x exists. Further let jr : Y // IX be the map that sends
y to Iy. For the Kleisli extension and functional ideals I and K we have

I ǏrK⇔ mX(I jrK) ⊆ I.

In order to see that this condition is equivalent to r∧K ⊆ I, observe that

mX(I jrK) ⊆ I⇔ (∀µ ∈ PXb : lµ · jr ∈ K⇒ µ ∈ I)

where

lµ · jr(y) = inf
{
α | ∃η ∈ PXb , η(x) = 0 whenever (x, y) ∈ r, µ ≤ η + α

}
= sup

(x,y)∈r
µ(x)

= r∨µ(y).
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By the right adjointness of r∧ we have µ ∈ r∧K⇔ r∨µ ∈ K which implies

mX(I jrK) ⊆ I⇔ r∧K ⊆ I.

Note that Ǐ is not a flat extension in the sense of (1.68), meaning that for a map
f : X // Y , the relation Ǐf may differ from I f . For ideals I and K we have
(I,K) ∈ Ǐf if and only if K ⊆ I f(I). In particular if I = ιX(F) ⊕ α for some
filter F on X then all functional ideals K of type ιY (f(F))⊕ β, for some β ≤ α
satisfy (I,K) ∈ Ǐf .

Now we are ready to show the direct correspondence between the axioms for
functional ideal convergence (X,�) either as an (I, 2)-Cat space, or as an object
of App as described in Definition 1.1.1.23 and Theorem 1.1.1.24.

Theorem 3.1.7.6. For a functional ideal convergence (X,�) the following con-
ditions are equivalent:

(i) (X,�) belongs to (I, 2)-Cat, meaning it satisfies (3.16) and (3.15).

(ii) (X,�) satisfies (F1), (F2w) and (F) from Theorem 1.1.1.24.

(iii) (X,�) satisfies (F1), (F2w), (F2) and (F).

Proof. (i)⇒ (ii) (3.16) implies (F1). Next we prove (F2w). Suppose I and K are
given functional ideals on X with K ⊆ I. We show that there exists a functional
ideal Φ on IX with a∧K ⊆ Φ and mX(Φ) = I. Put Φ = B̂ with

B = {ϕ ∨ lµ | ϕ ∈ PIX
b , ϕ ∈ a∧K, µ ∈ I}.

Remark that the collection B is an ideal basis on IX and that m∗X(I) ⊆ Φ, which
already implies I ⊆ mX(Φ). In order to show the other inclusion let ν ∈ mX(Φ)
and ε > 0. There exist ϕε ∈ a∧K bounded and µε ∈ I such that

lν ≤ (ϕε ∨ lµε) + ε.

Choose ηε ∈ K such that ϕε ≤ a∧ηε. Then for x ∈ X we have

ν(x) = lν
(
ιX(ẋ)

)
≤

(
a∧ηε

(
ιX(ẋ)

)
∨ µε(x)

)
+ ε

≤ inf
ιX(ẋ)�z

(
ηε(z) ∨ µε(x)

)
+ ε

≤
(
ηε(x) ∨ µε(x)

)
+ ε.
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Then we have Φ ǏaK and K� x and (3.15) implies mXΦ = I� x.
In order to prove condition (F), let ψ : A → X and s : A // IX a selection

satisfying s(z)� ψ(z) for every z ∈ A and let I be a functional ideal on A such
that Iψ(I)� x. Put K = Iψ(I) and Φ = I s(I). We claim that a∧K ⊆ Φ. Indeed
for ϕ bounded and µ ∈ K with ϕ ≤ a∧µ and z ∈ A we have

ϕ · s(z) ≤ a∧µ
(
s(z)

)
= inf

s(z)�y
µ(y) ≤ µ

(
ψ(z)

)
.

Since µ · ψ ∈ I we have ϕ ∈ Φ. It follows that mX(Φ)� x.
(ii)⇒ (iii) This part of the proof can be found in [Low15].
(iii)⇒ (i) By definition we have ιX(ẋ) � x and so (3.16) holds. In order to

prove (3.15) let K ∈ IX with K� x and a∧K ⊆ Φ on IX . Consider the selection
s : X // IX defined by s(z) =

⋂
I�z I. We prove that

mX

(
I s(K)

)
⊆ mX(a∧K).

Applying (3.5), let ν ∈ mX

(
I s(K)

)
=
⋃
ϕ∈K

⋂
z∈X s(z) ⊕ ϕ(z). Choose ϕ ∈ K

and (ϕz)z∈X with ϕz ∈ s(z) for every z ∈ X such that

ν = inf
z∈X

(
ϕz + ϕ(z)

)
.

Let I ∈ IX . For every z ∈ X with I � z we have s(z) ⊆ I and therefore
lν(I) ≤ ϕ(z). Let ω = sup lν , then it follows that lν(I) ≤ inf(I,z)∈a ϕ(z) ∧ ω =
(a∧ϕ ∧ ω)(I). So we have shown that

lν ≤ a∧ϕ ∧ ω,

from which we conclude that lν ∈ a∧K. It follows that

mX

(
I s(K)

)
⊆ mX(Φ)

and applying (F2w) we have mX(Φ)� x.

3.2 Prime functional ideal convergence
In this section we consider prime functional ideals and their monad B, which we
introduce as a submonad of I through a monad morphism γ : B // I. We show
that B is both sup-dense and interpolating in I in the sense of [HST14] and as
a corollary we obtain an isomorphism between (I, 2)-Cat and (B, 2)-Cat. Since
we already know that (I, 2)-Cat is isomorphic to App, we obtain the results from
[LV08] that the category (B, 2)-Cat, of relational B-algebras and structure pre-
serving morphisms is isomorphic to App. We give an easy characterization of
convergence of prime functional ideals in App.
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3.2.1 Prime functional ideals and their monad
Prime functional ideals have been studied in [LVOV08] and [LV08].

Definition 3.2.1.1. A functional ideal I on X is called prime if for all bounded
functions µ, ν

µ ∧ ν ∈ I⇒ µ ∈ I or ν ∈ I.

The set of all prime functional ideals on X will be denoted as BX . Note that
PXb ∈ BX which is called improper as before.

We have the following relation between prime functional ideals on a setX and
ultrafilters on X . For a proof, we refer to Theorem 1.1.51 in [Low15].

Theorem 3.2.1.2. A proper functional ideal I on X is prime if and only if there
exists an ultrafilter U on X such that

I = ιX(U)⊕ c(I). (3.18)

Proposition 3.2.1.3. If I is a prime functional ideal and H is a finer functional
ideal, then H is prime too and moreover there exists α ≥ 0 such that H = I⊕ α.

The collection of all prime functional ideals finer than I is denoted by B(I).
If I is a proper functional ideal then the set of all finer prime functional ideals has
minimal elements. The collection of minimal prime functional ideals finer than I
is denoted by Bm(I) and we have

I =
⋂
{H | H ∈ Bm(I)}. (3.19)

The following proposition will be useful and can be found in [Low15] as
Proposition 1.1.56.

Proposition 3.2.1.4. If I is a proper functional ideal, and for each minimal prime
functional ideal K ∈ Bm(I) we have a function ρ(K) ∈ K then for any α ∈
[c(I),∞[ there exists a finite set Bα ⊆ Bm(I) such that

inf
K∈Bα

ρ(K) ∈ I ∨ ιX
(
fα(I)

)
.

Proposition 3.2.1.5. If I is a proper functional ideal, then there exists H ∈ Bm(I)
with c(H) = c(I).

Proof. Suppose for every H ∈ Bm(I) we have c(H) > c(I). By application of
Proposition 3.2.1.4 we can choose a finite number of these ideals H1, · · · ,Hn with

β = min
i=1,··· ,n

c(H) ∈ I ∨ ιX
(
f(I)

)
.
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It means that for ε > 0 with c(I) + 2ε < β there exist ω < ∞ and ν ∈ I and
c(I) < γ < c(I) + ε and µ ∈ I with

β ≤ (µ+ θω{ν<γ}) + ε.

Since µ∨ ν ∈ I there exists x ∈ X with µ∨ ν(x) < γ. Since ν(x) < γ we would
have

β ≤
(
µ(x) ∨ 0

)
+ ε < γ + ε < β.

For a map f : X //Y , if H is a prime functional ideal on X , then clearly also
{µ ∈ PYb | µ · f ∈ H} is prime, so the restriction of I f to BX becomes a map
B f : BX // BY sending H to B f(H) = {µ ∈ PYb | µ · f ∈ H}. With these
definitions

B : Set // Set

sending X to BX and f to B f defines a functor on Set.
Next we consider the diagonal operation for prime functional ideals. For given

X let γX : BX // IX be the canonical injection. For Θ ∈ BBX we consider

ΘIX = {ϕ ∈ PIX
b | ϕ · γX ∈ Θ} ∈ I IX.

Further let
lB : PXb // PBX

b : µ 7→ lBµ = lµ · γX
so

lBµ(M) = inf{α ∈ P | µ ∈M⊕ γ}

whenever M ∈ BX . Clearly lB is well-defined. So we can put

nX(Θ) = {µ ∈ PXb | lBµ ∈ Θ}.

Then nX(Θ) is a prime functional ideal and we have γX
(
nX(Θ)

)
= mX(ΘIX).

The prime functional ideal monad B = (B, n, e) on Set has multiplication and
unit with components

nX : BBX // BX : Θ 7→ nX(Θ)

and
eX : X // BX : x 7→ ιX(ẋ)

and B is a submonad of I via the monad morphism γ : B // I with components
γX as defined above. The monad B is not power-enriched, as in general BX is
not a complete lattice.
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3.2.2 Relational B-algebras

The extension to Rel of B = (B, n, e) is defined as the initial extension induced by
the Kleisli extension Ǐ. So for any relation r : X−→7 Y , we have

M B̌rN⇔ γX(M) Ǐr γY (N)⇔ r∧γY (N) ⊆ γX(M)

for prime functional ideals M ∈ BX and N ∈ BY . It coincides with the exten-
sion that was considered in [LVOV08] and defines a lax extension of the monad
B = (B, n, e) to Rel.

The category (B, 2)-Cat of relational B-algebras, associated with this lax ex-
tension B̌ = (B̌, n, e) has as objects pairs (X, a) with X a set and a : BX−→7 X
a relation satisfying transitivity

Θ B̌aM&M a x⇒ nX(Θ) a x (3.20)

for any Θ ∈ BBX,M ∈ BX and x ∈ X and reflexivity

ιX(ẋ) a x (3.21)

for any x ∈ X . Morphisms f : (X, aX) // (Y, aY ) satisfy

f · aX ≤ aY · B f. (3.22)

We recall some terminology from [HST14]. Consider a monad morphism
α : S // T, where T = (T,m, e) is a power-enriched monad with structure
τ : P // T and equipped with its Kleisli extension Ť , and S = (S, n, d) is a
monad equipped with its initial extension Ŝ induced by α. The monad morphism
is sup-dense if one has

∀X ∈ TX∃A ⊆ SX : X =
∨

αX(A). (3.23)

When S is a sub-monad of T and the embedding is sup-dense, we simply say that
S is sup-dense in T.

Proposition 3.2.2.1. The monad B is sup-dense in I.

Proof. As we recalled earlier every functional ideal K can be written as the inter-
section

K =
⋂
{H | H ∈ B(K)}

of all prime functional ideals finer than K.
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Next we show that the monad morphism γ : B // I is interpolating in the
sense of [HST14]. We recall the notations used in Proposition 3.1.7.5. For a
relation r : BX−→7 X we have a map

jr : X // I BX : y 7→ Φy

where
Φy = {ϕ ∈ PBX

b | ϕ(H) = 0,∀H with H r y} = r∧ιX(ẏ).

Proposition 3.2.2.2. The monad morphism γ : B // I is interpolating, that is for
every relation r : BX−→7 X and y ∈ X we have:

H ∈ BX,mX

(
r∧ιX(ẏ)

)
⊆ H⇒ ∃Θ ∈ BBX, r∧ιX(ẏ) ⊆ Θ and nX(Θ) ⊆ H.

Proof. Let H ∈ BX with mX

(
r∧ιX(ẏ)

)
⊆ H.

We claim that with Cy = {K ∈ BX | K r y}, there exists an ultrafilterW on
BX , with Cy ∈ W and such that⋃

W∈W

⋂
I∈BX,I∈W

I ⊆ H.

Suppose on the contrary that for every ultrafilter W containing Cy there is a set
W ∈ W with

⋂
I∈BX,I∈X I * H. Choose a finite subcollection (Wi)i∈J , of these

ultrafilters and corresponding sets Wi ∈ Wi such that Cy ⊆
⋃
i∈JWi and further

for every i ∈ J some µi ∈
⋂

I∈Wi
I with µi /∈ H. Put µ =

∧
i∈J µi then we have

µ /∈ H since this is a prime functional ideal. On the other hand we have

µ ∈
⋂
⋃
Wi

I ⊆
⋂
Cy

I ⊆ {µ ∈ PXb | lµ|Cy = 0} = mX

(
r∧ιX(ẏ)

)
⊆ H.

A contradiction follows and so we are done with the proof of our claim.
Now let Θ = ιBX(W). For every ϕ ∈ PBX

b with ϕ|Cy = 0 we have ϕ ≤ θαCy
for α = supϕ. So we have r∧ιX(ẏ) ⊆ ιBX(W). Moreover by (3.3)

nX(Θ) =
∨
A∈W

⋂
I∈A

I ⊆ H.

Using both sup-density and the interpolating property, the results in [HST14]
imply that (B, 2)-Cat and (I, 2)-Cat are isomorphic and combining with the results
in Section 3.1, it follows that (B, 2)-Cat and App are isomorphic too, which was
already established in [LV08].

Theorem 3.2.2.3. (B, 2)-Cat and (I, 2)-Cat are isomorphic categories and both
provide an isomorphic description of App.



96 CHAPTER 3. APPROACH SPACES AS RELATIONAL ALGEBRAS

3.2.3 Convergence for prime functional ideals
In what follows we will be writing

K x instead of K a x

for the convergence of prime functional ideals satisfying (3.20) and (3.21) and
one obtains a restriction of functional ideal convergence to prime functional ideals
describing convergence in App.

As in (3.22) morphisms f : (X, X) // (Y, Y ) can be equivalently de-
scribed as preserving convergence in the sense that

K X x⇒ B f(K) Y f(x),

for all K ∈ BX and x ∈ X .
Next we prove that the objects in App can be described by means of an equiv-

alent set of axioms on convergence of prime functional ideals. Consider the fol-
lowing conditions:

Definition 3.2.3.1. (B1) For every x ∈ X : ιX(ẋ) x.

(B1*) For every x ∈ X and α <∞: ιX(ẋ)⊕ α x.

(B2) For any two prime functional ideals with M ⊆ N and x ∈ X

M x⇒ N x.

(B) For any setA, for any ψ : A //X , for any s : A //BX , for any M ∈ B(A)
and for any x ∈ X

s(a) ψ(a) whenever a ∈ A& Bψ(M) x⇒ nX
(
B s(M)

)
 x.

(B*) For any setA, for any ψ : A //X , for any s : A //BX , for any M ∈ B(A)
and for any x ∈ X and α <∞

s(a) ψ(a) whenever a ∈ A& Bψ(M) x⇒ nX
(
B s(M)

)
⊕ α x.

Proposition 3.2.3.2. For a relation ⊆ BX ×X the following are equivalent:

(B1) + (B*)⇔ (B1*) + (B)⇔ (B1) + (B) + (B2)⇔ (B1*) + (B*).

Proof. We prove the non-trivial implications. Suppose  ⊆ BX × X satisfies
(B1) + (B*). In order to prove (B1*) let x ∈ X and α < ∞ and consider A =
X,ψ : X //X : z 7→ z, M = ιX(ẋ) and the selection s(z) = ιX(ż) for z ∈ X .
Then by (3.5) nX

(
B s(M)

)
⊕ α = ιX(ẋ)⊕ α and hence the conclusion follows.
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Next we show that (B1*) + (B) implies (B2). Let K, I ∈ BX so that K ⊆ I.
Then from Proposition 3.2.1.3 we know there exists α ≥ 0 such that I = K ⊕ α.
Put ψ : X //X : z 7→ z, s : X // BX : z 7→ ιX(ż)⊕ α, then it follows that

nX B s(K) = {µ | lµ · s ∈ K}
= {µ | (µ− α) ∨ 0 ∈ K}
= K⊕ α,

and hence, since s(z)  z for each z ∈ X , we obtain K  x implies K ⊕ α  
x.

Proposition 3.2.3.3. For a relation a : BX−→7 X satisfying (B1) and a functional
ideal K on X we have c(K) = c(a∧K) and in particular a∧K is improper if and
only if K is improper.

Proof. We prove that K and a∧K contain the same constants. Let α ∈ K, then
clearly α ≤ a∧α and therefore α ∈ a∧K. Conversely, let α ∈ a∧K and choose
some ν ∈ K such that α ≤ a∧ν. For z ∈ X arbitrary we have

α ≤ a∧ν
(
ιX(ż)

)
= inf

ιX(ż) y
ν(y) ≤ ν(z).

We can conclude that α ≤ ν, so we have α ∈ K.

Theorem 3.2.3.4. For (X, ) a convergence of prime functional ideals, the fol-
lowing properties are equivalent:

(i) (X, ) satisfies (3.20) and (3.21).

(ii) (X, ) satisfies (B1) and (B*).

(iii) (X, ) satisfies (B1), (B2) and (B).

Proof. (i) ⇒ (ii) Clearly (3.21) implies condition (B1). Next we have to check
condition (B*). Let A be a set and ψ : A → X, s : A → BX, L ∈ B(A) and
x ∈ X . Suppose s(z) ψ(z), ∀z ∈ A and Bψ(L) x. Then put B s(L)⊕α =
Θ ∈ BBX for α <∞.

For ν ∈ a∧ Bψ(L), let µ be bounded on A such that µ · ψ ∈ L and ν ≤ a∧µ.
Then it is easily seen that ν · s ≤ µ · ψ on A. So we may conclude that ν · s ∈ L
and ν ∈ B s(L) ⊕ α. It follows that a∧ Bψ(L) ⊆ Θ and therefore nX(Θ)  x.
So we can conclude that nX(B s(L))⊕ α x.

(ii)⇒ (iii) follows from Proposition 3.2.3.2.
(iii) ⇒ (i) (3.21) follows at once from (B1). Let x ∈ X , Θ ∈ BBX and

K ∈ BX with K x and a∧K ⊆ Θ. We may assume that nX(Θ) is proper, so Θ
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is proper, and in view of Proposition 3.2.3.3 K is proper too. By Theorem 3.2.1.2
there exist U ,U , γ and δ such that K = ιX(U)⊕ γ and Θ = ιBX(U )⊕ δ, where
both γ and δ are finite.
As a first step in the proof we assume that δ = γ. Let

A = {(z,I) | I z, I ∈ BX, z ∈ X}.

We show that U ×U has a trace on A. For U ∈ U and A ∈ U and γ < ω < ∞
the function

ϕ = (a∧(θωU + γ) ∧ ω) ∨ (θωA + γ)

belongs to Θ. We evaluate ϕ in an arbitrary L ∈ BX.
Either L 6∈ A and then the second term equals ω + γ ≥ ω, or L ∈ A. In case L
diverges the first term equals ω. In case L does converge, but never to a point of
U , the first term equals ω + γ ≥ ω. Since ϕ cannot be larger than ω in every L,
we can conclude that ∃L0 ∈ A that converges to some z0 ∈ U. Then (z0,L0) ∈
A ∩ (U ×A).

LetW be an ultrafilter on A finer than the trace of U ×U on A, ψ : A → X
the restriction of the first projection, and s : A→ BX the restriction of the second
projection. Then we have ψ(W) = U and s(W) = U and s(z) ψ(z),∀z ∈ A
by construction. With I = ιA(W)⊕ γ we now have Θ = B s(I) and K = Bψ(I).
By (iii) we can conclude that nX(Θ) x.

As a second step we now assume that δ 6= γ. In view of Proposition 3.2.3.3
we have γ ≤ δ. Let K′ = ιX(U)⊕ δ we show that a∧K′ ⊆ Θ.

To see this let U ∈ U , ω > δ, η > ω+γ, η > ω+ δ and let 0 < ε < γ. Choose
A ∈ U and ω′ ≥ ω such that for ϕγ = a∧(θωU + γ) ∧ η one has

ϕγ ≤ θω
′

A + δ + ε.

We claim that also ϕδ = a∧(θωU + δ) ∧ η satisfies

ϕδ ≤ θω
′

A + δ + ε.

To evaluate both sides of the inequality in a prime functional ideal L, observe that
the right-hand side takes values δ+ε (when L ∈ A) and ω′+δ+ε (when L 6∈ A).
So the inequalities in case where L diverges or converges to at least one point of
U are trivially fulfilled. In case L converges but never to a point of U , L ∈ A
would imply ϕγ(L) = ω + γ ≤ δ + ε which is impossible. So we may assume
L 6∈ A and then ϕδ(L) ≤ δ + ε.

By (B2) we have K′  x and by application of the first step we can conclude
that nX(Θ) x.



Chapter 4

Topological properties in App and
NA-App

In this chapter we look at (T,V)-categories as spaces. When considering a (T,V)-
category (X, a) and denoting a : TX−→7 X by→⊆ TX×X , it gives us a notion
of convergence on X . Inspired by the topological properties in Top and the fact
that Top ∼= (�, 2)-Cat, topological properties were introduced in arbitrary (T,V)-
categories [HST14].

We start this chapter by recalling the definitions of topological properties in
(T,V)-Cat, as can be found in Chapter V of [HST14]. We also recall the known
results for these properties in Top ∼= (�, 2)-Cat and App ∼= (�,P+)-Cat.

In Section 4.2, we apply these definitions to the lax algebraic representation
of the category of non-Archimedean approach spaces, NA-App ∼= (�,P∨)-Cat, as
introduced in Chapter 2.

In Section 4.3, we apply this theory to relational algebras and in particular to
the relational representations of App as (I, 2)-Cat and (B, 2)-Cat as developed in
Chapter 3.

4.1 Basic concepts

4.1.1 Hausdorff separation and lower separation axioms

Definition 4.1.1.1. A (T,V)-space (X, a) is (T,V)-Hausdorff if

a · a◦ ≤ 1X . (4.1)

The following characterization of (T,V)-Hausdorff can be found as Proposi-
tion V.1.1.2 in [HST14].

99
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Proposition 4.1.1.2. A (T,V)-space (X, a) is (T,V)-Hausdorff if and only if, for
all x, y ∈ X and Z ∈ TX ,

⊥< a(Z, x)⊗ a(Z, y)⇒ x = y and a(Z, x)⊗ a( Z, y) ≤ k. (4.2)

Examples 4.1.1.3. 1. In Top ∼= (�, 2)-Cat the notion of (�, 2)-Hausdorff co-
incides with the usual Hausdorff separation property. For a relational �-
algebra (X,→) the condition becomes

∀x, y ∈ X, ∀Z ∈ βX : (Z → x&Z → y ⇒ x = y). (4.3)

We conclude
(�, 2)-Cat(�,2)−Haus ∼= Haus.

2. For App ∼= (�,P+)-Cat we have seen in Theorem 1.3.7.2 that there is a
one-to-one correspondence between limit operators on X and reflexive and
transitive (�,P+)-relations a : βX−→7 X . An approach space (X,λ) is
(�,P+)-Hausdorff if and only if

∀x, y ∈ X, ∀Z ∈ βX : λZ(x) <∞&λZ(y) <∞⇒ x = y. (4.4)

This notion is clearly stronger than the classical notion of Hausdorff sepa-
ration in approach theory [LS03], where an approach space is called Haus-
dorff if its topological coreflection CTopX is Hausdorff, i.e.

∀x, y ∈ X, ∀Z ∈ βX : λZ(x) = 0 &λZ(y) = 0⇒ x = y. (4.5)

For a (T,V)-space, we now consider an array of low separation and symmetry
conditions, with the terminology borrowed from the role model Top ∼= (�, 2)-Cat.

Definition 4.1.1.4. Let (X, a) be a (T,V)-space.

1. (X, a) is (T,V)-T0 if

(a · eX) ∧ (a · eX)◦ ≤ 1X . (4.6)

2. (X, a) is (T,V)-T1 if
a · eX ≤ 1X . (4.7)

3. (X, a) is (T,V)-R0 if
(a · eX)◦ ≤ a · eX . (4.8)

4. (X, a) is (T,V)-R1 if
a · a◦ ≤ a · eX . (4.9)
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We recall Proposition V.2.2.1 for [HST14].

Proposition 4.1.1.5. The following implications hold for a (T,V)-space (X, a):

(T,V)-T1 (T,V)-T0 &ks +3

(T,V)-Hausdorff (T,V)-T1 &ks +3(T,V)-Hausdorff

(T,V)-T1

��

(T,V)-T1 &

(T,V)-T0 &
��

(T,V)-R1

(T,V)-R0

��

Examples 4.1.1.6. 1. In Top ∼= (�, 2)-Cat all conditions coincide with the
usual lower separation and symmetry axioms in Top.

We recall that a topological space X is R0 if

∀x, y ∈ X : x ∈ cl{y} ⇔ y ∈ cl{x}.

A topological space X is R1 if

∀x, y ∈ X : V(x) ∨ V(y) is a proper filter on X⇒ V(x) = V(y).

2. In App ∼= (�,P+)-Cat one has the following characterizations:

(X,λ) is (�,P+)-T0 (4.10)
⇔ ∀x, y ∈ X : λẋ(y) <∞&λẏ(x) <∞⇒ x = y,

(X,λ) is (�,P+)-T1 (4.11)
⇔ ∀x, y ∈ X : λẋ(y) <∞⇒ x = y;

(X,λ) is (�,P+)-R0 (4.12)
⇔ ∀x, y ∈ X : λẋ(y) = λẏ(x);

(X,λ) is (�,P+)-R1 (4.13)
⇔ ∀x, y ∈ X, ∀Z ∈ βX : λẋ(y) ≤ λZ(x) + λZ(y).

The following definitions of separation properties in App were introduced
by Lowen and Sioen in [LS03].

(X,λ) is T0 (4.14)
⇔ ∀x, y ∈ X : λẋ(y) = 0 &λẏ(x) = 0⇒ x = y;

(X,λ) is T1 (4.15)
⇔ ∀x, y ∈ X : λẋ(y) = 0⇒ x = y.

For now we omit the notions R0 and R1 (the last one called R in [LS03]) in
App, but we will get back to these in 4.3.3 in more detail.
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It is clear that (�,P+)-T0 ((�,P+)-T1 respectively) implies T0 in App (T1 in
App respectively) and that X is T0 in App (T1 respectively) if and only if
the topological coreflection CTopX is T0 (T1 respectively) in Top.

The following counterexample shows that the converse does not hold. Con-
siderX =

(
{x, y}, d

)
where d is the metric structure d(x, y) = d(y, x) = α,

for 0 < α < ∞, and d(x, x) = d(y, y) = 0. Then X is T1 (and hence T0)
since λȧ(b) = 0 if and only if d(b, a) = 0, for a, b ∈ X . However, X is not
(�,P+)-T0 (and hence not (�,P+)-T1), since λẋ(y) = d(y, x) = α <∞ and
λẏ(x) = α <∞, but x 6= y.

4.1.2 Compactness
Definition 4.1.2.1. A (T,V)-space (X, a) is (T,V)-compact if

1TX ≤ a◦ · a. (4.16)

The following characterization can be found as Proposition V.1.1.2 in [HST14].

Proposition 4.1.2.2. A (T,V)-space (X, a) is (T,V)-compact if and only if, for
all X ∈ TX ,

k ≤
∨
z∈X

a(X , z)⊗ a(X , z). (4.17)

Examples 4.1.2.3. 1. In Top ∼= (�, 2)-Cat the notion of (�, 2)-compactness
coincides with the usual compactness property. For a relational �-algebra
(X,→) the condition becomes

∀X ∈ βX∃x ∈ X : X → x. (4.18)

We conclude
(�, 2)-Cat(�,2)−Comp

∼= Comp.

2. For App ∼= (�,P+)-Cat, an approach space (X,λ) is (�,P+)-compact if and
only if

inf
x∈X

λX (x) = 0, (4.19)

for every X ∈ βX . This property is called 0-compact in [Low15].

4.1.3 Regularity
Regularity conditions for topological and approach spaces have been obtained
under some known lax-algebraic description involving a Set monad T and a quan-
tale V using a general lax-algebraic notion of regularity that goes back to Möbus
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[M8̈1]. Situations where the lax-algebraic notion of regularity coincides with the
usual notion of regularity for topological and approach spaces, can be found in
Chapter V of [HST14].

We assume that V is commutative.
In order to formulate regularity for a (T,V)-space (X, a), we use the V-relation

â : TX−→7 TX , where
â := T̂ a ·m◦X . (4.20)

While the inequality a · â ≤ a is exactly the transitivity condition for a, the con-
dition a · â◦ ≤ a encodes regularity for (X, a).

Definition 4.1.3.1. A (T,V)-space (X, a) is (T,V)-regular if

a · â◦ ≤ a, (4.21)

that is a ·mX · (T̂ a)◦ ≤ a, or, in pointwise form,

T̂ a(X,X )⊗ a
(
mX(X), z

)
≤ a(X , z), (4.22)

for all X ∈ TTX,X ∈ TX and z ∈ X .

Examples 4.1.3.2. 1. If T = 1 is the identity monad identically extended to
V-Rel, then a · â◦ = a · a◦, so that a · a◦ ≤ a if and only if a = a◦. Hence,
for V-spaces regularity means symmetry.

2. A topological space considered as a (�, 2)-space (X, a) is (�, 2)-regular if
and only if it is regular in the usual sense, meaning that for any x ∈ X
and any A ⊆ X closed with x /∈ A, there exist open sets U, V ⊆ X with
x ∈ U,A ⊆ V and U ∩ V = ∅.

3. An approach space (X,λ), considered as a (�,P+)-space, is (�,P+)-regular
if and only if

λU(z) ≤ λΣX(z) + sup
A∈X,B∈U

inf
W∈A,b∈B

λW(b), (4.23)

for all X ∈ β2X,U ∈ βX and z ∈ X . This condition coincides with the
classical notion of regularity in App, as introduced by Robeys [Rob92].

We recall that for an approach space (X,λ) the following are equivalent and
for a proof we refer to [Rob92].

(i) For F ∈ FX , for γ ∈ [0,∞], and for x ∈ X we have

λF (γ)(x) ≤ λF(x) + γ, (4.24)
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(ii) ForW ,U ∈ βX, and for γ ∈ [0,∞] we have

W(γ) ⊆ U ⇒ λU(x) ≤ λW(x) + γ. (4.25)

An approach space is called regular if it satisfies one and hence both con-
ditions. Brock and Kent [BK98] have shown that regularity of an approach
space is equivalent to the following conditions in terms of selections, one is
a version based on filters, the other uses only ultrafilters. These conditions
were also used in [CMT14] were the role of regularity was investigated in
the context of contractive extensions.

(iii) If A is a set, ψ : A //X, σ : A // FpX , and G ∈ FpA, then

λψ(G) ≤ λΣσ(G) + sup
y∈A

λσ(y)
(
ψ(y)

)
. (4.26)

(iv) If A is a set, ψ : A //X, σ : A // βX , and U ∈ βA, then

λψ(U) ≤ λΣσ(U) + sup
y∈A

λσ(y)
(
ψ(y)

)
. (4.27)

In Top we know that regularity implies R1. In Exercise 2.D in Chapter V.2 in
[HST14] it is shown that every (T,V)-regular (T,V)-space is (T,V)-R0+. Such a
(T,V)-space (X, a) is (T,V)-R0+ if

â · eX ≤ a◦, (4.28)

this condition being stronger than (T,V)-R0.
The following proposition shows that for (�,P+)-regularity and (�,P+)-R1 the

same implication holds as in the classical case in the category Top.

Proposition 4.1.3.3. An approach space X is (�,P+)-R1 if it is (�,P+)-regular.

Proof. Take U ∈ βX and x, y ∈ X arbitrary. We can assume that λU(x) < ∞
and λU(y) < ∞. Suppose λU(x) < α and λU(y) < β. If λU(x) < α, then for
all A ∈ U we have δ(x,A) < α, hence x ∈ A(α) and thus A(α) ∈ ẋ. This shows
that U (α) ⊆ ẋ.

Then

λẋ(y) ≤ λU (α)(y)

≤ λU(y) + α

< α + β,

which shows that X is (�,P+)-R1.
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4.1.4 Normality

Throughout this subsection we assume that V is commutative and that T̂ is asso-
ciative.

Definition 4.1.4.1. A (T,V)-space (X, a) is (T,V)-normal if

â · â◦ ≤ â◦ · â, (4.29)

or, in pointwise form, if

â(Z,X )⊗ â(Z,Y) ≤
∨
W∈TX

(
â(X ,W)⊗ â(Y ,W)

)
, (4.30)

for all X ,Y ,Z ∈ TX .

Examples 4.1.4.2. 1. A topological space considered as a (�, 2)-space (X, a)
is (�, 2)-normal if and only if it is normal in the usual sense, meaning that
for all closed subsets A,B ⊆ X with A ∩B = ∅, there are open sets U and
V such that A ⊆ U , B ⊆ V and U ∩ V = ∅.

2. In App ∼= (�,P+)-Cat, an approach space (X, a) is (�,P+)-normal if and
only if for any X ,Y ,Z ∈ βX ,

â(Z,X ) + â(Z,Y) ≥ inf
W∈βX

â(X ,W) + â(Y ,W), (4.31)

where
â(X ,Y) = inf{u ∈ P | ∀A ∈ X : A(u) ∈ Y}. (4.32)

In order to list some results, we first give the following lemma, which can be
found as Lemma V.2.5.1 in [HST14].

Lemma 4.1.4.3. For subsets A,B of an approach space X and any real u > 0,
the following are equivalent:

(i) ∀C ⊆ X : A ∩ C(u) 6= ∅ or B ∩ (X \ C)(u) 6= ∅;

(ii) ∃X ,Y ,Z ∈ βX such that ∀C ∈ Z : A ∩ C(u) ∈ X and B ∩ C(u) ∈ Y .

The following theorem, Theorem V.2.5.2 from [HST14], shows that (�,P+)-
normality is a very strong condition.

Theorem 4.1.4.4. For an approach space (X, a), each of the following statements
implies the next:

(a) (X, a) is (�,P+)-normal,
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(b) for all ultrafilters X ,Y ,Z on X and any real w > 0,

â(Z,X ) < w& â(Z,Y) < w ⇒ ∃W ∈ βX :

{
â(X ,W) < 2w
â(Y ,W) < 2w,

(c) for all A,B ⊆ X and any real v > 0,

A(v) ∩B(v) = ∅ ⇒ ∃u > 0∃C ⊆ X : A(u) ∩C(u) = ∅ = B(u) ∩ (X \C)(u),

(d) for all ultrafilters X ,Y ,Z on X ,

â(Z,X ) = 0 = â(Z,Y)⇒ ∃W ∈ βX : â(X ,W) = 0 = â(Y ,W).

None of the three implications is reversible and for counterexamples we refer
to Remark V.2.5.3 in [HST14]. It was shown by Van Olmen that condition (c)
is equivalent to approach frame normality of the lower regular function frame on
X [VO05]. For more results on normality in App, we refer to [CSVDH18a] and
[SVDH16].

4.1.5 Extremal disconnectedness
Throughout this subsection we assume that V is commutative and T̂ is associative.

Reversing the inequality in (4.29) has an interesting topological meaning. It
leads us to consider extremally disconnected objects.

Definition 4.1.5.1. A (T,V)-space (X, a) is (T,V)-extremally disconnected if

â◦ · â ≤ â · â◦, (4.33)

i.e.
â(X ,Z)⊗ â(Y ,Z) ≤

∨
W∈TX

(
â(W ,X )⊗ â(W ,Y)

)
(4.34)

for all X ,Y ,Z ∈ TX .

Remark that a V-space (X, a) is (1,V)-normal if and only if (X, a◦) is (1,V)-
extremally disconnected.

Examples 4.1.5.2. 1. Recall that a topological space (X, a) is extremally dis-
connected if and only if the closure of every open set in X is open. For a
topological space X presented as a (�, 2)-space (X, a) the following condi-
tions are equivalent:

(i) X is extremally disconnected,
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(ii) for all open subsets U,W of X , if U ∩W = ∅ then U ∩W = ∅,
(iii) â◦ · â ≤ â · â◦.

This shows that for a (�, 2)-space (X, a) (�, 2)-extremal disconnectedness
coincides with the classical notion of extremally disconnectedness in topo-
logical spaces.

2. In App ∼= (�,P+)-Cat, an approach space (X, a) is (�,P+)-extremally dis-
connected if and only if for any X ,Y ,Z ∈ βX ,

â(X ,Z) + â(Y ,Z) ≥ inf
W∈βX

(
â(W ,X ) + â(W ,Y)

)
. (4.35)

4.2 Topological properties in NA-App
In Theorem 2.2.4.1 we showed that NA-App ∼= (�,P∨)-Cat, hence in this sec-
tion we explore topological properties in NA-App following the relational calcu-
lus introduced in Section 4.1 for (T,V)-properties. We introduce low separation
properties, Hausdorff separation, compactness, regularity, normality and extremal
disconnectedness as an application to (�,P∨)-Cat of the corresponding (T,V)-
properties for arbitrary (T,V)-Cat. For each of the properties p we characterize
the property (�,P∨)-p in the context NA-App. On the other hand we make use
of the well-known meaning of these properties in the setting of Top. For a non-
Archimedean approach space X with tower of topologies (Tε)ε∈R+ (see Corollary
2.1.3.2) we compare the property (�,P∨)-p to the properties

• X has p at level 0: meaning (X, T0) has p in Top.

• X strongly has p: meaning (X, Tε) has p in Top for every ε ∈ R+.

• X almost strongly has p: meaning (X, Tε) has p in Top for every ε ∈ R+
0 .

4.2.1 Hausdorff separation and lower separation axioms
As explained in Examples 1.3.1.1, the quantales P+ and P∨ have the same lattice
structure, but a different tensor. This results in the fact that relations in P+-Rel and
P∨-Rel have a different compositional structure, see Examples 1.3.2.1.

If we study separation axioms, as introduced in Section 4.1.1, in (�,P∨)-Cat ∼=
NA-App, the axioms that do not involve composition of relations, will not gen-
erate new properties and will simply coincide with the properties (�,P+)-p in
(�,P+)-Cat ∼= App.

When we look at the definitions of (T,V)-T1 and (T,V)-T0, Definition 4.1.1.4,
it is immediately clear that these properties do not depend on the compositional
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structure in V-Rel. Hence, for non-Archimedean approach spaces the property
(�,P∨)-T1 ((�,P∨)-T0 respectively) will simply coincide with the property (�,P+)-
T1 ((�,P+)-T0) as studied in Examples 4.1.1.6.

At first glance the situation looks different for Hausdorff separation. If we look
at the definition of (T,V)-Hausdorff, Definition 4.1.1.1, we see a composition of
relations and the formula in Proposition 4.1.1.2 clearly shows the tensor of V .
However, when we look at the pointwise form of (�,P+)-Hausdorff (4.4), we see
that the tensor disappears, since

λZ(x) + λZ(y) <∞⇔ λZ(x) <∞&λZ(y) <∞,

for all Z ∈ βX and x, y ∈ X . The same happens for (�,P∨)-Hausdorff, since we
also have

λZ(x) ∨ λZ(y) <∞⇔ λZ(x) <∞&λZ(y) <∞,

for all Z ∈ βX and x, y ∈ X . Hence, the properties (�,P∨)-Hausdorff and
(�,P+)-Hausdorff coincide in NA-App.

Theorem 4.2.1.1. For a non-Archimedean approach space X the following prop-
erties are equivalent

(i) X is strongly Hausdorff (strongly T1, strongly T0 respectively),

(ii) X is almost strongly Hausdorff (almost strongly T1, almost strongly T0 re-
spectively),

(iii) X is (�,P∨)-Hausdorff ((�,P∨)-T1, (�,P∨)-T0 respectively),

and imply that X is Hausdorff (T1, T0 respectively) at level 0.

Proof. That (i) and (ii) are equivalent is straightforward. The equivalence of (i)
and (iii) is based on λU(x) < ∞ ⇔ ∃ε ∈ R+, λU(x) ≤ ε ⇔ ∃ε ∈ R+,U →
x in (X, Tε), for U ∈ βX and x ∈ X . The proofs of the other cases follow
analogously.

That (�,P∨)-Hausdorff ((�,P∨)-T1, (�,P∨)-T0) is not equivalent to the Haus-
dorff (T1, T0) property at level 0 follows from example XS in Example 2.1.3.3
with S = {X, ∅}.

In the definition of (T,V)-R0, Definition 4.1.1.4, there is no composition of re-
lations present. Similar to the T1 and T0 properties we get that for non-Archimedean
approach spaces (�,P∨)-R0 and (�,P+)-R0 (4.12) coincide.

R1 is the only separation axiom that depends on the tensor.
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Definition 4.2.1.2. A non-Archimedean approach space X is (�,P∨)-R1 if

λẋ(y) ≤ λZ(x) ∨ λZ(y), (4.36)

for all x, y ∈ X and Z ∈ βX .

Theorem 4.2.1.3. For a non-Archimedean approach space X the following prop-
erties are equivalent

(i) X is strongly R1 (strongly R0 respectively),

(ii) X is almost strongly R1 (almost strongly R0 respectively),

(iii) X is (�,P∨)-R1 ((�,P∨)-R0 respectively),

and imply that X is R1 (R0 respectively) at level 0.

Proof. That (i) and (ii) are equivalent is straightforward. The equivalence of (i)
and (iii) is based on the fact that λU(x) ≤ ε if and only if U → x in (X, Tε), for
any ε ∈ R+.

That (�,P∨)-R1 ((�,P∨)-R0 respectively) is not equivalent to R1 at level 0 (R0

at level 0 respectively) follows from Example 2.1.3.4 where T is the right order
topology.

It is clear that (�,P∨)-R1 implies (�,P+)-R1. The following counterexample
shows that the converse does not hold.

Example 4.2.1.4. Let X be infinite and S the cofinite topology on X . Consider
the non-Archimedean approach space XS as in Example 2.1.3.3. Later on, in
Example 4.2.3.4, we will establish that this space is (�,P+)-regular. In Proposition
4.1.3.3 it is shown that this implies that XS is (�,P+)-R1.

The topological space (X,S) is not Hausdorff, but it is T1. By Proposition
4.1.1.5,(X,S) is therefore not R1. Hence XS is not strongly R1, and by Theorem
4.2.1.3 it is not (�,P∨)-R1.

4.2.2 Compactness
The next property that we will consider is (�,P∨)-compactness. Looking at Propo-
sition 4.1.2.2 and the characterization of (�,P+)-compactness (4.19), it is again
clear that this property does not depend on the tensor. Hence a non-Archimedean
approach space is (�,P∨)-compact if and only if it is (�,P+)-compact.

The proofs of the following results are straightforward.

Theorem 4.2.2.1. For a non-Archimedean approach spaceX the following equiv-
alences hold:
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1. (�,P∨)-compact⇔ almost strongly compact,

2. compact at level 0⇔ strongly compact.

That (�,P∨)-compactness does not imply a compact topological coreflection
is well known in the setting of App (see Example 4.3.16 in [Low15]). That this is
not the case either in the setting of NA-App follows from the following example.

Example 4.2.2.2. Consider the example in Example 2.1.3.4 on ]0,∞[ with T
the right order topology. Clearly T is not compact, whereas the topologies Tε at
strictly positive levels are all compact.

Proposition 4.2.2.3. LetX be a non-Archimedean approach space. IfX is (�,P∨)-
compact and (�,P∨)-Hausdorff, then it is a compact Hausdorff topological space.

Proof. Suppose that the non-Archimedean approach space X is both (�,P∨)-
compact and (�,P∨)-Hausdorff. Then (X, Tε) is a compact Hausdorff topolog-
ical space, for every ε > 0. By the coherence condition of the non-Archimedean
tower, we have Tγ ⊆ Tε, for ε ≤ γ and therefore Tγ = Tε, for every γ, ε > 0.
Moreover, since T0 =

∨
γ>0 Tγ , all levels of the non-Archimedean tower are equal.

This implies that X is topological.

4.2.3 Regularity
Next we investigate the notion of regularity. We recall the definition of the (�,P∨)-
regularity property in (�,P∨)-Cat by giving the pointwise interpretation through
the isomorphism in Theorem 2.2.4.1 in terms of the limit operator.

Definition 4.2.3.1. A non-Archimedean approach space X is (�,P∨)-regular if

λU(x) ≤ λΣX(x) ∨ sup
A∈X,B∈U

inf
W∈A,b∈B

λW(b), (4.37)

for all X ∈ ββX,U ∈ βX and x ∈ X .

The following result gives a characterization in terms of the level topologies.

Theorem 4.2.3.2. For a non-Archimedean approach space X the following are
equivalent:

(i) X is strongly regular.

(ii) X is almost strongly regular.

(iii) For all U ,W ∈ βX and for all γ ≥ 0: W(γ) ⊆ U ⇒ λU ≤ λW ∨ γ.
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(iv) X is (�,P∨)-regular.

Proof. To see that (i) and (ii) are equivalent, it suffices to observe that
⋃
ε>0 Cε is

a closed basis for the topology T0, where Cε are the closed sets in (X, Tε).
To prove that (i) implies (iii), take W ,U ∈ βX and suppose W(γ) ⊆ U for

γ ≥ 0. Suppose λW(x) = ε <∞. Then λW(x) ≤ ε∨γ and thusW converges to
x in (X, Tε∨γ). By regularity of (X, Tε∨γ) alsoW(ε∨γ) converges to x in (X, Tε∨γ).
Hence

λU(x) ≤ λW(γ)(x) ≤ λW(ε∨γ)(x) ≤ ε ∨ γ.

Next we prove that (iii) implies (iv) Take X ∈ ββX,U ∈ βX and x ∈ X . Put
γ = λΣX(x) and ε = supA∈X,B∈U infW∈A,b∈B λW(b). It is sufficient to assume
that both γ and ε are finite. Let 0 < ρ <∞ be arbitrary and consider

S :=
{

(G, y) | λG(y) ≤ ε+ ρ
}
⊆ βX ×X.

By definition of ε, the filter base X×U has a trace on S, so we can chooseR ∈ βS
refining this trace. For A ∈ ΣX and U ∈ U there exist R1 ∈ R and R2 ∈ R such
that A ∈

⋂
z∈R1

π1z and U = π2R2, with π1 and π2 the projections restricted to S.
For z ∈ R1 ∩ R2 we have λπ1z(π2z) ≤ ε + ρ and π2z ∈ A(ε+ρ) ∩ U . Finally we
can conclude that ΣX(ε+ρ) ⊆ U , which implies

λU(x) ≤ λΣX(x) ∨ (ε+ ρ) = γ ∨ (ε+ ρ).

By arbitrariness of ρ our conclusion follows.
To prove that (iv) implies (i), we use a technique similar to the one used in the

proof of Theorem 9 in [BK98]. LetW be an ultrafilter converging to x in (X, Tγ)
for γ ≥ 0 and let U ∈ βX , such thatW(γ) ⊆ U . We may assume that γ is finite.
Let 0 < ρ <∞ be arbitrary. Consider

S =
{

(G, y) | λG(y) ≤ γ + ρ
}
⊆ βX ×X

and the filter base {SW | W ∈ W} on S, where SW =
{

(G, y) ∈ S | W ∈ G
}

whenever W ∈ W . Let SW be the filter generated. Using the restrictions π1 and
π2 of the projections to S, we observe the following facts:

a) π2SW ⊆ W(γ): This follows from the fact that y ∈ W (γ) implies the exis-
tence of G ∈ βX with W ∈ G and λG(y) ≤ γ + ρ.

b) There exists R ∈ βS satisfying SW ⊆ R and π2R = U : Suppose the
contrary, i.e. for every R ∈ βS with SW ⊆ R there exists UR ∈ U and
R ∈ R such that UR ∩ π2R = ∅. We can select a finite number of these sets
with URi ∩ π2Ri = ∅ and such that

⋃
iRi ∈ SW . In view of a) there exists

an index j such that π2Rj ∈ U , which is a contradiction.
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c) With X = π1R we have ΣX =W since W ∈ W implies W ∈
⋂
G∈π1SW G.

Combining these results, we now have:

λU(x) ≤ λΣX(x) ∨ sup
A∈X,B∈U

inf
V∈A,b∈B

λV(b)

= λW(x) ∨ sup
R∈R,R′∈R

inf
V∈π1R,b∈π2R′

λV(b)

≤ γ ∨ sup
R∈R

inf
V∈π1R,b∈π2R

λV(b)

≤ γ ∨ sup
R∈R

inf
z∈R

λπ1(z)
(
π2(z)

)
≤ γ ∨ (γ + ρ).

By arbitrariness of ρ > 0, we can conclude that U converges to x in (X, Tγ).

Clearly we can express condition (iii) in terms of arbitrary filters as λF (γ) ≤
λF ∨ γ, for every F ∈ FX and x ∈ X . In this form the property was considered
in [BK98]. In more generality this condition was also considered in [CMT14] in
the context of contractive extensions.

Clearly for non-Archimedean approach spaces we have

(�,P∨)-regular⇒ (�,P+)-regular⇒ regular at level 0.

The following examples based on the construction in Example 2.1.3.3 show that
none of the implications is reversible.

Example 4.2.3.3. Let X = {0, 1} and S the Sierpinski topology on X with {1}
open. The approach space XS is not (�,P+)-regular. This can be seen by taking
F = 1̇ and γ = 1. For this choice we have F (γ) = {X} and λ{X}(1) = 2 �
λ1̇(1) + 1. However (X, T0) is discrete and hence regular.

Example 4.2.3.4. Let X be infinite and S the cofinite topology on X . The ap-
proach space XS is not (�,P∨)-regular. However it is (�,P+)-regular. To see this
let 1 ≤ γ < 2. A filter F on X either contains a finite set and then F (γ) = F
and λF (γ) ≤ λF + γ, or F does not contain a finite set. In that case we have
F (γ) = {X} and λF (γ) = 2 ≤ λF + γ. For γ < 1 or 2 ≤ γ the condition
λF (γ) ≤ λF + γ is clearly fulfilled.

The following proposition shows that in (�,P∨)-Cat we also find that (�,P∨)-
regularity implies (�,P∨)-R1.

Proposition 4.2.3.5. An non-Archimedean approach space X is (�,P∨)-R1 if it
is (�,P∨)-regular.

Proof. This is just an easy adaptation of the proof from Proposition 4.1.3.3.
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4.2.4 Normality
In this section we investigate normality. We recall the definition of (�,P∨)-p for
p the normality property in (�,P∨)-Cat.

Definition 4.2.4.1. A non-Archimedean approach space X is (�,P∨)-normal if

â(U ,A) ∨ â(U ,B) ≥ inf
{
â(A,W) ∨ â(B,W) | W ∈ βX

}
, (4.38)

for all ultrafilters A,B,U on X , with â(U ,A) = inf{u ∈ P | U (u) ⊆ A}.

Turning the ∨ in the formula into + we have (�,P+)-normality as introduced
in the second example of Examples 4.1.4.2. In case X is a topological approach
space, both notions coincide with

U ⊆ A&U ⊆ B ⇒ ∃W ∈ βX : A ⊆ W &B ⊆ W , (4.39)

for all ultrafilters U ,A,B on X . As explained in the first example of Examples
4.1.4.2 this condition coincides with the usual notion of normality on the topolog-
ical (approach) space.

The following lemma will enable us to formulate a result on normality for
ultrametric approach spaces.

Lemma 4.2.4.2. For a non-Archimedean approach space X , the following equal-
ity holds

â(U ,A) = sup
U∈U ,A∈A

δ(A,U), (4.40)

for all U ,A ∈ βX, where δ(A,U) = infz∈A δ(z, U).

Proof. To prove one inequality, suppose â(U ,A) < α. Then choose ρ, γ ∈ [0,∞]
arbitrary such that â(U ,A) < ρ < γ < α. Then for all U ∈ U , U (ρ) ∈ A. This
implies that for all U ∈ U and A ∈ A U (ρ) ∩ A 6= ∅ and thus for all U ∈ U and
A ∈ A, there exists z ∈ A such that δ(z, U) ≤ ρ. Therefore, for all U ∈ U and
A ∈ A infz∈A δ(z, U) < γ and thus supU∈U ,A∈A δ(A,U) < α.

To prove the other inequality, suppose supU∈U ,A∈A δ(A,U) < α. Then choose
γ ∈ [0,∞] arbitrary such that supU∈U ,A∈A δ(A,U) < γ < α. Then, for U ∈ U
and A ∈ A arbitrary, we have δ(A,U) < γ. Hence, there exists z ∈ A such that
δ(z, U) < γ and thus z ∈ U (γ). By arbitrariness of A, this implies U (γ) ∈ A and
by arbitrariness of U , we get U (γ) ⊆ A. Hence â(U ,A) ≤ γ < α.

By application of this lemma, we get the following result.

Proposition 4.2.4.3. An ultrametric non-Archimedean approach space is (�,P∨)-
normal.
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Proof. By symmetry of the ultrametric and the characterization of δ in terms of
this ultrametric, we get symmetry of â. Hence, the ultrafilterW on the right-hand
side in the formula for (�,P∨)-normality, can be taken equal to U .

Without symmetry, we will encounter examples of quasi-ultrametric approach
spaces that are (�,P∨)-normal and others that are not.

Next we give some useful characterizations of (�,P∨)-normality.

Proposition 4.2.4.4. For a non-Archimedean approach space X , the following
properties are equivalent:

(i) X is (�,P∨)-normal.

(ii) â(U ,A) < v& â(U ,B) < v ⇒ ∃W ∈ βX : â(A,W) < v& â(B,W) < v,
for all U ,A,B ∈ βX .

(iii) A(v)∩B(v) = ∅ ⇒ ∀u < v, ∃C ⊆ X : A(u)∩C(u) = ∅& (X\C)(u)∩B(u) =
∅, for all A,B ⊆ X and v > 0.

Proof. That (i) and (ii) are equivalent is straightforward.
To show that (ii) implies (iii), let A(v) ∩ B(v) = ∅, with A,B ⊆ X for some

v > 0 and let u < v arbitrary. By way of contradiction, suppose that for all
C ⊆ X , A(u)∩C(u) 6= ∅ or (X \C)(u)∩B(u) 6= ∅. By Lemma 4.1.4.3, there exist
ultrafilters U ,A,B on X satisfying

∀U ∈ U : A(u) ∩ U (u) ∈ A&B(u) ∩ U (u) ∈ B.

It follows that â(U ,A) ≤ u < v and â(U ,B) ≤ u < v. By (ii) there exists
W ∈ βX with â(A,W) < v& â(B,W) < v. Since A(v) ⊆ W , A(u) ∈ A and
A(u)(v) ⊆ A(v)(v) = A(v) we have A(v) ∈ W . In the same way we have B(v) ∈ W
which contradicts A(v) ∩B(v) = ∅.

Next we show that (iii) implies (ii) Let U ,A,B be ultrafilters on X and v > 0
with â(U ,A) < v& â(U ,B) < v. Choose ε, δ satisfying â(U ,A) < ε < δ <
v& â(U ,B) < ε < δ < v. Let A ∈ A and B ∈ B. We claim that for all C ⊆ X:

A(ε) ∩ C(ε) 6= ∅ or B(ε) ∩ (X \ C)(ε) 6= ∅.

Indeed, in view of U (ε) ⊆ A and U (ε) ⊆ B, the assertion that there exists C ⊆ X
with A(ε) ∩ C(ε) = ∅&B(ε) ∩ (X \ C)(ε) would imply C /∈ U and X \ C /∈ U ,
which is impossible. By (iii) we haveA(δ)∩B(δ) 6= ∅. So there exists an ultrafilter
W on X refining {

A(δ) ∩B(δ) | A ∈ A, B ∈ B
}
.

ClearlyW satisfiesA(δ) ⊆ W andB(δ) ⊆ W . So we can conclude that â(A,W) <
v& â(B,W) < v.
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Remark that for a non-Archimedean approach spaceX , condition (ii) in Propo-
sition 4.2.4.4 implies condition (b) in Theorem 4.1.4.4 and therefore also (c), the
Van Olmen normality condition.

Theorem 4.2.4.5. For a non-Archimedean approach X with tower (Tε)ε∈R+ , con-
sider the following properties:

1. X is strongly normal.

2. X is almost strongly normal.

3. X is (�,P∨)-normal.

4. X is normal at level 0.

The following implications hold: 1. ⇒ 4. and 1. ⇒ 2. ⇒ 3.

Proof. 1. ⇒ 4. and 1. ⇒ 2. are straightforward. We show 2. ⇒ 3. Suppose
(X, Tu) is normal, for every u > 0 and let â(U ,A) < v& â(U ,B) < v for some
v > 0. Take u such that â(U ,A) < u < v& â(U ,B) < u < v. Then for the
topological space (X, Tu) we have U (u) ⊆ A and U (u) ⊆ B. By normality of
(X, Tu) there existsW ∈ βX satisfyingA(u) ⊆ W and B(u) ⊆ W . It follows that
â(A,W) ≤ u < v and â(B,W) ≤ u < v.

There are no other valid implications between the properties considered in the
previous theorem. This is shown by the following examples.

Example 4.2.4.6. On X =]0,∞[, we consider an approach space X as in Exam-
ple 2.1.3.4. We make a particular choice for the topology

T =
{
Bc | B ⊆]0,∞[, B bounded

}
∪ {∅},

which is finer than the right order topology, and consider the approach space(
X, (Tε)ε∈R+

)
. The topology T0 is not normal, since there are no non-empty dis-

tinct and disjoint open subsets, although disjoint non-empty closed subsets do
exist. So the non-Archimedean approach space is not strongly normal either.

Let ε > 0 and consider the topological space (X, Tε). It is a normal topological
space, since for x ≤ ε we have x ∈ A(ε) for every non-empty subset A. So 2. and
hence 3. from Theorem 4.2.4.5 are satisfied.

Example 4.2.4.7. Let X =]0,∞[ and let (Tε)ε∈R+ be the tower defined in Exam-
ple 4.2.4.6 starting from T =

{
Bc | B ⊆]0,∞[, B bounded

}
∪ {∅}. We define

another tower (Sγ)γ∈R+ on X as follows

Sγ :=

{
P(X) whenever 0 ≤ γ < 1,
Tγ−1 whenever 1 ≤ γ.
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Clearly the tower (Sγ)γ∈R+ defines a non-Archimedean approach space onX . For
the topology at level 0 we have T0 = P(X) is normal, but the topological space
(X,S1) = (X, T ) is not normal. So 1. and 2. from Theorem 4.2.4.5 do not
hold. However the approach space is (�,P∨)-normal. Let A and B be non-empty
subsets with A(v) ∩ B(v) = ∅ for some v > 0 and let u < v be arbitrary. Clearly
v ≤ 1. In that case the level topology for u is discrete. It follows that C = B
satisfies condition 3. in Theorem 4.2.4.4.

Example 4.2.4.8. Consider example (2) in remark V.2.5.3 in [HST14]. X =(
{x, y, z, w}, d

)
where d is the quasi-ultrametric structure d(x, z) = d(y, z) =

d(w, z) = 1, d(w, x) = d(w, y) = 3, d(x′, x′) = 0 for any x′ ∈ X and d(x′, y′) =
∞ elsewhere. The topology T0 is discrete and hence normal. However X =(
{x, y, z, w}, d

)
is not (�,P∨)-normal. Let U = ż,A = ẋ and B = ẏ. Then,

using Lemma 4.2.4.2, we get â(U ,A) = d(x, z) = 1 and â(U ,B) = d(y, z) = 1.
ForW = ẇ, we have â(A,W) = d(w, x) = 3 and â(B,W) = d(w, y) = 3 and
for all other choices ofW we obtain values∞. So the space X does not satisfy 1.
or 2. from Theorem 4.2.4.5 either.

Next we prove that the notions (�,P∨)-normal and (�,P+)-normal are unre-
lated. Again this can be shown by looking at finite non-Archimedean approach
spaces that are therefore structured by some quasi-ultrametric.

Example 4.2.4.9. LetX = {x, y, z} endowed with the quasi-ultrametric d defined
by d(y, x) = 2, d(x, z) = 1, d(y, z) = 1 and d(x′, x′) = 0 for all x′ ∈ X and
d(x′, y′) = ∞ elsewhere. Clearly the only inequality that has to be checked is
d(x, z) + d(y, z) = 2 ≥ d(y, x) which is no longer valid when + is changed into
∨. The space is (�,P+)-normal but not (�,P∨)-normal.

Example 4.2.4.10. Let X = {x, y, z, w} be endowed with the quasi-ultrametric
d defined by d(x, z) = 1, d(y, z) = 2, d(w, z) = 2, d(w, y) = 2, d(w, x) = 2
and d(x′, x′) = 0 for all x′ ∈ X and d(x′, y′) = ∞ elsewhere. The space is not
(�,P+)-normal since d(y, z) + d(x, z) = 3 < 4 = d(w, y) + d(w, x). However X
is strongly normal, and therefore (�,P∨)-normal. To see this observe that the level
topologies for 0 ≤ ε < 1 are discrete and hence normal. For levels 1 ≤ ε < 2
all points are isolated except x for which the smallest neighborhood is {x, z}.
This topology is normal since all closed sets are open. For levels 2 ≤ ε we have
smallest neighborhoods Vw = X, Vy = {y, z}, Vz = {z} and Vx = {x, z}. These
levels are normal too since there are no disjoint non-empty closed sets.

4.2.5 Extremal disconnectedness
We proceed by investigating extremal disconnectedness. We recall the definition
of (�,P∨)-p for p extremal disconnectedness in (�,P∨)-Cat.
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Definition 4.2.5.1. A non-Archimedean approach space X is (�,P∨)-extremally
disconnected if

â(A,U) ∨ â(B,U) ≥ inf
{
â(W ,A) ∨ â(W ,B) | W ∈ βX

}
,

for all ultrafilters U ,A,B on X .

Turning the ∨ in the formula into + we get (�,P+)-extremal disconnectedness.
In case X is a topological (approach) space both notions coincide with

A ⊆ U&B ⊆ U ⇒ ∃W ∈ βX :W ⊆ A&W ⊆ B,

for all ultrafilters U ,A,B on X . As is shown in Example 4.1.5.2 this condition
coincides with the usual notion of extremal disconnectedness on the topological
(approach) spaces.

Using Lemma 4.2.4.2, we get the following result for ultrametric (approach)
spaces, which is similar to Proposition 4.2.4.3.

Proposition 4.2.5.2. An ultrametric non-Archimedean approach space is (�,P∨)-
extremal disconnected.

Proof. The proof follows a similar argument as the proof of Proposition 4.2.4.3.

Without symmetry we will encounter examples of quasi-ultrametric approach
spaces that are (�,P∨)-extremally disconnected and others that are not.

Proposition 4.2.5.3. For a non-Archimedean approach spaceX with tower (Tε)ε∈R+ ,
the following properties are equivalent:

(i) X is (�,P∨)-extremally disconnected.

(ii) â(A,U) < v&â(B,U) < v ⇒ ∃W ∈ βX : â(W ,A) < v& â(W ,B) < v,
for all U ,A,B ultrafilters on X and v > 0.

(iii) A ∩B = ∅ with A,B ∈ Tv ⇒ ∀u < v : A(u) ∩B(u) = ∅, for all A,B ⊆ X
and v > 0.

Proof. The equivalence of (i) and (ii) is straightforward.
First we prove that (ii) implies (iii). If (iii) does not hold, then there exists

v > 0 and A,B ∈ Tv with A ∩B = ∅ and u < v such that A(u) ∩B(u) 6= ∅. Take
an ultrafilter U on X containing both A(u) and B(u). Let UTu be the ultrafilter on
X generated by the Tu-open sets in U . Then clearly UTu ∨ {A} is a proper filter.
We claim that there exists an A ∈ βX such that UTu ∨ {A} ⊆ A with A(u) ⊆ U .
Suppose on the contrary that for every such Ai ∈ βX with UTu ∨ {A} ⊆ Ai there
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exists A′i ∈ Ai with A
′(u)
i /∈ U . A finite subcollection of ultrafilters {Aj | j ∈ J}

exists, for which the corresponding sets A′j ∈ Aj satisfy
⋃
j∈J A

′
j ∈ UTu ∨ {A}.

Let U ∈ UTu such that U ∩ A(u) ⊆
⋃
j∈J A

′
j . From A(u) ∈ U we deduce that

(U ∩ A)(u) and hence also
⋃
j∈J A

′
j belongs to U , which is a contradiction. In the

same way there exists B ∈ βX with UTu ∨ {B} ⊆ B and B(u) ⊆ U . By (ii) there
exists W ∈ βX with W(u) ⊆ A and W(u) ⊆ B. For every W ∈ W we have
W (u) ∩ A ∈ A and W (u) ∩ B ∈ B. By Lemma 4.1.4.3 we get A ∩ C(u) 6= ∅ or
B ∩ (X \ C)(u) 6= ∅, for all C ⊆ X , which is impossible. Hence we have (iii).

Next we prove (iii) implies (ii). Let A,B,U ∈ βX with â(A,U) < γ and
â(B,U) < γ and choose u, v > 0 such that â(A,U) < u < v < γ and â(B,U) <
u < v < γ. For A ∈ A ∩ Tv and B ∈ B ∩ Tv we have A(u) ∩ B(u) 6= ∅. By (iii)
we have A ∩B 6= ∅. So

{A ∩B | A ∈ A ∩ Tv, B ∩ Tv}

is a filter base and a finer ultrafilter exists. Applying the second equivalence used
in the proof of (ii)⇔ (iii) in V.2.4.4. in [HST14] to the topology Tv we obtainW ∈
βX satisfying W(v) ⊆ A and W(v) ⊆ B. So we can conclude that â(W ,A) ≤
v < γ and â(W ,B) ≤ v ≤ γ.

Theorem 4.2.5.4. For a non-Archimedean approach space with tower (Tε)ε∈R+ ,
consider the following properties:

1. X is strongly extremally disconnected.

2. X is almost strongly extremally disconnected.

3. X is (�,P∨)-extremally disconnected.

4. X is extremally disconnected at level 0.

The following implications hold: 1. ⇒ 2. ⇒ 3. and 1. ⇒ 4.

Proof. 1. ⇒ 2. and 1. ⇒ 4. are straightforward.
We show that 2.⇒ 3. using characterization (iii) in Theorem 4.2.5.3. Suppose

A∩B = ∅withA,B ∈ Tv and let u < v. Since (X, Tv) is extremally disconnected
we have A(v) ∩B(v) = ∅ and since Tv ⊆ Tu the conclusion follows.

There are no other valid implications between the properties considered in the
previous theorem. This is shown by the next examples.
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Example 4.2.5.5. We use the ultrametric spaceX =
(
P, dM

)
that played a crucial

role in the development of the Banaschewski compactification in [CS17]. On P
let dM be defined by

dM(x, y) :=

{
x ∨ y x 6= y,
0 x = y.

X clearly is an ultrametric space. When it is considered as an approach space
it has a tower (Rε)ε∈R+ of zero-dimensional topologies. Since dM is symmetric,
the space

(
P, dM

)
is (�,P∨)-extremally disconnected. The topology T0 is discrete

in all points x 6= 0 and has the usual neighborhood filter in 0 for the Euclidean
topology. The set A = { 1

n
| n > 0} is open in (X, T0) but its closure is A ∪ {0}

which clearly is not open. So T0 is not extremally disconnected and hence X is
not strongly extremally disconnected.

Let ε > 0 and consider the level topology
(
P,Rε

)
. Consider the open set

A = { 1
n

+ ε | n > 0}, then its closure A(ε) = A ∪ [0, ε] which is not open at
the level ε. So although 3. is fulfilled, none of the other conditions in Theorem
4.2.5.4 hold.

Example 4.2.5.6. Let X = [0,∞[, endowed with the topology T with neigh-
borhood filters

(
V(x)

)
x∈X where V(0) is the usual neighborhood filter in the Eu-

clidean topology, and V(x) = ẋ whenever x 6= 0, so at level 0 we use the same
topology as in the previous Example 4.2.5.5. We define (Tε)ε∈R+ with T0 = T
and Tε at level 0 < ε having a neighborhood filter

Vε(x) =

{
stack{[0, x]} whenever 0 < x ≤ ε,
V(x) whenever ε < x or x = 0

at x ∈ X . The topology at level 0 is ([0,∞[, T ). As we know from Example
4.2.5.5, it is not extremally disconnected.

Next we consider level ε > 0 and ([0,∞[, Tε). Let A ∈ Tε then either there
exists x ≤ εwith x ∈ A. In this caseA(ε) = [0, ε]∪

(
A∩]ε,∞[

)
which is open. Or

there is no x ≤ εwith x ∈ A. In this case we haveA(ε) = A open. X is extremally
disconnected at every strictly positive level, so 2. and 3. from Theorem 4.2.5.4
are satisfied whereas 1. and 4. are not.

Example 4.2.5.7. Let (X, d) be as in Example 4.2.4.8 and now consider (X, d−).
Then we have a space with T0 extremally disconnected which is not (�,P∨)-
extremally disconnected, so it satisfies 4., but none of the other conditions in
Theorem 4.2.5.4.

To see that the notions (�,P∨)-extremally disconnected and (�,P+)-extremally
disconnected are unrelated, we can consider examples (X, d−) for each of the
spaces described in Example 4.2.4.9 and Example 4.2.4.10.
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4.2.6 Topological properties of the initially dense objects
We come back to the examples introduced in Example 2.1.2.3 and Example 2.5.1.3
and investigate their topological properties.

Example 4.2.6.1. First we consider X = (P∨, δP∨) as described in Example
2.1.2.3. Clearly the limit operator satisfies λU(0) = 0, for any U ∈ βP∨. Thus
the space is compact at level 0.

P∨ is T0 at level 0 since λẋ(y) = 0 = λẏ(x) implies x = y. However, the
space is not (�,P∨)-T0. To see this, take x, y ∈ [0,∞[ such that x < y. Then
λẋ(y) = y <∞ and λẏ(x) = 0 <∞, but x 6= y.

Since δP∨(0, A) = 0 for every non-empty subset A, we have 0 ∈ clA in the
topology T0 for every non-empty subset A. So clearly T0 is neither T1 nor regular.
Therefore (P∨, δP∨) is not (�,P∨)-T1 nor (�,P∨)-regular.

We know that T0 and R0 at level 0 is equivalent to T1 at level 0. Since X is T0

at level 0 but not T1 at level 0, this implies that X is not R0 at level 0 and neither
R1 at level 0.

(P∨, δP∨) is strongly normal and strongly extremally disconnected. This fol-
lows from the fact that at level 0 (and hence all other levels) all non-empty closed
sets contain 0. We conclude that all levels are normal. On the other hand there
are no non-empty disjoint open sets at level 0 since A ∩ A′ = ∅ and∞ ∈ P∨ \ A
implies P∨ ⊆ P∨ \ A. So all levels are extremally disconnected.

Example 4.2.6.2. Next we consider the examples (P∨, dP∨) and (P∨, d
−
P∨

) as de-
scribed in Example 2.5.1.3. For X = (P∨, dP∨) and for any U ∈ βP∨, we have
that λdP∨U(∞) = infU∈U supy∈U dP∨(∞, y) = 0, so we get that (P∨, dP∨) is com-
pact at level 0.

For x, y ∈ P∨ arbitrary, we have that λdP∨ ẋ(y) = 0 if and only if x ≤ y.
This proves that (P∨, dP∨) is T0 at level 0. However, (P∨, dP∨) is not (�,P∨)-T0.
To see this take x, y ∈ [0,∞[ such that x < y. Then λdP∨ ẋ(y) = 0 < ∞ and
λdP∨ ẏ(x) = y <∞, but x 6= y.

Since dP∨(∞, z) = 0, for all z ∈ P∨, we have∞ ∈ cl(A) in the topology T0

for every non-empty subset A. So clearly T0 is not T1. Therefore (P∨, dP∨) is not
(�,P∨)-T1.

We know that T0 and R0 at level 0 is equivalent to T1 at level 0. Since X is T0

at level 0 but not T1 at level 0, this implies that X is not R0 at level 0 and neither
R1 at level 0.

(P∨, dP∨) is not (�,P∨)-regular since the quasi-ultrametric is not symmetric.
Moreover as∞ ∈ cl(A) for every subset A, the topology T0 is not regular either.

(P∨, dP∨) is strongly normal and strongly extremally disconnected. To see
this, take A ⊆ P∨ non-empty. We notice that at level 0 (and hence at all other
levels) ∞ ∈ cl(A). So all non-empty closed sets contain ∞. We conclude that
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all levels are normal. On the other hand all non-empty open sets contain 0. So all
levels are extremally disconnected.

The results for (P∨, d
−
P∨

) follow analogously.

4.2.7 Compact Hausdorff non-Archimedean approach spaces
In Proposition 4.2.2.3 we proved that a non-Archimedean approach space X that
is at the same time (�,P∨)-compact and (�,P∨)-Hausdorff is topological. In this
section we consider the axioms compact at level 0 in combination with Hausdorff
at level 0, in the sense that the topology T0 is both compact and Hausdorff. In
[Low15] these conditions are called compact and Hausdorff and in sections 4.2.7
and 4.2.8 we will use this simplified terminology. We consider NA-App2, the full
subcategory of NA-App consisting of all Hausdorff non-Archimedean approach
spaces and NA-Appc2 the full subcategory of NA-App2 consisting of all compact
Hausdorff non-Archimedean approach spaces. For terminology used in this sec-
tion, we refer to [AHS06].

NA-App2 is epireflective in NA-App and is closed under the construction of
finer structures, hence it is a quotient reflective subcategory of NA-App. So
NA-App2 is monotopological, i.e. for a family (Xi)i∈I of Hausdorff non-Archi-
medean approach spaces and any point-separating source (fi : X //Xi)i∈I there
exists a unique initial lift on X . Our next aim in this section is to determine the
epimorphisms and extremal monomorphisms in this category.

Theorem 4.2.7.1. A contraction f : X // Y in NA-App2 is an epimorphism
in NA-App2 if and only if f(X) is CTop Y -dense, i.e. clCTop Y f(X) = Y in the
topological coreflection CTop Y of Y .

Proof. One implication is straightforward. If f : X // Y is a contraction in
NA-App2 and f(X) is CTop Y -dense, then f : CTopX // CTop Y is an epi-
morphism in Haus. This implies f is an epimorphism in NA-App2, since for
any two contractions u, v : Y // Z in NA-App2 with u · f = v · f , also
CTop u · CTop f = CTop v · CTop f in Haus.

In order to prove the converse, suppose f : X // Y is a contraction in
NA-App2 with f(X) not CTop Y -dense. Set M = clCTop Y

(
f(X)

)
. We use a tech-

nique based on the amalgamation, for which we refer to [DGT88]. Assume Y has
a gaugeH consisting of quasi-ultrametrics. The gauge basis of the amalgamation
Y
∐

M Y is given by
HY

∐
M Y = {ugd | d ∈ H} ↓,

where

ugd(xi, yj) =

{
infm∈M d(x,m) ∨ d(m, y) i 6= j, x, y /∈M,
d(x, y) elsewhere.
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Moreover since M is clCTop Y -closed in Y , the space Y
∐

M Y is Hausdorff. Both
statements follow analogously to the construction and results in [CCG07]. Now
consider the diagram

X
f // Y

j1
//

j2

// Y
∐
Y

ϕ // Y
∐

M Y

Let u = ϕ · j1 and v = ϕ · j2. Then u · f = v · f , but u 6= v. Hence f is not an
epimorphism in NA-App2.

We proceed by determining the extremal monomorphisms in NA-App2. Since
clCTop(·) is idempotent and weakly hereditary, NA-App2 is an (EclCTop(·) ,MclCTop(·))-
category, where EclCTop(·) = Epi(NA-App2). The following theorem determines the
extremal monomorphisms in NA-App2.

Theorem 4.2.7.2. The following classes of morphisms in NA-App2 coincide:

1. The class of all regular monomorphisms;

2. The class of all extremal monomorphisms;

3. The class of all clCTop(·)-closed embeddings, i.e. embeddings f : X // Y
where clCTop Y f(X) = f(X) in the topological coreflection CTop Y of Y .

Proof. To prove that extremal monomorphisms are clCTop(·)-closed embeddings,
take EclCTop(·) the class of all clCTop(·)-dense contractions andMclCTop(·) the class of
all clCTop(·)-closed embeddings. By the theorem in section 2.4 of [DT95], we have
that NA-App2 is an (EclCTop(·) ,MclCTop(·))-category. Since by Theorem 4.2.7.1, we
know that EclCTop(·) =
Epi(NA-App2), it follows that ExtrMono(NA-App2) ⊆MclCTop(·) [AHS06].

In order to prove that every clCTop(·)-closed embedding is a regular monomor-
phism, take f : X // Y a clCTop Y -closed embedding in NA-App2. Consider the
construction of the amalgamation of Y with respect to f(X):

X
f // Y

j1
//

j2

// Y
∐
Y

ϕ // Y
∐

f(X) Y

Since f(X) is clCTop Y -closed, the amalgamation is Hausdorff. f is the equal-
izer of the pair (ϕ · j1, ϕ · j2). Hence f is a regular monomorphism.

We recall the following definitions from section 8.1 in [DT95]. Consider a
functor F : X //Y. For an object Y ∈ Y, let F−1(Y ) := {X ∈ X | FX = Y } be
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the class of objects of the fiber of F at Y , and let F̃−1(Y ) := {X ∈ X | FX ∼= Y }
be its replete closure in Y. F is called transportable if for every B ∈ F̃−1(Y ),
there is A ∈ F−1Y with A ∼= B.

Proposition 4.2.7.3. The restriction of the coreflector CTop : NA-App2
// Haus

is transportable.

Proof. Take (Y, T ) an arbitrary object in Haus. Take
(
X, (Sε)ε∈R+

)
∈ C̃Top

−1(Y, T )
arbitrary. There exists an isomorphism f : (X,S0) //(Y, T ) in Haus. For any ε >
0, define the topology Tε on Y by transportation of the topology on X by putting
Tε =

{
f(A) | A ∈ Sε

}
and let T0 = T . Then (Tε)ε∈R+ is a non-Archimedean

tower on Y in the fiber of (Y, T ) and f :
(
X, (Sε)ε∈R+

)
//
(
Y, (Tε)ε∈R+

)
is an

isomorphism in NA-App2.

Now we can conclude the following.

Theorem 4.2.7.4. NA-App2 is cowellpowered.

Proof. By Theorem 4.2.7.1 we have CTop

(
Epi(NA-App2)

)
⊆ Epi(Haus). Since

CTop is fiber small and transportable, the theorem from section 8.1 in [DT95]
implies cowellpoweredness of NA-App2.

Theorem 4.2.7.5. NA-Appc2 is an epireflective subcategory of NA-App2.

Proof. By Theorem 2.3.3.1, NA-App is closed in App under the formation of prod-
ucts and subspaces. Since the class of compact Hausdorff approach spaces is
well known to be closed under the formation of products and closed subspaces
in App [Low15], we can conclude that NA-Appc2 is closed under formation of
products and closed subspaces in NA-App2. Since by Theorem 4.2.7.1, Theorem
4.2.7.2 and Theorem 4.2.7.4 NA-App2 is a cowellpowered (Epi, Extremal mono)-
category, NA-Appc2 is epireflective in NA-App2.

4.2.8 Non-Archimedean Hausdorff compactifications
Due to the foregoing Theorem 4.2.7.5, there is a categorical construction of an
epireflector E : NA-App2

// NA-Appc2 with epireflection morphisms
eX : X // KX , for every X ∈ NA-App2. The question remains whether the
epireflection morphisms eX are embeddings. The following proposition shows
that in general, this is not the case.

Proposition 4.2.8.1. A Hausdorff non-Archimedean approach space X that can
be embedded in a compact Hausdorff non-Archimedean approach space Y has a
topological coreflection CTopX that is a Tychonoff space.
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Proof. If f : X // Y is an embedding with Y ∈ NA-Appc2, then CTop f :
CTopX // CTop Y is an embedding in Top with CTop Y a compact Hausdorff
topological space. So CTopX is a Tychonoff space.

In Theorem 4.2.8.3 below we will formulate sufficient conditions on a Haus-
dorff non-Archimedean approach space X , to ensure that there exists an embed-
ding into a compact Hausdorff non-Archimedean approach space. Our construc-
tion is based on Shanin’s compactification of topological spaces.

Given S, a collection of closed sets of a topological space X satisfying the
conditions (i) ∅, X ∈ S and (ii)G1, G2 ∈ S⇒ G1∪G2 ∈ S, a S-family is a non-
empty collection of sets belonging to S satisfying the finite intersection property
(f.i.p.). A S-family F is called vanishing if

⋂
F∈F F = ∅. A maximal S-family

is a S-family which is not contained in any S-family as a proper subcollection. If
S moreover is a closed basis of X , then a compact topological space σ(X,S) =
(S,S) in which X is densely embedded is constructed in [Nag68] on the set S =
X ∪X ′ with X ′ the set of all maximal vanishing S-families. S is endowed with
the topology S with {S(G) | G ∈ S} as a closed basis, where S(G) = G ∪ {p ∈
X ′ | G ∈ p}.

Given a non-Archimedean approach space X we will construct an extension
of X by first considering a special closed base S for CTopX and constructing
σ(CTopX,S).

Theorem 4.2.8.2. Any non-Archimedean approach space X , given by its tower
of topologies (Tε)ε∈R+ and tower of closed sets (Cε)ε∈R+ , can be densely embed-
ded in a compact non-Archimedean approach space Σ(X,S), constructed from
the closed basis S =

⋃
ε>0 Cε of CTopX and such that the topological coreflec-

tion CTop Σ(X,S) is the Shanin compactification σ(CTopX,S) of the topological
coreflection CTopX .

Proof. Let X be a non-Archimedean approach space given by its tower of topolo-
gies (Tε)ε∈R+ and tower of closed sets (Cε)ε∈R+ , and take S =

⋃
ε>0 Cε. By the

coherence condition of the non-Archimedean tower, S is a closed basis for the
topological space CTopX = (X, T0) and moreover S clearly satisfies the assump-
tions (i) and (ii) made above. Let σ(CTopX,S) = (S,S) be Shanin’s compactifi-
cation.

For every ε ∈ R+ the collection {S(G) | G ∈ Cε} is a basis for the closed sets
Dε of a topology Rε on S. However, for (Rε)ε∈R+ the coherence condition from
Corollary 2.1.3.2 need not be satisfied. In order to force the coherence condition,
we define the following tower of topologies on S; for α ∈ R+, let

Sα =
∨
β>α

Rβ,
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with the supremum taken in Top. The set S endowed with the tower (Sε)ε∈R+

defines a non-Archimedean approach space which we denote Σ(X,S).
Next we investigate its topological coreflection CTop Σ(X,S) = (S,S0). By

definition, the collection
⋃
β>0Dβ is a closed basis for (S,S0) and therefore the

collection

{S(G) | G ∈ Cε, for some ε > 0} = {S(G) | G ∈ S}

is a basis for its closed sets too. It follows that (S,S0) = σ(CTopX,S), so
Σ(X,S) is a compact non-Archimedean approach space.

Let j : X // S be the canonical injection. By construction, for ε ∈ R+

the map j : (X, Tε) // (S,Rε) is an embedding in Top. Since Tε =
∨
γ>ε Tγ ,

the source
(
j : (X, Tε) // (S,Rγ)

)
γ>ε

is initial in Top, which then implies that
j : (X, Tε) // (S,Sε) is initial too. So finally we have that

j :
(
X, (Tε)ε∈R+

)
//
(
S, (Sε)ε∈R+

)
is an embedding in NA-App. That the embedding j is dense follows already from
the result at level 0.

In general, this compactification is not Hausdorff. To ensure the Hausdorff
property, we need stronger conditions on X .

Theorem 4.2.8.3. LetX be a non-Archimedean approach space given by its tower
of closed sets (Cε)ε∈R+ . The compactification described in Theorem 4.2.8.2 is
Hausdorff if and only if the following conditions are fulfilled:

1. X is Hausdorff,

2. ∀ε > 0 : ∀G ∈ Cε,∀x /∈ G : ∃0 < γ ≤ ε,∃H ∈ Cγ such that x ∈ H and
H ∩G = ∅,

3. ∀ε > 0 : ∀F,G ∈ Cε, F ∩ G = ∅ : ∃0 < γ ≤ ε, ∃H,K ∈ Cγ such that
F ∩H = ∅, G ∩K = ∅, H ∪K = X .

Proof. Remark that the collection S =
⋃
ε>0 Cε used in the construction of The-

orem 4.2.8.2 is closed under finite intersections. Using this fact, condition 2. is
equivalent to condition C) and 3. is equivalent to condition D) in [Nag68]. So
Theorem IV.3 C) and D) in [Nag68] can be applied.

Corollary 4.2.8.4. For any non-Archimedean approach spaceX that is Hausdorff,
(�,P∨)-regular and (�,P∨)-normal, the compactification described in Theorem
4.2.8.2 is Hausdorff.
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Proof. Condition 1. in Theorem 4.2.8.3 is fulfilled. By Theorem 4.2.3.2 all
strictly positive level topologies are regular, so in 2. of Theorem 4.2.8.3 we can
take γ = ε. In order to see that also 3. is fulfilled let ε > 0 and F,G ∈ Cε. Let
0 < γ < ε be arbitrary. Since X is (�,P∨)-normal, by Theorem 4.2.4.4 there
exists C ⊆ X with F ∩ C(γ) = ∅ and (X \ C)(γ) ∩ G = ∅. Then H = C(γ) and
K = (X \ C)(γ) satisfy the conditions needed in 3.

Remark that in the previous corollary the condition (�,P∨)-normal can be
weakened to Van Olmen’s normality, condition (c) in Theorem 4.1.4.4. Note that
if X is a topological (non-Archimedean approach) space, Tε = T0 and Cε = C0,
for every ε > 0. In this case condition 3. is equivalent to X being a normal
topological space.

We get the following corollary.

Corollary 4.2.8.5. Let X be a non-Archimedean approach space such that the
conditions from Theorem 4.2.8.3 are fulfilled. Then the topological coreflection
CTopX is Tychonoff.

Proof. The conditions from Theorem 4.2.8.3 imply that X can be embedded in
a compact non-Archimedean approach space Σ(X,S), with CTop Σ(X,S) the
Shanin compactification of CTopX , a compact Hausdorff topological space.

As the Shanin compactification need not be a reflection, we end this section
by noting that in general the dense embedding j : X // Σ(X,S) constructed
above, is not a reflection.

4.3 Topological properties in relational algebras

In this section we investigate topological properties p in the context of relational
algebras in (T, 2)-Cat.

We give special attention to power-enriched monads T together with their
Kleisli extension to Rel and prove some general results. We will focus on the
examples (F, 2)-Cat ∼= Top and (I, 2)-Cat ∼= App. Some results for (F, 2)-Cat ∼=
Top are known and those can be found in [HST14], but we also add some new
results concerning (F, 2)-regularity.

The prime functional ideal monad B is not power-enriched, but it is a sub-
monad of I with interesting properties. Therefore we also explore the topological
properties in (B, 2)-Cat ∼= App.
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4.3.1 Improper elements
Let p be the least element of TX which we call improper, all other elements are
called proper.

From [HST14] we know that for a relational T-algebra (X, a) we have p a x,
for all x ∈ X . Hence, in order to get interesting results, we will often need to
restrict to proper elements.

We put
TpX = TX \ {p}

the collection of all proper elements of TX and jX : TpX // TX the canonical
injection. For f : X // Y the map Tf : TX // TY is a sup-map, so we
have Tf(X ) proper implies X proper. In order to have equivalence, we make the
following assumption:

TpX = (Tf)◦(TpY ) (4.41)

for all X, Y and f : X // Y , that is

X proper ⇔ Tf(X ) proper

for all f : X // Y , X ∈ TX . Consequently, under this assumption

TpX
Tpf //

jX
��

TpY

jY
��

TX
Tf // TY

is a pullback diagram for all f : X // Y , and Tpf the restriction of Tf . In
particular, for such a monad T, we may consider Tp as a subfunctor of T . However,
in general one does not obtain a submonad of T as will be the case in some of our
examples.

4.3.2 Hausdorff separation
Recall that an object (X, a) in (T, 2)-Cat is (T, 2)-Hausdorff if

X a x&X a y ⇒ x = y, (4.42)

for all X ∈ TX and x, y ∈ X .
The following result from [HST14] gives a characterization of (T, 2)-Hausdorff

for power-enriched monads (T, τ) together with their Kleisli extension.

Proposition 4.3.2.1. Given a monad T power-enriched by τ : P // T together
with its Kleisli extension Ť to Rel. Let (X,→) be an object in (T, 2)-Cat.

(X,→) is (T, 2)-Hausdorff if and only if |X| ≤ 1.
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To get a more interesting notion of Hausdorff separation in relational T-algebras,
we will restrict to proper elements. By (Tp, 2)-Hausdorff we mean the following
property.

Definition 4.3.2.2. An object (X, a) in (T, 2)-Cat for a power-enriched monad T
together with its Kleisli extension is (Tp, 2)-Hausdorff if

X a x&X a y ⇒ x = y, (4.43)

for all X ∈ TpX and x, y ∈ X .

Hausdorff separation in (F, 2)-Cat

The filter monad F is a power-enriched monad, see Example 1.4.1.2, and Top is
known to be isomorphically described as (F, 2)-Cat, see Section 1.4.4.

The properties (F, 2)-Hausdorff and (Fp, 2)-Hausdorff are known and were
studied in [HST14].

Since F is power-enriched, a topological space, seen as an (F, 2)-algebra, is
(F, 2)-Hausdorff if and only if it has at most one point. When removing the least
element p, which is the improper filter PX , the filter monad is replaced by a
submonad Fp = (Fp,m, e) where FpX = FX \ {PX} is the set of all proper
filters on X . In this case the Hausdorff property restricted to Fp assumes its usual
meaning: A topological space, seen as a relational F-algebra, is (Fp, 2)-Hausdorff
if and only if it is Hausdorff in the classical sense.

Hausdorff separation in (I, 2)-Cat and (B, 2)-Cat

We proceed by studying Hausdorff separation in (I, 2)-Cat, for the power-enriched
monad I.

By Proposition 4.3.2.1, we immediately know that (I, 2)-Hausdorff gives un-
interesting results. Therefore we immediately restrict to proper elements.

Recall from Proposition 3.1.4.1 that the order induced by τ : P // I, or equiv-
alently the order induced by the Kleisli extension, coincides with the reversed
inclusion order on functional ideals

K ≤ I⇔ I ⊆ K,

for all I,K ∈ IX .
The functional ideal PXb = ZX is the least element (largest for the inclusion

order) and τX(X) = {0} the largest one. We let

IpX = IX \ {PXb }
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the collection of proper functional ideals. Condition (4.41) is fulfilled and Ip is
a subfunctor of I. Remark that it does not generate a submonad. This can for
instance be seen by taking X = {x} a one point set. In this case we have IX ={

[0, α] | α < ∞
}
∪ {[0,∞[}. Let s : P // IX be the selection defined by

s(a) = [0, a] whenever a is finite, and s(∞) = [0,∞[. Let G be the filter on P
generated by {[α,∞[| α < ∞}, and I = ιP(G). Then for Φ = Is(I) we have
c(mX(Φ)) = ∞. It follows that the multiplication can not be restricted to a map
IpIpX // IpX .

Definition 4.3.2.3. Given an approach space X with functional ideal convergence
�, X is (Ip, 2)-Hausdorff if

I� x
I� y

}
⇒ x = y, (4.44)

for all I ∈ IpX and x, y ∈ X .

Later on in Proposition 4.3.2.6 we show that this definition of Hausdorff sep-
aration in (I, 2)-Cat ∼= App coincides with the property (�,P+)-Hausdorff.

B is not power-enriched, nevertheless BX has an improper functional ideal
ZX . This improper element will imply trivial results once again.

Proposition 4.3.2.4. An approach space X is (B, 2)-Hausdorff if and only if
|X| ≤ 1.

Proof. Consider an approach space X that is (B, 2)-Hausdorff. For x ∈ X arbi-
trary, we get eX(x)  x and eX(x) ⊆ ZX , hence ZX  x. By (B, 2)-Hausdorff,
|X| ≤ 1. The converse is clear.

In order to get interesting results, we will again abandon improper elements.
For a set X , let BpX = BX \ {PXb }. Then Bp can be considered as a subfunctor
of B, however it is again not a submonad.

Definition 4.3.2.5. Given an approach space X with prime functional ideal con-
vergence . X is (Bp, 2)-Hausdorff if

M x
M y

}
⇒ x = y, (4.45)

for all M ∈ BpX and x, y ∈ X .

The following proposition shows that (Ip, 2)-Hausdorff and (Bp, 2)-Hausdorff
coincide and are equivalent to the known property (�,P+)-Hausdorff from Exam-
ple 4.1.1.3.
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Proposition 4.3.2.6. For an approach space X the following are equivalent:

(i) X is (Ip, 2)-Hausdorff,

(ii) X is (Bp, 2)-Hausdorff,

(iii) X is (�,P+)-Hausdorff.

Proof. Since BpX ⊆ IpX and M  x implies M� x, for all M ∈ BpX , it is
clear that (i) implies (ii).

To prove (ii) implies (i), suppose X is (Bp, 2)-Hausdorff and take I ∈ IpX
and x, y ∈ X arbitrary. Suppose I � x and I � y. Since I is proper, there
exists M ∈ Bm(I) which is proper as well. Since I ⊆ M, we get M � x and
M� y and thus, since M is prime, M  x and M  y. By (Bp, 2)-Hausdorff
separation we get x = y.

To show that (ii) implies (iii), take U ∈ βX and x, y ∈ X arbitrary such that
λU(x) <∞ and λU(y) <∞. Take α <∞ such that λU(x) ≤ α and λU(y) ≤ α.
Then ιX(U)⊕α x and ιX(U)⊕α y, with ιX(U)⊕α ∈ BpX . This implies
x = y.

To prove (iii) implies (ii), take M ∈ BpX and x, y ∈ X such that M  x
and M  y. Theorem 3.2.1.2 gives us the existence of an ultrafilter U ∈ βX
such that M = ιX(U) ⊕ c(M). Then λU(x) ≤ c(M) and λU(y) ≤ c(M). Since
M ∈ BpX , c(M) <∞ and thus x = y.

4.3.3 Lower separation axioms
First of all, we recall Definition 4.1.1.4 for V = 2. Let (X, a) be an object in
(T, 2)-Cat. Then, (X, a) is

1. (T, 2)-T0 if
eX(x) a y& eX(y) a x⇒ x = y, (4.46)

for all x, y ∈ X .

2. (T, 2)-T1 if
eX(x) a y ⇒ x = y, (4.47)

for all x, y ∈ X .

3. (T, 2)-R0 if
eX(x) a y ⇔ eX(y) a x (4.48)

for all x, y ∈ X .

4. (T, 2)-R1 if
X a x&X a y ⇒ eX(x) a y, (4.49)

for all x, y ∈ X and X ∈ TX .
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Lower separation axioms in (F, 2)-Cat

Adapting these definitions of (T, 2)-p, for p a lower separation property, to the
situation of (F, 2)-Cat, gives rise to the following topological properties in the
category Top.

Let (X,→) be a topological space.

1. X is (F, 2)-T0 if
ẋ→ y& ẏ → x⇒ x = y, (4.50)

for all x, y ∈ X .

2. X is (F, 2)-T1 if
ẋ→ y ⇒ x = y, (4.51)

for all x, y ∈ X .

3. X is (F, 2)-R0 if
ẋ→ y ⇔ ẏ → x (4.52)

for all x, y ∈ X .

4. X is (F, 2)-R1 if
F → x&F → y ⇒ ẋ→ y, (4.53)

for all x, y ∈ X and F ∈ FX .

The notions (F, 2)-T0, (F, 2)-T1 and (F, 2)-R0 coincide with the classical sep-
aration properties T0, T1 and R0 in Top.

For (F, 2)-R1 the situation is different.

Proposition 4.3.3.1. A topological space X is (F, 2)-R1 if and only if it is indis-
crete.

Proof. One implication is clear. To see the other one, note that the improper filter
converges to any point of X . Hence (F, 2)-R1 implies ẋ → y, for all x, y ∈ X .
This coincides with X being indiscrete.

In order to avoid these uninteresting results, we will restrict to proper elements.

Definition 4.3.3.2. Let (X,→) be a topological space. X is (Fp, 2)-R1 if

F → x&F → y ⇒ ẋ→ y, (4.54)

for all x, y ∈ X and F ∈ FpX .

We give the following alternative characterization of (Fp, 2)-R1.



132 CHAPTER 4. TOPOLOGICAL PROPERTIES IN APP AND NA-APP

Proposition 4.3.3.3. For a topological space (X,→), the following are equiva-
lent:

(i) X is (Fp, 2)-R1,

(ii) If V(x) ∨ V(y) is a proper filter, then V(x) = V(y), for all x, y ∈ X .

Proof. To prove (i)⇒ (ii), suppose V(x)∨V(y) is proper. Then V(x)∨V(y)→ x
and V(x) ∨ V(y) → y, and thus ẋ → y and ẏ → x. Hence V(y) ⊆ V(x) and
V(x) ⊆ V(y) and thus V(x) = V(y).

To prove (ii)⇒ (i), let F be a proper filter on X such that F → x and F → y.
Then V(x) ⊆ F and V(y) ⊆ F . This implies that V(x) ∨ V(y) is proper and
therefore V(x) = V(y). This then implies ẋ→ y.

If we restrict to proper elements, (Fp, 2)-R1 coincides with the classical R1-
property in Top.

Lower separation axioms in (I, 2)-Cat and (B, 2)-Cat

Adapting the definitions of (T, 2)-p, for p a lower separation property to (I, 2)-Cat
and (B, 2)-Cat gives the following topological properties in App. We immediately
translate the formulas in terms of the limit operator, whenever convenient.

Since B is a submonad of I, it follows immediately from (4.46), (4.47) and
(4.48) that the properties T0, T1 and R0 for I and B will coincide. Only the R1

property for both monads will be different.
LetX be an approach space with functional ideal convergence�, prime func-

tional ideal convergence and limit operator λ.

1. X is (I, 2)-T0 (and thus (B, 2)-T0) if

ιX(ẋ)� y& ιX(ẏ)� x⇒ x = y, (4.55)

for all x, y ∈ X , or, equivalently, if

λẋ(y) = 0 = λẏ(x)⇒ x = y, (4.56)

for all x, y ∈ X .

2. X is (I, 2)-T1 (and thus (B, 2)-T1) if

ιX(ẋ)� y ⇒ x = y, (4.57)

for all x, y ∈ X , or, equivalently, if

λẋ(y) = 0⇒ x = y, (4.58)

for all x, y ∈ X .
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3. X is (I, 2)-R0 (and thus (B, 2)-R0) if

ιX(ẋ)� y ⇔ ιX(ẏ)� x, (4.59)

for all x, y ∈ X , or, equivalently, if

λẋ(y) = 0⇔ λẏ(x) = 0, (4.60)

for all x, y ∈ X .

4. X is (I, 2)-R1 if
I� x& I� y ⇒ ιX(ẋ)� y, (4.61)

for all I ∈ IX and x, y ∈ X .

5. X is (B, 2)-R1 if

H x&H y ⇒ ιX(ẋ) y, (4.62)

for all H ∈ BX and x, y ∈ X .

Using the characterizations of these properties in terms of the limit operator,
we immediately get the following equivalences.

Proposition 4.3.3.4. Given an approach space X , the following are equivalent:

(i) X is (I, 2)-T0 ((I, 2)-T1, (I, 2)-R0 respectively),

(ii) The topological coreflection CTopX is T0 (T1, R0 respectively) in Top.

We will compare (I, 2)-R0 (4.59) in App to the notion of R0 in App introduced
by Lowen and Sioen [LS03], which we omitted in Example 4.1.1.6.

Definition 4.3.3.5. An approach space X satisfies R0 in the sense of Lowen-Sioen
[LS03] if

∀x ∈ X : A(x) =
⋂

y:δ(y,{x})=0

A(y).

Proposition 4.3.3.6. For an approach space X the following are equivalent

(i) The topological coreflection CTopX is R0 in Top, i.e.

∀x, y ∈ X : λẋ(y) = 0⇔ λẏ(x) = 0,

in terms of the limit operator, or

∀x, y ∈ X : δ
(
y, {x}

)
= 0⇔ δ

(
x, {y}

)
= 0,

in terms of the distance.
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(ii) X is R0 in the sense of Lowen-Sioen.

Proof. First we prove (i)⇒ (ii). Since δ
(
x, {x}

)
= 0, one inclusion is clear. To

show the other inclusion, take ϕ ∈ A(x) and let y ∈ X be such that δ
(
y, {x}

)
=

0. By (i) we know that also δ
(
x, {y}

)
= 0. By the transition formula (1.28), we

have
∀A ⊆ X : ϕ ∈ A(x)⇔ inf

z∈A
ϕ(z) ≤ δ(x,A).

By Proposition 1.1.1.2, we have δ(x,A) ≤ δ
(
x, {y}

)
+ δ(y, A) = δ(y, A), hence

∀A ⊆ X : inf
z∈A

ϕ(z) ≤ δ(y, A).

This implies ϕ ∈ A(y). Since this holds for all y ∈ X such that δ
(
y, {x}

)
= 0,

we get
ϕ ∈

⋂
y:δ
(
y,{x}

)A(y).

To prove (ii) ⇒ (i), suppose δ
(
y, {x}

)
= 0. Then clearly, by (ii), A(x) ⊆

A(y) and thus by the transition formula (1.36)

δ
(
x, {y}

)
= sup

ϕ∈A(x)

ϕ(y)

≤ sup
ϕ∈A(y)

ϕ(y)

= 0.

Combining Proposition 4.3.3.4 and Proposition 4.3.3.6, we get the following
equivalences.

Corollary 4.3.3.7. For an approach space X the following are equivalent

(i) X is (I, 2)-R0,

(ii) X is (B, 2)-R0,

(iii) X is R0 in the sense of Lowen-Sioen,

(iv) The topological coreflection CTopX is R0 in Top.

It is immediately clear that (�,P+)-R0, as introduced in Example 4.1.1.6, im-
plies (iv) (and hence all of the equivalent properties) from Corollary 4.3.3.7. The
following example shows that the converse does not hold.
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Example 4.3.3.8. Consider X =
(
{x, y}, d

)
where d is the quasi-metric structure

d(x, y) = α, d(y, x) = β, d(x, x) = d(y, y) = 0 with α 6= β and α, β > 0. Then
X is R0 in the sense of Corollary 4.3.3.7, since

λȧ(b) = 0 ⇔ d(b, a) = 0

⇔ a = b

⇔ λḃ(a) = 0,

for a, b ∈ X . However, X is not (�,P+)-R1, since

λẋ(y) = d(y, x) = β 6= α = d(x, y) = λẏ(x).

Since IX and BX both have an improper element ZX that converges to all
points of X , the properties (I, 2)-R1 and (B, 2)-R1 are uninteresting. We get that
an approach space X is (I, 2)-R1 or (B, 2)-R1 if and only if its topological core-
flection CTopX is an indiscrete topological space. Therefore we restrict to proper
elements.

Definition 4.3.3.9. LetX be an approach space with functional ideal convergence
� and prime functional ideal convergence .

1. X is (Ip, 2)-R1 if

I� x& I� y ⇒ ιX(ẋ)� y, (4.63)

for all I ∈ IpX and x, y ∈ X .

2. X is (Bp, 2)-R1 if

H x&H� y ⇒ ιX(ẋ) y, (4.64)

for all H ∈ BpX and x, y ∈ X .

The following proposition shows that both properties coincide and gives some
alternative characterizations.

Proposition 4.3.3.10. For an approach space X the following are equivalent

(i) X is (Ip, 2)-R1,

(ii) X is (Bp, 2)-R1,

(iii)
λU(x) <∞&λU(y) <∞⇒ λẋ(y) = 0, (4.65)

for all U ∈ βX and x, y ∈ X ,
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(iv)
λU(x) <∞&λU(y) <∞⇒ A(x) = A(y), (4.66)

for all U ∈ βX and x, y ∈ X .

Proof. Since BpX ⊂ IpX , the implication (i)⇒ (ii) is straightforward. To show
(ii)⇒ (i), suppose I� x and I� y for I ∈ IpX . Then there exists H ∈ Bm(I)
proper and thus H x and H y and therefore ιX(ẋ) y and thus ιX(ẋ)� y.

(ii) ⇔ (iii) follows immediately from the transition between proper prime
functional ideals and ultrafilters, Theorem 3.2.1.2.

To show (iii)⇒ (iv) suppose λU(x) < ∞ and λU(y) < ∞ for U ∈ βX . By
(iii) we have λẋ(y) = 0 = λẏ(x). Using (1.41), we get

sup
d∈G

d(y, x) = 0 = sup
d∈G

d(x, y),

hence for all d ∈ G we have d(y, x) = 0 = d(x, y). Now take d ∈ G and z ∈ X
arbitrary. Then

d(x, z) ≤ d(x, y) + d(y, z) = d(y, z)

d(y, z) ≤ d(y, x) + d(x, z) = d(x, z).

Hence, for all d ∈ G we have

d(x, ·) = d(y, ·).

Using (1.42), this gives us

A(x) = 〈d(x, ·) | d ∈ G〉
= 〈d(y, ·) | d ∈ G〉
= A(y).

Finally, to show (iv)⇒ (iii) suppose λU(x) < ∞ and λU(y) < ∞, for U ∈ βX
and x, y ∈ X . By (iv) A(x) = A(y) and thus, by (1.37)

λẋ(y) = sup
ϕ∈A(y)

ϕ(x)

= sup
ϕ∈A(x)

ϕ(x)

= 0.

From (iii) it follows immediately that (Bp, 2)-R1 implies (�,P+)-R1 from Ex-
ample 4.1.1.6. The following example shows that the converse does not hold.
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Example 4.3.3.11. Consider X = ({x, y, z}, d), where d is the metric defined by
d(a, a′) = β, 0 < β <∞, for a, a′ ∈ X with a 6= a′ and d(a, a) = 0 for a ∈ X .

For U ∈ βX and a ∈ X , we have λU(a) = 0 if U = ȧ and otherwise
λU(a) = β. Hence λȧ(b) ≤ λU(a) + λU(b) for all U ∈ βX and a, b ∈ X and
therefore X is (�,P+)-R1.

However, X is not (Bp, 2)-R1, since λż(x) = β = λż(y), but λẋ(y) 6= 0.

An approach space that is (Bp, 2)-R1 has a topological coreflection which is
R1 in Top. The following example shows that again the converse is not true.

Example 4.3.3.12. ConsiderX = ({x, y, z}, d), where d is a quasi-metric defined
by d(x, y) = d(y, x) = d(z, y) = d(z, x) = ∞ and d(x, z) = d(y, z) = α, with
0 < α <∞.

Then CTopX is R1 in Top, since X is finite and hence λU(a) = 0 = λU(b) if
and only if U = ȧ = ḃ and this implies a = b.

X is not (�,P+)-R1 and therefore also not (Bp, 2)-R1, since

λẋ(y) = d(y, x) =∞

but
λż(x) + λż(y) = d(x, z) + d(y, z) = 2α.

Finally we finish this section by comparing (Bp, 2)-R1 to the property R intro-
duced by Lowen and Sioen in [LS03].

For an approach space X with approach system
(
A(x)

)
x∈X , we define the

relation ∼R on X by

x ∼R y (4.67)
⇔ ∃x1 := x, · · · , xn := y ∈ X : ∀i ∈ {1, · · · , n− 1} :

c
(
A(xi) ∨ A(xi+1)

)
= 0.

Definition 4.3.3.13. An approach space X satisfies the condition R if it fulfills
the following condition

∀x ∈ X : A(x) =
⋂
y∼Rx

A(y). (4.68)

Proposition 4.3.3.14. For an approach space X , the following are equivalent

(i) The topological coreflection CTopX is R1 in Top,

(ii)
c
(
A(x) ∨ A(y)

)
= 0⇒ A(x) = A(y), (4.69)

for all x, y ∈ X ,
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(iii) X satisfies R.

Proof. To prove (i)⇒ (ii) suppose c
(
A(x) ∨ A(y)

)
= 0. Then

c
(
A(x) ∨ A(y)

)
= 0 ⇔ sup

ϕ∈A(x)

sup
ψ∈A(y)

inf
z∈X

ϕ(z) ∨ ψ(z) = 0

⇔ ∀ε > 0∀ϕ ∈ A(x)∀ψ ∈ A(y)∃z ∈ X :

ϕ(z) ∨ ψ(z) < ε

⇔ ∀ε > 0∀ϕ ∈ A(x)∀ψ ∈ A(y) :

{ϕ < ε} ∩ {ψ < ε} 6= ∅.

Hence VCTopX(x) ∨ VCTopX(y) is a proper filter on X . Since CTopX is R1, by
Proposition 4.3.3.3, this implies VCTopX(x) = VCTopX(y) and thus A(x) = A(y).

To prove (ii) implies (i), let U ∈ βX such that λU(x) = 0 = λU(y). Then
VCTopX(x) ⊆ U and VCTopX(y) ⊆ U . This implies that for all ϕ ∈ A(x) and
ψ ∈ A(y) and for all ε > 0 {ϕ < ε} ∩ {ψ < ε} 6= ∅ and thus infz∈X(ϕ ∨
ψ)(z) ≤ ε. Hence c

(
A(x)∨A(y)

)
= 0, therefore, by (ii), A(x) = A(y) and thus

λẋ(y) = supϕ∈A(y) ϕ(x) = supϕ∈A(x) ϕ(x) = 0.
That (ii) implies (iii) is straightforward.
To prove (iii) implies (ii) suppose c

(
A(x) ∨ A(y)

)
= 0. Then x ∼R y and

thus A(y) =
⋂
z∼RyA(z) ⊆ A(x). Similarly A(x) ⊆ A(y) and thus A(x) =

A(y).

4.3.4 Compactness
Recall that an object (X, a) in (T, 2)-Cat is (T, 2)-compact if

∀X ∈ TX ∃x ∈ X such that X a x. (4.70)

The following result from [HST14] gives a characterization of (T, 2)-compact-
ness for power-enriched monads (T, τ) and their Kleisli extension.

In the case where T = (T,m, e) is power-enriched via τ : P //T the induced
order on an object (X,→) in (T, 2)-Cat is defined by

x ≤ y ⇔ τ
(
{x}
)
→ y ⇔ eX(x)→ y. (4.71)

Proposition 4.3.4.1. Given a monad T power-enriched by τ : P // T together
with its Kleisli extension Ť to Rel. Let (X,→) be an object in (T, 2)-Cat.

If (X,→) is (T, 2)-compact, X has a largest element for the induced order
(4.71), with the converse statement holding when τ(X) is the largest element in
TX.
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Remark 4.3.4.2. Consider (X, a) ∈ (T, 2)-Cat. We know that for the improper
element p of TX we have

p a x, ∀x ∈ X.

Therefore restricting to proper elements will not generate a new compactness no-
tion.

Compactness in (F, 2)-Cat

The property of (F, 2)-compactness was studied in [HST14], but for completeness
we recall the result.

Consider a topological space as an (F, 2)-algebra (X, a). Suppose that X is
(F, 2)-compact. When considering the filter {X}, one sees that this implies that
there must be a point whose only neighborhood is X . Since every other filter
converges to this point as well, this characterizes (F, 2)-compactness. Spaces that
satisfy this property are called supercompact spaces.

By Remark 4.3.4.2 we know that restricting to proper elements will give the
same results.

Compactness in (I, 2)-Cat and (B, 2)-Cat

Definition 4.3.4.3. Given an approach space X with functional ideal convergence
�, X is (I, 2)-compact if

∀I ∈ IX ∃x ∈ X such that I� x. (4.72)

When we consider the functional {0}, we see that there must be a point x ∈ X
such that {0} � x, or equivalently A(x) = {0}. Since every other functional
ideal converges to this point as well, this characterizes (I, 2)-compactness. Ap-
proach spaces that satisfy this property will be called supercompact approach
spaces.

Now we turn our attention to the prime functional ideal monad B. Here the
situation is different, since the functional ideal {0} is not prime.

Definition 4.3.4.4. Given an approach space X with prime functional ideal con-
vergence , X is (B, 2)-compact if

∀M ∈ BX ∃x ∈ X such that M x. (4.73)

The following proposition characterizes (B, 2)-compactness.

Proposition 4.3.4.5. An approach space X is (B, 2)-compact if and only if its
topological coreflection CTopX is compact as a topological space.
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Proof. To prove that (B, 2)-compactness gives rise to a compact topological core-
flection, take U ∈ βX arbitrary. Then ιX(U) ∈ BX and there exists x ∈ X such
that ιX(U) x. Then λU(x) = 0.

To prove the converse, take M ∈ BX arbitrary. Since ZX converges to any
x ∈ X , we may assume M proper. By proposition 3.2.1.2, there exists U ∈ βX
such that M = ιX(U) ⊕ c(M). For this U ∈ βX , there exists x ∈ X such that
λU(x) = 0. Hence ιX(U)  x and since ιX(U) ⊆ ιX(U) ⊕ c(M) = M, it
follows that M x.

As a consequence of this proposition, we immediately get that (B, 2)-com-
pactness implies (�,P+)-compactness. The converse is not true and for a coun-
terexample, we refer to Example 4.2.2.2.

(I, 2)-compactness clearly implies (B, 2)-compactness,since BX ⊆ IX for
every approach space X . Again the converse does not hold.

Example 4.3.4.6. LetX = ({x, y, z}, d) where d is the metric defined by d(x, y) =
2, d(x, z) = d(y, z) = 1 and d(x, x) = d(y, y) = d(z, z) = 0. Then the topolog-
ical coreflection CTopX is compact, since X is finite and therefore X is (B, 2)-
compact. This space is not (I, 2)-compact since the bases for the approach systems
on X are given by

B(x) = {d(x, ·)},
B(y) = {d(y, ·)},
B(z) = {d(z, ·)}.

Hence, there is no a ∈ X such that A(a) = {0}.

By Remark 4.3.4.2 we know that restricting to proper elements will give the
same results.

4.3.5 Regularity
In this section we consider the topological property of (T, 2)-regularity.

First of all we present some general results on regularity for relational T-
algebras, where T is some power-enriched monad. We prove that for a power-
enriched monad T, even when restricting to proper elements, (T, 2)-regularity of
a relational T-algebra (X, a) is too strong since in most cases it implies (X, a) to
be indiscrete.

Then we get back to Top. The classical notion of regularity in Top is known
to be equivalent to the following expression in terms of convergence of proper
filters and the Kowalsky sum on selected filters. For every set A, G a filter on A,
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ψ : A //X and σ a selection of filters with σ(z) // ψ(z) whenever z ∈ A, the
filters F = σ(G) and F = ψ(G) satisfy

ΣF // x⇒ F // x, (4.74)

for all x ∈ X . The equivalence of (4.74) with the usual regularity of a topo-
logical space was established by Cook and Fisher in [CF67]. When considering
topological spaces as relational F-algebras, (F, 2)-regularity gives trivial results,
even when restricting to proper filters. Therefore we investigate a weaker notion
by restricting to filters generated by selections. In this way we end up with a
formulation equivalent to (4.74).

Finally we investigate regularity for approach spaces presented as relational I-
algebras. Again by general results on power-enriched monads, even when restrict-
ing to proper ideals, the notion of (I, 2)-regularity is too strong and we investigate
some weaker concept, by restricting to ideals generated by certain selections. In
doing so we obtain a characterization of regular approach spaces in terms of func-
tional ideals.

Restricting the prime functional ideal monad B to proper elements already
gives more interesting results. We prove that (Bp, 2)-regularity is equivalent to
the approach space being topological and regular. However it requires further
weakening of the concept to obtain a characterization of the usual regularity in
App in terms of convergence of prime functional ideals.

Regularity in (T, 2)-Cat for a power-enriched monad T

We start by recalling the definition of (T, 2)-regularity for a relational T-algebra.

Definition 4.3.5.1. An object (X, a) in (T, 2)-Cat is (T, 2)-regular if

X (T̂ a)X &mX(X) a x⇒ X a x,

for all X ∈ TTX,X ∈ TX and x ∈ X .

Next we apply (T, 2)-regularity to the situation of a power-enriched monad
(T, τ).

Proposition 4.3.5.2. Let (T, τ) be a power-enriched monad together with its Kleisli
extension Ť to Rel, then a relational T-algebra (X, a) is (T, 2)-regular if and only
if it is indiscrete.

Proof. Let (X, a) be a (T, 2)-regular relational T-algebra with X 6= ∅. Let X be
the least element of TTX and X ∈ TX and x ∈ X be arbitrary. Then clearly
we have X ≤ aτ (X ). Since mX is sup-preserving, mX(X) is the least element in
TX and therefore, by right unitarity of a (1.75), we have mX(X) a x. Regularity
implies that X a x. By arbitrariness of X ∈ TX and x ∈ X we can conclude that
(X, a) is indiscrete.
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In Top it is well-known that regularity implies R1. By Proposition 4.3.5.2
we find that in general, for a power-enriched monad T together with its Kleisli
extension Ť, (T, 2)-regularity also implies (T, 2)-R1.

Proposition 4.3.5.3. Let (T, τ) be a power-enriched monad together with its Kleisli
extension Ť to Rel, then a relational T-algebra (X, a) is (T, 2)-R1 if it is (T, 2)-
regular.

In order to avoid uninteresting results, we will restrict to proper elements and
by (Tp, 2)-regularity, we mean the following property.

Definition 4.3.5.4. An object (X, a) in (T, 2)-Cat is (Tp, 2)-regular if

X (T̂ a)X &mX(X) a x⇒ X a x,

for all X ∈ TjX(TTpX) with mX(X) ∈ TpX , X ∈ TpX and x ∈ X .

Despite the restriction, (Tp, 2)-regularity is still too strong as will be shown
in Proposition 4.3.5.5. In this result we use the following notation. For a :
TX−→7 X we let ap : TpX−→7 X be defined as

ap = a · jX .

Proposition 4.3.5.5. Let (T, τ) be a power-enriched monad, Kleisli extended to
Rel, satisfying (4.41) and let (X, a) be a relational T-algebra satisfying

For all x ∈ X the smallest element p ∈ TX satisfies p 6= eX(x). (4.75)

Then (X, a) is (Tp, 2)-regular if and only if it is indiscrete.

Proof. Let (X, a) be a relational T-algebra satisfying (4.75) and suppose it is
(Tp, 2)-regular. Let X 6= ∅, x ∈ X arbitrary and q the largest element in TX .

Consider X = TjX(Y) for Y = aτp ·eX(x). The extension operator linking the
monad T to its associated Kleisli triple, turns the map g = τTpX ·a[p : X //TTpX
into gTp = mTpX · Tgp : TX // TTpX and satisfies gTp · eX = gp. It follows that

aτp · eX(x) = mTpX · Tgp · eX(x) = τTpX · a[p(x) ∈ TTpX.

Similar calculations show that aτ · eX(x) = τTX · a[(x).
By naturality of τ , since τTX is monotone, since eX(x) ≤ q and since both

mTX and T (τTX · a[) are sup-maps, we have

X = TjX · τTpX · a[p(x)

= τTX · PjX · a[p(x)

≤ τTX · a[(x)

= aτ · eX(x)

≤ aτ (q).
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So we have both
X (Ť a) eX(x) and X (Ť a) q. (4.76)

Applying the fact that a is left unitary (1.76), to the first expression, we have
mX(X) a x. Moreover, by applying naturality of τ and mX · τTX =

∨
TX we get

mX(X) = mX · τTX · PjX · a[p(x)

=
∨
PjX · aτp(x)

=
∨
{j(X ) | X 6= p,X a x}

≥ eX(x)

> p

and therefore mX(X) ∈ TpX . Applying (Tp, 2)-regularity to the second expres-
sion in (4.76) we conclude that q a x. Applying the fact that a is right unitary
(1.75), we can conclude that (X, a) is indiscrete.

By Proposition 4.3.5.5 we also find the classical relation between (Tp, 2)-
regularity and (Tp, 2)-R1.

Proposition 4.3.5.6. Let (T, τ) be a power-enriched monad, Kleisli extended to
Rel, satisfying (4.41) and let (X, a) be a relational T-algebra satisfying (4.75)
Then (X, a) is (Tp, 2)-R1 if it is (Tp, 2)-regular.

Regularity in (F, 2)-Cat

As we already know from the section on regularity for power-enriched monads,
(F, 2)-regularity for a relational F-algebra

F (F̌ a)F & ΣF → x⇒ F → x,

for all F ∈ FFX,F ∈ FX and x ∈ X is equivalent to the corresponding topo-
logical space being indiscrete.

We remove the least element p = PX . Condition (4.75) is clearly fulfilled.
By Proposition 4.3.5.5, (Fp, 2)-regularity for a relational F-algebra

F (F̌ a)F & ΣF → x⇒ F → x, (4.77)

for all F ∈ FjX(FFpX) with ΣF ∈ FpX , F ∈ FpX and x ∈ X , is again
equivalent to the topological space being indiscrete.

Next we restrict the expression (4.77) to pairs of filters generated by selections.
Let A be a set, G ∈ FpA and ψ : A //X and σ : A // FpX , selections with

σ(z) // ψ(z), for all z ∈ A. Then the filters F = FjX
(
σ(G)

)
and F = ψ(G)
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satisfy F (F̌ a)F , F ∈ FFpX , ΣF ∈ FpX and F ∈ FpX . So in the contexts of
selections, the property becomes:

For every set A, G ∈ FpA and ψ : A //X and σ : A // FpX selections with
σ(z) //ψ(z) whenever z ∈ A, the filters F = FjX

(
σ(G)

)
and F = ψ(G) satisfy

ΣF // x⇒ F // x, (4.78)

for all x ∈ X . This property is clearly equivalent to (4.74) and was shown to
be equivalent to the usual regularity of a topological space by Cook and Fisher
in [CF67]. It was considered by Kent and Richardson in [KR96] under the name
DF.

By Proposition 4.3.5.3 and Proposition 4.3.5.6, we get that (F, 2)-regularity
implies (F, 2)-R1 and that (Fp, 2)-regularity implies (Fp, 2)-R1.

Regularity in (I, 2)-Cat

The condition (4.75) is clearly fulfilled for a relational I-algebra (X, a) so from
previous results on regularity for power-enriched monads we know the following
are equivalent:

(i) (X, a) is (I, 2)-regular,

(ii) (X, a) is (Ip, 2)-regular,

(iii) The associated approach space is indiscrete.

In order to get a characterization of regularity in approach theory in terms
of functional ideals, we weaken the condition even further to functional ideals
generated by selections.

Theorem 4.3.5.7. The following are equivalent:

(i) mX(Φ)� x& s(z)⊕ δ� ψ(z), whenever z ∈ A, and c(I) = c
(
mX(Φ)

)
and infF∈fα(I) infz∈F c

(
s(z)

)
= 0 whenever c(I) ≤ α <∞, imply

K⊕ δ� x

for all x ∈ X, δ ≥ 0,Φ = IjX
(
Is(I)

)
and K = Iψ(I) generated by I ∈ IpA

and selections s : A // IpX and ψ : A //X .

(ii) X is a regular approach space: If A is a set, ψ : A //X, σ : A // FpX ,
and G ∈ FpA, then

λψ(G) ≤ λΣσ(G) + sup
z∈A

λσ(z)
(
ψ(z)

)
.
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(iii) If A is a set, ψ : A //X , σ : A // FpX , and G ∈ FpA, then

λψG ≤ λΣσ(G) + inf
G∈G

sup
z∈G

λσ(z)
(
ψ(z)

)
.

Proof. (i) ⇒ (ii): Let A be a set, ψ : A // X, σ : A // FpX,G ∈ FpA and
x ∈ X , then we consider s : A // IpX defined by s(z) = ιX

(
σ(z)

)
for z ∈ A.

Let λΣσ(G)(x) = ε < ∞ and supz∈A λσ(z)
(
ψ(z)

)
= δ < ∞ and consider

I = ιA(G)⊕ε. The formulas (3.1) and (3.2) for Φ = I jX
(
I s(I)

)
give the simpler

forms
mX(Φ) =

∨
G∈G

⋂
z∈G

ιX
(
σ(z)

)
⊕ ε

and c
(
mX(Φ)

)
= ε. Moreover, by (3.10) in Proposition 3.1.1.6 for every α with

ε ≤ α <∞ we have
Σσ(G) ⊆ fα

(
mX(Φ)

)
.

Applying the transition formula from a limit operator to functional ideal conver-
gence (1.35) we get mX(Φ) � x and s(z) ⊕ δ � ψ(z), whenever z ∈ A.
Moreover since c

(
s(z)

)
= 0 for every z ∈ A also

inf
F∈fα(I)

sup
z∈F

c
(
s(z)

)
= 0,

for all α with c(I) ≤ α <∞. By (i) we now have that Iψ(I)⊕ δ� x and by the
transition formula from functional ideal convergence to limit operator (1.47), we
obtain

λψ(G)(x) ≤ λΣσ(G)(x) + sup
z∈A

λσ(z)
(
ψ(z)

)
.

(ii) ⇒ (iii): Let A be a set, ψ : A // X, σ : A // FpX and G ∈ FpA
with infG∈G supz∈G λσ(z)

(
ψ(z)

)
= δ. For ε > 0 choose G0 ∈ G such that

supz∈G0
λσ(z)

(
ψ(z)

)
< δ + ε and let σ′ : A // FpX be defined as

σ′(z) :=

{
σ(z) for all z ∈ G0,

˙ψ(z) for all z /∈ G0.

Now apply regularity with as input G and the selections ψ and σ′ on A. Then for
F = ψ(G) and F = σ′(G) we have

λF(x) ≤ λΣF (x) + sup
z∈A

λσ′(z)
(
ψ(z)

)
= λΣF (x) + sup

z∈G0

λσ(z)
(
ψ(z)

)
< λΣF (x) + δ + ε.
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By arbitrariness of ε we are done.
(iii)⇒ (i): Let x ∈ X, δ ≥ 0,Φ = I jX

(
I s(I)

)
and K = Iψ(I) generated by

selections s : A // IpX and ψ : A //X and I ∈ IpA, and assume

mX(Φ)� x& s(z)⊕ δ� ψ(z), for all z ∈ A

and

c(I) = c
(
mX(Φ)

)
& inf

F∈fα(I)
sup
z∈F

c
(
s(z)

)
= 0, for all α with c(I) ≤ α <∞.

Apply the result from Proposition 3.2.1.5. For every z ∈ A choose r(z) ∈
Bm
(
s(z)

)
with c

(
r(z)

)
= c

(
s(z)

)
. Clearly by Proposition 3.1.1.3 we have

mX(I r(I)
)
� x and c

(
mX

(
I r(I)

))
= c
(
mX

(
I s(I)

))
. Moreover

infF∈fα(I) supz∈F c
(
r(z)

)
= 0, for all α with c(I) ≤ α <∞. For z ∈ A we write

r(z) = ιX
(
σ(z)

)
⊕ c
(
s(z)

)
. Since r(z) ⊕ δ � ψ(z) we have λσ(z)

(
ψ(z)

)
≤

c
(
r(z)

)
+δ for every z ∈ A. Let γ ≥ c(I)+δ and α ≥ c(I) with γ = α+δ. With

G = fα(I) now apply (iii) to A,ψ, σ, x,G. Using equation (3.9) in Proposition
3.1.1.6 we get

λψ(G)(x) ≤ λΣσ(G)(x) + inf
G∈G

sup
z∈G

λσ(z)
(
ψ(z)

)
≤ λfα

(
mX

(
I r(I)

))
(x) + inf

G∈G
sup
z∈G

c
(
r(z)

)
+ δ

≤ λfα

(
mX

(
I r(I)

))
(x) + δ

≤ α + δ = γ.

Since fγ
(
Iψ(I)⊕ δ

)
= fα

(
Iψ(I)

)
= ψ(G), it follows that Iψ(I)⊕ δ� x.

By Proposition 4.3.5.3 and Proposition 4.3.5.6, we get that (I, 2)-regularity
implies (I, 2)-R1 and that (Ip, 2)-regularity implies (Ip, 2)-R1.

Removing the condition c(I) = c
(
mX(Φ)

)
we obtain a characterization of

regular topological spaces.

Theorem 4.3.5.8. The following are equivalent:

(i) mX(Φ) � x& s(z) � ψ(z), whenever z ∈ A& c
(
mX(Φ)

)
< ∞ &

infF∈f(I) supz∈F c
(
s(z)

)
<∞ imply

K� x

for all x ∈ X , Φ = IjX
(
Is(I)

)
and K = Iψ(I) generated by I ∈ IpA and

selections s : A // IpX and ψ : A //X .
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(ii) X is a regular topological space.

Proof. (i) ⇒ (ii): In order to prove that X is topological let F ∈ FpX, x ∈ X
and suppose λF(x) < ∞. Consider A = X , ψ = 1X and s : X // IpX
defined by s(z) = ιX

(
σ(z)

)
⊕ λF(x) with σ(z) = ż for z ∈ X, I = ιX(F) and

Φ = I jX
(
I s(I)

)
.

Clearly s(z) � ψ(z), for all z ∈ A and by (3.2) in Proposition 3.1.1.3 we
have c

(
mX(Φ)

)
= λF(x) <∞. By (3.10) in Proposition 3.1.1.6, F = Σσ(F) ⊆

fα(mX(Φ)) for every α ≥ λF(x). Therefore λfα(mX(Φ))(x) ≤ λF(x) for every
α ≥ λF(x) and mX(Φ)� x. Moreover since c(s(z)) = λF(x) for every z ∈ A,
also infF∈f(I) supz∈F c(s(z)) <∞. It follows that ιX(F)� x and so λF(x) = 0.
We may conclude that the space is topological.

Next we prove regularity via (4.78). Let A a set, G ∈ FpA and ψ : A → X
and σ : A → FpX, with σ(z) → ψ(z) whenever z ∈ A, F = F jX(σ(G)) and
F = ψ(G) with ΣF → x for x ∈ X.

For I = ιA(G) and s(z) = ιX(σ(z)), for all z ∈ A and Φ = I jX(I s(I)),K =
Iψ(I) we clearly have s(z) � ψ(z), c(s(z)) = 0, whenever z ∈ A. Further
c(mX(Φ)) = 0 and fα(mX(Φ)) = Σσ(G) for all α ≥ 0 by (3.9) and (3.10) in
Proposition 3.1.1.6. So mX(Φ) = ιX(Σσ(G)) � x. From (i) we have K =
ιX(F)� x and therefore F → x.

(ii) ⇒ (i): Suppose X is a regular topological space and let x ∈ X , Φ =
I jX(I s(I)) and K = Iψ(I) generated by selections s : A → IpX and ψ :
A → X and I ∈ IpA, with mX(Φ) � x, s(z) � ψ(z), whenever z ∈ A
and c(mX(Φ)) <∞, infF∈f(I) supz∈F c(s(z)) <∞.

As in the proof of Theorem 4.3.5.7 applying Proposition 3.2.1.5, for every z ∈
A we can choose r(z) ∈ Bm(s(z)) with c(r(z)) = c(s(z)). Then by Proposition
3.1.1.3 we havemX(I jX(I r(I)))� x, c(mX(I jX(I r(I)))) = c(mX(I jX(I s(I))))
and infF∈f(I) supz∈F c(r(z)) <∞.

For z ∈ A we write r(z) = ιX(σ(z)) ⊕ c(s(z)). Since r(z)� ψ(z) we have
λσ(z)(ψ(z)) ≤ c(r(z)) and since X is topological λσ(z)(ψ(z)) = 0 for every
z ∈ A.

For c(I) ≤ α <∞ arbitrary, we claim that there exists γ with

c(mX(I jX(I r(I)))) ≤ γ <∞

such that
fγ(mX(I jX(I r(I)))) ⊆ ΣF jX(σ(fα(I))).

The proof goes along the same lines as for (3.9) in Proposition 3.1.1.6. We put

γ ≥ max{c(mX(I jX(I r(I)))), 2 inf
F∈f(I)

sup
z∈F

c(r(z)), 2α}.
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Let µ ∈ mX(I jX(I r(I))) and γ < β. By (3.1) choose ϕ ∈ I such that µ ∈
ιX(σ(z))⊕ (c(r(z)) + ϕ(z)), whenever z ∈ A. For z ∈ A choose Sz ∈ σ(z) and
ω <∞ such that µ ≤ θωSz + c(r(z)) + ϕ(z).

Choose F ∈ fα(I) with supz∈F c(r(z)) < β
2

and then ψ ∈ I and η > α

with {ψ < η} ⊆ F . Let ζ = ϕ ∨ ψ ∈ I and choose ρ < β
2

with α < ρ < η
then {ζ < ρ} ∈ fα(I). We now claim that for z ∈ A with ζ(z) < ρ we have
{µ < β} ∈ σ(z). Indeed for such z we have

ψ(z) < η ⇒ z ∈ F ⇒ c(r(z)) <
β

2
.

Since also ϕ(z) < ρ, it follows that Sz ⊆ {µ < β}.
Since fγ(mX(I jX(I r(I)))) → x also ΣF jX(σ(fα(I))) → x and applying

regularity to F = ψ(fα(I)) and F = F jX(σ(fα(I))) also ψ(fα(I)) → x. By
arbitrariness of α we can conclude that Iψ(I)� x.

Regularity in (B, 2)-Cat

The explicit expression for (B, 2)-regularity of a relational B-algebra (X, a) be-
comes

Θ (B̌a)K&nX(Θ) x⇒ K x

for all Θ ∈ BBX,K ∈ BX and x ∈ X .
For a relational B-algebra (X, a), due to the fact that Θ is allowed to be im-

proper, we have the following equivalence

(i) (X, a) is (B, 2)-regular,

(ii) The associated approach space is indiscrete.

Applying Proposition 4.3.5.3, we again get that (B, 2)-regularity implies (B, 2)-
R1.

Again it is clear that we have to exclude the improper element PXb .
(Bp, 2)-regularity becomes

Θ (B̌a)K&nX(Θ) x⇒ K x, (4.79)

for all Θ ∈ B jX(BBpX) with nX(Θ) ∈ BpX , K ∈ BpX and x ∈ X .
One of the equivalent formulations in the next proposition will make use of

selections s : A // BpX and ψ : A //X and I ∈ BpA and will deal with ideals
Θ = B jX(B s(I)) and K = Bψ(I) generated by these selections.

Theorem 4.3.5.9. For a relational B-algebra (X, a), the following are equivalent:

(i) (X, a) is (Bp, 2)-regular.
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(ii) Θ (B̌a)K&nX(Θ) x& c(K) = c(Θ)⇒ K x, for all Θ ∈ B jX(BBpX)
with nX(Θ) ∈ BpX , K ∈ BpX and x ∈ X .

(iii) nXΘ  x& s(z)  ψ(z), whenever z ∈ A ⇒ K  x for all x ∈ X,Θ =
B jX B s(I) with nX(Θ) ∈ BpX and K = Bψ(I), generated by I ∈ BpA
and selections s : A // BpX and ψ : A //X .

(iv) X is a regular topological space.

Proof. (i)⇒ (ii) is trivial.
(ii)⇒ (iii): Suppose selections s : A → BpX and ψ : A → X and I ∈ BpA

are given, Θ = B jX B s(I) and K = Bψ(I) with nX(Θ) ∈ BpX and nX(Θ)  
x. Clearly c(K) = c(Θ). Moreover the condition s(z)  ψ(z), whenever z ∈ A
implies a∧K ⊆ Θ. This follows from the fact that from µ ∈ PBX

b , µ ≤ a∧ν with
ν · ψ ∈ I we have µ · s ≤ ν · ψ which implies µ · s ∈ I. By (ii) the conclusion
follows.

(iii)⇒ (iv) First we prove that the corresponding approach space X is topo-
logical. Let W ∈ βX, x ∈ X and assume λW(x) < ∞. Consider the se-
lections on A = X , ψ = id and s(z) = ιX(ż) ⊕ λW(x) and I = ιX(W).
Then in view of (3.11) in Proposition 3.1.1.7, for Θ = B jX B s(ιX(W)) we have
nX(Θ) = ιX(W)⊕ λW(x). So clearly all conditions in (iii) are fulfilled in order
to conclude that K = ιX(W) satisfies K  x. It follows that λW(x) = 0. So
we can conclude that the limit operator is two-valued on ultrafilters and that X is
topological.

Next we prove that the regularity condition in (4.27) is fulfilled. Consider
selections ψ : A→ X and σ : A→ βX, andW ∈ βA and let x ∈ X, U = ψ(W)
and U = σ(W). Suppose the right-hand side of (4.27) is finite. Let I = ιA(W)
and for z ∈ A put

s(z) = ιA(σ(z))⊕ (λσ(z)(ψ(z)) ∨ λΣU (x)).

Clearly s(z) ψ(z), for all z ∈ A. Moreover Θ = B jX B s(I) satisfies

nX(Θ) = ιX(ΣU )⊕ sup
W∈W

inf
z∈W

(λσ(z)(ψ(z)) ∨ λΣU (x))

and hence all conditions in (iii) hold. So for K = Bψ(I) = ιX(ψ(W)) we have
K x. Since λψ(W) = 0 the inequality in (4.27) holds.

(iv) ⇒ (iii): Let x ∈ X , Θ = B jX B s(I) and K = Bψ(I) generated by
selections s : A → BpX and ψ : A → X and I ∈ BpA with nX(Θ) ∈ BpX
and assume nX(Θ)  x and s(z)  ψ(z), for all z ∈ A. For z ∈ A we denote
s(z) = ιX(σ(z))⊕ αz and I = ιA(W)⊕ c(I). With U = σ(W) we have

nX(Θ) = ιX(ΣU )⊕ (c(I) + sup
W∈W

inf
z∈W

αz).
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It follows that both λΣU (x) and supW∈W infz∈W λσ(z)(ψ(z)) are finite and hence
zero. Since W is an ultrafilter, by application of Lemma 1.1.1.4, we can inter-
change sup and inf and we get

inf
W∈W

sup
z∈W

λσ(z)(ψ(z)) = 0.

We use a technique as in the proof of Theorem 4.3.5.7 and choose W0 ∈ W such
that supz∈W0

λσ(z)(ψ(z)) = 0. Let σ′ : A→ βX be defined as

σ′(z) :=

{
σ(z) for all z ∈ W0

˙ψ(z) for all z 6∈ W0.

Observe that σ(W) = σ′(W) = U . Now apply regularity with as inputW on A
and the selections ψ and σ′. Then for U = ψ(W) we have

λU(x) ≤ λΣU (x) + sup
z∈A

λσ′(z)(ψ(z))

= λΣU (x) + sup
z∈W0

λσ(z)(ψ(z))

= 0

Since K = ιX(U)⊕ c(I) we can conclude that K x.
(iii) ⇒ (ii) Let x ∈ X , Θ = B jX(Ψ) for Ψ ∈ BBpX and K ∈ BpX with

nX(Θ) ∈ BpX, nX(Θ)  x, a∧K ⊆ Θ and c(K) = c(Θ). We denote Θ =
ιBX(U )⊕ γ and K = ιX(U)⊕ γ. Let

A = {(y, I) | I y, I ∈ BpX, y ∈ X}.

We show that U ×U has a trace on A. For U ∈ U and A ∈ U and γ < ω < ∞
the function

ϕ = (a∧(θωU + γ) ∧ ω) ∨ (θωA + γ)

belongs to Θ and so ϕ · jX ∈ Ψ. We evaluate ϕ in an arbitrary L ∈ BpX.
Either L 6∈ A and then the second term equals ω + γ ≥ ω, or L ∈ A. In case

L diverges the first term equals ω. In case L does converge, but never to a point
of U , the first term equals ω + γ ≥ ω. Since ϕ cannot be larger than ω in every
L, we can conclude that there is L0 ∈ A that converges to some y0 ∈ U. Then
(y0,L0) ∈ A ∩ (U ×A).

LetW be an ultrafilter onA finer than the trace of U×U onA, ψ : A //X the
restriction of the first projection and s : A // BpX the restriction of the second
projection. Then we have ψ(W) = U and s(W) = U and s(z)  ψ(z) for all
z ∈ A, by construction. With I = ιA(W)⊕ γ we now have Θ = B jX B s(I) and
K = Bψ(I). By (iii) we can conclude that K x.
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(ii) ⇒ (i): Let x ∈ X , Θ = B jX(Ψ) for Ψ ∈ BBpX and K ∈ BpX with
nX(Θ) ∈ BpX, nX(Θ)  x and a∧K ⊆ Θ. We denote K = ιX(U) ⊕ γ and
Θ = ιBX(U )⊕ δ where both γ and δ are finite. For K′ = ιX(U)⊕ δ we show that
a∧K′ ⊆ Θ.

To see this let U ∈ U , ω > δ, η > ω+γ, η > ω+ δ and let 0 < ε < γ. Choose
A ∈ U and ω′ ≥ ω such that for ϕγ = a∧(θωU + γ) ∧ η one has

ϕγ ≤ θω
′

A + δ + ε.

We claim that also ϕδ = a∧(θωU + δ) ∧ η satisfies

ϕδ ≤ θω
′

A + δ + ε.

To evaluate both sides in a prime ideal L, observe that the right-hand side takes
values δ + ε (when L ∈ A) and ω′ + δ + ε (when L 6∈ A). So the inequalities
in case where L diverges or converges to at least one point of U are trivially
fulfilled. In case L converges but never to a point of U , L ∈ A would imply
ϕγ(L) = ω+ γ ≤ δ + ε which is impossible. So we may assume L 6∈ A and then
ϕδ(L) ≤ δ + ε.

Application of (ii) to Θ and K′ implies K′  x which means that λU(x) ≤ δ.
Since we already proved that (ii) implies the approach space X is topological, we
have λU(x) = 0 and hence also K x.

This result immediately gives that (Bp, 2)-regularity implies (Bp, 2)-R1.

Proposition 4.3.5.10. An approach space X is (Bp, 2)-R1 if it is (Bp, 2)-regular.

Proof. We will use the characterization of (Bp, 2)-R1 from (4.65). Let U ∈ βX
and suppose λU(x) < ∞ and λU(y) < ∞. Since X is (Bp, 2)-regular, it is
topological and thus λU(x) = 0 = λU(y). Since regular topological spaces are
R1, we get λẋ(y) = 0.

In order to characterize regularity for approach spaces (not just the topological
ones) in terms of the prime functional ideal monad, we need conditions based on
the following construction. For a function ϕ : BX // P and δ ≥ 0 we let
ϕδ : BX // P defined by

ϕδ(L) = ϕ(L⊕ δ).

For a functional ideal Φ on BX the collection

{ϕδ|ϕ ∈ Φ}

is an ideal basis on BX. Let Φδ be the functional ideal generated by this basis.
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Theorem 4.3.5.11. The following properties are equivalent:

(i) nX(Θ) x & (a∧K)δ ⊆ Θ & c(K) = c(Θ) = c(nX(Θ)), imply

K⊕ δ  x

for all x ∈ X , δ ≥ 0, Θ ∈ BBX and K ∈ BX.

(ii) nX(Θ) x & s(z)⊕ δ  ψ(z), ∀z ∈ A & c(I) = c(nX(Θ)), imply

K⊕ δ  x

for all x ∈ X , δ ≥ 0, Θ = B s(I) and K = Bψ(I) generated by I ∈ BA
and selections s : A→ BX and ψ : A→ X .

(iii) X is a regular approach space.

Proof. (i) ⇒ (ii): Let x ∈ X , δ ≥ 0, Θ = B s(I) and K = Bψ(I) generated
by I ∈ BA and selections s : A → BX and ψ : A → X with nX(Θ)  x,
s(z) ⊕ δ  ψ(z), for all z ∈ A and c(I) = c(nX(Θ)). It suffices to show that
(a∧K)δ ⊆ Θ. Let ϕ be bounded on BX with supϕ = ω and ϕ ≤ a∧µ for some
bounded function µ with µ · ψ ∈ I. Put η : BX → P

η(L) =

{
inf{y|s(y)=L} µ · ψ(y) whenever L ∈ s(A)

ω whenever L 6∈ s(A).

For z ∈ A we clearly have η · s(z) ≤ µ · ψ(z) so η · s ∈ I and η ∈ Θ.
We claim that ϕδ ≤ η. For L ∈ BX either L 6∈ s(A) and then ϕδ(L) ≤ ω =

η(L). Or L ∈ s(A). For z ∈ A with s(z) = L we have L⊕ δ  ψ(z). Hence

ϕδ(L) = ϕ(L⊕ δ) ≤ inf
{y|L⊕δ y}

µ(y) ≤ inf
{z|s(z)=L}

µ(ψ(z)).

(ii)⇒ (iii): In order to prove (4.27), let A a set, ψ : A //X, σ : A // βX ,
and U ∈ βA and suppose λΣσ(U) = ε <∞ and supz∈A λσ(z)(ψ(z)) = δ <∞.
For z ∈ A consider s(z) = ιX(σ(z)) and I = ιA(U) ⊕ ε. Clearly s(z)  ψ(z),
for all z ∈ A and since Θ = B s(I) satisfies

nX(Θ) = ιX(Σσ(U))⊕ ε,

also nX(Θ)  x and c(I) = c(nX(Θ)) hold. Then (ii) implies that K = Bψ(I)
satisfies K⊕ δ  x. Since K⊕ δ = ιX(ψ(U))⊕ (ε+ δ) the conclusion λψ(U) ≤
ε+ δ follows.

(iii) ⇒ (ii): Suppose X is a regular approach space. Let x ∈ X , δ ≥ 0,
Θ = B s(I) and K = Bψ(I) generated by I ∈ BA and selections s : A → BX
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and ψ : A → X satisfying nX(Θ)  x, s(z) ⊕ δ  ψ(z), for all z ∈ A and
c(I) = c(nX(Θ)). For z ∈ A suppose s(z) = ιX(σ(z)) ⊕ αz with σ(z) ∈ βX
and I = ιA(W)⊕ γ. By

γ = c(nX(B s(I))) = γ + sup
W∈W

inf
z∈W

αz

we have supW∈W infz∈W αz = 0 and nX(B s(I)) = ιX(Σσ(W)) ⊕ γ  x. This
implies λΣσ(W)(x) ≤ γ. Since λσ(z)(ψ(z)) ≤ αz + δ, for all z ∈ A and since
W is an ultrafilter, by application of Lemma 1.1.1.4, it follows that

sup
W∈W

inf
z∈W

λσ(z)(ψ(z)) = inf
W∈W

sup
z∈W

λσ(z)(ψ(z)) ≤ δ.

For ε > 0 as in the proof of Theorem 4.3.5.7, choose W0 ∈ W such that
supz∈W0

λσ(z)(ψ(z)) < δ + ε and let σ′ : A→ βX be defined as

σ′(z) =

{
σ(z) for all z ∈ W0

˙ψ(z) for all z /∈ W0.

Now apply regularity (4.27) with as input W on A and the selections ψ and σ′.
Then for U = ψ(W) we have

λU(x) ≤ λΣ(U )(x) + sup
z∈A

λσ′(z)(ψ(z))

= λΣU (x) + sup
z∈W0

λσ(z)(ψ(z))

< γ + δ + ε

By arbitrariness of ε we can conclude that K = ιX(U)⊕ γ  x.
(ii) ⇒ (i): Let x ∈ X , δ ≥ 0, Θ ∈ BBX and K ∈ BX with nX(Θ)  x,

(a∧K)δ ⊆ Θ and c(K) = c(Θ) = c(nX(Θ)). Assume Θ = ιBX(U ) ⊕ γ and
K = ιX(U)⊕ γ. We may assume that K is proper, so γ <∞. Let

A = {(y,L) | L⊕ δ  y,L ∈ BX, y ∈ X}.

We show that U × U has a trace on A. Let U0 ∈ U ,A0 ∈ U , γ < ω < ∞.
Consider

ϕ = (a∧(θωU0
+ γ) ∧ ω)δ ∨ (θωA0

+ γ).

Since ϕ ∈ Θ and c(Θ) = γ one should have infL∈BX ϕ(L) ≤ γ. We have

inf
L∈BX

ϕ(L) = ( inf
L6∈A0

ϕ(L))

∧ ( inf
L∈A0,L⊕δ divergent

ϕ(L))

∧ ( inf
L∈A0,L⊕δ convergent, 6∃y∈U0,L⊕δ y

ϕ(L))

∧ ( inf
L∈A0,∃y∈U0,L⊕δ y

ϕ(L)).
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Since the first three terms are all larger than or equal to ω, the last infimum cannot
be infinite. So we can conclude that there exists L ∈ A0, L ⊕ δ  y for some
y ∈ U0 and for such L and y we have (y,L) ∈ A ∩ U0 ×A0.

Let W be an ultrafilter on A that refines the trace of U × U on A. Further
let ψ : A // X and s : A // BX be the restrictions of the first and second
projections. Then we have ψ(W) = U and s(W) = U . For I = ιA(W) ⊕ γ we
have Bψ(I) = K and B s(I) = Θ. Applying (ii) we obtain K⊕ δ  x.



Nederlandse samenvatting

Monoidale topologie is een actief onderzoeksgebied binnen de wiskunde dat een
gemeenschappelijk kader verschaft voor “convergentie”.

Een eerste bouwsteen voor de ontwikkeling van monoidale topologie is de
representatie van topologische ruimten door Barr [Bar70], die een veralgemening
vormt van het bewijs van Manes dat compacte Hausdorff topologische ruimten
precies de Eilenberg-Moore algebra’s zijn voor de ultrafilter monad � = (β,m, e)
[Man69]. In deze beschrijving is een compacte Hausdorff ruimte een verzameling
X uitgerust met een afbeelding a : βX // X die aan elke ultrafilter op X zijn
unieke convergentiepunt in X toekent en voldoet aan twee axioma’s die men kan
voorstellen door middel van volgende diagrammen

β2X
βa //

mX
��

βX

a

��
βX a // X

X
eX //

1X !!

βX

a
��
X.

Om een beschrijving te krijgen van alle topologische ruimten werd in het
werk van Barr [Bar70] de afbeelding a : βX // X vervangen door een relatie
a : βX−→7 X . Daardoor is het niet langer gegarandeerd dat elke ultrafilter con-
vergeert (compactheid) en dat er hoogstens één convergentiepunt is (Hausdorff-
separatie). Natuurlijk weet men wat βa betekent wanneer a : βX // X een
afbeelding is, maar niet wanneer a : βX−→7 X een relatie betreft, dus om ervoor
te zorgen dat de volgende definities zinvol zijn, moet men de ultrafilter monad
� = (β,m, e) eerst op gepaste wijze uitbreiden naar Rel, de categorie bestaande
uit verzamelingen en relaties. We beschouwen dan ook een lax versie van de
bovenstaande diagrammen:

155
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ββX
βa //

mX

��

| βX

a

��

X
eX //

1X

≤

��

βX

a

��

≥ − −

βX a
//| X X

of, in puntsgewijze vorm, waarbij we a en βa beiden noteren als →, krijgen
we volgende axioma’s:

transitiviteit: X→ U &U → z ⇒ mXX→ z

en
reflexiviteit: eX(x)→ x,

voor alle X ∈ ββX,U ∈ βX en z, x ∈ X .
Barr toonde aan dat een verzamelingX uitgerust met een relatie a : βX−→7 X

die voldoet aan beide axioma’s hierboven, transitiviteit en reflexiviteit, een topo-
logische ruimte is en dat elke topologische ruimte op zulke manier kan beschreven
worden. Samen met de continue afbeeldingen beschreven als de afbeeldingen die
de convergentie bewaren, geeft dit een relationele beschrijving van de categorie
Top, de categorie van topologische ruimten en continue afbeeldingen, dewelke we
noteren als

(�, 2)-Cat ∼= Top.

De terminologie “transitiviteit” en “reflexiviteit” behoudt de betekenis van
transitiviteit en reflexiviteit voor geordende verzamelingen. Als we bovenstaande
axioma’s toepassen op de identiteitsmonad 1 in plaats van op de ultrafilter monad
�, krijgen we een paar (X, a) met a : X−→7 X een relatie dewelke we met ≤
kunnen noteren en die voldoet aan

∀x, y, z ∈ X : x ≤ y& y ≤ z ⇒ x ≤ z,

de klassieke transitiviteit en

∀x ∈ X : x ≤ x,

de klassieke reflexiviteit. Vandaar geldt

(1, 2)-Cat ∼= Ord,

waar Ord de categorie is van geordende verzamelingen en ordebewarende af-
beeldingen. Merk op dat we anti-symmetrie niet opleggen als axioma bij geor-
dende verzamelingen.
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Een tweede belangrijke bouwsteen in de ontwikkeling van monoidale topolo-
gie was de beschrijving door Lawvere van metrische ruimten als (kleine individu-
ele) categorieën verrijkt over [0,∞] [Law73]. In meer begrijpbare taal betekent
dit dat als we de bovenstaande axioma’s toepassen op de identiteitsmonad 1 en
de relaties vervangen door [0,∞]-waardige relaties, we een lax algebraı̈sche be-
schrijving krijgen van quasi-metrische ruimten. Om dit te begrijpen kunnen we
[0,∞] beschouwen samen met de omgekeerde orde, de bewerking + en neutraal
element 0. We noteren dit als

P+ =
(
[0,∞],≤op,+, 0

)
.

Een quasi-metrische ruimte (X, a) is een verzameling X uitgerust met een af-
beelding a : X ×X // [0,∞], of nog, een [0,∞]-waardige relatie a : X−→7 X
die transitief

∀x, y, z ∈ X : a(x, y) + a(y, z) ≥ a(x, z),

en reflexief
∀x ∈ X : a(x, x) = 0

is. Aldus kan men de categorie qMet van quasi-metrische ruimten en niet-expan-
sieve afbeeldingen beschrijven als

(1,P+)-Cat ∼= qMet.

Quasi-metrische structuren gedragen zich niet goed ten opzichte van het vor-
men van initiale structuren, producten in het bijzonder. Het product in qMet
van een oneindige familie van quasi-metrische ruimten is niet compatibel met
het topologische product van de geassocieerde onderliggende topologieën. Als
een oplossing voor dit probleem werd de gemeenschappelijke bovencategorie App
(waarvan de objecten approach ruimten genoemd worden) van Top en qMet in-
gevoerd [Low15]. Het voornaamste verschil tussen approach ruimten en metrische
ruimten is het feit dat in approach ruimten men de afstanden tussen punten en
verzamelingen beschrijft en hiervoor axioma’s opstelt. Zulke afstanden kunnen,
in tegenstelling tot wat het geval is in quasi-metrische ruimten, niet afgeleid wor-
den uit de afstand tussen twee punten.

Een approach ruimte is een verzameling X uitgerust met een functie

δ : X × 2X // [0,∞],

die men de distance noemt en voldoet aan volgende axioma’s:

(D1) ∀x ∈ X, ∀A ⊆ X : x ∈ A⇒ δ(x,A) = 0.

(D2) ∀x ∈ X : δ(x, ∅) =∞.
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(D3) ∀x ∈ X, ∀A,B ⊆ X : δ(x,A ∪B) = min
(
δ(x,A), δ(x,B)

)
.

(D4) ∀x ∈ X, ∀A ⊆ X, ∀ε ≥ 0 : δ(x,A) ≤ δ
(
x,A(ε)

)
+ ε,

waarbij A(ε) :=
{
x ∈ X | δ(x,A) ≤ ε

}
.

De waarde δ(x,A) wordt dan geı̈nterpreteerd als de afstand van het punt x tot de
verzameling A.

De morfismen in de categorie App noemt men contracties en een contractie is
een afbeelding

f : (X, δX) // (Y, δY )

tussen twee approach ruimten die voldoet aan

∀x ∈ X, ∀A ⊆ X : δY
(
f(x), f(A)

)
≤ δX(x,A).

Approach ruimten kunnen op equivalente mannier beschreven worden als een
verzameling X uitgerust met een limietoperator

λ : FX // [0,∞]X ,

gedefinieerd op de verzameling van alle filters op X , dewelke voldoet aan gepaste
axioma’s. De waarde λF(x) wordt dan geı̈nterpreteerd als de maat waarin x een
convergentiepunt is van de filter F . Een approach ruimte kan ook beschreven
worden door middel van een tower

(tε)ε∈R+ ,

een geordende familie van pre-topologieën op X geı̈ndexeerd door de positieve
reële getallen die voldoen aan zekere coherentie condities, of een gauge

G ⊆ qMet(X),

een ideaal van quasi-metrieken op X dat voldoet aan een saturatie-eigenschap, of
nog andere equivalente structuren.

De categorie App bestaande uit approach ruimten en contracties bevat zowel
Top als qMet als vol ingebedde deelcategorieën. Top is een concreet coreflectieve
en reflectieve deelcategorie en qMet is een concreet coreflectieve deelcategorie
van App. Alle voorkennis over approach ruimten die nodig is zal herhaald worden
in Sectie 1.1.

Een eerste lax algebraı̈sche karakterisatie van approach ruimten werd gecon-
strueerd door Clementino en Hofmann [CH03] door een extensie � van de ul-
trafilter monad � naar numerieke relaties te bouwen. Gebruik makend van de
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beschrijving van approach ruimten met behulp van de limietoperator kan een ap-
proach ruimte gezien worden als een paar (X, a) waar X een verzameling is en
a : βX−→7 X een [0,∞]-waardige relatie die voldoet aan het transitiviteitsaxioma

a
(
mXX, z

)
≤ βa(X,U) + a(U , z),

voor alle X ∈ ββX,U ∈ βX en z ∈ X , en het reflexiviteitsaxioma

a
(
eX(x), x

)
= 0,

voor alle x ∈ X . Aldus geldt,

(�,P+)-Cat ∼= App.

In het algemeen maakt monoidale topologie gebruik van twee parameters; een
Set-monad T = (T,m, e) en een quantale V samen met een lax extensie T̂ van
de monad T tot de categorie V-Rel bestaande uit verzamelingen en V-waardige
relaties. Dit levert ons de categorie (T,V)-Cat op met objecten (X, a) waar X
een verzamling is uitgerust met een V-relatie

a : TX−→7 X

die transitief en reflexief is.

TTX
T̂ a //

mX

��

| TX

a

��

X
eX //

1X

≤

��

TX

a

��

≥ − −

TX a
//| X X

Tot hiertoe hebben we gezien dat monoidale topologie een gemeeschappelijk
kader vormt om geordende ruimten, metrische ruimten, topologische ruimten en
approach ruimten te beschrijven. Alle voorkennis over monoidale topologie die
nodig is om deze thesis te begrijpen zal herhaald worden in Hoofdstuk 1.

In Hoofdstuk 2 richten we onze aandacht op NA-App, de volle deelcategorie
van App met objecten niet-Archimedische approach ruimten. Niet-Archimedische
approach ruimten werden geı̈ntroduceerd door Brock en Kent [BK98] en werden
ook beschouwd door Colebunders, Mynard en Trott in [CMT14] en door Bous-
tique en Richardson [BR17] als bepaalde “limit tower spaces”.

Niet-Archimedische approach ruimten zijn die approach ruimten X waar de
distance δ voldoet aan de sterke driehoeksongelijkheid
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(D4∨) ∀x ∈ X, ∀A ⊆ X, ∀ε ≥ 0 : δ(x,A) ≤ δ
(
x,A(ε)

)
∨ ε.

Ze kunnen ook makkelijk gekarakteriseerd worden aan de hand van de tower.
Niet-Archimedische approach ruimten zijn deze approach ruimten waar de tower
bestaat uit topologieën

(Tε)ε∈R+

die voldoen aan de coherentie conditie: ∀ε ∈ R+ : Tε =
∨
γ>ε Tγ .

We onderzoeken een karakterisatie van niet-Archimedische approach ruimten
in functie van de gauge. Het blijkt dat niet-Archimedische approach ruimten pre-
cies die approach ruimten zijn die een basis voor de gauge hebben bestaande uit
quasi-ultrametrieken, i.e. quasi-metrieken d : X ×X // [0,∞] die voldoen aan
de sterke driehoeksongelijkheid

∀x, y, z ∈ X : d(x, z) ≤ d(x, y) ∨ d(y, z).

In Sectie 2.2 beantwoorden we de vraag welke parameters T en V we kunnen
gebruiken om NA-App voor te stellen als een categorie van lax algebra’s. Hiervoor
laten we ons inspireren door het gekende resultaat

(1,P∨)-Cat ∼= qMetu,

waar qMetu de volle deelcategorie van qMet is bestaande uit alle quasi-ultrame-
trische ruimten. We slagen er in om te bewijzen dat de oplossing er uit bestaat het
quantale P+ in de representatie van App als (�,P+)-Cat door P∨ te vervangen. We
vinden de representatie

(�,P∨)-Cat ∼= NA-App.

In wat vooraf ging kon App enkel voorgesteld worden als een categorie van
lax algebra’s door de ultrafilter monad uit te breiden naar numerieke relaties. In
Hoofdstuk 3 beantwoorden we de vraag of een representatie van App mogelijk is
in termen van relationele algebras. Dit wil zeggen dat we ons zullen toespitsen
op lax algebraı̈sche representaties van App waar we enkel gebruik maken van het
quantale V = 2.

Ons voornaamste voorbeeld is nog maar eens Top. In [Sea05] toonde Seal
aan dat topologische ruimten kunnen beschreven worden als F-monoı̈den voor de
filter monad F die power-enriched is. De sleutel tot dit bewijs is de afbeelding

X // FX : x 7→ V(x)

die elk punt x van de topologische ruimte X naar zijn omgevingenfilter V(x)
stuurt. Aangezien convergentie in topologische ruimten volledig bepaald wordt
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door
(
V(x)

)
x∈X , impliceert de representatie van topologische ruimten als F-mo-

noı̈den voor de filter monad F die power-enriched is de presentatie in termen van
relationele algebra’s

(F, 2)-Cat ∼= Top.

Om de vraag te beantwoorden of we App kunnen beschrijven in termen van
relationele algebra’s voor een zekere monad T = (T,m, e) die power-enriched is,
zullen we eerst focussen op de beschrijving van App in termen van T-monoı̈den
voor een gepaste monad die power-enriched is. De leiddraad voor de oplossing is
de afbeelding

x 7→ A(x),

die elk punt x van een approach ruimte X naar het bijhorende lokale approach
systeem stuurt, waar A(x) kan afgeleid worden uit de gauge G door de collectie

{d(x, ·) | d ∈ G}

op gepaste wijze te satureren.
We voeren de monad I = (I,m, e) van functionele idealen in en bewijzen

dat deze power-enriched is. Deze bevindingen leiden uiteindelijk tot de presen-
tatie van approach ruimten als I-monoı̈den. Meer nog, aangezien convergentie
van functionele idealen in een approach ruimte X volledig bepaald wordt door
de lokale approach systemen

(
A(x)

)
x∈X , kunnen we een algemene stelling uit

[HST14] toepassen over de relatie tussen categorieën van T-monoı̈den en rela-
tionele T-algebra’s om te kunnen concluderen dat

(I, 2)-Cat ∼= App,

wat een presentatie van App geeft als een categorie van relationele algebra’s en de
vraag die we in dit hoofdstuk voorop stelden positief beantwoordt.

We eindigen dit hoofdstuk met een studie van de priem functionele idealen
en de bijbehorende monad B [LVOV08], [LV08], dewelke niet power-enriched is.
We tonen aan dat B een submonad is van I die precies die eigenschappen heeft
die in [HST14] geformuleerd worden om te kunnen concluderen dat (B, 2)-Cat ∼=
(I, 2)-Cat, wat ons het resultaat uit [LV08] geeft dat

(B, 2)-Cat ∼= App.

De nieuwe beschrijvingen van NA-App als een categorie van lax algebra’s,
bekomen in Hoofdstuk 2, en van App als een categorie van relationele algebra’s,
ontwikkeld in Hoofdstuk 3 zijn de voornaamste werktuigen voor een diepgaande
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studie van nieuwe approach invarianten in het laatste hoofdstuk, Hoofdstuk 4.
Deze approach invarianten zullen onstaan als topologische eigenschappen van de
betrokken lax algebra’s (of relationele algebra’s in het geval V = 2). We kun-
nen de lax algebra’s (X, a) beschouwen als ruimten en noteren de convergen-
tierelatie op X als a : TX−→7 X , zoals voordien. Topologische eigenschappen
voor zulke ruimten werden geı̈ntroduceerd gebaseerd op de notie van convergen-
tie, a, en afhankelijk van de monad T, het quantale V en de extensie van T naar
V-Rel, [HST14]. Deze noties werden vervolgens toegepast op de voorbeelden
(�, 2)-Cat ∼= Top, waar ze samenvallen met de gekende respectievelijke eigen-
schappen, en op (�,P+)-Cat ∼= App waar ze ook samen vallen met enkele gekende
approach invarianten.

In deze samenvatting beperken we ons tot het bespreken van nieuwe approach
invarianten gebaseerd op Hausdorff separatie (ten hoogste één convergentiepunt),
compactheid (ten minste één convergentiepunt) en regulariteit (het omdraaien van
het transitiviteitsaxioma van a), maar ook andere invarianten komen aan bod in
deze thesis.

Allereerst bespreken we nieuwe invarianten voor niet-Archimedische approach
ruimten. Gebaseerd op de representatie (�,P∨)-Cat ∼= NA-App is een niet-Archi-
medische approach ruimteX (�,P∨)-Hausdorff als en slechts als eindige waarden
van de convergentierelatie a voor a(U , x) en a(U , y) met U een ultrafilter op X
impliceert dat x = y. Anderzijds weten we dat de tower bestaat uit een geı̈ndex-
eerde familie van topologieën (Tε)ε∈R+ , dus kunnen we ook drie andere noties
beschouwen: “strongly” Hausdorff (alle niveaus van de tower zijn Hausdorff),
“almost strongly” Hausdorff (alle strikt positieve niveaus van de tower zijn Haus-
dorff) en de eigenschap dat de topologische coreflectie (X, T0) van X Hausdorff
is. Alle eigenschappen blijken equivalent te zijn, behalve de laatste dewelke strikt
zwakker is.

We gebruiken gelijkaardige definities voor “strongly” compact, “almost strong-
ly” compact en de topologische coreflectie (X, T0) is compact. (�,P∨)-compact
is equivalent met almost strongly compact, en beiden zijn equivalent met het ge-
kende begrip 0-compact voor approach ruimten [Low15]. Strongly compact is
equivalent met het compact zijn van de topologische coreflectie (X, T0) van X en
beiden zijn strikt sterker dan de vorige eigenschap.

We onderzoeken ook gelijkaardige links voor regulariteit. De eigenschap
“strongly” regulier werd geı̈ntroduceerd door Brock en Kent in [BK98] en werd
ook bestudeerd in de context van contractieve extensies in [CMT14]. We con-
cluderen dat strongly regulier en almost strongly regulier beiden equivalent zijn
met (�,P∨)-regulariteit. Regulariteit voor approach ruimten, zoals ingevoerd in
[Rob92] door Robeys is strikt zwakker en impliceert dat de topologische coreflec-
tie (X, T0) van X regulier is.

Vervolgens richten we onze aandacht op de relationele algebra’s die App be-
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schrijven. We onderzoeken topologische eigenschappen in App geı̈nduceerd door
de representatie (I, 2)-Cat ∼= App voor de monad I die power-enriched is. Aange-
zien het improper functionele ideaal PXb bestaande uit alle begrensde functies van
X naar [0,∞], naar alle punten vanX convergeert, zullen we in sommige gevallen
van de topologische eigenschappen die hierboven vernoemd werden enkel trivi-
ale resultaten kunnen verwachten. Daarom zullen we in sommige gevallen het
improper element moeten uitsluiten en zullen we ons beperken tot functionele
idealen op X die proper zijn door de deelfunctor Ip gedefinieerd door IpX =
IX \ {PXb } te beschouwen.

De eigenschap (Ip, 2)-Hausdorff betekent dat wanneer een proper functioneel
ideaal naar zowel x als y convergeert, dan x = y. Deze notie blijkt equivalent
te zijn met de approach invariant die stelt dat de topologische coreflectie van X
Hausdorff is.

Voor een studie van compactheid zal het uitsluiten van impropere elementen
geen invloed hebben op de topologische eigenschap. Wanneer we (I, 2)-compact-
heid in App beschouwen, wil dit zeggen dat elk functioneel ideaal een convergen-
tiepunt moet hebben. In het bijzonder bestaat er een x ∈ X zodat {0} � x, of
nog A(x) = {0}. Dit begrip zullen we supercompactheid in App noemen.

De meest uitgebreide studie in deze thesis is die voor regulariteit. Eerst to-
nen we enkele algemene resultaten voor monads die power-enriched zijn. We
tonen dat een relationele T-algebra (X, a), voor T een monad die power-enriched
is, (T, 2)-regulier is als en slechts als de ruimte indiscreet is, zelfs als we ons
beperken tot elementen die proper zijn. Om voor onze monad I een interessante
invariant te krijgen die gerelateerd is met regulariteit, zullen we ons beperken tot
functionele idealen die gegenereerd worden door zekere selecties. Hierdoor zullen
we een eigenschap bekomen die equivalent is met regulariteit in approach ruimten,
zoals geı̈ntroduceerd door Robeys [Rob92], waarvoor we een karakterisatie geven
in termen van functionele idealen.

Tot slot zullen we topologische eigenschappen bestuderen in App die geı̈ndu-
ceerd worden door de representatie (B, 2)-Cat ∼= App. Aangezien B niet power-
enriched is, zal de situatie hier verschillend zijn. Het impropere functionele ideaal
PXb is echter priem, waardoor we ook hier in sommige gevallen het impropere
element zullen moeten uitsluiten. We zullen ons dan moeten beperken tot propere
functionele idealen die priem zijn door de deelfunctor Bp te beschouwen waarbij
BpX = BpX \ {PXb } om interessante resultaten te bekomen.

De eigenschap (Bp, 2)-Hausdorff betekent dat wanneer een proper priem func-
tioneel ideaal naar zowel x als y convergeert volgt dat x = y. Deze eigenschap
zal equivalent blijken met de eigenschap (Ip, 2)-Hausdorff.

Wanneer we (B, 2)-compactheid beschouwen krijgen we meteen een andere
eigenschap dan (I, 2)-compactheid. Terwijl (I, 2)-compactheid van X door ons
supercompactheid in App genoemd werd, geeft (B, 2)-compactheid andere re-
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sultaten aangezien {0} geen priemideaal is. Een approach ruimte X is (B, 2)-
compact als en slechts als de topologische coreflectie compact is.

Wegens de aanwezigheid van impropere elementen is (B, 2)-regulariteit een
oninteressante eigenschap, aangezien een approach ruimte X (B, 2)-regulier is
enkel en alleen indien ze indiscreet is. In tegenstelling tot wat het geval is voor de
monad I, zal de restrictie tot propere elementen hier wel een interessante eigen-
schap opleveren. We tonen aan dat (Bp, 2)-regulariteit equivalent is met het to-
pologisch en regulier zijn van de approach ruimte. Om een karakterisatie van
de gebruikelijke regulariteitseigenschap in App [Rob92] te krijgen in termen van
convergentie voor priem functionele idealen, zullen we het concept nog verder
moeten afzwakken.
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