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Abstract_

In the economics literature on exchange rate determination no theory has yet been
found that performs well in prediction experiments. Until today the simple random
walk model has never been significantly outperformed. We have identified a set
of fundamental long-run exchange rate models from the literature. The aim of this
paper is to investigate whether neural network (nonlinear) model specification
improves prediction performance of the structural exchange rate models, which are
‘traditionally estimated by linear regression methods or by (transfer function) time
series methods. The empirical results for the dollar-dentsche mark, dollar-guilder,
dollar-pound, and dollar-yen exchange rates, indicate that neglected nonlinearities
are not a likely cause for the generally bad prediction performance of the structural
exchange rate models.

Key words : foreign exchange rates, long-run prediction, structural models,
neural networks
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1. Introduction

"It is now recognized that empirical exchange rate models of the post-Bretton Woods
era are characterized by parameter instability and dismal forecast performance...”
[MR91]. The pessimism about the prediction quality of exchange rate models has
become generally accepted after the publication of the influential paper by Meese
and Rogoff [MR83]. These authors performed a large number of statistical tests,
indicating that not a single economic model of exchange rates was better in predicting
bilateral exchange rates during the fioating-rate period than the simple random walk
model, which posits that all future values of the exchange rate are equal to today’s
rate.

However, in [MT92]-a good survey paper on exchange rate determination —
. it is stated that foreign exchange rate participants focus more on fundamentals at
longer prediction horizons, and that more attention might be paid to modelling these
fundamental determinants of long-term prediction.

Several approaches have been tried to improve the quality of existing structural
exchange rate models. Some of these approaches have considered the incorporation
of nonlinearities in the models. Diebold and Nason in [DN90], for example, state
that "...In summary, there appears to be strong evidence, consistent with rigorous
economic theory, that important nonlinearities may be operative in exchange rate
determination...”. Diebold and Nason further observe that, despite the routinely
occurring statistical rejections of linearity in exchange rate models, no nonlinear
model has been found in the literature (yet) that can significantly outperform even
the simplest linear model in out-of-sample forecasting. Although Diebold and Nason
used a powerful nonparametric prediction technique (locally-weighted regression),
they were generally unable to improve upon a simple random walk in out-of-
sample prediction of ten major dollar spot rates in the post- 1973 period in which
the dollar exchange rates are floating. Also Meese and Rose [MR91] end up with
a negative conclusion: "..we do conclude that incorporating non-linearities into
existing structural models of exchange rate determination does not at present appear
to be a research strategy which is likely to improve dramatically our ability to
understand how exchange rates are determined”.

~ The exchange rate literature usually restricts the application of nonparametric
approaches to locally-weighted regression techniques [MR91, MR90, DN90], which
are in principle generalisations of the standard nearest neighbour technique. It is
~ ‘generally recognised that nonparametric modelling based on local approximations
becomes difficult in high-dimensional spaces due to the increasing sparseness of
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the data (see [Hub85]). In macroeconomic models most data are typically sparsely
distributed; at best data on economic fundamentals are available on a monthly basis,
which limits the amount of data available to (say) a few hundred observations.
Consequently, the principle of local averaging is likely to fail in macroeconomic
modelling problems.

The foregoing does not necessarily imply that model-free regression modelling
is impossible in economics. When a low-dimensional representation is embedded
in the data, dimensionality reduction methods may successfully be applied. One
such method is neural network regression, which we will use throughout this study.
During the past few years thereisa noticeable increase of neural network applications
in economics and finance (see [TT93, BvdBW94]). However, to the best of our
knowledge, no studies have been performed yet that apply neural networks to
structural exchange rate modelling. _

This paper examines whether introducing nonlinearities into theoretical models
of exchange rate determination improves the prediction power of these models. In
the empirical study neural networks are employed to investigate the nonlinearity
hypothesis for the exchange rates of the Japanese yen-US dollar, the British pound-
US dollar, the Deutsche mark-US dollar, and the Dutch guilder-US dollar.

More specifically, we will test whether the hypothesised fundamental determi-
nants of the structural models that we consider, do in fact affect the exchange rate,
without making auxiliary assumptions on the functional form of the relationship.

The outline of this paper is as follows. Section 2 introduces the theoretical
structural exchange rate models which form the basis for the analyses in subsequent
sections. In section 3 empirical (testable) models of exchange rate determination
are formulated, based on the theoretical models. Section 4 introduces the neural
network methodology. In section 5 the characteristics of the collected data are

examined. Section 6 outlines the methodology for assessing predictive performance,
and examines the long-run and short-run prediction power of the selected exchange
rate models, specified in linear and in neural network form respectively. Section 7
concludes the paper.

o Theoretical Models of Exchange Rate Determina-
tion :

There are several different theories on exchange rate deterrnination [BM89, MT92].
In many theories two general hypotheses play a prominent role, the Purchasing -
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Power Parity (PPP-) hypothesis and the Uncovered Interest rate Parity (UIP-) hy-
pothesis. The main idea of the PPP-hypothesis is that exchange rates and national
consumption price indices will adjust proportionaily so as to maintain a given cur-
rency’s purchasing power across boundaries, which means that under the assumption
of strict PPP the real value of a given currency will be the same in all countries at
any moment in time. The UIP-hypothesis states that, in equilibrium, the interest
rate differential among countries must be equal to the expected rate of change of
the exchange rate. In the next subsections we will make these assumptions more
explicit and explain their impacts on exchange rate models.

2.1. The PPP-hypothesis

Assume two countries 7 and 7, each with a bundle of n tradeable goods with average
(consumer) prices F; and F;:

P,:=) awpiz and P;:= > Bepik,
k=1

k=1

and define the percentage (consumer) price differential between countries i and j
as: ' '
dp,'_.,' ::log P,' - IOg PJ' - log 'S.'j,

with §;; the nominal exchange rate between 3 and j’s currencies (expressed as units
of i’s currency per unit of j’s currency). Then, under PPP, dp;; is zero if, for example,
the bundle weights between the two countries are identical for corresponding goods.

In reality, countries utilise different bundles of goods and price indices P;/ P,
where O indicates the base year. Hence, the percentage (consumer) price index
differential between countries ¢ and j can be written as:

F; P; |
qij=log}_—0—logp—f6-log3ﬁ (1)
£ ED

To simplify our notation, we will denote log(P;/F;g) by p:, and log S;; by s;;.
_ Obviously, for any sample observation ¢, the time differentials satisfy:

Giit — Gije-1 = BPize — APije—1,

which implies that when modelling in time differences, the distinction between prices
and price indices becomes irrelevant. Under the PPP-hypothesis, g;; is assumed to
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be zero, and the nominal exchange rate satisfying this hypothesis will be denoted,
henceforth, by s7;. Notice that, due to transportation costs, trade restrictions, specu-
lation, govemmental stabilisation policies, etc., the observed (spot) exchange rate s;;
will generally be different from the s}; satisfying the PPP-hypothesis (see [WP95]).

2.2. The CIP- and UIP-hypotheses

Consider an economic agent who requires a certain amount of foreign currency, say,
dollars, for use after a specific period of time, say, one month. If this economic
agent is risk averse, this agent is expected to to buy foreign currency now if he
expects that buying at the current spot exchange rate is more favourable than buying
at the one month’s forward rate. This forward rate fi;, is the rate agreed upon
now for an exchange of currencies at an agreed specific future point in time. The
consequence of buying at the current spot rate is that the foreign interest rate instead
of the domestic interest rate is received (assuming the money is held in a foreign
deposit). Since both options are riskless, it is expected that they yield the same rate
of return; otherwise, arbitrage would generate riskless profits, thereby assuming that
there are no barriers to arbitrage across international financial markets. The forward
premium (or the opposite forward discount) at a certain maturity is the percentage
difference between the current forward rate of that maturity and the current spot
rate. Hence, under the Covered Interest rate Parity hypothesis (CIP-hypothesis) this
interest rate differential is assumed to be equal to the forward premium (at any time
period):

log fij — 8i; =1 — T4 (2)

* where r; denotes the nominal (short term) interest rate of country <.

* When a trader expects the future spot exchange rate to be lower than the current
forward rate, it may be attractive for this trader to wait until the next month; thereby
taking the risk of the spot rate being higher than the current forward rate. In this case
actors on the forward market are prepared to pay for a risk premium, which equals
the difference between the forward rate and the expected future exchange rate. If no
risk premium exists in the currency market, which means that the expected future
exchange rate and forward rate coincide, CIP implies the Uncovered Interest rate
Parity (UIP) condition.

Under the UIP-hypothesis capital markets are assumed to be fully mtegrated
so that the domestic and the foreign assets are perfect substitutes and international
capital is perfectly mobile. Furthermore, financial markets are assumed to be fully -
efficient. This assumption implies that there are no transaction costs, no dlffercnces ‘
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in national tax systems on capital income, and no risk premia in forward markets.
Then, under the UIP-hypothesis, the rates of return on domestic and foreign assets
expressed in the same currency are equal:

Tig = Tip + 85k — Sits (3)
where the superscript “e” denotes the market’s expectation based on information at
time ¢ (85,5 = E[83;¢+x|7e], where I; denotes the information available at time £),
and k denotes the period of maturity. The UIP-hypothesis is the cornerstone parity
condition for testing foreign exchange rate market efficiency; it assumes rational
expectations and risk neutrality. In an efficient market prices should fully reflect
the information available to the market participant and it should be impossible for
a trader to earn excess returns due to speculation. It is important noticing that
only if the nominal interest rate differential is identically equal to a constant and if
expectations are rational, the UIP implies a random walk in the exchange rate (with
drift if the constant is non-zero). In general, the random walk model is inconsistent
with the UIP-hypothesis.

2.3. Monetary and Portfolio Models

Monetary models of exchange rate determination were developed after the collapse
of the (Bretton Woods) fixed exchange rate regime in March 1973. These models
are descendants of the Mundell-Fleming type of models (see [Mun63, Fle62]) .
Several versions of these monetary exchange rate models have been put forward,
giving rise to two main types of models. These are the Flexible-Price Monetary
Model (FPMM) due to Frenkel [Fre76] and Bilson [Bil78], and the Sticky-Price
Monetary Model (SPMM) due to Dornbusch [Dor76] and Frankel [Fra79]. The
modelling strategy is similar for both cases. Aggregated macroeconomic relation-
ships are used to obtain a semi-reduced form equation which specifies the level of
the (logarithmic) nominal exchange rate as a log-linear function of fundamentals.
The starting point for both basic monetary models of exchange rates is Cagan’s
money demand function for hyperinflation (see [Cag56]) for any country, where the
(logarithmic) demands for real monetary balances are assumed to be linear functions
of the (logarithmic) real national income and the nominal interest rate: ‘

md=p+ay—ﬁr+ao (a,8>0), | | (4)

with m? the logarithm of a country’s nominal money demand, p the logarithm of the
price index, y the logarithm of the real national income, r the nominal short term
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interest rate level, a the domestic income elasticity, and 3 the domestic interest rate
semi-elasticity of the demand for money.

In the following subsections the two monetary exchange rate models will be
explicitly derived and compared. Additionally, the portfolio balance model (PBM),
which is non-monetary, will be discussed.

2.3.1, The Flexible-Price Monetary Model (FPMM)
Consider the following assumptions:

1. prices fully adjust such that foreign and domestic commodity markets clear
instantaneously, '

2. there exists complete equilibrium in the domestic and foreign money markets,
or for any country: m? = m’ = m, '

3. national incomes are at their full-employment levels,

4. the PPP-hypothesis is (continuously) valid with a corresponding exchange
rate s;. ' '

Then}. the (spot) nominal exchange rate can be expressed under the FPMM by substi-
tuting Cagan’s money demand function (4) into the PPP-hypothesis of section 2.1,
yielding: ' '

a3; = (o0 — @) + (mi — my) — @iy + a9+ Biri — B mi, (5)

which is the fundamental flexible price monetary equation. In this equation an
increase in the domestic money supply, relative to the foreign money stock, will
lead to a depreciation of the domestic currency in terms of the foreign currency. Also
arise in the domestic real income, other things equal, will lead to an appreciation of
the domestic currency. Similarly, a depreciation of the domestic currency follows
from an increase in the domestic interest rate.

If the income elasticities on the one side and the interest rate semi-elasticities
on the other side are assumed to be equal for both countries (a; = a;; 8 = B8;), (5)
reduces to ‘

o3y = (an; — aog) + (me —m)) —a(w—3) + Bl —73),  (6)

where the (logarithmic) nominal exchange rates are determined as a linear combi-
nation of differences between domestic and foreign fundamentals.

A basic problem with the FPMM is that it assumes continuous PPP, so that the
(logarithm of the) real exchange rate cannot vary over time, even not in the short run.’
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This is in contrast with reality: although PPP existed during the 1920s, it largely
collapsed during the recent floating rate period since March 1973 (see [Fre81] and
for further evidence until the end of the 1980s [MP91]).

Therefore, a monetary model for nominal exchange rates with incomplete com-
petition in the market of tradeable goods with sticky prices was needed, at least
for the short run. The Sticky-Price Monetary model, treated in the next subsection,
remains fundamentally monetary since attention remains focused on equilibrium
conditions in the money market.

2.3.2. The Sticky-Price Monetary Model (SPMM)
The SPMM is built on the assumptidhs of

1. afinite adjustment speed in the commodity market with sluggish prices (some-
times leading to short-term "overshooting’, because of a slow adjustment of
these commodity prices; see [Dor76]), '

2. clearance of the commodity market in the long run,

3. instantaneous money and asset market equilibrium with perfect substitutabil-
ity of domestic and foreign non-money assets and perfect capital mobility
(reflected in the UIP - hypothesis).

Assume incomplete competition in the commodity market. Then, following
Mundell [Mun63] and Fleming [Fle62], country i’s commodity demand is assumed -
to be dependent on variables such as real exchange rates, the real national income
of country 7, and (short term) real interest rates: -

v = Boi + Bri (8ije — Pig + Pig) + Brivie — Bai(rie — Tit)s (7)

where T = p;¢ — Pig—1- When country 7 acts as domestic country, ¢ and j need to
be interchanged in equations (8) and (7).

The general principle of SPMM is that prices do not adjust instantaneously. The
price-adjustment equation is assumed to be dependent on the commodity market
disequilibrium, that is, ) L :
Tit = Yi (yﬁe - yi.t), (8)
with 4; the positive price adjustment speed for country 3, yf., country i’s commodity
demand, and y;, country ¢’s national income. Hence, a shortage of demand will
evoke decreasing prices, which, according to (7), will result in 2 rise of aggregate
demand. This process will repeat itself, until the domestic commodity market
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is cleared; the higher the adjustment speed, the quicker the commodity market
equilibrium will be reached. '

The exchange rate regime is determined by the UIP-assumption. After an initial
disturbance, a new equilibrium exchange rate will emerge in the long run (the
‘target-exchange rate’ 3;;); in the short run the exchange rate adjustment for country
i will take place at adjustment speed 6;:

85iep1 — Sigt = 0; (3i5 — 8ije)s O < g; < 1. (9)

Considering again Cagan’s money demand function (4), the UIP-hypothesis (3)
of expected exchange rate movement being equal to the interest rate spread, and the
above relationships (7-9), we find after substitution and definition of the equilibrium
commodity price and the long run PPP-hypothesis (see equation (6)):

Pie = Mg~ Qi i¥is+ @iTie+ @28 (85 — 8i3t) — Qo (10)

55 = (mi—my)— 6 (wi—y;)+&(ri—r;) + & (11)
: 1

8¢ = —[¥i— Pri¥hi+ Bsimi — BaiPis (12)

1,i

-I-(l — Bai + Bi) pig — (l — B3) i1 — Bogl-
Y i
Note that the last equation (12) is also included with country j acting as domestic
country, that is, with 1 interchanged with j. :

When the above equations (corresponding to the sticky price monetary model)
are written into a single reduced form equation, country i’s nominal exchange rate
for one unit of country j’s currency satisfies '

Bije = -f(miuf? MMty Wity Yty Ti ey fj.h Pity Pie—1:Pi8s P.'i,t-l)- ( 1 3) '

As we have already indicated, the above models are called monetary because the
equilibrium conditions in the money market are the focus. They also assume perfect
substitutability of domestic and foreign non-money assets so that the corresponding
markets can be aggregated into a single extra market (of "bonds’). This perfect
substitutability assumption will be relaxed now in the Portfolio Balance Model of
exchange rate determination (see [BH85]). This model will be stock-flow consistent,
in that it allows for current account imbalances to have a feedback effect on wealth
and, hence, on long run equilibrium. '
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2.3.3. The Portfolio Balance Model (PBM)

The key feature of the PBM is the assumed imperfect substitutability between
domestic and foreign assets. '

The net financial wealth of the private sector can be subdivided into three
components: nominal domestic money M;, domestically issued bonds B;, which
can be government debt held by the domestic private sector, and foreign bonds’
B; denominated in foreign currency and held by domestic residents, which can be
interpreted as net claims on foreigners held by the private sector. In a regime of
floating exchange rates, a current account surplus on the balance of payments must
be exactly matched by a capital account deficit, i.., by capital outflow and, hence, by
an increase in the net foreign indebtedness B; to the domestic economy. Therefore,
current account imbalances will determine exchange rate changes.

Furthermore, the imperfect substitutability of domestic and foreign assets is
equivalent to the assumption of a risk premium, separating expected depreciation
and the domestic-foreign interest rate differential (implying a collapse of the UIP-

“hypothesis). In the PBM this risk premium will be a function of relative domestic
and foreign debt outstanding. ' _

Summarising, the reduced form equation for the nominal exchange rates may be
written under the PBM as:

Siie = f(Mig, Mjg, Bigy Bit, FBis, FB;y), (14)

where FB;, and FB;, denote foreign holdings of domestic and foreign bonds,
respectively. Taking account of the above mentioned arguments, the four last terms -
may be replaced by the domestic and foreign accumulated current account surplus.
The derived (logarithmic) nominal exchange rate models (6), (13), and the .
logarithmic version of (14) can be compared through appropriate statistical testing
(Lagrange Multiplier). Sufficient room should be left for a synthesis of the monetary
and portfolio balance models, where aspects of various models should be considered .
simultaneously. : : .

3. Empirical Models

In the previous section we introduced the three main types of structural exchange
 rate models and discussed the underlying hypotheses. The models are known as the
fiexible price monetary model, the sticky-price monetary model, and the portfolio
balance model. These models are among the models that are often selected in the
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recent literature [MR83, MR91, MT92, CT95], perhaps due to relative tractability
of their data requirements.

Since we examine exchange rates against the US dollar, the notation used in the
previous section is slightly simplified; the subscripts 4 and j are omitted, instead of
which all fundamentals corresponding to the U.S. carry a "*" mark.

The three models of exchange rate determination, which we will test empirically
in the remainder, are subsumed in '

8y = f(re — 71y — My, APy ~— 1Py, Tt — 7¢, IBy, TB;) + &, (15)

where s is the logarithm of the bilateral spot exchange rate (e.g. DM/$); m — m”
the logarithm of the relative (ratio of foreign to domestic) nominal money supply;
ip—ip* the logarithm of the relative industrial production; r — r* the nominal short-
term interest rate differential; * — =* the inflation rate differential; TB and TB*
the cumulated trade balances, and e is a disturbance term. (It should be noted that,
theoretically, GNP is to be preferred as proxy of real income; GNP data, however,
are available on a quarterly basis, whereas industrial production data are available
on a monthly basis. Therefore, following Meese and Rogoff, we use industrial
production data in our experiments.)

The flexible price monetary model (FPMM) includes only the first three terms,
that is, 7 — #},m; — m}, and ip, — ip}. The sticky price monetary model (SPMM)
adds the inflation rate differential @, — m* to this set of variables. The portfolio
balance model (PBM) adds the cumulated domestic and foreign trade balances to
this set of variables.

Imposing the constraint that domestic and foreign variables (except for trade
balances) enter the structural models in differential form, implicitly assumes that the
parameters of the corresponding domestic and foreign variables are equal in absolute .
size, in the case of linear regression. While this parsimoniousness assumption is
conventional in empirical applications, it is a potential source of misspecification.
In the subsequent sections we will investigate whether this misspecification occurs.

4. Neural Networks

In section 1 we have pointed out that one purpose of the study is to assess the
employability of neural networks and their success in predicting exchange rates. In
order to provide the necessary background knowledge, we discuss the methodolog-
ical aspects of neural networks, and indicate some difficulties that may arise when
applying neural networks to data modelling problems. ‘
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Cognitive scientists have recently developed a class of nonlinear models in-
spired by the neural architecture of the human brain (’neural network models’).
These models are capable of learning through interaction with their environment by
a process that can be viewed as a recursive statistical estimation procedure. The
neural networks field is developing rapidly since the influential work of Rumel-
hart and McLelland [RM86]. Neural network models (also known as multi-layer
perceptrons) are now widely used for regression and classification purposes.

4.1. Representation

Output
layer

Hidden
layer

Input
layer

Figure 1: A generic feed-forward neural network with a single hidden
layer; to prevent the graph from getting overcrowded, the bias neuron
has been removed from the input layer.

A neural network model is a particular type of input-output model. Given an input
vector x¢ = (@1, - . -,2;)} the network produces an output vector §;: = (§1,- - -, Jq);
where g indicates the number of output units and / the number of input units. In
statistics it is common practice to denote estimated variables, which neural network
outputs in fact are, by a hat. We conform to this notation.

A widely studied network is the feed-forward neural network, which is depicted
in figure 1." In graphical form, feed-forward neural networks consist of directed
graphs without cycles. Each node represents a "unit”, also called artificial neuron,
which is the building brick of the artificial neural network. The functionality of
each unit is as follows. Each non-input unit j sums its incoming signals and adds
a constant term to form the total incoming signal and applies a function ¢ to this
total incoming signal to construct the output of the unit. The links have weights
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w;; which multiply the signal travelling through them by that factor. Figure 2
shows the functionality of an artificial neuron. The function ¢, which is called
transfer function or squashing function, is usually taken to be logistic (with ¢(z) =
exp(z)/1 + exp(z)). The input units only distribute the input vector, so their ¢ is
the identity function.

—  Hwl+wl+...+wl)
Output oo 11

Figure 2: Graphical representation of a neuron

In mathematical notation a feed-forward neural network, as depicted in Figure

1, is expressed by '
ke = do( > wirdr(D_ wista)) (16)

i—k i—j
where we used g to denote the value of k’th output unit when input x; (the £’th
input pattern) is fed into the network, and 3, ; stands for the sum over neurons
i connected to j. Usually identical squashing functions are used within the same
layer; ¢o denotes the squashing function of the output units, and ¢g denotes the
squashing function of the hidden units. The indexing presumes that neurons are
numbered sequentially in the order: input units, hidden units, and output unit(s). '
It may be preferable to include direct ’skip-layer’ connections from the input
layer to the output layer to explicitly incorporate the basic linear model, which leads

to

e = do( X warmie + Y, widm(D_ wijTi)) (17)
. i—k ' i—k =i

The expression f(x,w) is convenient short-hand for network output since this
depends only on inputs and weights, given a fixed network architecture. The symbol
x represents the input vector, and the symbol w represents a vector of all the weights.
In our applications the dimension of the output vector § is one, the squashing
function of the output unit ¢o is assumed to be linear and the squashing function of
the hidden units ¢ logistic. Let ¢ (without subscript) denote the squashing function
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of the hidden units. So that (17) can be rewritten in notation that is more familiar to
econometricians as follows:

Np,
fe=at+a’ x4+ > b6 H(wT x) (18)

i=1

where N, denotes the number of hidden units. Note that we have used different
parameter names for different parts of the neural network. Without comment w
refers to the whole set of parameters (weights) of the neural network.

Equations (16) and (17) represent quite general classes of functions. A number
of authors, e.g. [Cyb89], have shown that single hidden layer feed-forward neural
networks with a particular type of nonlinear squashing function (e.g. sigmoid) in
the hidden units and linear output units can approximate any continuous function f
uniformly on compact sets, by increasing the size of the hidden layer. This justifies
the use of neural networks for function approximation and pattern recognition.

4.2. Learning

Given a particular neural network architecture, the role of learning is to find suitable
values for the network weights w to approximate an underlying regression function
g of x by f(x,w). Traditionally, the weight vector w is estimated by minimizing
the sum of obéerved squared errors [RHW86]. Suppose we have n observations
{(%z,¥:)}i_, where y; represents the “target” value' that the neural network should
generate when the ¢’th input vector X, is fed in. Then the parameter vector w is
chosen to minimize ' ' o

B(w) = g[y: R T— (19)

as in statistical non-linear regression. This is a general minimization problem, so in
principle we can use general purpose algorithms from unconstrained optimisation
[Sca85, Nas90]). _ 7

The neural network community, however, has developed its own learning al-
gorithm known as error back-propagation. It permits weights to be learned from
experience in a process resembling trial and error [RHW86). Experience is based
on the empirical observations on the phenomenon of interest. From now on we
‘assume that the error function E(w) is a differentiable function, which implies that
the squashing functions have to be differentiable, thereby excluding threshold units.

!n statistical terms this would be called response value.
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According to back-propagation, we start with a set of random weights wo and then
update them by the formula

wi = Wit + 13 V(e Wi ) — Fowit)), =1, 2,...  (20)

t=1

where 7 is a learning rate and V f is the gradient (the vector containing the partial
derivatives) of f with respect to the weights w [RHW86]. This simply is the
application of the gradient descent technique to the minimization of (19). The
distinguishing feature of backprop is that the calculation of V f(x, w)}{y — f(x, w))
is carried out by a sequence of local computations on the network itself. The specific
structure of the neural network is utilized in this calculation. Input data is fed into
the network and is forwarded through the connections to the output unit(s), the error
between the network output and the desired output is calculated and propagated
backwards through the connections. During this backpropagation phase the weights
are updated. For a good description of feed-forward neural networks and their
specific learning algorithms we refer to [HKP91].

Backpropagation, like any other nonlinear optimisation algorithm, suffers from
getting stuck into local minima. Therefore, in practice multiple restarts are per-
formed to ensure a ’good’ local minimum has been found. The actual number of
restarts employed in practice is generally limited by the computing time required to
train a neural network. In our applications we use 5 restarts.

4.3, Generalisation

In practice, the approximation feature of neural networks very often results in
estimators with Jow bias and high variance. Hence, each relationship, characterized
by a finite set of observations, can be approximated arbitrarily close by a neural
network if enough hidden units are used. Although the trade-off between bias and
variance is well-known in statistics, its relevance for neural network regression has
been explicitly pointed out only recently [GBD92]. Two concepts from the neural
network community which are directly related to the bias/variance dilemma are:
generalisation and "overfitting". A network has good generalisation qualities if it
performs well on future ("unseen’) examples. A network is said to overfit the data if
too many characteristics are drawn from the data set at hand. A network that overfits
the data sample at hand generally bas low bias but high variance, and consequently
displays bad generalisation behaviour. The interest obviously is in neural network
models that generalize well.
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Several approaches have been taken to improve generalisation. A well known
approach, known as weight decay, is to add a penalty term to the original error
function (19) ' _
E'(w)= E(w)+ Y wj; (21)

ij

and estimate the parameters w by minimizing this compound error function. Now,
each connection w;; has a tendency to decay to zero?, so that connections disappear
unless reinforced. The rationale behind weight decay is the same as that of all shrink-
age methods in statistics such as, for example, ridge regression [Rip93, FF93]. Sothe
weight decay parameter A can be used for the regularisation of bias and variance. A
higher A results in smaller weights, which in turn leads to smoother approximations,
and smoother approximators are assumed to display better generalisation,

Another factor that influences both the bias and the variance of the neural
network estimator is the size of the hidden layer [GBD92]. This follows directly
from the approximation theorem for neural networks. Due to the flexibility of neural
networks, it makes no sense to make in-sample comparisons between the modelling
errors of linear models and neural network models. It would, namely, be very easy
to let neural networks outperform linear alternatives, simply by inserting many units
into the hidden layer. Therefore, in the experiments we will focus on out-of-sample
instead of in-sample prediction performance.

4.4, Cross-validation

The decay parameter X in (21) and the number of hidden units, N, are typical
"smoothing" parameters that have to be "optimized" in some way. Cross-validation
[Sto74, HT90, FF93] is a practical approach that is often used for this purpose. It
works by leaving points (;,%;) out one at 2 time, estimating the weights w on the
remaining = — 1 points, and calculating the prediction error on the left out point.
Finally, the average out-of-sample prediction error is calculated. This is an attempt
to mimic the use of training and test samples for prediction. Since neural network
training requires a relatively large amount of computation time, in practice not one
but a subset of points are left out, where the number of subsets, k, to be left out, is
typically chosen to be 5 or 10. A .

For neural networks calculation of the cross-validation error proceeds as follows.
The set of observations, denoted by D, is randomly permuted and decomposed into

2This follows directly from the updating of the weights in the direction of the negative gradient
of E'. : :
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k mutually exclusive subsets D; of roughly equal size where i = 1,...,k. When
working with time series data we do not permute the data, but keep the original time
ordering. Initially one repeatedly trains a neural network with different random
starting weight vectors on the complete data set until a ’good’ (local) minimum
w* has been obtained. Then the observations from subset D; are left out from the
complete data set®, the weights are re-trained (starting from w*), the observations
from D; are predicted, and the average prediction squared error on D; is calculated.
Foregoing is repeated until each subset D; has been left out from the complete data
set. Finally, the average prediction error is calculated from the k repetitions. The
cross-validation error, CV, is calculated as follows:

k

CV(A: Nh) = llkz {l_Dl_l ZD (fA.Nu(xhw(D_‘sW*)) - yt)z} . (22)
i=1 il teD;

We have explicitly added to the network output function notation Ff(x:,w) the

smoothing parameters A and N, and stressed the dependence of the (re-trained)

weights w on the training set D~ and the starting weights wy by including them in

parentheses. _ - :

Notice that & networks have to be constructed to calculate the cross-validation
error for one particular combination of the “smoothing" parameters, which can still
be computationally demanding.

In the remainder this cross-validation procedure is used to compare models
out-of-sample, and to select the "optimal” set of smoothing parameters.

5. Data and Preliminary Diagnostics

In econometric modelling it is important to distinguish between stationary and non-
stationary time series data. The worst consequence of modelling with nonstationary
time series data is that standard statistical tests provide evidence for a supposed rela-
tionship between economic fundamentals, whereas in fact the relationship is purely
spurious. Tests for cointegration have been developed to guard against making these
erroneous conclusions (see, e.g., [BDGH93]). _
The first step in a modelling excercise therefore incorporates the characterisation
of the data. Unitroot tests are normally used for this purpose. ‘When the various time
series contain a unit root, the next step is to investigate whether these nonstationary
time series drift together (are cointegrated) or drift apart (are not cointegrated).

3We will use D" to denote data set D without the observations from D;
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5.1. Data Sources

We take most of the monthly data from the OECD series (using Datastream), in-
cluding bilateral exchange rates, industrial production index, consumer price index
(total), foreign trade balance, money supply (M1), short-term interest rate, and long-
term interest rate. The items not available in the OECD series, were taken from the
National Accounts. The data source of each variable is reported in Table 8 in the ap-
pendix. The Figures 3 through 6 in the appendix depict the variables corresponding
to each country; the monthly series range from January 1974 until July 1994.

To facilitate neural network training with weight decay (explained in section 4.3},
we have rescaled the data corresponding to each explanatory variable in such a way
that at least 95 percent of the data lies within the [0, 1] range and the average equals
0.5. This rescaling makes the signal transferred by each input unit comparable with
the outputs of internal units, which is required for weight decay to have effect.

5.2. Unit-roots

In [BDGHO3] the characterisation of time series by the order of integration is
discussed. We tested all series for possible nonstationarity by simple Augmented
Dickey-Fuller (ADF) tests. Table 1 reports the characterisations suggested by these
tests for the variables in differential form of the structural exchange rate models.
The numerical test results are presented in Table 9 in the appendix.

Table 1: Conclusions based on‘ugit-roog tests '
Japan UK. Germany Netherlands

Exchange Rate . I I(1) I(1) I(n
Nominal Interest Rate . I(1) I(1) I(1) I(1)
Money Supply I(D) I(1) (D I(0)+c+t
Industrial Production I(1)  I(0)+c+t I(0) I(0)
Inflation I(1) I(0) I(1) I()
Cumulated Trade Balances 1(1) I(H (D I(1)

Most variables are intergrated of order one (I(1)) involving a trend, although the
industrial production differential appears to be (trend) stationary, in three out of four
cases. Trend stationarity is denoted by “I(0}+c+t” in Table 1 It should be noted
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that discriminating between a trend stationary series and a random walk with drift,
is difficult on the basis of a limited sample. ‘

5.3. Cointegration

The tests for unit roots suggest that most of the variables included in the models,
can be assumed to be 1(1), although some variables seem to be (trend) station-
ary. Modelling with levels of variables that are I(1) can give misleading results
[BDGH93]. The next step tests whether some linear combination of the variables
is stationary. The variables are said to be cointegrated if this is the case. Table 2
reports the ADF test for cointegration between the variables in the various models.
The cointegrating relationship is estimated in PcGive® as the long run static solution
of a dynamic autoregressive distributed lag (ADL) model including 6 lags® for each
variable, a constant term, and a trend. The residuals of this static long run solution
are then tested for stationarity by ADF tests, using the critical values calculated by
MacKinnon [Mac91]. '

Table 2: Cointegration tests

Critical
model Japan UK. Germany Netherlands | Value
flexible-price 2.09 264 252 305 4.20
sticky-price  2.32 3.57 2.38 429 4.50
portfolio 1.79 327 1.52 2.61 4.77

note: The critical values are for a = 0.1

The number of lags included in the auxiliary regression of the residuals, is
determined by the highest significant (a = 0.05) lag. No constant term was added,
since it was already included in the long-run relationship.

Table 2 shows that in all cases the null hypothesis of no (linear) cointegration
cannot be rejected. The collected data do not seem to confirm the three theoretical
models of exchange rate determination. This conclusion is not altered when the
models are estimated in unrestricted form, which incorporates foreign and domestic
variables separately. In particular, the evidence for cointegration is weakened since

4Econometric software package developed by Hendry and his co-workers [Hen93).
SThe number of lags was determined by capacity constraints of PeGive.
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the number of variables is doubled; additionally the corresponding critical values
are not available in the literature. :

Another step in the cointegration analysis is the test for the presence of nonlinear
cointegration by neural networks, in the way it is described in the appendix. One
main drawback of this approach is the huge computational effort requirey especially
when simulating the critical values, which depend on several neural network pa-
rameters. We have to make some concessions regarding optimality and efficiency
of the test. To reduce the computational burden, we adopt the same neural network
parameters for each exchange rate model and each country. In this way we have to
simulate three critical values; for four, five, and seven series. The neural network
consists of three hidden units. The weight decay parameter is taken to be 0.001, and
the number of observations equals 246. Further, no multiple restarts are employed in
the neural network training process. The residuals of the neural network versions of
the flexible-price, sticky-price, and portfolio models are tested for a unit root using

_the neural network ADF test. How the required critical vaiues are actually generated
is found in the appendix. Corresponding to the linear ADF tests for cointegration,
the number of lags in the neural network ADF test is determined as the highest lag
(maximum 13) that is significant at a 5% level. The results are shown in Table 3.

Table 3: Neural network ADF tests

model Japan UK. Germany Netherlands
flexible-price 4.51 5.16 3.05 2.70
sticky-price 354 523 488 473
portfolio 404 490 3.78 5.03

note: The critical values (a=0.01, 0.05, 0.10) are:
flexible-price: 6.02,546,5.19

sticky-price:  6.27,5.73, 5.39

portfolio: 6.67, 6.07,5.72

" The tests for nonlinear cointegration do not reject the null hypothesis of no
cointegration at reasonable significance levels. Functional form misspecification
does not seem to be an important explanation for the weak evidence for a long-run

relationship between the economic fundamentals and the exchange rate.

' When determining the number of lags to include in the ADF test of the residuals,
we observed that the absolute value of the “t-ADF”-statistic increases, when the
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number of lags included decreases. The highest values are observed for the “¢-DF”
statistic (meaning that no lags are incorporated). The DF-statistics would reject the
null hypothesis of no cointegration for each model. However, leaving out lagged
terms that are significant makes the ADF regression misspecified, which invalidates
the DF test. )

Nevertheless, Sephton in [Sep94] performs the cointegration tests on the MARS
algorithm by a DF test on the residuals, even though the sample sizes of the dataem-
ployed in their applications seem too small to neglect the effects of the lagged terms
in the ADF tests. Sephton’s evidence for the existence of nonlinear cointegration
can thus be questioned.

6. Predictive Performance Assessment

In this section we investigate the predictive power of the various exchange rate
models -both in levels (long-run) and changes (short-run). Our main objective is
to examine whether nonlinear specification of the supposed relationship between
the economic fundamentals and the exchange rate improves upon the predictive
performance of the benchmark random walk model, and upon linear specifications.
As we have indicated already neural networks have the potential to ’overfit’ the
data. To prevent neural networks from overfitting we apply neural network training
with a weight decay term added to the least squares error function (see equation
(21). The effect of this is that large weights are penalised. Varying the weight decay
paramneter from low to high transforms the approximating function from highly
flexible to rigid. There exists a value for the weight decay parameter that restricts
the network weights so much that the approximating function closely resembles
the linear model estimated by OLS; a further increase of the value makes the
approximating function resemble penalised OLS’ (also known as ridge regression).
So, by the weight decay parameter we determine the level of flexibility.
Cross-validation has been introduced in section 4 as a procedure for selecting
the value of the weight decay parameter. The weight decay value indicated by
cross-validation and the corresponding cross-validation MSE, immediately indicate
whether (strong) linearities are present in the data, or that even the OLS estimates
of the parameters in the linear model have to be shrinked. In the following two
subsections we have sometimes used this information to skip the neural network
results, when cross-validation indicated that no flexibility was allowed for. In
some cases we deliberately choose a weight decay parameter smaller than the one
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suggested by cross-validation to enforce differences in performance between the
linear models and the neural network models; of course risking bad predictions due
to overfitting.

6.1. Methodology for Out-of-sample Model Comparison

In line with the Meese and Rogoff study we will compare the models using rolling
regressions (also called recursive estimation or running regressmns) This means
that we start with an initial estimation of the model, using (say) the first ng obser-
vations. Then we make predictions for the remaining part of our sample (n-no).
Hereafter, we include the next observation to the parameter estimation set, which
now consists of ng + 1 observations, and again predict the values of the response
variables in the remaining set of observations. This procedure is repeated, until
the training set equals the total sample. In this way we have constructed a set.
of (n — ng) 1-step ahead predictions, (n — no — 1) 2-steps ahead predictions; or
generally n; = (n — ng — k + 1) k-steps ahead predictions (k < n ~ 7).

" It must be noted that the structural models require forecasts of their predictor
variables in order to generate predictions of the exchange rate. In line with what is
usually done in this case, we use the actually realised values of predictor variables.
Consequently, the results are optimistically biased.

We take RMSE as our principal criterion for comparison

RMSBH) = { T s —spusI (V- 1)) @)

p=ng
where k denotes the prediction horizon (in months}, yp+s the observed value of the
response variable at time p + k, and §,, the estimated response value from a model
with parameters estimated from the data set {(x:,%:)}]..

6.2. Long-Run Prediction

. The cointegration analyses indicate that if there is a relationship between the ex-
change rate and the selected economic fundamentals, it is tenuous at best. In this
section we examine whether —despite the weak evidence for cointegration- the ex-
change rate models are able to tell us more about the future than the random walk
model (8;4x = 8, k= 1,2,...) does. :

When the models in thc levels of the variables in fact are spurious, the out-of-
sample prediction excerc1se will show no improvement over the prediction accuracy
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of the random walk model. Examining the prediction accuracy in levels of variables
is regarded as a complementary test to the existence of the supposed (equilibrium)
relationships between the economic fundamentals and the exchange rate. Theo-
retically- it is possible that a cointegration relationship escapes the Engle-Granger
cointegration test, applied in section 3. Hence, the assumptions of the cointegration
test were not all satisfied; some of the variables were 1(0) rather than I(1). Further-
more, Mark [Mar95] finds evidence for long-horizon predictability (in levels) of the
exchange rate by some economic fundamentals.

To examine the possible existence of a long-run relationship both linear and
neural network specification of the exchange rate models in levels are employed.
The models are compared on basis of the RMSE criterion described in the previous
section. The prediction performance of the random walk model is included as a
benchmark in the comparison; random walk models are often used for this purpose
in the literature. '

The following procedure has been followed in constructing Table 4. The initial
models —both linear and neural network— have been estimated on the first 140
observations; including the determination of the weight decay value for the neural
networks. The number of hidden units was fixed at four. Five restarts have been
used to find a good neural network representation of a particular exchange rate
model. The cross-validation procedure to select the weight decay value suggested a
value between 0.01 and 0.001; the corresponding cross-validation error was smaller
than the cross-validation error of a linear model estimated by OLS. The initial
model has then be used to predict the remaining part of the data. Hereafter, the .
next observation has been added to the estimation set, and the parameters (weights)
have been updated using the latest values to depart from. The remaining part
of the data has been predicted again. This procedure has been repeated until all.
observations were in the estimation set. Then, all one-month-ahead predictions
have been collected, and the corresponding RMSE has been calculated; the first
column in Table 4. The same has been done for 6, 12, 18, and 24 months-ahead
predictions, which are shown in the next columns of the table.

From Table 4 two conclusions can be derived. First, no structural exchange
rate model —linear or neural network— gave better predictions than the random walk
model for prediction horizons up to two years ahead. It should be recalled that
actual values were inserted for the independent variables, which makes the results
even less promising. The results, however, are in line with the findings of other
studies [MR83, MR91, DN90}, and support the very weak evidence we found for
linear and nonlinear cointegration. Second, the neural networks outperformed the



Predictive Performance Assessment 24

linear models in most cases. However, with a large prediction horizon (18 and
24 months) the neural network’s predictions generally are worse than the linear
model’s predictions. This may be due to extrapolation difficulties, which seems to
hurt neural networks more than the linear models.

We also investigated the out-of-sample prediction capacity of the models in un-
restricted form, i.e., foreign and domestic variables are included separately. The
results are shown in Table 5. Since the neural network predictions closely approx-
imate the predictions from the linear model, we left them out. The most striking
observation in Table 5 is that the predictions for the Japanese Yen against the US
dollar exchange rate have been improved considerably. Again the random walk
models could not be beaten by the structural models, either specified by a linear
model or by a neural network. Despite these disappointing results, we have made
some observations on modelling for prediction that are worth mentioning.

In unrestricted form the number of variables is doubled, which increases the
variance of the OLS-parameter estimates. This may lead to bad long-run predictions.
The neural networks weights are determined by minimizing the compound loss
function consisting of the sum of squared errors and the sum of squared weights. In
section 4 we have called this learning with weight decay. The effect of the penalty
term is to reduce the variance of the weights, at the expense of a (somewhat) higher
bias. Weight decay is particularly effective in the case of many connections and
relatively few observations. Applying biased estimation to the linear model by
adding the same penalty term -known as ridge regression- can possibly improve the
long-run predictions as well. For instance, when the linear unrestricted flexible-
price model for the UK is estimated by penalized OLS, i.e. with a weight decay
 term of size 10, the corresponding row in Table 5 becomes

' flexible-price 0.18 0.19 0.22 0.24 0.26.

The prediction performance has increased significantly. Despite the positive impact
regularization has on the predictions, the performance of the random walk model is
still out of range. | , _ S
Another observation concerns the chance of drawing faulty conclusions from
the one-period-ahead prediction criterion when used for discerning between the
prediction power of neural networks, or flexible regression methods in general, and
the prediction power of linear models, in the case of slowly moving I(1) variables.
'When modelling with I(1) variables, it pays off to overfit the data exemplars in
the training set, presumed that the performance assessment is done on one-period-
ahead prediction errors. To illustrate this statement, we fitted a redundant neural
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network (eight hidden units and weight decay value A=0.0001) to the model for
the Yen-Dollar exchange rate including ip, m, ip*, #*, and m*. These particular
variables were selected on basis of their sluggishness in changing. The resulting
one-period-ahead RMSE was 0.06, which compared to the values of the first part
of Table 4 and Table 5, is clearly the best among the structural models for the Yen-
Dollar case. The 12, 24, and 36-periods ahead prediction RMSE, however, have
dramatically increased to 0.49, 0.94, and 1.56, respectively. Compared to the values
of the corresponding rows in Table 4 and Table 5 these values are excessively high.

Anintuitive explanation of the foregoing proceeds as follows. Assume the series
of interest y, is generated by

It = Y +v e~ 11d(0, 0'2).

Let x, denote series presumed to be useful for predicting ., but which in reality are
_not. Assume x; to be generated by '

xe =% 1 + Br B ~1id.(0,0°]).

The hypothesized relationship f between y and x is determined on the data set
{(y:,x:)}:_, by a very flexible method on the one hand, and a linear model on
. the other hand. The flexible method will generally be able to approximate the
last observation in the training set closely; assuming that this is the case implies
F(x¢) = v,. The linear model will in general be less close to individual observations.
Using a flexible f in predicting y:+1 given X4 then results in

fea1 = f(xer1) = F(xe + Bepr) = f(xe) = g,

assuming E; is sufficiently small. Since ¥, by construction, is a random walk, i.e.,
the best prediction of the next value is the present one, the one-step-ahead prediction
performance of f will be close to the prediction performance of the random walk
model. The linear model, which has a much larger bias, will fit the data less
precisely. So in that case f(x;) = y: will not hold, making the linear model’s
prediction performance worse than that of the flexible model. Hence, y: is the best
predictor of 3;.; by construction. The investigator should be alert not to conclude
from this that g, is nonlinearly related to x; by f, with the argument that combining
x, nonlinearly yielded better predictions than combining them linearly.

~ The spurious relationship comes to light when the prediction horizon is enlarged.
In case a real fundamental relationship was found the performance would not de-
crease much. However, if the relationship was spurious the performance would
decrease rapidly when increasing the prediction horizon.
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6.3. Short-Run Prediction

Previous sections showed no evidence for the presence of a long-run relationship
between the exchange rate and the economic fundamentals proposed by theories
on exchange rate determination. In this section we examine whether short-run
predictions can be made from the various exchange rate models with the variables
included in first-differenced form.

Applying standard econometric inference to a dynamic (ADL} form of the ex-
change rate models with first-differenced variables revealed a strong significance
of the exchange rate change in the previous period for all four countries. This is
evidence against the most simple theory of “no change” in the level of the exchange
rate. We will therefore also consider a univariate model for exchange rate changes.
Hereafter we will examine whether adding changes in the economic fundamentals
alters the prediction power. Econometric analysis also provides some evidence of
economic fundamentals having a significant influence on the exchange rate change.
The details on the econometric analysis are presented in the Appendix.

Table 6 presents the RMSEs of one-period-ahead predictions made by the par-
simonious models displayed in Table 10, the complete (portfolio) models with two
lags for each variable, a univariate time series model; all estimated by OLS and
a neural network. Additionally, Table 6 gives results for the random walk model
As; = ¢ with € 1.1.d(0,0). The column headings of Table 6 refer to these models re-
spectively. In the recursive estimation procedure the initial models were estimated
on the first 180 observations. The neural network versions of the parsimonious
models have been estimated with two hidden units and a weight decay parameter
0.1; the neural network versions of the complete models with two hidden units and
a weight decay value of 5. These network parameters have been determined by
cross-validation. These network parameter values indicate that if nonlinearities are
present the effects are tenuous. Hence, the small number of hidden units and the

‘relatively large value of the weight decay parameter suggested by cross-validation
are attempts to reduce overfitting, more than exploring real nonlinearities. From
Table 6 it is seen that some short-run prediction is possible; the RMSEs of the one-
period-ahead predictions were smallcr than the RMSEs of the no-change random
walk models.

To investigate whether the €conomic fundamcntals have effect on the short—run
prediction of the models, a univariate time series AR(6) model is fitted to the data as
well; its one-month-ahead prediction results are displayed in the penultimate column
of Table 6. Testing the univariate models for neglected nonlinearities by the neural
network test, revealed no signs of nonlmeantlcs The one-rnonth—ahead predictions
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from a neural network with inputs consisting of six time lags of the exchange rate,
were not better than those from the linear univariate model. The prediction results
from the univariate model compare favourably with those from the parsimonious
structural model. This indicates that the economic fundamentals are of no help in
predicting the exchange rates movements.

Are all terms necessary in the AR(6) model? To examine this, we repeated
the same prediction procedure with an AR(1) model instead of the AR(6) model.
The RMSEs obtained from the AR(1) models for the exchange rate movements are
similar to the results obtained from the AR(6) models; in three out of four cases even
slightly better. Concluding, the only regularity that has been found in the data is
that the next exchange rate movement has the same sign as the previous movement,
but is damped by a factor of approximately 0.4.

The rolling prediction experiment has revealed that over the last 62 months of
_ observations some structure is present in the exchange rate movements. The only
factor that seemed important is the change in the exchange rate from the previous
month. To assess the possible impact of the economic fundamentals that were
selected in the parsimonious models in the total period 1974-1994, we performed
an additional 10-fold cross-validation test on the linear models. This test has
been performed as follows. Two years of monthly observations are repeatedly left
out from model estimation, and are then predicted from the model constructed on
the remaining observations. The so obtained out-of-sample predictions are then
compared with the actual values. The results are shown in Table 7. The table
shows which part of the variance in As, is explained by the parsimonious linear
models from Table 10 and the univariate model Asg4; = ao + a;jAs;, respectively.
We conclude that over the whole period 1974-1994 some economic fundamentals
helped a bit in explaining part of the variance in the exchange rate changes. Over
the last 5 years, however, their effect on prediction performancc was small at best.

As said before, the parsimoniousness assumption, may introduce a misspecifi-
cation into the exchange rate models. We have examined whether this is indeed
the case for the models in first differenced form. Incorporating each domestic and
~ foreign variable separately, as well as two lags of each, has a negligible impact on
the prcdlct:lon quality of the models with ﬁrst-dlfferenced variables,
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7. Conclusions

We have applied neural network specification and linear specification to three struc-
tural exchange rate models (flexible price and sticky price monetary models and the
portfolio balance model), and have compared the out-of-sample prediction qualities.
From this study we conclude the following.

First, no evidence has been found that confirms the existence of a long-run
relationship (linear or nonlinear) between the economic fundamentals included in the
flexible price, sticky-price, and portfolio models, and the exchange rate. Including
foreign and domestic variables as separate explanatory variables did not alter this.
‘Consequently, long-run predictions were worse than predictions made from the
’no-change’ model. _

Second, when estimated in first differenced form we have found some evidence
of a weak structure underlying monthly exchange rate changes. The two main
determinants are the previous month’s exchange rate change and the change in the -
interest differential between two countries. The "no-change’ model, which implies
that changes in exchange rates are random-and can therefore not be predicted-,
is outperformed by linear models for all four countries. Exploring the possible
existence of nonlinearities in the short-run models by neural networks, did not
show any evidence thereof. Including foreign and domestic variables as separate
explanatory variables did not alter this finding. ' ‘

Third, in general biased estimation improves the prediction quality of the various
models, especially for the long-run. The-experiments with neural networks revealed
the large effect of the weight decay parameter on the prediction quality of the neural
‘network models. In those cases where the neural network showed better prediction
performance than the corresponding linear model estimated by OLS, it was the .
regularization by weight decay rather than the introduction of nonlinearities that
was responsible for this. Hence, biased estimation also improved the prediction
quality of the linear models considerably, especially when modelling with (nearly)
collinear independent variables or with a high number of independent variables and
relatively small set of observations. ' g

Exchange rate determination has always been a difficult problem [MR83, MR91,
MT92] that is characterised by very weak underlying relationships, which are con-
sequently problematic to quantify empirically by any regression method —neural
. networks included. Introducing nonlinearities in exchange rate models does not
seem to be a research direction where high payoffs can be expected. |



Appendix | 29

Appendix

Data

Table 8 presents the data source of the variables which are used in the structural
exchange rate models. The first column gives the variable symbol, the second
column the variable description, the third column the unit in which the variable has
" been measured, the fourth column indicates the published data series it originates
from, and the last column refers to the DATASTREAM code. To obtain data series
of considerable length we had to switch from money supply definition M1 to MO
for the United Kingdom case. '

In figures 3 through 6 the time paths of the variables in the structural exchange
rate models are displayed. These monthly series start at January 1974 and end at
“June 1994.
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_ (except for the exchange rate and the trade balances) are in differential
form (UK-US). ‘ : '
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Table 4: Long-run predictions

model I month Gmonths 12 months 18 months 24 months
Japan ‘
Rexible-price  0.23/0.09  0.26/0.15 0.30/022 0.33/0.28 0.35/0.34
sticky-price  0.23/0.10 0.27/0.19 0.31/025 0.34/032 038/0.38
portfolio 023/0.09 027/0.17 031/024 035/0.33 0.38/0.38
random walk  0.03/0.03 0.08/0.08 0.11/0.11  0.14/0.14 0.17/0.17
* United Kingdom
flexible-price  0.21/0.11  0.24/0.15 0.28/0.17 0.32/0.19  0.35/0.24
sticky-price -~ 0.20/0.15 0.23/0.13 0.26/0.17 0.29/0.20 0.31/0.21
portfolio 0.19/0.12 023/0.15 026/0.16 031/0.17 0.33/0.21
random walk  0.04/0.04 0.13/0.13 0.17/0.17 0.19/0.19  0.20/0.20
Germany
flexible-price  0.30/0.25  0.35/0.38 0.39/049 0.41/0.56 041/0.57
sticky-price  0.29/0.18 0.35/0.27 04 1/0.36  044/041 - 0.44/0.44
portfolio 027/0.18 033/027 038/0.36 040/043 041/0.45
random walk 0.04/0.04 0.12/0.12 0.16/0.16  0.20/0.20 0.20/0.20
' . The Netherlands :

flexible-price  0.21/0.21 0.25/0.28 028/0.34 0.30/0.38  0.32/041
-sticky-price  0.17/0.16  0.20/0.24 0.23/0.34 024/040 0.24/0.43
portfolio 0.20/0.13 023/0.19 0.27/023 029/0.27 0.29/0.29
random walk  0.04/0.04 0.11/0.11 " 0.15/0.15 0.19/0.19  0.19/0.19

note: displayed values are: RMSE(OLS)!RMSE(neural network)
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Table 5: Long-run predictions with unrestricted models

0.266/0.259

model Tmonth 6months 12 months 18 months 24 months
Japan
flexible-price 013 0.16 0.20 0.23 0.26
sticky-price 0.10 0.13 0.14 0.17 0.18
portfolio 0.10 0.13 0.14 0.16 0.18
United Kingdom
flexible-price  0.25 0.30 0.35 040 0.44
sticky-price 0.23 0.28 033 0.38 0.42
portfolio 0.20 0.24 0.27 0.32 0.35
Germany
flexible-price 0.23 030 0.35 0.35 0.34
sticky-price 0.22 0.28 0.33 0.34 0.34
portfolio 0.24 0.27 0.32 0.33 0.32
. The Netherlands
flexible-price 0.21 0.26 0.30 0.32 0.33
sticky-price 0.20 0.24 0.28 0.29 0.31
portfolio 0.19 022 0.24 0.25 024
note: displayed values are: RMSE(OLS)
Table 6: Short-Run Predictions :
country parsimonious  complete univariate random walk
(OLS/NN) (OLS/NN)  (OLS/NN)
Japan 0.221/0.221 0.230/0.214 0.217/0.216 0223
UK . 0289/0.291 0.305/0.303 0.290/0.290 0.323
Germany 0.247/0.224  0.269/0.254 0.243/0.273 0.264
0.250/0.250 0.248/0.248 0.269

Netherlands

Table 7: Out-of-sample explained variance -R?

country RZ-parsimonious R°-univariate
Japan 0.18 0.11
UK 0.26 0.15
Germany 0.22 0.14
Netherlands 0.20

0.11




Appendix

33

Table 8: The sources of the data

variable  description unit series  code
United States .
cpi Consumer Prices Index QECD USOCPCONF
Ty short-term interest rate Percentage - OECD USOCTBL%
r long-term interest rate Percentage OECD USOCLNG%
m . money supply M1 US$Bln OECD USOCMIMNA
money supply M1 US 5 Bin OECD USOCMIMNB
monetary base M0 US$Bln GOV  USMONBASA
ip industrial production -total Index OECD USOCIPRDG
TB Foreign Trade Balance US$Min = OECD USOCVBALA
Germany
cpt Consumer Prices Index OECD BDOCPCONF
Ty short-term interest rate . Percentage OECD BDOCTBL%
| " long-term interest rate Percentage OECD BDOCLNG%
m money supply M1 DM Bln OECD BDOCMIMNB
ip industrial production -total Index OECD BDOCIPRDG
TB Foreign Trade Balance DM Bin OECD BDOCVBALA
United Kingdom
s exchange rate -Pound to 1 US § GOV USX$UK.
cpi Consumer Prices Index QECD UKOCPCONF
. short-term interest rate Percentage -OECD UKOCTBL%
| long-term interest rate ' Percentage OECD UKOCLNG%
m money supply M0 . " PoundBln GOV  UKMO..A
ip industrial production -total Index OECD UKOCIPRDG
TB Foreign Trade Balance Pound Min OECD UKOCVBALA
Netherlands
s exchange rate -DFL to 1 US § , GOV USX$DFL
cpi . Consumer Prices index OECD NLOCPCONF
T, short-term interest rate Percentage GOV NLEURO3
T long-term interest rate : Percentage IMF NLI6]1...
m money supply M1 DFLBIn OECD NLOCMIMNA
ip industrial production -total Index OECD NLOCIPRDG.
TB Foreign Trade Balance DFLMIn OECD NLOCVBALA
Japan - -
P) exchange rate -Yen to'l US $- © GOV - USX$YEN
_epi - . Consumer Prices : Index OECD JPOCPCONF
s .short-term interest rate " Percentage OECD JPOCTBL%
I long-term interest rate Percentage OECD JPOCLNG%
m money supply M1 , Yen Bln OECD JPOCMIMNB
ip industrial production -total -Index OECD JPOCIPRDG
TB Foreign Trade Balance Yen Min OECD ' JPOCVBALA

*note MO is the money base; M1 adds money of account to MO
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Figure 6: The data for the Netherlands-US situation; All data (except
for the exchange rate and the trade balances) are in differential form
(Nethertands-US). '
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Unit Root Test Results

Table 9 presents, for each country, the results of the ADF unit root tests® for the
variables in the exchange rate models. Recall that under the null hypothesis of a unit
root o = 0. The first column of Table 9 refers to the variable in differential form
(except for the exchange rates and the trade balances); for example r denotes 7 —r*.
The second through fourth column respectively gives the “¢-value” (negative sign
omitted) of 4, in the following transformed regressions

P
(1) Ay = ag+art+Youe—1+ ) ¥ilyii+ve

i=1

P .
(2) Ay = ast+Yoy-1+ > vy + v

i=1

P
(3) Ay = 703’:—1+E7€Ayt—i+vf

i=1

The number of lags p is determined by the highest possible lag (with a maximum of
~ 13) which is significant at a 10 % error level. The corresponding critical values at
the 1%, 5%, and 10% error levels are calculated according to MacKinnon [Mac91],
and are displayed at the bottom of each column. The last two columns give the
t-values of ag and a; in either '

P
Ay =apt+art+ z Yilye-i + v

=1

if the null hypothesis of 4o = 0 was not rejected, or in (1), (2), or (3), if the null is

rejected. Substituting o = 0 in (1) removes the possible multicollinearity between
the trend and y;—;, which makes the estimation of aq and «; more accurate.

" ©The tests have been performed in PcGive 8.0
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Table 9: Unit 1;())ot tests

variable  #5)  #) b tag  tay
United Kingdom-US
s 244 245 1.37 041 0.58

271 264  1.67 0.04 0.16
Aepi 3.39 274 2.62%
m 2.26 024 142 0.69 1.33
ip 3.95%  2.91% 3.27* | 244" 261"
TBy 225 083 006 0.13 0.50
T Bus 195 085 0.66 0.52 0.26

Netherlands-US

1.78 125 0719 0.13 0.26
2.07 1.54 125 0.56 0.50
Acpi 2.26 227 170 0.74 0.75

m 4.40™ 160 034 | 417" 3.96
ip 250 190  2.39*
TB 1.83 058 003 |0.80 033
Germany-US
P 180 125 093 [107 0.69
r 206 123 086 |093 120
Acpi 196 154 146 |0.13 014
m 1.37 144 065 |022 047
ip 288 204 2.28* '
TB 209 177 075 |007 017
Japan-US
P 241 050 162 |040 045
r . 216 208 105 |073 073
Acpi 234 244 158 | 126 110
m 273 035 111 |[050 113
ip 090 160 160 |127 129

TB 2.95 146 043 0.31 0.03

crtical values:
1% 4.00 346 257 2.60 2.60
5% 343 2.87 1.94 1.97 197
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Testing for nonlinear cointegration

To test for the existence of a nonlinear cointegrating relationship, we generalise
the Dickey-Fuller tests, which have been presented in the previous section. The
main issue is to construct critical values for cointegration tests on neural networks.
In doing this, we adopt a similar procedure as employed in [EY87, Sep94]. The
cointegrating relationship is assumed to be represented by

Ty = f(22, @360 Tht) + € | - (24)

In (24) f is estimated by a neural network, but any other flexible regression method
can be used instead.

Critical values of the ADF test on neural networks depend on several factors.
When employing neural networks to construct a test for nonlinear cointegration, it
is necessary to condition critical values on the following neural network factors:
number of hidden units, value of weight decay parameter, number of inputs, number
of observations, and total number of restarts employed in finding the final network.
All factors are somehow related to the temptation of neural networks to overfit -
the training data, which would result in unjustly small sized residuals. When the
influence of the neural network factors is neglected, the ADF test would too often
reject the null hypothesis of no cointegration.

The present soft- and hardware makes it computationally infeasible to construct
tables for critical values for all possible combinations of neural network factors. In
the applications, we will select the "best" neural network factors for a particular case,
and will calculate the critical values that correspond to that particular combination
of neural network factors.

- The critical values are constructed under the null hypothesis of no cointegration
through thousand replications of the following procedure. Construct k independent
random walks of length =, using the data generating mechanism

xt=x¢_1+Ut,u;,=0.8u,-¢_|+v,-t, 1= 1,...,k, (25)

with v ~ IN(0,1). Train a neural network with a particular set of factors to
approximate f in (24). Then estimate the parameters in

. » '
A& = ap+ Tofe—1 + Y Y Mee—i + & G ~ 10.d(0, o), | (26)

i=1

using the residuals from (24) and calculate the -statistic of 4o (usually minus signs
are omltted) The thousand ¢-statistics, so obtained, give an empirical distribution,
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which is used in calculating the critical values required for testing the null hypothesis
of no cointegration.

Econometric Analysis of Short-Run Models

‘The following procedure has been followed to arrive at a parsimonious short-run
model for As;. According to the general to specific approach we depart from the most
general mode! (sticky price IT) extended with price changes, and with three lags for
each variable included. We then use F-tests to test for zero restrictions on a subset of
variables. The cumulated trade balance terms are tested first on their relevance, then
the price change differentials, followed by the elements of the flexible price model

'(r,m, and ip). Only the end results of this testing down’ process have been reported
in Table 10. Table 10 reports the variable name, its coefficient, the corresponding
t-value, the R? of the estimated model, and the Durbin-Watson statistic DW. The
Durbin-Watson statistic is defined as: : :

= 2?=Z(et - et—l)z

n 2
t=1 €t

DW :

where e, denote the observed residuals from the estimated model. A value of the
DW-statistic close to 2 indicates that no autocorrelation is present in the residuals.
Some diagnostic tests have been performed as well.

Tt should be noted that the dominant factor in all models is As;_;. A recur-
sive estimation exercise learned that most parameter estimates were stable, with
some exception for the money supply variables. Stable parameter estimates are a
prerequisite for reliable predictions. - ' '

We performed the neural network test to test for possible neglected nonlinearities
in the models presented in Table 10. The adjusted p-value of the test was smaller
than 0.000 for the Japan-, German-, and UK-cases; for the Dutch-case the adjusted

p-value was 0.92. Additionally, RESET tests were performed which add Esf to the
models. The probabilities on the observed F-statistics were for Japan, Germany,
U.K, and the Netherlands, 0.036, 0.136, 0.121, and 0.842, respectively. Both tests
suggest that possible nonlinearities are present in the exchange rate models for Japan,
Germany, and the UK., and none in the model for the Netherlands. The evidence
displayed by the neural network test is stronger than that of the RESET test.
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Table 10: Model Estimates

variable coefficient t-value

Japan (R?=0.19; DW=1.97)

Asi_q 0.36 6.11
As; 3 0.10 1.76
Amgy_s 0.17 1.94
Are -0.0075 -3.96
United Kingdom (R*=0.25; DW=2.00)
Ass_) 047 ' 7.70
Ass_» -0.16 -2.53
Amy_s 0.20 243
AT B} 3.07e-6 3.54
AT B, -7.91e-6 -2.58
ATB,_» -1.18e-5 -3.31
Germany (B2=0.21;, DW=1.96) _
Asy_y o 034 5.99
Amy_» 0.29 276
Ar, -0.0086 , -4.55
Aip_y -0.19 -2.39
The Netherlands (R*=0.20; DW=1.99)
As;_ 0.34 ' 3,90
Am._, 0.13 251
Amy_s 0.11 2.20

Ary -0.0064 -4.27
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