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The properties of a two-dimensional electron are investigated in the presence of a circular step magnetic-
field profile. Both electrons with parabolic dispersion as well as Dirac electrons with linear dispersion are
studied. We found that in such a magnetic quantum dot no electrons can be confined. Nevertheless close to the
Landau levels quasibound states can exist with a rather long lifetime.
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I. INTRODUCTION

During the last five years, graphene �a single layer of
carbon atoms� has become a very active field of research in
nanophysics.1,2 It is expected that this material will serve as
a base for new electronic and optoelectric devices. One of
the most challenging tasks is to learn how to control the
electron behavior using electric fields in this two-
dimensional �2D� layer. This task is made complicated by the
so-called Klein effect according to which Dirac electrons in
graphene can tunnel through any electric barrier.3 As a con-
sequence in electrically created quantum dots there are no
bound states but only quasibound states, or so-called
resonances4–6 which, however, under certain conditions can
have a long lifetime.

An alternative approach to control the motion of electrons
is to use nonhomogeneous magnetic fields which can be cre-
ated, e.g., through the deposit of nanostructured
ferromagnets.7–9 Recently it was shown that nonhomoge-
neous magnetic structures are able to confine Dirac electrons
in graphene.10–19 However, up to now semi-infinite �homo-
geneous in one direction� structures were considered, which
makes the analysis more simple because the problem is re-
duced into a one-dimensional one.

In this paper we consider a finite-size magnetic structure
where the magnetic field is nonzero only in a finite region of
space. Namely, we consider a model homogeneous magnetic
field that is nonzero in a circle that we call the magnetic dot.
This situation is the inverse of the one considered in Ref. 11
where a magnetic antidot was considered, as in Ref. 9 for the
case of normal electrons, where the magnetic field is zero in
a circular region and nonzero outside this region. Such a
model system can be realized by having a magnetic vortex
piercing the graphene layer or by overlaying graphene with
type I superconductor with a circular hole placed in the per-
pendicular magnetic field. In order to reveal the peculiarities
of the behavior of Dirac electrons in such magnetic dot we
compare the result with those for standard electrons with
parabolic dispersion law.

We show that it is impossible to confine 2D electrons in a
magnetic dot in contrast to semi-infinite magnetic structures
neither in the case of graphene nor in the case of the standard
electron, and consequently, all Landau levels convert them-
selves into unbound states. Nevertheless, long living quasi-

bound states can be present. We studied them using the local
density of states technique applied previously for the inves-
tigation of electrically confined electrons.5

The paper is organized as follows. In Sec. II the model of
a magnetic dot for a standard electron is considered. The
problem is formulated in Sec. II A, the local density of states
technique is presented in Sec. II B, the results are discussed
in Sec. II C, while in Sec. II D the complex energy eigenval-
ues of the problem are described. In the corresponding sub-
sections of Sec. III the problem of the Dirac electron in a
magnetic dot is presented. Our conclusions are given in Sec.
IV.

II. ELECTRON WITH PARABOLIC ENERGY
DISPERSION

We assume that a homogeneous magnetic field B0 is
present in a circular area of radius r0, while there is no mag-
netic field outside it, namely, B0�r�=ezB0��r0−r�. The be-
havior of the electron is described by the stationary
Schrödinger equation

�H − E���r� = 0, �1�

with the Hamiltonian

H = −
1

2
�� + iA�2. �2�

Because of the cylindric symmetry of the problem we choose
the symmetric gauge for the vector potential defining its
single azimuthal component as

A��r� � =
1

2
�r , r � r0

r0
2/r , r0 � r .

� �3�

This azimuthal component is shown in Fig. 1 together with
the magnetic-field profile.

In order to simplify the notations we use dimensionless
variables, based on the magnetic-field strength value B0.
Thus, the magnetic field B�r� is measured in B0 units; all
distances are measured in the unit of magnetic length lB

=�c� /eB0, energy and potential in ��c ��c=eB0 /mc�, and
vector potential in B0lB units. In the case of electron moving
at a GaAs/AlGaAs interface �m�=0.067� and magnetic field
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of 1 T the unit of length is lB=250 nm, and the energy unit
is 20 meV.

A. Solution of eigenvalue problem

The Schrödinger Eq. �1� in cylindric coordinates reads

�1

r

�

�r
r

�

�r
+

1

r2

�2

��2 +
iA�

r

�

��
− A�

2 + 2E�� = 0. �4�

Substituting the wave function

� � ��r,�� = eim���r� , �5�

we arrive at the radial equations

�1

r

d

dr
r

d

dr
− 	m

r
+

r

2

2

+ 2E��I�r� = 0, �6a�

�1

r

d

dr
r

d

dr
−

�m + r0
2/2�2

r2 + 2E��II�r� = 0, �6b�

which have to be solved inside the dot �region I� and outside
it �region II�. The boundary conditions �the continuity of the
wave function and its radial derivative� have to be satisfied at
the dot border �r=r0�.

The regular solution inside the dot can be expressed via
the confluent hypergeometric function �Kummer function
M�a�c�z�
:

�I�r� = Af�r� = Ar�m�e−r2/4

� M���m� + m�/2 + 1/2 − E��m� + 1�r2/2
 ,

�7�

while the solution outside it is composed of two Bessel func-
tions

�II�r� = BJ	�kr� + CY	�kr� , �8�

where k=�2E is the momentum of the free electron �mea-
sured in lB

−1 units�, and 	=m+r0
2 /2. Note both functions �J	

and Y	� suit us, as they vanish in the limit r→
.
Thus, we have three constants A, B, and C. They cannot

be defined from the above-mentioned two boundary condi-
tions. That is why we have to conclude that there are no
bound states, and consequently, a magnetic field in a finite
region of the 2D plane cannot confine the electron. However,

quasibound states can be expected when the electron energy
in the dot is close to the Landau levels with energy

En,m = n +
�m� + m + 1

2
�9�

�here n=0,1 ,¯ and m=0, �1,¯� defined in the case of
homogeneous magnetic field. Confirmation of this statement
follows from Fig. 2, where the electron wave functions for
two different energies are shown.

We see that in the case of E=2.5 �red solid curve� which
corresponds to the Landau level with n=2 and m=0 the
wave function is large in the dot region �shown in Fig. 2 by
shadowed yellow rectangle�, while for the case of energy E
=2.8, which does not coincide with any Landau level energy,
it does not have any appreciable large value inside the dot,
and actually does not differ much from the wave function for
a free electron calculated in cylindric coordinates.

B. Local density of states

Next we will look for possible long living quasistationary
states in the magnetic dot. In principle such quasibound �or
quasistationary� states have to be described by the solution of
the time-dependent Schrödinger equation which is much
more complicated as compared with the standard eigenvalue
problem. There are, however, several alternative approaches
which enable us to investigate properties of quasibound
states by stationary means. We follow the method presented
in detail in Ref. 5 and calculate the local density of states.
The basic idea is to confine the electron in a large region of
finite radius R, where its wave function obeys the zero
boundary condition at the border �r=R� and treat the prob-
lem as a stationary one. A measurement that probes quantum
dot properties, say, measuring of the tunneling current di-
rected perpendicular to the dot with STM, or power absorp-
tion in near-field infrared spectroscopy, has to depend on the
averaged value of the electron wave function in the dot.
Therefore we introduce the integral

0 r
0

r
0

r

1

I II

Bz

A�

FIG. 1. �Color online� Azimuthal vector potential component A�

�blue solid curve� and perpendicular magnetic field Bz �red dashed
curve� as functions of the radial coordinate.
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�

r
10

Dot

FIG. 2. �Color online� The wave functions for m=0, r0=5: E
=2.5—red solid curve, and E=2.8—dashed blue curve. The mag-
netic dot region is indicated by shadowed rectangle.

RAMEZANI MASIR, MATULIS, AND PEETERS PHYSICAL REVIEW B 79, 155451 �2009�

155451-2



I�E� = 2��
0




rdrF�r����r��2, �10�

which depends on the electron wave function, and actually is
proportional to the so-called local density of states. The ap-
erture function F�r� characterizes the interaction of the elec-
tron with the measuring probe.

This integral is sensitive to the probability to find the
electron in the dot, and in the case of a quasibound state it
will exhibit a peak corresponding to the energy of this state.
The width of the peak is related to the inverse of the lifetime
of this quasistationary state.

For the sake of determinacy we use the aperture function
of a Gaussian,

F�r� = br0
2e−br2

, b = r0
−2 ln 10, �11�

which corresponds to the probability to find the electron in
the dot area �r0

2. In the case of larger b value instead of the
local density of states we obtain the squared wave function
value in the center of the dot, while in the case of smaller b
value the peculiarities of the dot are washed out.

The solution of the Schrödinger Eq. �6� given by Eqs. �7�
and �8� has to satisfy the following boundary conditions:

�I�r0� = �II�r0� , �12a�

�I,r�r0� = �II,r�r0� , �12b�

�II�R� = 0, �12c�

which converts our problem into an eigenvalue problem.
Here and further the subscript r means the derivative over r.

At the end, we are interested in the limiting case R→
.
Therefore, in the last of Eq. �12� we replace the Bessel func-
tions by their asymptotic, namely, we have

B cos�kR − �m� + C sin�kR − �m� = 0,

�m = ��m + �r0
2 + 1�/2�/2, �13�

instead of Eq. �12c�.
Postponing till later the proper wave function normaliza-

tion we assume that B=cos 
 and C=sin 
 and rewrite the
above equation as

cos�kR − �m − 
� = 0. �14�

This equation shows that the eigenvalues of the considered
problem are approximately separated by �k=� /R, and re-
duce to a continuum spectrum in the limit R→
. Construct-
ing some averaged description which is valid when calculat-
ing the local density of states, we replace Eq. �12c� by the
following one:

B2 + C2 = 1. �15�

Now solving it together with Eqs. �12a� and �12b� we obtain
three constants:

A = −
2

�r0
W, B = WQ, C = − WP , �16�

with

P = J	fr − J	,rf , �17a�

Q = Y	fr − Y	,rf , �17b�

W = �P2 + Q2�−1/2. �17c�

The obtained constants enable us to calculate integral �10�.
In order to convert the above integral into the local den-

sity of states we have to multiply it by two additional con-
stants. One of them is the wave function normalization fac-
tor, N, which can be estimated calculating the integral of the
squared wave function in the limit of large radius R. The
replacement of the Bessel functions by their asymptotic im-
mediately leads to N=k /2R. The second one is a conse-
quence of the replacement of the summation over the dis-
crete eigenvalues by the integration over energy, which is
given by the factor R /�k. Together they give 1 /2�, which
results into definition of the local density of states

��E� =
1

2�
I�E� . �18�

C. Numerical results

We solved numerically Eq. �17�. Inserting the obtained
results into Eq. �16�, and later in Eqs. �7� and �8�, we ob-
tained the wave function which enabled us to calculate inte-
gral �10�, and finally local density of states �18�.

A typical result for the local density of states as a function
of electron energy is shown in Fig. 3. We clearly see peaks
close to the energies of Landau levels �9� calculated for the
case of a homogeneous magnetic field. These peaks are
broadened indicating that they are not really bound states in
the magnetic dot. The broadening is larger for higher energy
peaks.

The next thing which also is seen in Fig. 3 is a decreasing
background with energy. This background is due to the states
of the free electron in the absence of the magnetic dot. To
justify this statement we made the same averaging �over
circle of radius r0� with the same Gaussian aperture function

�

E

0

0.5

1.0

1.5

2 4 6 8

m = 0

r = 3
0

FIG. 3. �Color online� The local density of states for m=0 and
r0=3 shown by the solid red curve. The same density calculated for
a free electron according to Eq. �20� is shown by the blue dashed
curve.
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�11� of the radial component of the free electron wave func-
tion �when there is no magnetic dot�. This function reads

�free�r� = Jm�kr� �19�

and is valid in the whole 2D plane. Inserting this function
into integral �10� and later in Eq. �18� and using tables of
integrals20 we obtain the local density of states for a free
electron

�free�E� =
r0

2

2
e−E/bIm�E/b� , �20�

where Im�x� stands for the modified Bessel function of the
first kind. This local density of free electron in the case of
m=0 is shown in the same Fig. 3 by the blue dashed curve.
Comparing these two curves we clearly see how increasing
the electron energy we reduce the influence of the magnetic
dot on the electron behavior, and the local density of states
converts itself gradually into the free electron one.

We fitted the peaks in the density of states by Lorentzian
functions an�n / ��E−En�2+�n

2� defining three parameters for
any of them: the position En, its broadening �n, and the am-
plitude an. Two of them �the position and broadening� are
shown in Figs. 4 and 5 for different orbital momenta as func-
tions of the radius of the dot r0. The positions of the quasi-

bound states En are shown by the red solid curves while the
broadening of the peaks is indicated by the shadowed areas
limited by the En��n curves.

Notice that the levels to the right of the green dotted curve
are extremely narrow and their position coincides with Lan-
dau levels �9� shown by the blue dashed horizontal lines. In
fact this means that almost all electron wave function is lo-
cated in the magnetic dot �using the classical description
language we may say that the electron rotates along the Lar-
mor circle inside the dot� and it does not touch the border of
the magnetic dot. When the dot radius r0 becomes smaller
the Larmor circle touches the dot border and tunneling of the
electron outside the dot starts which broadens the level. The
partial penetration of the wave function outside the dot leads
to a lowering of the quasibound state energy as well. The
raising of this energy for small r0 values is caused by the
large asymmetry of the peak where actually the approximate
replacement of the peak by a Lorentzian-type function is no
longer valid. This picture is more or less the same for all
positive m values �compare Figs. 4 and 5�. The difference is
that for larger m values the levels start at higher energies,
which is in agreement with the expression for Landau levels
�9�.

The picture for negative m values is different as shown in
Fig. 6. All of them belong to the same Landau level energy
which is an expression of the degeneracy of the Landau
level. We see that with decreasing radius of the dot r0 the
levels with different m disappear step by step; the ones with
smaller absolute m values disappear later. This is in agree-
ment with the fact that the larger the �m� value the larger the
radius of the electron trajectory, and the electron wave func-
tion is closer to the dot edge.

The increase in the peak broadening at small r0 values is
so steep that it is worth to divide all the peaks into two
classes as shown in the above figures by the green dotted
curves. The levels on the left side of these curves belong to
essentially broadened quasibound states, while those on the
right side from the experimental point of view can hardly be
distinguished from the real bound states.

One can rudely estimate the position of this dividing
curve comparing the approximate dimensions of the electron
wave function calculated in the case of a homogeneous mag-
netic field �which actually coincides with function �7�
 with
the magnetic dot radius r0. A more accurate estimation can

0 2 4 6
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n = 2

n = 1

n = 0

0
r

FIG. 4. �Color online� Quasibound states with orbital momen-
tum m=0. The energies of these states are given by red solid curves
and the widths �i.e., the inverse of the lifetime� by shadowed re-
gions. The Landau levels are indicated by blue dashed lines.
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FIG. 5. �Color online� The same as Fig. 4 but now for m=1.
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FIG. 6. �Color online� The lowest quasibound state with n=0
and different negative m values. The vertical dotted green lines are
the analog of the dotted curve in Figs. 4 and 5, separating the
weakly broadened states from those with small lifetime.
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be obtained solving the stationary Schrödinger equation for
complex energy eigenvalues as was described in Ref. 6. We
draw these dividing curves in Figs. 4–6 using this technique
which is sketched in Sec. II D.

D. Complex energy technique

According to Ref. 6 the lifetime of the quasibound state or
the trapping time of the electron in the quantum dot can be
estimated solving the time-independent Schrödinger equation
and applying boundary conditions of the outgoing waves at
the sharp dot border. In our case this technique reduces to
connecting the wave function �7� defined in the dot with the
outgoing electron wave function outside it, which is given by
the first kind Hankel function

�out�r� = H	
�1��kr� = J	�kr� + iY	�kr� �21�

with

	 = m + r0
2/2. �22�

Applying the boundary conditions for these wave functions
and their derivatives we obtain the following equation:

fr�r0�H�kr0� − f�r�Hr�kr0� = 0, �23�

where for the sake of simplicity we omitted the indexes of
the Hankel functions. The indexes which are only left indi-
cates the derivative over the coordinate r. This equation has
to be solved for a complex energy �or complex k�; the imagi-
nary part of the energy gives the inverse of the lifetime.

For finding the dotted curves in Figs. 4–6 separating the
quasibound and nearly bound states it is enough to solve the
above equation by means of a perturbation expansion in
terms of the momentum difference �k=k−k0 where k0
=�2En,m with energy En,m of the unperturbed Landau level.
Limiting ourselves to first order in �k we arrive at the fol-
lowing expression:

�k =
Hrf − Hfr

Hfr,k + Hkfr − fHr,k − Hrfk
. �24�

All functions and their derivatives over r and k have to be
calculated at r=r0 and k=k0.

Now introducing the energy deviation from the Landau
level energy

�E = E − En,m � k0�k , �25�

taking its imaginary part and equating it to 10−2 �it is ex-
pected that a smaller broadening can hardly be revealed ex-
perimentally� we obtained the points connected by the green
dotted curve in Figs. 4–6 separating the quasibound states
from nearly bound states.

III. DIRAC ELECTRON IN GRAPHENE

Now we repeat the above calculation for the magnetic dot
applying it to the case of a Dirac electron in graphene, where
the low-energy quasiparticles �electrons and holes� are de-
scribed by the following dimensionless Dirac-type Hamil-
tonian:

H = ��− i � + A� . �26�

Here, �= ��x ,�y� stands for the 2�2 Pauli matrices. The
units are based on the magnetic-field strength B0 and they are
the same as in previous section, except the unit of energy
which now is vF� / lB with the Fermi velocity vF
=108 cm s−1. In the case of a 1 T magnetic field this energy
unit is 2.6 meV. The vector potential is given by Eq. �3�.

A. Solution of eigenvalue problem

The approach is based on the same stationary Schrödinger
Eq. �1� but now with the matrix Hamiltonian �26�, which
results into a set of two differential equations. Assuming the
wave function of the following form:

� = eim�	 a�r�
iei�b�r�


 , �27�

we arrive at a set of two equations for the radial wave func-
tion components

� d

dr
+ A�r� +

m + 1

r
�b = Ea , �28a�

− � d

dr
− A�r� −

m

r
�a = Eb , �28b�

which has to be solved in the two regions �I in the dot, and
II—outside it�. We require the continuity of the obtained
components at the dot border r0

aI�r0� = aII�r0�, bI�r0� = bII�r0� . �29�

Instead of solving these first-order differential equations it
is more convenient to convert them into second-order differ-
ential equations for a single component, say for component
b,

�1

r

d

dr
r

d

dr
−

�m + 1�2

r2 −
r2

4
+ �E2 − m
�bI = 0, �30a�

�1

r

d

dr
r

d

dr
+ �E2 −

�m + 1 + r0
2/2�2

r2 ��bII = 0. �30b�

In contrast to the electrical quantum dot case, which was
considered in Ref. 5, now the effective potential in Eq. �28�
is a continuous function at the dot border. For this reason
boundary conditions �29� are equivalent to

bI�r0� = bII�r0�, bI,r�r0� = bII,r�r0� . �31�

These boundary conditions are identical to those for the pre-
vious Schrödinger electron case �12�. It enables us to use the
full analogy with the previous case. Taking this analogy into
account we have for the solution in the two regions,

bI�r� = Af�r� = Ar�m+1�e−r2/4M�a0�c0�r2/2� , �32a�

bII�r� = BJ	�kr� + CY	�kr� , �32b�

where k= �E�, a0= ��m+1�+m+1−E2� /2, 	=m+1+r0
2 /2, and

c0= �m+1�+1. The expressions for the other wave function
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component a�r� follow directly from Eq. �28a�:

aI�r� =
A

E
r�m+1�e−r2/4 � � d

dr
+

�m + 1� + m + 1

r
�M�a0�c0�r2/2� ,

�33a�

aII�r� = BJ	−1�kr� + CY	−1�kr� . �33b�

The wave function components obtained in the above way
are illustrated in Fig. 7 for two different values of the energy.

We see the same tendency. When the energy is close to
the Landau level energy of the Dirac electron in a homoge-
neous magnetic field,

En,m = � �2n + �m + 1� + m + 1, �34�

�see the lower plot of Fig. 7 where the energy is close to the
Landau level with m=0, n=2� we see a clear accumulation
of the wave function components in the dot, which indicates
a quasibound state.

B. Local density of states

Developing further the analogy of Eq. �30� with the con-
sidered previously case we calculated the local density of
states using Eqs. �17�, �16�, and �10�. Because we have now
a wave function with two components, Eq. �10� is modified
into

I�E� = 2��
0




rdrF�r���a�r��2 + �b�r��2� . �35�

Now the normalization factor is N=k /4R �due to the two
wave function components�, and the factor responsible for
the change of the summation over discrete eigenvalues into
an integral over the electron energy is R /�. Thus, the local
density of states in the case of a Dirac electron becomes

��E� =
�E�
2
�

0




rdrf�r���a�r��2 + �b�r��2� . �36�

In the case of free Dirac electrons �when there is no magnetic
dot� the wave function components read

afree = Jm�kr�, bfree = Jm+1�kr� , �37�

which leads to the following expression of the local density
of states for a free electron:

�free�E� =
�E�r0

2

4
e−E2/2b�Im�E2/2b� + Im+1�E2/2b�� . �38�

C. Numerical results

The typical local density of states calculated for m=0 and
r0=3 is shown in Fig. 8 for positive energies. Two differ-
ences with respect to standard electrons can clearly be no-
ticed. First, in the case of the Dirac electron the spectrum is
symmetric with respect to energy inversion �E→−E� due to
the equivalence of electrons and holes. Thus the plot in Fig.
8 has to be supplemented by the same curves for negative
energies. Second, comparing the density of states for Dirac
electron with the same curve for the Schrödinger one �see
Fig. 3� we see that there are more peaks. This can be ex-
plained by the more dense Landau level spectrum in the case
of Dirac electrons �34� for the large quantum number values
as compared with these for the previous case �9�.

As before we fit the peaks by Lorentz-type curves, which
leads to the broadened levels displayed in Figs. 9 and 10. We
see that the levels with m=−1 start at lowest energies, which
is just the consequence of chosen definition of radial wave
function components �27�.

The green dotted curves divide the region of broadened
quasibound states from the region where the states have a
very small broadening. These curves were obtained in the
same way as it was done in Sec. II D for the case of
Schrödinger electron, namely, applying the complex energy
eigenvalue technique. In the case of the Dirac electron it
leads to the following imaginary energy part:

� =
H	−1b − H	a

Hnuar + H	,ra − H	−1br − H	−1,rb
. �39�

The above-mentioned dotted green line corresponds to �=3
�10−3. Note we chose it three times smaller than in Figs.
4–6, which causes us to conclude that between the local
density of states technique and complex energy eigenvalue

0
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FIG. 7. �Color online� The wave function components:
a—dashed blue curve, and b—red solid curve, for m=0, dot radius
r0=5 and two energy values: E=1.932—upper plot,
E=2.470—lower plot.
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FIG. 8. �Color online� The local density of states for a Dirac
electron in the magnetic dot for m=0 and r0=3 shown by red solid
curve. The dashed blue curve is the free electron density of states.
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method one can expect only qualitative agreement.
There is one more interesting point—the zero-energy state

which is shown in Fig. 10 by thick red line along the x axis.
Its behavior differs essentially from all other states. That is
why it needs some special attention which is presented in
Sec. III D.

D. Zero-energy state

Now we check whether the Dirac electron has a zero-
energy state in the magnetic dot. In this case instead of Eq.
�28� we have to solve the following two equations for the
radial components of the electron wave function:

� d

dr
+ A�r� +

m + 1

r
�b = 0, �40a�

� d

dr
− A�r� −

m

r
�a = 0. �40b�

These are uncoupled differential equations of the first order,
and their solution can be found by a straightforward integra-
tion. The solution has the following asymptotic behavior:

ln a�r� =� dr�A�r� +
m

r
� � �m ln r + r2/4, r → 0

�m + r0
2/2�ln r , r → 
 ,

�
�41�

and

ln b�r� = −� dr�A�r� +
m + 1

r
�

� �− �m + 1�ln r − r2/4, r → 0

− �m + 1 + r0
2/2�ln r , r → 
 ,

� �42�

or

a�r� � � �rm exp�r2/4� , r → 0

rm+r0
2/2, r → 
 ,� �43�

and

b�r� � �r−m−1 exp�− r2/4� , r → 0

r−�m+1+r0
2/2�, r → 
 .� �44�

In order to have the wave function with finite norm two
boundary conditions have to be satisfied. First, the function
should behave like r� ���0� when r→0, and second, it
should behave like r−� ���−1� when r→
.

For the a component the above conditions reduce to the
requirements m�0 and m+r0

2 /2�−1, which cannot be sat-
isfied simultaneously. Consequently, we have to assume that
a=0.

In the case of component b the conditions read

− r0
2/2 � m � − 1, �45�

from which it follows that if r0
2 /2�1 there are always some

negative m values for which a zero-energy state exists. When
the radius of the dot decreases, this interval becomes smaller,
and the zero-energy states vanish one by one. Finally, at
r0

2 /2�1 all of them disappear.
Such essential difference between the bound zero-energy

level and all other quasibound levels is caused by the fact
that the wave function of the state with zero energy is real.
Consequently, the electron in this state has no velocity, and
as a result there is no tunneling of this electron outside the
dot. Unfortunately, the absence of any nonzero electron ve-
locity makes it impossible to reveal this state in transport
measurements, but maybe it can reveal itself through the
statistic properties of the magnetic dot.

IV. CONCLUSIONS

We considered the eigenvalue problem of a model quan-
tum magnetic dot where the homogeneous magnetic field
perpendicular to the 2D electron motion plane is created only
in a finite region—in a circle of radius r0. We showed that
such a magnetic field fails to confine electrons both for the
standard parabolic dispersion law or the ultrarelativistic lin-
ear dispersion law for Dirac electrons in graphene. Although
in such a magnetic dot no confined states are found, quasi-
bound sates with a finite lifetime are present.

0 2 4 6

1

2

3
m = 0

n = 0

n = 1

n = 2
E

r
0

FIG. 9. �Color online� Quasibound states with orbital momen-
tum m=0 for the Dirac electron in the magnetic dot. The energy of
these states is given by red solid curves and its width �i.e., the
inverse of the lifetime� by the shadowed regions. The Landau levels
are indicated by blue dashed lines.

2 4 6
r
0

1

2

3

E

n = 1

n = 2

n = 3

m = -1

n = 0

2

FIG. 10. �Color online� The same as Fig. 4 but now for
m=−1.
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An analysis of the quasibound states for the Schrödinger
and Dirac electron was performed by means of the local
density of states, and the position and width of the resonance
peaks �the analogs of the quasistationary states� on the dot
radius �or the strength of the magnetic field� were calculated.
The broadening of these peaks �the inverse lifetime of the
quasibound state� is mainly caused by the touching of the
quantum dot border by the electron wave function tail. Due
to the exponential character of this tail there exists a rather
sharp border between broadened quasibound states and those
which can be considered as nearly bound ones. This border
was found by applying the complex energy eigenvalue
method which is shown to be in qualitative agreement with
the results obtained from the local density of states tech-
nique.

It is shown that the difference of the quasibound states in
the magnetic dot between the Schrödinger and Dirac elec-

trons is only in the energies of these states which is a con-
sequence of the different energies of the corresponding Lan-
dau levels. There is a single exception: in the case of Dirac
electrons there exists a zero-energy bound state for negative
values of the angular momentum �the momentum which is
opposite to the direction of the classical electron rotation
along the Larmor circle�. When the dot radius r0 �or the
magnetic-field strength� decreases the degeneracy of this
zero-energy level decreases skippingly while all other quasi-
bound states disappear smoothly via their broadening.
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