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Abstract  

New diagnostic and imaging techniques generate such an incredible amount of data that it is often 
a challenge to extract all information that could be possibly useful in clinical practice. Machine 
Learning techniques emerged as an objective tool to assist practitioners to diagnose certain 
conditions and take clinical decisions. In particular, Machine Learning techniques have repeatedly 
shown their usefulness for ophthalmologists. The possible applications of this technology go much 
further than been used as diagnostic tool, as it may also be used to grade the severity of a 
pathology, perform early disease detection, or predict the evolution of a condition. This work 
reviews not only the latest achievements of Machine Learning in ocular sciences, but also aims to 
be a comprehensive and concise overview of all steps of the process, with clear and easy 
explanation for each technical term, focusing on the basic knowledge required to understand 
Machine Learning. 
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1. Introduction 
Clinical practitioners nowadays have an incredible amount of data at their disposal, generated by 
new diagnostic and imaging techniques. This presents them with the very real challenge of 
properly taking advantage of all this new information, not only in the interpretation of each 
measurement separately, but also of the substantial information that lies in the relationships 
between different measurements. Biological data is usually highly correlated which hampers the 
interpretation of the results. In order to assist physicians with this evermore daunting task 
Machine Learning techniques have been proposed and successfully applied to different branches 
of medicine as a tool to help diagnose diseases in which routine diagnostic information is not 
always clear. Besides supporting the clinician when the diagnosis is not clear, there are many other 
justifications for using Machine Learning, including identification of referable disease in screening 
and primary care settings. Although these techniques are not yet widespread in clinical practice, 
there have been many very promising reports on how Machine Learning could benefit clinicians 
in the near future.  

This work aims to explain the basic ideas behind Machine Learning and highlight its potential for 
clinical and research practices in ophthalmology and optometry. For this purpose, a practical 
overview is given on how the reader may start using Machine Learning, with many examples of 
the current uses in ophthalmology as inspiration. The first section gives a brief overview of Data 
Science, Machine Learning and its various subfields, with an emphasis on supervised Machine 
Learning and a basic glossary. In section 2 the importance of initial data preparation (or data pre-
processing) is discussed, explaining outlier detection, missing values and variable selection 
techniques. Next, section 3 presents a guide for the most common supervised classifiers, after 
which assessing the correctness of the models used, interpretation and reporting are discussed in 
section 4. Section 5 reviews previous applications of Machine Learning in Ophthalmology and 
Optometry, followed by practical hints for using Machine Learning in section 6. Finally, section 7 
gives a short overview and concluding remarks. 

1.1. Commonly used terms 

Due to the multidisciplinary character of the field Data Science uses many concepts and terms that 
may be unfamiliar to the average reader. For this reason it is important to introduce a glossary 
with the most commonly used terms in Machine Learning (Table 1). 

The entire pool of data is known as a dataset, which is composed of instances (e.g. subjects or eyes). 
Each instance is described by a collection of variables, features that contain information on certain 
aspects of e.g. an eye. These variables may be numerical (a continuous variable, e.g. axial length), 
binary (a variable with only 2 options, e.g. subject smokes or does not), categorical (a variable with 
a limited number of options, e.g. eye colour), etc. Instances may be arranged into classes (groups, 
e.g. healthy subjects and keratoconus patients). Meanwhile, the algorithms used by the computer 
to “learn” are known as classifiers (section 3). These classifiers produce a model, a mathematical 
formula or algorithm that predicts a class using knowledge from the training procedure. Datasets 
are most commonly represented in the form of a table, with rows representing instances (eyes), 
and columns representing variables. In this form, each instance has the same set of variables, and 
each variable is of a binary, categorical, ordinal or numeric type. This form is also often called 
structured data, as opposed to unstructured data: images (e.g. retinal images [Graham, 2015]), 
descriptions in natural language (e.g. clinical notes [Zheng et al., 2014]), biological signal 
recordings (e.g. corneal pulse [Danielewska et al., 2014]), a time series (e.g. longitudinal clinical 
data on disease progression [Futoma et al., 2016]), etc. 

Table 1. Basic glossary of terms in Machine Learning 
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Term (Synonyms) Definition 
Practical Interpretation or 
example 

Instance (example, 
case, record) 

A single object from which a model will be 
derived; examples in a training set 

Each subject or each eye in a 
particular dataset 

Dataset (data set) Group of instances All data together 

Variable (field, 
feature, attribute) 

A quantity describing an instance 
Parameter to analyse (e.g., age, 
corneal radius, intraocular 
pressure,…) 

Binary variable 
A variable that only admits two possible 
values (often “yes”/”no”) 

e.g. smoker, prior ocular surgery, 
use of medication, etc. 

Categorical 
variable (nominal 
variable) 

A variable that permits multiple values, but 
with no inherent order or ranking sequence 

e.g. ethnicity, gender, colour of the 
iris etc. 

Discrete variable 
A variable that can only take certain number 
of values.  

e.g. number of visits (it could be 
any value between 0 and infinity, 
but it could not be for example 2.5) 

Numerical 
variable 
(continuous 
variable) 

A variable described by a number 
e.g. corneal radius, intraocular 
pressure etc. 

Ordinal variable 
A variable that admits several values, where 
there is a natural ordering for the values. 

e.g. no diabetic retinopathy, mild, 
moderate, severe, proliferative. 

Regular variable 
(regular feature, 
independent 
variable) 

A variable that is used as source of 
information for predictions (as opposed to a 
class feature). 

e.g. diagnostic measurements. 

Class (target, 
group, dependent 
variable) 

A binary, categorical or ordinal variable 
which we aim to predict using a model (as 
opposed to a regular variable) 

Final result: e.g. healthy or not 
healthy 

Classifier 
Algorithm or group of algorithms used by 
the computer to learn and classify data 

Neural networks, decision trees or 
Support Vector Machine etc. are 
examples of classifiers 

Model 
A mathematical formula or procedure 
produced during the training process 

e.g. a linear equation, a single 
decision tree, an instance of a 
neural network 

Multiclass/ multi-
classification problem 

Situation when data needs to be classified in 
more than two categories (classes) 

Final result with more than two 
classes: e.g. mild, moderate and 
severe keratoconus 

 

1.2. Data Science and Machine Learning 

Before exploring Machine Learning, it is important to point out that there are many related ideas 
that go by familiar names such as Artificial Intelligence (AI), Neural Networks (NN) and Data 
Mining (Figure 1a). All these concepts are part of Data Science, a broad interdisciplinary field, 
encompassing mathematics, statistics, computer science, information technology and data 
visualization. Data Science studies the process of collecting data, extracting relevant information, 
presenting new insights, and taking automated data-based decisions [Dhar, 2013]. The term itself 
often acts as an umbrella for all activities related to automated data processing. We would also like 
to note here that many sub-disciplines of Data Science are defined by the goals they intend to 
accomplish, rather than by their actual research topics. Consequently often the same means are 
used to solve different problems, leading to a significant overlap between subfields. 
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Artificial Intelligence, a field of computer science so recognizable in mass culture that a well-
received Hollywood movie used the term as its title, investigates how to create intelligent agents 

[Russell & Norvig, 2003]. Intelligent agents are computer programs that are able to operate 
without direct and precise instructions from its users, thus giving computers basic problem-
solving abilities, as seen in humans. This is especially useful for problems such as automatic 
adaptation of agents to a changing environment, dealing with vaguely defined goals, optimizing 
the use of resources, and automatic knowledge inference from complex data. This last process, 
known as Machine Learning, is most important for the context of this work, gives computers the 
ability to learn without being explicitly programmed [Arthur Samuel, 1959] by constructing and 
utilising algorithms that can learn and make predictions on data [Kohavi, 1998]. Machine Learning 
also overlaps with Data Mining, which studies semi-automatic knowledge extraction, including 
exploratory data analysis and classical statistics. Another subfield of Data Science that has recently 
became popular due to rapid growth of dataset sizes, is Big Data analytics. This field focuses on 
analysis of datasets so large that standard methods can no longer work correctly due to 
constraints in computer speed or storage. Neural Networks (NN), recently also referred to as Deep 
Learning, are algorithms often used in supervised tasks and are designed to mimic human neuron 
cells (see section 3.2). In the last years the term Deep learning gained interest since it was shown 
that for extraordinary amounts of data it outperforms traditional learning algorithms. Deep 
learning-based models are bigger, more complex and require more computation resources.  

 
FIGURE 1. (a) Overview of the most important fields of Data Science. (b) Overview of the most important 
learning techniques used in Machine Learning. NN: Neural Networks; AI: Artificial Intelligence. 
 

Machine Learning may be divided into several major branches, among which supervised learning, 
unsupervised learning and reinforcement learning are the most important ones (Figure 1b). 
Supervised learning devises relations between a specific variable (e.g. presence of glaucoma) and 
other variable (e.g. diagnostic measurements, age, ethnicity, etc.) to make predictions for the 
specific variable (e.g. “how likely is glaucoma in this 60-year-old person of Japanese ancestry with 
intraocular pressure of 22 mmHg and a heart disease?”). Supervised Learning problems may be 
divided further based on the nature of the variable parameter being considered: if the predicted 
variable is numerical (e.g. a continuous parameter, such as corneal radius) the problem is called a 
regression problem, if the predicted variable is categorical (e.g. healthy/not healthy) it is called a 
classification problem, and if the predicted variable has more than two possible predictions (e.g. 
primary open angle glaucoma/narrow-angle glaucoma/secondary glaucoma) it is called a multi-
class classification problem. Supervised learning is usually considered to be easier to perform, 
interpret and validate than the other branches of Machine Learning. 

Unsupervised learning, on the other hand, focuses on the discovery of previously unknown, but 
useful correlations that span the available set of variables [Jain et al., 1999]. Example questions 
that can be modelled by these methods are whether there are any qualities that divide a 
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population into natural groups (clustering analysis) or finding the most atypical cases in a cohort 
(anomaly detection). These goals are less specific in nature, making these methods especially 
suitable for Exploratory Data Analysis, a Data Mining method. The fact that one of the main 
objectives of unsupervised learning is to identify previously unknown patterns makes it 
particularly useful for ophthalmology when investigating patterns of glaucomatous visual field 
defects and other retinal diseases. The results of Unsupervised Learning are considered to be more 
difficult to use when solving a specific problem. Finally, Reinforcement Learning is a decision 
process based on a reward system, which is useful to model interactions between intelligent 
agents. However, these methods are rarely used in biomedical applications. 

As most applications in Ophthalmology and Optometry aim to determine which group a particular 
instance belongs to (e.g. a certain pathology is present or not), this work will focus in the following 
sections only on classification tasks by means of Supervised Learning. 

It is also worth mentioning that Machine Learning techniques can offer various analyses that 
classical statistics cannot. The line between classical statistics and Machine Learning is unclear 
and far from being well defined. Some researchers consider them completely independent from 
one other, while others consider that some Machine Learning techniques are complex statistics-
based systems. Generally, Machine Learning models are considered dynamic as opposed to 
statistical models’ static nature. Both statistics and Machine Learning techniques aim to find 
correlations between variables, but they differ in the sense that Machine Learning is able to learn 
from data without relying on rules-based programming, while statistics modelling is able to 
successfully analyse data, but not to learn from it. 

1.3. The process of Supervised Learning 

Supervised Learning may be described as training a mathematical model with a historical dataset 
by giving it all variables it is supposed to use, along with the correct classifications, to subsequently 
use that model to predict the classes for new data, previously unknown to the model (and possibly 
the user). The training process consists of two major steps: model construction and performance 
assessment (Figure 2). 

Model construction consists of finding a mathematical formula that describes how to assign cases 
to classes as accurately as possible based on historical data. The formula itself is often in form of 
a complex “black box” procedure with little explanation why should it work. As there are no 
guarantees that the formula will accurately predict classes, it is necessary to explicitly test its 
reliability. To use an analogy, the process is similar to teaching a student in a tutoring session and 
then using a written assessment to evaluate whether the student mastered the topic. Most models 
also provide a “score” of how strongly it is considered that a particular class is correct for any given 
case, which for binary classification problems may take the form of a probability (a value between 
0 and 1). In other cases the score may not be directly interpretable, however, except for 
interpreting that a lower value represents more confidence in one of the classes, and a higher value 
in the other class. In the school analogy, the test is an example of a binary classification problem 
that aims to state whether or not a student has mastered the material covered during the course. 
Meanwhile, the score received by the student reflects the likelihood with which he truly 
understands the matter, with a high score indicating a high likelihood, and a low score a low 
likelihood. By selecting a threshold value for this score the user can decide the trade-off between 
false positives and false negatives that best represents the practical costs associated with different 
types of misclassifications (see section 4.1). This is related to assessment scores in the classroom 
analogy by which the teacher declares what is a passing score. Different cut-offs will result either 
in passing some students that did not master the material, or not passing some students who 
learned most of the required content, but were unlucky to get more difficult exercises.  
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As there is no guarantee that a model will be accurate, it is essential to explicitly test its reliability. 
The assessment is performed by asking the model to predict classes for data where classes are 
known to the user, and subsequently comparing the model’s predictions to the actual classes 
(section 4). It is crucial that this assessment is performed on data that was not used for the model 
construction to avoid a misleading result. Continuing the classroom analogy, the problem can be 
exemplified by a student that chooses to just memorize the given example problems, rather than 
trying to understand them. In that case the student would ace an assessment based on problems 
solved during the tutoring session, but struggle with a new problem. For this reason it is common 
to divide all available historical data into training and validation sets: use only the training set for 
the model construction and validate using only the second set. Other, more complex validation 
schemes can be found in section 4. 

During model construction there are many choices to be made regarding the training process, such 
as what variables (section 2.3) and which classification algorithm (section 3) to use for the training 
process. Furthermore, there are 
algorithm-specific details to choose, e.g. 
the depth of a decision tree (section 3.1) 
or the number of neighbours for the k-
Nearest Neighbours (section 3.4). 
These choices are commonly referred to 
as meta-parameters, as opposed to the 
parameters used in the mathematical 
formula describing the model. These 
choices may influence the prediction 
accuracy, reliability of the training 
procedure, interpretability of the 
model, computation time, and memory 
usage. It is usually not possible to 
provide a priori selection of “best” 
meta-parameters that are suitable for 
one specific problem. In a typical 
application of Supervised Learning a 
user must therefore try many choices of 
meta-parameters and use a validation 
method (see section 4.3) to select the 
best choice. To use the student analogy 
again, some topics may be better taught 
using a whiteboard, or a pre-recorded 
video, or in a laboratory by performing 
an experiment; the choice of 
metaphors, textbooks or problem sets 
will also affect the teaching process. 

2. Data pre-processing 
Usually data needs to be processed before applying Machine Learning. One of the reasons is that 
various classification algorithms often have very specific requirements or assumptions regarding 
the data. Typical requirements are being in the form of a table, having only numerical variables, 
no missing data values, no outliers, etc. Another common reason for pre-processing is the size of 
the dataset. While generally bigger datasets are better and enable more complex methods that 
result in better predictions, it is sometimes impractical to collect more data (e.g. due to additional 
expenses or time required). Instead, practitioners apply pre-processing techniques that reduce 
the complexity of a dataset, making the prediction task easier to learn. Data pre-processing may 

 
 

FIGURE 2. Flow chart depicting the general process of Su-
pervised Learning. Upwards arrows indicate the most im-
mediate approaches to correct classifier performance. The 
steps in the process may be modified to suit the needs of 
the particular problem, however. 
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also help reduce data quality issues and improve the results since the more concrete and accurate 
the training data is provided, the better and more reliable the results will be [Zhang et al., 2003]. 
On the other hand, data pre-processing can also be used to augment datasets to mimic real-world 
clinical applications by reducing the quality of images, rotating orientation etc. This section 
reviews the fundamental steps of data pre-processing, such as outlier detection, dealing with 
missing values and dimensionality reduction techniques.    

2.1. Outliers 

Outliers are extreme values that deviate considerably from other observations. There are 
essentially two types of outliers. First there are data points that do not make sense from the point 
of the physical or biological process being modelled (e.g. bad measurement, transcription error, 
etc.). Studying these points may help verify the methodology of the data collection process. The 
other type are outliers that carry information about a possible, but very unlikely outcome. 
Inspecting these points might bring new knowledge and better understanding of the phenomenon 
being predicted. As a rule of thumb, it is fine to discard or correct the first kind (if possible without 
introducing errors), while it is not always proper to remove data points from the latter kind. 

Automated methods for outlier detection are an active research topic [Hodge et al., 2004] [Schiff 
et al., 2017], and include methods such as anomaly detection, novelty detection or exception 
mining. If the probability distribution for a variable is known a priori (e.g. a normal distribution) 
identifying outliers can be done by observing the likelihood of data under that distribution. 
Another very simple approach is to consider any observation whose variable value fall outside 
three standard deviations from the variable mean value as an outlier. Other, more sophisticated 
methods are based on proximity and projection methods. The choice of an outlier detection 
method is strongly dependent on the choice of classification algorithms and dataset size. Some 
methods reliably deal with outliers without additional processing (e.g. decision trees), while 
others are far more sensitive to outliers (e.g. Ordinary Least Squares regression). 

2.2. Missing values 

Regardless of how carefully a database was made, some values might be missing, typically due to 
procedural errors (e.g. forgetfulness, faulty equipment etc.) or circumstances outside the 
researcher’s control. Like before with the outliers, the missingness of data points may be a random 
occurrence that does not bring any new information to the classification process. Meanwhile, there 
may be circumstances in which the missingness is important information by itself that is worth 
preserving for classification purposes (e.g. the impossibility to collect that piece of data may be 
related to the studied phenomenon). For values that are not missing randomly, it may sometimes 
be useful to introduce an additional binary variable denoting whether the value was missing. 

The impact of missing values depends heavily on the algorithm used. While some algorithms 
tolerate missing data without pre-processing (e.g. some methods based on decision trees [Chen et 
al., 2016]), there are others that require all values to be available for all variables. Hence several 
treatments have been proposed to amend this issue [Little et al., 1987]. One simple method is to 
discard cases with missing data, which is statistically correct if the values are missing randomly. It 
is also common to remove variables with missing data. However, this may be problematic if the 
variable is considered useful for prediction. Next, one may perform parameter estimation, a 
statistical method to estimate the variable values that maximize the likelihood of the instances 
given the non-missing variables [Dempster et al., 1977]. Another option is to use imputation 
techniques, which fill in the missing values with plausible values, such as the mean value of a 
variable or a value taken from another, randomly selected case [Donders, 2006]. Finally, there are 
other, more complex variations of these methods, such as ‘hot deck and cold deck’ or ‘prediction 
models’ [Batista et al., 2003]. 
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2.3. Feature Selection and Dimensionality Reduction 

Feature Selection and Dimensionality Reduction methods aim to reduce the number of variables 
in a dataset. While usually having a large number of variables provides more discriminating power, 
having too many variables in combination with a limited dataset size and an overly flexible 
algorithm could lead to an overfitted model that incorporates accidental, spurious relationships 
found in the training dataset, but do not exist in the general population. As such, overfitted models 
tend to have a low prediction accuracy for new data. To illustrate this with the student analogy, 
imagine that a student is requested to look at random ink blot patterns and report what he sees in 
them, like in the Rorschach test. The student will quickly form some mental image based on a 
combination the ink blot’s geometry (the training data) and his earlier preconceptions (the 
parameters of the classification model). While the ink blot is randomly shaped, the student has 
interpolated the available data into a familiar image that is not really there. 
Overfitting may be dealt with by reducing the dimensionality of the data, either by selecting a 
subset of variables (Feature Selection) or computing a new, more compressed set of variables. This 
has the additional benefit that it reduces computation times as the speed of classification 
algorithms often depend on the size of the dataset [Yu et al., 2004]. Common feature removal 
methods include: 

Missing values ratio. Variables with too many missing values are less likely to carry important 
information. Hence, variables with number of missing values greater than a given threshold 
may be removed, keeping in mind that relevant variables should be kept, even with high levels 
of missing data. 

Low variance filter. Similar to the previous approach, variables with only minor variations in the 
data are less likely to carry substantial information. Numerical variables with a standard 
deviation below a given threshold, or a categorical variable predominantly set to a single 
value (e.g. mostly males subjects), are good candidates for removal. 

High correlation filter. Strongly correlated variables tend to carry similar information, meaning 
not much information is lost when some of these are removed. The correlation between 
individual pairs of nominal variables may be done using the Pearson’s Product Moment 
Coefficient, while the Pearson’s chi square value may be used to assess all pairs of nominal 
variables at once. 

Factor analysis groups highly correlated variables. This may either be done by Exploratory Factor 
Analysis (EFA), which primarily aims to identify the underlying correlations between 
variables, and Conformation Factor Analysis (CFA), which tests whether the data fits a 
hypothesized measurement model  [Harman, 1960]. 

Decision Trees Ensembles. This is a family of algorithms, such as random forests or gradient 
boosting, that are useful for variables selection in addition to being effective classifiers 
(section 3). One approach to dimensionality reduction is to generate a large and carefully 
constructed set of trees for a certain target variable and assess each variable being used to 
find the most informative subset of variables. If a variable is often selected as best split, it is 
most likely an informative variable to retain. 

L¹ normalization, also called L1-norm or lasso [Tibshirani, 1996], is a regression analysis that 
performs both variable selection and regularization (i.e. the process of introducing additional 
constraints for the model to prevent overfitting). This enhances interpretability of the model. 
The additional constraints penalize having non-zero parameters in the linear model, leading 
the classifier to prefer models that only use a small subset of variables. 

Forward Sequential Feature selection (FSFS) works by starting from an empty set of variables, and 
then repeatedly testing if adding variables one by one improves predictive accuracy in a 
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significant way [Jain et al., 1997]. Each test is essentially training a new model on a different 
subset of variables. As a result the process is easy to understand [Guyon et al., 2003], but slow 
for highly dimensional data sets. Hence, they are usually applied after using other 
dimensionality reduction methods. 

Backward Feature Elimination (BFE) starts with all variables in the dataset and sequentially 
removes one input variable at a time. After each removal, a new model is trained and its 
predictive accuracy is tested. The process stops when accuracy drops below an a priori chosen 
threshold [Koller et al., 1996]. Here too the algorithms tend to be slow for large datasets and 
should be applied only after using other data reduction methods. 

A popular dimensionality reduction method that is not based on removing variables is Principal 
Component Analysis (PCA), which searches for the linear combinations of the original variables 
that better represent the dataset variance. This allows reducing the dataset while retaining 
information on the most typical ways the cases differ from each other [Jolliffe, 2005]. The method 
may only be applied to numerical variables and requires prior data normalization (i.e. bring all 
values within a certain interval, such as [0, 1]). In addition, PCA variables are linear combinations 
of the original values, so their clinical meaning might be very difficult to interpret. 

As a conclusion of this section, we highlight a set of characteristics that according to Saeyes et. al 
(2007) can guide the choice for a technique suited to the goals and resources of practitioners. The 
clear advantage of filter techniques over others is that they are very efficient and fast to compute. 
However, they ignore feature dependencies which might lead to undesirably discard a variable 
that doesn’t carry much information by itself but that could be useful in combination with others. 
Wrapper methods (such as FSFS and BFE) model variable dependencies and are less 
computationally expensive than randomized methods, however they are more prone than other 
techniques to over fit or get stuck in a local optimum (greedy search). Finally, embedded methods 
(such as Decision Trees or L1 Lasso) generally show better computational complexity than 
wrapper methods and are also able to model feature dependencies.  

3. Classifiers 
A classifier is any algorithm that uses a training dataset to create a model of knowledge on some 
topic. There are many algorithms that can perform this operation. The choice depends on the 
dataset size, variable types, available computation resources, additional requirements put 
towards the classification process (such as model interpretability or modelling probabilities for 
classes), model capacity (how complex relations can be found by the training process) or inductive 
bias (a set of assumptions that lie behind choices made by the classifier during the training 
process, e.g. “similar cases should result in similar predictions”, or “there are no relationships 
between pairs of regular variables”). 

While there are some guidelines that can help with choosing a classifier a priori (section 6), it is 
best to try several algorithms and compare the results using a validation technique (section 4) to 
find the model with the best predictive performance. This section aims to give an overview of the 
most popular classifiers and an intuitive idea of their performance. 

3.1. Decision trees 

A decision tree is essentially a series of directed questions that partitions data recursively to form 
groups or classes [Quinlan, 1986], much like the game of 20 questions. Each time a question is 
resolved, the model either goes along a path to another question or to a prediction if there are no 
more questions available. Decision trees are amply used for clinical applications. As an example, 
an oversimplified algorithm for keratoconus detection is shown in Table 2 and Figure 3. Decision 
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trees are traditionally used supervised learning algorithm, but they can also be used for 
unsupervised learning, like clustering.  

Table 2. Training set to detect keratoconus from healthy eyes 
 

Km (D) CCT (μm) CTm (μm) ACD (mm) 
Corneal 
scarring 

AL 
(mm) 

Class 

I(1) 44 540 535 3.30 No 23.50 Normal (N) 
I(2) 47 530 515 3.55 No 23.25 Keratoconus (K) 
I(3) 48 480 470 3.60 Yes 24.50 Keratoconus (K) 
I(i) = instance; Km = mean keratometry; CCT = central corneal thickness; CTm =  minimum corneal thickness; 
ACD = anterior chamber depth; AL=axial length. 

A major problem with decision trees is the 
stability of the training process: small 
changes to the training dataset may result 
in wildly different tree models. To 
illustrate this, consider a training dataset 
in which there are two choices for the 
initial question, both rated as very good by 
the classifier. In such case, a small 
perturbation to the initial training dataset 
(e.g. adding new cases) may push the 
algorithm to change that initial question, 
resulting in very different partitions of 
data used for choosing next questions. It is 
also observed that small changes to a 
training dataset may also considerably 
change the predictions—a characteristic 
considered troubling in many 
applications. This problem is often solved 
by assembling multiple tree models 
together, as will be discussed in the next 
section.  

Commonly used decision trees include ID3, C4.5, CART, C5.0, CHAID, QUEST, and CRUISE. Of these 
algorithms C4.5 is especially applicable and extensively used as it accepts both continuous and 
discrete values, can handle missing data and permits weighting different variables of a given 
dataset.   

3.2. Tree ensembles 

Ensembles are models that consist of many simpler models, whose predictions are aggregated to 
form a final answer. This may slightly increase prediction performance and can turn a collection 
of unstable models into a single stable model. Using a classroom analogy again, ensembles are like 
a group test in which the students can openly discuss their knowledge and ideas, thus leading to a 
better answer than when individual students should solve it on their own. While ensembles can 
be based on any type of classifiers, they are usually based on decision trees. Random Forest 
[Breiman, 2001], for example, is a classifier that uses many tree models, each trained 
independently on a different subsample of data and variables. Another example is Gradient 
Boosting models [Friedman, 2001], such as XGBoost [Chen et al., 2016], which are ensemble 
models consisting of a series of trees that are each trained to correct mistakes made by previous 
trees. In recent years, XGBoost is especially successful for structured datasets, as evidenced by 
many Machine Learning competitions [Chen et al., 2016]. Ensemble learning is a form of 

 
 

FIGURE 3. Oversimplified example of a decision tree (not 
to be used clinically) based on the training set from Ta-
ble 2. Cut-off values taken from a previous work.27 Km = 
mean keratometry; CCT = central corneal thickness; 
CTm = minimum corneal thickness; ACD = anterior 
chamber depth. 
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supervised learning, but not exclusively as some ensemble techniques are also used in 
unsupervised learning scenarios.   

3.3. Artificial Neural Networks 

As suggested by the name, Artificial Neural Networks were originally inspired by the 
communication between the brain’s neurons. Neural Networks consist of a large group of cells 
called neurons that are organized in layers and interconnected like a flow chart in such a way that 
one may only follow the flow in a forward direction from the input layer towards the output layer, 
never once returning to a previous cell (i.e. a directed acyclic graph, Figure 4). Each neuron 
performs a very simple computation based on the information coming in from previous neurons 
(usually a weighted mean, followed by a non-linear, monotonic transformation), before sending 
the result on to the next neurons. After passing through several layers the network is able to 
classify the original input to the output it deems most appropriate. Over the last decades these 
ideas were improved further without following biological analogies. 

First proposed in the 1950s, Artificial Neural Networks are one of the oldest classifiers in use 
[Haykin, 2004]. After an initial boom in the 1960s and new inventions boosting the field in 1980s 
[Olazaran et al., 1996], research into Artificial Neural Networks have entered a second renaissance 
thanks to the increased availability of computing power. Nowadays these general-purpose models 
outperform older, specifically designed methods for unstructured datasets (e.g. recognition of 
objects on images [Szegedy et al., 2015], speech recognition [Hinton et al., 2012] or language 
translation [Bahdanau et al., 2015]). Modern Neural Networks employ a large number of neurons 
and connections (e.g. a recently proposed architecture for natural language translation used 137 
billion connections [Shazeer et al., 2017]). For this reason, these models are also called Deep 

Learning due to immense complexity of these models. Artificial Neural Networks can be both 
supervised or unsupervised.  

3.3.1 Self-Organizing Maps 

A self-organizing map (SOM), also called self-feature map (SOFM), is a type of unsupervised ANN 
designed by Kohonen [Kohonen, 1990]. It is a data visualization technique that helps to 
understand high dimensional data by reducing the dimensions of data to a two-dimensional map. 
It also works as a clustering technique that groups similar data together. Therefore SOM reduces 
data dimensions and displays similarities among data. 

 
 

FIGURE 4. Basic four-layer neural network for the classification of normal eyes (N) and keratoconus (K). Squares repre-
sent neurons and lines correspond with the weighted output from previous neurons. 
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3.4. Naïve Bayes 

This is a statistical classifier based on 
Bayes’ Theorem that makes the naï ve 
assumption that each variable contributes 
independently to the probability of a case 
belonging to a particular class. In practice, 
it is very rare to fulfil this assumption, 
however. Regardless, the classifier may still 
achieve good results due to its simplicity 
and resilience to noisy, missing or 
irrelevant variables [Langley et al., 1994]. 
An example of Naï ve Bayes (or “Idiot’s 
Bayes” [Hand et al., 2001]) graphical model 
based on the keratoconus example of 
Table 2 is shown in Figure 5. The Naï ve 
Bayes classifier usually falls in the category 
of supervised learning.  

3.5. K-nearest neighbours 
(kNN) 

This technique is based on the observation that instances (cases) of a given dataset generally 
reside near other instances with similar characteristics. Proximity in this context does not mean 
spatial proximity, but rather proximity in variable space. For each instance of the testing set we 
observe k (k=1, 3, 5…) examples from the training set which are the most similar, closest to that 
instance. The algorithm declares that the instance’s class is the one that is most common among 
these neighbours. 

This algorithm generates a very natural decision boundary (i.e. a borderline between areas of the 
variable space classified into different classes). The boundary is effectively a set of points (a line, 
a plane, etc.) whose distances to different classes is equal (figure 6). This property makes the 
algorithm results easy to visualize and interpret, as well as very flexible for low values of k. Low 
values of k turn out to also be prone to overfitting. For example, in the case of k = 1 the classifier 
essentially memorizes the training dataset, perfectly reproducing the classes of the training cases, 
thus rendering in-sample performance metrics useless. A proper validation procedure is therefore 
required to determine the model’s efficiency. 

Besides this risk of 
overfitting, kNN may also be 
slow in larger training 
samples as searching the 
nearest neighbours for each 
sample is often 
computationally intensive. 
Also, rescaling some of the 
variables may significantly 
alter the model and the 
predicted outcomes, and it is 
not easy to define distances 
for variables with discrete 
values. kNN is usually used as 
supervised learning method.  

 
 

FIGURE 5. Naïve Bayes classifier as a probabilistic 
graphical model39 with K representing the Keratoconus 
class node and the rest of circles representing the fea-
ture nodes (Km = mean keratometry; CCT = central cor-
neal thickness; CTm = minimum corneal thickness; ACD 
= anterior chamber depth). Note that there are no con-
nections between feature nodes, representing their in-
dependence from each other. 

 
 

FIGURE 6. (a) Keratoconus eyes (represented by triangles) and 
healthy eyes (represented by circles) and an unknown sample (rep-
resented as a cross) that we aim to classify. (b) Partitions of the 
space into regions and decision boundary. The unknown sample 
would fall into the keratoconus eyes area. Thick line represents a 
decision boundary proposed by a kNN model for k = 1. 
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3.6. Support Vector Machine 

Support Vector Machine (SVM) has recently become one of the most popular supervised learning 
classifiers due to its good outcomes when classifying difficult examples [Burges, 1998][Kotsiantis 
et al., 2007]. In its most general form SVM is a linear classifier [Cortes et al., 1995], which means 
that it seeks to find a hyperplane (e.g. a line for a dataset with two variables, a plane for a dataset 
with three variables, etc.) that perfectly separates data points belonging to different classes. 
Although there are many possible hyperplanes, the classifier selects the one that has the biggest 
margin that separates it from data points (Figure 7). 

In general most datasets are 
not linearly separable, 
however, meaning that there 
is no hyperplane that 
perfectly separates the 
different classes (Figure 8a). 
To solve this problem SVM 
models can transform 
variables into kernel space by 
means of a kernel trick 
[Hofmann et al., 2008], a 
mathematical device that 
allows variable 
transformation allowing 
complex decision boundaries. 

An example of a polynomial transform is shown in Figure 8b: by adding a third dimension 
representing the distance of a data point to the centre of variable space, the dataset that was 
formerly not linearly separable may now easily be separated by a plane. In other words, the kernel 
function is to take data as input and transform it into the required form. Different SVM algorithms 
use different kernel functions. These functions can be different types. For example, linear, 
nonlinear, polynomial, radial basis function (RBF), or PUK, among others. The mathematical 
representation of some of these kernels is listed as follows: 

The polynomial kernel of degree d is defined as 

𝐾 (𝑥, 𝑦) = (𝑥 ∙ 𝑦 + 𝑘)𝑑                                                     (1) 

where k is the constant. The kernel with d = 1 is the linear kernel function. Another very widely 
used kernel is the Gaussian radial basis function (RBF) kernel, often used when there is no prior 
knowledge about the data. It is defined as 

𝐾 (𝑥, 𝑦) = 𝑒𝑥𝑝(−‖𝑥 − 𝑦‖/2𝛾)𝑑                                            (2) 

 where γ > 0 is a parameter that controls the width of the Gaussian. A more sophisticated type of 
kernel function that can be used in SVM is the Pearson VII universal kernel (PUK). The PUK kernel 
function of multi-dimensional input space is given by the following formula: 

𝐾(𝑥, 𝑦) = 1/[1 + (2√‖𝑥 − 𝑦‖2√2(1/𝜔) − 1/𝜎)2]𝜔                                 (3) 

 
 

FIGURE 7. (a) Keratoconus eyes (represented by triangles) and healthy 
eyes (represented by circles) separated by different possible hyper-
plane (lines) that separate the classes. (b) Optimal linear classifier and 
margin (grey). The data points of each class that constrain the margin 
width are surrounded by a dashed line. 
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where the parameters ω and σ control the half-width (also named Pearson width) and the tailing 
factor of the peak. The main reason to use the PUK kernel is its flexibility to change, by varying 
parameters ω and σ. The usefulness of the PUK kernel is that, by selecting the appropriate 
parameter setting, it might be 
used as a kind of universal 
kernel which could replace the 
set of commonly applied 
kernel functions, i.e the linear, 
polynomial and Gaussian 
kernels [Abakar, 2012].  

By considering margins SVM is 
less sensitive to outliers than a 
common logistic regression. 
However, the computation 
time may be prohibitively long 
for large datasets. 

3.7. K-mean 
K-means clustering is one of the simplest unsupervised learning algorithms. It aims to find groups 
(clusters) in the data, with the number of groups represented by the variable K. The main idea is 
to define K centers, one for each cluster. Generally, different location causes different result. So, the 
better choice is to place them as much as possible far away from each other [Teknomo, 2006]. 

3.8 Principal Component Analysis 

Principal Component Analysis (PCA) can be used as a plain statistical technique for data reduction, 
as it was mentioned in the previous section, but it can be also utilized in unsupervised learning. In 
unsupervised learning it is often used to find patterns in high-dimensional datasets or as an aid in 
clustering and segmentation models [Ding, 2014]. PCA introduces a lower-dimensional 
representation of the dataset. Further, PCA gives a new set of variables called ‘principal 
components’ which could be further used as inputs in a supervised learning model.  

To conclude this section on Classifiers we would like to highlight that there is no a single answer 
to the question ‘What machine learning classifier should I use?’, it always depends. It depends on 
the size, quality and nature of the data, also on the available computational time and the expected 
output. For example, decision trees are often used by beginners because they are easy to interpret, 
but still they are more often used in compositions such as random forest showing generally a very 
good accuracy but longer training time than other classifiers. Artificial Neural Networks also show 
very good accuracy and they can be implemented in supervised and unsupervised learning 
problems. ANN can efficiently learn and model non-linear and complex relationships, which 
makes them very popular.  However, this ability comes with a price, ANN training often requires 
great computational complexity. Contrarily, Naï ve Bayes technique is faster and easier to 
understand and implement although its performances is sometimes compromised depending on 
the nature of the problem. Support Vector Machines usually show excellent accuracy, relatively fast 
training times and the use of linearity which make these techniques amply used nowadays. 
Regarding the purely unsupervised classifiers, K-mean is more primal but easier to understand 
than other algorithms and its training process is relatively fast. PCA, on the other hand, is a great 
choice to reduce dimensionality of the variable space with minimum loss of information, but it can 
be a slower learner than other techniques. As an attempt to exemplify which supervised classifier 
is best to use, Amancio and colleagues [Amancio et al., 2013] proposed a systematic comparison 
of supervised classifiers comparing the influence of parameter configuration on the accuracy. In 
their study, they found that using default parameters in the artificial dataset, kNN usually 

 
 

FIGURE 8. (a) Keratoconus eyes (represented by triangles) and healthy 
eyes (represented by circles) separated by a curved line that 
separates the classes. (b) Three-dimensional view of the problem using 
a kernel. The tilted plane that separates both classes is a plane 
that separates classes with the biggest margin. 
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outperforms the other methods. Multilayer Perceptron showed to perform better than Bayesian 
Network, Decision Trees or SVM. However, they also showed that by altering those initial 
parameters the performance of SVM could implement up to 20%. This is just an example to 
illustrate that, even though there exist guidelines, there are no universal answers to which 
classifier is best. 

4. Assessing classification performance 
As mentioned before the assessment of the model’s quality is a vital element of Machine Learning, 
not just to determine the predictive performance of a final model, but also to select the most 
suitable pre-processing and classifier meta-parameters. This section discusses popular 
performance metrics and common validation procedures that ensure metrics correctly represent 
actual performance. 

4.1. Performance metrics 

Suppose a dataset with 50 glaucoma and 50 healthy eyes. A model that never misclassifies 
glaucoma eyes, but misclassifies half of healthy eyes as glaucoma, will get 75 cases right. A second 
model that never makes a mistake for healthy eyes, but misclassifies half of glaucoma eyes as 
healthy, will also get 75 cases right. However, for a clinical standpoint there is a major difference 
in usefulness between both models. This illustrates that there are many aspects to accuracy testing 
and that there is no one single metric that can fully explain model performance. 

The contingency matrix is the basis for most practical metrics and consists of 4 types of 
parameters corresponding with the numbers of cases that were either correctly or incorrectly 
classified (Table 3): 

True Positive (TP): number of sick cases correctly categorised as sick. 

True Negative (TN): number of healthy cases correctly categorised as healthy. 

False Positive (FP, type I error): number of healthy cases wrongly classified as sick. 

False Negative (FN; type II error): number of sick cases wrongly classified as healthy. 

This concept can be expanded to multi-class problems, but will requires larger tables (Table 4. 
Ideally the False Positive (FP, Type I errors) and False Negative (FN, Type II errors) rates of a model 
should both be as close to zero as possible. Meanwhile, if TP ≈ FN and FP ≈ TN, the model is no 
better than random guessing. 

Table 3: Two-class problem contingency matrix 
 Predicted condition 

Positive Negative 
Actual 
condition 

Positive TP FN 
Negative FP TN 

TP=true positive, FN=false negative, FP=false positive, TN=true negative 
 
 

Table 4: Empty four-class problem confusion matrix. Values in the 
diagonal (grey cells) would correspond to correct classifications 
 Predicted condition 

Class 1 Class 2 Class 3 Class 4 
Actual Class 1 - - - - 
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The values in the contingency matrix depend on the dataset size and the relative proportions of 
the classes in the testing dataset, making comparisons between datasets cumbersome. For this 
reason several normalized measures were introduced: 

Accuracy: (TP+TN)/(TP+FN+FP+TN), the ratio of correct classifications to the total number of 
classifications. A value of 1 corresponds with a perfect classification, whereas the ratio of 
classes in the testing dataset represents performance of random guessing. While accuracy is 
a common way to express quality of a model with a single number, it changes with the 
proportion of classes in the testing dataset, making comparisons difficult. 

Precision: TP/(TP+FP), the proportion of positive results that are true positives, e.g. ratio of truly 
sick cases among all cases considered sick by the classifier. This is a measure of how much the 
model can be trusted when it classifies a case as positive. 

Sensitivity or True Positive Rate (TPR): TP/(TP+FN), the ratio of correctly classified sick cases 
among all those subjects that actually carry the disease. This refers to the test’s ability to 
correctly identify patients with the condition. 

Specificity: TN/(TN+FP), the proportion of negatives correctly identified as such, i.e. percentage 
of healthy people who are correctly identified as not having the condition, 

False Positive Rate (FPR): FP/(FP+TN), the ratio of the number of false positives among the 
number of all actual positive cases. This measures how much the model can be trusted when 
it classifies a case as negative. 

If the output of a classification model is in the form of a score it is possible to create a Receiver 
Operating Characteristic (ROC) curve, a plot of the True Positive Rate versus the False Positive Rate 
for a model (Figure 9), with TPR and FPR computed for different thresholds for the model’s score. 
Different points on the curve represent the different trade-offs in allowing false positives versus 
false negatives. A random performance model will result in an ROC being a straight diagonal line 
from the bottom left corner (TPR = FPR = 0) to the top right corner (TPR = FPR = 1), whereas a 
model with the perfect performance level will be a horizontal line from the top left to the top right 
corner. It is important to notice that classifiers with meaningful performance levels usually lie in 
the area between the random ROC curve and the perfect ROC curve.  

ROC curves are also the basis for a popular metric called Area Under the ROC curve (AUC, AUROC). 
By measuring the area under the curve on an ROC model we estimate the probability of a positive 
(sick) case having higher score than a negative (healthy) case. A perfect model has AUC equal to 1, 
whereas for a random guessing model AUC is equal to 0.5. In other words, the closer the AUC is to 
1, the better performance the classifier shows. This measure does not depend on the threshold 
selected by the practitioner and it can be compared across different dataset sizes and for datasets 
with different class balance. These advantages make it a popular choice to compare classifiers. 
However, some authors have questioned its efficiency [Hanczar et al., 2010] [Lobo et al., 2008]. 

condition Class 2 - - - - 

Class 3 - - - - 
Class 4 - - - - 
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By definition a ROC curve can only report the performance of binary classifiers. It is however 
possible to calculate an analogue for multi-classification problems, along with an AUC. This may 
be done by reducing the multi-class problem to a series of “one-vs-all” binary classification sub-
problems, where each binary classification problem considers one of the original classes as the 
positive class, and all other classes are grouped into a negative class. AUC is computed for each of 
the binary sub-problems, and a mean of sub-problems’ AUC is considered a metric for the original 
multi-class problem. 

4.2. Validation procedures 

An in-sample metric assesses model performance using training data, which may work well for 
low-capacity models. In-sample metrics may easily be fooled, however, when applied to a model 
with enough flexibility to memorize the training dataset. This does not necessarily mean that the 
model is overfitted, but rather indicates a need to use a dataset other than the training dataset to 
accurately measure performance. Also, in practice, it is rarely possible to accurately estimate 
model capacity, making it difficult to rely on in-sample metrics. 

An additional problem with estimating model performance occurs at the point where the user 
compares multiple models and selects the most suitable one using a test set. Just like the training 
set may not be used to assess the performance of the model, it is not appropriate to consider a test 
set used to select the best performing model for model validation. In the classroom analogy this is 
similar to having a test to select the best student in a class to participate in a general knowledge 
quiz. Since each student has a specific amount of knowledge and individual interests (e.g. 
mathematics, biology…), it depends on the agreement between the questions in the selection test 
and those in the school quiz whether the student team that was ultimately selected has a chance 
of winning, since the initial assessment can randomly bias in favour of or against some topics. 

For this reason one should use three independent datasets in the ideal case to avoid any bias: one 
training set, one test set (used to select the best model) and a validation set (used to compute an 
unbiased estimate of the final model’s performance). The simplest approach to perform such a 

 
 
FIGURE 9. Examples of ROC curves for different theoretical and real models. Data corresponding to real 
examples is based on random forest calculation for an experiment about ocular dicrotism.48. 



18 

validation procedure is by dividing all available data into three datasets (training, validation and 
testing). This comes at the cost of having to train the model on a smaller amount of data than is 
actually collected, often resulting in a model with worse predictive performance. Similarly, the 
validation metrics are computed on a smaller subset, resulting in a less reliable estimate. The 
training problem is usually solved by developing a second model using the full dataset after meta-
parameters were selected and their performance evaluated. While we will not have a proper 
estimate for the performance of this additional model, it is commonly assumed that it will work at 
least as well as the model with the same meta-parameters, but built only on the training dataset. 
This assumption comes from an intuition that adding more data should not make the model worse. 

A popular choice to avoid the validation problem is to use a procedure that trains models multiple 
times, on many different subsets of data. Some of procedures in this class are Cross-Validation (CV) 
[Stone, 1974] and the Bootstrap method [Efron, 1979]. Cross-validation consists of dividing the 
available dataset into equally-sized subsets called “folds”, usually 5 or 10 in number or single-case 
folds (“Leave One Out” CV [Lachenbruch, 1968]). Then, the procedure consists of training and 
testing as many models as there are folds: each time, a different fold is chosen as the test set, while 
all other folds compose the training set for the model. Out-of-sample measures for each fold are 
then averaged to form an estimate of model performance that is effectively computed on all 
available data, while taking possible overfitting issues into account [Kohavi, 1995]. 

5. Machine learning in ophthalmology and optometry 
From the early nineties onward Machine Learning has become an increasingly popular tool to 
assist clinicians to identify certain ocular conditions. The large amount of data generated by new 
diagnostic techniques, specially imaging techniques, often hinders the interpretation of the 
results. To overcome this challenge machine learning techniques arose as an effective 
complementary tool to the practitioner´s criteria, not only for diagnosis but in recent years also as 
monitoring and prognostic tool of certain ocular conditions. 

For a better understanding of this section is important to mind that when reporting performance 
of classification methods (AUCs, sensitivity, specificity) among studies, severity disease and 
sample size should be considered. For instance, it will be likely easier to classify glaucoma eyes as 
glaucomatous when the average mean deviation is -6 dB compared to -2.5 dB. Also, it is also 
essential to understand that to compare the sensitivity of techniques, ideally they should be 
compared at fixed specificities, since when sensitivity increases specificity decreases (and vice 
versa).  

5.1. Glaucoma 

Glaucoma is an ocular disease that, if untreated, causes damage to the optic nerve, leading to vision 
loss and possibly blindness. It is one of the ocular pathologies where the most efforts regarding 
Machine Learning implementation have been made. Early works with Machine Learning in 
glaucoma research used Neural Networks to differentiate the visual fields of healthy and 
glaucomatous eyes [Goldbaum et al., 1990] [Goldbaum et al., 1991]. Other works related to visual 
function testing compared different classifiers for their ability to discriminate between healthy 
and glaucomatous eyes [Goldbaum et al., 2002]. Comparisons between machine learning 
techniques and the built-in indices of commercially available instruments were also performed 
[Lietman et al., 1999]. Unsupervised Machine Learning was also used in the early steps of 
automated glaucoma detection by classifying visual field data [Henson et al., 1996]. However, after 
the popularization of imaging techniques for glaucoma monitoring, Machine Learning tended to 
restrict to supervised learning. Using optimized data from a confocal scanning laser 
ophthalmoscope and different types of classifiers such as SVM, Neural Networks and Linear 
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Discriminant Analysis on nearly 300 retinal tomography images Bowd et al. [Bowd et al., 2002] 
reported AUC ranged from 0.90 to 0.96.  Further works used optic disc measurements acquired 
with Optical Coherence Tomography (OCT) to differentiate glaucoma in 189 eyes with AUC of 0.87 
[Huang et al., 2005]. An accuracy of 83% was obtained using OCT data of 135 eyes and by 
combining unsupervised learning and Decision Trees [Huang et al., 2007]. Burgansky-Eliash 
[Burgansky-Eliash et al., 2005] compared different classifiers on 89 eyes and reported AUC of 0.98 
using SVM trained on eight OCT features related to visual field. Pixel by pixel data obtained using 
imaging data has also been evaluated using Machine Learning classifiers to improve pattern 
detection. In fact, applying image processing techniques prior analysis has become an useful aid 
to increase the detection success rate [Khalil et al., 2014][Kumar et al., 2018].Similarly, automated 
detection of glaucoma using Machine Learning techniques has proved to be a successful method 
with accuracy over 85% [Khalil et al., 2014]. In the last years, unsupervised learning has resurged 
in glaucoma research to identify patterns of glaucomatous visual field loss. Over 2000 healthy and 
glaucomatous eyes were automatically separated in three different clusters depending on severity 
of the field loss with a Bayesian-independent component analysis [Goldbaum, 2009]. Elze and 
colleagues utilized over 13 000 images to identify 17 different vision loss prototypes easy to 
interpret for clinicians [Elze et al., 2014]. Also using unsupervised learning, Yousefi et at. [2016] 
showed that the detection of glaucomatous progression can be improved by assessing longitudinal 
changes in localized patterns of glaucomatous eyes. However, little work has been done for 
detection of glaucoma in early stages [Asaoka et al., 2017] or prediction of the disease [Bowd et 
al., 2004]. Future research will likely focus on these matters. 

5.2. Diabetic retinopathy 

As diabetes progresses there in an increasing risk that the disease may affect retinal blood vessels, 
leading to diabetic retinopathy (DR). DR is the main cause of vision deficiency and blindness 
among working-age adults, and its detection by image processing and Machine Learning 
techniques has recently gained interest. The potential of neural networks as a useful tool for 
telemedicine was already pointed out by some early works [Williamson et al., 1998][Gardner el 
at., 1996]. Jelinek et al. [Jelinek et al., 2011], reported 80% accuracy (90% sensitivity, 80% 
specificity) in differentiating healthy and DR eyes using SVM on 1100 images. In clinical practice 
the early detection of DR is often a challenge. A combination of k-nearest neighbour and linear 
discriminant classifiers was used on 430 retinal images to detect early cases of DR with a resulting 
0.95 AUC [Niemeijer et al., 2007]. Focusing on feature selection, using Naï ve Bayes and SVM, 
Sopharak et al. [Sopharak et al., 2009] reported 92.28% sensitivity, 98.52% specificity and 98.41% 
accuracy in the detection of exudates, one of the preliminary signs of DR. Detecting DR is as 
important as grading the disease. Many works on DR and Machine Learning aimed to develop an 
accurate grading system of DR. Image processing techniques and Artificial Neural Networks were 
successfully applied on 1273 subjects to develop a DR screening and grading system with no 
missing threatening cases of DR at a setting with 94.8% sensitivity and 52.8% specificity [Usher 
et al., 2003]. Similarly, from 124 processed raw images and Artificial Neural Networks reported 
80% accuracy of correct grading classification, 90% sensitivity and 100% specificity [Yun et al., 
2008]. DREAM (Diabetic Retinopathy Analysis using Machine Learning) is another grading system 
of DR developed using different classifiers on 1200 images (100% sensitivity, 53.16% specificity 
and 0.904 AUC) [Roychowdhury et al., 2014]. Morphological image processing and SVM were 
applied on 331 fundus images to classify the severity of the DR within different groups (82% 
sensitivity, 86% specificity) [Acharya et al., 2009]. Quellec et al. [Quellec et al., 2012] presented a 
learning framework for DR grading that avoids manual segmentation (i.e., process of partitioning 
a digital image into several segments). In addition, using thousands of images they showed how 
the AUC improves when incrementing the number of examination records. Recently, a worldwide 
competition organized by Kaggle and sponsored by the California Healthcare Foundation put 35 
thousand eye images at the disposal of over 600 competing teams to identify signs of diabetic 
retinopathy [Graham, 2015]. This competition has been so far, the largest application of Machine 
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Learning for the diagnosis of this ocular condition. Moreover, deep learning in the analysis of 
retinal images has made a tremendous progress in the last few years. In opposition to previous 
works focused on computing explicit features specified by experts, deep learning learns directly 
from images given a large data set of labelled examples. From the same extensive public database 
different research works aimed to prove the better performance of deep learning over more 
traditional machine learning techniques for the automated detection of DR [Gulshan et al., 
2016][Abramoff et al., 2016][Gargeya & Leng, 2017].  

Furthermore, since April 2018 the U.S. Food and Drug Administration (FDA) permits marketing of 
the first medical device to use artificial intelligence to detect greater than a mild level of DR in 
adults who have diabetes. Retinal telescreening for evaluation DR in the primary care setting may 
be useful in reaching rural and underserved patients [Jani et al., 2017][Mookiah, 2013]. 

5.3. Age-related macular degeneration 

Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in people 
over 50 in the developed world. Most of AMD-related lesions are detected visually by clinicians, 
which leads to subjectivity and consequently inter-observer variability. Accurate, automated 
identification of AMD-related lesions is the challenge of Machine Learning techniques within this 
area. Lahmiri et al [Lahmiri et al, 2014] detected ring-shaped exudates in retina digital images 
using digital imaging processing and SVM for classification of 45 colour fundus photographs 
reaching an excellent performance. Other authors used SVM, kNN, Naï ve Bayes and Neural 
Networks to present a dry AMD screening tool with a built-in risk index, reaching 93.70% 
accuracy, 91.11% sensitivity and 96.30% specificity [Mookiah et al., 2014]. Similarly, automated 
characterization of geographic atrophy (GA) from colour fundus photographs was done employing 
Random Forests [Freeny et al., 2015]. Unlike the former works, no data pre-processing was applied 
in a study solely based on clinical signs and patient's data retinal information that used different 
classification algorithms, such as Random Forest and SVM, to improve AMD diagnosis reaching 
over 0.90 AUC [Fraccaro et al., 2015]. 

5.4. Keratoconus 

Classification of corneal topography has been of interest since the early days of Machine Learning 
in Ophthalmology [Maeda et al., 1995], aiming especially at the detection of early keratoconus 
[Smolek et al., 1997]. This disease causes a gradual deformation of the cornea, often leading to a 
serious impairment of the visual quality. 

Zernike polynomials were used as variables and Decision Trees as classifier on 244 eyes to 
differentiate keratoconus eyes from normal eyes with 93% accuracy [Twa el al., 2005]. A follow-
up of this work examined Pseudo-Zernike polynomials on 254 eyes measured with a Optikon 
Keratron topographer. Neural Networks, C4.5 Decision Trees and Naive Bayes classifiers were 
utilized. Overall, they found the speed, accuracy, stability and interpretability of decision trees 
preferable to other methods for the dataset. In addition, they showed that Zernike polynomials 
provide a better variable representation than pseudo-Zernikes. [Marsolo et al., 2007]. A Neural 
Network, based on basic topographic and tomographic variables acquired by videokeratography, 
was used to classify 166 eyes as keratoconus or normal, reaching 0.991 AUC, sensitivity of 94% 
and a specificity of 100% [Saad et al., 2014]. 

Using 318 Orbscan II maps classified into four classes, normal, astigmatism, keratoconus and 
photorefractive keratectomy [Souza et al., 2010] reported 0.99 AUC for detecting keratoconus 
apart from the other non-keratoconus patterns with both SVM and Neural Networks. [Arbelaez et 
al., 2012] demonstrated using SVM on 3502 eyes divided into four different categories (i.e., 
normal, keratoconus, subclinical keratoconus and eyes with corneal surgery history) and 
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measured using a Scheimpflug camera combined with Placido corneal topography that precision 
improves when including posterior corneal surface data, especially for classifying subclinical 
keratoconus. Another attempt for detecting subclinical keratoconus used Classification Trees on 
372 eyes and 55 variables derived from anterior and posterior corneal Scheimpflug 
measurements. It reached 93.6% sensitivity and 97.2% specificity when classifying between 
normal eyes and subclinical keratoconus [Smadja et al., 2013]. Similarly, an algorithm based on 
semi-supervised learning proposed by [Cheboli et al., 2008] reached 95% accuracy in the 
detection of keratoconus suspects. Artificial Neural Networks were used on a 288-keratoconic-eye 
database to predict astigmatism in patients with keratoconus after ring implantation [Valde s-Mas 
et al., 2014]. This work reported a correlation coefficient of 0.92 between predicted and real 
values. On the other hand, the importance of using automated classifiers trained on bilateral data 
to discriminate between healthy and normal fellow corneas was pointed out by [Kova cs et al., 
2016]. Recently, [Ruiz-Hidalgo et al., 2016] reported 98.8% accuracy classifying between 
keratoconus and normal eyes and 93.1% accuracy discriminating between forme fruste and 
normal eyes, using 22 biometrical parameters as variables and SVM as classifier on 860 eyes. As 
indicated, many works have already showed a high success rate when classifying keratoconus from 
healthy eyes using different Machine Learning classifiers. Nowadays the open challenges are 
improving the success rate for the early diagnosis of the condition; classify the stage of the disease 
and predict its evolution. 

5.5. Refractive error assessment 

Using data from an autorefractometer and Hartmann-Shack device, Machine Learning was 
implemented to predict refractive error [Libralao et al., 2004]. However due to the large number 
of classes and small number of samples per class involved, the error was relatively high in 
comparison with other Machine Learning applications, e.g. around 18 % error using SVM in the 
assessment of the sphere, enhanced to 13 % error also using SVM but with artificially balanced 
classes. A more sophisticated approach using a classifier ensemble (i.e., combing several classifiers 
individually trained) was used for the same purpose and enhanced it to 95% certainty [Libralao 
et al., 2005]. A recent study using Neural Networks that aimed to predict the power vectors of 
refraction based on 460 eyes showed comparable results between subjective refraction and the 
Machine Learning results [Ohlendorf et al., 2017]. 

5.6. Corneal endothelium 

The first attempt at detecting the corneal endothelium cell boundaries was presented in the early 
nineties, based on a combination of image processing techniques and Neural Networks [Zhang et 
al., 1991]. A more intricate approach, also based on Neural Network, optimizes the weights 
between the input and first hidden layers to detect the boundaries of the human corneal 
endothelium [Hasegawa et al., 1996]. Neural Networks were later also used in identifying 
abnormalities in the different corneal layers acquired with confocal microscopy, reaching almost 
100 % accuracy [Sharif et al., 2015]. In other works Neural Networks were applied to epithelial 
and stromal thickness data in order to differentiate between keratoconus and normal eyes with a 
relatively high success rate (99.2 specificity and 94.6% sensitivity) [Silverman et al., 2014]. 

5.7. Dry eye disease 

Dry eye disease, one of the most common eye conditions, occurs when either the eye does not 
produce enough tears or when the tears evaporate too quickly. Despite the high prevalence of the 
condition, diagnostic methods are usually slit lamp- or questionnaire-based, often leading to an 
inconclusive diagnosis. Machine Learning techniques have shown their potential to standardize 
dry eye diagnostics. Classification of 55 infrared Meibomian gland images by means of image 
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processing and linear SVM achieved specificity of 96% and sensitivity of 98% when differentiating 
between dry eye and healthy eyes [Koh et al., 2012]. Another approach used 105 slit-lamp images 
to evaluate the thickness of the tear film’s lipid layer by means of image processing and various 
classifiers, of which SVM was the most accurate (81.90%) [Remeseiro et al., 2012] [Ramos et al., 
2011]. 

5.8. Nuclear cataracts 

The presence and severity of cataracts and lens opacification is often assessed by comparing a slit 
lamp exam with a set of standardized photographs (e.g. LOCS III [Chylack et al., 1993]) which tends 
to be inefficient, time consuming and imprecise. To overcome this limitation a method to grade 
cataracts based on SVM was proposed by [Cheung et al., 2011]. When applied to a set of 5750 slit-
lamp images the performance of the automatic method was more successful (99.4% images 
correctly graded) than the subjective method (97.0%). A follow-up of this work [Xu et al., 2013] 
proposed another automated method based on feature selection, parameter selection and a 
regression model training simultaneously on a large dataset of 5378 slit-lamp images, confirming 
the superior performance of automatic machine-learning methods over traditional manual 
methods in grading cataract severity. 

5.9. Other applications 

Other applications in ophthalmology using Machine Learning that have been reported are for 
example, diagnosis of achromatopsia or congenital stationary night blindness by analysing 
electroretinograms using Artificial Neural Networks, presented as a potentially powerful tool to 
enhance routine clinical examinations [Bagheri et al., 2014]. Artificial Neural Networks have also 
shown their potential to improve the ability of optical coherence tomography to detect optic 
neuritis [Garcia-Martin et al., 2013].  

Furthermore, the detection of the excessive ciliary muscle activity using kNN and SVM applied to 
a set of 40 thermal images has been reported [Harangi et al., 2011], as well as analysing eye 
tracking to diagnose dyslexia using SVM [Rello et al., 2015].  

Also, image processing techniques supported by Neural Networks showed their potential as a 
successful methodology for iris segmentation using visible wavelength iris images captured at-a-
distance and on-the-move, which are challenging conditions that lead to severely degraded image 
data [Proenca et al., 2010][ Proenca, 2010]. Finally, there is a classic example in Machine Learning 
text books for beginners called ‘The contact lens data’, an oversimplified contact lens fit problem 
used to teach the usefulness of decision trees [Witten et al., 2016].  A more accurate approach of 
this example could be consider to study which are the most critical parameters when fitting 
contact lenses, especially nowadays due to the rise of potentially new important fitting parameters 
[Consejo et al., 2017][Consejo et al., 2018], question that has been intriguing optometrists for 
decades.   

6. Practical tips of using Machine Learning 

6.1. Machine Learning Software 

There are many free open-source tools to implement Machine Learning techniques. Among them 
Weka (University of Waikato, New Zealand, www.cs.waikato.ac.nz/ml/weka) is easy to use by 
offering a Java-based graphical user interface and tools for data pre-processing (filters), 
classification, regression and visualization [Hall et al., 2009]. Similar programs are Orange 

http://www.cs.waikato.ac.nz/ml/weka/index.html
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(University of Ljubljana, Slovenia, https://orange.biolab.si/), which is popular for its user-friendly 
approach, and KNIME (Zurich, Switzerland, www.knime.org/), another well-known Machine 
Learning platform with a free edition. There are also more intricate and powerful commercial 
software options that require various levels of programming skills, such as MATLAB (The 
MathWorks, Inc., USA), the free statistical software package R (R Development Core Team, www.r-
project.org/) and the programming language Python (Python Software Foundation, 
www.python.org/). From these options Python is the most popular programming languages used 
for Machine Learning, but ultimately the selection will depend on the characteristics of the 
problem at hand and user’s familiarity the programming languages. It is important to note that the 
computational effort required to process very large datasets requires a powerful computer. For 
such applications several cloud solutions are available, such as Amazon Machine Learning 
(Amazon Web Services, Inc., USA, aws.amazon.com/machine-learning/) and Google Cloud 
Platform (https://cloud.google.com/). 

6.2. Further reading 

So far, the references in this work have mostly been restricted to recent peer-reviewed papers and 
conference proceedings. In addition to these, there are many books covering the principles of 
Machine Learning, but unfortunately only few of them are written at a beginners’ level. Some of 
the most popular and novel books for readers with programming skills and interested in building 
their own algorithms are [Witten et al., 2016] or [Segaran, 2017]. A brief overview of what 
Machine Learning can offer can be found in [Dutton et al., 1997], while Hastie (2008) [Hastie, 
2008] is one of the most popular and complete manuals on the subject. There are also many 
resources for readers interested in a particular classification algorithm, such as Bishop’s textbook 
regarding Neural Networks [Bishop, 1995], one of the most cited in the field. Similarly, Murthy 
(1998) [Murthy, 1998] provides an overview of decision trees, Furnkranz (1999) [Furnkranz, 
1999] gives an overview of rule-based methods, and Wettschereck et al.  (1997) [Wettschereck et 
al., 1997] presents a review of instance-based learning classifiers, such as kNN. Tutorials on SVM 
may be found in [Burges, 1998] or Cristianini (2000) [Cristianini et al., 2000]. 

7. Conclusions 
Machine Learning is a powerful, relatively easy to implement tool with infinite possibilities to 
enhance clinical practice and its potential applications in ophthalmology are mostly limited by the 
researcher’s imagination. Even though the majority of works use Machine Learning as a diagnostic 
tool, the possibilities of this technology go much further than just the identification of a certain 
ocular conditions, such as grading pathologies, early detection of diseases and predicting the 
evolution of certain conditions. 

The large number of imaging and image processing techniques available nowadays present new 
opportunities to develop decision-support tools that assist clinicians with the diagnosis of almost 
any ocular condition. One important issue with images that the pre-processing by means of filters 
or contrast techniques prior to machine learning analysis may cause the physical meaning of the 
variables to get lost, thus making the results more difficult to interpret. Thus Machine Learning 
risks becoming a ‘black box’. For this the reason most researchers prefer to stick to more tangible 
variables such as ocular parameters, rather than images, and make an a priori selection of the most 
important parameters for use during the training phase. This would restrict the possibilities to 
only those parameters that have a logical meaning, however, excluding potential unknown 
influences. It is therefore best to adopt a flexible approach in one’s choice of machine learning 
technique, always adopting it to the data type and context. Regarding the size of the original 
dataset it is always better to have a larger number of subjects (instances), but one should be 
cautious with the number of variables (parameters) included to avoid overfitting. Finally, it is 

about:blank
https://aws.amazon.com/machine-learning/
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important to apply appropriate data pre-processing to maximize the chance of obtaining a 
successful classification tool. 
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