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Abstract

Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information
in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons
than rodent synapses. To test this, we recorded from connected pairs of pyramidal neurons in acute brain slices of adult
human and mouse temporal cortex and probed the dynamical properties of use-dependent plasticity. We found that
human synaptic connections were purely depressing and that they recovered three to four times more swiftly from
depression than synapses in rodent neocortex. Thereby, during realistic spike trains, the temporal resolution of synaptic
information exchange in human synapses substantially surpasses that in mice. Using information theory, we calculate that
information transfer between human pyramidal neurons exceeds that of mouse pyramidal neurons by four to nine times,
well into the beta and gamma frequency range. In addition, we found that human principal cells tracked fine temporal
features, conveyed in received synaptic inputs, at a wider bandwidth than for rodents. Action potential firing probability
was reliably phase-locked to input transients up to 1,000 cycles/s because of a steep onset of action potentials in human
pyramidal neurons during spike trains, unlike in rodent neurons. Our data show that, in contrast to the widely held views of
limited information transfer in rodent depressing synapses, fast recovering synapses of human neurons can actually transfer
substantial amounts of information during spike trains. In addition, human pyramidal neurons are equipped to encode high
synaptic information content. Thus, adult human cortical microcircuits relay information at a wider bandwidth than rodent
microcircuits.
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Introduction

Human cognitive abilities clearly stand out from those of other

mammals [1]. Evolutionary development of brain size, encepha-

lization, neocortical thickening, and specialization of cortical

circuits [2,3] most likely underlie the superior human mental

capacity, but other factors may contribute as well [4]. Cognitive

functions rely on appropriate relay and filtering of information and

on efficient communication between brain areas. Ultimately,

neuronal firing and synaptic transmission between neurons form

the building blocks for coding, processing, and storage of

information in the brain [5]. Synapses in particular are

fundamental computational units [6–8], and the increased

complexity of synaptic protein networks was recently put forward

as a potential correlate of mammalian cognitive ability [9–11].

Given the vast number of synapses in the brain, in the order of a

trillion per cubic centimeter [12], even a slight increase in efficacy

of synaptic information processing could potentially translate into

a substantial elevation of the brain’s overall computational

performance [13]. Whether human synapses are more efficient

in transferring information between neurons is not known and has

not been tested directly.
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Here, we addressed this question and studied the properties of

signal transfer at unitary synaptic connections between pyramidal

neurons of adult human and mouse neocortex. We then applied

an information theory approach to calculate synaptic transfer

performance [7,14,15]. We focused on the short-term dynamics of

transmission, as synapses are not passive conveyers of information.

Instead, they display prominent use-dependent plasticity, which

has important roles in information processing [8,16]. Following

chemical signal transduction at a single synapse, postsynaptic

signals appear as selectively filtered versions of the train of action

potentials (APs) that the presynaptic neuron generates [17,18].

Amplitudes of successive postsynaptic potentials are in fact

transiently and reversibly attenuated or amplified by the context

of previous pre- and postsynaptic activation. Whether or not a

postsynaptic neuron fires in response to an individual presynaptic

AP thus depends on the instantaneous AP frequency, on the short-

term dynamical properties of each synapse, and on the previous

history [8,17,19,20]. We found that human cortical synapses

recover faster from depression than rodent cortical synapses,

resulting in a substantially higher information transfer rate than in

rodent synapses. In addition, we directly observed that human

pyramidal neurons are equipped to encode such a high

information content synaptic transmission in their output, unlike

rodent pyramidal neurons, by their dynamical excitability

properties.

Results and Discussion

In the rodent brain, unitary connections between neocortical

pyramidal neurons show frequency-dependent short-term synaptic

depression, in response to a sequence of APs [17,21,22]. To test

whether excitatory connections between adult human neocortical

pyramidal neurons show short-term plasticity, and whether this

quantitatively resembles that in mouse neocortex, we made whole-

cell recordings from synaptically connected layer 2/3 pyramidal

neurons of non-pathological samples of cortex from adult human

patients (see Materials and Methods) (Figure 1A; Tables S1, S2,

S3) [23,24] and mouse neocortex (medial prefrontal cortex of

young mice of 12–36 days old, and temporal association cortex of

adult mice of 8–11 weeks old). Human monosynaptic connections

showed no facilitation but only frequency-dependent depression,

whose occurrence resembled that of mouse synapses (Figure 1A–

1D). The amount of depression during a 30 Hz presynaptic AP

train did not differ between human and mouse synapses

(Figure 1D) (ratio last/first excitatory postsynaptic potential

[EPSP]; mean 6 standard error of the mean [SEM]: 0.3860.03

human, 0.4460.05 for young mouse synapses, and 0.3060.04 for

adult mouse synapses) (p.0.05). However, at 0.5 seconds follow-

ing the end of the AP train, the amplitude of human EPSPs had

recovered to the level of the first EPSP in the train (Figure 1B and

1E; ratio recovery/first EPSP 1.0160.07 [500 ms between

recovery and first, n = 6, green filled diamonds]); whereas mouse

EPSPs were still significantly depressed (young 0.6760.03; adult

0.7260.06, p,0.001). Moving the ninth AP closer in time to the

AP train in the recordings from human unitary connections

showed that already after 0.3 seconds the amplitude of the human

EPSP had nearly recovered to the level of the first EPSP

(Figure 1E; ratio recovery/first EPSP 0.9260.04; circles).

To gain a full quantitative comparison of mouse and human

short-term synaptic depression and recovery, we used the

mathematical minimal description of activity-dependent short-

term synaptic plasticity first proposed by Tsodyks and Markram

[17,25], and extracted best-fit model parameters for each

recording (see Materials and Methods). Two out of five fitted

parameters were similar between mouse and human synapses

(Figure S1A and S1C). Those parameters that differed between

human and mouse unitary synapses included a higher ‘‘U,’’ which

reflects the probability of synaptic release (Figure 2A; 0.4560.03

in human versus 0.2560.02 and 0.2960.03 in young and adult

mice, respectively; p,0.001 and p,0.05), and the cell membrane

time constant, as calculated directly from the experimental traces

and by the Tsodyks-Markram model (Figure S1C and S1D). It is

relevant to mention that the membrane time constant directly

measured from experimental traces and the one calculated by the

model differ slightly in definition. The model-driven observable, as

extracted by the Tsodyks-Markram model, is obtained by fitting a

set of two passive differential equations to the decay of the last

EPSP, and for the sole instrumental aim of compensating the

passive temporal summation of the successive EPSPs. Its link to the

membrane biophysical properties is only indirect, its estimate

confidence lower, and it has been included for the purpose of

completeness. By far, the largest difference between adult mouse

and human synapses was a shorter first-order kinetic time

constant, which reflects the recovery from short-term synaptic

depression (Figure 2B; 144613 ms in human versus 536640 ms

and 483691 ms in young and adult mice, respectively; p,0.001).

These data indicate that human synapses recover at least three

times faster from use-dependent synaptic depression. Similarly fast

time constants of recovery have only been reported for facilitating

synapses in the ferret prefrontal cortex [26]. Instead, purely

depressing synapses in ferret neocortex also have long time

constants of recovery of 500 ms up to 900 ms [26], similar to those

in mouse and rat neocortex [17,22]. Furthermore, the time

constant of recovery from synaptic depression in adult human

synapses (average age 45611 years) did not change with age

during adulthood (Figure 2C; Pearson’s correlation coefficient

rho = 20.36, p = 0.1).

A 3-fold faster recovery from frequency-dependent depression

of synaptic connections is likely to affect information transfer

between two connected neurons, when repeatedly activated during

spike trains [8,16,27]. In the neocortex of awake primates, neurons

fire irregularly and the instantaneous frequency of each AP varies

Author Summary

Our ability to think, memorize information, and act
appropriately depends on circuits of connected neurons
in the brain. In these circuits, neurons pass information to
each other using electric pulses (action potentials) that
cause the release of chemical neurotransmitters, which
alter the membrane electric potential of receiving neurons.
Based on the inputs neurons receive, they decide whether
to transmit action potentials to other neurons in the circuit
to pass on information. During sequences of repeated
information transfer, synaptic connections between two
neurons temporarily become weaker by synaptic depres-
sion. Our knowledge of neuronal information transfer is
based on rodent neurons. The properties of synaptic
information transfer and synaptic depression in humans
are not known. Here, we show that adult human neurons
can transfer information with up to ten times higher rates
than mouse neurons, because of a three to four times
faster recovery from depression. Furthermore, we found
that human neurons can respond faster to synaptic inputs,
owing to faster initiation of action potentials. Human
neurons can thereby reliably encode high input frequen-
cies in their output. Thus, neuronal information transfer
can have a substantially higher bandwidth in human
neocortical circuits than in rodent brains.

High Bandwidth Synaptic Communication in Human Neocortex
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[28,29]. We therefore tested whether fast recovery from depression

would improve information transfer between two neurons during

irregular AP trains with variable firing frequencies (Figure 3). In

synaptically connected pairs of pyramidal neurons in mouse

neocortex, repeated firing of the presynaptic neuron resulted in a

marked reduction of the amplitude resolution by which individual

EPSPs could be discerned (Figure 3A). Consequently, some

presynaptic APs resulted in very weak postsynaptic voltage

changes (Figure 3A and 3C). In contrast, in connected pairs of

human cortical pyramidal neurons, all presynaptic APs led to

corresponding EPSPs during repeated firing (Figure 3B and 3C),

and each EPSP peak amplitude remained well defined during the

AP train. Plotting the relative EPSP amplitude at the same AP in

the train for mouse and human synapses shows that the peak

amplitude of human EPSPs remains better resolved throughout

the AP train than mouse EPSPs (Figure 3C). Using the mathe-

matical model and the best-fit parameters, obtained from the short

EPSP trains (Figure 2A and 2B), we simulated the response to the

irregular synaptic transmission with the exact same AP sequence

as applied in the actual recordings: the reduction of synaptic

resolution observed in the mouse experiments was replicated

(Figure 3A and 3B). With a faster time constant of recovery

(144 ms instead of 500 ms), the simulated postsynaptic response

resembled the human unitary synaptic responses, whose peak

amplitude resolution was maintained throughout the AP train

(Figure 3B).

Figure 1. Synapses in the adult human neocortex rapidly recover from depression. (A) Digital reconstruction of a biocytin-filled,
synaptically connected pair of layer 2/3 pyramidal neurons in human temporal cortex. (B) Experimentally recorded EPSPs, generated by presynaptic
timed APs at 30 Hz followed by a recovery pulse, 500 ms after the 8th pulse. Traces in blue are from young murine medial prefrontal cortex (mPFC)
(P12–36), black, from murine temporal association cortex (10–11 weeks) and red from human temporal cortex. Grey is an example of a train of human
presynaptic APs. Examples are averages of 30 repetitions. (C) Activity dependence of human short-term synaptic depression. Normalized average
EPSPs (three pairs) generated in response to different frequencies (10–40 Hz). (D) Ratio 8th/1st EPSP (mean 6 SEM) 0.3860.03 human, 0.4460.05 for
young mouse synapses and 0.3060.04 for adult mouse synapses (p.0.05). (E) Ratio 9th/1st EPSP (mean 6 SEM) 0.9460.03 for human, whereas
young mouse EPSPs were still depressed 0.6760.03 (p,0.001) and adult mouse EPSPs 0.7260.06 (p,0.001). Difference between young and adult
mouse ratios were not significant (p = 0.7). Human n = 27 (14 from tumor patients and 13 from epilepsy patients, see Materials and Methods); young
mouse n = 35; adult mouse n = 11. Filled red circles, human tumor patients; open red circles, human temporal lobe epilepsy patients (300 ms interval
between 8th and 9th EPSP). Open blue circles, young mouse group p12–p36; open black circles, adult mouse group 8–11 weeks. Filled green
diamonds, human patients with 500 ms interval between 9th and 8th EPSP. (Data deposited in the Dryad repository, http://doi.org/10.5061/dryad.
3723p [56]: Data of neuronal reconstructions in Figure 1A.rar; Raw data of human and rodent EPSPs in 30 Hz_EPSPs.rar; Numerical data that
generated (B–E) as well as Figure S1A–S1D in Data S1).
doi:10.1371/journal.pbio.1002007.g001
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Synapses with faster recovery from depression respond more

reliably to presynaptic APs during trains of activity (Figure 3A and

3B), and they may also have a larger dynamic range when signaling

abrupt variations in presynaptic firing rate. To investigate this, we

tested in model simulations whether fast recovering synapses show

larger responses to sudden changes in the frequency of presynaptic

AP trains. We simulated 1,500 identical, independent excitatory

synaptic afferents impinging on the same postsynaptic neuron,

which was modeled as a passive membrane compartment [18,30].

These virtual synapses were activated asynchronously by indepen-

dent homogenous point processes to engage short-term synaptic

plasticity. Subsequently the average activation frequency was step-

changed as in a burst, to test how well synapses would detect and

respond to phasic presynaptic activity [30]. Synapses with fast

recovery from depression indeed conferred a higher dynamic range

of synaptic transmission, as well as an increased sensitivity to small

changes in presynaptic network activity time course (Figure 3D–

3F). As we swept through different intra- (Figure 3E) and inter-burst

frequencies (Figure 3F), the faster recovery from depression always

provided the postsynaptic neurons with a larger sensitivity to their

synaptic inputs. These results indicate that synapses that recover

faster from depression, as we observed in human neocortical

synapses, are equipped to relay fine variations in the instantaneous

firing frequency, more reliably than synapses that slowly recover.

As synapses that recover quickly from depression operate with an

increased bandwidth during repeated activation, they may be able

to relay more information than synapses that slowly recover from

depression. To test this, we numerically calculated the mutual

information between the amplitude of the postsynaptic membrane

potentials and the length of the inter-spike intervals of a train of

corresponding presynaptic APs. Using the mathematical model and

the best-fit parameters (Figure 2), the Shannon’s formalism of

information theory [31] applied to depressing synapses [7] provided

a quantitative measure for the information transfer through a

synapse (see Materials and Methods). We found that synapses that

recover quickly from depression convey approximately four times

more information at peak levels (Figure 3G). The average

presynaptic firing frequency, corresponding to the optimal infor-

mation transfer [7], was higher in quickly recovering synapses

(9.1 Hz) compared with slowly recovering synapses (4.5 Hz).

Quickly recovering synapses were consequently able to sustain

larger information transfer rates at higher firing frequencies

(Figure 3H), and information transfer rate saturated less promi-

nently at higher frequencies than for slowly recovering synapses.

These findings suggest that human neocortical depressing synapses

that show fast recovery from depression may relay more informa-

tion than depressing neocortical synapses found in the mouse brain.

Adult human neocortical neurons receive thousands of excit-

atory synapses, with estimates for adult layer 2/3 pyramidal

neurons as high as 30,000, about twice as many as rodent layer 2/

3 pyramidal neurons [32]. When each of these synapses operates

with high resolution at high bandwidth and maintains reliability

during bursts of activity, as our findings suggest, the question arises

whether human pyramidal neurons can actually encode fast-

varying temporal inputs in the AP train. To test whether human

pyramidal neurons can precisely time their AP firing to rapidly

changing inputs, we measured the temporal modulation of the

neuronal output firing probability of human pyramidal neurons,

during somatic injection of sinusoidal currents in whole-cell

recordings (Figure 4) [33–35]. Neurons simultaneously received an

additional, randomly fluctuating, current component (Figure 4A;

see Material and Methods) that induced an irregular firing regime

with low average rate (13.361.6 Hz, CVISI = 1.0660.02, n = 13

human and 11.960.6 Hz, CVISI = 0.860.02, n = 14 adult mouse

neurons). While the fluctuating component per se resulted in a

uniform probability of AP firing in time, the superimposed weak

amplitude small sinusoidal currents modulated in time the

instantaneous firing probability, with the same period of the

input (Figure 4B–4D). Under these conditions, the timing of AP

firing in human neurons was more strongly modulated both by

large and small input periods, going up to 1,000 cycles/s

(Figure 4E), indicating that human neurons could encode finer

and rapidly changing temporal features of their input into AP

timing.

Figure 2. Tsodyks-Markram model for dynamic synapses. (A) Utilization of absolute synaptic efficacy (mean 6 SEM), proportional to the
probability of release. 0.4560.03 in human (n = 27, 14 from tumor patients and 13 from epilepsy patients) versus 0.2560.02 and 0.2960.03 in young
(n = 35) and adult mice (n = 11), respectively; p,0.001 and p,0.05. Filled red circles, human tumor patients; open red circles, human temporal lobe
epilepsy patients. (B) Time constant of recovery from synaptic depression. 144613 ms in human (n = 27, 14 from tumor patients and 13 from epilepsy
patients) versus 536640 ms and 483691 ms in young (n = 35) and adult mice (n = 11), respectively; p,0.001 in both cases. (C) Time constant of
recovery from synaptic depression did not change with age during adulthood. No correlation in the data was found, as indicated by the Pearson’s
correlation coefficient rho = 20.36, p = 0.1. (Data deposited in the Dryad repository, http://doi.org/10.5061/dryad.3723p [56]: Raw data of human and
rodent EPSPs in 30 Hz_EPSPs.rar; Numerical data that generated (A–C) in Data S2).
doi:10.1371/journal.pbio.1002007.g002
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Figure 3. Fast recovering synapses transfer more information. (A,B) Unitary EPSPs in synaptically connected pyramidal neurons of mouse (A,
blue) and human (B, red) neocortex generated by a presynaptic Poisson spike train (black). Inset shows enlargement of postsynaptic responses
(average of 15 repetitions) to individual presynaptic APs (black dots). Lower traces show model simulations based on the Tsodyks-Markram model

High Bandwidth Synaptic Communication in Human Neocortex
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The data in Figure 4E represent typical band-pass behavior for

both human (n = 13) and murine cells (n = 14), where the

continuous black and grey lines represent an equivalent passive

analogue electronic filter. The pass band of human neurons was

shifted to higher Fourier frequencies (low frequency ‘‘pole’’ and

‘‘zero’’ cut-off located at 52 and 82 Hz, respectively, compared to

9 and 20 Hz for mouse cells) showing a higher level of selectivity

(high frequency ‘‘pole’’ cut-off located at 524 and 565 Hz in

humans and rodents, respectively). Additionally, the multiplicity

but not the location of the high Fourier frequency pole differed

between human and mouse cells: a value of 2 for the latter group

implies that the negative slope of the Fourier transfer function,

above a cut-off frequency of ,500 Hz, is larger in mouse than in

human neurons. This transfer function for adult temporal cortex

mouse neurons is consistent with what was previously found for

layer 5 pyramidal cells of the primary somatosensory cortex of

juvenile rats [31]. Taken together, these results suggest that human

neurons are more selectively tuned for high Fourier frequency

components of their inputs and that their attenuation while

relaying very fast signals, with Fourier components beyond 500

cycles/s, decays significantly less rapidly than in adult mouse cells.

From theoretical considerations it was predicted that tracking of

fast input frequencies by neurons depends on the rate of onset of

APs [35,36]. We tested whether human neocortical pyramidal

neurons have substantially faster AP onset kinetics than mouse

pyramidal neurons. Single APs of human (26–47 years, n = 23

neurons) and adult mouse (10–11 weeks, n = 12 neurons) temporal

cortex pyramidal neurons had similar waveform and duration, but

different kinetic features (Figure 5A). However, APs fired in trains

with varying instantaneous frequencies showed strong differences

between human and mouse pyramidal neurons. In particular, the

rising phase of APs fired by mouse neurons slowed down more

with increasing firing frequency than APs generated by human

neurons (Figures 5B, S4E, and S4F; p,0.005). At higher firing

frequencies the threshold for AP generation was elevated in mouse

pyramidal neurons compared to human neurons (Figure 5E).

Importantly, at instantaneous firing frequencies of 1 to 30 Hz,

mouse APs had reduced onset rapidity compared to APs fired by

human pyramidal neurons (Figure 5D and 5F, p,0.005 for all

frequencies). A recent study reported that in order for neurons to

track fast varying inputs, with Fourier components up to 1,000

cycles/s, the AP onset rapidity needed to be above 30 mV/ms per

mV [35]. APs fired by human pyramidal neurons had mean onset

rapidity values above 32 mV/ms per mV for all firing frequencies

tested (Figure 5E). These results show that APs generated by

human neurons have a sufficiently fast onset to account for the

ability of these neurons to track very fast inputs, with Fourier

components up to 1,000 cycles/s.

Our findings show that synaptic communication between

human neocortical pyramidal neurons has higher bandwidth due

to fast recovery from depression and that these neurons are

equipped to track fast input Fourier components and encode these

into timing of their spikes. Transfer of information between

neurons through chemical synaptic transmission is elementary to

cognition, and processes of short-term plasticity at these synapses

encode information [16]. Studies on rodent excitatory cortical

synapses show that short-term facilitation of synaptic strength may

optimize information transfer in particular during spike bursts

[27,37]. Based on findings in the rodent brain, it is assumed that

purely depressing synapses may be better suited to transmit

information for single spikes or short bursts rather than for trains

of APs [16]. In contrast to these observations, we show here that

purely depressing synapses in the human brain can actually

transfer substantial amounts of information during spike trains,

because recovery from depression is fast. We find that information

transfer at depressing synapses with fast recovery is optimal at

alpha band frequencies (8–12 Hz), and information transfer rate

increases well into the beta and gamma band frequency range,

suggesting that these synapses can be involved in active cortical

computation, during cognition. This may unveil a fundamental

difference with purely depressing synapses that slowly recover

from depression in the neocortex of mice and other laboratory

animals, which we find to have optimal frequencies of information

transfer in the lower theta band range with no increase in

information transfer rate at higher frequencies. These synapses

may be better suited for a different range of cortical processes [38].

In our study, we did not include polysynaptic events that have

been described previously [39], and we restricted our attention to

monosynaptic connections between pyramidal cells from L2/3 in

the anterior medial temporal cortex, where polysynaptic events did

not seem to play a prominent role. In rodent synapses, the amount

and speed of short-term synaptic depression and its recovery are

dependent on temperature as well as divalent ion concentrations

[40,41]. It is at present unknown to what extent synaptic

depression and recovery in human synapses depend on temper-

ature and divalent ion concentrations. Combined with a lack of

information on the actual calcium and magnesium concentrations

and temperature at synapses in the brain of awake behaving mice

and humans, it is not feasible to predict what the speed of recovery

from depression in mouse and human cortical synapses will be in

the intact brain during behavior. Nevertheless, we show here that

under defined experimental conditions in which temperature and

extracellular divalent ion concentrations are controlled, human

and mouse temporal cortex synapses show marked differences in

the speed of recovery from synaptic depression. This suggests that

differences in protein complexity of synaptic protein networks

between mouse and human synapses [10] may translate into

different functional properties of short-term synaptic plasticity.

Postsynaptically, the outcome of short-term synaptic plasticity

processes is translated into AP firing to relay information [13]. The

brain not only keeps track of the number of spikes occurring in

large windows of time, but spike timing can have meaning down to

[17] with average parameters from experiments in Figure 1. (C) Normalized EPSP amplitudes in human versus mouse pyramidal neurons in response
to each corresponding AP in the Poisson spike train in (A) and (B). Gray line has unitary slope, whereas the slope of the fit is 1.3360.13. Differences are
significant with p,0.05. Open circle represents the mean and standard deviations (smaller than circle diameter). (D–F) The steady-state membrane
potential Vst or its transient change D was simulated for human and rodent synapses (D), in response to a step increase of the average APs frequency
of afferents, active as independent Poisson spike trains. The value of D is plotted for increasing values of f2 (with f2 = 5 Hz) (E), while the value of Vst is
plotted for increasing values of f1 (with f1 = f2) (F), as predicted by the Tsodyks-Markram model with parameters identified from the experiments. (G,H)
Combining the quantal release model of synaptic transmission with the Tsodyks-Markram description, the transfer properties of short-term
depressing synapses can be quantified by information theory. Over a broad range of firing frequencies, the mutual information, calculated between
peak EPSP amplitudes and presynaptic interspike intervals, reveals a peak at an optimal firing frequency (G); Dividing the mutual information by the
firing frequency, the information rate was plotted (H). (Data deposited in the Dryad repository, http://doi.org/10.5061/dryad.3723p [56]: Raw data
underlying (A) and (B) in Poisson_Human.rar and Poisson_Mouse.rar; Matlab code that generated (C–H) as well as Figure S2 in
Code_Fig3_and_SFig2.rar).
doi:10.1371/journal.pbio.1002007.g003
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Figure 4. Human pyramidal neurons track input signals beyond 500 cycles/s. (A) Top trace (gray): weak amplitude sinusoidal currents,
injected with distinct oscillation periods (1–1,000 cycles/s). Middle trace (black): injected randomly fluctuating additional current component. Lower
trace: AP firing by human pyramidal neuron in response to the total injected current. (B–D) Across successive cycles and for distinct sine input
oscillations (10, 100, 1,000 cycles/s), APs fired by a human pyramidal neuron are displayed in raster diagrams (B–D, upper panels) and are quantified
by a peristimulus time histogram (PSTH, lower panels), which estimates the instantaneous firing probability. (E) Modulation depth (i.e., peak
modulation magnitude over the mean rate, M/R) as a function of Fourier frequency for human (n = 13, black) and mouse cells (n = 14, gray). Larger
frequencies imply faster input oscillations. Markers indicate mean 6 SEM, while the thick solid traces are fits obtained with a rational complex
function (see the Materials and Methods and Methods S1). The red line indicates the significance level for the data, obtained by computing the
modulation depth over surrogate data, obtained shuffling the interspike intervals. (Data deposited in the Dryad repository, http://doi.org/10.5061/
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millisecond precision [42]. Spike timing with a temporal resolution

smaller than the time scales of sensory and motor signals, even at

sub-millisecond levels, can encode significant amounts of visual

information [42]. Cortical pyramidal neurons time their AP firing

in relation to the timing of synaptic input [43,44]. However,

populations of rodent pyramidal neurons fail to time their spiking

based on rapidly varying inputs components that change faster

than 200–300 cycles/s. This may suggest that, during ongoing

synaptic membrane potential fluctuations, rodent neurons do not

regularly encode and transmit downstream information with sub-

millisecond precision. We find that populations of human

pyramidal neurons can regularly time AP firing with sub-

millisecond precision and that these APs maintain rapid onset

kinetics, which can account for such precision of spike timing.

Rapid onset kinetics of somatic APs are predicted by Hodgkin-

Huxley-based models for AP generation when the spatially

extended morphology of neurons and AP propagation from the

axon initial segment to the soma are taken into account [45]. The

observed fast onset rapidity of APs in adult human neurons can

indeed partly be explained by human pyramidal neuron

morphology [46]. In particular, the electrical load imposed by

the large dendritic tree of adult human layer 2/3 pyramidal

Figure 5. Fast AP onsets are maintained during repeated firing in human pyramidal neurons. (A–D) Waveforms and derivatives of APs
recorded from a human (top traces) and mouse pyramidal neuron (bottom traces). Different colors correspond to APs with different instantaneous
firing frequencies (see inset, (D)). (A) AP waveform in time (ms) aligned to timing of the AP peak. (B) First derivative of rising phase of AP, aligned to
timing of AP peak. (C) Phase plot of APs with the AP derivative dV/dt versus membrane potential (mV). (D) Magnification of initial portion of phase
plot shown in (C). (E) Summary data of average AP threshold of human (red; n = 23) and mouse (blue; n = 12) neurons, displayed versus firing
frequency. Data are presented as means 6 SEM for single APs, and APs fired in trains binned in 5 Hz bins according to instantaneous firing frequency.
Asterisks indicate p,0.005. (F) Same as (E), for average AP onset rapidity. (Data deposited in the Dryad repository, http://doi.org/10.5061/dryad.3723p
[56]: Raw data underlying (A–F) as well as Figure S4 in Data_Fig5_and_SFig4.rar; Numerical data that generated (E) and (F) as well as Figure S4 in Data
S5.xlsx).
doi:10.1371/journal.pbio.1002007.g005

dryad.3723p [56]: Raw data underlying A–E and Figure S3 in Data_Fig4_and_SFig3_Human.rar and Data_Fig4_and_SFig3_Mouse_Part1 to Part4.rar;
scripts used for analysis and that generated (A–E) are also included in Data S4.xlsx).
doi:10.1371/journal.pbio.1002007.g004
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neurons compared to adult rodent pyramidal neurons on the axon

initial segment induces a larger onset rapidity of the AP and higher

frequency tracking capabilities. In conclusion, our data show that

elementary circuits in the human neocortex of connected

pyramidal neurons that underlie cognition can operate at a

substantially higher bandwidth and temporal resolution for

information encoding than rodent neurons in response to the

high information content synaptic transmission they receive.

Materials and Methods

Human Neocortical Slice Preparation
All procedures on human tissue were performed with the approval

of the Medical Ethical Committee of the VU University Medical

Center and in accordance with Dutch licence procedures and the

Declaration of Helsinki. Human slices were cut from anterior medial

temporal cortex that had to be removed for the surgical treatment of

deeper brain structures for epilepsy or tumors with written informed

consent of the patients (aged 18–61 years) prior to surgery. Anaesthesia

was induced with intravenous fentanyl 1–3 mg/kg and a bolus dose of

propofol (2–10 mg/kg) and was maintained with remyfentanyl

250 mg/kg/min and propofol 4–12 mg/kg. Immediately following

removal from the brain, neuropathologists assessed whether it was

normal or diseased tissue and only those samples that were designated

as normal were used in the present study.

After resection, the neocortical tissue was placed within

30 seconds in ice-cold artificial cerebrospinal fluid (aCSF) slicing

solution which contained in (mM): 110 choline chloride, 26

NaHCO3, 10 D-glucose, 11.6 sodium ascorbate, 7 MgCl2, 3.1

sodium pyruvate, 2.5 KCl, 1.25 NaH2PO4, and 0.5 CaCl2 (300

mOsm) [23,24,45] and transported to the neurophysiology

laboratory, which is located within 500 m from the operating

room. The transition time between resection of the tissue and the

start of preparing slices was less than 15 minutes.

Neocortical slices (350–400 mm thickness) were prepared in ice-

cold slicing solution, and were then transferred to holding

chambers in which they were stored for 30 minutes at 34uC and

for 30 minutes at room temperature before recording in aCSF,

which contained (in mM): 126 NaCl; 3 KCl; 1 NaH2PO4; 1

MgSO4; 2 CaCl2; 26 NaHCO3; 10 glucose (300 mOsm), bubbled

with carbogen gas (95% O2/5% CO2).

Mouse Neocortical Slice Preparation
All procedures were approved by the VU University’s Animal

Experimentation Ethics Committee and by the Ethics Committee

of the Department of Biomedical Sciences of the University of

Antwerp. C57Bl6 mice (2–11 weeks of age) were decapitated prior

to slice preparation, in accordance with Dutch and Belgian

licensed procedures. Brains were rapidly removed and dissected

using the same solutions for slicing and storage as used in

preparation of human brain slices. Coronal slices (300–450 mm

thickness) were cut from the prelimbic region of the medial

prefrontal cortex (mPFC) (P12–36) or the temporal association

cortex (TC) (8–11 weeks). As during preparation of human brain

slices, slices were allowed to recover for 30 minutes at 34uC
followed by 30 minutes at room temperature in the same solution

used for recording. Slices of adult mice were allowed to recover for

15 minutes at 34uC in the same solution used for slicing and then

transferred to a chamber containing the same solution used for

recording, at room temperature.

Electrophysiology
Neocortical slices were visualized using either infrared differen-

tial interference contrast (IR-DIC) microscopy or Hoffman

modulation contrast. After the whole cell configuration was

established, membrane potential responses to steps of current

injection were used to classify each cell electrophysiologically. Cells

were loaded with biocytin through the recording pipette for post

hoc identification. All experiments were performed at 32uC–35uC.

None of the neurons recorded from showed spontaneous epileptic-

form spiking activity. All experiments were performed in the

absence of blockers of GABAergic synaptic transmission.

Recordings were made using Multiclamp 700A/B amplifiers

(Axon Instruments) sampling at intervals of 4 to 100 ms, and low-

pass filtered at 10 to 30 kHz. Recordings were digitized by

pClamp software (Axon), by LCG software [47], or custom written

scripts in Igor Pro, and later analyzed off-line using custom written

Matlab scripts (The Mathworks). Patch pipettes (3–5 MOhms)

were pulled from standard-wall borosilicate capillaries and filled

with intracellular solution containing (in mM): 110 K-gluconate;

10 KCl; 10 HEPES; 10 K-phosphocreatine; 4 ATP-Mg; 0.4 GTP,

pH adjusted to 7.2–7.3 with KOH; 285–290 mOsm, 0.5 mg/ml

biocytin.

Post hoc visualization and neuron identification using biocytin

labelling was performed as described previously [48,49]. Pyramidal

neurons were classified based on morphological and electrophys-

iological criteria. Input resistances were calculated from the steady

state response to hyperpolarizing current pulses (mean 6 SEM):

human Rin = 7066 MV (n = 27), young mouse Rin = 8463 MV
(n = 45), adult mouse Rin = 10267 MV (n = 26) (adult mice

significantly different from human, p,0.01). Resting membrane

potentials (not corrected for liquid junction potentials

– mean 6 SEM): human Vrest = 273.260.8 mV (n = 27), young

mouse Vrest = 269.660.7 mV (n = 45), adult mouse Vrest =

274.561.1 mV (n = 26) (adult mice and human significantly

different from young mice (p,0.02), but not different amongst

each other). These numbers were taken into account when injecting

current to test whether human pyramidal neurons can time their AP

firing to high frequency inputs. The baseline current injected was set

to keep iso-frequency firing close to 10–15 Hz.

Frequency-Dependent Short-Term Synaptic Depression
(STD)

The model of Tsodyks and Markram [17,22,25] was

employed to quantitatively characterize use-dependent short-

term depression of EPSPs amplitude in response to defined

trains of presynaptic APs. This description refers to the

existence of generic resources for neurotransmission, without

distinguishing between presynaptic (e.g., the ready-releasable

pool of vesicles) and postsynaptic biophysical components (e.g.,

desensitization of AMPA receptors). The model is identified by

five numerical parameters [50]: A, the absolute synaptic

efficacy; U, the fraction of resources consumed by each AP;

trec, the time constant of recovery from exhaustion of available

resources; tinac, the synapses’ time constant to transit between

active and inactive states; tmem, the membrane time constant, as

defined in a leaky integrate-and-fire model. The peak amplitude

of the nth postsynaptic response, indicated by En, is given by

En = (A U Rn), where the dynamical variable R is the running

value of the available resources. Indicating the times of

successive APs, as t1,t2,:::,tn{1,tn, the model responses E1,
E2,:::,En{1,En are obtained by R1,R2,:::,Rn{1,Rn upon numer-

ical iteration: Rn~1z 1{Uð ÞRn{1½ �exp { tn{tn{1ð Þ=t½ �. The

same numerical method was employed for both simulating

model responses, as well as to search for parameters {A, U, t}

that optimally reproduce the experimental data after least-

square fitting.
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Novelty-Detection in Presynaptic Firing Rate by a
Population of Synaptic Afferents

A passive R-C circuit was mathematically defined to mimic

temporal integration of postsynaptic responses in a point-neuron

with membrane time-constant of 10 msec. Then, 1,500 identical

synaptic afferents impinging on this neuron were activated, each

by an independent realization of an identical Poisson point-

process. The mean frequency of this random process was step-

changed from f1 to f2, after several seconds of simulation lifetime.

Each individual model synapse relayed the occurrence of a

presynaptic AP in a use-dependent manner, according to the

Tsodyks-Markram model described above. Without losing any

generality, simulated postsynaptic responses were expressed and

plotted in arbitrary units, normalizing voltage responses to the

product of the (unspecified) neuronal input resistance and maximal

synaptic efficacy A.

Quantifying Temporal Information Transfer at a Single
Synapse

As an alternative to the Tsodyks-Markram model, we

considered its non-deterministic formulation, which combines

the classical quantal model [51,52] with use-dependent short-

term depression as in Fuhrmann and colleagues [7]. We

considered n = 5 release sites [24] and the average quantal

content A/N, with A being the maximal synaptic efficacy of the

deterministic Tsodyks-Markram model. The last choice implies

that on the average of many repeated trials, the non-

deterministic model responses quantitatively correspond to

the predictions of the Tsodyks-Markram deterministic formu-

lation. The coefficient of variation of the quantal content was set

to 0.4, choosing its standard deviation as 0.4 A/N. The

coefficient of variation’s value was taken from an example in

the literature [7] and its numerical value scales proportionally

the mutual information calculations and thus does not affect our

conclusions. To demonstrate the previous statement we

explored different values of CV of the simulated quantal

content (i.e., 0.2, 0.4, 0.6, 0.8) (see Figure S2). The parameter

has, therefore, no qualitative effect, but only a scaling effect. As

opposed to a classic quantal model, the probability of release is

non-stationary, and it is computed as the product between the

fixed probability that a release site contains a vesicle (U) and the

probability Pv(t) that a vesicle is available at a given time t. In

the lack of any presynaptic AP, Pv(t) recovers exponentially to 1

with a recovery time-constant t, while immediately after an AP

this probability is decreased by a proportional amount,

P? 1{Uð ÞP. This model allows one to apply information

theoretical methods [15], extended to probabilistic synaptic

transmission, and lead to quantify mutual information between

the set of postsynaptic responses to a train of presynaptic spikes,

and the corresponding set of interspike intervals [7]. The last

are assumed to act as a source of (arbitrary) temporal

information.

Several average presynaptic firing frequencies were considered

(0.01–100 Hz). For each average frequency, a realization of a

Poisson point-process was generated to simulate the time of

occurrence of 10,000 presynaptic spikes fired at such an average

frequency. The marginal probability density of the postsynaptic

amplitudes was estimated, and the corresponding conditional

probability density, given the instantaneous probability of release,

derived under the same assumptions of Fuhrmann and colleagues

[7]. Conditional entropies were computed according to the

definition of Shannon [31], and mutual information computed

as their difference.

Modulation of Firing by Noise + Sine Injection and Fit of
the Transfer Function

To evaluate the dynamical transfer properties of neuronal

discharge, in response to rapidly varying inputs, a sinusoid of

amplitude I1 and frequency F (1–1,000 cycles/s) was applied

simultaneously to a DC baseline I0 and to a randomly fluctuating

waveform, under current-clamp stimulation:

I tð Þ~I0zI1 sin 2pFtð ÞzInoise tð Þ ð1Þ

The fluctuating component Inoise(t) was synthesized as an

exponentially filtered Gaussian white-noise realization, mimicking

at the soma the consequences of a barrage of balanced background

excitatory and inhibitory irregular synaptic inputs, as described

previously [26,31,32,53]. Inoise(t) had zero-mean, variance s2 and

correlation length tI = 5 msec, and was generated by means of the

LCG software [47] iterating the following expression at the same

rate of the sampling interval (i.e., 1/dt = 20 kHz),

Inoise tzdtð Þ~ 1{dt=tIð ÞInoise tð Þzs
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2dt=tI

p
jt , ð2Þ

where {jt} is a sequence of independent pseudo-random numbers

with normal distribution [54]. Depending on the cell input

resistance and rheobase, the current DC baseline I0 and the

random fluctuation amplitude s were adjusted so that for

I1 = 0 pA, neurons responded (i) with low mean rate (,10–

15 Hz), (ii) highly irregular inter-spike intervals, and (iii)

subthreshold voltage random fluctuations (5–10 mV) as observed

in cortical recordings in vivo [53]. Finally, I1 was chosen as a

fraction of I0 (e.g., I1 = 50 pA, I1 = 400 pA) and each stimulation

I(t) lasted 50 s and was followed by a long recovery time of at least

50 s.

Raw voltage traces were recorded for different values of F and

offline processed in MATLAB (The Mathworks). Individual spike

times {tk}, k = 1,2,3,…, occurring across subsequent input

oscillation cycles, were extracted by a peak-detection algorithm

and then normalized to the corresponding oscillation period: i.e.,

tkR(tk % F21), where % indicates the remainder of integer

division. Peristimulus time histograms (PSTH) with 30 bins, were

then computed and normalized to represent the instantaneous

discharge rate. Three free parameters r0, r1, and w of the

sinusoidal function

r tð Þ~r0zr1 sin 2pFt{wð Þ ð3Þ

were optimized to best-fit in the least-squares sense each PSTH by

r(t), through the Levenberg-Marquardt algorithm [54]. The same

procedure was repeated on surrogate spike-train data, obtained

randomly shuffling the interspike-intervals {(tk+12tk)} to obtain

the minimal level of significance for the estimates of r1 and w.

To fit experimentally measured amplitude and phase response

data, we used a linear model, as described in [33], reminiscent of a

passive analogue electronic filter. Briefly, the modulation depth

r1(f)/r0 and the phase W fð Þ were taken as the magnitude and phase

of the impulse response of a linear dynamical system described, in

the Fourier domain, by the following rational complex function:

H jvð Þ~A:
PM

i~1 jv{zið Þ
PN

i~1 jv{pið Þ
:P

N

i~1 pi

PM

i~1 zi

ð4Þ

where the polynomials roots pif g and zif g are known as ‘‘poles’’

and ‘‘zeros’’ cut-off of the transfer function, respectively, and A is the
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low-frequency gain. The transfer function in Equation 4 was used to

fit the magnitude and phase responses over the population of cells,

as shown in Figure 4E, and the fit was weighted by the inverse of the

standard deviation of each data point. The two datasets,

corresponding to human and adult mouse cells, were fit with

functions containing a single zero (i.e., M = 1), and either two or

three poles (i.e., N = 2–3). In both cases, N.M accounts for the

power-law decay of the magnitude of the transfer function at

frequencies above the cut-off frequency according to the relation

H 2pifð Þk k&f {a ð5Þ

With a~N{M. To model the fact that the phase response does

not saturate for high Fourier frequencies at integer multiples of p
[34], we included in our formulation a constant propagation delay

DT , which takes into account, among other things, the time it takes

for the spike to travel from its originating zone to the point at the

soma where it is recorded (see [33,34] for a discussion).

Analysis of Action Potential Waveform
In experiments aimed at examining AP-waveform (Figure 5),

data were acquired with 4 or 10 ms sampling intervals, low-pass

filtered at 30 kHz, and filtered offline at 15 kHz. Bridge balance

was adjusted manually and pipette capacitance was compensated

for. Recordings were excluded if bridge balance exceeded 12

MOhm. For analysis, all APs with instantaneous firing frequencies

up to 30 Hz were pooled and binned for all recordings from a cell.

Traces with resting membrane potentials above 260 mV and APs

where the linear fit to obtain onset rapidity had R‘2 values ,0.95

were excluded from analysis. The various AP parameters were

calculated for each AP in a train, as follows: the AP threshold was

defined as the membrane potential at the point that the velocity of

the AP exceeded 10 mV/ms [55]. The AP peak voltage was

determined as the absolute membrane potential measured at the

peak of the AP waveform. The AP amplitude was calculated as the

difference in membrane potential between the AP threshold and

the AP peak voltage. Maximum rate of rise was defined as the

maximum dV/dt value reached during the AP (calculated between

adjacent points). Onset rapidity was defined as the slope of a linear

fit to the AP phase plot (dV/dt versus V, with unit 1/ms) at dV/

dt = 30 mV/ms.

The first AP in a train was considered a single AP. For all APs

that followed, the instantaneous AP firing frequency was

calculated as: 1/(time since previous spike). For subsequent

analysis, APs with instantaneous firing frequencies up to 30 Hz

were binned in frequency bins of 5 Hz. For each neuron, the mean

value of a given AP parameter in a frequency bin was then

obtained by averaging over all APs falling in that frequency bin.

AP amplitude adaptation was calculated by dividing the mean

amplitude of APs in a frequency bin by the mean amplitude of

single APs. Maximum rate of rise adaptation was calculated by

dividing the mean maximum rate of rise of APs in a frequency bin

by the mean maximum rate of rise of single APs. Threshold

variance was calculated as the standard deviation of AP thresholds

for all APs within a frequency bin. Differences in AP features

between human and mouse neurons were tested for significance

using independent samples t-tests, with a Bonferroni corrected p-

value to account for family-wise error rate.

Connectivity and Connection Probability
The surgeon obtained tissue samples from human temporal

cortex in variable forms, in a patient-dependent manner. We

could reliably determine the location of the pia and the white

matter to adjust the slice angle to maintain the apical dendritic tree

within the slice, but had less control of the slicing orientation on

the coronal/sagittal axis and relative to individual gyri (unlike in

mouse brain, where landmarks such as midline or corpus callosum

help in positioning the sample). Given these factors, we have not

conducted a systematic analysis of connection probability between

mouse and man to provide reliable estimates and comparisons of

synaptic connectivity ratios between species. Rather, we focused

only on finding direct monosynaptic connections for investigation

and subsequent analysis.

Data discussed in this paper has been deposited in the Dryad

repository: http://doi.org/10.5061/dryad.3723p [56].

Supporting Information

Figure S1 Tsodyks-Markram model parameter com-
parisons for mouse and human synapses. (A) Absolute

synaptic efficacy, proportional to the amplitude of the first evoked

EPSP. (mean 6 SEM) 3.760.5 mV human, 5.661.1 mV for

young mouse synapses and 1.660.4 mV for adult mouse synapses,

p.0.05; human n = 27 (14 from tumor patients and 13 from epilepsy

patients, see Materials and Methods; young mouse n = 35; adult

mouse n = 11). (B) Inactivation time constant. (mean 6 SEM)

2.260.3 ms human, 1.960.1 ms for young mouse synapses and

2.160.3 ms for adult mouse synapses, p.0.05; human n = 27 (14

from tumor patients and 13 from epilepsy patients, see Materials and

Methods; young mouse n = 35; adult mouse n = 11). (C) Membrane

time constant measured from membrane potential deflection upon

short current pulse injection (mean 6 SEM) 19.561.0 ms human,

25.160.4 ms for young mouse synapses and 24.662.0 ms for adult

mouse synapses, adult and young mice have significantly higher

membrane time constants than humans (p,0.05); human n = 27;

young mouse n = 27; adult mouse n = 15. (D) Membrane time

constant, as in a leaky integrate-and-fire neuron model, (mean 6

SEM) 2863 ms human, 2261 ms for young mouse synapses and

4264 ms for adult mouse synapses, adult mice have significantly

higher membrane time constants than humans and young mice (p,

0.05 and p,0.001, respectively); human n = 27 (14 from tumor

patients and 13 from epilepsy patients, see Materials and Methods;

young mouse n = 35; adult mouse n = 11). (E) More examples of the

time course of synaptic depression on a 30 Hz train of EPSPs. 8

pulses+1 recovery pulse 500 ms after the 8th pulse for mouse

connections and 300 ms after the 8th pulse for a human connection

(of the n = 27 pairs measured in human slices, six were probed with

500 ms and 21 with 300 ms between the 8th and 9th pulse).

(TIF)

Figure S2 Different values of CV of the simulated
quantal content (i.e., 0.2, 0.4, 0.6, 0.8) only scales the
mutual information. From (E), we can conclude that in the

model the CV parameter has no qualitative effect. Changing its

value results in a scaling effect only. The figure was obtained with

a smaller number of simulated Poisson spikes, it therefore appears

noisier than Figure 3G and 3H.

(TIF)

Figure S3 When the dynamical response properties of
human (black) and rodent (gray) pyramidal neurons are
analyzed in terms of phase W(f), instead of response
magnitude (Figure 4), very similar profiles in human
and mouse neurons are observed across the Fourier
frequencies. Mouse neurons revealed a more prominent low

Fourier frequency phase advance than human neurons, as a direct

consequence of more prominent spike-frequency adaptation.

(TIF)
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Figure S4 Action potential parameter comparisons for
mouse and human neurons. (A–F) Quantification of various

AP features of human (red) and mouse (blue) neurons, displayed

versus firing frequency. Data are presented as means 6 SEM. for

single APs, and APs fired in trains binned in 5 Hz bins according

to instantaneous firing frequency. Asterisks indicate p,0.005. (A)

AP amplitude, in mV from threshold. (B) AP peak voltage. (C) AP

amplitude adaptation. (D) Threshold variability, presented as the

standard deviation of AP thresholds. (E) Maximum rate of rise. (F)

Maximum rate of rise adaptation. For more details on how AP

features were calculated, see Methods.

(TIF)

Figure S5 Average 10 Hz 10-spike long Poisson train is
depicted, together with resulting synapse raw respons-
es, for the deterministic Tsodyks-Markram model.
(TIF)

Figure S6 Increasing (average) presynaptic spiking
rate, the postsynaptic current (PSC) histogram shifts
to weaker peak values (i.e., short-term depression).
(TIF)

Table S1 Parameters derived by the Tsodyks-Markram
model for dynamically depressing synapses.
(DOCX)

Table S2 Kinetic parameters from EPSPs.
(DOCX)

Table S3 Intrinsic cell properties, calculated from
resting membrane potential and steady-state response
to hyperpolarizing current injection pulse.
(DOCX)

Data S1 Numerical data used to generate Figure 1B–E
and Figure S1A–D. Also shown in files ‘Figure 1A.rar’ and

‘30Hz_EPSPs.rar’ in Dryad repository http://doi.org/10.5061/

dryad.3723p [56].

(XLSX)

Data S2 Numerical data used to generate Figure 2A–C.
Also shown in file ‘30Hz_EPSPs.rar’ in Dryad repository http://

doi.org/10.5061/dryad.3723p [56].

(XLSX)

Data S3 Numerical data used to generate Figures 5 and
S4. Also shown in Dryad repository http://doi.org/10.5061/

dryad.3723p [56].

(XLS)

Index S1 Index file (index S1.xlsx): List and content
description of all files and folders present in the Dryad
repository (doi:10.5061/dryad.3723p).

(XLSX)

Methods S1 Extension of the information theory math-
ematical framework to dynamic synapses.

(DOCX)
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