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Abstract 

Chemical and process plants can be potential targets to terrorist attacks with the aim of triggering 

domino effects. Compared to accidental domino effects where the possibility of having multiple 

primary events is very remote, man-made domino effects are likelier to be initiated from multiple 

units within the plant in order to increase their likelihood and thus causing maximum damage. In 

this regard, identification of critical units that under attack may lead to likelier and severer domino 

effects is crucial to assess the vulnerability of chemical plants and subsequently to increase their 

robustness to such attacks. In the present work, we have developed a methodology based on graph 

theory for cost-robust design of chemical plants to lower the possibility of intentional domino 

effects. We have validated the methodology using a Dynamic Bayesian network approach just to find 

out a complete agreement between the results of the two techniques. The developed graph theoretic 

methodology is demonstrated to be effective particularly in the case of existing chemical plants 

where possibility of macro-layout modifications is limited. 

Key words: Domino effect; Chemical plants; Intentional attack; Graph theory; Dynamic Bayesian 

network; Robustness.  

Introduction 

Chemical and process plants have frequently been the targets of intentional attacks including 

terrorist attacks, sabotage, vandalism, and insider malicious acts [1]. Intentional attacks, especially 

those launched by terrorists, are usually aimed at causing maximum damage in terms of, among 

others, loss of lives and assets. As such, it seems reasonable to expect an “intelligent attacker” to aim 

for triggering domino effects in chemical facilities. In the chemical and process industries, the term 

“domino effect” is referred to a chain of fires and/or explosions triggered by a primary fire or 

explosion at a process vessel [2]. The escalation of primary fire(s) or explosion(s) (primary events) 

to secondary fires or explosions (secondary events) occurs by means of heat radiation, fire 

impingement, fire engulfment, blast wave, or projectile fragments, which are known as escalation 

vectors. Although rare, domino effects have contributed to a number of catastrophic accidents such 

as  explosions at a liquefied petroleum gas facility in Mexico in 1984 [3], fires and explosions at an 

oil storage terminal in the UK in 2005 [4], and tank farm explosions and fires in Puerto Rico in 2009 

[5]. 

In the case of intentional attacks with improvised explosive devices (IEDs) such as pipe bombs and 

car bombs, the blast wave of detonation can severely damage process vessels and result in major 
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release of flammable chemicals, which in contact with the heat of detonation, are very likely to 

ignite, leading to domino effects. Compared to accidental domino effects where the possibility of 

having multiple primary events is very remote, in intentional domino effects, it is likelier that 

multiple vessels are simultaneously attacked in order to increase (from the attacker’s viewpoint) 

the possibility and severity of potential domino effects. The recent attack to a French chemical plant 

in July 2015 [6] is an example of such multi-target attacks in which two chemical storage tanks, 

nearly 500 m away from each other, were attacked with IEDs leading to tank fires1. 

Due to their catastrophic consequences, many researches have been devoted to modeling and risk 

assessment of domino effects in chemical and process facilities [7-14]. A multitude of previous work 

has been devoted to accidental domino effects whereas a few works has been dedicated to 

intentional or man-made domino effects [15-17]. Comparing intentional and accidental domino 

effects, aside from the higher likelihood of multiple primary events in the former, the likelihood of 

targeting the most critical vessels in the former is much higher than the latter. This is because, if the 

attacker is considered a rational decision maker [18], he plans to maximize the expected utility of 

his attack [19] via attacking the vessels with the highest possibility of triggering domino effects and 

thus inflicting maximum damage to the plant. Khakzad and Reniers [20] demonstrated that 

modeling potential domino effects in a chemical plant as a directed graph, graph centrality scores 

(graph metrics) such as closeness and betweenness can be used to identify process vessels with the 

largest contribution to domino effects. 

In the present study, we aim to investigate the applicability of graph metrics and Bayesian network 

to vulnerability assessment and reduction of chemical plants in face of intentional domino effects. 

The developed methodologies is shown to be effective particularly in modification of existing 

chemical plants where macro-layout changes cannot easily be implemented. In Section 2, the 

fundamentals of graph theory, Bayesian network, and multi-criteria decision making are briefly 

recapitulated. In Section 3, a demonstrative example is used to develop the methodology based on 

graph theory, followed by its validation using dynamic Bayesian network. Application of the 

methodology to a case study and the results are in Section 4. The conclusions are drawn in Section 5.  

                                                             
1 Remainings of some IEDs  were also found near a third storage tank though it did not cause any damage.  
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Background 

2.1. Graph theory 

Domino effects in a chemical plant can be modeled as a directed graph 𝐺 = {𝑉, 𝐸} where the process 

vessels are considered as the vertices of the graph, 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}, and the escalation vectors 

among the vessels as the edges of the graph, 𝐸 = {𝑒12, 𝑒13, … , 𝑒𝑖𝑗} [20]. For instance, if vessels 𝑣1 is 

on fire, the heat radiation 𝑣2 receives from 𝑣1 is indicated as 𝑒12. In a weighted graph, a set of 

numerical values can be assigned to either the vertices or the edges of the graph. A weighted graph 

can be presented as 𝐺 = {𝑉, 𝑊𝑣 , 𝐸, 𝑊𝑒} in which 𝑊𝑣  and 𝑊𝑒 are weight vectors allocated to the 

vertices and the edges, respectively.  

In a directed graph, a path from 𝑣𝑖 to 𝑣𝑗 is a sequence of edges starting from the former to the latter 

when each intermediate vertex can be traversed only once. Similarly, the geodesic distance between 

the vertices, denoted by 𝑑𝑖𝑗 = 𝑑(𝑣𝑖 , 𝑣𝑗), is the length of the shortest path from 𝑣𝑖 to 𝑣𝑗.  

Based on the concept of geodesic distance, a number of graph metrics can be used to describe the 

characteristics of either the nodes of a graph or the graph itself [21]. Among such metrics, closeness 

centrality scores are very popular. The out-closeness of 𝑣𝑖, 𝐶𝑜𝑢𝑡(𝑣𝑖), can be defined as the number of 

steps needed to reach every other node of the graph from 𝑣𝑖; the in-closeness 𝐶𝑖𝑛(𝑣𝑖), on the other 

hand, is the number of steps needed to reach 𝑣𝑖 from every other node of the graph:  

𝐶𝑜𝑢𝑡(𝑣𝑖) =
1

∑ 𝑑𝑖𝑗𝑗

           (1) 

𝐶𝑖𝑛(𝑣𝑖) =
1

∑ 𝑑𝑗𝑖𝑗

           (2) 

Based on the centrality scores of a graph’s nodes given in Equations (1) and (2), the closeness 

scores, whether out-closeness or in-closeness, of the graph can be measured.  

2.2. Bayesian network  

Bayesian network (BN) is a graphical tool for reasoning under uncertainty [22,23]. In a BN, joint 

probability distribution of a set of random variables is represented in terms of conditional 

probabilities. In a BN (Figure 1(a)), random variables are represented by nodes (in the form of 

ellipse) while the direct dependencies among the nodes are represented by directed arcs. Satisfying 

the Markov condition – which states that a node (e.g., X4) is independent of its non-descendants (i.e., 
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X1 and X3) given its parents (i.e., X2) – a BN factorizes the joint probability distribution of its nodes as 

the product of the conditional probability distributions of the variables given their parents: 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖))𝑛
𝑖=1          (3) 

where Pa(Xi) is the parent set of the variable Xi. Considering the BN in Figure 1(a), P(X1, X2, X3, X4) = 

P(X1) P(X2|X1) P(X3|X1,X2) P(X4|X2).  

 

X1

X2 X3

X4

    

X1

X2 X3

X4

D

U

 

(a)       (b) 

Figure 1. (a) Bayesian network. (b) Influence diagram. 

 

A BN can be extended to an influence diagram (Figure 1(b)) using two additional types of nodes, 

decision node D and utility node U [23] in order for decision making. Decision and utility nodes are 

conventionally displayed as rectangles and diamonds, respectively. A decision node incorporates a 

number of decision policies. A decision node should be assigned as the parent of nodes the 

probability distributions of which depend on decision policies (e.g., the arc from the decision node D 

to X2). Likewise, the decision node should be the child of nodes the states of which have to be known 

to the decision maker before making decision (e.g., the dashed arc from X1 to the decision node D). 

The utility node U incorporates utility values (positive or negative) to represent the preferences of 

the decision maker as to the outcomes of each decision policy.  

Considering three decision policies for node 𝐷 = {d1, d2, d3} and a binary node X3 = {𝑥3
+, 𝑥3

−} in Figure 

1(b), node 𝑈 should include six utility values, one for each pair of decision policies and the states of 

X3. As such, the expected utility of each decision policy can be calculated; for example, the expected 

utility of the 2nd decision policy d2 can be calculated as: 

𝐸𝑈(𝑑2) = ∑ 𝑃(𝑋3|𝑑2) 𝑈(𝑑2, 𝑋3)𝑋3
= 𝑃(𝑥3

+|𝑑2) 𝑈(𝑑2, 𝑥3
+) + 𝑃(𝑥3

−|𝑑2) 𝑈(𝑑2, 𝑥3
−)   (4) 
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Assuming a rational decision maker [18], the decision policy with the maximum expected utility can 

be selected as the optimal decision, 𝑑∗ [23]: 

𝑑∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝐸𝑈(𝑑𝑖)
𝑑𝑖

    for 𝑖 = 1,2,3          (5) 

A dynamic Bayesian network (DBN) is a replication of ordinary BN over time, that, compared to its 

predecessor, facilitates explicit modeling of temporal changes of random variables (Figure 2). 

Dividing the timeline into a number of time intervals, DBN allows a node at the ith time slice to be 

conditionally dependent not only on its parents at the same time slice but also on its parents and 

itself at previous time slices: 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖
𝑡+∆𝑡|𝑋𝑖

𝑡, 𝜋(𝑛
𝑖=1 𝑋𝑖

𝑡), 𝜋(𝑋𝑖
𝑡+∆𝑡))      (6) 

 

X1

X2 X3

X4

X1

X2 X3

X4

X1

X2 X3

X4

t - Δt t + Δtt

 

Figure 2. Schematics of a dynamic Bayesian network in three sequential time intervals. 

 

According to the DBN in Figure 2, the conditional probability of 𝑋4, for example, at the time slice 𝑡 +

∆𝑡 is 𝑃(𝑋4
𝑡+∆𝑡|𝑋2

𝑡+∆𝑡, 𝑋3
𝑡 , 𝑋4

𝑡).  

2.3. Pareto optimization 

In real-life decision making problems, decision criteria that influence the decision making process 

are usually in conflict. Multi-criteria decision analysis (MCDA) techniques have been developed with 

the aim of helping decision makers deal with such complex situations. Due to conflicting nature of 

decision criteria, it is usually unlikely to make a decision which satisfies all the decision criteria. In 

MCDA, a Pareto-optimal solution is a decision alternative for which there is no other alternatives 
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where the value of a criterion can be improved without worsening or maintaining the value of other 

criteria. A set of Pareto-optimal solutions refers to a number of such decision alternatives which are 

normally prioritized based on the preferences of a decision maker.  

The method of “reference point” is one of the techniques in bi-criteria decision analysis, which 

intuitively represents the preferences of a decision maker based on aspiration and reservation 

vectors [24]. An aspiration vector is composed of the best values of the criteria whereas a 

reservation vector contains the worst values of the criteria. The aspiration and reservation vectors 

identify “Utopia” and “Nadir” points, respectively. Optionally, a decision maker can define his 

preferred solution between aspiration and reservation levels, and based on the distances of Pareto-

optimal solutions from Utopia and Nadir points. Figure 3 schematizes a reference point decision 

making technique, comprising a set of Pareto-optimal solutions, i.e., points A–F, and Utopia and 

Nadir points. Accordingly, the solution which is the closest/farthest (e.g., using Euclidean distance) 

to/from the Utopia/Nadir point can be determined as the best solution: 

𝜌𝑖 = √(𝑥𝑖 − 𝑥𝑈)2 + (𝑦𝑖 − 𝑦𝑈)22
         (7) 

where 𝜌𝑖 is Euclidean distance of the ith Pareto-optimal point from Utopia point; 𝑥𝑖 and 𝑥𝑈 are the 

values of the criterion X of the ith point and Utopia point, respectively; 𝑦𝑖  and 𝑦𝑈 are the values of the 

criterion Y of the ith point and Utopia point, respectively. It should be noted that the application of 

reference point technique implies the equal importance of the decision criteria to the decision 

maker. 

 

Figure 3. Reference-point decision analysis. 
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Methodology 

3.1. Demonstrative example  

For the sake of clarity, we use a demonstrative example to help develop the methodology. Figure 

4(a) displays a chemical plant consisting of six gasoline storage tanks with a diameter of D= 30.5 m, 

height of H= 9.1 m, and capacity of V= 8073 m3. Considering tank fires as the likeliest scenario 

anticipated from an attack with IEDs [6], the amounts of heat radiation Tank Tj receives from Tank 

Ti are calculated using ALOHA software [25] as reported in Table 1, assuming a wind speed of 2 m/s 

from NW, 25% relative humidity, and air temperature of 18 C. Since all the vessels are atmospheric, 

the heat radiation threshold cable of causing damage and thus triggering a domino effect is 

considered as 15 kW/m2 [11]. As such, heat radiation intensity values less than this threshold are 

not presented in Table 1. 

 

T1

T2

T3

T4

T5

T6

  

T1

T2

T3

T4

T5

T6

 

(a)      (b) 

Figure 4. (a) A chemical plant consisting of six gasoline storage tanks. (b) The possible domino 

effects at the chemical plant as a directed graph.  
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Table 1. Heat radiation intensity (kW/m2) Tj receives from a tank fire at Ti. Values less than 15 

kW/m2 are not presented. 

Tj↓    Ti→ T1 T2 T3 T4 T5 T6 

T1 − 38 − 22 − − 

T2 38 − 38 − 22 − 

T3 − 38 − − − 22 

T4 22 − − − 38 − 

T5 − 22 − 38 − 38 

T6 − − 22 − 38 − 

 

3.2. Vulnerability assessment 

3.2.1. Application of graph metrics  

Modeling possible domino effects in a chemical facility as a directed graph (Figure 4(b)), Khakzad 

and Reniers [20] showed that process vessels with higher out-closeness centrality scores can lead to 

relatively severer domino effects if ignited or exploded as primary vessels. Following their work in 

the present study, we aim to investigate if intentional attack to a limited number of process vessels 

with the highest out-closeness would result in the severest domino effect than attack to any similar 

number of other process vessels.  

To this end, the directed graph in Figure 4(b), which has been drawn based on mutual interactions 

between the storage tanks in Table 1, is modeled in igraph package [26]. The storage tanks’ out-

closeness scores are presented in Table 2, indicating T2 and T5 as the tanks with the highest out-

closeness. As such, a single attack to T2 or T5 should trigger a severer domino effect than a single 

attack to any other storage tank. Likewise, simultaneous attacks to both T2 and T5 are expected to 

result in a severer domino effect than a multi-attack to any other combination of two tanks. 

 

Table 2. Out-closeness centrality of the storage tanks shown in Figure 1.  

Storage tank T1 T2 T3 T4 T5 T6 

Cout 0.556 0.714 0.556 0.556 0.714 0.556 

 

For this purpose, we consider a number of single attack (Figures 5(a)-(c)) and double-attack 

scenarios (Figures 5(d)-(f)), where, for the sake of clarity, the targeted vessels are highlighted. 
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Modeling the graphs in Figure 5 in igraph [26], the out-closeness scores of the graphs, as an 

indication of graph vulnerability to domino effects [27], are presented in Table 3 (1st row). 
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(a)   (b)   (c) 

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

 

(d)   (e)   (f) 

Figure 5. (a) Domino effect triggered by attack to T1. (b) Domino effect triggered by attack to T2. (c) 

Domino effect triggered by attack to T6. (d) Domino effect triggered by attack to T1 and T2. (e) 

Domino effect triggered by attack to T2 and T5. (f) Domino effect triggered by attack to T1 and T6. 

 

Table 3. Graph out-closeness for single-attack and double-attack scenarios depicted in Figure 5. 

  Single-attack Double-attack 

Graph Fig. 4(a) Fig. 4(b) Fig. 4(c) Fig. 4(d) Fig. 4(e) Fig. 4(f) 

Cout 0.180 0.423 0.180 0.142 0.208 0.117 

Utility -42.86 -49.45 -42.86 -52.81 -58.68 -56.77 

 

As can be seen, among single-attack scenarios, the graph presented in Figure 5(b) has the highest 

graph out-closeness, indicating that a single attack to T2 (or T5) would lead to the severest single-
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event domino effect2. Likewise, among double-attack scenarios, the graph presented in Figure 5(e) 

has the highest graph out-closeness, indicating that a double-attack to both T2 and T5 would result 

in the severest double-event domino effect3. In the next section, we validate the results obtained 

from the application of graph metrics using a BN approach.  

3.2.2. Application of dynamic Bayesian network 

We use a methodology based on DBN to model all possible sequences of events during domino 

effects in the chemical plant [14]. Figure 6 displays the DBN to model possible single- and multiple-

event domino effects in the chemical plant of Figure 4(a). The DBN has also been extended to an 

influence diagram by adding node Utility to the nodes at the last time slice to account for the 

damage inflicted upon the storage tanks. 

 

T1

T2

T3

T4

T5

T6

T1

T2

T3

T4

T5

T6

T1

T2

T3

T4

T5

T6

Utility

t = 0 t = 1 t = n

 

Figure 6. Dynamic Bayesian network to model possible sequences of events during domino effects.  

                                                             
2 We use single-event domino effect to refer to domino effects initiating from one primary event (primary 
vessel). 
3 We use double-event domino effect to refer to domino effects initiating from two primary events (primary 
vessels). 
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To model the single-event domino effect triggered by an attack to T1, for example, the state of node 

T1 at the first time slice, denoted by t = 0, is instantiated to “T1 = Tank fire” while the states of the 

other nodes at t = 0 are instantiated to “Safe”4. Based on the assigned marginal and conditional 

probabilities, the developed DBN computes unconditional probabilities of the storage tanks at each 

time slice. For the sake of exemplification, the conditional probabilities assigned to node T4 at 2nd 

time slice, i.e., t = 1, are reported in Table 4.  

In Table 4, the probabilities P1, P5, and P15 are also known as escalation probabilities, and can be 

calculated using a variety of techniques such as probit models [10,11] based on the intensity of 

escalation vector (e.g., heat radiation) and type and size of target vessels. For the purpose of this 

study, which is identification of critical vessels based on their relative contribution to domino 

effects, we use a linear relationship to proportionate the escalation probability to the magnitude of 

heat radiation. Since a threshold of 15 kW/m2 has been proposed for atmospheric vessels exposed 

to heat radiation [11], the linear relationship in Equation (8) could be used:  

𝑃 = 1 −
15

𝑄
            (8) 

where Q (kW/m2) is the heat radiation received by an atmospheric vessel5. As such, for instance, P15 

= P(T4 t=1 = Tank fire | T4 t=0 = Safe, T1 t=0 = Tank fire, T5 t=0 = Tank fire) = 1 −
15

Q14+Q54
= 1 −

15

22+38
=

0.75 , where Q14 and Q54 are the heat escalation vectors (kW/m2) T4 receives from T1 and T5, 

respectively, as listed in Table 1.  

 

 

 

 

 

 

 

                                                             
4 In the present study, the storage tanks are considered to have two states, namely “Tank fire” and “Safe”.  
5 A threshold of 45 kW/m2 has been proposed for pressurized vessels exposed to heat [11].  
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Table 4. Conditional probability table of node T4 at t = 1. 

      T4 t = 1 

T4 t = 0 T1 t = 0 T5 t = 0 Tank fire Safe 

Tank fire Tank fire Tank fire 1 0 

Tank fire Tank fire Safe 1 0 

Tank fire Safe Tank fire 1 0 

Tank fire Safe Safe 1 0 

Safe Tank fire Tank fire P15 1 - P15 

Safe Tank fire Safe P1 1 - P1 

Safe Safe Tank fire P5 1 - P5 

Safe Safe Safe 0 1 
 

In the present study, for illustrative purposes, we assign a (dis)utility of -10.0 to a tank damaged 

either due to attack with IEDs or due to escalation of subsequent domino effects. Similarly, the 

utility of a safe tank is 0.0. For example, if an attack to T1 triggers a domino effect involving T2 and 

T4, the respective utility value incorporated in node Utility in Figure 5 is U (T1 = Tank fire, T2 = 

Tank fire, T3 = Safe, T4 = Tank fire, T5 = Safe, T6 = Safe) = -30.0.  

Running the DBN in GeNIe [28], the expected disutility of single- and double-attack scenarios – due 

to possible single-event and double-event domino effects that can be triggered by which – are 

calculated as listed in Table 3 (2nd row). As can be seen, among the single-attack scenarios, the 

attack to T2 would result in the largest disutility (-49.45) whereas among the double-attack 

scenarios, the attack to both T2 and T5 would result in the largest disutility (-58.68). Clearly enough, 

the results of the DBN analysis are in complete agreement with those of graph theoretic approach in 

the previous section. As a result, in a chemical plant, graph out-closeness can be used as an 

indication of the plant’s vulnerability to domino effects triggered from intentional (or accidental) 

damage to process vessels. 

Application of the methodology 

4.1. Vulnerability to intentional domino effects 

To demonstrate the application of the methodology, consider the tank farm in Figure 7(a) 

comprising eight atmospheric storage tanks of oil with diameter of D = 33.5 m, height of H = 15.2 m, 

and capacity of 9000 m3. Considering tank fires as the primary and secondary events, possible fire 

escalation patterns during domino effects are presented as the directed graph in Figure 7(b). The 

intensity of heat radiation between the tanks has been calculated by ALOHA [25] assuming a wind 
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speed of 2 m/s gusting from North, air temperature of 15oC, a partly cloudy sky, and relative 

humidity of 25%. The out-closeness cores of the tanks are presented in Table 5, with storage tanks 

4, 7, and 5 as the ones with the highest out-closeness scores in a descending order. 

 

T1

T2

T3

T4

T6

T5

T7

T8

  

Figure 7. (a) Chemical plant consisting of eight atmospheric storage tanks of oil. (b) Possible fire 

escalation scenarios as a directed graph. 

 

Table 5. Out-closeness centrality of the storage tanks shown in Figure 7.  

Storage tank T1 T2 T3 T4 T5 T6 T7 T8 

Cout 0.700 0.636 0.700 1.00 0.778 0.636 0.875 0.700 

 

4.2. Cost-robust design 

To prevent or delay the escalation of domino effects, especially in the case of fire propagation, 

usually a variety of fire protection measures is considered in chemical plants. Fire protection 

measures can be classified into inherently safer techniques, engineering (passive and active) 

protection systems, and emergency response measures [29]. Inherently safer techniques such as 

adequate separation distance among hazardous vessels or adopting less hazardous chemicals and 

operations [30,31] are among macro-layout changes which are usually applicable to design stage of 

chemical plants. Where macro-layout changes are not possible, micro-layout modifications such as 
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adding passive and active protection systems can be considered, including sprinkler systems, water 

deluge systems, emergency shut down systems, and fireproofing [32]. Emergency response 

measures such as firefighting can be integrated with engineering protection systems to further 

delay and control of fire escalation. 

In the present study, low-capacity utilization of chemical plants as a way of increasing their 

robustness against intentional domino effects is examined. Provisionally reducing the inventory of 

hazardous chemicals in face of imminent terrorist attacks can significantly reduce the severity and 

extent of damage. Since low-capacity utilization of a chemical plant can inflict losses in the form of, 

among others, loss of revenue or adverse impacts on downstream industries and supply chain, it 

should be performed based on a cost-benefit analysis. Since the benefit gained from such low-

capacity utilization would be an increase in the robustness of the plant, we refer to it as a cost-

robust analysis instead. 

Based on the out-closeness scores of the storage tanks in Table 5 as an indication of their criticality 

in intentional attacks, a number of plans can be considered for low-capacity utilization of the plant. 

The plans, their costs and resulting plant out-closeness scores as an implication of plant robustness 

have been listed in Table 6. To calculate the graph out-closeness resulted from implementation of 

each plan, the escalation vectors emitting from respective storage tank(s) have been removed from 

the graph in Figure 7(b) and the modified graph’s out-closeness has been recalculated. For example, 

since T4 would be empty for Plan 1, there would not be any directed arcs (escalation vectors) from 

T4 to the other storage tanks (nodes) in the graph even if T4 is damaged under attack. As can be 

seen from Table 6, the plant’s out-closeness decreases with an increase in the number of empty 

tanks.   

 

Table 6. Low-capacity utilization plans.  

Plan ID Description Graph Cout Cost (€) 

0 No tank is empty 0.322 0 

1 T4 is empty 0.291 1000 

2 T4 & T7 are empty 0.282 2718 

3 T4, T7 & T5 are empty  0.169 7389 

4 T4, T5, T7 & T1 are empty 0.091 20085 
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In order to calculate the cost of each plan, we, for illustrative purposes, assume that the cost the 

plant incurs due to operating under lower capacity can be estimated using an exponential 

relationship as presented in Equation (9).  

𝐶 = 1000 exp (𝑛 − 1)          (9) 

where C is the cost (Euro), and n is the number of empty tanks. Equation (9) implies the cost 

aversion [33] of the plant which grows exponentially with lowering the capacity of the plant. Having 

the cost and graph out-closeness of the plans, “reference-point” optimization technique (Figure 8) 

can be used to identify the optimal cost-robust plan for low-capacity utilization of the plant in face 

of imminent terrorist attacks. As displayed in Figure 8, the point with the lowest cost and highest 

robustness (the lowest graph out-closeness) is presented as Utopia the closest node to which can be 

identified as the optimal plan. Using Equation (7), Plan 1 (to empty tank T4) turns out to have the 

shortest distance to Utopia, and thus being identified  as the optimal cost-robust strategy.  

 

 

Figure 8. Application of reference-point decision making to identify optimal strategy for low-

capacity utilization.  

 

Conclusions 

In the present study we employed graph theory to assess the vulnerability of chemical plants to 

domino effects triggered by intentional attacks. We also used a methodology based on dynamic 

Bayesian network to validate the graph theoretic approach. Applying both graph theoretic and 

dynamic Bayesian approaches, it was demonstrated that simultaneous attack to process vessels 
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with highest out-closeness score would result in more extensive domino effects, thus causing 

maximum damage within the plant. In this regard, a plant’s average out-closeness score was 

illustrated to represent the plant’s vulnerability (robustness) to intentional domino effects. 

Furthermore, we proposed low-capacity utilization of chemical plants as a way of reducing their 

vulnerability to intentional domino effects in the case of impending intentional attacks (for example, 

in the case of elevated or imminent alerts [34]). To determine the optimal low-capacity utilization 

plan, we employed the reference-point optimization technique to make a trade-off between the cost 

the plant incurs and the robustness the plant gains due to low-capacity utilization. Although the 

focus of the present study has been on intentional domino effects, the developed methodology – 

both graph theoretic and dynamic Bayesian network approaches – can be applied to accidental 

domino effects without any alteration.  
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