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Keywords: ADI schemes, Douglas scheme, Modified Craig–Sneyd scheme,
Craig–Sneyd scheme, Hundsdorfer–Verwer scheme, convection-diffusion equa-
tion, mixed spatial derivative, convergence, non-smooth initial data, Dirac
delta, backward Kolmogorov equation, forward Kolmogorov equation, finite
difference methods, finite volume methods, adjoint spatial discretization.

Published and distributed by Maarten Wyns. The research presented in this
thesis was supported by the University Research Fund (BOF) of the University
of Antwerp and by a PhD fellowship of the Research Foundation–Flanders.

Contact information

B Applied Mathematics, Dept. Mathematics & Computer Science
University of Antwerp (CMI), Building G3.07
Middelheimlaan 1, B–2020 Antwerp, Belgium

T +32 (0)3 265 38 54

k wyns.maarten@gmail.com

m https://www.linkedin.com/in/maarten-wyns-525b3352

Copyright c©2017 by Maarten Wyns.

All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording, broadcasting or by any other
information storage and retrieval system without written permission from the
copyright owner.

mailto:wyns.maarten@gmail.com
https://www.linkedin.com/in/maarten-wyns-525b3352


Samenvatting

Convergentie-Analyse en Toepassing van ADI Schema’s voor
Partiële Differentiaalvergelijkingen uit de Financiële Wiskunde

In de huidige internationale financiële markten zijn opties producten die
vaak verhandeld worden. Gevorderde wiskundige modellen worden gebruikt
voor het bepalen van de eerlijke waarde van deze contracten, evenals hun af-
hankelijkheid van onderliggende variabelen en parameters. Dit leidt tot meerdi-
mensionale tijdsafhankelijke partiële differentiaalvergelijkingen (PDVen). Voor
de meerderheid van deze PDVen is er geen analytische oplossing beschikbaar
en dient men gebruik te maken van numerieke methoden om hun exacte op-
lossing te benaderen. De methode-der-lijnen is een welgekende en veelzijdige
aanpak voor het bepalen van een numerieke oplossing. Hierbij discretiseert
men eerst de plaatsvariabelen, met bvb. eindige differentiemethoden, hetgeen
leidt tot een groot stelsel van gewone differentiaalvergelijkingen (GDVen). In
een tweede stap wordt dit zogenaamde semidiscreet-systeem numeriek opgelost
aan de hand van een geschikte impliciete tijdstapmethode. Indien de PDV
meerdimensionaal is, dan kan deze tweede stap erg rekenintensief zijn bij het
gebruik van klassieke impliciete tijdstapmethodes.

In dit proefschrift beschouwen we de convergentie en de toepassing van
vier alternerende richting (Engels: direction) impliciete (ADI) schema’s voor
de numerieke oplossing van semidiscrete tweedimensionale convectie-diffusie-
vergelijkingen. Meer bepaald onderzoeken we het Douglas (Do) schema, het
Craig–Sneyd (CS) schema, het aangepaste (Engels: Modified) Craig–Sneyd
(MCS) schema en het Hundsdorfer–Verwer (HV) schema. ADI schema’s ma-
ken gebruik van een opsplitsing van het semidiscreet-systeem in de verschillende
plaatsrichtingen. Dit kan zorgen voor een aanzienlijk computationeel voordeel
in iedere tijdstap aangezien het makkelijker is om de suboperatoren achtereen-
volgens impliciet te behandelen, in plaats van de gehele operator in één keer.
De vier ADI schema’s zijn aangepast aan PDVen met gemengde afgeleiden en
worden vaak gebruikt in de financiële wiskunde. In dit gebied zijn gemengde
plaatsafgeleiden alomtegenwoordig vanwege correlatie tussen de onderliggende
stochastische processen.

In het eerste inleidende hoofdstuk worden de niet-uniforme Cartesische roos-
ters en de tweede-orde eindige differentieformules voorgesteld die doorheen de
thesis gebruikt worden voor de plaatsdiscretisatie van tijdsafhankelijke PDVen.
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ii Samenvatting

In het tweede inleidende hoofdstuk worden de vier ADI schema’s gëıntroduceerd
en wordt er een overzicht gegeven van de bestaande stabiliteits- en convergen-
tieresultaten. Voor het Do schema leidt dit reeds tot een algemeen eerste-orde
convergentieresultaat.

Het beschouwen van een verstoorde versie van het (M)CS schema, respec-
tievelijk het HV schema, leidt tot een recursie voor de totale discretisatiefout
van de verschillende schema’s. Door de lokale discretisatiefout spitsvondig op
te splitsen, en een lemma van Hundsdorfer toe te passen, bekomen we een
tweede-orde convergentieresultaat voor het (M)CS schema en het HV schema
onder enkele natuurlijke stabiliteits- en gladheidsaannames.

Bij niet-gladde beginfuncties kan toepassing van de ADI schema’s leiden
tot foutieve oscillaties in de numerieke oplossing. We geven een voorbeeld dat
het positieve effect van Rannacher tijdstappen illustreert, dit betekent het ver-
vangen van de eerste N0 ADI stappen door 2N0 halve tijdstappen met het
achterwaartse Euler schema. Voor het uitvoeren van een theoretische analyse
wordt een tweedimensionale convectie-diffusievergelijking beschouwd die voor-
zien is van Dirac-delta begindata. We passen een Fouriertransformatie toe om
aan te tonen dat, als de tijdsdiscretisatie gebeurt met het (M)CS schema, dan
N0 = 2 een ondergrens is voor N0 om te verzekeren dat de numerieke oplos-
sing convergeert naar de exacte oplossing. Uitgebreide numerieke experimenten
suggereren gelijkaardige resultaten voor het Do schema en het HV schema.

Onze convergentieresultaten verantwoorden het gebruik van de ADI sche-
ma’s in praktische toepassingen. In de laatste hoofdstukken introduceren we
twee methoden voor het kalibreren van stochastische lokale volatiliteitsmo-
dellen (SLV) aan hun onderliggende lokale volatiliteitsmodel (LV). De ADI
schema’s zijn hierbij belangrijk voor de efficiëntie van de kalibratiemetho-
den. De eerste kalibratiemethode is gëınspireerd door een verband tussen de
voorwaartse en achterwaartse Kolmogorov-vergelijking. De plaatsdiscretisatie
van de achterwaartse Kolmogorov-vergelijking wordt gebruikt voor het invoe-
ren van een toegevoegde plaatsdiscretisatie van de voorwaartse Kolmogorov-
vergelijking. Onder enkele voorwaarden kan deze toegevoegde plaatsdiscretisa-
tie gebruikt worden om het semidiscrete SLV model exact te kalibreren aan het
semidiscrete LV model. Om deze kalibratie uit te voeren dient er nog een stel-
sel niet-lineaire GDVen opgelost te worden. We maken gebruik van het MCS
schema voor de tijdsdiscretisatie en behandelen de niet-lineariteit door middel
van een iteratieprocedure. De tweede kalibratieprocedure is gebaseerd op een
nieuwe eindige volume (EV) methode voor de plaatsdiscretisatie van algemene
ééndimensionale en tweedimensionale voorwaartse Kolmogorov-vergelijkingen.
De EV methode is massabehoudend en kan op een natuurlijke manier omgaan
met de randvoorwaarden. Bovendien is er voor de nieuwe EV methode geen
transformatie van de voorwaartse Kolmogorov vergelijking nodig. Dit vormt
een belangrijk voordeel in vergelijking met bestaande EV methoden. Het ge-
bruik van de EV methode voor de kalibratie van SLV modellen leidt tot een
groot stelsel van niet-lineaire GDVen. Discretisatie in de tijd gebeurt aan
de hand van het HV schema en de niet-lineariteit wordt opnieuw behandeld
met een iteratieprocedure. Uitgebreide numerieke experimenten tonen aan dat
beide kalibratieprocedures leiden tot een snelle, stabiele, en accurate kalibratie
van SLV modellen aan hun onderliggende LV model.



Summary

Convergence Analysis and Application of ADI Schemes for Partial
Differential Equations from Financial Mathematics

In the contemporary international financial markets option products are
widely traded. Advanced mathematical models are employed for determining
the fair values of these contracts as well as their sensitivities to underlying
variables and parameters. This leads to multidimensional time-dependent par-
tial differential equations (PDEs). For the majority of these PDEs there is
no analytical solution available and one resorts to numerical methods for their
approximate solution. A well-known and versatile approach to the numerical
solution is given by the method-of-lines. The PDE is then first discretized in
the spatial variables, e.g. by finite differences, leading to a large system of ordi-
nary differential equations (ODEs). In a second step this so-called semidiscrete
system is numerically solved by applying a suitable implicit time discretization
method. If the PDE is multidimensional, then the latter task can be compu-
tationally intensive when classical implicit time stepping methods are used.

In this thesis we consider the convergence and application of four alternat-
ing direction implicit (ADI) time stepping schemes in the numerical solution
of semidiscretized two-dimensional convection-diffusion equations. More pre-
cisely, we consider the Douglas (Do) scheme, the Craig–Sneyd (CS) scheme,
the Modified Craig–Sneyd (MCS) scheme and the Hundsdorfer–Verwer (HV)
scheme. ADI schemes employ a splitting of the semidiscrete PDE operator in
the different spatial directions. This can lead to a major computational advan-
tage in each time step as it turns out that the implicitness is often much easier
to deal with when the suboperators are handled successively, instead of treating
the full operator all at once. The four ADI schemes are adapted to mixed spa-
tial derivative terms and widely used in financial mathematics. Mixed spatial
derivatives are prominent in computational finance due to correlation between
the underlying stochastic processes.

The first preliminary chapter presents the non-uniform Cartesian grids and
second order finite difference schemes that are used in the thesis for the spatial
discretization of time-dependent PDEs. The second preliminary chapter intro-
duces the four ADI time stepping schemes under consideration and gives an
overview of their existing stability and consistency results. For the Do scheme
this already leads to a general first order convergence result.
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iv Summary

A recursion formula for the total discretization error of the (M)CS scheme,
respectively the HV scheme, has been obtained by considering a perturbed
version of the respective schemes. We perform an ingenious splitting of the
local discretization errors and apply a key lemma from Hundsdorfer to arrive
at a second order convergence result for the (M)CS scheme and the HV scheme
under natural stability and smoothness assumptions.

If the initial function is non-smooth, then application of the ADI schemes
can lead to spurious erratic behaviour of the numerical solution. A motivating
example illustrates the positive effect of Rannacher time stepping, i.e. replac-
ing the first N0 ADI time steps by 2N0 half-time steps of the implicit Euler
scheme. We consider a model two-dimensional convection-diffusion equation
with Dirac delta initial data to perform a theoretical analysis. Application of
a two-dimensional Fourier transformation leads to the result that, if temporal
discretization is performed with the (M)CS scheme, then N0 = 2 is a lower
bound on N0 for the Rannacher time stepping in order to ensure convergence
of the numerical solution to the exact solution. Based on ample numerical ex-
periments, similar convergence results are conjectured for the Do scheme and
the HV scheme.

Our convergence results provide a basis for the schemes being used in prac-
tice. We introduce two methods for the calibration of state-of-the-art stochastic
local volatility (SLV) models to their underlying local volatility (LV) model.
Here, the ADI schemes are important for the efficiency of the calibration algo-
rithms. The first calibration method makes use of a relationship between the
corresponding forward and backward Kolmogorov equation. The spatial dis-
cretization of the backward Kolmogorov equation is used to adopt an adjoint
semidiscretization for the forward Kolmogorov equation. The latter spatial dis-
cretization allows, under some natural assumptions, to create an exact match
between the semidiscrete LV model and the semidiscrete SLV model. In order to
perform this calibration, a large system of non-linear ODEs needs to be solved.
Time stepping is performed with the MCS scheme and an inner iteration is
introduced to handle the non-linearity. For the second calibration procedure,
we propose a new finite volume (FV) method for the spatial discretization of
general one-dimensional and two-dimensional forward Kolmogorov equations.
The FV method is mass-conservative and handles the boundary conditions in
a natural way. Moreover, it does not require a transformation of the forward
Kolmogorov equation, which is a major advantage in comparison with existing
FV methods. Using the FV spatial discretization for the calibration of SLV
models leads to a large system of non-linear ODEs. Time stepping is performed
with the HV scheme and, as before, an inner iteration is used to handle the
non-linearity. Ample numerical experiments show that both calibration pro-
cedures lead to a fast, stable and accurate calibration of SLV models to their
underlying LV model.
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CHAPTER 1

Introduction and Outline of the Thesis

In the contemporary international financial markets option products are widely
traded. In addition to standard European call and put options, a broad range of
exotic derivatives exists. The primary goal of financial mathematics consists of
determining the fair values of these financial contracts as well as their sensitiv-
ities to underlying variables and parameters, which are crucial for hedging. To
this purpose advanced mathematical models are employed nowadays, yielding
initial-boundary value problems for multidimensional time-dependent partial
differential equations (PDEs), see e.g. [24, 27, 32, 49, 50, 64]. These PDEs are
in general of the convection-diffusion kind. An example of a time-dependent
convection-diffusion equation in one spatial dimension is given by

ut(x, t) + a(x, t)ux(x, t) = d(x, t)uxx(x, t), (1.0.1)

for x ∈ Ω ⊂ R, t > 0. Here a and d are assumed to be given real functions with d
positive. In some cases closed-form analytical formulas for the exact solutions
have been obtained in the literature. For the majority of option valuation
PDEs, however, such formulas are not available. In view of this, one resorts
to numerical methods for their approximate solution. For banks and other
financial institutions, the fast, accurate and stable numerical approximation of
option values and their sensitivities is of paramount importance.

A well-known and versatile approach to the effective numerical solution of
time-dependent convection-diffusion equations is given by the method-of-lines
(MOL), cf. e.g. [35]. It consists of two general, consecutive steps. In the first
step, the PDE is discretized in the spatial variables, e.g. by finite difference,
finite volume or (Galerkin) finite element methods. This leads to a so-called
semidiscrete system of ordinary differential equations (ODEs). In the second
step the obtained semidiscrete system is numerically solved by applying a suit-
able, implicit time-discretization method. If the PDE is multidimensional, then
the latter task can be computationally very intensive when classical implicit
methods, such as the Crank-Nicolson scheme, are applied. In the recent years,
a variety of operator splitting methods have been developed that enable, in
principle, a highly efficient and stable numerical solution of semidiscretized
multidimensional PDEs that arise in financial mathematics, see e.g. [35–37].

A prominent class of operator splitting methods are the Alternating Direc-
tion Implicit (ADI) schemes. ADI schemes employ a splitting of the semidis-
crete PDE operator in the different spatial dimensions. This can lead to a
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major computational advantage in each time step as it turns out that the im-
plicitness is often much easier to deal with when the suboperators are handled
successively, instead of treating the full operator all at once. ADI schemes form
state of the art time-discretization methods in contemporary financial mathe-
matics, see e.g. [3, 8, 37, 47, 49]. They were successfully used already in several
other application areas in science and engineering. However, the PDEs of finan-
cial mathematics are often of new types or have features that were studied only
marginally in other areas. This raises new, important questions about their ap-
plicability and their fundamental properties such as stability and convergence.
Notably, the Brownian motions in the underlying asset price processes are al-
most always correlated. This gives rise to mixed spatial derivative terms. Only
recently have ADI schemes been adapted to such situations, see [11,41,42], and
has a stability analysis been performed in a structured way. Before the start
of this thesis, however, there were little or no theoretical convergence results
available for the pertinent ADI methods. Next to mixed derivative terms, non-
smooth initial data constitute a common feature in financial applications. For
example, this data can be given by the option’s payoff functions, which are
in general only piecewise differentiable, or by the Dirac delta function. It is
well-known that convergence can then be seriously impaired, cf. e.g. [22, 56].

In this thesis a convergence analysis is presented for four ADI methods
adapted to mixed spatial derivative terms that are widely used in compu-
tational finance: the Douglas (Do) scheme, the Craig–Sneyd (CS) scheme,
the Modified Craig–Sneyd (MCS) scheme and the Hundsdorfer–Verwer (HV)
scheme. The results are directly relevant to semidiscretized two-dimensional
convection-diffusion equations from financial mathematics. Next to this, we
show the applicability of ADI schemes in the calibration of state-of-the-art
stochastic local volatility (SLV) models. Two different PDE-based numerical
methods are proposed where the ADI schemes contribute to a fast, stable and
accurate calibration.

Spatial discretization by finite differences on non-uniform Cartesian grids is
widely considered for the numerical solution of initial-boundary value problems
for PDEs stemming from financial mathematics. In the preliminary Chapter 2
we present a short overview of the Cartesian grids and finite difference schemes
that are used in the thesis. The pertinent smooth, non-uniform meshes and
second order finite difference formulas are well-known in computational finance
and have already been studied extensively in the literature, see e.g. [35,37,65].
Spatial discretization leads to a large system of ODEs. We show that, if the
semidiscrete system is stemming from a two-dimensional PDE, then application
of standard implicit time stepping methods to this system of ODEs can lead
to a number of operations in each time step that grows faster than the total
number of spatial grid points.

ADI time stepping methods employ a splitting of the semidiscrete operator
into suboperators that correspond with the spatial derivatives in the different
spatial directions. In the preliminary Chapter 3 we illustrate the favourable
result that implicit time steps with the suboperators, that do not correspond
with a mixed spatial derivative term, often require a number of operations that
is directly proportional to the total number of grid points. We introduce the
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four ADI schemes that are considered in this thesis, and give an overview of
the existing stability and consistency results relevant to semidiscretized two-
dimensional convection-diffusion equations with mixed derivative term. For
the Do scheme this already leads to a convergence result, cf. [34].

Starting from Chapter 4, we present our novel research results on the con-
vergence and application of ADI schemes. The majority of these results has
been published in the international scientific literature, see [43,44,68–70].

Chapter 4 deals with the convergence of the MCS scheme when it is ap-
plied to a general semidiscrete system stemming from spatial discretization of
a two-dimensional convection-diffusion equation with mixed derivative term
provided with smooth initial and boundary data. We consider a perturbed
version of the MCS scheme and obtain a recursion formula for the resulting
total error. Under natural smoothness assumptions, a Taylor expansion yields
useful expressions for the local errors in the perturbed scheme. By inserting
the latter expressions in the recursion formula, and by applying a key lemma
from Hundsdorfer [33], we arrive at a second order convergence theorem for the
MCS scheme. Application of the lemma requires several stability assumptions.
Positive theoretical results on these stability assumptions are obtained in the
von Neumann framework.

Our convergence analysis for the HV scheme in Chapter 5 is completely
analogous to that for the MCS scheme in Chapter 4. We prove that, under
natural stability and smoothness assumptions, the HV scheme is second order
convergent in the application to two-dimensional time-dependent convection-
diffusion equations with mixed derivative term. As before, the stability as-
sumptions are analysed theoretically in a model framework and ample numer-
ical experiments confirm our convergence result.

PDEs from financial mathematics are often provided with non-smooth ini-
tial functions. It is well-known that application of ADI time stepping methods
can then lead to spurious erratic behaviour of the numerical solution. Chap-
ter 6 deals with the influence of Rannacher time stepping, i.e. replacing the first
steps of the ADI scheme by several (sub)steps of the implicit Euler scheme, on
the order of convergence of the ADI schemes when they are applied to a model
two-dimensional convection-diffusion equation with mixed derivative term, pro-
vided with Dirac delta initial data. We introduce a discrete/continuous Fourier
transformation pair and show that the total discretization error can be writ-
ten as the sum of a low-wavenumber error and a high-wavenumber error. By
performing an asymptotic analysis in Fourier space, we prove a theoretical
convergence theorem for the MCS scheme and the CS scheme. Extensive nu-
merical experiments lead to a conjecture for the Do scheme, respectively the
HV scheme. In general, for this model PDE provided with Dirac delta initial
data, we observe that the first two ADI time steps have to be replaced by four
half-time steps of the implicit Euler scheme in order to ensure convergence of
the numerical solution to the exact solution.

In Chapter 7 and Chapter 8 the ADI schemes are applied for the calibration
of SLV models. Although the ADI schemes are important for the efficiency of
the calibration procedures, their application is not the main contribution of
the pertinent chapters.

Calibration of SLV models to the underlying local volatility (LV) model is
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a highly non-trivial task. In general, there is no closed-form solution available
for the fair value of vanilla options under the (S)LV model and it is difficult to
check whether the SLV model is calibrated “perfectly” to the LV model. Our
calibration method in Chapter 7 aims at matching the numerical approxima-
tion of the fair value of non-path-dependent options under the LV model with
the corresponding approximation of the fair value under the SLV model. By
introducing an adjoint spatial discretization, we prove that the semidiscretized
SLV model can be calibrated exactly to the semidiscretized LV model when-
ever similar spatial discretization methods are used. The calibration technique
leads to a large system of non-linear ODEs. We employ the MCS scheme for
the efficient temporal discretization of this system of ODEs and describe an
iteration procedure for handling the non-linearity.

Numerically solving the forward Kolmogorov equation corresponding to an
SLV model is a common approach for its calibration to the underlying LV
model. The solutions of forward Kolmogorov equations represent density func-
tions and conservation of mass is a key property. In Chapter 8 we propose a
new finite volume (FV) spatial discretization method that is mass-conservative
and that does not require a transformation of the PDE. The latter property
forms a major advantage in comparison with existing FV methods, since in
practical applications the PDE coefficients are often non-smooth. Applying
the FV discretization for the calibration of SLV models results in a large sys-
tems of non-linear ODEs. The HV scheme is employed for the efficient temporal
discretization and, as in Chapter 7, an inner iteration is used for handling the
non-linearity. We conclude Chapter 8 by comparing our adjoint technique and
the FV method for the calibration of SLV models.

The final Chapter 9 summarizes our main results and conclusions, and gives
an outlook for future research.



CHAPTER 2

Spatial Discretization of PDEs from Finance

2.1. Introduction

In the first step of the MOL, the pertinent PDE is discretized in the spatial
variables. The spatial variables of time-dependent PDEs from finance often
represent asset prices, volatilities or they are the result of a continuous trans-
formation of such quantities. The resulting spatial domains are rectangular
and easy to discretize. Moreover, in financial applications the important re-
gions, i.e. regions of interest, where the solution is of main interest or where
it is non-smooth, are often known in advance. Semidiscretization by finite dif-
ferences (FD) on fixed Cartesian grids then forms a natural candidate for the
spatial discretization of such PDEs. This approach is widely used and generally
adopted in computational finance, see e.g. [49, 65]. In this chapter we present
a short overview of the Cartesian grids and FD schemes that are used in the
thesis.

The chapter is structured as follows. In Section 2.2 it is shown that uniform
Cartesian grids often lead to an excess of grid points. The use of non-uniform
meshes can be beneficial. We introduce a general approach for the construction
of smooth non-uniform grids. In Section 2.3 several well-known FD formulas
are presented for the approximation of the first and second derivative. We il-
lustrate that semidiscretization of one-dimensional and two-dimensional time-
dependent convection-diffusion equations by the pertinent FD schemes, leads
to large systems of ODEs. An analysis of the sparsity structure of the semidis-
cretization matrix reveals that, if the semidiscrete system is stemming from
a two-dimensional PDE, then application of standard implicit time stepping
methods to this system of ODEs can be computationally very intensive.

2.2. Cartesian Grids

Since the spatial domains of PDEs from financial mathematics are often rect-
angular, the use of Cartesian spatial grids is very natural [35]. This type of grid
is constructed by defining meshes in each of the spatial directions. The multidi-
mensional spatial grid consists of the Cartesian product of the one-dimensional
meshes. For example, let Ω = [xmin, xmax]× [ymin, ymax] ⊂ R2 be a rectangular
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domain and let

x1 < x2 < · · · < xm1
, respectively y1 < y2 < · · · < ym2

,

be a mesh in the interval [xmin, xmax], respectively [ymin, ymax]. The corre-
sponding Cartesian grid representing the full domain Ω is then given by

(xj , yk) for 1 ≤ j ≤ m1, 1 ≤ k ≤ m2.

Uniform Cartesian grids are the most simple grids. Here, the underlying one-
dimensional meshes all have a uniform mesh width. When working with uni-
form Cartesian grids, the uniform mesh widths are limited in the different
spatial directions by the accuracy requirements in each part of the spatial do-
main. In practical applications, however, one often wants a higher accuracy
in a region of interest than in the rest of the domain. Moreover, non-smooth
behaviour of the solution can lead to a loss of accuracy of spatial discretization
methods, see e.g. [56, 65]. The use of uniform Cartesian grids then leads to
an excess of grid points, e.g. in regions where the solution is smooth and a
low accuracy is sufficient. By introducing non-uniform underlying meshes, the
number of grid points can be reduced whilst the accuracy is as required in each
part of the spatial domain. For spatial discretization methods (cf. Section 2.3)
it is often important that the meshes are smooth. Let

∆xj = xj − xj−1, for 2 ≤ j ≤ m1

denote spatial mesh widths. We say that the corresponding one-dimensional
mesh is smooth if there exist strictly positive constants C0, C1, C2 such that

C0∆x ≤ ∆xj ≤ C1∆x and |∆xj+1 −∆xj | ≤ C2(∆x)2 (2.2.1)

uniformly in j and m1, and where ∆x denotes a maximal mesh width, cf.
[35, 37]. In the next subsection a technique is introduced to create smooth
meshes that have a small uniform mesh width inside a given interval and larger
mesh widths outside this interval, cf. [24, 25].

2.2.1. Construction of Smooth Non-Uniform Grids

In general, non-uniform meshes are not smooth in the sense of (2.2.1). This
property, however, can be important for the performance of spatial discretiza-
tion methods. A well-known technique to construct smooth non-uniform grids
consists of defining the mesh by a smooth transformation of a uniform under-
lying grid, see e.g. [37,65]. Based on the meshes defined in [24,25] we introduce
a smooth grid

xmin = x1 < x2 < · · · < xm1
= xmax (2.2.2)

in the interval [xmin, xmax] that has a small uniform mesh width within a subin-
terval [xleft, xright] ⊂ [xmin, xmax] and increasing mesh widths outside the subin-
terval.

Let integer m1 ≥ 2 denote the number of mesh points for the discretization
of the interval [xmin, xmax] and let d1 > 0 be a parameter that controls the
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fraction of points that lie inside the subinterval [xleft, xright]. Next, define
equidistant points ζmin = ζ1 < ζ2 < · · · < ζm1

= ζmax where

ζmin = sinh−1

(
xmin − xleft

d1

)
,

ζint =
xright − xleft

d1
,

ζmax = ζint + sinh−1

(
xmax − xright

d1

)
.

It follows that ζmin ≤ 0 ≤ ζint ≤ ζmax. A mesh (2.2.2) that satisfies the above
properties is then defined through the transformation

xj = Ψ(ζj), for 1 ≤ j ≤ m1, (2.2.3)

where

Ψ(ζ) =


xleft + d1 sinh(ζ), for ζmin ≤ ζ ≤ 0,

xleft + d1ζ, for 0 ≤ ζ ≤ ζint,

xright + d1 sinh(ζ − ζint), for ζint ≤ ζ ≤ ζmax.

It is readily seen that the above mesh is smooth in the sense of (2.2.1).

For some applications, e.g. the discretization of a Dirac delta function, it is
important to have a specific point included in the mesh. This can be obtained
easily by slightly changing the underlying uniform grid, cf. [8]. Suppose for
example that the point X0 ∈ (xmin, xmax) needs to coincide with a grid point.
Let j0 be the index such that ζj0 is the grid point closest to Ψ−1(X0), define ζ̃j0
by Ψ−1(X0) and let f be a piecewise linear interpolant corresponding to the
points {(ζmin, ζmin), (ζj0 , ζ̃j0), (ζmax, ζmax)}. If we define x̃j by Ψ(f(ζj)), then
the new grid x̃j , 1 ≤ j ≤ m1, is similar to (2.2.3) and contains the value X0.
Since the point X0 is assumed not to be at the boundary, it can be shown that
the new grid is also smooth in the sense of (2.2.1).

2.3. Finite Difference Discretization

In this thesis, discretization of the spatial derivatives is mainly performed by
finite differences. Once the Cartesian grid is defined, the exact solution of the
PDE is approximated at the grid points by replacing all the spatial derivatives
at the nodes by finite differences. Spatial discretization by FD on Cartesian
grids has already been studied extensively in the literature, see e.g. [35, 62],
and is widely considered for the numerical solution of initial-boundary value
problems for time-dependent PDEs stemming from financial mathematics, see
e.g. [8,37,49,64,65]. Dependent on the properties of the PDE and the desired
properties of the numerical approximations, different FD formulas can be ap-
plied. For financial applications it is common to consider first and second order
FD schemes, cf. the above references.
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2.3.1. Finite Difference Formulas

Semidiscretization on uniform grids leads to standard first and second order FD
formulas. Recently, however, non-uniform spatial grids have been introduced in
computational finance, see e.g. [24,25,37,65], and the second order FD formulas
then need to be generalised. Let f : R→ R be any given function, let xj , j ∈ Z,
be any given increasing sequence of mesh points and let ∆xj = xj − xj−1 for
all j. In order to approximate the first derivative of f , we consider three FD
formulas:

f ′(xj) ≈ αj,−2f(xj−2) + αj,−1f(xj−1) + αj,0f(xj), (2.3.1a)

f ′(xj) ≈ βj,−1f(xj−1) + βj,0f(xj) + βj,1f(xj+1), (2.3.1b)

f ′(xj) ≈ γj,0f(xj) + γj,1f(xj+1) + γj,2f(xj+2), (2.3.1c)

with coefficients given by

αj,−2 =
∆xj

∆xj−1(∆xj−1+∆xj)
, αj,−1 =

−∆xj−1−∆xj
∆xj−1∆xj

, αj,0 =
∆xj−1+2∆xj

∆xj(∆xj−1+∆xj)
,

βj,−1 =
−∆xj+1

∆xj(∆xj+∆xj+1) , βj,0 =
∆xj+1−∆xj
∆xj∆xj+1

, βj,1 =
∆xj

∆xj+1(∆xj+∆xj+1) ,

γj,0 =
−2∆xj+1−∆xj+2

∆xj+1(∆xj+1+∆xj+2) , γj,1 =
∆xj+1+∆xj+2

∆xj+1∆xj+2
, γj,2 =

−∆xj+1

∆xj+2(∆xj+1+∆xj+2) .

To approximate the second derivative f ′′(xj), we employ the central finite
difference scheme

f ′′(xj) ≈ δj,−1f(xj−1) + δj,0f(xj) + δj,1f(xj+1), (2.3.2)

where

δj,−1 = 2
∆xj(∆xj+∆xj+1) , δj,0 = −2

∆xj∆xj+1
, δj,1 = 2

∆xj+1(∆xj+∆xj+1) .

For a function of two variables f : R2 → R, the mixed derivative fxy is approx-
imated by application of (2.3.1b) successively in the two directions.

The finite difference schemes above are all well-known in the literature. For-
mula (2.3.1a), respectively (2.3.1b), (2.3.1c), is called the second order back-
ward, respectively second order central, second order forward, formula for the
first derivative. Finite difference scheme (2.3.2) is called the second order cen-
tral formula for the second derivative. Through Taylor expansion it can be
verified that each of the finite difference approximations above has a second
order truncation error, provided that the function f is sufficiently often con-
tinuously differentiable and the mesh is smooth in the sense of (2.2.1).

2.3.2. Spatial Discretization of One-Dimensional PDEs

The non-uniform grids from Subsection 2.2.1 can be used in combination with
the FD schemes (2.3.1), (2.3.2) to define approximations of the exact solution of
time-dependent convection-diffusion equations. In this subsection we illustrate
FD discretization for the general one-dimensional PDE (1.0.1) where the spatial
domain Ω = (xmin, xmax) is assumed to be a finite interval. It is assumed
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that u(x, 0) = u0(x) with given initial function u0, and that conditions on the
boundary of Ω are defined. For some (financial) applications the spatial domain
can be unbounded, e.g. if x represents an asset price (or the logarithm of an
asset price) and u represents the fair value of a non-path-dependent option.
Then, to make the semidiscretization feasible, the spatial domain needs to be
truncated and complimentary boundary conditions have to be imposed.

In a first step, the spatial domain is discretized by choosing grid points

xmin = x1 < x2 < · · · < xm1
= xmax.

Next, using the FD formulas from the previous subsection leads to approx-
imations Uj(t) of the exact solution u(xj , t), 1 ≤ j ≤ m1. For example, if
the second order central FD scheme is considered for both the convection and
diffusion part, then the approximations are defined by the ordinary differential
equation

U ′j(t) = d(xj , t) (δj,−1Uj−1(t) + δj,0Uj(t) + δj,1Uj+1(t))

− a(xj , t) (βj,−1Uj−1(t) + βj,0Uj(t) + βj,1Uj+1(t)) ,
(2.3.3)

for 1 < j < m1, t > 0. The initial values Uj(0) are given by the function
values u0(xj). In order to complete the above system of ODEs, the boundary
conditions are used to define U1(t) and Um1

(t). For example, if a Dirichlet
boundary condition u(xmin, t) = umin(t) holds at the lower boundary, with
given function umin, then one can put U1(t) = umin(t). In financial applications,
the linear boundary condition is widely considered. Suppose that the linear
boundary condition uxx(xmax, t) = 0 is imposed at the upper boundary. Let
xm1+1 = xm1

+ ∆xm1
be a virtual point and define the value Um1+1(t) via

δm1,−1Um1−1(t) + δm1,0Um1(t) + δm1,1Um1+1(t) = 0,

which can be viewed as a discrete equivalent of the linear boundary condition.
Then, one can use the standard second order FD schemes at xm1

such that

U ′m1
(t) = −a(xm1

, t) (βm1,−1Um1−1(t) + βm1,0Um1
(t) + βm1,1Um1+1(t))

+ d(xm1
, t) (δm1,−1Um1−1(t) + δm1,0Um1

(t) + δm1,1Um1+1(t))

= −a(xm1 , t)
(
− 1

∆xm1
Um1−1(t) + 1

∆xm1
Um1(t)

)
.

It is readily seen that this discretization of the linear boundary condition cor-
responds with putting the second derivative uxx equal to zero and using the
first-order backward FD formula for the first derivative ux.

Let U(t) be the vector containing all the approximations Uj(t), 1 ≤ j ≤ m1.
The FD discretization can then be written as a system of ODEs

U ′(t) = A(t)U(t) + g(t), (2.3.4)

for t > 0, with given matrices A(t) and vectors g(t) where the latter ones
contain the information about the boundary conditions. The initial vector
U(0) is defined via the initial function u0. Let x be the vector containing all
the grid points xj and denote by diag[·] the operator that turns a vector into
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a diagonal matrix with diagonal entries given by the elements of the vector.
For a function f : R2 → R, define by f(x, t) a vector with elements f(xj , t),
1 ≤ j ≤ m1. The matrix A(t) can then be written as

A(t) = diag[d(x, t)]Dxx − diag[a(x, t)]Dx,

where Dx, respectively Dxx, denotes the matrix that corresponds to the dis-
cretization of the first, respectively second derivative. This type of expression is
useful for the FD discretization of multidimensional convection-diffusion equa-
tions.

2.3.3. Spatial Discretization of Two-Dimensional PDEs

Finite difference discretization of multidimensional time-dependent convection-
diffusion equations can be performed similarly to the FD discretization of one-
dimensional PDEs. In view of the second step of the MOL, i.e. time discretiza-
tion, it is important that the resulting semidiscrete system can be written in
a convenient form. In the following this is illustrated for the general two-
dimensional time-dependent convection-diffusion equation

ut + a1ux + a2uy = d11uxx + 2d12uxy + d22uyy, (2.3.5)

for (x, y) ∈ Ω ⊂ R2, t > 0. The spatial domain Ω = (xmin, xmax)× (ymin, ymax)
is assumed to be a finite rectangle and a1, a2, d11, d12, d22 are given real func-
tions of x, y and t such that

d11 ≥ 0, d22 ≥ 0, d2
12 ≤ γd11d22, (2.3.6)

with 0 ≤ γ ≤ 1. It is assumed that u(x, y, 0) = u0(x, y) with given initial
function u0, and that boundary conditions are defined.

The semidiscretization is initiated by constructing meshes in both spatial
directions

xmin = x1 < x2 < · · · < xm1
= xmax,

ymin = y1 < y2 < · · · < ym2
= ymax,

and defining the full Cartesian grid as (xj , yk), 1 ≤ j ≤ m1, 1 ≤ k ≤ m2.
Application of the second order central FD schemes leads to approximations
U j,k(t) of u(xj , yk, t) for 1 < j < m1, 1 < k < m2. Recall that the mixed spa-
tial derivative uxy is approximated by applying the second order central FD
scheme (2.3.1b) successively in the x- and y-direction. Approximations U j,k(t)
of u(xj , yk, t) at the boundary points are obtained by using the boundary con-
ditions.

Let U(t) be the matrix with entries U j,k(t), and denote by x, respectively
y, the vector with elements xj , 1 ≤ j ≤ m1, respectively yk, 1 ≤ k ≤ m2. For
a function f : R3 → R, we define by f(x,y, t) the m1×m2 matrix with entries
f(xj , yk, t) for 1 ≤ j ≤ m1, 1 ≤ k ≤ m2. The semidiscretization can then be
formulated as

U ′(t) = d12(x,y, t) ◦
[
DxU(t)DT

y

]
+G0(t)

+ d11(x,y, t) ◦ [DxxU(t)]− a1(x,y, t) ◦ [DxU(t)] +G1(t)

+ d22(x,y, t) ◦
[
U(t)DT

yy

]
− a2(x,y, t) ◦

[
U(t)DT

y

]
+G2(t),

(2.3.7)
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for t > 0, and where ◦ denotes the Hadamard product. The given matri-
ces G0(t), G1(t), G2(t) contain the information about the boundary condi-
tions corresponding to the mixed derivative, respectively derivatives in the
x-direction and derivatives in the y-direction. The matrices Dx, Dxx, Dy, Dyy

correspond to the discretization of the different spatial derivatives and are sim-
ilar to those from the previous subsection. The initial matrix U(0) is defined
via the initial condition u0.

For the second step of the MOL we rewrite (2.3.7) in a more convenient
form. Denote by vec[·] the operator that turns any given matrix into a vector
by putting its successive columns below each other. Let U(t) = vec[U(t)] and
denote by Ix, respectively Iy, the identity matrix of size m1×m1, respectively
m2 ×m2. Using some well-known properties of the Kronecker product ⊗, see
e.g. [31], it follows that

U ′(t) = A(t)U(t) + g(t)

= (A0(t) +A1(t) +A2(t))U(t) + g0(t) + g1(t) + g2(t),
(2.3.8)

for t > 0, with

A0(t) = diag[vec[d12(x,y, t)]](Dy ⊗Dx),

A1(t) = diag[vec[d11(x,y, t)]](Iy ⊗Dxx)− diag[vec[a1(x,y, t)]](Iy ⊗Dx),

A2(t) = diag[vec[d22(x,y, t)]](Dyy ⊗ Ix)− diag[vec[a2(x,y, t)]](Dy ⊗ Ix),

and

gi(t) = vec[Gi(t)], for 0 ≤ i ≤ 2.

Suppose that d12 is the product of two functions dx12, dy12 where the former one
is only dependent on (x, t) and the latter one is only dependent on (y, t). The
matrix A0(t) can then be rewritten as

A0(t) = (diag[dy12(y, t)]⊗ diag[dx12(x, t)])(Dy ⊗Dx)

= (diag[dy12(y, t)]Dy)⊗ (diag[dx12(x, t)]Dx) .

Similarly, if one of the other coefficient functions d11, d22, a1, a2 can be written
as the product of a function that is only dependent on (x, t) and a function
that is only dependent on (y, t), then the corresponding term in the semidis-
cretization (2.3.8) can be simplified in this way.

2.3.4. Sparsity Structure of the Semidiscrete System

In general, the exact solutions to semidiscrete systems of the type (2.3.4),
(2.3.8) are not known in analytical form and one relies on numerical time
stepping methods for their approximate solution. Let I be the identity matrix
of the same size as the matrix A(t). Classical implicit time stepping often
requires solving linear systems of equations involving a matrix

B = I − θ∆tA(t), (2.3.9)
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Figure 2.1: Sparsity structure of the matrix B corresponding to the semidiscrete sys-
tem (2.3.8) where m1 = 15, m2 = 5.

for some real, strictly positive coefficient θ and temporal step size ∆t, cf. e.g.
[28, 35]. Hence, the sparsity structure of the semidiscretization matrix A(t)
plays an important role in the computational cost of the time stepping scheme.

Recall that the semidiscrete system (2.3.4) for the one-dimensional PDE
is constructed by using second order central FD schemes. The corresponding
matrix A(t) is tridiagonal and solving linear systems involving the matrix B
from (2.3.9) can then be performed very efficiently. Moreover, if the matrix
B is independent of the time step, one can determine a LU factorization of it
once, beforehand, and then use it in all steps. As the matrix B is tridiagonal,
both matrices L and U are bidiagonal and the cost of solving one linear system
with matrix B grows just linearly in m1, which is very favourable.
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Matrix L (2D)
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Figure 2.2: Sparsity structure of the matrix L (left) and U (right) corresponding to
the semidiscrete system (2.3.8) where m1 = 15, m2 = 5.

The semidiscretization matrix A from (2.3.8) for the two-dimensional PDE,
that involves Kronecker products of the FD matrices, has at most nine non-zero
elements per row and column. The same holds for the corresponding matrix
B from (2.3.9). As illustrated in Figure 2.1, however, the FD discretization
of the two-dimensional problem gives rise to non-zero subdiagonals that lie
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at a distance m1 + 1 from the main diagonal. Therefore, solving linear sys-
tems with matrix B is more involved in the two-dimensional case than in the
one-dimensional case. Suppose that the matrix B stemming from the two-
dimensional case is independent of the time step so that the LU decomposition
can be applied beforehand to increase the computational efficiency. As shown
in Figure 2.2, the corresponding matrices L and U suffer from fill-in. In gen-
eral, each row of L and U possesses m1 + 1 non-zero entries and, consequently,
the number of operations needed in each time step to solve a linear system with
matrix B is directly proportional to m2

1m2. Hence, this number of operations
in each time step grows faster than the total number of grid points m1m2,
which is not favourable.





CHAPTER 3

ADI Time Discretization Methods

3.1. Introduction

Semidiscretization by FD formulas of initial-boundary value problems for time-
dependent convection-diffusion equations leads to large systems of ODEs. In
general there is no analytical solution available to these semidiscrete systems
and one relies on numerical methods for their approximate solution. Since
these systems of ODEs are usually stiff, implicit time stepping schemes form
natural candidates. Let A be the semidiscretization matrix. Classical implicit
methods such as the Crank–Nicolson scheme, see e.g. [12], require solving linear
systems involving a matrix B as defined in (2.3.9). At the end of Chapter 2
it was shown that, if the PDE is two-dimensional, then the latter task can be
computationally very intensive when standard LU -decomposition is applied.
Similar results can be shown for higher-dimensional PDEs.

Starting from the 1950s, a variety of Alternating Direction Implicit (ADI)
time stepping schemes have been developed, see e.g. [7, 13, 14, 55], that enable
a highly efficient and stable numerical solution of semidiscretized multidimen-
sional PDEs. ADI schemes employ a splitting of the semidiscrete operator in
the different spatial directions, such as the splitting in (2.3.8). In each implicit
stage of a given time step only one spatial dimension is handled, which can
lead to a major computational advantage.

Consider for example the semidiscretization of the two-dimensional PDE in
Subsection 2.3.3. Application of an ADI scheme requires solving linear systems
of equations involving matrices

B1 = I − θ∆tA1(t) and B2 = I − θ∆tA2(t),

where A1(t), A2(t) are defined by (2.3.8). As illustrated in Figure 3.1, the
matrix B1 is tridiagonal and B2 is essentially tridiagonal such that the linear
systems can be solved very efficiently. Moreover, if the matrices are indepen-
dent of the time step, the computational efficiency can again be improved by
determining a LU factorization of both matrices once, beforehand. Since the
matrices B1, B2 are essentially tridiagonal, the corresponding matrices L and
U are essentially bidiagonal. Once the factorization is performed, the number
of operations needed in each time step to solve the linear systems of equations
is directly proportional to the total number of grid points m1m2. This yields

15
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a large computational advantage in comparison with most classical implicit
time stepping methods, which often require a number of operations directly
proportional to m2

1m2, cf. Subsection 2.3.4.
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Figure 3.1: Sparsity structure of the matrix B1 (left) and B2 (right) corresponding to
the semidiscrete system (2.3.8) where m1 = 15, m2 = 5.

The remainder of this chapter is organised as follows. In Section 3.2 we
present four ADI schemes adapted to mixed spatial derivative terms that are
widely used in computational finance. Section 3.3 gives an overview of the exist-
ing stability results for the pertinent ADI schemes relevant to two-dimensional
convection-diffusion equations. In order to establish convergence of numerical
processes for differential equations, the well-known, general approach consists
of proving both stability and consistency of the scheme, see e.g. [28,35]. In Sec-
tion 3.4 the classical orders of consistency of the ADI schemes are presented
together with the uniform consistency bounds derived in [34].

3.2. ADI Methods Adapted to Mixed Spatial Derivatives

Directional splitting methods have already been used successfully in several ap-
plication areas in science and engineering other than financial mathematics, cf.
e.g. [7, 48, 67]. However, the PDEs of financial mathematics often have mixed
spatial derivative terms due to correlated Brownian motions in the underlying
stochastic processes. This feature was only studied marginally in other appli-
cation areas. Only recently have ADI schemes been adapted to mixed spatial
derivative terms and has a first analysis been performed in a structured way. In
contemporary financial mathematics ADI schemes form state-of-the-art time
discretization methods, see e.g. [8, 26,37,45,64].

FD discretization of initial-boundary value problems for multidimensional
time-dependent convection-diffusion equations leads to large systems of stiff
ODEs

U ′(t) = F (t, U(t)), for 0 ≤ t ≤ T, (3.2.1)

with given vector-valued function F : [0, T ]×Rm → Rm, given end time T and
given initial vector U(0) = U0 ∈ Rm. Here, m denotes the total number of
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spatial grid points. Assume that the underlying PDE is l-dimensional and let
the vector-valued function F be decomposed as

F (t,v) = F0(t,v) + F1(t,v) + · · ·+ Fl(t,v), for 0 ≤ t ≤ T, v ∈ Rm, (3.2.2)

where F0 represents the mixed spatial derivative terms and Fi, for 1 ≤ i ≤ l,
represents all spatial derivative terms in the ith direction. In this thesis, for
the time discretization of (3.2.1) four prominent schemes of the ADI type are
considered: the Douglas (Do) scheme, the Craig–Sneyd (CS) scheme, the Mod-
ified Craig–Sneyd (MCS) scheme and the Hundsdorfer–Verwer (HV) scheme.
Let θ > 0 be a given parameter, let ∆tn > 0 be given temporal step sizes and
set tn = tn−1 +∆tn for integers n ≥ 0. For the ease of presentation we omit the
dependency of the temporal step size ∆tn on the time step number n. Also,
in computational practice uniform temporal grids are widely considered. The
four ADI schemes define, in a one-step manner, approximations Un to U(tn)
successively for n = 1, 2, 3, . . . with tn ≤ T through:

Do scheme:
Y0 = Un−1 + ∆t F (tn−1, Un−1),

Yi = Yi−1 + θ∆t (Fi(tn, Yi)− Fi(tn−1, Un−1)) , for i = 1, 2, . . . , l

Un = Yl,

(3.2.3)

CS scheme:

Y0 = Un−1 + ∆t F (tn−1, Un−1),

Yi = Yi−1 + θ∆t (Fi(tn, Yi)− Fi(tn−1, Un−1)) , for i = 1, 2, . . . , l

Ỹ0 = Y0 + 1
2∆t (F0(tn, Yl)− F0(tn−1, Un−1)) ,

Ỹi = Ỹi−1 + θ∆t (Fi(tn, Ỹi)− Fi(tn−1, Un−1)), for i = 1, 2, . . . , l

Un = Ỹl,

(3.2.4)

MCS scheme:

Y0 = Un−1 + ∆t F (tn−1, Un−1),

Yi = Yi−1 + θ∆t (Fi(tn, Yi)− Fi(tn−1, Un−1)) , for i = 1, 2, . . . , l

Ŷ0 = Y0 + θ∆t (F0(tn, Yl)− F0(tn−1, Un−1)) ,

Ỹ0 = Ŷ0 + ( 1
2 − θ)∆t (F (tn, Yl)− F (tn−1, Un−1)) ,

Ỹi = Ỹi−1 + θ∆t (Fi(tn, Ỹi)− Fi(tn−1, Un−1)), for i = 1, 2, . . . , l

Un = Ỹl,

(3.2.5)
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HV scheme:

Y0 = Un−1 + ∆t F (tn−1, Un−1),

Yi = Yi−1 + θ∆t (Fi(tn, Yi)− Fi(tn−1, Un−1)) , for i = 1, 2, . . . , l

Ỹ0 = Y0 + 1
2∆t (F (tn, Yl)− F (tn−1, Un−1)) ,

Ỹi = Ỹi−1 + θ∆t (Fi(tn, Ỹi)− Fi(tn, Yl)), for i = 1, 2, . . . , l

Un = Ỹl.

(3.2.6)

Each of the ADI schemes above treats the F0 part, which represents all
mixed derivative terms, in an explicit manner. Each implicit substep only
handles spatial derivatives in one spatial dimension, often leading to systems
of equations involving essentially tridiagonal matrices, cf. Section 3.1.

The Do scheme (3.2.3) has been considered for example in [34,35], and can
be regarded as a direct generalisation of the classical ADI schemes for diffusion
equations by Douglas & Rachford [14] and Peaceman & Rachford [55] to the
situation where mixed spatial derivative terms are present in the equation. To
the best of our knowledge, this generalisation was first considered by McKee
& Mitchell [51]. The Do scheme starts with an explicit Euler predictor stage,
which is followed by l implicit but unidirectional corrector stages.

The CS scheme (3.2.4) can be viewed as an extension to the Do scheme.
It was introduced by Craig & Sneyd [11] with the goal to arrive at a second
order ADI scheme for diffusion equations with mixed derivative terms. The
first two lines of (3.2.4) are exactly the same as in the Do scheme (3.2.3).
Afterwards, the CS scheme performs another explicit update followed by l
implicit unidirectional corrector stages. It is readily seen that the CS scheme
reduces to the Do scheme if F0 = 0.

The MCS scheme (3.2.5) has been introduced by In ’t Hout & Welfert [42]
and generalises the CS scheme by adding an explicit stage after the first set
of implicit corrections. By doing so, the MCS scheme offers more flexibility
than the CS scheme in the choice of θ if second order consistency is desired, cf.
Section 3.4. For θ = 1

2 the MCS scheme reduces to the CS scheme.

The HV scheme (3.2.6) can also be regarded as an extension of the Do
scheme and was introduced by Hundsdorfer [34] and Verwer et. al. [67] for the
numerical solution of convection-diffusion-reaction equations from chemistry.
In ’t Hout & Welfert [41,42] studied the application of the HV scheme to equa-
tions containing mixed spatial derivative terms. The main difference between
the HV scheme and the MCS scheme is the fact that the former one uses the
approximations Yl corresponding to time tn (instead of Un−1, corresponding to
tn−1) in the implicit corrector stages after the explicit update.

In this PhD thesis, the four ADI schemes are considered in application
to semidiscretized two-dimensional time-dependent convection-diffusion equa-
tions. From now on, unless explicitly stated otherwise, it will be tacitly assumed
that the spatial dimension l equals two when the ADI schemes are mentioned.
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3.3. Stability of ADI Schemes

In order to establish convergence of numerical processes for differential equa-
tions, the well-known general approach consists of proving both stability and
consistency of the scheme, see e.g. [28, 35]. Stability means that any er-
rors, e.g. rounding errors or discretization errors, cannot grow excessively dur-
ing the numerical process and forms a crucial property for every time step-
ping method. Since systems of ODEs stemming from semidiscretization of
convection-diffusion equations are usually stiff, unconditional stability is a de-
sirable property. This means that the time stepping method is stable without
any restriction on the temporal step size.

Theoretical unconditional stability results in the von Neumann sense, rel-
evant to FD discretizations of two-dimensional convection-diffusion equations
with mixed derivative term, have been derived for all four ADI schemes from
Section 3.2 in [11, 38–42, 51–54]. We briefly review the main conclusions from
these references, where stability is always considered in the l2-norm. Consider
a two-dimensional time-dependent convection-diffusion equation (2.3.5) with
constant coefficients and periodic boundary condition. Assume that spatial
discretization is performed on uniform Cartesian grids with relevant second or-
der FD schemes. Both the Do and CS schemes are then unconditionally stable
whenever θ ≥ 1

2 . When applied to two-dimensional pure diffusion equations,
i.e. if a1 = a2 = 0, the MCS scheme, respectively HV scheme, is unconditionally
stable if θ satisfies

θ ≥ max
{

1
4 ,

γ+1
6

}
, respectively θ ≥ max

{
1
4 ,

γ+1

4+2
√

2

}
, (3.3.1)

where γ ∈ [0, 1] represents the relative size of the mixed derivative term, see
(2.3.6). When convection terms are present, it holds that the MCS scheme is
unconditionally stable if 1

2 ≤ θ ≤ 1. For values 1
4 ≤ θ < 1

2 it can be shown
that the MCS scheme is unconditionally stable under a restriction on γ. An
analytical expression for a sufficient restriction can be found in [54]. For the
practically important case of θ = 1

3 this sufficient restriction is given by

γ ≤ 2+
√

10
6 ≈ 0.86.

Additional numerical experiments in [39] suggest that this restriction can be
weakened to γ . 0.96. For the HV scheme, to the best of our knowledge, there
are no theoretical stability results available if convection terms and a mixed
spatial derivative are present. In [48] the HV scheme is used for an application
from physics involving a two-dimensional convection-diffusion equation without
mixed derivative term. In the article it is shown that if there is no mixed
derivative term, i.e. if γ = 0, then the HV scheme is unconditionally stable if

θ ≥ 1
2 + 1

6

√
3 ≈ 0.79.

In [41] it is conjectured that the latter bound on θ is also sufficient for uncon-
ditional stability of the HV scheme in the presence of mixed derivative terms.

Numerical experiments on the stability of the ADI schemes in application
to semidiscretized two-dimensional convection-diffusion equations with mixed
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derivative term from financial mathematics have been performed for example
in [37, 53]. In the pertinent literature the ADI schemes have been applied
for example to the well-known and challenging Heston PDE [33]. This PDE
possesses non-constant coefficients, non-periodic boundary conditions and has
special features such as a vanishing diffusion term near a boundary. The exper-
iments in [37, 53] and ample additional references suggest that the theoretical
stability results, for the situation where convection terms and a mixed deriva-
tive are present, are very useful outside the model framework.

3.4. Consistency of ADI Schemes

Next to stability, consistency of the ADI schemes forms a fundamental concept
in proving convergence. Consistency is concerned with the so-called local dis-
cretization error, which is the error incurred in one, arbitrary, fictitious step of
the numerical process if one would have started from the exact solution.

We first consider the classical order of consistency, that is the order of
consistency for fixed non-stiff ODE systems. Recall that in this thesis the ADI
schemes are applied to two-dimensional problems. Let

U ′(t) = (A0 +A1 +A2)U(t) + g0(t) + g1(t) + g2(t),

be a fixed non-stiff ODE system with given constant matrices Ai, 0 ≤ i ≤ 2,
and given vectors gi(t), 0 ≤ i ≤ 2. By Taylor expansion, and after some
elaborate calculations, the order of consistency can be obtained for the four
ADI schemes from Section 3.2. It follows that the classical order of consistency
of the Do scheme is equal to one for all θ. This low order is a consequence
of the fact that the A0 part is treated in a simple, forward Euler fashion. If
A0 = 0, however, the order can be increased to two by choosing θ = 1

2 . For the
CS scheme it holds that the classical order of consistency is equal to two if and
only if θ = 1

2 , also if A0 is non-zero. For all other values of θ the order of the
CS scheme drops to one. The MCS scheme and the HV scheme always attain
classical order of consistency equal to two for any given θ. The parameter can
then be chosen such that the ADI schemes meet additional requirements. In
view of the order of the CS scheme, from now on it will be tacitly assumed
that the parameter value θ = 1

2 is used for this scheme.
For practical relevance it is crucial that the local error bounds hold uni-

formly in the arbitrarily large size of the semidiscrete system or, equivalently,
in the arbitrarily small spatial mesh width. Since semidiscretized convection-
diffusion equations are usually stiff, and the size of the systems depends on the
spatial mesh widths, the classical order of consistency cannot be used to prove
relevant convergence results. Analysing the uniform order of consistency (and
convergence) of ADI schemes for stiff systems of ODEs is a non-trivial task.

The local discretization errors of the Do scheme and the HV scheme have
been analysed in [34] for arbitrarily small spatial mesh widths. Although the
F0 term in [34] does not represent a mixed spatial derivative, the results are
relevant to our problem setting. It is shown that the local discretization errors
of the Do scheme and the HV scheme are of second order under some natural
stability and smoothness conditions. Provided that the parameter θ is chosen
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such that the Do scheme, respectively HV scheme, is stable, this leads to a
uniform order of convergence of at least one. In general, one cannot expect
a higher order of convergence for the Do scheme since it treats the F0 term
only in a forward Euler fashion. For the special case where F0 = 0 and θ = 1

2 ,
however, it is shown in [34] that if the temporal step sizes are uniform, then the
Do scheme is second order convergent. In addition, a second order convergence
result for the HV scheme is proved for the case l = 1, i.e. when only one part
of the semidiscrete system is handled implicitly.

In the following chapters a detailed analysis of the discretization errors of
the MCS scheme and the HV scheme is performed for the relevant case l = 2.
The results are used to prove second order convergence of the pertinent ADI
schemes, uniformly in the spatial mesh width.





CHAPTER 4

Convergence of the MCS Scheme

4.1. Introduction

Recall that semidiscretization by finite difference methods of initial-boundary
value problems for multidimensional time-dependent convection-diffusion equa-
tions leads to large systems of stiff ODEs,

U ′(t) = F (t, U(t)) (0 ≤ t ≤ T ), U(0) = U0, (4.1.1)

with given vector-valued function F : [0, T ]×Rm → Rm and given initial vector
U0 ∈ Rm, where integer m ≥ 1 is the number of spatial grid points. When the
underlying PDE is multidimensional, the semidiscrete function F can often be
decomposed as

F (t,v) = F0(t,v) + F1(t,v) + · · ·+ Fl(t,v), for 0 ≤ t ≤ T, v ∈ Rm, (4.1.2)

where F0 represents all mixed spatial derivative terms and Fi, for 1 ≤ i ≤ l,
represents all spatial derivative terms in the i-th direction, cf. Subsection 2.3.3.

In this chapter, for the effective time discretization of systems (4.1.1) we
consider the prominent MCS scheme (3.2.5) with constant temporal step size
∆t such that tn = n∆t. The MCS scheme is often used in financial practice
for the numerical approximation of option values and their sensitivities. Speed,
stability and accuracy of the method thus form key concepts. The former two
have already been studied extensively in the literature, see e.g. [37,42,54]. An
overview is presented in Chapter 3. To the best of our knowledge, a relevant
theoretical convergence analysis is still open in the literature. Nevertheless,
in order for the MCS scheme to be useful in practice, convergence and hence
accuracy is of paramount importance.

It can be verified by standard arguments that if natural stability and
smoothness assumptions hold, then the MCS scheme is convergent of order
two for fixed, nonstiff ODE systems, see Subsection 3.4. It is well-known in
the literature, however, that this standard convergence analysis of time step-
ping schemes has limited relevance for the application to semidiscrete systems

This chapter is based on the article ‘Convergence of the Modified Craig–Sneyd scheme for two-

dimensional convection-diffusion equations with mixed derivative term’, published in J. Comp.

Appl. Math., 296:170–180, 2016 [44].
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(4.1.1). In this analysis, the size of the error constant in the obtained bound
for the global temporal discretization errors may become arbitrarily large as
the spatial mesh width from the semidiscretization tends to zero (m → ∞),
which renders this bound impractical.

In the present chapter we shall derive a first useful convergence bound for
the MCS scheme, with constant step size, that is directly relevant to semidis-
cretized two-dimensional convection-diffusion equations with mixed derivative
term. Our analysis is inspired by that of Hundsdorfer [33,34], cf. also [35], for
operator splitting schemes applied to multidimensional convection-diffusion-
reaction problems without mixed derivative terms.

The outline of the chapter is the following. In Section 4.2 a perturbed
version of the MCS scheme is used to derive a recursion formula for the total
error. Expressions for the local errors in the perturbed scheme are derived
by Taylor expansion. We employ a subtle splitting of the resulting local dis-
cretization error such that each part meets the requirements for application
of a key lemma from [33]. Under some stability assumptions, this leads to
the main result of the chapter: a second order convergence theorem for the
MCS scheme. Positive results on the stability assumptions are derived in the
von Neumann framework. In Section 4.3 numerical experiments illustrate that
the MCS scheme is second order convergent in application to a semidiscretized
model convection-diffusion equation. This positive conclusion is in line with
our theoretical convergence analysis. Section 4.4 gives concluding remarks.

4.2. Convergence Analysis

4.2.1. Preliminaries

Assume that

F (t,v) = Av+g(t), Fi(t,v) = Aiv+gi(t), for 0 ≤ t ≤ T, v ∈ Rm, 0 ≤ i ≤ l,

where A, Ai, 0 ≤ i ≤ l, are given real m×m-matrices and g, gi, 0 ≤ i ≤ l, are
given real m-vector valued functions. Recall from the previous chapter that I
denotes the m×m identity matrix. For convenience, define the matrices

Z = ∆tA, Zi = ∆tAi, Qi = I − θZi, for 0 ≤ i ≤ l, P = Q1Q2 · · ·Ql,

where we emphasize that the temporal step size ∆t is assumed to be uniform.
Consider the naturally scaled inner product (v,w) = 1

mv
Tw for v,w ∈ Rm

with induced vector and matrix norms ‖ · ‖2. We shall assume that

(Aiv,v) ≤ 0 whenever v ∈ Rm, 1 ≤ i ≤ l.

This assumption is often fulfilled when dealing with semidiscrete systems stem-
ming from time-dependent convection-diffusion equations, cf. e.g. [33–35]. It
implies that the Qi and P are invertible and

‖Q−1
i ‖2 ≤ 1, for 1 ≤ i ≤ l, ‖P−1‖2 ≤ 1. (4.2.1)
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4.2.2. Error Recursion

For the convergence analysis, we consider along with (3.2.5) the perturbed
scheme

Y ∗0 = U∗n−1 + ∆t F (tn−1, U
∗
n−1) + ρ0,

Y ∗i = Y ∗i−1 + θ∆t
(
Fi(tn, Y

∗
i )− Fi(tn−1, U

∗
n−1)

)
+ ρi, for i = 1, 2, . . . , l,

Ŷ ∗0 = Y ∗0 + θ∆t
(
F0(tn, Y

∗
l )− F0(tn−1, U

∗
n−1)

)
+ ρ̂0,

Ỹ ∗0 = Ŷ ∗0 + ( 1
2 − θ)∆t

(
F (tn, Y

∗
l )− F (tn−1, U

∗
n−1)

)
+ ρ̃0,

Ỹ ∗i = Ỹ ∗i−1 + θ∆t (Fi(tn, Ỹ
∗
i )− Fi(tn−1, U

∗
n−1)) + ρ̃i, for i = 1, 2, . . . , l,

U∗n = Ỹ ∗l .
(4.2.2)

Here ρi, ρ̃i ∈ Rm (0 ≤ i ≤ l) and ρ̂0 ∈ Rm denote arbitrary given perturbation
vectors. These perturbations may depend on the step number n. For ease of
presentation, this is omitted in the notation. In the following we derive a useful
formula for the error

en = U∗n − Un.

Define the auxiliary variables

εi = Y ∗i − Yi, ε̃i = Ỹ ∗i − Ỹi, for 0 ≤ i ≤ l and ε̂0 = Ŷ ∗0 − Ŷ0.

From (3.2.5), (4.2.2) one directly obtains

ε0 = en−1 + ∆tAen−1 + ρ0

= (I + Z)en−1 + ρ0,

εi = εi−1 + θ∆t(Aiεi −Aien−1) + ρi, 1 ≤ i ≤ l.

The latter equation can readily be rewritten as

εi = en−1 +Q−1
i (εi−1 − en−1 + ρi), 1 ≤ i ≤ l. (4.2.3)

Next,

ε̂0 = ε0 + θZ0(εl − en−1) + ρ̂0

= (I + Z − θZ0)en−1 + θZ0εl + ρ0 + ρ̂0,

ε̃0 = ε̂0 + ( 1
2 − θ)Z(εl − en−1) + ρ̃0

= (I + ( 1
2 + θ)Z − θZ0)en−1 + (θZ0 + ( 1

2 − θ)Z)εl + ρ0 + ρ̂0 + ρ̃0

and analogously to (4.2.3) there holds

ε̃i = en−1 +Q−1
i (ε̃i−1 − en−1 + ρ̃i), 1 ≤ i ≤ l. (4.2.4)
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Using (4.2.4) together with the obtained expression for ε̃0, it follows that

en = ε̃l = en−1 +Q−1
l (ε̃l−1 − en−1 + ρ̃l)

= en−1 +Q−1
l Q−1

l−1(ε̃l−2 − en−1 + ρ̃l−1) +Q−1
l ρ̃l

...

= en−1 + P−1(ε̃0 − en−1 + ρ̃1) +

l∑
i=2

Q−1
l Q−1

l−1 · · ·Q−1
i ρ̃i

= en−1 + P−1(−θZ0 + ( 1
2 + θ)Z)en−1 + P−1(θZ0 + ( 1

2 − θ)Z)εl

+ P−1(ρ0 + ρ̂0 + ρ̃0) +

l∑
i=1

Q−1
l Q−1

l−1 · · ·Q−1
i ρ̃i.

In a similar way, using (4.2.3), it is seen that

εl = en−1 + P−1(ε0 − en−1 + ρ1) +

l∑
i=2

Q−1
l Q−1

l−1 · · ·Q−1
i ρi

= (I + P−1Z)en−1 + P−1ρ0 +

l∑
i=1

Q−1
l Q−1

l−1 · · ·Q−1
i ρi.

Inserting the obtained expression for εl into that for en, we arrive at the useful
recursion formula

en = Ren−1 + dn (4.2.5)

with stability matrix

R = I + P−1Z + P−1(θZ0 + ( 1
2 − θ)Z)P−1Z (4.2.6)

and vector

dn = P−1(θZ0 + ( 1
2 − θ)Z)(P−1ρ0 +

l∑
i=1

Q−1
l Q−1

l−1 · · ·Q−1
i ρi)

+ P−1(ρ0 + ρ̂0 + ρ̃0) +

l∑
i=1

Q−1
l Q−1

l−1 · · ·Q−1
i ρ̃i. (4.2.7)

For a temporal index N with N∆t ≤ T the recursion (4.2.5) implies

eN = RNe0 +

N∑
n=1

RN−ndn. (4.2.8)

4.2.3. Local Discretization Errors

We now consider the perturbed MCS scheme (4.2.2) with constant step size
and where the perturbations are such that

U∗n−1 = U(tn−1), Y ∗i = Ỹ ∗i = U(tn), for 0 ≤ i ≤ l, and Ŷ ∗0 = U(tn).
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With this choice, dn is the local discretization error and en = U(tn)− Un the
global discretization error in the n-th step.

For the convergence analysis of any given time stepping scheme applied to
semidiscrete PDEs to be practical, it is imperative that the pertinent stability
and error bounds are not adversely affected by the (arbitrarily small) spatial
mesh width employed in the semidiscretization. Accordingly, in this chapter,
by the notation O ((∆t)p) we shall always mean that the norm ‖ · ‖2 of the
term under consideration is bounded by a positive constant times (∆t)p where
the constant is independent of the spatial mesh width, the temporal step size
∆t > 0 and the step number n ≥ 1 with n∆t ≤ T . If p = 0, then we write
O (1) for short.

Throughout this chapter we will assume that the MCS scheme is stable in
the sense that there exists a constant M such that the stability matrix satisfies
the inequality ‖Rn‖2 ≤ M uniformly in the spatial mesh width, ∆t > 0 and
integer n ≥ 1. Thus, Rn = O (1).

To arrive at an optimal convergence order p, it turns out that a careful
investigation of the local discretization errors dn is required. Define

ϕi(t) = Fi(t, U(t)), for 0 ≤ t ≤ T, 0 ≤ i ≤ l.

We assume that the vector functions ϕi are twice continuously differentiable
and that their second derivatives are bounded on [0, T ] uniformly in the spatial

mesh width. Notice that U ′(t) =
∑l
i=0 ϕi(t), so the above smoothness con-

dition for the ϕi implies one for U too. By Taylor expansion of U(t) about
t = tn−1 it directly follows that

ρ0 = U ′′(tn−1) 1
2 (∆t)2 +O

(
(∆t)3

)
,

ρ̂0 = −ϕ′0(tn−1) θ(∆t)2 +O
(
(∆t)3

)
,

ρ̃0 = −U ′′(tn−1) ( 1
2 − θ)(∆t)2 +O

(
(∆t)3

)
,

ρi = ρ̃i = −ϕ′i(tn−1) θ(∆t)2 +O
(
(∆t)3

)
, 1 ≤ i ≤ l.

(4.2.9)

Since ρi = ρ̃i for all 1 ≤ i ≤ l, the expression (4.2.7) for dn becomes

dn = P−1(ρ̂0 + ρ̃0)

+
(
I + P−1(θZ0 + ( 1

2 − θ)Z)
)

(P−1ρ0 +

l∑
i=1

Q−1
l Q−1

l−1 · · ·Q−1
i ρi).

Inserting the expansions from (4.2.9) into this and taking into account the
uniform boundedness of the matrices Q−1

i , 1 ≤ i ≤ l, see (4.2.1), we obtain

dn =
(
I + P−1(θZ0 + ( 1

2 − θ)Z)
)
P−1U ′′(tn−1) 1

2 (∆t)2

−
(
I + P−1(θZ0 + ( 1

2 − θ)Z)
) l∑
i=1

Q−1
l Q−1

l−1 · · ·Q−1
i ϕ′i(tn−1) θ(∆t)2

− P−1ϕ′0(tn−1) θ(∆t)2 − P−1U ′′(tn−1) ( 1
2 − θ)(∆t)2

+
(
I + P−1(θZ0 + ( 1

2 − θ)Z)
)
O
(
(∆t)3

)
+O

(
(∆t)3

)
.
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Using that U ′′(t) =
∑l
i=0 ϕ

′
i(t) the latter expression for dn can be written in

the following form, which will be employed in the next subsection,

dn = P−1(θZ0 + ( 1
2 − θ)Z)P−1( 1

2U
′′(tn−1)− θ

l∑
i=1

ϕ′i(tn−1)) (∆t)2

+
[ (
I + P−1(θZ0 + ( 1

2 − θ)Z)
)
P−1

×
l∑
i=2

(I −Q1Q2 · · ·Qi−1)ϕ′i(tn−1) θ(∆t)2
]

+
(
I + P−1(θZ0 + ( 1

2 − θ)Z)
)
O
(
(∆t)3

)
+O

(
(∆t)3

)
. (4.2.10)

4.2.4. Convergence Theorem for the MCS Scheme

From (4.2.10) and the specific dependence of the matrices Z0, Z, Qi, 1 ≤ i ≤ l,
on ∆t it is readily seen that for any given fixed semidiscrete system the local
errors are bounded by a constant times (∆t)3. Next, formula (4.2.8) together
with the stability of the MCS scheme directly imply a well-known estimate for
the global discretization errors in terms of the local discretization errors (note
that e0 = 0),

‖eN‖2 ≤M
N∑
n=1

‖dn‖2.

Hence, it follows that the global errors are bounded by a constant times (∆t)2,
that is second order convergence. However, as the spatial mesh width decreases
(and the size m of the semidiscrete system increases), the pertinent error con-
stant can become arbitrarily large due to negative powers of the spatial mesh
width occurring in the matrices Aj , 0 ≤ j ≤ l. Clearly, this renders the global
error bound obtained in this way impractical.

In the following we shall present for the MCS scheme with l = 2 a useful
second order convergence result, which is valid uniformly in the spatial mesh
width. We apply a key lemma from Hundsdorfer [33], cf. also [34, 35]. For
completeness, its (short) proof is included.

Lemma 4.2.1 (Hundsdorfer) Let α > 0. If the time stepping scheme is
stable and the local discretization errors satisfy

dn = (R− I)ξn + ηn,

with

ξn = O ((∆t)α) , ξn − ξn−1 = O
(
(∆t)α+1

)
, ηn = O

(
(∆t)α+1

)
, (4.2.11)

then for the global discretization errors one has that eN = O ((∆t)α).

Proof Consider the expression (4.2.8) for the global discretization error. In-
serting dn = (R− I)ξn + ηn and e0 = 0 gives

eN = RNξ1 − ξN +

N∑
n=2

RN−n+1(ξn − ξn−1) +

N∑
n=1

RN−nηn.
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By stability of the time stepping scheme (cf. Subsection 4.2.3), this leads to
the bound

‖eN‖2 ≤M‖ξ1‖2 + ‖ξN‖2 +M

N∑
n=2

‖ξn − ξn−1‖2 +M

N∑
n=1

‖ηn‖2.

Using the properties of ξn and ηn in (4.2.11) and N∆t ≤ T , the assertion of
the lemma follows.

�

If l = 2, then the obtained expression (4.2.10) for the local error simplifies

to dn = d
(1)
n + d

(2)
n + d

(3)
n with

d(1)
n = P−1(θZ0 + ( 1

2 − θ)Z)P−1( 1
2U
′′(tn−1)− θ

2∑
i=1

ϕ′i(tn−1)) (∆t)2,

d(2)
n =

(
I + P−1(θZ0 + ( 1

2 − θ)Z)
)
P−1Z1 ϕ

′
2(tn−1) θ2(∆t)2,

d(3)
n =

(
I + P−1(θZ0 + ( 1

2 − θ)Z)
)
O
(
(∆t)3

)
+O

(
(∆t)3

)
.

Using formula (4.2.6) for the stability matrix, the first two components of dn
can be rewritten as (assuming the pertinent inverses exist),

d(1)
n = (R− I)Z−1P (I + P−1(θZ0 + ( 1

2 − θ)Z))−1d(1)
n

= (R− I)Z−1(θZ0 + ( 1
2 − θ)Z)(P + θZ0 + ( 1

2 − θ)Z)−1

× ( 1
2U
′′(tn−1)− θ

2∑
i=1

ϕ′i(tn−1)) (∆t)2,

d(2)
n = (R− I)Z−1Z1ϕ

′
2(tn−1) θ2(∆t)2.

Upon invoking Lemma 4.2.1 with α = 2, we then arrive at the main result of
this chapter.

Theorem 4.2.2 Let l = 2 and consider a uniform temporal step size. Assume
that the ϕi (i = 0, 1, 2) are twice continuously differentiable and their second
derivatives are bounded on [0, T ] uniformly in the spatial mesh width. Assume
(Aiv,v) ≤ 0 whenever v ∈ Rm and i = 1, 2. Assume the MCS scheme is stable,
the matrices A and P + θZ0 + ( 1

2 − θ)Z are invertible and the matrices

A−1A1, A
−1A2, I + P−1(θZ0 + ( 1

2 − θ)Z), (P + θZ0 + ( 1
2 − θ)Z)−1 (4.2.12)

are all O (1). Then the global discretization errors for the MCS scheme satisfy

eN = O
(
(∆t)2

)
.
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4.2.5. Boundedness Assumptions in Theorem 4.2.2

The assumptions concerning the uniform boundedness of the matrices (4.2.12)
in Theorem 4.2.2 are similar to those made in [34] in order to prove convergence
of the HV scheme with l = 1. The uniform boundedness of A−1A1 and A−1A2

was also assumed there and is often fulfilled in practical applications. If l = 1,
the assumption (P+θZ0+( 1

2−θ)Z)−1 = O (1) is closely related to the condition
(29) in [34] for the HV scheme. The assumption I+P−1(θZ0+( 1

2−θ)Z) = O (1)
can be viewed as a counterpart of the condition I − P−1 + 1

2P
−1Z = O (1)

which was tacitly assumed in [34].

For l = 2 the conditions

I + P−1(θZ0 + ( 1
2 − θ)Z) = O (1) and (P + θZ0 + ( 1

2 − θ)Z)−1 = O (1)

are new in the literature. To gain insight into these conditions, we follow
the well-known von Neumann framework and consider the two-dimensional
convection-diffusion equation, cf. Subsection 2.3.3,

ut = d11uxx + 2d12uxy + d22uyy + c1ux + c2uy (4.2.13)

for (x, y) ∈ (0, 1) × (0, 1), 0 ≤ t ≤ T with periodic boundary condition. In
this chapter c1, c2, d11, d12, d22 denote given real constants that satisfy (2.3.6).
After semidiscretization of (4.2.13) by standard finite difference schemes on
uniform rectangular grids, the analysis reduces to bounding from above the
two scalar terms

|R1| := |1 + 1
2
z0
p + ( 1

2 − θ) z1+z2
p | and |R2| := |p+ 1

2z0 + (1
2 − θ)(z1 + z2)|−1

(4.2.14)
with p = (1− θz1)(1− θz2) for all complex numbers z0, z1, z2 satisfying

Rz1 ≤ 0, Rz2 ≤ 0, |z0| ≤ 2γ
√
Rz1Rz2. (4.2.15)

The condition (4.2.15) arises naturally in the von Neumann stability analysis
of ADI schemes when a mixed derivative uxy is present. It has been considered
in [39,41,42] with γ = 1 and in [40,53] for arbitrary γ ∈ [0, 1].

For the first term in (4.2.14), we obtain the following positive result under
the conditions in (4.2.15).

Theorem 4.2.3 Assume (4.2.15) and 0 ≤ γ ≤ 1. Then

|R1| ≤


1
2θ − 3

2 if 0 < θ < 1
6 ,

3
2 if 1

6 ≤ θ ≤ 1 ,

2− 1
2θ if 1 < θ .

Proof By [41, Lemma 2.3] it holds that

p 6= 0 and |α|+ |β| ≤ 1

2θ
with α =

z0

p
, β =

1

2θ
+
z1 + z2

p
.
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Using this we obtain∣∣∣∣1 + 1
2

z0

p
+ ( 1

2 − θ)
z1 + z2

p

∣∣∣∣ =
∣∣1 + 1

2α+ ( 1
2 − θ)(β − 1

2θ )
∣∣

=
∣∣ 3

2 − 1
4θ + 1

2α+ ( 1
2 − θ)β

∣∣
≤
∣∣ 3

2 − 1
4θ

∣∣+ 1
2 |α|+

∣∣ 1
2 − θ

∣∣ |β|
≤
∣∣ 3

2 − 1
4θ

∣∣+ 1
2θ ·max{ 1

2 ,
∣∣ 1

2 − θ
∣∣},

which readily yields the result of the theorem.

�

For bounding the second term in (4.2.14), we make use of the following ele-
mentary lemma, where R+ = [0,∞).

Lemma 4.2.4 Let 0 ≤ Υ ≤ 1 and

f : R+ × R+ → R : (x, y)→
√

1 + x2
√

1 + y2 −Υ(x+ y).

Then
min{f(x, y) | (x, y) ∈ R+ × R+} = 1−Υ2.

The proof of Lemma 4.2.4 is given in Appendix 4.A.

Theorem 4.2.5 Assume (4.2.15) and 0 ≤ γ ≤ 1. Then

|R2|−1≥


(θ − 1

4 )/θ2 if 1
4 ≤ θ < 1

2 , 0 ≤ γ < 2θ,

−3(θ − 1+γ
6 )(θ − 1+γ

2 )/θ2 if 1
4 ≤ θ < 1

2 , 2θ ≤ γ ≤ min{6θ − 1, 1},
1 if 1

2 ≤ θ.

Proof First, consider the case θ ≥ 1
2 and put z = 2θ − 1

2 . Then,

|p+ 1
2z0 + ( 1

2 − θ)(z1 + z2)| ≥ |p+ ( 1
2 − θ)(z1 + z2)| −

√
Rz1Rz2

= |(z
θ − θz1)(z

θ − θz2) + 1− z2

θ2 | −
√
Rz1Rz2

≥ |zθ − θz1||zθ − θz2| − |1− z2

θ2 | −
√
Rz1Rz2.

Now, since
θ2 −z2 = −3θ2 + 2θ − 1

4 = −3(θ − 1
6 )(θ − 1

2 ),

it holds that 1− z2

θ2 is negative. Further, since R(z
θ − θzi) ≥ 0, we have that

|zθ − θzi| ≥ z
θ − θRzi for i = 1, 2.

As a consequence

|R2|−1 ≥ z2

θ2 −z(Rz1 +Rz2) + θ2Rz1Rz2 + 1− z2

θ2 −
√
Rz1Rz2

= 1 + θ2Rz1Rz2 + z(
√
−Rz1 −

√
−Rz2 )2 + (2z− 1)

√
Rz1Rz2

≥ 1 + 2(2θ − 1)
√
Rz1Rz2

≥ 1,
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which completes the proof for θ ≥ 1
2 .

Next consider the case 1
4 ≤ θ < 1

2 and 2θ ≤ γ ≤ min{6θ − 1, 1}. Define
vectors

vi =

 √
−2θRzi√

1 + θ2|zi|2

 for i = 1, 2.

By the Cauchy–Schwarz inequality, we have

|p| =
√
vT

1 v1

√
vT

2 v2 ≥ vT
1 v2 = 2θ

√
Rz1Rz2 +

√
1 + θ2|z1|2

√
1 + θ2|z2|2.

(4.2.16)
Also,

|z1 + z2| =
√

(Rz1 +Rz2)2 + (Iz1 + Iz2)2

=
√

(Rz1 −Rz2)2 + 4Rz1Rz2 + (Iz1 + Iz2)2

≥ 2
√
Rz1Rz2

≥ 1

γ
|z0|. (4.2.17)

Using (4.2.16), (4.2.17) and 1
2 − θ

γ ≥ 0 we find

|R2|−1 ≥ |p| − 1
2 |z0| − ( 1

2 − θ)|z1 + z2|
≥ |p| − 2θ

√
Rz1Rz2 − ( 1

2 − θ
γ )|z0| − ( 1

2 − θ)|z1 + z2|
≥
√

1 + θ2|z1|2
√

1 + θ2|z2|2 − ( 1+γ
2 − 2θ)|z1 + z2|

≥
√

1 + θ2|z1|2
√

1 + θ2|z2|2 − ( 1+γ
2 − 2θ)(|z1|+ |z2|).

Define
Υ = ( 1+γ

2 − 2θ)/θ.

It is easily verified that, in the case under consideration, 0 < Υ ≤ 1 and
application of Lemma 4.2.4 yields

|R2|−1 ≥ 1− ( 1+γ
2 − 2θ)2/θ2 = −3(θ − 1+γ

6 )(θ − 1+γ
2 )/θ2.

Finally consider the case 1
4 ≤ θ < 1

2 and γ < 2θ. Analogously as above one
finds

|R2|−1 ≥ |p| − 2θ
√
Rz1Rz2 − ( 1

2 − θ
γ )|z0| − ( 1

2 − θ)|z1 + z2|
≥
√

1 + θ2|z1|2
√

1 + θ2|z2|2 − ( 1
2 − θ)|z1 + z2|

≥
√

1 + θ2|z1|2
√

1 + θ2|z2|2 − ( 1
2 − θ)(|z1|+ |z2|).

Applying Lemma 4.2.4 with Υ = ( 1
2 − θ)/θ, it then follows that

|R2|−1 ≥ 1− ( 1
2 − θ)2/θ2 = (θ − 1

4 )/θ2,

and this completes the proof.

�

Theorem 4.2.5 directly implies the positive result that the second term in
(4.2.14) is also bounded from above whenever { 1

4 < θ ≤ 1
3 and 0 ≤ γ < 6θ− 1}

or {θ > 1
3}.
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4.3. Numerical Experiments

We present numerical experiments for the model convection-diffusion equation
(4.2.13) with (x, y) ∈ Ω = (0, 1)× (0, 1), 0 ≤ t ≤ 2 and parameters

d11 = d, d12 = −2γd, d22 = 4d, c1 = −2, c2 = −3 and d = 0.025, γ = 0.7.
(4.3.1)

The requirement (2.3.6) is fulfilled for this choice of parameters. We consider
the initial condition

u(x, y, 0) = e−4(sin2πx+cos2πy) for (x, y) ∈ Ω,

and Dirichlet boundary condition

u(x, y, t) = e−rtu(x, y, 0) for (x, y) ∈ ∂Ω, 0 < t ≤ 2,

with r = 0.05. Semidiscretization of the initial-boundary value problem is
performed using standard second order central finite difference schemes on a
rectangular grid in Ω with spatial mesh widths ∆x = 1/(m1 + 1) and ∆y =
1/(m2 +1). In order to avoid spurious oscillations, the convection terms ux and
uy are discretized by second order backward finite differencing near x = 1 and
y = 1, respectively. The semidiscretization leads to an initial value problem
(4.1.1) with m = m1m2 and F (t,v) = Av+ e−rtg with given m×m-matrix A
and m-vector g. Figure 4.1 shows the semidiscrete solutions U(0) and U(2) on
the grid in Ω if m1 = m2 = 50.

1

x00y

1

0
1

1

x00y

0

1

1

Figure 4.1: Semidiscrete solutions U(t) on Ω for t = 0, 2 if m1 = m2 = 50.

We employ the splitting (4.1.2) of the function F with l = 2 and we consider
application of the MCS scheme with interesting parameter values θ = 1

4 ,
1
3 ,

1
2 , 1.

Recall that for θ = 1
2 one recovers the CS scheme (3.2.4). Stability of the MCS

scheme pertinent to two-dimensional convection-diffusion equations with mixed
derivative term has been analysed in [39, 53]. Applying the results from these
references to the situation at hand, we expect unconditional stability whenever
θ ≥ 1

3 and a lack thereof when θ = 1
4 .

Figure 4.2 displays for m1 = m2 ∈ {50, 100, 150, 200} the norms of the
global discretization errors at t = 2 as a function of N ,

e(N,m1,m2) = ‖U(2)− U2N‖2,
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where N∆t = 1 and ‖ · ‖2 denotes the scaled Euclidean vector norm from
Section 4.1. Here we applied the HV scheme (3.2.6) with θ = 1

2 + 1
6

√
3 and

N = 104 to obtain a reference solution U(2).
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Figure 4.2: Global discretization errors e(N,m1,m2) versus 1/N for m1 = m2 = 50
(top left), m1 = m2 = 100 (top right), m1 = m2 = 150 (bottom left) and m1 = m2 =
200 (bottom right) with θ = 1

4
, 1
3
, 1
2
, 1.

For θ = 1
3 ,

1
2 , 1 the results of Figure 4.2 clearly reveal a second order con-

vergence behaviour in ∆t, uniformly in the spatial mesh width. This positive
conclusion is in line with our theory of Section 4.2. For θ = 1

4 , a second order
convergence behaviour uniformly in the spatial mesh width is clearly absent.
This conclusion also agrees with the theory of Section 4.2. The observed strong
increase in the global discretization errors as the spatial mesh width decreases
corresponds to a lack of unconditional stability when θ = 1

4 (cf. above).

We have performed numerical experiments for other convection-diffusion
parameter sets than (4.3.1) which satisfy the condition (2.3.6) as well as for
the celebrated two-dimensional Heston model [30] from financial mathematics.
Semidiscretization of the latter model was performed as described in [37] on a
non-uniform spatial grid, also leading to initial value problems of type (4.1.1)
with semidiscrete function F (t,v) = Av + g(t). In all of the experiments, we
found the obtained conclusions concerning the temporal convergence behaviour
of the MCS scheme to be in line with the theory of Section 4.2.
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4.4. Conclusion

Under some natural stability and smoothness assumptions we have proved a
useful second order convergence result for the MCS scheme in the application
to two-dimensional time-dependent convection-diffusion equations with mixed
derivative term. Here the obtained bound on the global temporal discretiza-
tion errors has the important property that it is independent of the (arbitrarily
small) spatial mesh width from the semidiscretization. Based on the conver-
gence analysis in the present chapter and the stability results from [39, 53],
we recommend to select, in the application to these equations, the parameter
of the MCS scheme such that θ ≥ 1

3 . Numerical experiments further indi-
cate that a smaller parameter value often yields a smaller error constant. In
future research we wish to extend our convergence results, among others, to
higher-dimensional problems.

4.A. Proof of Lemma 4.2.4

For the case Υ = 0 the result is trivial. Next, consider the case 0 < Υ < 1. In
order to find the minimum of f on its domain we determine first its stationary
points in (0,∞)× (0,∞). These are given by

fx(x, y) = x

√
1+y2√
1+x2

−Υ = 0,

fy(x, y) = y
√

1+x2√
1+y2

−Υ = 0.
(4.A.1)

From (4.A.1) it follows that
xy = Υ2,

which yields that x and y are nonzero and

y =
Υ2

x
. (4.A.2)

From (4.A.1) it also follows that

x

1 + x2
=

y

1 + y2
.

Inserting (4.A.2) into this yields

x

1 + x2
=

xΥ2

x2 + Υ4
,

which simplifies to (
1−Υ2

)
x2 = Υ2(1−Υ2).

Because
ν := 1−Υ2 > 0,

this factor can be divided out. We thus conclude that

x = Υ > 0,
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and by (4.A.2),
y = Υ = x.

Hence, the system (4.A.1) has precisely one solution, given by

(x, y) = (Υ,Υ) . (4.A.3)

We next prove that f possesses a relative minimum in its stationary point
(4.A.3) by showing that fxx > 0, fyy > 0 and fxxfyy − f2

xy > 0 in this point.
For arbitrary (x, y) there holds

fxx(x, y) =

√
1+y2

(1+x2)3/2
> 0,

fyy(x, y) =
√

1+x2

(1+y2)3/2
> 0,

fxy(x, y) = xy√
1+x2
√

1+y2

and

(fxxfyy − f2
xy)(x, y) =

1− x2y2

(1 + x2)(1 + y2)
=

(1− xy)(1 + xy)

(1 + x2)(1 + y2)
.

It is therefore sufficient to prove that 1 − xy is strictly positive in the point
(4.A.3) and indeed 1 − Υ2 = ν > 0. Hence, f has a relative minimum in
(4.A.3), where it takes the value

1 + Υ2 −Υ(Υ + Υ) = ν > 0.

It remains to prove that on the boundary of its domain f is greater than the
value ν. First,

f(x, y) ≥
√

1 + x2 −Υ(x+ y)

≥ x−Υ(x+ y)

= (1−Υ)x−Υy.

Thus for any given fixed y ∈ R+ there holds

lim
x→∞

f(x, y) =∞.

Since f(x, y) = f(y, x) for all (x, y) in the domain of f , it also holds for any
given fixed x ∈ R+ that

lim
y→∞

f(x, y) =∞.

We finally show that f is always greater than ν whenever x = 0 or y = 0.
By the same symmetry argument as above, it suffices to consider only y = 0.
Define

g : R+ → R : x→
√

1 + x2 −Υx,

so that g(x) = f(x, 0). Then

g(0) = 1 > ν and lim
x→∞

g(x) ≥ lim
x→∞

(1−Υ)x =∞.
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Next, {
gx(x) = x√

1+x2
−Υ,

gxx(x) = 1
(1+x2)3/2

> 0.

Putting gx(x) = 0, it readily follows that g has one relative minimum, which
is in the point

x =

√
1− ν
ν

,

where it takes the value
g(x) =

√
ν.

Since
min
x∈R+

g(x) =
√
ν > ν

the proof is complete for 0 < Υ < 1. For the case Υ = 1 the result of the
lemma is easily obtained by a continuity argument.

�





CHAPTER 5

Convergence of the HV Scheme

5.1. Introduction

Next to the MCS scheme, the HV scheme (3.2.6) forms a second prominent ADI
time stepping method in computational finance. A linearised version of the
HV scheme was designed in [67] as Rosenbrock-type method for the numerical
solution of initial-boundary value problems for PDEs from chemistry. The
general method (3.2.6) is introduced in [34]. The application of the HV scheme
to equations containing mixed derivative terms was first studied in [41,42].

We consider the HV scheme with uniform temporal step size for the tempo-
ral discretization of initial value problems for large systems of stiff ODEs (4.1.1)
that allow a splitting of the type (4.1.2). A stability analysis for the pertinent
ADI scheme, in application to semidiscretized multidimensional convection-
diffusion equations with mixed derivative terms, has been performed in [40–42].
An overview of the results is given in Chapter 3. A theoretical second order
convergence result for the HV scheme is presented in [34] for the case l = 1.
A rigorous convergence analysis for larger values of l appears to be lacking at
this moment.

In this chapter, we derive a second order convergence theorem for the HV
scheme that is directly relevant to two-dimensional convection-diffusion equa-
tions from financial mathematics. Our analysis is similar to that in Chapter 4,
and inspired by that of Hundsdorfer [33,34].

The chapter is organised as follows. In Section 5.2 a recursion formula for
the total error is derived by considering a perturbed version of the HV scheme.
Taylor expansions for the perturbations are taken from [34] and lead to an
expression for the local discretization error. A subtle splitting of the latter
error, and application of Lemma 4.2.1, eventually leads to a second order con-
vergence result under some stability assumptions. Positive theoretical results
on the stability assumptions are again obtained in the von Neumann frame-
work. The numerical experiments in Section 5.3 confirm the relevance of our
theoretical analysis and Section 5.4 concludes.

This chapter is based on the article ‘Convergence of the Hundsdorfer–Verwer scheme for two-

dimensional convection-diffusion equations with mixed derivative term’, published in AIP Conf.

Proc., 1648:850054-1–850054-5, 2015 [43].
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5.2. Convergence Analysis

5.2.1. Preliminaries

Assume (4.1.1) stems from spatial discretization of a linear convection-diffusion
problem with mixed derivative terms, the semidiscrete system can be decom-
posed as

F (t,v) = F0(t,v) + F1(t,v) + · · ·+ Fl(t,v), for 0 ≤ t ≤ T, v ∈ Rm, (5.2.1)

and

F (t,v) = Av+g(t), Fi(t,v) = Aiv+gi(t), for 0 ≤ t ≤ T, v ∈ Rm, 0 ≤ i ≤ l,

with given real m ×m-matrices A and Ai, 0 ≤ i ≤ l, and given real m-vector
valued functions g and gi, 0 ≤ i ≤ l. Here m denotes the number of spatial grid
points. Analogously to Chapter 4, to simplify notation, define the matrices

Z = ∆tA, Zi = ∆tAi, Qi = I − θZi, P = Q1Q2 · · ·Ql, for 1 ≤ i ≤ l,

where it is important to emphasize that the temporal step size ∆t is assumed
to be uniform. We consider the norm ‖ · ‖2 induced by the (naturally scaled)
inner product (v,w) = 1

mv
Tw on Rm and assume that the semidiscretization

satisfies
(Aiv,v) ≤ 0 whenever v ∈ Rm, 1 ≤ i ≤ l. (5.2.2)

This implies, cf. [34] and Subsection 4.2.1, that the Qi and P are invertible
and

‖Q−1
i ‖2 ≤ 1, for 1 ≤ i ≤ l, ‖P−1‖2 ≤ 1. (5.2.3)

5.2.2. Error Recursion and Local Discretization Errors

Consider along with (3.2.6) the perturbed scheme

Y ∗0 = U∗n−1 + ∆t F (tn−1, U
∗
n−1) + ρ0,

Y ∗i = Y ∗i−1 + θ∆t
(
Fi(tn, Y

∗
i )− Fi(tn−1, U

∗
n−1)

)
+ ρi, for i = 1, 2, . . . , l,

Ỹ ∗0 = Y ∗0 + 1
2∆t

(
F (tn, Y

∗
l )− F (tn−1, U

∗
n−1)

)
+ ρ̃0,

Ỹ ∗i = Ỹ ∗i−1 + θ∆t (Fi(tn, Ỹ
∗
i )− Fi(tn, Y ∗l ) + ρ̃i, for i = 1, 2, . . . , l,

U∗n = Ỹ ∗l ,
(5.2.4)

and let the error be denoted by

en = U∗n − Un.

By performing an analysis similar to that in Chapter 4, see also [34], it follows
that en satisfies

en = Ren−1 + dn, (5.2.5)
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with stability matrix

R = I + 2P−1Z − P−2Z + 1
2 (P−1Z)2,

and vector

dn = (I − P−1 + 1
2P
−1Z)(P−1ρ0 +

l∑
i=1

Q−1
l Q−1

l−1 . . . Q
−1
i ρi)

+ P−1(ρ0 + ρ̃0) +

l∑
i=1

Q−1
l Q−1

l−1 . . . Q
−1
i ρ̃i. (5.2.6)

Next, consider the perturbed HV scheme (5.2.4) with constant step size and
let the perturbations be defined by

U∗n−1 = U(tn−1), Y ∗i = Ỹ ∗i = U(tn), for 0 ≤ i ≤ l,

such that dn is the local discretization error and en = U(tn) − Un the global
discretization error in the n-th step. Let

ϕi(t) = Fi(t, U(t)), for 0 ≤ t ≤ T, 0 ≤ i ≤ l,

and assume that U and the ϕi are sufficiently often differentiable and that their
derivatives are bounded on [0, T ] uniformly in the spatial mesh width. It can
be verified, see e.g. [34], that the perturbations satisfy

ρ0 = U ′′(tn−1) 1
2 (∆t)2 + U ′′′(tn−1) 1

6 (∆t)3 +O
(
(∆t)4

)
,

ρ̃0 = −U ′′(tn−1) 1
2 (∆t)2 − U ′′′(tn−1) 1

4 (∆t)3 +O
(
(∆t)4

)
,

ρi = −ϕ′i(tn−1) θ(∆t)2 +O
(
(∆t)3

)
, 1 ≤ i ≤ l,

ρ̃i = 0, 1 ≤ i ≤ l.

We consider the case l = 2. Inserting the expansions in (5.2.6), we obtain for
the local discretization error that

dn = (I − P−1 + 1
2P
−1Z)

× [ 1
2 (∆t)2P−1U ′′(tn−1)− θ(∆t)2P−1ϕ′1(tn−1)− θ(∆t)2Q−1

2 ϕ′2(tn−1)]

+ (I − P−1 + 1
2P
−1Z)O

(
(∆t)3

)
− 1

12 (∆t)
3
P−1U ′′′(tn−1)

+ P−1O
(
(∆t)4

)
.

5.2.3. Convergence Theorem for the HV Scheme

The recursion (5.2.5) yields for the global discretization error that

eN = RNe0 +

N∑
n=1

RN−ndn,

provided that N is a temporal index such that N∆t ≤ T . From this it is clear
that one can distinguish two important steps in proving convergence. First
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one wishes to show stability, i.e. there exists a moderate constant M such that
‖Rn‖2 ≤ M uniformly in the spatial mesh width, the temporal step size ∆t
and n. Secondly, one wishes to prove consistency, i.e. the local discretization
errors dn tend to zero as the temporal step size ∆t tends to zero, uniformly in
the spatial mesh width and n.

For the analysis in the present chapter it will be assumed that the HV
scheme is stable and, to simplify the analysis, that the matrices Ai, 0 ≤ i ≤ 2,
commute. All of the foregoing assumptions in this section were made in [34]
as well. For convenience we also assume in the following that A is invertible.

In general, when the local discretization errors are of second order, one
would only expect first-order convergence. Often, however, an order of conver-
gence can be recovered through Lemma 4.2.1. As a first attempt, one could
check whether the matrix (R− I)−1(I − P−1 + 1

2P
−1Z) is bounded uniformly

in the spatial mesh width. Unfortunately, as it turns out, this is not always the
case. We consider a splitting of the local discretization error. First, rewrite dn
as

dn = (I − P−1 + 1
2P
−1Z)P−1

× [ 1
2 (∆t)2ϕ′0(tn−1) + ( 1

2 − θ)(∆t)2Σ2
i=1ϕ

′
i(tn−1)]

+ (I − P−1 + 1
2P
−1Z)P−1θ(∆t)2(I −Q1)ϕ′2(tn−1)

− 1
12 (∆t)

3
P−1U ′′′(tn−1) + (I − P−1 + 1

2P
−1Z)O

(
(∆t)3

)
+ P−1O

(
(∆t)4

)
.

Then, we split the error into four parts: dn = d
(1)
n + d

(2)
n + d

(3)
n + d

(4)
n with

d(1)
n = (R− I)(R− I)−1(I − P−1 + 1

2P
−1Z)P−1

× [ 1
2 (∆t)2ϕ′0(tn−1) + ( 1

2 − θ)(∆t)2Σ2
i=1ϕ

′
i(tn−1)],

d(2)
n = (R− I)Z−1θ2(∆t)2Z1ϕ

′
2(tn−1),

d(3)
n = −(R− I)(R− I)−1P−1θ2(∆t)2Z1ϕ

′
2(tn−1),

d(4)
n = − 1

12 (∆t)
3
P−1U ′′′(tn−1) + (I − P−1 + 1

2P
−1Z)O

(
(∆t)3

)
+ P−1O

(
(∆t)4

)
.

It is clear that the second part of the local discretization error, d
(2)
n , meets

the requirements for application of Lemma 4.2.1 if A−1A1 = O (1). Further,
as P−1 is bounded in ‖ · ‖2 by 1, the fourth part satisfies the requirements if
I−P−1 + 1

2P
−1Z = O (1). The third part fulfils the requirements if the matrix

Z−1P (2I − P−1 + 1
2P
−1Z)−1P−1Z1, (5.2.7)

is uniformly bounded. Using that the Ai commute, this matrix can be rewritten
as

Z−1Z1(2I − P−1 + 1
2P
−1Z)−1.

Since it was already assumed that A−1A1 = O (1), we obtain that the matrix
(5.2.7) is uniformly bounded if (2I − P−1 + 1

2P
−1Z)−1 = O(1). For the first
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part it is sufficient if the matrix

Z−1P (2I − P−1 + 1
2P
−1Z)−1(I − P−1 + 1

2P
−1Z)P−1 (5.2.8)

is uniformly bounded. By using that the Ai commute, it follows that this is
equivalent to the matrix

Z−1(−θZ1 − θZ2 + θ2Z1Z2 + 1
2Z)P−1(2I − P−1 + 1

2P
−1Z)−1 (5.2.9)

being uniformly bounded. As for the second and third part, we assume that
A−1A1 = O (1). Analogously, the assumption is made that A−1A2 = O (1).
Next, we consider the term

Z−1Z1Z2P
−1 = Z−1Z1Z2Q

−1
2 Q−1

1

in matrix (5.2.9). By (5.2.3) it holds that ‖Q−1
1 ‖2 is bounded by 1 and from

the assumptions above it holds that ‖Z−1Z1‖2 = O(1). For the remaining part
we use the following theorem due to von Neumann, see e.g. [28].

Theorem 5.2.1 (von Neumann) Let f : C→ C be any given rational func-
tion. Suppose that f has no poles in Rz ≤ 0 and let Z be a given real square
matrix. If

(Zv,v) ≤ 0 for v ∈ Rm,

then
‖f(Z)‖2 ≤ sup{|f(z)| : Rz ≤ 0}.

From (5.2.2) it is readily seen that

(Z2v,v) ≤ 0 for v ∈ Rm.

Application of Theorem 5.2.1 with f(z) = z
1−θz yields

‖Z2Q
−1
2 ‖2 ≤ 1

θ ,

and uniform boundedness of (5.2.8) follows from the assumptions made above.
Summarizing, we proved the next theorem.

Theorem 5.2.2 Let l = 2 and consider a uniform temporal step size. Assume
that U and the ϕi, i = 0, 1, 2, are sufficiently often differentiable and their
derivatives are bounded on [0, T ] uniformly in the spatial mesh width. Assume
A is invertible, the Ai, i = 0, 1, 2, commute and (Aiv,v) ≤ 0 whenever v ∈ Rm
and i = 1, 2. Assume the HV scheme is stable, the matrix 2I − P−1 + 1

2P
−1Z

is invertible and the four matrices A−1A1, A−1A2, I − P−1 + 1
2P
−1Z, (2I −

P−1 + 1
2P
−1Z)−1 are all O (1). Then the global discretization errors satisfy

eN = O
(
(∆t)2

)
.

The above theorem extends the result of [34] from the one-dimensional
(l = 1) to the two-dimensional case (l = 2) . The crucial step in our derivation
is the splitting of the local discretization error into four convenient parts. The
uniform boundedness of A−1A1 and A−1A2, which is often fulfilled, was also
assumed in [34]. The uniform boundedness of I − P−1 + 1

2P
−1Z was tacitly
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assumed in there as well. Our assumption (2I − P−1 + 1
2P
−1Z)−1 = O (1) is

new. It may be regarded as replacing the condition (29) in [34].

For a theoretical result on the condition that the matrices I−P−1 + 1
2P
−1Z

and (2I −P−1 + 1
2P
−1Z)−1 are O (1), we consider a two-dimensional constant

coefficient convection-diffusion equation, cf. (4.2.13),

ut = d11uxx + 2d12uxy + d22uyy + c1ux + c2uy (5.2.10)

for (x, y) ∈ (0, 1) × (0, 1) and 0 ≤ t ≤ T , provided with periodic boundary
condition. Assume the diffusion coefficients satisfy (2.3.6) with γ = 1, and
semidiscretization of (5.2.10) is performed by standard finite difference schemes
on uniform rectangular grids. In this case the analysis reduces, see [41], to
bounding from above

|1− 1
p + 1

2
z0+z1+z2

p | and |2− 1
p + 1

2
z0+z1+z2

p |−1

with p = (1−θz1)(1−θz2) for complex numbers z0, z1, z2 satisfying, cf. (4.2.15),

Rz1 ≤ 0, Rz2 ≤ 0, |z0| ≤ 2
√
Rz1Rz2. (5.2.11)

Theorem 5.2.3 If (5.2.11) and θ > 1/2, then

|1− 1
p + 1

2
z0+z1+z2

p | ≤ 2 and |2− 1
p + 1

2
z0+z1+z2

p |−1 ≤ 2θ
2θ−1 .

Proof By [41, Lemmas 2.1, 2.3] we have |1 + z0+z1+z2
p | ≤ 1. From this and

|p| ≥ 1 it follows that

|1− 1
p + 1

2
z0+z1+z2

p | ≤ 1
2 |1 + z0+z1+z2

p |+ 1
2 + | 1p | ≤ 2,

which proves the first part of the theorem. Next, by [41, Lemma 2.3] there
holds

| z0p |+ | 1
2θ + z1+z2

p | ≤ 1
2θ .

Consequently,

|2− 1
p + 1

2
z0+z1+z2

p | = |2− 1
4θ − 1

p + 1
2
z0
p + 1

4θ + 1
2
z1+z2
p |

≥ |2− 1
4θ − 1

p | − 1
2

(
| z0p |+ | 1

2θ + z1+z2
p |

)
≥ 1− 1

4θ − 1
4θ

= 2θ−1
2θ ,

which yields the second part of the theorem.

�
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5.3. Numerical Experiments

The assumption of commuting matrices from Theorem 5.2.2 is not always valid
in practical applications. We present numerical experiments, similar to the
ones in Section 4.3, to show that the convergence result is relevant for gen-
eral semidiscretized two-dimensional convection-diffusion equations with mixed
derivative term. Consider the model equation (5.2.10) with parameters (4.3.1)
for (x, y) ∈ Ω = (0, 1) × (0, 1) and 0 ≤ t ≤ 2. The PDE is supplied with the
same initial and boundary condition as in Section 4.3, i.e. with initial condition

u(x, y, 0) = e−4(sin2πx+cos2πy) for (x, y) ∈ Ω,

and Dirichlet boundary condition

u(x, y, t) = e−rtu(x, y, 0) for (x, y) ∈ ∂Ω, 0 < t ≤ 2,

where r = 0.05.
Semidiscretization of the initial-boundary value problem is performed using

standard second order central finite difference schemes on a rectangular grid
in Ω with spatial mesh widths ∆x = 1/(m1 + 1) and ∆y = 1/(m2 + 1). The
convection terms ux and uy are again discretized by second order backward
finite differencing near x = 1 and y = 1, respectively.

We employ the splitting (5.2.1) of the function F with l = 2 and con-
sider application of the HV scheme with three interesting parameter values,
namely θ = 1/(2 +

√
2), 1

2 + 1
6

√
3, 1. Stability of the HV scheme pertinent

to two-dimensional convection-diffusion equations with mixed derivative term
has been analysed in [40,41], cf. also Section 3.3. For pure diffusion equations
unconditional stability is expected whenever θ ≥ 1/(2 +

√
2). There is, how-

ever, no theoretical stability result available if convection terms and a mixed
derivative are present. In [41] it is conjectured that unconditional stability can
be expected whenever θ ≥ 1

2 + 1
6

√
3.

Figure 5.1 displays for m1 = m2 ∈ {50, 100, 150, 200} the norms of the
global discretization errors at t = 2 as a function of N ,

e(N,m1,m2) = ‖U(2)− U2N‖2,

where N∆t = 1 and ‖ · ‖2 denotes the scaled Euclidean vector norm from
Section 5.1. Here we applied the MCS scheme (3.2.5) with θ = 1/3 andN = 104

to obtain a reference solution U(2).
For θ = 1

2 + 1
6

√
3, 1 the results of Figure 5.1 clearly reveal a second order

convergence behaviour in ∆t, uniformly in the spatial mesh width. Although
the semidiscretization matrices do not commute, this positive conclusion con-
firms the relevance of our theory in Section 5.2. For θ = 1/(2 +

√
2), a uniform

convergence behaviour uniformly in the spatial mesh width is clearly absent.
This conclusion also agrees with the theory of Section 5.2. The observed strong
increase in the global discretization errors as the spatial mesh width decreases
indicates a lack of unconditional stability when θ = 1/(2 +

√
2). The latter

observation is also made in [37] where the HV scheme is applied in numerical
experiments for the well-known Heston PDE [33].
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Figure 5.1: Global discretization errors e(N,m1,m2) versus 1/N for m1 = m2 = 50
(top left), m1 = m2 = 100 (top right), m1 = m2 = 150 (bottom left) and m1 = m2 =
200 (bottom right) with θ = 1/(2 +

√
2), 1

2
+ 1

6

√
3, 1.

5.4. Conclusion

The HV scheme constitutes a popular ADI method for the effective numeri-
cal solution of multidimensional time-dependent convection-diffusion equations
with mixed derivative terms. Various positive stability results have been de-
rived in literature for this scheme. Also, a convergence result has been ob-
tained pertinent to the special case of one-dimensional PDEs. Clearly, obtain-
ing convergence results relevant to multidimensional PDEs is of much inter-
est. In this chapter we studied the convergence of the HV scheme relevant
to two-dimensional convection-diffusion equations with mixed derivative term.
We proved that, under natural stability and smoothness conditions, the HV
scheme is convergent of order two uniformly in the spatial mesh width. In
future research we wish to extend the convergence analysis to, for example,
higher-dimensional PDEs.



CHAPTER 6

ADI Schemes and Non-Smooth Initial Data

6.1. Introduction

In financial mathematics, the fair value u(s1, s2, t) of a European style option
on two underlying assets is modelled by the two-dimensional Black–Scholes
PDE, see e.g. [5],

ut = 1
2σ

2
1s

2
1us1s1 +ρσ1σ2s1s2us1s2 + 1

2σ
2
2s

2
2us2s2 +rs1us1 +rs2us2−ru, (6.1.1)

for s1, s2 > 0, 0 < t ≤ T . Here, t denotes the time to maturity T and we
assume real parameters r, σ1 > 0, σ2 > 0, |ρ| < 1. The PDE (6.1.1) is provided
with an initial condition that is defined through the payoff of the option, which
is often non-smooth.

The mixed spatial derivative term in (6.1.1) represents the correlation be-
tween the asset prices in the two-dimensional Black–Scholes model. Mixed
spatial derivative terms are very important, notably, in the field of financial
option valuation theory. Here they arise due to the correlation between under-
lying stochastic processes.

Recall that a well-known approach for determining the fair value u(s1, s2, T )
consists of numerically solving the PDE (6.1.1) by the MOL, whereby one first
discretizes in space and subsequently in time. In this chapter we consider
a uniform Cartesian grid and second order central finite difference schemes
in space. This semidiscretization is second order convergent with respect to
the spatial mesh width if the initial and boundary data is smooth, see e.g.
[35]. For the effective time discretization of the resulting semidiscrete systems,
we employ the operator splitting schemes of the ADI type from Chapter 3.
In the past years various positive stability results for the ADI schemes have
been derived relevant to multidimensional convection-diffusion equations with
mixed derivative terms, cf. Section 3.3. From the analysis in [34] (cf. also
Section 3.4) it follows that for the Do scheme one cannot expect an order of
convergence higher than one if a mixed spatial derivative term is present. In
Chapter 4 and Chapter 5, second order convergence results have been proven for
the MCS scheme and the HV scheme under natural stability and smoothness

This chapter is mainly based on the article ‘Convergence analysis of the Modified Craig–Sneyd

scheme for two-dimensional convection-diffusion equations with nonsmooth initial data’, published

in IMA J. Numer. Anal., 37:798–831, 2017 [68].
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assumptions. These temporal convergence results have the crucial property
that they hold uniformly in the spatial mesh width. Hence, when the MCS
scheme or HV scheme is used for the temporal discretization, the fully discrete
numerical solution is second order convergent in space and time for smooth
initial and boundary data.

A convergence analysis for the ADI schemes from Chapter 3 relevant to non-
smooth data is still open in the literature. In financial applications, however,
the initial function is in general non-smooth. It is well-known that convergence
can then be seriously impaired. For the (sole) purpose of illustration, consider
a two-asset cash-or-nothing option with strikes K1 > 0 and K2 > 0, so that

u(s1, s2, 0) = 1{s1≥K1}1{s2≥K2},

where 1 denotes the indicator function. Let spatial discretization of (6.1.1)
be performed by second order central finite difference schemes on a uniform
Cartesian grid, and let temporal discretization be performed with the MCS
scheme and MCS parameter θ = 1/3. In the upper left plot in Figure 6.1, the
numerical solution for u(s1, s2, T ) is shown for (natural) financial parameter
values r = 0.05, σ1 = 0.2, σ2 = 0.25, ρ = −0.7, K1 = 1, K2 = 1, T = 2.
Irregularities can be observed around the strikes, leading to a loss of accuracy
in the maximum norm. For hedging reasons it is important to consider also
the Greeks, for example the cross gamma Γ = us1s2 . The corresponding PDE
is given by

Γt = 1
2σ

2
1s

2
1Γs1s1 + ρσ1σ2s1s2Γs1s2 + 1

2σ
2
2s

2
2Γs2s2

+ (r + σ2
1 + ρσ1σ2)s1Γs1 + (r + σ2

2 + ρσ1σ2)s2Γs2 + (r + ρσ1σ2)Γ,
(6.1.2)

for s1, s2 > 0, 0 < t ≤ T . This is supplemented with initial function

Γ(s1, s2, 0) = us1s2(s1, s2, 0) = δ(s1 −K1)δ(s2 −K2),

where δ is the Dirac delta function. The lower left plot in Figure 6.1 shows
the numerical solution for the cross gamma at maturity T for the same finan-
cial parameter values as above. Around the point (s1, s2) = (K1,K2) strong,
spurious erratic behaviour shows up and, hence, this approximation is useless
in practice. If the cross gamma is approximated by applying finite difference
schemes directly to the numerical solution for the option value, which is a
common alternative technique in practice, the same observations are found.
Additional numerical experiments reveal that similar erratic behaviour occurs
when temporal discretization is performed with the Do scheme or HV scheme.

For one-dimensional applications in finance, the impact of non-smooth ini-
tial data on convergence has already been studied extensively and various tech-
niques have been proposed in order to recover standard convergence results,
see e.g. [22, 56]. A common technique consists of first applying several im-
plicit Euler (sub)steps and then continue with the time stepping scheme under
consideration, [57]. This is called Rannacher time stepping or implicit Euler
damping.

Consider again PDEs (6.1.1) and (6.1.2) for the example of the two-asset
cash-or-nothing option. Replacing the MCS scheme in the first two time steps
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by four half-time steps of the implicit Euler scheme, the two right plots in
Figure 6.1 are obtained. Clearly, there are no longer irregularities or oscillations
present. In many other multidimensional applications, see e.g. [37], similar
observations were made. To the best of our knowledge, however, there are no
theoretical results available concerning the favourable effect of Rannacher time
stepping on the convergence of ADI schemes if the initial data is non-smooth.
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Figure 6.1: Numerical approximations of the cash-or-nothing option value (top) and
of its cross gamma (bottom) without (left) and with (right) Rannacher time stepping
with four half-time steps. The financial parameter values are r = 0.05, σ1 = 0.2,
σ2 = 0.25, ρ = −0.7, K1 = 1, K2 = 1, T = 2.

In the present chapter we will prove a useful convergence bound for the
MCS scheme when it is applied to a model two-dimensional convection-diffusion
equation with mixed derivative term, provided with Dirac delta initial data.
Based on numerical experiments, similar convergence results are conjectured
for the Do scheme and the HV scheme. The precise influence of Rannacher
time stepping on the order of convergence will be investigated. Our analy-
sis in this chapter is inspired by that of Giles & Carter [22], who deal with
the Crank-Nicolson scheme applied to a model one-dimensional convection-
diffusion equation.

The outline of the chapter is as follows. In Section 6.2 a model two-
dimensional convection-diffusion equation, provided with Dirac delta initial
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data, is introduced. Making use of a classical Fourier transformation leads to
a closed-form analytical solution. Section 6.3 describes a numerical discretiza-
tion of the pertinent PDE. Spatial discretization is performed with second
order central finite difference formulas on uniform Cartesian grids. Temporal
discretization of the semidiscrete system with the ADI schemes leads to fully
discrete approximations of the exact solution. In Section 6.4 we present a two-
dimensional mixed discrete/continuous Fourier transform pair and we derive
closed-form expressions for the discrete/continuous Fourier transformation of
the numerical solutions. Studying the Fourier error, the difference between
the Fourier transformation of the exact solution and of the numerical solution,
reveals that this error has different properties in different parts of the Fourier
domain. Section 6.5 analyses the asymptotic behaviour of the Fourier error
corresponding to the numerical solution obtained with the MCS scheme. We
partition the Fourier domain into five disjoint regions. By Taylor expansion
we arrive at an expression for the Fourier error in each of the regions. In Sec-
tion 6.6, application of the inverse transformation leads to an error bound in
physical space for the MCS scheme and the CS scheme. The sharpness of the
error bound is confirmed by ample numerical experiments. The main results of
this chapter are formulated in Theorems 6.6.1 and 6.6.2. Section 6.7, respec-
tively Section 6.8, deals with the convergence of the Do scheme, respectively
the HV scheme. We perform numerical experiments and use our insights from
the analysis for the MCS scheme to conjecture a convergence result for the Do
scheme and the HV scheme. The final Section 6.9 gives concluding remarks.

6.2. Model Problem

Consider the coordinate transformation

x =
√

2 log(s1)/σ1 and y =
√

2 log(s2)/σ2.

The PDEs (6.1.1), (6.1.2) are then transformed into

ut = uxx + 2ρuxy + uyy + (
√

2r
σ1
− σ1√

2
)ux + (

√
2r
σ2
− σ2√

2
)uy − ru,

Γt = Γxx + 2ρΓxy + Γyy + (r + ρσ1σ2)Γ

+
[
(r + σ2

1 + ρσ1σ2)
√

2
σ1
− σ1√

2

]
Γx +

[
(r + σ2

2 + ρσ1σ2)
√

2
σ2
− σ2√

2

]
Γy,

for −∞ < x, y < ∞, 0 < t ≤ T . This provides a motivation for considering a
general constant coefficient convection-diffusion equation with mixed derivative
term

ut = uxx + 2ρuxy + uyy + a1ux + a2uy, (6.2.1)

for −∞ < x, y < ∞, 0 < t ≤ T = 1 and with |ρ| < 1. We supplement model
equation (6.2.1) with the initial condition

u(x, y, 0) = δ(x)δ(y),

which arises for example in the case of the cross gamma of a two-asset cash-or-
nothing option. The Dirac delta initial function, however, has other important
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applications as well. For instance, it arises naturally in the adjoint equation for
the joint density, cf. Chapter 7 and Chapter 8. By using the Fourier transform
pair

û(ω1, ω2, t) =

∫ ∞
−∞

∫ ∞
−∞

u(x, y, t) exp(− iω1x) exp(− iω2y)dxdy,

u(x, y, t) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

û(ω1, ω2, t) exp( iω1x) exp( iω2y)dω1dω2,

an exact closed-form analytical solution will be derived. Here i denotes the
imaginary unit. Taking the Fourier transformation of equation (6.2.1) yields
the ODE

ût = −ω2
1û− 2ρω1ω2û− ω2

2û+ ia1ω1û+ ia2ω2û,

subject to initial condition û(ω1, ω2, 0) = 1. The solution of this transformed
equation is given by

û(ω1, ω2, t) = exp(−(ω2
1 + 2ρω1ω2 + ω2

2 − ia1ω1 − ia2ω2)t). (6.2.2)

Next, if (X1, X2) is a multivariate normally distributed random variable with
mean (µ1, µ2) and covariance matrix Σ, its characteristic function is defined by

E[exp( iω1X1) exp( iω2X2)] = exp( iω1µ1 + iω2µ2 − 1
2 (ω1 ω2)Σ(ω1 ω2)T).

By exploring the connection between the characteristic function of a random
variable and the Fourier transform of its density function, it follows that
u(x, y, t) can be seen as the density function of a two-dimensional normally
distributed random variable with mean (µ1, µ2) and covariance matrix Σ given
by

(µ1, µ2) = (−a1t,−a2t) and Σ =

(
2t 2ρt
2ρt 2t

)
.

Since |ρ| < 1, this yields a closed-form analytical solution for u(x, y, t):

1

4πt
√

1−ρ2
exp

(
−1

4t(1−ρ2) [(x+ a1t)
2 + (y + a2t)

2 − 2ρ(x+ a1t)(y + a2t)]
)
.

6.3. Spatial and Temporal Discretization

As mentioned in Section 6.1, spatial discretization of (6.2.1) will be performed
on a uniform Cartesian grid with second order central finite difference schemes.
For the time integration the ADI schemes from Chapter 3 will be considered.
The theoretical convergence analysis in this chapter is, however, restricted to
the numerical approximations obtained with the MCS scheme. Let h1 denote
the spatial mesh width in the x-direction, h2 the spatial mesh width in the
y-direction and define spatial grid points (xj , yk) = (jh1, kh2) for all j, k ∈ Z.
Semidiscretization of (6.2.1) with second order central finite difference schemes
then gives rise to approximations Uj,k(t) of the exact solution value u(xj , yk, t)
which are defined by the system

U ′j,k(t) = AUj,k(t), (6.3.1)
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where A = A0 +A1 +A2 and

A0 = ρ
2h1h2

δ2xδ2y, A1 = 1
h2
1
δ2
x + a1

2h1
δ2x, A2 = 1

h2
2
δ2
y + a2

2h2
δ2y,

with δ2x, δ
2
x, δ2y, δ

2
y the usual second order central finite difference operators.

For example,

δ2xUj,k(t) = Uj+1,k(t)− Uj−1,k(t),

δ2
xUj,k(t) = Uj−1,k(t)− 2Uj,k(t) + Uj+1,k(t),

δ2xδ2yUj,k(t) = Uj+1,k+1(t) + Uj−1,k−1(t)− Uj+1,k−1 − Uj−1,k+1(t).

Semidiscrete system (6.3.1) is provided with initial data

Uj,k(0) =

{
1

h1h2
if j = k = 0,

0 else,
(6.3.2)

in order to approximate the Dirac delta initial function. Let θ > 0 again denote
the given parameter for the ADI scheme, N ≥ 1 the number of time steps and
set tn = n∆t with ∆t = T/N . For convenience we define

Z = ∆tA, Zi = ∆tAi, for i = 0, 1, 2,

and we denote by I the identity operator. Then, starting from U0,j,k = Uj,k(0),
application of the MCS scheme (3.2.5) to semidiscrete system (6.3.1) yields
approximations Un,j,k of Uj,k(tn) successively for n = 1, 2, . . . , N through

Y0,j,k = (I + Z)Un−1,j,k,

(I − θZi)Yi,j,k = Yi−1,j,k − θZiUn−1,j,k i = 1, 2,

Ŷ0,j,k = Y0,j,k + θZ0Y2,j,k − θZ0Un−1,j,k,

Ỹ0,j,k = Ŷ0,j,k + ( 1
2 − θ)ZY2,j,k − ( 1

2 − θ)ZUn−1,j,k,

(I − θZi)Ỹi,j,k = Ỹi−1,j,k − θZiUn−1,j,k i = 1, 2,

Un,j,k = Ỹ2,j,k.

(6.3.3)

Application of the Do scheme or HV scheme to the semidiscrete system (6.3.1)
can be performed analogously. The resulting approximations of Uj,k(tn) are
denoted by UDo

n,j,k, respectively UHV
n,j,k.

Concerning the Rannacher time stepping, let N0 denote the number of
initial ADI time steps replaced by 2N0 half-time steps of implicit Euler inte-
gration. Consider for example temporal discretization with the MCS scheme.
Whenever N0 > 0 scheme (6.3.3) is replaced by{

(I − 1
2Z)Un−1/2,j,k =Un−1,j,k,

(I − 1
2Z)Un,j,k =Un−1/2,j,k,

(6.3.4)

for n = 1, 2, . . . ,min{N0, N}. This provides a numerical approximation UN
of the exact solution. The numerical approximation of the exact solution ob-
tained with the Do scheme, respectively the HV scheme, is denoted by UDo

N ,
respectively UHV

N .
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Consider a general semidiscrete system (6.3.1) and temporal discretiza-
tion with the MCS scheme. If the operators A0, A1, A2 commute and one
replaces scheme (6.3.3) by scheme (6.3.4) for N0 arbitrary different steps in
{1, 2, . . . , N}, one will always arrive at the same final approximation UN . For
example, this is the case for the spatial discretization defined in the current
section and the corresponding A0, A1, A2. If the implicit Euler steps are not
performed directly at the beginning, however, then the (positive) effect of Ran-
nacher time stepping will not be present in the Un,j,k for all n < N when they
are considered as approximations of the values u(xj , yk, tn). The same obser-
vation can be made if the temporal discretization is performed with the Do
scheme or HV scheme.

The goal of our theoretical convergence analysis consists of quantifying the
total error

UN,j,k − u(xj , yk, 1), (6.3.5)

i.e. the difference between the numerical solution and the exact solution of the
model problem, given that the former one is obtained by applying second or-
der central finite difference schemes for the spatial discretization and the MCS
scheme for the temporal discretization. To do so, we analyse the asymptotic
behaviour of a mixed discrete/continuous Fourier transform for h1, h2,∆t si-
multaneously tending to zero. Applying the inverse Fourier transformation on
the resulting error in Fourier space will yield a useful bound for the total error
(6.3.5). Special attention will be paid to the influence of N0, i.e. the influence
of Rannacher time stepping, on the total error. The influence of Rannacher
time stepping on the order of convergence of the Do scheme and HV scheme
will be analysed numerically.

6.4. Discrete Fourier Transformation

We consider a mixed discrete/continuous Fourier transform pair, cf. e.g. [62],

V̂ (ϑ1, ϑ2) = h1h2

∞∑
j,k=−∞

Vj,k exp(− ijϑ1) exp(− ikϑ2), −π ≤ ϑ1, ϑ2 ≤ π,

Vj,k =
1

4π2h1h2

∫ π

−π

∫ π

−π
V̂ (ϑ1, ϑ2) exp( ijϑ1) exp( ikϑ2)dϑ1dϑ2, j, k ∈ Z.

For ease of presentation, the dependency of the Fourier transform on ϑ1 and ϑ2

will be omitted in the notation. Fourier transformation of U0,j,k yields Û0 = 1.
Concerning operator Z0 it follows that

Ẑ0V = h1h2

∞∑
j,k=−∞

Z0Vj,ke
− i jϑ1e− ikϑ2

= ρ∆t
2

∞∑
j,k=−∞

(Vj+1,k+1 + Vj−1,k−1 − Vj+1,k−1 − Vj−1,k+1)e− i (jϑ1+kϑ2)

= ρ∆t
2h1h2

[
e iϑ1e iϑ2 + e− iϑ1e− iϑ2 − e iϑ1e− iϑ2 − e− iϑ1e iϑ2

]
V̂

= − 2ρ∆t
h1h2

(sinϑ1 sinϑ2)V̂ .
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Analogously one finds

Ẑ1V =
(
− 4∆t

h2
1

sin2 ϑ1

2 + ia1
∆t
h1

sinϑ1

)
V̂ ,

Ẑ2V =
(
− 4∆t

h2
2

sin2 ϑ2

2 + ia2
∆t
h2

sinϑ2

)
V̂ .

Define functions

z0 = z0(ϑ1, ϑ2) = − 2ρ∆t
h1h2

sinϑ1 sinϑ2,

z1 = z1(ϑ1, ϑ2) = − 4∆t
h2
1

sin2 ϑ1

2 + ia1
∆t
h1

sinϑ1,

z2 = z2(ϑ1, ϑ2) = − 4∆t
h2
2

sin2 ϑ2

2 + ia2
∆t
h2

sinϑ2,

and z = z0 +z1 +z2. Then, Fourier transformation of the implicit Euler scheme
(6.3.4) gives

Ûn =

(
1

1− 1
2z

)2

Ûn−1.

After some calculations, Fourier transformation of the MCS scheme (6.3.3)
yields

Ûn = RÛn−1,

with

R = 1 +
z

p
+

(θz0 + ( 1
2 − θ)z)z
p2

,

where
p = (1− θz1)(1− θz2). (6.4.1)

Assume that N0 ≤ N . Since Û0 = 1 it follows that

ÛN = RN−N0

(
1

1− 1
2z

)2N0

. (6.4.2)

A similar expression is valid for the Fourier transformation of UDo
N and UHV

N .
It is readily shown that

ÛDo
N =

(
1 +

z

p

)N−N0
(

1

1− 1
2z

)2N0

, (6.4.3)

ÛHV
N =

(
1 + 2

z

p
− z

p2
+
z2

p2

)N−N0
(

1

1− 1
2z

)2N0

. (6.4.4)

6.5. Asymptotic Analysis in Fourier Space for the MCS
Scheme

By applying the inverse Fourier transformation to (6.4.2), the numerical ap-
proximation at t = T = 1 can be written as

UN,j,k = 1
4π2h1h2

∫ π

−π

∫ π

−π
ÛN (ϑ1, ϑ2) exp( ijϑ1) exp( ikϑ2)dϑ1dϑ2

= 1
4π2

∫ π/h2

−π/h2

∫ π/h1

−π/h1

ÛN (ω1h1, ω2h2) exp( ixjω1) exp( iykω2)dω1dω2,
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where we made use of the substitutions

ϑ1 = ω1h1, ϑ2 = ω2h2.

From Section 6.2 it can be seen that the exact solution is given by

u(x, y, 1) = 1
4π2

∫ ∞
−∞

∫ ∞
−∞

û(ω1, ω2, 1) exp( ixω1) exp( iyω2)dω1dω2.

In our analysis in this section, we will examine the Fourier error

Ê(ω1, ω2) = ÛN (ω1h1, ω2h2)− û(ω1, ω2, 1), for − π ≤ ω1h1, ω2h2 ≤ π.
(6.5.1)

For h1, h2 tending to zero, the total error (6.3.5) is approximated by

1
4π2

∫ π/h2

−π/h2

∫ π/h1

−π/h1

Ê(ω1, ω2) exp( ixjω1) exp( iykω2)dω1dω2. (6.5.2)

Note that expression (6.5.2) can be viewed as the inverse mixed discrete/contin-
uous Fourier transform of the Fourier error.

6.5.1. Partitioning of the Fourier Domain

It turns out that the Fourier error (6.5.1) has different properties in different
parts of the Fourier domain. This is illustrated in Figure 6.2 and Figure 6.3. In
the former one, the modulus |û| is shown in the (ϑ1, ϑ2)-domain for parameter

values ρ = −0.7, a1 = 2, a2 = 3. In the latter one |ÛN | is shown for the same
parameter values and discretization is performed with h1 = h2 = 1/6,∆t = 1/8
and well-known MCS parameters θ = 1/3, 1/2, 1. For the Rannacher time
stepping we considered values N0 = 0, 2. From Figure 6.2 and Figure 6.3 it
follows that the Fourier domain can be partitioned into five regions where the
difference ÛN−û behaves differently. These regions are illustrated in Figure 6.4.

π

0

ϑ
1

-π-π
ϑ

2

0

0

1

π

|û| 

Figure 6.2: Magnitude of the Fourier transform of the exact solution u(x, y, 1) for
parameter values ρ = −0.7, a1 = 2, a2 = 3.

First there is a low-wavenumber region 1©, where both |ϑ1| and |ϑ2| are

small, in which there is a good agreement between ÛN and û. Next, if either
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Figure 6.3: Magnitude of the Fourier transform ÛN with N0 = 0 (left) and N0 = 2
(right) for MCS parameter θ = 1/3 (top), θ = 1/2 (middle) and θ = 1 (bottom). The
other parameter values are: ρ = −0.7, a1 = 2, a2 = 3, h1 = h2 = 1/6,∆t = 1/8.



6.5. Asymptotic Analysis in Fourier Space for the MCS Scheme

6

57

5© 3©

4©

2©

1©

|ω2|

|ω1|

L
ar
ge

M
ed
iu
m

S
m
al
l

Small Medium Large

Figure 6.4: Illustration of the different disjoint regions of the Fourier domain.

|ϑ1| or |ϑ2| is medium and the other one is small or medium (region 2©), then
both the Fourier transforms of the numerical solution and analytical solution
are negligible. In the high-wavenumber region 3©, i.e. where both |ϑ1|, |ϑ2|
are large, we observe that the modulus of the Fourier transform û is close to
zero. The modulus |ÛN |, however, is strongly dependent on N0 and the MCS

parameter θ. For larger values of θ we see that ÛN has a larger magnitude in
the high-wavenumber region. Hence, a larger high-wavenumber error can be
expected for larger values of θ. Further we observe that the modulus of ÛN
in the high-wavenumber region is always damped whenever Rannacher time
stepping is applied. This matches our observations from Figure 6.1 where
unwanted erratic behaviour was avoided by using Rannacher time stepping.
Finally, we have the case where either |ϑ1| or |ϑ2| is large but the other one is
not. In our analysis, the region 4© where |ϑ1| is large and the region 5© where
|ϑ2| is large will be treated separately. In both regions the Fourier transform

û is negligible but ÛN has to be further analysed. In particular, we will show
that ÛN is not negligible if the MCS scheme reduces to the CS scheme.

Following Giles & Carter [22] we will perform an asymptotic analysis of the

Fourier error ÛN−û in each of these five disjoint regions which form a partition
of the Fourier domain. We consider the limit h1, h2,∆t→ 0 and since the same
discretization is performed in both spatial directions,

c = h2/h1

is held fixed. For ease of presentation we denote h = h1. Further, since both
the semidiscretization and the time integration are convergent of order two for
smooth initial data, it seems natural to keep

λ = ∆t/h
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constant. Substitutions ϑ1 = ω1h1, ϑ2 = ω2h2 yield

z0 = − 2ρλ
ch sinω1h sin cω2h

= −ρλch (cos((ω1 − cω2)h)− cos((ω1 + cω2)h)), (6.5.3a)

z1 = − 4λ
h sin2 ω1h

2 + ia1λ sinω1h

= − 2λ
h (1− cosω1h) + ia1λ sinω1h, (6.5.3b)

z2 = − 4λ
c2h sin2 cω2h

2 + ia2
λ
c sin cω2h

= − 2λ
c2h (1− cos cω2h) + ia2

λ
c sin cω2h. (6.5.3c)

The expressions in (6.5.3) will be used to analyse the asymptotic behaviour of
(6.4.2) in every region as h → 0. Throughout the analysis in this chapter, by
the notation O (f(ω1, ω2, h)) we shall always mean that the modulus | · | of the
term under consideration is bounded by a positive constant times f(ω1, ω2, h)
where the constant is independent of ω1, ω2 and the mesh width h. In order to
deal with the powers in expression (6.4.2) a log-transformation of ÛN will be
considered. Since T = 1, thus N = 1/(λh), it follows that

log(ÛN ) = (N −N0) log (R) + 2N0 log
(

1
1−z/2

)
(6.5.4)

= 1
λh

[
log(p2 + pz + θz0z + ( 1

2 − θ)z2)− 2 log(p)
]

(6.5.5)

+N0

[
2 log(p)− log(p2 + pz + θz0z + ( 1

2 − θ)z2)− 2 log(1− 1
2z)
]
.

(6.5.6)

6.5.2. Taylor Expansion of ÛN

Multiple regions will encounter values |ω1|, |cω2| ≤ h−q with certain q ≤ 1/2.
By Taylor expansion of (6.5.3a) it directly follows that

z0(h) = −ρλch
(

(ω1+cω2)2h2

2 − (ω1−cω2)2h2

2 − (ω1+cω2)4h4

4! + (ω1−cω2)4h4

4! + · · ·
)

= z
[1]
0 h+ z

[3]
0 h3 + z

[5]
0 h5,

where

z
[1]
0 = −2ρλω1ω2, z

[3]
0 = 1

3ρλ(ω2
1 + c2ω2

2)ω1ω2, |z[5]
0 | ≤ 4

6!
ρλ
c (|ω1|+ c|ω2|)6.

Analogously as above, Taylor expansion of (6.5.3b) and (6.5.3c) yields

z1(h) = z
[1]
1 h+ z

[3]
1 h3 + z

[5]
1 h5,

z2(h) = z
[1]
2 h+ z

[3]
2 h3 + z

[5]
2 h5,

where

z
[1]
1 = −λω2

1 + ia1λω1, z
[3]
1 = 1

12λω
4
1 − 1

6 ia1λω
3
1 ,

z
[1]
2 = −λω2

2 + ia2λω2, z
[3]
2 = 1

12λc
2ω4

2 − 1
6 ia2λc

2ω3
2 ,

|z[5]
1 | ≤ 2

6!λω
6
1 + 1

5! |a1|λ|ω1|5, |z[5]
2 | ≤ 2

6!λc
4ω6

2 + 1
5! |a2|λc4|ω2|5.
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Since q ≤ 1/2, it is ensured that all terms in the above expansions stay bounded
as h tends to zero. Using these expansions and the definition (6.4.1) of p it
follows that

p(h) = 1 + p[1]h+ p[2]h2 + p[3]h3 + p[4]h4 + p[5]h5,

where

p[1] = −θ(z[1]
1 + z

[1]
2 ), p[2] = θ2z

[1]
1 z

[1]
2 , p[3] = −θ(z[3]

1 + z
[3]
2 ),

p[4] = θ2(z
[1]
1 z

[3]
2 + z

[3]
1 z

[1]
2 ), p[5] = O

(
1 + (ω2

1 + c2ω2
2)3
)
.

Under the condition |ω1|, |cω2| ≤ h−q with certain q ≤ 1/2, the variables ω1

and ω2 can become very large as h tends to zero. The highest powers of ω1, ω2

will then dominate the order term in p[5]. Under the same condition, however,
ω1 and ω2 can both be very small and then the lowest powers of ω1, ω2 will
dominate. By considering the sum of 1 and the highest powers of ω1, ω2 in the
remaining order term, we ensure that both cases are covered.

As mentioned above we will make use of log-transformation (6.5.4) to anal-
yse the asymptotic behaviour. Let f be a strictly positive and sufficiently
smooth function and set

g(h) = log(f(h)) for h ≥ 0.

Taylor expansion yields

g(h) = log(f(0)) + g[1]h+ g[2]h2 + g[3]h3 + g[4]h4, (6.5.7)

where

g[1] = f ′(0)
f(0) ,

g[2] = 1
2

(
f ′′(0)
f(0) −

f ′(0)2

f(0)2

)
,

g[3] = 1
6

(
f ′′′(0)
f(0) − 3 f

′(0)f ′′(0)
f(0)2 + 2 f

′0)3

f(0)3

)
,

g[4] = 1
4!

(
f(4)(ξ)
f(ξ) −

4f ′(ξ)f ′′′(ξ)+3f ′′(ξ)2

f(ξ)2 + 12 f
′(ξ)2f ′′(ξ)
f(ξ)3 − 6 f

′(ξ)4

f(ξ)4

)
,

for certain 0 < ξ < h. In order to analyse the argument of the first logarithm
in (6.5.5) consider

fM (h) = p(h)2 + p(h)z(h) + θz0(h)z(h) + ( 1
2 − θ)z(h)2.

It readily follows that

fM (0) = 1,

f ′M (0) = 2p′(0) + z′(0),

f ′′M (0) = 2p′(0)2 + 2p′′(0) + 2p′(0)z′(0) + 2θz′0(0)z′(0) + 2( 1
2 − θ)z′(0)2,

f ′′′M (0) = 6p′(0)p′′(0) + 2p′′′(0) + 3p′′(0)z′(0) + z′′′(0),

f4
M (h) = O

(
1 + (ω2

1 + c2ω2
2)4
)
.
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Concerning the Rannacher time stepping, define

fN0
(h) = 1− 1

2z(h),

such that fN0(0) = 1 and

f
(i)
N0

(0) = − 1
2z

(i)(0) for i = 1, 2, 3, f
(4)
N0

(h) = O
(
1 + (ω2

1 + c2ω2
2)2
)
.

All of these expressions will be used in the forthcoming subsections, where we
analyse the asymptotic behaviour of ÛN in five different regions of the Fourier
domain, i.e. the (ω1, ω2)-domain with |ω1|, |ω2| ≤ π/h.

6.5.3. Region 1: |ω1|, |cω2| ≤ h−q with q < 1/3

In order to analyse log ÛN in this region, the parts stemming from the MCS
scheme and Rannacher time stepping will be considered separately. Write
(6.5.5) as

1
λh [log(fM (h))− 2 log(p(h))] .

By using the expansions in Subsection 6.5.2 and after simplifying the resulting
expressions it follows that

1
λh [log(fM (h))− 2 log(p(h))] = s[0] + s[1]h+ s[2]h2 + s[3]h3, (6.5.8)

where

s[0] = −ω2
1 − 2ρω1ω2 − ω2

2 + ia1ω1 + ia2ω2,

s[1] = 0,

s[2] = 1
12ω

4
1 + 1

3ρ(ω2
1 + c2ω2

2)ω1ω2 + 1
12c

2ω4
2 − 1

6 ia1ω
3
1 − 1

6 ia2c
2ω3

2

− λ2θ2(−ω2
1 + ia1ω1)(−ω2

2 + ia2ω2)

× (−ω2
1 − 2ρω1ω2 − ω2

2 + ia1ω1 + ia2ω2)

+ λ2

12 (−ω2
1 − 2ρω1ω2 − ω2

2 + ia1ω1 + ia2ω2)3

− λ2(−ω2
1 − 2ρω1ω2 − ω2

2 + ia1ω1 + ia2ω2)

× (−ρω1ω2 + ( 1
2 − θ)(−ω2

1 − ω2
2 + ia1ω1 + ia2ω2))2,

s[3] = O
(
1 + (ω2

1 + c2ω2
2)4
)
.

Next, consider the part stemming from the Rannacher time stepping. Using
the same analysis as above, one can rewrite (6.5.6) as

N0[2 log(p)− log(fM (h))− 2 log(fN0(h))] = N
[1]
0 h+N

[2]
0 h2 +N

[3]
0 h3, (6.5.9)

where

N
[1]
0 = 0, N

[2]
0 = 1

4N0λ
2(−ω2

1 − 2ρω1ω2 − ω2
2 + ia1ω1 + ia2ω2)2,

and
N

[3]
0 = O

(
1 + (ω2

1 + c2ω2
2)3
)
.
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By combining (6.5.4), (6.5.8) and (6.5.9) it directly follows that ÛN can be
written as

exp(−ω2
1 − 2ρω1ω2−ω2

2 + ia1ω1 + ia2ω2) exp((s[2] +N
[2]
0 )h2 + (s[3] +N

[3]
0 )h3).

Next, we will expand the second exponential in order to compare this expression
with the Fourier transform û from (6.2.2) at t = 1. Let

e(h) = exp(c[2]h2 + c[3]h3),

where

c[2] = O
(
1 + (ω2

1 + c2ω2
2)3
)
, c[3] = O

(
1 + (ω2

1 + c2ω2
2)4
)
,

then

e′(h) = (2c[2]h+ 3c[3]h2)e(h),

e′′(h) = (2c[2] + 6c[3]h)e(h) + (2c[2]h+ 3c[3]h2)2e(h),

e′′′(h) = 6c[3]e(h) + 3(2c[2] + 6c[3]h)(2c[2]h+ 3c[3]h2)e(h)

+ (2c[2]h+ 3c[3]h2)3e(h).

Since |ω1|, |cω2| ≤ h−q with q < 1/3, we have that e(0) = 1 and |e(h)| ≤ exp(1)
whenever h is sufficiently small. Hence it follows that

e(h) = 1 + e[2]h2 + e[3]h3,

with

e[2] = c[2],

e[3] = O
(
1 + (ω2

1 + c2ω2
2)4
)

+O
(
1 + (ω2

1 + c2ω2
2)6
)
h

+O
(
1 + (ω2

1 + c2ω2
2)9
)
h3

= O
(
1 + (ω2

1 + c2ω2
2)4
)

+O
(
1 + (ω2

1 + c2ω2
2)6
)
h,

where the latter equality follows from the assumption |ω1|, |cω2| ≤ h−q with
q < 1/3. Finally, for this region, one arrives at the following expression for the
Fourier error (6.5.1):

û(ω1, ω2, 1)(s[2] +N
[2]
0 )h2

+ û(ω1, ω2, 1)
(
O
(
1 + (ω2

1 + c2ω2
2)4
)
h3 +O

(
1 + (ω2

1 + c2ω2
2)6
)
h4
)
.

(6.5.10)

Here s[2] = O
(
1 + (ω2

1 + c2ω2
2)3
)

and N
[2]
0 = O

(
1 + (ω2

1 + c2ω2
2)2
)
. For ease of

presentation, their dependency on ω1, ω2 is omitted in the notation.

6.5.4. Region 2: |ω1| ≤ h−q1 , |cω2| ≤ h−q2 with q1, q2 ≤ 1/2 and

|ω1| ≥ h−1/3 or |cω2| ≥ h−1/3

First consider the case where both q1 < 1/2 and q2 < 1/2. Based on the
analysis in Subsection 6.5.3, expression (6.5.5) can be rewritten as

N log(R) = 1
λh

[
log(p2 + pz + θz0z + ( 1

2 − θ)z2)− 2 log(p)
]

= s[0] + s[2′]h2,
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where

s[0] = −ω2
1 − 2ρω1ω2 − ω2

2 + ia1ω1 + ia2ω2,

s[2′] = O
(
(ω2

1 + c2ω2
2)3
)
.

Since either ω1 or ω2 becomes large in this region as h tends to zero, only the
highest powers of ω1, ω2 are taken into account in the order term in s[2′]. From
|ρ| < 1 one gets

ω2
1 + 2ρω1ω2 + ω2

2 = (1− |ρ|)(ω2
1 + ω2

2) + |ρ|(ω1 + sgn(ρ)ω2)2 > 0,

such that
R(s[0]) ≤ −(1− |ρ|)(ω2

1 + ω2
2) < 0.

Using that both q1 < 1/2 and q2 < 1/2, it directly follows that

lim
h→0

(ω2
1 + c2ω2

2)2h2 = 0,

and thus

∃ δ > 0 ∃ h0 > 0 ∀ h ≤ h0 : R(N log(R)) ≤ −δ(ω2
1 + ω2

2).

Hence, for h ≤ h0

|RN | ≤ exp(−δ(ω2
1 + ω2

2)),

and since |ω1| ≥ h−1/3 or |cω2| ≥ h−1/3 we may conclude

|RN | = O (hw) ∀w > 0. (6.5.11)

Next, we consider the case where at least one of the equalities, q1 = 1/2 or
q2 = 1/2, holds. For analysing the asymptotic behaviour of R we make use of
the following proposition. Its proof is a direct modification of the proof of one
of the statements in [38, Theorem 1] and is therefore omitted.

Proposition 6.5.1 Let z̃0, z̃1, z̃2 denote real numbers with

z̃1 ≤ 0, z̃2 ≤ 0, |z̃0| ≤ 2|ρ|
√
z̃1z̃2, (6.5.12)

and |ρ| < 1. Set z̃ := z̃0 + z̃1 + z̃2 and p̃ := (1 − θz̃1)(1 − θz̃2). If z̃1 < 0 or
z̃2 < 0, then ∣∣∣∣ p̃2 + p̃z̃ + θz̃0z̃ + ( 1

2 − θ)z̃2

p̃2

∣∣∣∣ < 1,

whenever θ ≥ 1
4 and θ > |ρ|+1

6 .

Recall that in the current region the assumptions |ω1| ≤ h−q1 and |cω2| ≤ h−q2

with q1, q2 ≤ 1/2 holds. This yields

lim
h→0

z0(h) = lim
h→0
−2ρλω1ω2h =: z̃0 ∈ R,

lim
h→0

z1(h) = lim
h→0
−λω2

1h =: z̃1 ∈ R−,

lim
h→0

z2(h) = lim
h→0
−λω2

2h =: z̃2 ∈ R−.
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Since |ω1| = h−1/2 or |cω2| = h−1/2 it follows that z̃1 < 0 or z̃2 < 0. Hence, all
the assumptions on z̃0, z̃1, z̃2 in Proposition 6.5.1 are fulfilled such that

lim
h→0
|R| =

∣∣∣∣ p̃2 + p̃z̃ + θz̃0z̃ + ( 1
2 − θ)z̃2

p̃2

∣∣∣∣ < 1,

and thus

|RN | = |R|1/(λh) = O(hw) ∀w > 0, (6.5.13)

for

θ ≥ 1
4 and θ > 1+|ρ|

6 . (6.5.14)

Further, it always holds that R(z) ≤ 0 such that

|1− 1
2z|−1 ≤ 1.

By combining this with (6.5.11) and (6.5.13), and by using that N0 is indepen-
dent from h, one may conclude that in this region it holds that

|ÛN | = |RN ||R−N0 ||1− 1
2z|−2N0 = O (hw) ∀w > 0,

under restriction (6.5.14) on θ. This means that |ÛN | quickly becomes neg-
ligible as h tends to zero. It decays faster to zero than any polynomial in
h.

6.5.5. Region 3: |ω1|, |cω2| ≥ h−q with q > 1/2

Here we reconsider the substitutions ϑ1 = ω1h1 = ω1h, ϑ2 = ω2h2 = ω2ch in
order to get

z0 = −2ρ λch sinϑ1 sinϑ2,

z1 = −4λh sin2 ϑ1

2 + ia1λ sinϑ1,

z2 = −4 λ
c2h sin2 ϑ2

2 + ia2
λ
c sinϑ2.

Further, in this region ϑ1, ϑ2 are different from zero and since we consider
values −π ≤ ϑ1, ϑ2 ≤ π, we may write

c2

16
λ2

h2 sin2 ϑ1

2 sin2 ϑ2

2

z0 = −ρ c cot
ϑ1

2 cot
ϑ2

2
2λ h,

c2

16
λ2

h2 sin2 ϑ1

2 sin2 ϑ2

2

z1 = − c2

4λ sin2 ϑ2

2

h+ ia1
c2 cot

ϑ1

2

8λ sin2 ϑ2

2

h2,

c2

16
λ2

h2 sin2 ϑ1

2 sin2 ϑ2

2

z2 = − 1

4λ sin2 ϑ1

2

h+ ia2
c cot

ϑ2

2

8λ sin2 ϑ1

2

h2,

and
c2

16
λ2

h2 sin2 ϑ1

2 sin2 ϑ2

2

p
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equals

θ2 + θ

(
1

4λ sin2 ϑ1

2

− θ ia1
cot

ϑ1

2
2 + c2

4λ sin2 ϑ2

2

− θ ia2
c cot

ϑ2

2
2

)
h

+

(
1

4λ sin2 ϑ1

2

− θ ia1
cot

ϑ1

2
2

)(
c2

4λ sin2 ϑ2

2

− θ ia2
c cot

ϑ2

2
2

)
h2.

Making use of an expansion similar to (6.5.7) it follows that

log

( c2

16
λ2

h2 sin2 ϑ1

2 sin2 ϑ2

2

)2 (
p2 + pz + θz0z + ( 1

2 − θ)z2
)

= log θ4

+

[
2θ3

(
1

4λ sin2 ϑ1

2

− θ ia1
cot

ϑ1

2
2 + c2

4λ sin2 ϑ2

2

− θ ia2
c cot

ϑ2

2
2

)
− θ2ρ

c cot
ϑ1

2 cot
ϑ2

2
2λ − θ2 1

4λ sin2 ϑ1

2

− θ2 c2

4λ sin2 ϑ2

2

]
h
θ4

+O
((

1

| sin ϑ1

2 |
+ c

| sin ϑ2

2 |

)4

h2

)
,

and

log

[
c2

16
λ2

h2 sin2 ϑ1

2 sin2 ϑ2

2

p

]
can be written as

log θ2 +

(
1

4λ sin2 ϑ1

2

− θ ia1
cot

ϑ1

2
2 + c2

4λ sin2 ϑ2

2

− θ ia2
c cot

ϑ2

2
2

)
h
θ

+O
((

1

| sin ϑ1

2 |
+ c

| sin ϑ2

2 |

)4

h2

)
.

Combining both expressions yields

log (R) = − 1
4λθ2

(
2ρc cot ϑ1

2 cot ϑ2

2 + 1

sin2 ϑ1

2

+ c2

sin2 ϑ2

2

)
h

+O
((

1

| sin ϑ1

2 |
+ c

| sin ϑ2

2 |

)4

h2

)

= − 1
4λθ2

c2 sin2 ϑ1

2 +2ρc cos
ϑ1

2 sin
ϑ1

2 cos
ϑ2

2 sin
ϑ2

2 +sin2 ϑ2

2

sin2 ϑ1

2 sin2 ϑ2

2

h

+O
((

1

| sin ϑ1

2 |
+ c

| sin ϑ2

2 |

)4

h2

)
.

Further, recall that in this region ϑ1, ϑ2 are both different from zero such that

ι(ϑ1, ϑ2) := c2 sin2 ϑ1

2 + 2ρc cos ϑ1

2 sin ϑ1

2 cos ϑ2

2 sin ϑ2

2 + sin2 ϑ2

2 > 0, (6.5.15)
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and hence

log(RN ) = − 1
4λ2θ2

ι(ϑ1,ϑ2)

sin2 ϑ1

2 sin2 ϑ2

2

(
1 +O

((
1

| sin ϑ1

2 |
+ c

| sin ϑ2

2 |

)2

h

))
.

As for the implicit Euler time stepping scheme we note

c2h
2λ

(
1− 1

2z
)

= c2 sin2 ϑ1

2 + 1
2ρc sinϑ1 sinϑ2 + sin2 ϑ2

2

+
(
c2

2λ − ia1
c2

4 sinϑ1 − ia2
c
4 sinϑ2

)
h.

Using once again an expansion analogous to (6.5.7) it follows that

log
(
1− 1

2z
)

= log
(

2λ
c2h

)
+ log (ι(ϑ1, ϑ2)) + O

((
1

| sin ϑ1

2 |
+ c

| sin ϑ2

2 |

)2

h

)
,

(6.5.16)
which yields

log
(
R−N0(1− 1

2z)
−2N0

)
= −2N0 log

(
2λ
c2h

)
− 2N0 log (ι(ϑ1, ϑ2))

+O
((

1

| sin ϑ1

2 |
+ c

| sin ϑ2

2 |

)2

h

)
.

Making use of relationship (6.4.2) one becomes an expression for the Fourier

transform ÛN in this region:

ÛN = (c2h)2N0

[2λι(ϑ1,ϑ2)]2N0
exp

(
− 1

4λ2θ2
ι(ϑ1,ϑ2)

sin2 ϑ1

2 sin2 ϑ2

2

)(
1 +O

(
h

(|ϑ1|+|ϑ2|)2

))
.

(6.5.17)
In Figure 6.3 we noticed that in the high-wavenumber region, i.e. where both
|ϑ1|, |ϑ2| are large, the norm |ÛN | is highly dependent on the MCS parameter
θ. This is confirmed by (6.5.17) since inequality (6.5.15) holds in the high-
wavenumber region. Hence, for larger values of the MCS parameter θ one can
expect a larger high-wavenumber error.

6.5.6. Region 4: |ω1| ≥ h−q1 , |cω2| ≤ h−q2 with q1 > 1/2, q2 ≤ 1/2

Reconsider the substitution ϑ1 = ω1h and recall that −π ≤ ϑ1 ≤ π. Then, as
ϑ1 is non-zero in this region, one may write

lim
h→0

1

4λh sin2 ϑ1

2

z1 = lim
h→0

(
−1 + 1

2 ia1h cot ϑ1

2

)
= −1,

lim
h→0

1

4λh sin2 ϑ1

2

z2 = lim
h→0

(
− 1

c2 sin2 ϑ1

2

sin2 cω2h
2 + ia2

h

4c sin2 ϑ1

2

sin cω2h

)
= 0,

lim
h→0

1

4λh sin2 ϑ1

2

z0 = lim
h→0

(
−ρ
c

cot ϑ1

2 sin cω2h
)

= 0,

lim
h→0

1

4λh sin2 ϑ1

2

p = lim
h→0

(
θ +

(
1

4λ sin2 ϑ1

2

− 1
2θ ia1 cot ϑ1

2

)
h

)
(1− θz2)

= θ(1 + ˜̃z2),
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where ˜̃z2 denotes a positive real number. Hence, concerning R it follows that

lim
h→0
|R| = lim

h→0

∣∣∣∣p2 + pz + θz0z + ( 1
2 − θ)z2

p2

∣∣∣∣ =

∣∣∣∣∣ (1 + ˜̃z2)2θ2 − (2 + ˜̃z2)θ + 1
2

(1 + ˜̃z2)2θ2

∣∣∣∣∣ .
For the latter expression we obtain the following positive result.

Proposition 6.5.2 If θ > 1/4 and θ 6= 1/2, then∣∣∣∣∣ (1 + ˜̃z2)2θ2 − (2 + ˜̃z2)θ + 1
2

(1 + ˜̃z2)2θ2

∣∣∣∣∣ < 1

for all real numbers ˜̃z2 ≥ 0. If θ = 1/4 or θ = 1/2, then the inequality holds

for numbers ˜̃z2 > 0.

Proof Let ˜̃z2 be a positive real number. First, it is clear that the inequality
holds whenever both

− (2 + ˜̃z2)θ + 1
2 < 0, (6.5.18a)

2(1 + ˜̃z2)2θ2 − (2 + ˜̃z2)θ + 1
2 > 0. (6.5.18b)

It is readily seen that (6.5.18a) is satisfied for θ > 1/4. For strictly positive ˜̃z2

the inequality is satisfied whenever θ ≥ 1/4. Regarding inequality (6.5.18b) we
consider the left-hand side as a second order polynomial in θ with discriminant

∆ = (2 + ˜̃z2)2 − 4(1 + ˜̃z2)2 = − ˜̃z2(3 ˜̃z2 + 4).

If ˜̃z2 > 0, then ∆ < 0 and the polynomial is strictly positive for all real numbers

θ. If ˜̃z2 = 0, the polynomial reduces to 2θ2−2θ+1/2 which reaches its minimum
(zero) in θ = 1/2.

�

Let θ > 1/4 and θ 6= 1/2. Then, applying Proposition 6.5.2 in this region yields
limh→0 |R| < 1 and thus

|RN | = |R|1/(λh) = O (hw) ∀w > 0.

Since N0 is independent from h and |1/(1− 1
2z)| ≤ 1 one may conclude that

|ÛN | = O(hw) ∀w > 0.

Next, consider the case θ = 1/2. Recall that the MCS scheme then reduces to
the original CS scheme. If |cω2| = h−1/2, it follows that

lim
h→0

1

4
λ
h sin2 ϑ1

2

p = θ(1 + ˜̃z2),
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with ˜̃z2 > 0 such that proposition 6.5.2 can be applied and |RN | = O (hw) for
all w > 0. Now, assume |cω2| ≤ h−q2 with q2 < 1/2. An expansion similar to
(6.5.7) yields that

log

[
−1

16
λ2

h2 sin4 ϑ1

2

(p2 + pz + θz0z + ( 1
2 − θ)z2)

]

equals

log(−θ2 + 2θ − 1
2 )

−
[
2θ

(
1

4λ sin2 ϑ1

2

− 1
2θ ia1 cot ϑ1

2 − θ2z
[1]
2

)
+ θ

(
−ρ cot ϑ1

2 ω2 + 1
2 ia1 cot ϑ1

2

)
−
(

1

4λ sin2 ϑ1

2

− 1
2θ ia1 cot ϑ1

2 − θ2z
[1]
2

)
+ θρ cot ϑ1

2 ω2

− 2( 1
2 − θ)

(
−ρ cot ϑ1

2 ω2 + 1
2 ia1 cot ϑ1

2

) ]
h

−θ2+2θ− 1
2

+ O
((

1

sin2 ϑ1

2

+ |ω2|
| sin ϑ1

2 |
+ ω2

2

)2

h2

)
,

and

log

[
1

16
λ2

h2 sin4 ϑ1

2

p2

]
= log θ2 + 2θ

(
1

4λ sin2 ϑ1

2

− 1
2θ ia1 cot ϑ1

2 − θ2z
[1]
2

)
h
θ2

+O
((

1

sin2 ϑ1

2

+ ω2
2

)2

h2

)
.

Making use of θ = 1/2 it follows that

log
(
(−R)N

)
= 1

λh

[(
−1

λ sin2 ϑ1

2

+ z
[1]
2

)
h+O

((
1

sin2 ϑ1

2

+ ω2

| sin ϑ1

2 |
+ ω2

2

)2

h2

)]

=
(

−1

λ2 sin2 ϑ1

2

− ω2
2 + ia2ω2

)(
1 +O

((
1

sin2 ϑ1

2

+ |ω2|
| sin ϑ1

2 |
+ ω2

2

)
h

))
.

In order to analyse the Rannacher time stepping we note

1− 1
2 z

2
λ
h sin2 ϑ1

2

= 1 +O
((

1

sin2 ϑ1

2

+ |ω2|
| sin ϑ1

2 |
+ ω2

2

)
h

)
,

which yields

log
(

(−R)−N0
(
1− 1

2z
)−2N0

)
= 2N0 log

(
h

2λ sin2 ϑ1

2

)
+O

((
1

sin2 ϑ1

2

+ |ω2|
| sin ϑ1

2 |
+ ω2

2

)
h

)
.
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By exploring relationship (6.4.2) one may conclude that

ÛN = (−1)N−N0h2N0

(2λ sin2 ϑ1

2 )2N0

exp
(

−1

λ2 sin2 ϑ1

2

−ω2
2+ ia2ω2

)(
1 +O

((
1
ϑ2
1

+ |ω2|
|ϑ1| + ω2

2

)
h
))
.

(6.5.19)
Whenever |cω2| = h−1/2, the right-hand side of (6.5.19) is O (hw) for all w > 0
such that we can use expression (6.5.19) for the whole region in the case of
θ = 1/2.

6.5.7. Region 5: |ω1| ≤ h−q1 , |cω2| ≥ h−q2 with q1 ≤ 1/2, q2 > 1/2

The analysis for this region is completely analogous to the one in Subsec-
tion 6.5.6. Hence, for θ > 1/4 and θ 6= 1/2 it follows that

|ÛN | = O(hw) ∀w > 0.

Whenever the CS scheme is considered, i.e. θ = 1/2, one gets the expression

ÛN = (−1)N−N0h2N0

(
2λ
c sin2 ϑ2

2 )2N0

exp
(

−c2

λ2 sin2 ϑ2

2

−ω2
1 + ia1ω1

)(
1 +O

((
ω2

1 + |ω1|
|ϑ2| + 1

ϑ2
2

)
h
))
.

(6.5.20)

6.5.8. Connection with Stability of the MCS Scheme

In the above analysis natural bounds on the MCS parameter θ arise under
which the asymptotic results are valid. These bounds can be interpreted as

stability bounds. In particular, the conditions θ ≥ 1
4 , θ >

1+|ρ|
6 are needed to

ensure that the Fourier transform ÛN is negligible in the second region. This
restriction is only slightly stronger than the lower bound on θ derived in [38], cf.
also equation (3.3.1), guaranteeing unconditional stability of the MCS scheme
in the von Neumann sense pertinent to two-dimensional diffusion equations
with mixed derivative term. This is, indeed, not very surprising. In [38] it is
stated that the stability analysis of the MCS scheme in this case reduces to
bounding by one the modulus of the scalar expression

1 +
z̃

p̃
+

(θz̃0 + ( 1
2 − θ)z̃)z̃
p̃2

,

where z̃ = z̃0 + z̃1 + z̃2, p̃ = (1−θz̃1)(1−θz̃2) and z̃0, z̃1, z̃2 denote real numbers
satisfying the condition (6.5.12). This explains why Proposition 6.5.1 is just a
slight modification of one of the statements in [38, Theorem 1].

6.6. Asymptotic Analysis in Physical Space for the MCS
Scheme

In this section we will use the asymptotic results in Fourier space for the MCS
scheme from Section 6.5 to perform an error analysis in physical space. First
note that the Fourier transform û is only sizeable in region 1 of the Fourier
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domain. In the other regions it holds that ω1 ≥ h−1/3 or cω2 ≥ h−1/3 and
hence

û(ω1, ω2, 1) = O (hw) ∀w > 0.

Based on equalities (6.2.2), (6.5.10) and (6.5.17) we define

Êlow = h2 exp(−ω2
1 − 2ρω1ω2−ω2

2 + ia1ω1 + ia2ω2)(s[2](ω1, ω2) +N
[2]
0 (ω1, ω2))

and

Êhigh =
(c2h)2N0

[2λι(ϑ1, ϑ2)]
2N0

exp

(
− 1

4λ2θ2

ι(ϑ1, ϑ2)

sin2 ϑ1

2 sin2 ϑ2

2

)
.

Recall that ϑ1 = ω1h1, ϑ2 = ω2h2 and h2 = ch1 = ch. As a consequence, Êlow

is only sizeable in region 1 and Êhigh is only sizeable in region 3. In the other

regions of the Fourier domain ÛN is negligible whenever θ > max{ 1
4 ,

1+|ρ|
6 } and

θ 6= 1/2. Hence, for these values of θ, the results can be combined to

ÛN (ω1h1, ω2h2)− û(ω1, ω2, 1) ≈ Êlow + Êhigh, for |ω1|, |cω2| ≤ π/h. (6.6.1)

When θ = 1/2, i.e. when the MCS scheme reduces to the CS scheme, ÛN is
also sizeable in region 4 and region 5 of the Fourier domain. This case will be
treated separately.

6.6.1. MCS Scheme with θ 6= 1/2

Consider the case where the MCS scheme is different from the CS scheme,

θ 6= 1/2, and suppose that the restriction θ > max{ 1
4 ,

1+|ρ|
6 } is satisfied. Ap-

proximation (6.6.1) is then valid and based on (6.5.2) we have for the total
error:

UN,j,k − u(xj , yk, 1) ≈ Elow
j,k + Ehigh

j,k ,

where the low-wavenumber error Elow
j,k is given by

h2

4π2

∫ ∞
−∞

∫ ∞
−∞

û(ω1, ω2, 1)(s[2](ω1, ω2)+N
[2]
0 (ω1, ω2)) exp( i(ω1xj+ω2yk))dω1dω2

(6.6.2)

and the high-wavenumber error Ehigh
j,k is given by

h2N0c4N0

4π2

∫ π/h2

−π/h2

∫ π/h1

−π/h1

exp( iω1xj) exp( iω2yk)

[2λι(ϑ1,ϑ2)]2N0
exp

(
− 1

4λ2θ2
ι(ϑ1,ϑ2)

sin2 ϑ1

2 sin2 ϑ2

2

)
dω1dω2,

which can be rewritten as

h2N0−2c4N0−1

4π2

∫ π

−π

∫ π

−π

exp( i jϑ1) exp( ikϑ2)

[2λι(ϑ1,ϑ2)]2N0
exp

(
− 1

4λ2θ2
ι(ϑ1,ϑ2)

sin2 ϑ1

2 sin2 ϑ2

2

)
dϑ1dϑ2.

First, consider the low-wavenumber error. The inverse mixed discrete/contin-

uous Fourier transform of Êlow is given by

h2

4π2h1h2

∫ π

−π

∫ π

−π
û(ϑ1

h1
, ϑ2

h2
, 1)(s[2](ϑ1

h1
, ϑ2

h2
)+N

[2]
0 (ϑ1

h1
, ϑ2

h2
)) exp( i(jϑ1+kϑ2)dϑ1dϑ2
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which can be approximated by (6.6.2) as h1, h2 tend to zero. Let

φρ(x, y) = 1√
4π2(1−ρ2)

exp
(
−x2−2ρxy+y2

2(1−ρ2)

)
,

the density function of a two-dimensional standard normally distributed ran-
dom variable with correlation ρ. For all positive integers n1, n2 the Fourier

transform of ∂n1+n2

∂xn1∂yn2
φρ

(
x+a1√

2
, y+a2√

2

)
is

2( i
√

2ω1)n1( i
√

2ω2)n2 exp(−ω2
1 − 2ρω1ω2 − ω2

2 + ia1ω1 + ia2ω2), (6.6.3)

such that the inverse Fourier transform of

h2 exp(−ω2
1 − 2ρω1ω2 − ω2

2 + ia1ω1 + ia2ω2)ωn1
1 ωn2

2

is given by
h2

2
1

( i
√

2)n1+n2

∂n1+n2

∂xn1∂yn2 φρ

(
x+a1√

2
, y+a2√

2

)
.

Recalling the formulas for s[2] and R[2] from Subsection 6.5.3, this leads to the
following expression for the low-wavenumber error:

Elow
j,k = h2C low

xj ,yk
, (6.6.4)

with

C low
xj ,yk

= 1
2

[
1
48

∂4

∂x4 + ρ
12

(
∂4

∂x3∂y + c2∂4

∂x∂y3

)
+ c2

48
∂4

∂y4 + a1
12
√

2
∂3

∂x3 + a2c
2

12
√

2
∂3

∂y3

− λ2θ2
(

1
2
∂2

∂x2 + a1√
2
∂
∂x

)(
1
2
∂2

∂y2 + a2√
2
∂
∂y

)
×
(

1
2
∂2

∂x2 + ρ ∂2

∂x∂y + 1
2
∂2

∂y2 + a1√
2
∂
∂x + a2√

2
∂
∂y

)
+ λ2

12

(
1
2
∂2

∂x2 + ρ ∂2

∂x∂y + 1
2
∂2

∂y2 + a1√
2
∂
∂x + a2√

2
∂
∂y

)3

− λ2
(

1
2
∂2

∂x2 + ρ ∂2

∂x∂y + 1
2
∂2

∂y2 + a1√
2
∂
∂x + a2√

2
∂
∂y

)
×
(
ρ
2

∂2

∂x∂y +
(

1
2 − θ

) (
1
2
∂2

∂x2 + 1
2
∂2

∂y2 + a1√
2
∂
∂x + a2√

2
∂
∂y

))2

+ N0λ
2

4

(
1
2
∂2

∂x2 + ρ ∂2

∂x∂y + 1
2
∂2

∂y2 + a1√
2
∂
∂x + a2√

2
∂
∂y

)2
]
φρ

(
xj+a1√

2
, yk+a2√

2

)
.

Next, consider the high-wavenumber error and note that

exp( ijϑ1) exp( ikϑ2) = cos(jϑ1 + kϑ2) + i sin(jϑ1 + kϑ2).

Symmetry yields
Ehigh
j,k = h2N0−2Chigh

j,k , (6.6.5)

where

Chigh
j,k = c4N0−1

2π2

∫ π

0

∫ π

0

cos(jϑ1+kϑ2)

[2λι(ϑ1,ϑ2)]2N0
exp

(
− 1

4λ2θ2
ι(ϑ1,ϑ2)

sin2 ϑ1

2 sin2 ϑ2

2

)
dϑ1dϑ2

+ c4N0−1

2π2

∫ 0

−π

∫ π

0

cos(jϑ1+kϑ2)

[2λι(ϑ1,ϑ2)]2N0
exp

(
− 1

4λ2θ2
ι(ϑ1,ϑ2)

sin2 ϑ1

2 sin2 ϑ2

2

)
dϑ1dϑ2.

Combining the expression (6.6.4) for the low-wavenumber error and expression
(6.6.5) for the high-wavenumber error yields the main result of the chapter:
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Theorem 6.6.1 Consider the model PDE (6.2.1). Assume spatial discretiza-
tion is performed by standard second order central finite differences on a uni-
form Cartesian grid with mesh width h1 = h in the x-direction and mesh width
h2 in the y-direction. Assume the obtained semidiscrete system is discretized
in time by using the MCS scheme, with parameter θ ≥ 1/3 and θ 6= 1/2, on
a uniform temporal grid with temporal step size ∆t. Let N0 ≥ 0 denote the
number of initial MCS time steps that are replaced by 2N0 half-time steps of
the implicit Euler scheme. If c = h2/h1 and λ = ∆t/h are kept constant, then
as h tends to zero the total error is approximated by

UN,j,k − u(xj , yk, 1) ≈ h2C low
xj ,yk

+ h2N0−2Chigh
j,k .

The values C low
xj ,yk

are only dependent on the position (xj , yk) = (jh1, kh2),
the parameter values of the problem and the ratios c and λ. The constants
Chigh
j,k only depend on the index (j, k), the correlation parameter ρ and the

ratios c, λ. For the numerical experiments, cf. infra, the values C low
xj ,yk

are

calculated by determining all the partial derivatives. The integrals in Chigh
j,k are

approximated by numerical integration. It is readily seen that

max
j,k
|Chigh
j,k | = |C

high
0,0 |,

so Ehigh
j,k has a maximum magnitude where (xj , yk) = (0, 0). This is exactly at

the position of the discontinuity of the initial function. At the end of Subsec-
tion 6.5.5 it was conjectured that for larger values of the MCS parameter θ one
can expect a larger high-wavenumber error. This conjecture is confirmed by
the above analysis given that ι(ϑ1, ϑ2) is always positive. In order to avoid spu-
rious erratic behaviour in the numerical solution, it is therefore recommended
to use smaller values of the parameter θ. However, one has to take into account
the lower bound on θ described in Subsection 6.5.8.

Theorem 6.6.1 shows that the total error is O(hmin{2,2N0−2}) so that N0 = 2
is a lower bound on N0 for the Rannacher time stepping in order to ensure
convergence of the numerical solution to the exact solution. This is confirmed
by the plots in Figure 6.5 which display total errors (in the maximum norm) in
actual numerical experiments for model problem (6.2.1) as a function of 1/h,
with parameter values ρ = −0.7, a1 = 2, a2 = 3, MCS parameter θ = 1/3 and
with c = 1, 0.2 ≤ λ ≤ 0.8. Since it is not possible to handle infinite domains
in numerical experiments, the computational domain is restricted to spatial
grid points (xj , yk) ∈ [−10, 10] × [−10, 10]. At the boundaries, homogeneous
Dirichlet boundary conditions are applied. In the left plots the case N0 = 0 is
considered, whereas the right plots show the corresponding results for N0 = 2.
In the upper plots the maximum error between our numerical solution and the
exact solution is shown as a function of 1/h for different values of λ. In the
lower plots we show the same maximum error for one value of λ, together with
our theoretical estimates for the corresponding low-wavenumber error and high-
wavenumber error. In these lower plots it is clearly seen that our theoretical
estimates for the total error are sharp.

For the case where no Rannacher time stepping is applied, the left plots in
Figure 6.5 reveal second order convergence behaviour until h reaches a critical
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Figure 6.5: Convergence of the numerical solution for N0 = 0 (left) and N0 = 2
(right). The parameter values are: ρ = −0.7, a1 = 2, a2 = 3, θ = 1/3.

value where the high-wavenumber error starts exceeding the low-wavenumber
error. It can be observed that this value of h, and thus the high-wavenumber
error, is highly dependent on the ratio λ = ∆t/h. For smaller values of λ, Ehigh

j,k

is only sizeable whenever h is very small, whereas for larger values of λ, Ehigh
j,k

already dominates the total error for larger values of h. Moreover, the error
constant for the low-wavenumber error is also dependent on λ. However, this
is much less pronounced than for the high-wavenumber error.

The right plots in Figure 6.5 show the corresponding results in the case
where the first two MCS time steps are replaced by four backward Euler half-
time steps, thus N0 = 2. One observes that the numerical approximations
now exhibit second order convergence for all values of the ratio λ. In the
bottom right plot the high-wavenumber error is not visible since it is strongly
dominated by the low-wavenumber error. The same observation is made for
other values of λ. Hence, whenever Rannacher time stepping is applied with
N0 = 2, the total error can be approximated by Elow

j,k , which is of second order
in h. We find that the error constant for the low-wavenumber error is mildly
dependent on the ratio λ = ∆t/h. This can be explained through the fact
that for a fixed value of h but smaller value of λ the same semidiscrete system
is solved with a smaller temporal step size ∆t. Finally, we notice that the
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latter error constant is slightly larger than for the case where N0 = 0. Thus,
by applying Rannacher time stepping with N0 = 2, second order convergence
can be recovered at the small cost of a marginally larger error constant for the
low-wavenumber error.
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Figure 6.6: Convergence of the numerical solution for N0 = 0 (left) and N0 = 2
(right). The parameter values are: ρ = −0.7, a1 = 2, a2 = 3, θ = 1.

As stated above, the high-wavenumber error is very sensitive to the MCS
parameter θ. To illustrate this, Figure 6.6 shows the same plots as in Figure 6.5
but with the MCS parameter replaced by θ = 1. It can be seen that all the
conclusions from Figure 6.5 remain valid. In order to get decent plots, however,
it is necessary to consider smaller values for λ. This confirms that, for fixed λ,
Ehigh
j,k is strongly increasing as a function of θ. Figure 6.7 reveals that, for the

considered parameter values, the low-wavenumber error is also sensitive to the
MCS parameter θ. Note, however, that this is less pronounced than for the
high-wavenumber error. We conjecture that for fixed λ and fixed h, the low-
wavenumber error is also increasing as a function of θ. Therefore, regardless of
the number of Rannacher time steps N0, it seems more favourable to consider
smaller values of θ. In particular, the lowest value of θ which satisfies the
restrictions from Subsection 6.5.8 for all values |ρ| < 1 is given by θ = 1/3.
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Figure 6.7: Convergence of the low-wavenumber error for different values of θ, and
for N0 = 0 (left) and N0 = 2 (right). The parameter values are: ρ = −0.7, a1 = 2,
a2 = 3, λ = 1/5.

6.6.2. MCS Scheme with θ = 1/2

For θ = 1/2, the MCS scheme reduces to the CS scheme and ÛN is not negligible
in region 4 and region 5. Based on equalities (6.5.19) and (6.5.20) we define

ÊCS,4 = (−1)N−N0
h2N0

(2λ sin2 ϑ1

2 )2N0
exp

(
−1

λ2 sin2 ϑ1

2

− ω2
2 + ia2ω2

)
and

ÊCS,5 = (−1)N−N0
(ch)2N0

(2λ sin2 ϑ2

2 )2N0
exp

(
−c2

λ2 sin2 ϑ2

2

− ω2
1 + ia1ω1

)
.

Since ϑ1 = ω1h1, ϑ2 = ω2h2 and h2 = ch1 = ch, ÊCS,4 only has to be considered
in region 4 and ÊCS,5 is only not negligible in region 5. Hence, the Fourier error
(6.5.1) can be approximated by

ÛN (ω1h1, ω2h2)− û(ω1, ω2, 1) ≈ Êlow + Êhigh + ÊCS,4 + ÊCS,5,

for |ω1|, |cω2| ≤ π/h. The inverse mixed discrete/continuous Fourier transform

of the term (−1)N−N0(ÊCS,4 + ÊCS,5) is given by

h2N0

4π2

∫ π/h2

−π/h2

∫ π/h1

−π/h1

exp( iω1xj) exp( iω2yk)

(2λ sin2 ϑ1

2 )2N0

exp

(
−1

λ2 sin2 ϑ1

2

− ω2
2 + ia2ω2

)
dω1dω2

+ h2N0

4π2

∫ π/h2

−π/h2

∫ π/h1

−π/h1

exp( iω1xj) exp( iω2yk)

(2
λ
c sin2 ϑ2

2 )2N0

exp

(
−c2

λ2 sin2 ϑ2

2

− ω2
1 + ia1ω1

)
dω1dω2.

As h1, h2 tend to zero this can be approximated by

h2N0−1

4π2

∫ ∞
−∞

∫ π

−π

exp( i jϑ1) exp( iω2yk)

(2λ sin2 ϑ1

2 )2N0

exp

(
−1

λ2 sin2 ϑ1

2

− ω2
2 + ia2ω2

)
dϑ1dω2

+ h2N0−1

4cπ2

∫ π

−π

∫ ∞
−∞

exp( iω1xj) exp( ikϑ2)

(2
λ
c sin2 ϑ2

2 )2N0

exp

(
−c2

λ2 sin2 ϑ2

2

− ω2
1 + ia1ω1

)
dω1dϑ2,
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and we denote this expression by (−1)N−N0ECS
j,k . Making use of a symmetry

argument and a one-dimensional inverse Fourier transformation, ECS
j,k can be

rewritten as

ECS
j,k = h2N0−1(−1)N−N0(CCS

j,yk
+ CCS

xj ,k), (6.6.6)

with

CCS
j,yk

= 1
2
√

2π
φ
(
yk+a2√

2

)∫ π

−π

cos(jϑ1)

(2λ sin2 ϑ1

2 )2N0

exp

(
−1

λ2 sin2 ϑ1

2

)
dϑ1,

CCS
xj ,k = 1

2
√

2cπ
φ
(
xj+a1√

2

)∫ π

−π

cos(kϑ2)

(2
λ
c sin2 ϑ2

2 )2N0

exp

(
−c2

λ2 sin2 ϑ2

2

)
dϑ2,

where φ denotes the density function of a standard normally distributed ran-
dom variable. It is readily seen that CCS

j,yk
, respectively CCS

xj ,k
, reaches its high-

est magnitude near the points (j, k) where (xj , yk) ≈ (0,−a2), respectively
(xj , yk) ≈ (−a1, 0). For the numerical experiments, the integrals in CCS

j,yk
and

CCS
xj ,k

are approximated by numerical integration. Combining the expressions

(6.6.4), (6.6.5) and (6.6.6) leads to the following theorem:

Theorem 6.6.2 Consider the model PDE (6.2.1). Assume spatial discretiza-
tion is performed by standard second order central finite differences on a uni-
form Cartesian grid with mesh width h1 = h in the x-direction and mesh width
h2 in the y-direction. Assume the obtained semidiscrete system is discretized in
time by using the CS scheme on a uniform temporal grid with temporal step size
∆t. Let N0 ≥ 0 denote the number of initial CS time steps that are replaced by
2N0 half-time steps of the implicit Euler scheme. If c = h2/h1 and λ = ∆t/h
are kept constant, then as h tends to zero the total error is approximated by

UN,j,k−u(xj , yk, 1) ≈ h2C low
xj ,yk

+h2N0−2Chigh
j,k +h2N0−1(−1)N−N0(CCS

j,yk
+CCS

xj ,k).

From Theorem 6.6.2 it can be concluded that when CS time stepping is
considered, the total error is also O

(
hmin{2,2N0−2}). This matches the obser-

vations from the plots in Figure 6.8 which show convergence results for the
same problem as in Subsection 6.6.1 but with MCS parameter θ = 1/2. The
lower plots indicate again that our theoretical estimates for the total error
are sharp. Without Rannacher time stepping, i.e. N0 = 0, the results in Fig-
ure 6.8 show second order convergence in h until ECS

j,k starts exceeding the
low-wavenumber error. Then the total error increases in a first order way until
the high-wavenumber error starts dominating. From there the total error is
O
(
h−2

)
. In case the CS scheme is replaced in the first two time steps by four

half-time steps of the implicit Euler scheme, i.e. N0 = 2, Figure 6.8 reveals
unconditional second order convergence in h. Note that both ECS

j,k and Ehigh
j,k

are not visible in the lower-right plot because they are strongly dominated by
the low-wavenumber error. The same observation as in Subsection 6.6.1 can
be made concerning the dependency of the low- and high-wavenumber errors
on the parameter λ.
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Figure 6.8: Convergence of the numerical solution for N0 = 0 (left) and N0 = 2
(right). The parameter values are: ρ = −0.7, a1 = 2, a2 = 3, θ = 1/2.

6.6.3. Alternative Initial Data

Until now, the focus of our analysis has been on Dirac delta initial data. If
the Dirac delta is approximated on the spatial grid by (6.3.2), then both the

Fourier transforms û(ω1, ω2, 0) and Û0(ω1h1, ω2h2) are identically equal to one,
which facilitates the analysis. However, also alternative approximations of the
Dirac delta or other (non-smooth) initial functions can be considered. Assume
again that c = h2/h1 and λ = ∆t/h1 are kept constant, and write h1 = h.

A possible alternative discretization of the Dirac delta is given by

U0,j,k =



1
4h1h2

if j = k = 0,
1

8h1h2
if j = 0, |k| = 1 or |j| = 1, k = 0,

1
16h1h2

if |j| = |k| = 1,

0 else.

An asymptotic expansion of its discrete Fourier transform yields

Û0 = 1 +O
(
ω2

1h
2
1 + ω2

2h
2
2

)
= 1 +O

(
ϑ2

1 + ϑ2
2

)
. (6.6.7)

Hence, the orders of the low-wavenumber error and the high-wavenumber error
will be unaffected. In general, if one considers an alternative discretization
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of the Dirac delta function such that (6.6.7) is valid, then Theorem 6.6.1 and
Theorem 6.6.2 will remain valid, except with other error constants.

As a natural example of another non-smooth initial function, consider the
payoff of a two-asset cash-or-nothing option, i.e. u(x, y, 0) = 1{x≥0}1{y≥0},
such that

û(ω1, ω2, 0) = ( 1
iω1

+ πδ(ω1))( 1
iω2

+ πδ(ω2)). (6.6.8)

A naive approximation of this initial function on the spatial grid is

U0,j,k =

{
1 if j ≥ 0, k ≥ 0,

0 else.

It can be shown that discrete Fourier transformation of this discretization gives

Û0(ω1h1, ω2h2) =
(

h1

1−exp(− iω1h1) + h1πδ(ω1h1)
)(

h2

1−exp(− iω2h2) + h2πδ(ω2h2)
)

=
(

h1

1−exp(− iϑ1) + h1πδ(ϑ1)
)(

h2

1−exp(− iϑ2) + h2πδ(ϑ2)
)
.

If the Dirac delta is regarded as a distribution, then the expression h1πδ(ω1h1)
can be replaced by πδ(ω1) and the similarity with (6.6.8) readily becomes clear.
Note, however, that for example

(1− exp(− iω1h1))/h1 − iω1 = O
(
ω2

1h1

)
.

This can be seen to imply the unfavourable result that the low-wavenumber er-
ror is only of first order. Concerning the high-wavenumber error it can be shown
that this will be O

(
h2N0

)
. Here, if the CS scheme is used, we also mean the

unidirectional high-wavenumber errors, i.e. the errors corresponding to ÊCS,4

and ÊCS,5. In view of the foregoing, we propose a different discretization of
the initial function under consideration:

U0,j,k =


1/4 if j = 0, k = 0,

1/2 if j > 0, k = 0 or j = 0, k > 0,

1 if j > 0, k > 0,

0 else,

such that

Û0(ω1h1, ω2h2) =
(

2h1

exp( iω1h1)−exp(− iω1h1) + h1πδ(ω1h1)
)

×
(

2h2

exp( iω2h2)−exp(− iω2h2) + h2πδ(ω2h2)
)

=
(

2h1

exp( iϑ1)−exp(− iϑ1) + h1πδ(ϑ1)
)

×
(

2h2

exp( iϑ2)−exp(− iϑ2) + h2πδ(ϑ2)
)
.

With this discretization it can be proven that the low-wavenumber error is again
of second order and the high-wavenumber error will be O

(
h2N0

)
as before.
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As a second example of another non-smooth initial function, consider that
corresponding to the delta Greek of a two-asset cash-or-nothing option with
respect to the first asset, i.e. u(x, y, 0) = δ(x)1{y≥0}. The results for the delta
Greek with respect to the second asset are completely similar. Continuous
Fourier transformation of u(x, y, 0) gives

û(ω1, ω2, 0) = 1
iω2

+ πδ(ω2).

Based on the foregoing insights, we discretize the initial function by

U0,j,k =


1/(2h1) if j = 0, k = 0,

1/h1 if j = 0, k > 0,

0 else.

Discrete Fourier transformation yields

Û0(ω1h1, ω2h2) = 2h2

exp( iω2h2)−exp(− iω2h2) + h2πδ(ω2h2)

= 2h2

exp( iϑ2)−exp(− iϑ2) + h2πδ(ϑ2).

It can be shown that the low-wavenumber error is then of second order, and
the high-wavenumber error is O

(
h2N0−1

)
.

As a general remark, the order of the low-wavenumber error is dependent
on the quality of the discrete approximation of the initial function, whereas the
order of the high-wavenumber error is mainly dependent on the smoothness of
the initial data and the number N0 of Rannacher time steps.

6.7. Asymptotic Analysis for the Do Scheme

The analysis above for the MCS scheme shows that the Fourier transformation
of the numerical solution can provide important insight in the convergence
behaviour of the discretization method. Consider again the model PDE (6.2.1)
and assume that spatial discretization is performed with second order central
finite difference schemes on a uniform Cartesian grid as described in Section 6.3.
Temporal discretization with the Do scheme leads to approximations UDo

N,j,k of
u(xj , yk, 1) and its discrete Fourier transformation is given by (6.4.3). The
Fourier transformation of the exact solution is given by (6.2.2). Recall the
substitutions

ϑ1 = ω1h1, ϑ2 = ω2h2.

In this section, the Fourier error

ÊDo(ω1, ω2) = ÛDo
N (ω1h1, ω2h2)− û(ω1, ω2, 1), for − π ≤ ω1h1, ω2h2 ≤ π,

(6.7.1)
is analysed numerically. The observations are used to conjecture a convergence
result, i.e. a result on the total error

UDo
N,j,k − u(xj , yk, 1), (6.7.2)
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which can be approximated by, cf. Section 6.5,

1
4π2

∫ π/h2

−π/h2

∫ π/h1

−π/h1

ÊDo(ω1, ω2) exp( ixjω1) exp( iykω2)dω1dω2,

or equivalently

1
4π2h1h2

∫ π

−π

∫ π

−π
ÊDo(ϑ1/h1, ϑ2/h2) exp( ijϑ1) exp( ikϑ2)dϑ1dϑ2.

In Figure 6.9 the norm |ÛDo
N | is shown in the (ϑ1, ϑ2)-domain for the pa-

rameter values ρ = −0.7, a1 = 2, a2 = 3. Discretization is performed with
h1 = h2 = 1/6, ∆t = 1/8 and well-known Do parameters θ = 1/2, 1. For the
Rannacher time stepping we considered values N0 = 0, 2. The plots have to
be compared with the modulus |û| shown in Figure 6.2. It readily follows that
the Fourier domain can again be partitioned into five regions where the Fourier
error behaves differently. The regions correspond with the ones illustrated in
Figure 6.4.
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Figure 6.9: Magnitude of the Fourier transform ÛDo
N with N0 = 0 (left) and N0 = 2

(right) for Do parameter θ = 1/2 (top) and θ = 1 (bottom). The other parameter
values are: ρ = −0.7, a1 = 2, a2 = 3, h1 = h2 = 1/6,∆t = 1/8.

In the low-wavenumber region 1© there is a good agreement between |ÛDo
N |

and |û|. Let c = h2/h1 again be constant, denote h = h1 and assume that
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λ = ∆t/h is kept constant. Experiments in region 1© for h tending to zero
indicate that the Fourier error (6.7.1) decreases in a first-order way as a function
of h. A Taylor expansion within Mathematica yields that in this region the
pertinent Fourier error can be written as

û(ω1, ω2, 1)s[Do,1]h+ û(ω1, ω2, 1)O
(
1 + (ω2

1 + c2ω2
2)3
)
h2,

where s[Do,1] is a polynomial of degree four in ( iω1, iω2), and with coefficients
defined by a1, a2, ρ, c, λ, θ. Denote

Êlow,Do = û(ω1, ω2, 1)s[Do,1]h.

It is readily seen that Êlow,Do is only sizeable in the low-wavenumber region 1©.
By using the Fourier transformations from (6.6.3), it follows that its inverse
discrete/continuous Fourier transformation can be approximated by

Elow,Do
j,k = hC low,Do

xj ,yk
, (6.7.3)

for h1, h2 simultaneously tending to zero. Here, the coefficient C low,Do
xj ,yk

is only
dependent on the point (xj , yk) and parameters a1, a2, ρ, c, λ, θ. Note that
this error term is only of first order in h, which corresponds to the order
of convergence for the Do scheme when it is applied to semidiscretized two-
dimensional convection-diffusion equations with smooth initial and boundary
data.

If either |ϑ1| or |ϑ2| is medium and the other one is small or medium, then
both the Fourier transforms of the numerical solution and analytical solution
seem to be negligible. This suggests that the Fourier error from region 2© has
no significant contribution to the total error (6.7.2).

In the high-wavenumber region 3©, observations similar to the ones in Sub-
section 6.5.1 can be made. The modulus of the Fourier transform |û| is close

to zero, whereas the modulus |ÛDo
N | is strongly dependent on N0 and the Do

parameter θ. In this region, the magnitude of ÛDo
N is increasing as a function

of θ and its modulus is always damped whenever Rannacher time stepping is
applied. Additional numerical experiments reveal that if N0 = 0 and λ is fixed,
then for h tending to zero the Fourier error (6.7.1) remains constant as a func-
tion of (ϑ1, ϑ2). Given these observations and the expansion from (6.5.16), we
conjecture that in the high-wavenumber region the Fourier error (6.7.1) can be
approximated by

Êhigh,Do = h2N0Ĉhigh,Do,

where Ĉhigh,Do is a function of ϑ1, ϑ2 and parameters ρ, c, λ, θ,N0, that is only
sizeable in the pertinent region of the Fourier domain. Applying the inverse
Fourier transformation (with integrals over ϑ1, ϑ2) yields

Ehigh,Do
j,k = h2N0−2Chigh,Do

j,k ,

where Chigh,Do
j,k is a constant that only depends on the index (j, k) and param-

eters ρ, c, λ, θ,N0.
Finally, we have region 4© and region 5© where either |ϑ1| or |ϑ2| is large

and the other one is not. Extensive numerical experiments reveal that in both
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regions of the Fourier domain û is negligible but ÛDo
N is sizeable if θ = 1/2

and N0 = 0. For other values of θ or integer N0, the Fourier transformation of
the numerical solution is always negligible. Let UN , respectively UDo

N , be the
numerical solution obtained with the MCS scheme, respectively the Do scheme,
and the same parameter values ρ, c, λ, h,N0 = 0 and same ADI parameter
θ = 1/2. In the pertinent regions, the magnitude of ÛDo

N is very similar to

the magnitude of ÛN . Hence, the error in physical space corresponding to the
Fourier error in region 4© and region 5© can be expected to be similar to (6.6.6).
Let

E
1
2 Do

j,k = h2N0−1(C
1
2 Do

j,yk
+ C

1
2 Do

xj ,k
),

with certain coefficients C
1
2 Do

j,yk
, C

1
2 Do

xj ,k
that are independent of h. By combining

the observations above we arrive at the following conjecture:

Conjecture 6.7.1 Consider the model PDE (6.2.1). Assume that spatial dis-
cretization is performed by standard second order central finite differences on
a uniform Cartesian grid with mesh width h1 = h in the x-direction and mesh
width h2 in the y-direction. Assume the obtained semidiscrete system is dis-
cretized in time by using the Do scheme with parameter θ on a uniform temporal
grid with temporal step size ∆t. Let N0 ≥ 0 denote the number of initial Do
time steps that are replaced by 2N0 half-time steps of the implicit Euler scheme.
If c = h2/h1 and λ = ∆t/h are kept constant, then as h tends to zero the total
error is approximated by

UDo
N,j,k − u(xj , yk, 1) ≈ hC low,Do

xj ,yk
+ h2N0−2Chigh,Do

j,k

+ 1
{θ= 1

2}
h2N0−1(C

1
2 Do

j,yk
+ C

1
2 Do

xj ,k
),

with coefficients C low,Do
xj ,yk

, Chigh,Do
j,k , C

1
2 Do

j,yk
, C

1
2 Do

xj ,k
that are independent of h.

Conjecture 6.7.1 states the total error (6.7.2) is O
(
hmin{1,2N0−2}) and the

value N0 = 2 is again a lower bound on N0 for the Rannacher time stepping in
order to ensure convergence of the numerical solution to the exact solution. The
conjecture is confirmed by the plots in Figure 6.10 which display total errors
(in the maximum norm) in actual numerical experiments for model problem
(6.2.1) as a function of 1/h, with parameter values ρ = −0.7, a1 = 2, a2 = 3, Do
parameter θ = 1/2 (top), θ = 1 (bottom) and with c = 1, 0.2 ≤ λ ≤ 0.5. The
computational domain is restricted to grid points (xj , yk) ∈ [−10, 10]×[−10, 10]
and at the boundaries homogeneous Dirichlet boundary conditions are applied,
cf. Section 6.6. In the left plots the case N0 = 0 is considered, whereas the
right plots show the corresponding results for N0 = 2.

The convergence plots in Figure 6.10 are similar to the ones in Section 6.6.
The main difference is that the low-wavenumber error is now only of first order.
When no Rannacher time stepping is applied (N0 = 0), the total error decreases
in a first order way until a high-wavenumber error exceeds the low-wavenumber
error. If θ = 1/2, the total error then increases in a first order way. Eventually,
for every Do parameter θ, the total error becomes O

(
h−2

)
when h tends to
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zero. The right plots in Figure 6.10 reveal that if Rannacher time stepping
is applied with N0 = 2, then the total error is always O (h). It is readily
seen that the error constant in the right plots is similar to the error constant
associated with the low-wavenumber error in the left plots. Thus, by applying
Rannacher time stepping with N0 = 2, convergence can be recovered whilst
the error constant remains unaffected.
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Figure 6.10: Convergence of the numerical solution for Do parameter θ = 1/2 (top),
θ = 1 (bottom) and for N0 = 0 (left), N0 = 2 (right). The parameter values are:
ρ = −0.7, a1 = 2, a2 = 3.

The analysis of the Fourier error (6.7.1) in the high-wavenumber region
revealed that it is highly dependent on the Do parameter θ. This observation
is confirmed by the left plots in Figure 6.10. It is readily seen that for larger
values of θ, a much lower value of λ is needed in order for the total error
to have the same magnitude. We conjecture that the high-wavenumber error
constant Chigh,Do

j,k is strongly increasing as a function of θ. Additional numerical
experiments show that, although less pronounced, the low-wavenumber error
is also increasing as a function of θ. Therefore, regardless of the number of
Rannacher time steps N0, it seems more favourable to consider smaller values
of θ. In particular, the lowest value of θ which satisfies the stability restrictions
from Section 3.3 is given by θ = 1/2.

If one considers an alternative discretization of the Dirac delta, or another
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non-smooth initial function, then an analysis similar to that in Subsection 6.6.3
can be performed. Since the expression (6.7.3) is only of first order in h, we
expect that the low-wavenumber error is always O (h) if the initial function
is discretized consistently. For the high-wavenumber error, we conjecture that
the orders of convergence from Subsection 6.6.3 are also valid if the temporal
discretization is performed with the Do scheme. This conjecture is based on
the fact that the Fourier errors (6.5.1) and (6.7.1) are very similar in the high-
wavenumber region.

6.8. Asymptotic Analysis for the HV Scheme

In this section, we use the discrete/continuous Fourier transformation intro-
duced in Section 6.4 to gain insight in the convergence properties of the HV
scheme when it is applied to a semidiscretized model PDE provided with Dirac
delta initial data. Let spatial discretization of the convection-diffusion equa-
tion (6.2.1) once more be performed with second order central finite difference
schemes on a uniform Cartesian grid as described in Section 6.3. Temporal dis-
cretization with the HV scheme leads to approximations UHV

N,j,k of u(xj , yk, 1).
Its discrete Fourier transformation is given by (6.4.4) and, recalling the substi-
tutions

ϑ1 = ω1h1, ϑ2 = ω2h2,

this leads to the Fourier error

ÊHV(ω1, ω2) = ÛHV
N (ω1h1, ω2h2)− û(ω1, ω2, 1), for − π ≤ ω1h1, ω2h2 ≤ π.

(6.8.1)
As before, û denotes the Fourier transformation (6.2.2) of the exact solution.
Analogously to the previous section, we analyse the Fourier error experimen-
tally to make a conjecture about the total error, which is now defined by

UHV
N,j,k − u(xj , yk, 1). (6.8.2)

Recall that the total error can be approximated by,

1
4π2

∫ π/h2

−π/h2

∫ π/h1

−π/h1

ÊHV(ω1, ω2) exp( ixjω1) exp( iykω2)dω1dω2,

or equivalently

1
4π2h1h2

∫ π

−π

∫ π

−π
ÊHV(ϑ1/h1, ϑ2/h2) exp( ijϑ1) exp( ikϑ2)dϑ1dϑ2,

for h1, h2 simultaneously tending to zero.
The analysis for the MCS scheme and the Do scheme revealed that the

Fourier error can have different properties in different parts of the domain. In
Figure 6.11 this is illustrated for the numerical solution obtained with the HV
scheme, i.e. for (6.8.1). The modulus |ÛHV

N | is shown in the (ϑ1, ϑ2)-domain
for the parameter values ρ = −0.7, a1 = 2, a2 = 3. The spatial and temporal
discretization is performed with h1 = h2 = 1/6, ∆t = 1/8 and well-known HV
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parameters θ = 1
2 + 1

6

√
3, 1. Note that we do not consider θ = 1/2, since this

parameter value does not guarantee unconditional stability of the HV scheme if
convection terms are present, cf. Section 3.3. For the Rannacher time stepping
we considered values N0 = 0, 2. By comparing these plots with the modulus |û|,
shown in Figure 6.2, it readily follows that the Fourier error (6.8.1) has different
properties in the five regions illustrated in Figure 6.4. Additional experiments
with smaller values of h1, h2,∆t reveal, however, that for all parameter values
θ ≥ 1

2 + 1
6

√
3 it sufficient to distinguish three different regions where the Fourier

error behaves differently. These regions are illustrated in Figure 6.12.
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Figure 6.11: Magnitude of the Fourier transform ÛHV
N with N0 = 0 (left) and N0 = 2

(right) for HV parameter θ = 1
2

+ 1
6

√
3 (top) and θ = 1 (bottom). The other parameter

values are: ρ = −0.7, a1 = 2, a2 = 3, h1 = h2 = 1/6,∆t = 1/8.

In the low-wavenumber region 1©, where both |ϑ1|, |ϑ2| are small, there

is a good agreement between |û| and |ÛHV
N |. For the convergence analysis we

denote h = h1 and assume that the ratios c = h2/h1, λ = ∆t/h are kept
constant. Extensive numerical experiments show that in region 1© the Fourier
error (6.8.1) decreases in a second order fashion as h tends to zero. This is
confirmed by a Taylor expansion within Mathematica, which shows that in
this region the pertinent Fourier error can be written as

û(ω1, ω2, 1)(s[HV,2] +N
[HV,2]
0 )h2 + û(ω1, ω2, 1)O

(
1 + (ω2

1 + c2ω2
2)4
)
h3.
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Figure 6.12: Illustration of the different disjoint regions of the Fourier domain in case
of the HV scheme.

Here s[HV,2], respectively N
[HV,2]
0 , is a polynomial of degree six, respectively

four, in ( iω1, iω2) and with coefficients defined by a1, a2, ρ, c, λ, θ. The latter
polynomial is, of course, also dependent on N0. Let

Êlow,HV = û(ω1, ω2, 1)(s[HV,2] +N
[HV,2]
0 )h2.

This expression corresponds with the leading order term in the Taylor expan-
sion. It is clear that Êlow,HV is only sizeable in the low-wavenumber region
and by using the Fourier transformations from (6.6.3) it readily follows that its
inverse discrete/continuous Fourier transformation can be approximated by

Elow,HV
j,k = h2C low,HV

xj ,yk
,

for h1, h2 simultaneously tending to zero. The magnitude of the coefficient
C low,HV
xj ,yk

is only dependent on the point (xj , yk) and parameters a1,a2,ρ,c,λ,θ,
N0. The error in physical space, corresponding to the Fourier error (6.8.1), is
clearly of second order. This is in line with the observations from Section 6.6
and Section 6.7 for the MCS scheme and the Do scheme, where it is shown that
the order of the low-wavenumber error equals the classical order of consistency
of the pertinent ADI scheme.

In region 2© of Figure 6.12, |ϑ1| and |ϑ2| are not both small nor both
large. The Fourier transform of the analytical solution is then negligible and
additional numerical experiments show that the magnitude of |ÛHV

N | readily
becomes negligible as h tends to zero. This suggests that the Fourier error in
this region has no significant contribution to the total error (6.8.2).

Finally, we consider the high-wavenumber region 3©. When |ϑ1|, |ϑ2| are
both large, the modulus of the Fourier transform û is close to zero. The magni-
tude of ÛHV

N is, however, strongly dependent on N0 and the HV parameter θ. If

N0 = 0, then the modulus |ÛHV
N | is increasing as a function of θ. If Rannacher

time stepping is applied, the pertinent modulus is always damped. Consider
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the case N0 = 0 and let λ be fixed. Extensive numerical experiments show
that the Fourier error (6.8.1) remains constant as a function of (ϑ1, ϑ2) when
h tends to zero. Similarly to the previous section, and based on the expansion
from (6.5.16), we conjecture that in the high-wavenumber region the Fourier
error can be approximated by

Êhigh,HV = h2N0Ĉhigh,HV, (6.8.3)

with Ĉhigh,HV a function of ϑ1,ϑ2 and parameters ρ, c, λ, θ,N0 that is only
sizeable in region 3©. If the latter property holds, then the inverse Fourier
transformation of (6.8.3) can be written as

Ehigh,HV = h2N0−2Chigh,HV
j,k ,

where the coefficients Chigh,HV
j,k only depend on the index (j, k) and parameters

ρ, c, λ, θ,N0. By combining our observations for the different regions, we arrive
at the following conjecture:

Conjecture 6.8.1 Consider the model PDE (6.2.1). Assume that spatial dis-
cretization is performed by standard second order central finite differences on
a uniform Cartesian grid with mesh width h1 = h in the x-direction and mesh
width h2 in the y-direction. Assume the obtained semidiscrete system is dis-
cretized in time by using the HV scheme with parameter θ on a uniform tem-
poral grid with temporal step size ∆t. Let N0 ≥ 0 denote the number of initial
HV time steps that are replaced by 2N0 half-time steps of the implicit Euler
scheme. If c = h2/h1 and λ = ∆t/h are kept constant, then as h tends to zero
the total error is approximated by

UHV
N,j,k − u(xj , yk, 1) ≈ h2C low,HV

xj ,yk
+ h2N0−2Chigh,HV

j,k ,

with coefficients C low,HV
xj ,yk

, Chigh,HV
j,k that are independent of h.

According to Conjecture 6.8.1, the total error (6.8.2) is O
(
hmin{2,2N0−2})

and N0 = 2 is once more a lower bound on N0 for the Rannacher time stepping
in order to ensure convergence of the numerical solution to the exact solution.
Our conjecture is confirmed by the plots in Figure 6.13. Here, the total errors
are displayed (in the maximum norm) in actual numerical experiments for
model problem (6.2.1) as a function of 1/h, with parameter values ρ = −0.7,
a1 = 2, a2 = 3, HV parameter θ = 1

2 + 1
6

√
3 (top), θ = 1 (bottom) and

with c = 1, 0.2 ≤ λ ≤ 0.5. As before, the spatial domain is restricted to
[−10, 10]× [−10, 10] and at the boundaries homogeneous boundary conditions
are applied. The left plots display the results for the case N0 = 0, and in the
right plots the value N0 = 2 is considered.

The plots in Figure 6.13 are very similar to the ones in Subsection 6.6.1.
The left plots, where N0 = 0, reveal second order convergence behaviour until
h reaches a critical value where the high-wavenumber error starts exceeding the
low-wavenumber error. It can be observed that the high-wavenumber error is
highly dependent on the ratio λ and the HV parameter θ. For the case where
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Figure 6.13: Convergence of the numerical solution for HV parameter θ = 1
2

+ 1
6

√
3

(top), θ = 1 (bottom) and for N0 = 0 (left), N0 = 2 (right). The parameter values
are: ρ = −0.7, a1 = 2, a2 = 3.

Rannacher time stepping is applied with N0 = 2, the right plots in Figure 6.13
show that the total error is always O

(
h2
)
. We notice that the error constant in

the right plots is only slightly larger than the error constant corresponding to
the low-wavenumber error in the left plots. Thus, by applying Rannacher time
stepping with N0 = 2, second order convergence can be recovered at the small
cost of a marginally larger error constant. Recall that the same observation is
made in Subsection 6.6.1 for the MCS scheme.

From Figure 6.11 it can be observed that in the high-wavenumber region
the Fourier error (6.8.1) is highly dependent on the HV parameter θ. In order
to get decent plots in Figure 6.13 for larger values of θ, it is necessary to
consider smaller values of λ. By combining these observations, we conjecture
that the constant Chigh,HV

j,k is strongly increasing as a function of θ. A similar,
although less pronounced, observation can be made for the low-wavenumber
error constant C low,HV

xj ,yk
. Regardless of the number of Rannacher time steps N0,

it seems more favourable to consider smaller values of θ. In particular, the
lowest value of θ which satisfies the stability restrictions from Section 3.3 is
given by θ = 1

2 + 1
6

√
3.

Finally, we consider alternative discretizations of the Dirac delta and other
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non-smooth initial functions. An analysis similar to that in Subsection 6.6.3
yields that the order of the low-wavenumber error is mainly dependent on the
quality of the discrete approximation of the initial function. If an appropriate
discretization of the initial data is used, then the low-wavenumber error is of
second order. The order of the high-wavenumber error is dependent on the
smoothness of the initial data and the number N0 of Rannacher time steps.

6.9. Conclusion

If the initial data is non-smooth, application of the ADI schemes for multi-
dimensional time-dependent convection-diffusion equations with mixed spatial
derivative terms can cause spurious erratic behaviour in the numerical solution.
A motivating example, with the two-dimensional Black–Scholes equation for a
two-asset cash-or-nothing option, shows that this undesirable feature can be
resolved by replacing the very first N0 ADI time steps by 2N0 half-time steps
of the implicit Euler scheme, with N0 = 2.

We proved by Fourier analysis that for a model two-dimensional convection-
diffusion equation with mixed-derivative term and with Dirac delta initial data,
the total error stemming from temporal discretization with the MCS scheme
can be approximated by the sum of a low-wavenumber error of O(h2) and
a high-wavenumber error of O(h2N0−2). In case the MCS scheme reduces to
the CS scheme, i.e. when θ = 1/2, this has to be augmented with an extra
error term of O(h2N0−1). Numerical experiments indicate that a similar de-
composition of the total error can be performed if temporal discretization is
performed with the Do scheme or the HV scheme. We conjecture that the error
in physical space corresponding to the Do scheme can be written as the sum
of a low-wavenumber error of O(h), a high-wavenumber error of O(h2N0−2),
and an additional error term of O(h2N0−1) if θ = 1/2. For the HV scheme
we conjecture that the total error consists of a low-wavenumber error of O(h2)
and a high-wavenumber error of O(h2N0−2).

For all ADI schemes considered, N0 = 2 is the minimum on N0 in order to
guarantee convergence of the numerical solution to the exact solution, in the
maximum norm. In general this choice for N0 is optimal since larger values will
increase the low-wavenumber error. Our convergence analysis and numerical
experiments further indicate that it is favourable to consider small values of
the ADI parameter θ. However, it is necessary to take into account the lower
bounds on θ in order for our asymptotic analysis to be valid. The smallest
value which satisfies all the restrictions for the MCS scheme, independent of
the parameters of the model, is given by θ = 1/3. For the Do scheme, respec-
tively the HV scheme, stability restrictions lead to a lower bound of θ = 1/2,
respectively θ = 1

2 + 1
6

√
3. These lower bounds are also the most common

values of θ for the respective ADI schemes considered in the literature.



CHAPTER 7

Adjoint Calibration of SLV Models

7.1. Introduction

In contemporary financial mathematics, stochastic local volatility (SLV) mod-
els are state-of-the-art for describing asset price processes, notably foreign ex-
change (FX) rates, see e.g. [50, 64]. They constitute a natural combination of
local volatility (LV) and stochastic volatility (SV) models. Let Sτ represent the
exchange rate at time τ ≥ 0 and let the spot value S0 be given. For modelling
the exchange rate we consider the transformation Xτ = log(Sτ/S0) since the
transformed variable Xτ reflects better the duality between the exchange rate
Sτ and 1/Sτ , where the latter one is the exchange rate when the role of the do-
mestic currency and the foreign currency are swapped. We deal in this chapter
with general SLV models defined by the stochastic differential equation (SDE)

dXτ = (rd − rf − 1
2σ

2
SLV(Xτ , τ)ψ2(Vτ ))dτ + σSLV(Xτ , τ)ψ(Vτ )dW

(1)
τ ,

dVτ = κ(η − Vτ )dτ + ξV ατ dW
(2)
τ ,

(7.1.1)
with ψ(v) a non-negative function, α a non-negative parameter, κ, η, ξ strictly

positive parameters, W
(1)
τ ,W

(2)
τ Brownian motions with dW

(1)
τ · dW (2)

τ = ρdτ ,
−1 ≤ ρ ≤ 1, and given spot values S0, V0. The function σSLV(x, τ) is often
called the leverage function and rd, respectively rf , denotes the risk-free interest
rate in the domestic currency, respectively foreign currency.

The SLV model (7.1.1) can be viewed as obtained from a mixture of the LV
model

dXLV,τ = (rd − rf − 1
2σ

2
LV(XLV,τ , τ))dτ + σLV(XLV,τ , τ)dWτ , (7.1.2)

with LV function σLV(x, τ), and the SV model
dXSV,τ = (rd − rf − ψ2(VSV,τ ))dτ + ψ(VSV,τ )dW

(1)
SV,τ ,

dVSV,τ = κ(η − VSV,τ )dτ + ξV αSV,τdW
(2)
SV,τ .

(7.1.3)

This chapter is based on the article ‘An adjoint method for the exact calibration of stochastic local

volatility models’, published in J. Comp. Sci., doi:10.1016/j.jocs.2017.02.004, 2017 [70].
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Clearly, if σSLV(x, τ) is identically equal to one, then the SLV model reduces
to a SV model. Next, if the stochastic volatility parameter ξ is equal to zero,
then the SLV model reduces to a LV model. The LV function σLV(x, τ) can be
determined by the Dupire formula [15] such that the LV model reproduces the
known market prices for European call and put options. Since the LV model is
completely determined by the LV function, it offers no flexibility in matching
the market dynamics. SV models are typically well-suited to reflect forward
volatilities, but they are often unable to capture the volatility smile exactly,
see e.g. [66]. By combining features of the LV model with features of the SV
models, SLV models are able to match the market dynamics and to reproduce
the market prices for European call and put options.

The choice ψ(v) =
√
v, α = 1/2 corresponds to the well-known Heston-

based S(L)V model, the choice ψ(v) = v, α = 1 to the S(L)V model considered
in [64] and the choice ψ(v) = exp(v), α = 0 corresponds to the S(L)V model
based on the exponential Gaussian Ornstein–Uhlenbeck model described in [61].

If α is strictly positive, we assume that ψ(0) = 0 and the processes Vτ , VSV,τ

are non-negative. For 0 < α < 1/2 it holds that Vτ = 0 is attainable, for
α > 1/2 it holds that Vτ = 0 is unattainable, and for α = 1/2 one has that
Vτ = 0 is attainable if 2κη < ξ2, see e.g. [2]. The analogous result is true for
the pure SV model (7.1.3).

In financial practice, σLV(x, τ) is determined such that the LV model (7.1.2)
yields the exact market prices for vanilla options, see e.g. [4, 15], and the pa-
rameters κ, η, ξ are chosen such that the SV model (7.1.3) reflects the market
dynamics of the underlying asset, see e.g. [64]. Next, the leverage function
σSLV is calibrated such that the SLV model yields the exact market prices for
European call and put options. In the literature, no closed-form analytical
relationship appears to be available between the leverage function and the fair
value of vanilla options within the SLV model. Accordingly, in financial prac-
tice the leverage function is calibrated by making use of a relationship between
the SLV model and the LV model. It is well-known, see e.g. [23, 63], that
these models yield the same marginal distribution for the exchange rate Sτ ,
and hence always define the same fair value for vanilla options, if the leverage
function σSLV(x, τ) satisfies

σ2
LV(x, τ) = E[σ2

SLV(Xτ , τ)ψ2(Vτ )|Xτ = x] = σ2
SLV(x, τ)E[ψ2(Vτ )|Xτ = x],

(7.1.4)
for all x ∈ R, τ ≥ 0. The latter conditional expectation can be written as

E[ψ2(Vτ )|Xτ = x] =

∫∞
−∞ ψ2(v)p(x, v, τ ;X0, V0)dv∫∞
−∞ p(x, v, τ ;X0, V0)dv

, (7.1.5)

where p(x, v, τ ;X0, V0) denotes the joint density of (Xτ , Vτ ) given by the SLV
model. Since the LV function is determined such that the LV model yields
exactly the observed market prices for vanilla options, the SLV model will also
exactly define the same fair value whenever one is able to determine the con-
ditional expectation above and subsequently defines the leverage function by
(7.1.4). This conditional expectation itself depends on σSLV(x, τ), however,
and determining it is a highly non-trivial task. Recently, a variety of numerical
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techniques, see e.g. [8, 17, 29, 58, 66], has been proposed in order to approxi-
mate this conditional expectation and to approximate the appropriate leverage
function.

The numerical techniques presented in the references above do not take
into account explicitly that, even if the LV function is known analytically, it is
often not possible to determine exactly the corresponding fair value of vanilla
options. Even within the LV model one relies on numerical methods in order to
approximate the fair option values. A common approach consists of numerically
solving the corresponding backward PDE by for example finite difference or
finite volume methods, see e.g. [65]. When calibrating the SLV model to the LV
model, the best result one can thus aim for is that the numerical approximation
of the fair value of vanilla options is the same for both models whenever similar
numerical valuation methods are used.

In this chapter we assume that the fair option value (within the LV model,
respectively SLV model) is approximated through numerically solving the back-
ward PDE (corresponding to the LV model, respectively SLV model) by stan-
dard finite difference methods, see e.g. Chapter 2. Given such a spatial dis-
cretization for the backward PDE, an adjoint spatial discretization will be
introduced for the corresponding forward PDE. This adjoint spatial discretiza-
tion has the important property that it always defines exactly the same ap-
proximation for the fair value of non-path-dependent European options as the
approximation given by the discretization of the backward equation. Moreover,
if similar spatial discretizations are used for the backward PDE associated with
the LV model and the backward PDE associated with the SLV model, then
their adjoint spatial discretizations can be employed to create an exact match
between the approximations for the fair value of vanilla options within the LV
model and the SLV model.

The main contributions of this chapter can be visualized in the following
scheme:

Discretization
Backward PDE, LV

↔ Adjoint Discretization
Forward PDE, LV

l (?)

Adjoint Discretization
Forward PDE, SLV

↔Discretization
Backward PDE, SLV

Here relationship (?) can only be achieved if similar discretizations are used
for the backward PDEs stemming from the LV and SLV models.

In order to compute the leverage function that makes relationship (?) valid,
a large system of non-linear ODEs needs to be solved. Since this system of
ODEs is stemming from spatial discretization of a two-dimensional PDE, we
employ the MCS scheme (3.2.5) to increase the computational efficiency in the
numerical solution. The non-linearity is handled by an iteration procedure.

The outline of this chapter is as follows. In Section 7.2 a relationship be-
tween the forward PDE and backward PDE is introduced, both for the case
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of the SLV model as for the case of the LV model. This relationship is pre-
served at the semidiscrete level in Section 7.3: given a spatial discretization
of the backward PDE, an adjoint spatial discretization for the forward PDE
is defined such that both discretizations yield identical approximations for the
fair value of non-path-dependent European options. In Section 7.4 an actual
spatial discretization, using second order central finite difference schemes, is
constructed for the backward PDE stemming from the SLV model and sub-
sequently the corresponding adjoint spatial discretization is stated. The main
result of the chapter is derived in Section 7.5. It is shown that, under some
assumptions, the adjoint spatial discretization can be employed to obtain an
expression for the leverage function such that the approximation of the fair
value of vanilla options is the same for the LV and SLV models. In order to
effectively use this expression, one has to solve a large system of non-linear
ODEs. In Section 7.6 we apply the MCS scheme for the numerical solution
of this ODE system and in Section 7.7 an iteration procedure is described for
handling the non-linearity. In Section 7.8 ample numerical experiments are pre-
sented to illustrate the performance of the obtained SLV calibration procedure.
The final Section 7.9 gives concluding remarks.

7.2. Relationship Between the Forward and the Backward
Kolmogorov Equation

Consider a European-style option with maturity T and payoff u0. Denote by
u(x, v, t) the non-discounted fair value of the option under the SLV model
(7.1.1) at time to maturity t, that is at time level τ = T − t, if Sτ = S0 exp(x)
and Vτ = v. It is well-known, see e.g. [8], that the function u satisfies the
backward Kolmogorov equation

∂
∂tu = 1

2σ
2
SLV(x, T−t)ψ2(v) ∂2

∂x2u+ ρξσSLV(x, T−t)ψ(v)vα ∂2

∂x∂vu+ 1
2ξ

2v2α ∂2

∂v2u

+ (rd − rf − 1
2σ

2
SLV(x, T−t)ψ2(v)) ∂

∂xu+ κ(η − v) ∂∂vu,

(7.2.1)

for x, v ∈ R, 0 < t ≤ T . At maturity, i.e. at time level τ = T , the initial
condition u(x, v, 0) is defined by the payoff u0 of the option. By solving PDE
(7.2.1), the fair value e−rdTu(X0, V0, T ) of the option under the SLV model
can be determined at the spot, i.e. at τ = 0. For strictly positive values of
the parameter α, the process Vτ is non-negative and the spatial domain in the
v-direction reduces to v ≥ 0.

If the option under consideration is non-path-dependent, then the payoff
u0 is only a function of (XT , VT ), the initial condition for (7.2.1) is given by
u(x, v, 0) = u0(x, v) and the non-discounted fair value u(x, v, t) of the option
can be written as

u(x, v, t) = E[u0(XT , VT )|XT−t = x, VT−t = v],

for 0 ≤ t ≤ T . By making use of the tower property for conditional expectations
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it readily follows that

u(X0, V0, T ) = E[u(XT−t, VT−t, t)|X0, V0]

=

∫ ∞
−∞

∫ ∞
−∞

u(x, v, t)p(x, v, T − t;X0, V0)dxdv,
(7.2.2)

for 0 ≤ t ≤ T . Recall that p(x, v, τ ;X0, V0) denotes the joint density of (Xτ , Vτ )
under the SLV model (7.1.1). If the parameter α is chosen strictly positive,
then the integral with respect to v can be taken from v = 0. In particular,
the fair value of non-path-dependent European options at the spot can also be
computed by evaluating the integral

e−rdT
∫ ∞
−∞

∫ ∞
−∞

u(x, v, 0)p(x, v, T ;X0, V0)dxdv, (7.2.3)

where u(x, v, 0) is defined by the payoff of the option.
It can be shown, see e.g. [59], that the joint density p(x, v, τ ;X0, V0) satisfies

the forward Kolmogorov equation

∂
∂τ p = 1

2
∂2

∂x2

(
σ2

SLVψ
2(v)p

)
+ ∂2

∂x∂v (ρξσSLVψ(v)vαp) + 1
2
∂2

∂v2

(
ξ2v2αp

)
− ∂

∂x

(
(rd − rf − 1

2σ
2
SLVψ

2(v))p
)
− ∂

∂v (κ(η − v)p) ,
(7.2.4)

for x, v ∈ R, τ > 0 and with initial condition

p(x, v, 0;X0, V0) = δ(x−X0)δ(v − V0),

where δ denotes the Dirac delta function. For ease of presentation, the depen-
dency of σSLV on (x, τ) and the dependency of p on (x, v, τ ;X0, V0) is omitted
in (7.2.4). Recall that the process Vτ is non-negative whenever α is strictly
positive. In this case the spatial domain of the PDE in the v-direction is nat-
urally restricted to v ≥ 0. The integrals in (7.1.5), (7.2.2), (7.2.3) with respect
to the v-variable can then be taken from 0 to infinity.

Equation (7.2.2) establishes a fundamental relationship between the forward
and backward Kolmogorov equation. It states that the fair value of non-path-
dependent European options under the SLV model can be seen as the combi-
nation of the solution of two different PDEs. By considering the extreme time
value τ = 0 (t = T ), or τ = T (t = 0), only one PDE has to be solved. In the
forthcoming sections relationship (7.2.2) will be employed to define an adjoint
spatial discretization for the forward equation.

Even if the functions u and p are known exactly, the integrals in (7.2.2)
can often not be calculated analytically and one relies on numerical integration
methods in order to approximate them. In this chapter we assume that the
integrand is known on a Cartesian grid. Denote by m1, respectively m2, the
number of spatial grid points in the x-direction, respectively v-direction. The
Cartesian grid is given by

(xj , vk) for 1 ≤ j ≤ m1, 1 ≤ k ≤ m2, (7.2.5)

with

xmin = x1 < x2 < · · · < xm1
= xmax, vmin = v1 < v2 < · · · < vm2

= vmax,
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and xmin < X0 < xmax, vmin < V0 < vmax. Define spatial mesh widths
∆xj = xj − xj−1 for 2 ≤ j ≤ m1, ∆vk = vk − vk−1 for 2 ≤ k ≤ m2 and put
∆x1 = ∆xm1+1 = ∆v1 = ∆vm2+1 = 0. When working with Cartesian grids,
most numerical integration methods approximate the expression (7.2.2) by

u(X0, V0, T ) ≈
m1∑
j=1

m2∑
k=1

p(xj , vk, T − t;X0, V0)u(xj , vk, t)wx,jwv,k, (7.2.6)

for certain weights wx,j , wv,k. If the numerical integration is performed with
the trapezoidal rule, then the weights are given by

wx,j =
∆xj+∆xj+1

2 for 1 ≤ j ≤ m1, wv,k = ∆vk+∆vk+1

2 for 1 ≤ k ≤ m2.

The values xmin, vmin, xmax, vmax have to lie sufficiently far away from (X0, V0)
such that the truncation error is negligible. If α is strictly positive, the value
vmin can be set equal to zero. In order for (7.2.6) to be exact if t = T (τ = 0),
it is assumed that there exist indices j0, k0 such that (xj0 , vk0) = (X0, V0) and
the approximation p(x, v, 0;X0;V0) ≈ p0(x, v) is used with

p0(x, v) =


1

wx,j0wv,k0
if

{
x ∈ [xj0 −∆xj0/2, xj0 + ∆xj0+1/2],

v ∈ [vk0 −∆vk0/2, vk0 + ∆vk0+1/2],

0 else.

Analogously as above, consider within the LV model a European-style op-
tion with payoff uLV,0 at maturity T and denote by uLV(x, t) the non-discounted
fair value of the option under the LV model (7.1.2) at time τ = T − t if
XLV,τ = x. The function uLV satisfies the backward Kolmogorov equation

∂
∂tuLV = 1

2σ
2
LV

∂2

∂x2uLV + (rd − rf − 1
2σ

2
LV) ∂

∂xuLV, (7.2.7)

for x ∈ R, 0 < t ≤ T and with initial condition uLV(x, 0) defined by the payoff
uLV,0 of the option. The non-discounted fair value of the option at the spot
(τ = 0) is then given by uLV(X0, T ). For non-path-dependent options this fair
value can also be formulated as

u(X0, T ) =

∫ ∞
−∞

uLV(x, t)pLV(x, T − t;X0)dx, (7.2.8)

for 0 ≤ t ≤ T , where pLV(x, τ ;X0) denotes the density of the process XLV,τ in
the LV model (7.1.2). It can be shown, see e.g. [8], that this density function
satisfies the forward Kolmogorov equation

∂
∂τ pLV = 1

2
∂2

∂x2

(
σ2

LVpLV

)
− ∂

∂x

(
(rd − rf − 1

2σ
2
LV)pLV

)
, (7.2.9)

for x ∈ R, τ > 0, and with initial condition pLV(x, 0;X0) = δ(x−X0). Hence,
the expression (7.2.8) establishes a fundamental relationship between the for-
ward and backward Kolmogorov equation which is similar to (7.2.2). By ap-
plying the same numerical integration technique as above, the fair value from
(7.2.8) can be approximated by

u(X0, T ) ≈
m1∑
j=1

pLV(xj , T − t;X0)u(xj , t)wx,j .



7.3. Adjoint Spatial Discretization

7

95

Recall that the SLV model is calibrated perfectly to the LV model if the
leverage function is defined by (7.1.4). It was shown by Gyöngy [23] that under
this assumption both processes Xτ and XLV,τ have the same marginal densities,
i.e. that ∫ ∞

−∞
p(x, v, τ ;X0, V0)dv = pLV(x, τ ;X0) (7.2.10)

for x ∈ R, τ ≥ 0. From now on, for the ease of presentation, the dependency of
p and pLV on the spot values X0, V0 is omitted.

7.3. Adjoint Spatial Discretization

In general the values p(xj , vk, τ) and u(xj , vk, t) are not known exactly if τ > 0
and t > 0, respectively, and one relies on numerical methods to approximate
them. Extensive literature is available on numerical techniques to solve back-
ward Kolmogorov equations, see e.g. [65]. Recall that in financial mathematics
a common approach in order to approximate the fair value of options is given
by numerically solving the pertinent PDE using the general MOL, cf. [35]. The
PDE is first discretized in the spatial variables x and v, yielding a large system
of stiff ordinary differential equations, cf. Chapter 2. This semidiscrete system
is subsequently solved by applying a suitable implicit time stepping method,
cf. Chapter 3.

Spatial discretization by FD methods of the backward Kolmogorov equa-
tion (7.2.1) on a Cartesian grid (7.2.5) yields approximations U j,k(t) of the
exact non-discounted option value u(xj , vk, t). Denote by U(t) the m1 ×m2

matrix with entries U j,k(t) and denote by P (τ) a matrix with entries P j,k(τ)
that represent approximations to the exact density values p(xj , vk, τ). In this
section, for a general spatial discretization of the backward Kolmogorov equa-
tion, an adjoint spatial discretization of the corresponding forward equation is
defined such that

m1∑
j=1

m2∑
k=1

P j,k(T − t)U j,k(t)wx,jwv,k (7.3.1)

is constant for 0 ≤ t ≤ T . This can be viewed as a discrete version of rela-
tionship (7.2.2). Consistent fully discrete discretizations of the forward and
backward Kolmogorov equation have already been considered in the literature,
see e.g. [4, 45, 46, 49]. Here, we introduce an adjoint spatial discretization that
is used in the subsequent sections for the fast, stable and accurate calibration
of SLV models.

Let the vector

U(t) = vec[U(t)],

where we recall that vec[·] denotes the operator that turns any given matrix
into a vector by putting its successive columns below each other. Spatial dis-
cretization of (7.2.1) leads to a large system of ODEs of the form

U ′(t) = A(B)(t)U(t), (7.3.2)
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for 0 < t ≤ T , with given matrix A(B)(t) and with given vector U(0) that is
defined by the payoff of the option. Let the vector

P (τ) = vec[P (τ)],

where the matrix P (0) is defined by the function p0 from Section 7.2. Note
that it has only one non-zero entry. Denote by M the diagonal matrix with
diagonal entries

Ml,l = wx,jwv,k,

where j, k are the indices such that element Ul(t), respectively Pl(τ), corre-
sponds to U j,k(t), respectively P j,k(τ). The semidiscrete analogue (7.3.1) of
(7.2.6) can then be compactly written as

u(X0, V0, T ) ≈ P (T − t)TMU(t), (7.3.3)

where T denotes taking the transpose. If l0 is the index that corresponds
to (j0, k0), then for t = T the right-hand side of (7.3.3) equals Ul0(T ), and
hence U j0,k0(T ). Now, consider the fair value of any given non-path-dependent
European option with maturity T . It is readily seen that semidiscretization of
the forward equation (7.2.4) and semidiscretization of the backward equation
(7.2.1) define the same approximation (7.3.3) of the fair value for all 0 ≤ t ≤ T ,
i.e. property (7.2.2) holds in the semidiscrete sense, if

Ul0(T ) = P (0)TMU(T ) = P (T − t)TMU(t) = P (τ)TMU(T − τ) (7.3.4)

for all 0 ≤ t, τ ≤ T . This requirement is satisfied whenever

0 = P ′(τ)TMU(T − τ)− P (τ)TMA(B)(T − τ)U(T − τ),

holds for all 0 ≤ τ ≤ T . Accordingly, we define the adjoint spatial discretization
of the forward Kolmogorov equation (7.2.4) as

P ′(τ) = M−1(A(B)(T − τ))TMP (τ) for 0 ≤ τ ≤ T, (7.3.5)

In this chapter we always employ the adjoint spatial discretization (7.3.5) of
the forward equation. Thus, given any semidiscretization of the backward
equation, the obtained approximated option values for non-path-dependent
European options satisfy (7.3.4).

It is convenient to introduce

P (τ) = MP (τ). (7.3.6)

Denote by P (τ) the matrix corresponding to the vector P (τ). The elements
P j,k(τ) can be viewed as approximations of

∫ xj+
∆xj+1

2

xj−
∆xj

2

∫ vk+
∆vk+1

2

vk−
∆vk

2

p(x, v, τ)dxdv,

and hence, as an approximation of the probability that

(Xτ , Vτ ) ∈ [xj − ∆xj
2 , xj +

∆xj+1

2 ]× [vk − ∆vk
2 , vk + ∆vk+1

2 ].
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Clearly,

P
′
(τ) = MM−1(A(B)(T − τ))TMP (τ) = (A(B)(T − τ))TP (τ),

for 0 ≤ τ ≤ T , with given vector P (0) = MP (0), i.e. with

P l(0) =

{
1 if l = l0,

0 else.

The approximation (7.3.3) of the non-discounted fair value of a non-path-
dependent European option at the spot can then also be represented as

u(X0, V0, T ) ≈ Ui0(T ) = P (T − t)TU(t).

7.4. Spatial Discretization by Finite Differences

In this section, a spatial discretization of the backward equation (7.2.1) by
FD will be performed on a non-uniform Cartesian grid (7.2.5). This semidis-
cretization then defines the adjoint spatial discretization of the forward equa-
tion (7.2.4).

7.4.1. Spatial Discretization of the Backward Equation

To construct a spatial grid and a semidiscretization for (7.2.1), the spatial
domain needs to be truncated to a bounded set [xmin, xmax] × [vmin, vmax].
The boundaries have to lie sufficiently far away from (X0, V0) such that the
truncation error incurred is negligible. If the parameter α is strictly positive,
the process Vτ is non-negative and vmin is naturally set equal to zero. For
non-path-dependent European options the following boundary conditions are
imposed:

∂2

∂x2u(xmin, v, t) = ∂
∂xu(xmin, v, t) for 0 ≤ v ≤ vmax, 0 < t ≤ T,

∂2

∂x2u(xmax, v, t) = ∂
∂xu(xmax, v, t) for 0 ≤ v ≤ vmax, 0 < t ≤ T.

(7.4.1)

The above conditions at x = xmin and x = xmax correspond to linear boundary
conditions in the s-variable, where s = S0 exp(x), cf. Section 7.1. If α = 0, the
process Vτ can take negative values and it is additionally assumed that

∂2

∂v2u(x, vmin, t) = 0 for xmin ≤ x ≤ xmax, 0 < t ≤ T,
∂2

∂v2u(x, vmax, t) = ∂
∂vu(x, vmax, t) for xmin ≤ x ≤ xmax, 0 < t ≤ T.

Thus at v = vmin a linear boundary condition is taken. The boundary condition
at v = vmax corresponds with a linear boundary condition in the variable
exp(v). For values of α that are strictly positive, the process Vτ is non-negative.
Moreover, Vτ = 0 can be attained if 0 < α ≤ 1/2. In these cases the boundary
v = 0 of the PDE requires special attention. It has been proved in [16] that
setting v = 0 in the PDE (7.2.1) at this boundary then yields the correct
condition here. At the boundary v = vmax it is then additionally assumed that

∂2

∂v2u(x, vmax, t) = 0 for xmin ≤ x ≤ xmax, 0 < t ≤ T.
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For this truncated domain, non-uniform meshes are applied in both the x-
and v-direction such that relatively many mesh points lie in the neighbourhood
of x = X0 and v = V0. The application of such non-uniform meshes improves
the accuracy of the FD discretization compared to using uniform meshes. The
type of non-uniform meshes that is employed is presented in Subsection 2.2.1.
Recall that these meshes are smooth in the sense of (2.2.1). Further, the
choice m1 = 2m2 is considered. As an illustration, the left plot in Figure 7.1
displays the spatial grid for the (small) sample values m1 = 30, m2 = 15, in
the case α > 0, xmin = − log(30), xmax = log(30), vmin = 0, vmax = 15 and
(X0, V0) = (0, 0.2). The right plot in Figure 7.1 displays a part of the spatial
grid to show the local uniformity of the grid around (X0, V0).

x
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v
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1

Figure 7.1: Sample grid for m1 = 30,m2 = 15, the case α > 0, xmin = − log(30),
xmax = log(30), vmin = 0, vmax = 15 and (X0, V0) = (0, 0.2). The left plot displays
the complete grid, the right plot shows the uniformity around (X0, V0).

Semidiscretization on the spatial grid is performed by finite differences as
introduced in Section 2.3. Let f : R → R be any given smooth function. To
approximate f ′(xj) we consider the second order central formula (2.3.1b) and
the second order forward formula (2.3.1c) for the first derivative. To approxi-
mate f ′′(xj), we apply the second order central formula (2.3.2) for the second
derivative. The finite difference schemes in the v-direction are defined analo-
gously. For a function of two variables f : R2 → R, the mixed derivative is
approximated by application of (2.3.1b) successively in the two directions.

The actual semidiscretization of the backward PDE (7.2.1) is defined as
follows. At all spatial grid points that do not lie on the boundary of the
truncated domain, each spatial derivative appearing in (7.2.1) is replaced by
its corresponding second order central finite difference scheme described above.

Concerning the boundaries in the x-direction, it is assumed that the per-
tinent conditions from (7.4.1) are valid for every x smaller than x2 or larger
than xm1−1. Thus for these extreme values x we assume that u(·, v, t) is an
exponential function. For instance, considering the upper boundary

ux = uxx = Cb,1 exp(x) whenever x > xm1−1,

and hence
u = Cb,1 exp(x) + Cb,2 whenever x > xm1−1,
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for some constants Cb,1, Cb,2. Based on the function values of u at xm1−1

and xm1
the constants Cb,1, Cb,2 can be determined and this leads to the

approximation for both the first and second derivatives in the x-direction at
xm1 given by

Cb,1 exp(xm1
) =

− exp(xm1
)

exp(xm1 )−exp(xm1−1)u(xm1−1, v, t)

+
exp(xm1 )

exp(xm1
)−exp(xm1−1)u(xm1 , v, t).

The first and second derivatives in the x-direction at the lower boundary are
approximated analogously.

If the parameter α is strictly positive, a linear boundary condition is applied
at v = vmax, i.e. the second derivative in the v-direction is equal to zero. The
first derivative in the v-direction at this boundary is approximated by using the
central scheme (2.3.1b) with the virtual point vmax + ∆vm2 , where the value
at this point is defined by extrapolation using the linear boundary condition.
This discretization reduces to the first-order backward finite difference formula
for the first derivative. Moreover, at the boundary vmin = 0 all the second
derivatives vanish and the first derivative ∂u/∂v is then approximated by using
the forward scheme (2.3.1c). If α equals zero, a linear boundary condition is
imposed at vmin and discretization of the spatial derivatives in the v-direction
is performed as above. The discretization of the boundary condition at vmax

is then performed analogously as the discretization of the boundary conditions
in the x-direction.

Denote by Dx, respectively Dxx, the matrices corresponding to the first,
respectively second, derivatives in the x-direction. Analogously, denote by
Dv, Dvv the matrices corresponding to spatial derivatives in the v-direction.
Denote by L(τ) the m1 ×m1 diagonal matrix with entries σSLV(xj , τ), let Λ
be the m2 ×m2 diagonal matrix with entries vk, and define for an arbitrary
function f : R→ R the matrix f(Λ) as the diagonal matrix with entries f(vk).
Further, denote by Ix, respectively Iv, the identity matrix of size m1 × m1,
respectively m2 × m2. Then semidiscretization of (7.2.1) yields a system of
differential equations given by

U ′(t) = 1
2L

2(T − t)(Dxx −Dx)U(t)ψ2(Λ) + ρξL(T − t)DxU(t)DT
v Λαψ(Λ)

+ 1
2ξ

2U(t)DT
vvΛ

2α + (rd − rf )DxU(t) +U(t)DT
v κ(ηIv − Λ),

for 0 < t ≤ T . This can be written in the form (7.3.2),

U ′(t) = A(B)(t)U(t) = (A
(B)
0 (t) +A

(B)
1 (t) +A

(B)
2 (t))U(t) (7.4.2)

for 0 < t ≤ T where, using a well-known property of the Kronecker product,

A
(B)
0 (t) = (ρξψ(Λ)ΛαDv)⊗ (L(T − t)Dx),

A
(B)
1 (t) = 1

2ψ
2(Λ)⊗ (L2(T − t)(Dxx −Dx)) + (rd − rf )Iv ⊗Dx

A
(B)
2 (t) = ( 1

2ξ
2Λ2αDvv + κ(ηIv − Λ)Dv)⊗ Ix.

The initial vector U(0) is defined by the payoff of the option.
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7.4.2. Spatial Discretization of the Forward Equation

As indicated in Section 7.3, semidiscretization of the forward equation (7.2.4)
is performed by the adjoint spatial discretization (7.3.5). Since the transpose
of the Kronecker product of two matrices is equal to the Kronecker product
of the transposed matrices, and recalling that t = T − τ , it follows that P (τ)
defined by (7.3.6) is given by the system of ODEs

P
′
(τ) = A

(F )
(τ)P (τ) = (A

(F )

0 (τ) +A
(F )

1 (τ) +A
(F )

2 (τ))P (τ), (7.4.3)

for τ > 0, with

A
(F )

0 (τ) = (ρξDT
v Λαψ(Λ))⊗ (DT

xL(τ)),

A
(F )

1 (τ) = 1
2ψ

2(Λ)⊗ ((DT
xx −DT

x )L2(τ)) + (rd − rf )Iv ⊗DT
x ,

A
(F )

2 (τ) = ( 1
2ξ

2DT
vvΛ

2α +DT
v κ(ηIv − Λ))⊗ Ix,

and given initial vector P (0). This in turn corresponds to the system of differ-
ential equations

P
′
(τ) = 1

2 (DT
xx −DT

x )L2(τ)P (τ)ψ2(Λ) + ρξDT
xL(τ)P (τ)ψ(Λ)ΛαDv

+ 1
2ξ

2P (τ)Λ2αDvv + (rd−rf )DT
xP (τ) + P (τ)κ(ηIv − Λ)Dv,

(7.4.4)

for τ > 0. The expression (7.4.4) shall be employed to calibrate the SLV model
to the LV model.

The total integral of a density function is equal to one. For a natural adjoint
spatial discretization (7.4.3) one would expect that the total numerical integral
of P , corresponding to P , is close to one. Let ex and ev denote the vectors
consisting of all ones with lengths m1 and m2, respectively. By construction of
the finite difference discretization and the chosen boundary conditions for the
SLV model (7.2.1) there holds

Dxxex = Dxex = 0 and Dvvev = Dvev = 0 (7.4.5)

and it directly follows that

eT
x P

′
(τ)ev = 0

for all τ > 0. Since further eT
x P (0)ev = 1, this yields

m1∑
j=1

m2∑
k=1

P j,k(τ)wx,jwv,k =

m1∑
j=1

m2∑
k=1

P j,k(τ) = 1

for all τ ≥ 0. It can be concluded that the adjoint spatial discretization of the
forward Kolmogorov equation keeps the total numerical integral of the density
identically equal to one, which is a favourable property.

7.5. Matching the Semidiscrete LV and SLV Models

In this section the main result of the chapter is presented. It is shown that,
under some assumptions, one can calibrate the semidiscrete SLV model exactly
to the corresponding semidiscrete LV model.
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A priori the leverage function σSLV, and hence the matrix function L, are
unknown and one wishes to determine them in such a way that the LV model
and the SLV model define identical values for European call and put options.
In practice, however, even the LV function σLV is not known analytically in
general and one relies on numerical methods to approximate the option values
defined by the LV model. Accordingly, it is unrealistic to require an algorithm
to produce a leverage function σSLV such that the SLV model yields the same
exact European call and put values as the LV model. One rather wants to
construct the leverage function in such a way that the two models yield iden-
tical approximate values for European call and put options whenever similar
semidiscretizations of these models are used.

A common approach to approximate the fair value of a European-style
option under the LV model is by discretizing the backward PDE (7.2.7) with
finite differences. Since the region of interest in the x-direction in the LV model
is the same as that in the SLV model, the same spatial mesh can be used
in this spatial direction. Denote by ULV(t) the vector with approximations
ULV,j(t) to uLV(xj , t) for 1 ≤ j ≤ m1 such that the component ULV,j0(T ) is the
approximation of the non-discounted fair value at the spot. Semidiscretization
by FD then leads to a system of ODEs

U ′LV(t) = A
(B)
LV (t)ULV(t) (7.5.1)

for 0 < t ≤ T , with initial vector ULV(0) defined by the payoff uLV,0. Since the
spatial derivatives ∂/∂x and ∂2/∂x2 in (7.2.7) also occur in the backward equa-
tion (7.2.1), and since also the same boundary conditions from Section 7.4 can
be applied for non-path-dependent European options, the same FD matrices
Dx and Dxx can be used to perform semidiscretization, and hence

A
(B)
LV (t) = 1

2L
2
LV(T − t)(Dxx −Dx) + (rd − rf )Dx,

where LLV(τ) is the m1 ×m1 diagonal matrix with entries σLV(xj , τ).
Denote by PLV(τ) a vector with approximations PLV,j(τ) of pLV(xj , τ),

where pLV is given by the forward equation (7.2.9), and let PLV(τ) be defined
by MLVPLV(τ) where MLV is the diagonal matrix with entries

(MLV)j,j = wx,j , for 1 ≤ j ≤ m1.

Analogously to Section 7.3, we define an adjoint forward discretization by

P
′
LV(τ) = (A

(B)
LV (T − τ))T PLV(τ) = A

(F )

LV (τ)PLV(τ) (7.5.2)

for τ > 0, with

A
(F )

LV (τ) = 1
2 (DT

xx −DT
x )L2

LV(τ) + (rd − rf )DT
x ,

and

PLV,j(0) =

{
1 if j = j0,

0 else,

so that
ULV,j0(T ) = PLV(T − t)TULV(t)
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for all 0 ≤ t ≤ T . Especially, for non-path-dependent European options one
can just solve the forward problem and approximate the non-discounted fair
value at the spot by PLV(T )TULV(0).

Now, consider a non-path-dependent option whose payoff is only dependent
on the exchange rate ST . Then

ULV,j(0) = U j,k(0)

whenever 1 ≤ j ≤ m1, 1 ≤ k ≤ m2. It is readily verified that the semidis-
cretizations of the LV model and the SLV model define the same value at the
spot, i.e. ULV,j0(T ) = U j0,k0(T ), if

P (T )ev = PLV(T ).

This property is desirable for every maturity. Hence, one would like to have

P (τ)ev = PLV(τ) (7.5.3)

for all τ ≥ 0. Notice that (7.5.3) is equivalent to

m2∑
k=1

P j,k(τ)wv,k = PLV,j(τ) for 1 ≤ j ≤ m1, τ ≥ 0,

which can be viewed as a semidiscrete analogue of (7.2.10). Since the equality
P (0)ev = PLV(0) holds, the condition (7.5.3) is satisfied if

P
′
(τ)ev = P

′
LV(τ) (7.5.4)

for all τ > 0. From (7.4.4), (7.4.5) we directly obtain

P
′
(τ)ev = 1

2 (DT
xx −DT

x )L2(τ)P (τ)ψ2(Λ)ev + (rd − rf )DT
x P (τ)ev.

If the (initially unspecified) diagonal matrix L(τ) is now defined through

L2(τ)P (τ)ψ2(Λ)ev = L2
LV(τ)P (τ)ev, (7.5.5)

then

P
′
(τ)ev = 1

2 (DT
xx −DT

x )L2
LV(τ)P (τ)ev + (rd − rf )DT

x P (τ)ev.

Hence, it follows that (7.5.4) holds whenever equation (7.5.2) has a unique
solution.

Remark that in the definition (7.5.5) for the semidiscrete leverage function
it is tacitly assumed that both vectors

P (τ)ψ2(Λ)ev and P (τ)ev

only contain strictly positive values. By performing a spatial discretization with
finite differences it is possible that some of the values P j,k become negative.
In our experiments, both vectors often remained strictly positive for natural
values of m1,m2.
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Notice that the derivation above is not restricted to the choice of finite
difference formulas. If the second order central formulas from Subsection 2.3.1
are replaced by alternative finite difference formulas for which (7.4.5) holds,
and if these formulas are also applied for a similar semidiscretization in the LV
model, then the SLV model is calibrated exactly to the LV model by employing
(7.5.5).

We arrive at the following main result:

Theorem 7.5.1 Assume semidiscretization of the backward Kolmogorov equa-
tion (7.2.1) is performed by consistent finite difference formulas on a Cartesian
grid and that semidiscretization of the forward Kolmogorov equation (7.2.4) is
performed by the adjoint spatial discretization. Then

Ul0(T ) = P (τ)TU(T − τ) for all 0 ≤ τ ≤ T,

where l0 corresponds to the index (j0, k0) such that (xj0 , vk0) = (X0, V0).
Hence, the two semidiscretizations define the same approximation for the fair
value of non-path-dependent European options.

Next, assume semidiscretization of the backward and forward equations
(7.2.7) and (7.2.9) under the LV model is performed in complete correspondence
to that of (7.2.1) and (7.2.4), respectively, under the SLV model by using the
same grid and finite difference formulas in the x-direction. If (7.4.5) holds,
if equation (7.5.2) has a unique solution and if the leverage function σSLV is
defined on the grid in the x-direction by

σ2
SLV(xj , τ) = σ2

LV(xj , τ)

∑m2

k=1P j,k(τ)∑m2

k=1 ψ
2(vk)P j,k(τ)

, (7.5.6)

then

P (τ)ev = PLV(τ) for all τ ≥ 0. (7.5.7)

In particular, if the payoff depends only on the exchange rate ST , then the
semidiscretizations of the LV model and the SLV model define the same ap-
proximation for the fair value of non-path-dependent European options:

ULV,j0(T ) = PLV(τ)TULV(T − τ) = P (τ)TU(T − τ) = Ul0(T ), for 0 ≤ τ ≤ T.

The second part of Theorem 7.5.1 can be regarded as the semidiscrete analogue
of (7.1.4). Indeed, if σSLV is defined on the spatial grid in the x-direction by
(7.5.6), then by the definition of P it is directly seen that this is equivalent to
applying (7.1.4), where the conditional expectation is approximated by

E[ψ2(Vτ )|Xτ = xj ] ≈
∑m2

k=1 ψ
2(vk)P j,k(τ)wv,k∑m2

k=1P j,k(τ)wv,k
=

∑m2

k=1 ψ
2(vk)P j,k(τ)∑m2

k=1P j,k(τ)
,

(7.5.8)
for 1 ≤ j ≤ m1.
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7.6. Temporal Discretization

In this section we consider a suitable temporal discretization for the numerical
solution of semidiscrete systems of the type (7.4.2) and (7.4.3) assuming that
the matrix-valued function L is known. Since the pertinent systems of ODEs
are stemming from spatial discretization of a multidimensional PDE with mixed
spatial derivative term, the application of ADI time stepping schemes in the
numerical solution can be very effective, see e.g. Chapter 3. Here, we opt to
employ the MCS scheme (3.2.5) with parameter θ = 1/3. A brief overview of
the existing stability results for the MCS is presented in Section 3.3. In Chap-
ter 4 it is shown that, under natural stability and smoothness assumptions,
the MCS scheme is second order convergent with respect to the temporal step
size whenever it is applied to semidiscrete two-dimensional convection-diffusion
equations with mixed derivative term. In the present application, however,
both vectors U(0) and P (0) are stemming from initial functions that are non-
smooth. Based on our analysis in Chapter 6, we replace the first two MCS
time steps by four half-time steps of the implicit Euler scheme, i.e. we apply
Rannacher time stepping with N0 = 2.

As seen in Section 7.2, the fair values of non-path-dependent European
options can be determined by solving either the backward equation (7.2.1) or
the forward equation (7.2.4). In Section 7.4 spatial discretization of these two
PDEs led to the semidiscrete systems (7.4.2) and (7.4.3), respectively. Denote
by N ≥ 1 again the total number of time steps and define uniform temporal
grid points tn = n∆t with ∆t = T/N . Application of the MCS scheme to
(7.4.2) yields approximations Un of U(tn) and the non-discounted fair option

value at the spot is then approximated by Ul0,N = P
T

0 UN . Alternatively,
take ∆τ = ∆t = T/N and let temporal grid points τn = n∆τ = T − tN−n.
Application of the MCS scheme to (7.4.3) yields approximations Pn of P (τn)
and the non-discounted fair option value at the spot is then approximated by

P
T

NU0.
It is possible, see Itkin [45, 46], to construct new ADI discretizations for

(7.4.3) such that there is an exact match between the fully discretized backward
equation and the fully discretized forward equation, that is,

P
T

0 UN = P
T

NU0 = P
T

N−nUn

for all 0 ≤ n ≤ N . In this chapter we prefer to employ the MCS scheme for the
numerical solution of both ODE systems (7.4.2) and (7.4.3). A main reason is
that ample positive results are already available in the literature on the stability
and convergence of the MCS scheme. In addition, practical experience shows
that the temporal discretization error of the MCS scheme is often much smaller
than the spatial discretization error.

7.7. Calibration of the SLV Model to the LV Model

In Section 7.5 we derived the expression (7.5.6) for the discrete leverage function
σSLV that exactly calibrates the semidiscrete SLV model to the semidiscrete LV
model. This expression involves the matrix function P . Combining (7.5.6) with
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the semidiscrete forward equation (7.4.3) for P = vec[P ], one arrives at a large,
non-linear system of ODEs. In the present section numerical time stepping is
applied together with an inner iteration so as to numerically solve this system
of ODEs and acquire the discrete leverage function that satisfies (7.5.6).

Suppose an approximation Pn to P (τn) at time level τn is known. Let P n

denote the m1 ×m2 matrix such that

Pn = vec[P n].

Then the discrete leverage function is determined by

σ2
SLV(xj , τn)En,j = σ2

LV(xj , τn), (7.7.1)

where the quantity

En,j =

∑m2

k=1 ψ
2(vk)P n,j,k∑m2

k=1P n,j,k

(7.7.2)

forms an approximation to the conditional expectation E[ψ2(Vτn)|Xτn = xj ],
see (7.5.8). In order to arrive at the actual calibration procedure, we need to
consider three practical issues concerning formula (7.7.2).
• Due to the spatial and temporal discretizations, it may happen that

either the numerator or denominator of (7.7.2) becomes negative. In this case
we assume that the conditional expectation is locally constant in time and set
En,j = En−1,j . In most of our experiments, however, both parts of the quotient
remained strictly positive for common values of m1,m2,∆τ .
• Since P n,j,k can be viewed as an approximation of the probability of the

event that

(Xτn , Vτn) ∈ [xj − ∆xj
2 , xj +

∆xj+1

2 ]× [vk − ∆vk
2 , vk + ∆vk+1

2 ],

it can happen that both the numerator and denominator of (7.7.2) become
very small, which can lead to unrealistic values of the leverage function. To
resolve this, a regularized approximation of the conditional expectation is used
(cf. [17]),

En,j =

∑m2

k=1 ψ
2(vk)P n,j,k + ψ2(η)ε∑m2

k=1P n,j,k + ε
(7.7.3)

for given small value ε. In this chapter ε = 10−8 is taken. By using the
regularized version (7.7.3), the approximated conditional expectation is shifted
towards ψ2(η) where η is the mean-reversion level of the process Vτ .
• At the spot τ = 0, the matrix P (0) has (j0, k0)-th entry equal to one

and all its other entries are equal to zero. Consequently, if n = 0, then the
expression (7.7.2) is only defined if j = j0. To render the calibration procedure
feasible, we extend this definition to all indices j and thus put

E0,j = ψ2(V0).

Notice that this agrees with (7.7.3) for n = 0 whenever η = V0, which often
holds in practice.

Let Q ≥ 1 be a given integer. For calibrating the SLV model to the LV
model, we employ the following numerical procedure. It consists of numerical
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time stepping combined with an inner iteration, cf. [64].

for n is 1 to N do

let Pn = Pn−1 be an initial approximation to P (τn);

for q is 1 to Q do

(a) approximate E[ψ2(Vτn)|Xτn = xj ] by (7.7.3);

(b) approximate σSLV(·, τn) on the grid in the x-direction by

formula (7.7.1);

(c) update Pn by performing a numerical time step for (7.4.3)
from τn−1 to τn;

end

end

Whenever a time step from τn−1 to τn with the MCS scheme is replaced by
two half-time steps of the implicit Euler scheme, the inner iteration above is
first performed for the substep from τn−1 to τn−1/2 = τn−1 + ∆τ/2, yielding

an approximation of P (τn−1/2) and σSLV(·, τn−1/2). Next, the inner iteration
is performed for the substep from τn−1/2 to τn, yielding an approximation of

P (τn) and σSLV(·, τn).

Upon completion of the time stepping and iteration procedure above, the
original approximation for σSLV(·, 0) is replaced on the grid in the x-direction
by

σ2
LV(xj , 0) = σ2

SLV(xj , 0)

∑m2

k=1 ψ
2(vk)P j,k,1 + ψ2(η)ε∑m2

k=1P j,k,1 + ε

for 1 ≤ j ≤ m1. This appears more realistic as the original approximation was
actually only valid for the index j = j0.

7.8. Numerical Experiments

In this section, numerical experiments are presented to illustrate the effective-
ness of the calibration procedure. Here, we opt to consider the popular and
challenging Heston-based SLV model, i.e. SLV model (7.1.1) with ψ(v) =

√
v

and α = 1/2, to describe the evolution of the EUR/USD exchange rate.

As stated in the introduction of the chapter, for the calibration of the SLV
model it is customary to start from the parameters κ, η, ξ, ρ of the underlying
(Heston) SV model such that this model reflects the market dynamics of the
exchange rate. Denote f = 2κη/ξ2 − 1. It is readily seen that f ≥ −1 and from
Section 7.1 it follows that Vτ = 0 is attainable if f < 0. In this chapter we
consider the following four sets of parameters:
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κ η ξ ρ T f
Set 1 3.02 0.015 0.31 −0.13 0.5 −0.0572
Set 2 0.30 0.04 0.90 −0.5 0.5 −0.9704
Set 3 0.75 0.015 0.15 −0.14 2 0
Set 4 0.30 0.04 0.90 −0.5 2 −0.9704

Table 7.1: Heston parameter sets for the numerical experiments with the adjoint
calibration method.

The first and third parameter set are taken from [8, Table 6.5]. They correspond
to the EUR/USD exchange rate for the pertinent maturities (market data as of
16 September 2008). The second and fourth parameter set are essentially the
same and taken from [1, Case II]. The latter two parameter sets are challenging
for the calibration procedure as the Feller condition [20] is strongly violated, i.e.
f� 0, so that the probability mass is stacked up near v = 0, cf. [2]. Note that
the spatial discretization of the backward Kolmogorov equation (7.2.1) from
Subsection 7.4.1, and hence the total calibration procedure, is not dependent
on the Feller condition.

The leverage function σSLV is determined in such a way that the SLV model
is calibrated to the underlying LV model. The LV model is completely deter-
mined by the LV function σLV and the risk-free interest rates rd, rf . For the
experiments we consider

rd = 0.03, rf = 0.01,

and LV function displayed in Figure 7.2. This LV function originates from
actual EUR/USD vanilla option data (market data as of 13 November 2015)
and contains data up to two years. The corresponding spot rate is

S0 = 1.0764.

For the spot value V0 of the process Vτ in the SLV model we assume that it is
equal to the long-term mean η of this process.

The aim is to construct the leverage function in such a way that the dis-
cretized LV model and the discretized SLV model yield identical approximate
values for any given vanilla option whenever similar discretizations are em-
ployed. In our experiments, the semidiscretization of the backward Kolmogorov
equation (7.2.1) is performed as described in Subsection 7.4.1 and the semidis-
cretization of the forward equation (7.2.4) is defined by the pertinent adjoint
spatial discretization. The backward and forward PDEs (7.2.7) and (7.2.9) are
semidiscretized analogously and by using the same finite difference schemes as
described in Section 7.5. For the first numerical experiment we consider

m1 = 100, m2 = 50.

The main Theorem 7.5.1 yields that if the leverage function is defined on the
grid in the x-direction by (7.5.6), then the approximations obtained from the
four semidiscrete systems (7.4.2), (7.4.3), (7.5.1), (7.5.2) of the fair value of any
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Figure 7.2: Local volatility function originating from actual EUR/USD vanilla option
data (market data as of 13 November 2015) on the full domain in the x-direction
(left) and on a subdomain around the spot rate (right). The spot rate S0 = 1.0764.

given non-path-dependent European option are identical. The exact solution
(7.5.6) is approximated by applying the calibration procedure described in
Section 7.7. We choose to perform the temporal discretization in this procedure
with values

∆τ = 1/200, θ = 1/3, Q = 2.

In Figure 7.3 the obtained discrete leverage function is shown for Set 4. If
the SV model with parameters from Set 4 would fit the market prices for
European call and put options exactly, then the leverage function would be
identically equal to one and the SLV model reduces to the SV model. Clearly,
Figure 7.3 indicates that the pure SV model with parameters from Set 4 does
not match the market data very well. This outcome was to be expected, as the
SV parameters stemming from [1] do not correspond to a EUR/USD exchange
rate.
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Figure 7.3: Leverage function on the full domain in the x-direction (left) and on
a subdomain around the spot rate (right), stemming from the calibration procedure
with local volatility function from Figure 7.2, SV parameters from Set 4 and with
m1 = 100, m2 = 50, ∆τ = 1/200, θ = 1/3, Q = 2.
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With the obtained discrete leverage function, the performance of the cali-
bration procedure is first tested by comparing the fully discrete approximations
of the fair value of European call options which are acquired by numerically
solving the systems of ODEs (7.4.2), (7.4.3), (7.5.1), (7.5.2). To this purpose
we consider a range of strikes, given by

K = 0.7S0, 0.8S0, 0.9S0, S0, 1.1S0, 1.2S0, 1.3S0.

Temporal discretization of (7.5.1) and (7.5.2) is performed by the classical
Crank–Nicolson scheme. The systems (7.4.2) and (7.4.3), which are stemming
from a two-dimensional PDE, are discretized in time by the MCS scheme (3.2.5)
with parameter θ given above. For both methods we consider ∆τ = 1/200 and
Rannacher time stepping is applied to handle the non-smoothness of the ini-
tial functions. In Table 7.2 the obtained fully discrete approximations FaVi,
i ∈ {LVB,LVF,SLVB,SLVF}, of the fair value (FaV) are presented for Set 1.
Here i = LVB, respectively i = LVF,SLVB,SLVF, corresponds with the ap-
proximated fair value obtained via (7.5.1), respectively (7.5.2), (7.4.2), (7.4.3).
In Table 7.2 one observes that the approximated option values are almost iden-
tical. To express in more detail the quality of the approximations, we present
relative errors

εr,i = (FaVi − FaVLVB)/FaVLVB.

Here the option values given by solving (7.5.1), indicated by FaVLVB, are con-
sidered as the reference values. This is motivated by the fact that in practice
one starts from the underlying LV model and within the LV model it is common
to solve the backward equation (7.2.7). Table 7.2 reveals the favourable result
that all relative errors are smaller than 0.1%. Numerical experiments for the
other SV parameter sets, i.e. for Sets 2, 3, 4, yield the same observation. It can
be concluded that the different approximations are almost identical in each of
the four cases and the calibration procedure from Section 7.7 performs well.

K/S0 FaVLVB FaVLVF εr,LVF FaVSLVB εr,SLVB FaVSLVF εr,SLVF

0.7 0.3288 0.3288 0.0000% 0.3288 0.0000% 0.3288 0.0000%
0.8 0.2228 0.2228 0.0000% 0.2228 0.0000% 0.2228 0.0001%
0.9 0.1185 0.1185 0.0008% 0.1185 0.0004% 0.1185 0.0008%
1 0.0381 0.0381 0.0083% 0.0381 0.0004% 0.0381 0.0079%

1.1 0.0091 0.0091 0.0235% 0.0091 0.0017% 0.0091 0.0211%
1.2 0.0019 0.0019 0.0437% 0.0019 0.0073% 0.0019 0.0391%
1.3 0.0004 0.0004 0.0661% 0.0004 0.0223% 0.0004 0.0640%

Table 7.2: Comparison of the approximated option values FaVLVB, FaVLVF, FaVSLVB,
FaVSLVF for Set 1 and for values m1 = 100, m2 = 50, ∆τ = 1/200, θ = 1/3, Q = 2.

When the strike increases relative to S0, the fair value of European call
options tends to zero and it is difficult to adequately compare approximations.
In financial practice, European call and put options are often quoted in terms of
implied volatility. Let σimp,i denote the implied volatility (in %) corresponding
to FaVi. Figure 7.4 shows the implied volatilities obtained from the local
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volatility function from Figure 7.2 and FaVLVF with m1 = 100, ∆t = 1/200.
The implied volatilities are shown approximately every week.
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Figure 7.4: Implied volatilities obtained from the local volatility function from Fig-
ure 7.2 and FaVLVF with m1 = 100,∆t = 1/200. The implied volatilities are shown
approximately every week from T = 1/200 (left) and from T = 1M (right).

In the following we test the performance of the calibration procedure by
calculating the absolute implied volatility errors

εi = |σimp,i − σimp,LVB|.
In Table 7.3 these errors are presented for the different SV parameter sets,
taking the same values of m1,m2,∆τ, θ,Q as above. Since the adjoint spatial
discretization is used for (7.2.9), the only source of error in εLVF is the tem-
poral discretization error. Table 7.3 shows that these errors are small. The
somewhat larger values εLVF for T = 0.5 compared to T = 2 can be explained
from the fact that the implied volatility is more sensitive to changes in the fair
value when the maturity is low. Table 7.3 subsequently reveals that for Set 1
and Set 3 the (small) errors εSLVB and εSLVF are of the same order of magni-
tude as εLVF. This indicates that the size of the error due to the calibration
(with the iteration to handle the non-linearity) is not larger than the size of the
temporal discretization error. As the calibration procedure includes numerical
time stepping, this is the best result one can aim for. For Set 2 and Set 4 the
magnitude of εSLVB is slightly higher than the one of εLVF. Additional experi-
ments reveal that this is closely related to a strongly violated Feller condition
(f = −0.9704 � 0). Probability mass is then stacked up near v = 0 and since
our FD scheme is not positivity preserving, this sometimes leads to negative
values for either the numerator or denominator of (7.7.2). In such situations,
the calibration makes use of the conditional expectation of the previous time
step, see Section 7.7, leading to a higher calibration error. Experiments with
all parameter sets from [8, Table 6.5] indicate that the calibration error is of
the same order of magnitude as the temporal discretization error whenever
f ≥ −0.85. The worst results that we encountered were for parameter set I
from [1] where a strongly violated Feller condition (f = −0.96) is combined
with a very high correlation (ρ = −0.9). Even for this extreme parameter set,
however, the absolute implied volatility errors did not exceed 0.1.
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T = 0.5 Set 1 Set 2
K/S0 σimp,LVB εLVF εSLVB εSLVF εSLVB εSLVF

0.7 14.8646 0.0024 0.0024 0.0028 0.0008 0.0014
0.8 12.0458 0.0017 0.0015 0.0018 0.0004 0.0004
0.9 10.3061 0.0012 0.0006 0.0012 0.0057 0.0052
1 10.7970 0.0011 0.0000 0.0010 0.0006 0.0029

1.1 12.6393 0.0011 0.0001 0.0010 0.0176 0.0152
1.2 13.9656 0.0011 0.0002 0.0010 0.0260 0.0241
1.3 14.9511 0.0012 0.0004 0.0012 0.0094 0.0091

T = 2 Set 3 Set 4
K/S0 σimp,LVB εLVF εSLVB εSLVF εSLVB εSLVF

0.7 10.2284 0.0008 0.0005 0.0008 0.0014 0.0012
0.8 9.1864 0.0005 0.0003 0.0005 0.0012 0.0011
0.9 8.9874 0.0004 0.0001 0.0004 0.0010 0.0011
1 9.6063 0.0004 0.0000 0.0004 0.0034 0.0036

1.1 10.6956 0.0004 0.0000 0.0004 0.0041 0.0044
1.2 11.6810 0.0004 0.0001 0.0004 0.0038 0.0040
1.3 12.4844 0.0004 0.0001 0.0004 0.0026 0.0026

Table 7.3: Comparison of the approximated implied volatilities σimp,LVB, σimp,LVF,
σimp,SLVB, σimp,SLVF for values m1 = 100,m2 = 50,∆τ = 1/200, θ = 1/3, Q = 2.

In order to verify the assertions above, we repeat the numerical experiments
with a smaller step size. In Table 7.4 the absolute implied volatility errors are
given for the same parameters as above but where the calibration and pricing
is performed with

∆τ = 1/400.

Comparing εLVF in Tables 7.3 and 7.4, it is clearly seen that the temporal
error decreases if ∆τ decreases. Moreover, for Set 1 and Set 3, the absolute
implied volatility errors εSLVB, εSLVF are again of the same size as εLVF. For
Set 2 and Set 4 the errors do not decrease equally fast. This can be seen as
a consequence of the fact that the spatial discretization has not been changed
and, hence, negative numerators and denominators of (7.7.2) are still observed.
From additional experiments it can be concluded that, if the Feller condition
is not strongly violated (f ≥ −0.85), then for realistic values of ∆τ the error
introduced by the calibration procedure is of the same order of magnitude as the
temporal discretization error. When the Feller condition is strongly violated,
the calibration error is slightly higher.

Observe that by decreasing the step size, the reference values σimp,LVB have
slightly changed. This is a consequence of the fact that more points from the
LV surface are used and the fully discrete solution FaVLVB converges to the
semidiscrete solution ULV,l0(T ). We note that the approximated option values
FaVLVB acquired with ∆τ = 1/400 are identical to those in Table 7.2 up to the
number of digits presented in that table. This confirms again that the temporal
discretization error is small.
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T = 0.5 Set 1 Set 2
K/S0 σimp,LVB εLVF εSLVB εSLVF εSLVB εSLVF

0.7 14.8605 0.0001 0.0007 0.0006 0.0004 0.0004
0.8 12.0438 0.0000 0.0002 0.0001 0.0003 0.0005
0.9 10.3053 0.0000 0.0000 0.0000 0.0016 0.0015
1 10.7964 0.0000 0.0000 0.0000 0.0046 0.0050

1.1 12.6386 0.0000 0.0000 0.0000 0.0002 0.0002
1.2 13.9647 0.0000 0.0001 0.0000 0.0066 0.0059
1.3 14.9498 0.0000 0.0001 0.0000 0.0006 0.0001

T = 2 Set 3 Set 4
K/S0 σimp,LVB εLVF εSLVB εSLVF εSLVB εSLVF

0.7 10.2278 0.0001 0.0001 0.0001 0.0003 0.0003
0.8 9.1859 0.0000 0.0000 0.0000 0.0000 0.0000
0.9 8.9870 0.0000 0.0000 0.0000 0.0010 0.0011
1 9.6060 0.0000 0.0000 0.0000 0.0022 0.0022

1.1 10.6953 0.0000 0.0000 0.0000 0.0027 0.0027
1.2 11.6806 0.0000 0.0000 0.0000 0.0029 0.0028
1.3 12.4840 0.0000 0.0000 0.0000 0.0026 0.0026

Table 7.4: Comparison of the approximated implied volatilities σimp,LVB, σimp,LVF,
σimp,SLVB, σimp,SLVF for values m1 = 100,m2 = 50,∆τ = 1/400, θ = 1/3, Q = 2.

As stated in Theorem 7.5.1, the condition (7.5.6) facilitates an exact match
between the semidiscrete LV model and the semidiscrete SLV model whenever
similar discretizations are used. This match is valid for any number of spatial
grid points m1,m2. In order to test this property of the calibration procedure,
we repeat the numerical experiments with the number of spatial grid points
replaced by

m1 = 200, m2 = 100,

and with step size ∆τ = 1/200. The obtained implied volatilities σimp,LVB

are presented in Table 7.5 as well as the absolute implied volatility errors
εLVF, εSLVB, εSLVF.

One observes that the size of the εLVF is similar in Tables 7.3 and 7.5. Hence,
the experiments indicate that the performance of the calibration procedure is
independent of the number of spatial grid points. The difference between the
approximations of the fair value by discretizing either (7.5.1), (7.5.2), (7.4.2)
or (7.4.3) is always small.

By increasing m1,m2 the values σimp,LVB have noticeably changed, which is
related to the convergence of ULV,l0(T ) to the exact non-discounted fair value
uLV(X0, T ). The differences in implied volatility in Tables 7.3, 7.4, 7.5 reveal
that within the LV model and for the current, realistic values of m1,m2, τ the
spatial discretization error is larger than the temporal discretization error (cf.
Section 7.6). Since the calibration procedure from Section 7.7 matches the fully
discrete LV and SLV models up to a difference with the size of the temporal
discretization error, one can define an appropriate semidiscretization of the
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T = 0.5 Set 1 Set 2
K/S0 σimp,LVB εLVF εSLVB εSLVF εSLVB εSLVF

0.7 14.6017 0.0032 0.0039 0.0042 0.0028 0.0033
0.8 11.9199 0.0020 0.0019 0.0021 0.0006 0.0005
0.9 10.2664 0.0013 0.0006 0.0013 0.0052 0.0048
1 10.8100 0.0011 0.0001 0.0010 0.0022 0.0043

1.1 12.6442 0.0011 0.0001 0.0010 0.0134 0.0111
1.2 13.9412 0.0012 0.0002 0.0010 0.0294 0.0276
1.3 14.8890 0.0012 0.0004 0.0011 0.0102 0.0100

T = 2 Set 3 Set 4
K/S0 σimp,LVB εLVF εSLVB εSLVF εSLVB εSLVF

0.7 10.1742 0.0009 0.0006 0.0010 0.0011 0.0009
0.8 9.1690 0.0006 0.0003 0.0006 0.0010 0.0009
0.9 8.9858 0.0004 0.0001 0.0004 0.0013 0.0014
1 9.6089 0.0004 0.0000 0.0004 0.0039 0.0041

1.1 10.6981 0.0004 0.0000 0.0004 0.0047 0.0050
1.2 11.6825 0.0004 0.0001 0.0004 0.0045 0.0047
1.3 12.4837 0.0004 0.0001 0.0004 0.0033 0.0034

Table 7.5: Comparison of the approximated implied volatilities σimp,LVB, σimp,LVF,
σimp,SLVB, σimp,SLVF for values m1 = 200, m2 = 100, ∆τ = 1/200, θ = 1/3, Q = 2.

PDE (7.2.7), control the spatial discretization error within the LV model, and
then calibrate the SLV model to the LV model such that the fully discrete
SLV model matches the market data up to an error which is dominated by
the controlled spatial error from semidiscretization within the LV model. If
the Feller condition is strongly violated, one has to take into account a slightly
higher calibration error.

We mention that all codes have been written in Matlab R2015a, where all
matrices have been defined as sparse. The experiments have been performed
on a computer with Intel Core i7-3540M 3.00GHz processor and 8GB memory.
If the calibration is performed with m1 = 100, m2 = 50, N = 100 and Q = 2,
then our implementation of the calibration procedure takes about 1 cpu-sec.
Note that the computing time is (approximately) directly proportional to the
number of spatial grid points m = m1m2, the number of time steps N , and the
number of iterations Q.

7.9. Conclusion

In financial practice, SLV models are calibrated to market data for European
call and put options by calibrating them to their underlying LV models. Since
there is often no closed-form analytical formula available for the fair value of
vanilla options under an LV model, the best one can aim for is that the approxi-
mations of the fair value given by the two models are identical whenever similar
numerical valuation methods are used. Here, we choose to perform the numer-
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ical option valuation by semidiscretizing the respective backward Kolmogorov
equations with finite differences. By making use of an adjoint semidiscretization
of the corresponding forward Kolmogorov equations, we derived an expression
for the leverage function such that the semidiscretized SLV model is calibrated
exactly to the semidiscretized LV model. In order to employ this expression,
one has to solve a large non-linear system of ODEs. For the actual numerical
calibration, temporal discretization of this system by a suitable ADI method is
combined with an inner iteration to deal with the non-linearity. Our numerical
experiments reveal that the fully discrete approximations of the fair value of
European call options under the LV and SLV models are the same up to the
size of the temporal discretization error. Since the spatial discretization error
is typically much larger than the temporal discretization error, one can control
the former one by defining an appropriate semidiscretization of the LV model
and then calibrate the fully discrete SLV model de facto exactly to the fully
discrete LV model. Only if the Feller condition is strongly violated, one has to
take into account a slightly higher calibration error.



CHAPTER 8

Finite Volume Calibration of SLV Models

8.1. Introduction

In financial practice, for the calibration of SLV models one will first determine
the LV function σLV(x, τ) such that LV model (7.1.2) yields the exact market
prices for vanilla options, and the SV parameters such that the underlying SV
model reflects the market dynamics of the underlying asset, see e.g. [8, 64].
Afterwards, given the SV parameters, the SLV model is calibrated to the LV
model so that the former one also reproduces the known market prices for
vanilla options. Let Sτ > 0 denote the FX rate at time τ ≥ 0 and consider the
standard transformed variable Xτ = log(Sτ/S0). In this chapter we deal with
SLV models of the type

dXτ = (rd − rf − 1
2σ

2
SLV(Xτ , τ)ψ2(Vτ ))dτ + σSLV(Xτ , τ)ψ(Vτ )dW

(1)
τ ,

dVτ = κ(η − Vτ )dτ + ξV ατ dW
(2)
τ ,

(8.1.1)
with ψ a non-negative function on R+ such that ψ(0) = 0, α, κ, η, ξ strictly

positive parameters, dW
(1)
τ · dW (2)

τ = ρdτ , −1 ≤ ρ ≤ 1 and given spot values
X0 = 0, V0. These models are of the type (7.1.1), with the additional condition
that α is strictly positive. Recall from Chapter 7 that the non-negative function
σSLV(x, τ) is called the leverage function and the constant rd, respectively rf ,
denotes the risk-free interest rate in the domestic currency, respectively in the
foreign currency. In [2] it is shown that the process Vτ is always non-negative
and that the boundary Vτ = 0 is attainable for 0 < α < 1/2 and for α = 1/2
if 2κη < ξ2. For α > 1/2 it holds that Vτ = 0 is an unattainable boundary.
Furthermore, Vτ =∞ is an unattainable boundary for all values of α > 0. The
choice ψ(v) =

√
v, α = 1/2 corresponds to the Heston-based SLV model and

the choice ψ(v) = v, α = 1 corresponds to the SLV model described in [64].
Let p(x, v, τ ;X0, V0) denote the joint density of (Xτ , Vτ ) under the SLV

model (8.1.1) and let pLV(x, τ ;X0) denote the density of XLV,τ under (7.1.2).
The SLV model and the underlying LV model define the same fair value for

This chapter is based on the article ‘A finite volume - alternating direction implicit approach

for the calibration of stochastic local volatility models’, published in Int. J. Comput. Math.,

doi:10.1080/00207160.2017.1297805, 2017 [69].
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vanilla options if they both yield the same marginal distribution for Sτ , i.e. if

pLV(x, τ ;X0) =

∫ ∞
0

p(x, v, τ ;X0, V0)dv, for τ > 0. (8.1.2)

From the previous chapter, see also [23,63], it follows that equality (8.1.2) holds
if the leverage function is defined by

σ2
LV(x, τ) = E[σ2

SLV(Xτ , τ)ψ2(Vτ )|Xτ = x] = σ2
SLV(x, τ)E[ψ2(Vτ )|Xτ = x].

(8.1.3)
Exact calibration of the SLV model can be performed by determining the con-
ditional expectation above and defining the leverage function by (8.1.3). This
is, however, highly non-trivial since the conditional expectation itself depends
on the leverage function.

In the past years, a variety of numerical techniques, see e.g. [8,17,29,58,66]
and Chapter 7, has been proposed in order to approximate the conditional
expectation from (8.1.3) and to approximate the appropriate leverage function.
The authors in [29,66] make use of Monte Carlo techniques to approximate the
conditional expectation, whereas in [8,17,58] PDE methods are applied for the
approximation of the density function p(x, v, τ ;X0, V0). In Chapter 7 an adjoint
PDE technique has been introduced for the calibration of SLV models. Note
that, although the solution of e.g. (7.3.5) can be viewed as an approximation
of the density function, there is no convergence result available for the adjoint
spatial discretization when it is considered as a spatial discretization method
for the forward Kolmogorov PDE (7.2.4).

In this chapter, we consider a new PDE method for the approximation of
the underlying density function p(x, v, τ ;X0, V0). For the effective calibration,
the conditional expectation is often rewritten as, cf. [8, 17,58],

E[ψ2(Vτ )|Xτ = x] =

∫∞
0
ψ2(v)p(x, v, τ ;X0, V0)dv∫∞
0
p(x, v, τ ;X0, V0)dv

. (8.1.4)

Recall from the previous chapter, cf. also [59], that the joint density function
satisfies the forward Kolmogorov equation

∂
∂τ p = ∂2

∂x2

(
1
2σ

2
SLVψ

2(v)p
)

+ ∂2

∂x∂v (ρξσSLVψ(v)vαp) + ∂2

∂v2

(
1
2ξ

2v2αp
)

− ∂
∂x

(
(rd − rf − 1

2σ
2
SLVψ

2(v))p
)
− ∂

∂v (κ(η − v)p) ,
(8.1.5)

for x ∈ R, v > 0, τ > 0 and with initial condition

p(x, v, 0;X0, V0) = δ(x)δ(v − V0),

where δ denotes the Dirac delta function. Once the joint density p is known,
one can easily determine the leverage function by computing the integrals in
(8.1.4) and the SLV model is calibrated exactly to the LV model. By combining
(8.1.3)–(8.1.5) it is readily seen that one has to solve a highly non-linear PDE
in order to perform the calibration.

In financial mathematics, convection-diffusion equations of the type (8.1.5)
are often discretized by means of FD methods, see e.g. [8,58]. If the parameter α
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is less or equal to 1/2, however, it holds that Vτ = 0 is attainable and defining
a proper boundary condition at v = 0 is a non-trivial task. Moreover, FD
methods are often not mass-conservative whereas conservation of mass is a key
property of forward Kolmogorov equations. The finite volume (FV) method
proposed in [17] manages to deal with the issues above. The latter method,
however, makes use of a transformation of the original PDE (8.1.5) which
incorporates derivatives of the leverage function. As the leverage function is
often non-smooth and only known at a finite number of points, this could lead
to undesirable (erratic) behaviour.

In this chapter we will introduce a FV-ADI discretization for the numerical
solution of general, non-transformed forward Kolmogorov equations of the type
(8.1.5). The discretization makes use of the general MOL, cf. Chapter 1. The
PDE is first discretized in the spatial variables by finite volume methods to keep
the total numerical mass equal to one and to handle the boundary conditions
in a natural way. This yields large systems of stiff ODEs. These semidiscrete
systems are subsequently solved by applying the Hundsdorfer–Verwer scheme
(3.2.6). Since we consider two-dimensional PDEs, this can yield a large com-
putational advantage in comparison with standard (non-split) implicit time
stepping methods. Finally, for the calibration of the SLV model to the LV
model, an inner iteration similar to that in Section 7.7 is introduced in order
to handle the non-linearity from inserting (8.1.4) into (8.1.5).

The chapter is organised as follows. In Section 8.2 a FV discretization is
introduced for the spatial discretization of general one-dimensional and two-
dimensional forward Kolmogorov equations. The performance of the FV spatial
discretization is illustrated by ample numerical experiments. Semidiscretiza-
tion results in a large system of ODEs. In Section 8.3 the HV scheme is applied
to increase the computational efficiency in the numerical solution of this ODE
system. In Section 8.4 the FV discretization is used for the calibration of SLV
models, yielding a large non-linear system of ODEs. The HV scheme is ap-
plied for the temporal discretization of this system of ODEs and an iteration
procedure is described for handling the non-linearity. In Section 8.5 numer-
ical experiments are presented to illustrate the performance of the obtained
calibration procedure and the final Section 8.7 concludes.

8.2. FV Discretization of Forward Kolmogorov Equations

In the general MOL approach the PDE is first discretized in the spatial variables
by for example FD or FV methods. In this section a spatial discretization is
proposed for a general two-dimensional forward Kolmogorov equation of the
type

∂
∂τ p+ ∂

∂x (µ1p)+ ∂
∂y (µ2p) = ∂2

∂x2

(
1
2σ

2
1p
)
+ ∂2

∂x∂y (ρσ1σ2p)+ ∂2

∂y2

(
1
2σ

2
2p
)
, (8.2.1)

with x, y ∈ R, τ > 0, and where σ1, σ2, µ1, µ2 are real coefficient functions
of x, y, τ . Moreover, the functions σ1, σ2 are required to be non-negative and
it is assumed that there exist values X0, Y0 such that the initial function is
given by p(x, y, 0) = δ(x − X0)δ(y − Y0). Due to the form of the coefficients
it is possible that the spatial domain is naturally restricted. For example, if
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µ2(x, y, τ) = κ(η − y) and σ2(x, y, τ) = ξyα with κ, η, ξ, α strictly positive
constants, then the domain in the y-direction is naturally restricted to y ≥ 0,
cf. PDE (8.1.5).

Since the solution of forward Kolmogorov equations represents the density
of an underlying stochastic process, conservation of mass is a fundamental
property and the use of FV schemes is appropriate. While FD methods are
well-known in finance, FV methods are less common in financial applications
and we briefly recall the basic idea.

8.2.1. Introduction to Finite Volume Discretizations

Finite volume methods were originally developed to solve conservation laws, or
more generally to solve PDEs in conservative form. For example, consider the
one-dimensional conservative PDE

∂
∂τ p+ ∂

∂x (a(p, x, τ)p) = ∂
∂x

(
b(p, x, τ) ∂

∂xp
)
, (8.2.2)

for x ∈ Ω, τ > 0, where Ω is an interval in R. Both sides of equation (8.2.2)
can be integrated in x over an interval (more generally, a cell) [xl, xu] in order
to get

∂
∂τ

∫ xu

xl

pdx = f(p, xl, τ)− f(p, xu, τ), (8.2.3)

where f(p, x, τ) is a function given by

f(p, x, τ) = a(p, x, τ)p− b(p, x, τ) ∂
∂xp.

The function f is typically called the flux of p and f(p, x, τ)|x=xl , respec-
tively f(p, x, τ)|x=xu , represents the flux at the left, respectively right, bound-
ary of the cell [xl, xu]. Relationship (8.2.3) shows that the total integral
of p, which typically represents a mass, momentum or some similar quan-
tity, changes only as a result of the flux difference over the cell. If equation
(8.2.2) is considered over a bounded domain [xmin, xmax] and we assume that
f(p, xmin, τ) = f(p, xmax, τ) for all τ , i.e. the flux at the left boundary is ex-
actly matched by the flux at the right boundary, then the space integral of
p over [xmin, xmax] is constant in time. This means that the total mass or
momentum is conserved. If the spatial domain Ω of the PDE is unbounded,
and if the interval [xmin, xmax] is wide enough, then one will often have that
f(p, xmin, τ) ≈ f(p, xmax, τ) ≈ 0 for all τ > 0.

To construct a numerical FV scheme we start with a discretization of the
spatial domain. If the spatial domain is unbounded, it needs to be truncated
to a wide, finite interval [xmin, xmax]. Then, consider the discretization

xmin = x1 < x2 < · · · < xm = xmax,

of the domain of interest and denote

∆xj = xj − xj−1, for 2 ≤ j ≤ m,

and ∆x1 = ∆xm+1 = 0. Define mid-points

xj−0.5 = xj − 1
2∆xj =

xj−1+xj
2 , for 2 ≤ j ≤ m,
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and let Ωj = [xj−0.5, xj+0.5] be cells for j = 1, 2, . . . ,m where we additionally
define x0.5 := x1 and xm+0.5 := xm. This yields a vertex centred grid with cell
vertices xj−0.5. We can now consider the cell average pj(τ) which is defined by

pj(τ) =
1

xj+0.5 − xj−0.5

∫
Ωj

p(x, τ)dx,

and which is typically the quantity that FV schemes approximate. If we assume
that the grid is smooth in the sense of (2.2.1), then the cell average pj(τ) is
a second order approximation to p(xj , τ). Differentiating pj(τ) in τ and using
(8.2.3) gives

p′j(τ) =
f(p, xj−0.5, τ)− f(p, xj+0.5, τ)

xj+0.5 − xj−0.5
(8.2.4)

which is just another way of stating the conservation property since if we sum
over all cells and pull out the derivative in time we find that

∂
∂τ

m∑
j=1

pj(τ)(xj+0.5 − xj−0.5) = 0,

provided f(p, xmin, τ) = f(p, xmax, τ).
Equation (8.2.4) is typically taken as the starting point for the numerical

discretization. Denote by

Pj(τ) ≈ pj(τ), for 1 ≤ j ≤ m,

the numerical approximations for the cell averages and let P be the vector that
contains these approximations. The numerical discretization is then defined by

P ′j(τ) =
fj−0.5(P,τ)−fj+0.5(P,τ)

xj+0.5−xj−0.5
= [f j−0.5(P, τ)− f j+0.5(P, τ)] 2

∆xj+∆xj+1
,

(8.2.5)
where the f j±0.5 are numerical fluxes that form approximations to the exact
fluxes f(p, xj±0.5, τ). By defining a discretization of the type (8.2.5), it readily
follows that the total numerical integral (mass)

m1∑
j=1

Pj(τ)(xj+0.5 − xj−0.5) (8.2.6)

stays constant in time provided that f0.5(P, τ) = fm+0.5(P, τ). It is clear
that the exact fluxes from (8.2.4) involve the unknown function p at the cell
boundaries xi±0.5. Therefore, we define the numerical fluxes by

f j±0.5(P, τ) = a(Pj±0.5, xj±0.5, τ)Pj±0.5 − b(Pj±0.5, xj±0.5, τ)Px,j±0.5, (8.2.7)

where the Pj±0.5(τ) form approximations to the exact values p(xj±0.5, τ) and
the Px,j±0.5(τ) form approximations to ∂

∂xp(x, τ)|x=xj±0.5 . Since the cell aver-
age is a second order approximation to p, the approximations Pj can be used
to define Pj±0.5 and Px,j±0.5. The manner in which the latter values are com-
puted at the cell boundaries from the surrounding Pj plays a large part in
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defining the characteristics of the numerical scheme. Lastly, inserting (8.2.7)
into (8.2.5) yields a system of (possibly non-linear) ODEs which is solved with
a suitable time integration procedure.

Recall that conservation of mass is a fundamental property of forward Kol-
mogorov equations and the use of FV schemes is appropriate. Forward equa-
tions of the type (8.2.1) are, however, not in conservative form and hence
straightforward application of standard FV schemes is not possible. Moreover,
rewriting PDE (8.2.1) in conservative form would involve derivatives of the
coefficient functions, which are not known in general practical applications. In
the remainder of this section, a FV-based discretization of the spatial deriva-
tives in the non-transformed PDE (8.2.1) is introduced such that conservation
of total mass is guaranteed. We start by explaining the discretization for a
general one-dimensional forward Kolmogorov equation, and then generalise it
to the two-dimensional case.

8.2.2. One-Dimensional Forward Kolmogorov Equations

Standard one-dimensional forward Kolmogorov equations are also not writ-
ten in conservative form and their solutions represent density functions of un-
derlying stochastic processes. In this subsection a FV-based discretization is
introduced for the general one-dimensional equation

∂
∂τ p+ ∂

∂x (µp) = ∂2

∂x2

(
1
2σ

2p
)
, (8.2.8)

for x ∈ R, τ > 0, where σ, µ are real functions of x and τ , with σ non-negative
and with initial function given by p(x, 0) = δ(x−X0) for some real X0. Spatial
discretization by FD or FV methods is often applied on a finite grid. By
consequence, the spatial domain has to be truncated to [xmin, xmax], where the
boundaries are chosen sufficiently far away from X0 such that the truncation
error is negligible. Recall that the form of σ, µ can naturally restrict the spatial
domain of the PDE to for example x ≥ 0. In the latter case, the lower boundary
is naturally defined as xmin = 0.

As before, define a spatial mesh xmin = x1 < x2 < . . . < xm = xmax, let
∆xj = xj − xj−1 be the mesh widths, with ∆x1 = ∆xm+1 = 0, and define

xj−0.5 = xj − 1
2∆xj =

xj−1+xj
2 for 2 ≤ j ≤ m,

with x0.5 = x1 and xm+0.5 = xm. This yields a vertex centred grid with cells
Ωj = [xj−0.5, xj+0.5]. Let the Pj(τ) denote approximations to the exact cell
averages

pj(τ) =
1

xj+0.5 − xj−0.5

∫
Ωj

p(x, τ)dx,

and let P be the vector containing these approximations. Analogously to the
previous section (see equations (8.2.4) and (8.2.5), as well as [35]) we define
discretizations of the form

P ′j(τ) = [f j−0.5(P, τ)− f j+0.5(P, τ)] 2
∆xj+∆xj+1

(8.2.9)
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where the numerical fluxes are given by

f j±0.5(P, τ) = fa,j±0.5(P, τ) + fd,j±0.5(P, τ),

with
fa,j±0.5(P, τ) ≈ µ(xj±0.5, τ)p(xj±0.5, τ), (8.2.10)

and
fd,j±0.5(P, τ) ≈ − ∂

∂x

(
1
2σ

2(x, τ)p(x, τ)
)
|x=xj±0.5

. (8.2.11)

For the ease of presentation, from now on we omit the dependence of the
parameters on τ and set µj±0.5 = µ(xj±0.5, τ) and σj = σ(xj , τ). Note that
f0,5(P, τ), respectively fm+0.5(P, τ), corresponds with the flux at the boundary
xmin = x1, respectively xmax = xm.

The convection part of the PDE (8.2.8) is written in conservative form. For
the inner cell boundaries, i.e. for xj−0.5 with 2 ≤ j ≤ m, we consider the second
order central FV scheme, cf. [35], and define fa,j−0.5(P, τ) in (8.2.10) as

fa,j−0.5(P, τ) = µj−0.5
Pj−1(τ)+Pj(τ)

2 .

The diffusion part is not written in conservative form and hence it is not possi-
ble to apply standard FV schemes to this term directly. The idea of the second
order FV scheme for (8.2.11), see e.g. [35], is generalised by defining

fd,j−0.5(P, τ) = −
(

1
2σ

2
jPj(τ)− 1

2σ
2
j−1Pj−1(τ)

)
1

∆xj

for 2 ≤ j ≤ m. It is readily seen that(
1
2σ

2
j p(xj , τ)− 1

2σ
2
j−1p(xj−1, τ)

)
1

∆xj

is a second order approximation of ∂
∂x ( 1

2σ
2p) at the point xj−0.5 which explains

the choice for this discretization. Inserting these expressions back into (8.2.9)
we get

P ′j(τ) =
σ2
j−1Pj−1(τ)

∆xj(∆xj+∆xj+1) −
σ2
jPj(τ)

∆xj∆xj+1
+

σ2
j+1Pj+1(τ)

∆xj+1(∆xj+∆xj+1) (8.2.12)

+
[
µj−0.5

Pj−1(τ)+Pj(τ)
2 − µj+0.5

Pj(τ)+Pj+1(τ)
2

]
2

∆xj+∆xj+1
,

for 2 ≤ j ≤ m− 1. Note that by applying the second order central FD scheme

for diffusion on non-uniform spatial grids, cf. Chapter 2, on the term ∂2

∂x2 ( 1
2σ

2p),
one would end up with the same discretization for the diffusion term.

To complete this semidiscretization, it also has to be defined at the bound-
aries of the truncated domain such that conservation of the total mass is guar-
anteed. Given that p represents a density function, it follows that∫ ∞

−∞
p(x, τ)dx = 1, ∀τ > 0,

and hence ∫ ∞
−∞

[
∂
∂τ p
]
dx =

∫ ∞
−∞

[
1
2
∂2

∂x2

(
σ2p
)
− ∂

∂x (µp)
]
dx = 0.
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Assuming that [xmin, xmax] is chosen sufficiently wide, the condition above can
be approximated by [

∂
∂x

(
1
2σ

2p
)
− (µp)

]∣∣x=xmax

x=xmin
= 0,

reflecting the fact that the total flux over the interval [xmin, xmax] is zero.
As stated above, for some choices of coefficient functions the spatial domain is
naturally restricted. For example, if the PDE (8.2.8) stems from a non-negative
process, xmin can be set equal to zero. The no-flux boundary condition above
then still holds on the naturally restricted domain.

In theory it is possible that there is a positive flux at one of the boundaries,
and exactly the same negative flux at the other boundary. However, since the
solution represents a density function, it is more realistic to impose that no
mass is coming in or going out at each of the boundaries. In light of this, we
assume that the following boundary conditions hold:[

∂
∂x

(
1
2σ

2p
)
− (µp)

]∣∣
x=xmin

= 0, (8.2.13)[
∂
∂x

(
1
2σ

2p
)
− (µp)

]∣∣
x=xmax

= 0.

The numerical equivalent of the first condition is to say that the flux at the
left boundary x1 = xmin is zero, i.e. f1(P, τ) ≡ f0.5(P, τ) = 0. This can be
achieved by creating a ghost point x0 = x1 −∆x2 and using (8.2.13) to define
the value of 1

2σ
2
0P0(τ) at the ghost point by

1
2σ

2
2P2(τ)− 1

2σ
2
0P0(τ)

2∆x2
− µ1P1(τ) = 0,

where we make use of the fact that the cell averages form second order approx-
imations to the point values. Turning to (8.2.11) we define the diffusive flux
fd,0.5 at x1 as

fd,0.5(P, τ) = −
1
2σ

2
2P2(τ)− 1

2σ
2
0P0(τ)

2∆x2
= −µ1P1(τ).

Since x1 is the left boundary of the first cell, the flux on the boundary xmin

stemming from the convection part, see (8.2.10), can be approximated by the
term fa,0.5 = µ1P1(τ). Inserting these expressions into (8.2.9) we obtain

P ′1(τ) = −f1.5(P, τ) 2
∆x1+∆x2

= −f1.5(P, τ) 2
∆x2

. (8.2.14)

The boundary condition at xmax can be handled analogously in order to get

P ′m(τ) = fm−0.5(P, τ) 2
∆xm

. (8.2.15)

By performing the discretization of the boundary conditions in this way, it
follows that f0.5(P, τ) = fm+0.5(P, τ) and we ensure that mass is conserved in
the numerical scheme.

Combining (8.2.12), (8.2.14) and (8.2.15) we see that the total discretization
can be written as a system of ODEs

P ′(τ) = A(τ)P (τ) (8.2.16)
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for τ > 0, with given matrix A(τ). Since the Pj(τ) represent cell averages it is
natural to define the initial vector as

Pj(0) =

{
2

∆xj+∆xj+1
if X0 ∈ [xj−0.5, xj+0.5],

0 otherwise.

In general, the exact solution of the system of ODEs (8.2.16) can not be com-
puted analytically and one relies on numerical methods in order to approximate
it. Since the discretization above often leads to stiff semidiscrete systems, suit-
able implicit time stepping schemes such as the Crank–Nicolson scheme are
widely considered, see e.g. [65].

8.2.3. Numerical Experiments for One-Dimensional Forward
Kolmogorov Equations

In this subsection the performance of the FV discretization is tested by con-
sidering two practical examples. As a first example, consider the SDE

dSτ = (rd − rf )Sτdτ + σBSSτdWτ ,

with σBS > 0, corresponding to the classical Black–Scholes model [6]. Then,
the underlying density is known exactly and given by

p(s, τ) =
1

σBS
√
τ
φ

(
log(s/S0)− (rd − rf − 1

2σ
2
BS)τ

σBS
√
τ

)
1

s
, for s > 0, τ > 0,

(8.2.17)
where φ(x) is the density function of a standard normally distributed random
variable. The density function p(s, τ) from (8.2.17) satisfies the PDE

∂
∂τ p = ∂2

∂s2

(
1
2σ

2
BSs

2p
)
− ∂

∂s ((rd − rf )sp) ,

for s, τ > 0, with p(s, 0) = δ(s − S0). This PDE is of the form (8.2.8) with a
natural restriction of the spatial domain. Note that for the numerical experi-
ment we don’t apply the log-transformation from Section 8.1 in order to have
non-constant coefficients which makes the problem more challenging.

Firstly, the spatial domain is truncated to [smin, smax] = [0, 30S0] and we
construct a non-uniform grid smin = s1 < s2 < · · · < sm = smax as described
in Subsection 2.2.1. In Figure 8.1 the spatial grid is shown for the sample
values S0 = 100,m = 50 and from s = 0 to s = 5S0 to illustrate the smaller
mesh widths around the point s = S0. Applying the FV discretization from
Subsection 8.2.2 then yields approximations Pj(τ) of the exact values p(sj , τ).

When trying to determine the performance of a numerical method with
respect to a reference solution, it is important to take note of the compu-
tational environment in which values are calculated, and to understand the
impact that has on the comparison. Our calculations take place in 64 bit IEEE
floating point arithmetic. Since the solution of forward Kolmogorov equations
represents a probability density function, the magnitude of the solution varies
dramatically over the computational domain. This is especially true of the ini-
tial condition (a Dirac delta), and also more generally with naturally bounded
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s
0 100 200 300 400 500

Figure 8.1: Illustration of the non-uniform grid around s = S0 for the Black–Scholes
example and the actual values S0 = 100,m = 50.

stochastic processes with an attainable boundary, cf. the SLV model (8.1.1)
with 0 < α ≤ 1/2. Since IEEE floating point has a fixed-length mantissa, the
density function cannot be represented to a high absolute accuracy uniformly
over the domain. In areas where the density function is large, only high rel-
ative accuracy (correct number of digits) can be achieved. In addition, since
the numerical solution is obtained by using implicit time stepping, we should
not expect high relative accuracy of the numerical density in regions where the
exact solution is small. This is because when solving the linear systems we
combine many terms with very different magnitudes and then sum them up,
which in IEEE arithmetic will lead to a loss of relative accuracy. Therefore
when comparing the numerical solution and the reference solution we adopt a
mixed absolute-relative error metric: we use relative error when the reference
solution is larger than 1, absolute error if the reference solution is less than 1,
and we take the maximal error value over the whole domain. More precisely,
let

εj(m) =


∣∣∣p(sj ,T )−Pj(T )

p(sj ,T )

∣∣∣ if p(sj , T ) > 1,

|p(sj , T )− Pj(T )| else.

The total mixed spatial error is then defined by

ε(m) = max
1≤j≤m

εj(m).

The value of 1 is somewhat arbitrary. The results, however, are not that sensi-
tive to the crossover value as long as it is not too small. For the actual experi-
ments, the values Pj(T ) are approximated by applying the Crank–Nicolson time
stepping scheme with a large number of steps such that the temporal discretiza-
tion error is negligible. In the left plot of Figure 8.2 the total mixed spatial error
is shown for the relevant situation where rd = 0.03, rf = 0.01, σBS = 0.2, T = 1
and for the number of spatial grid points m = {50, 100, . . . , 1000}. The corre-
sponding numerical solution form = 200 is shown in the right plot of Figure 8.2.
The convergence plot clearly indicates that the FV discretization is second or-
der convergent with respect to the current initial-boundary value problem.

As a second example we consider the Cox–Ingersoll–Ross (CIR) process,
cf. [9],

dVτ = κ(η − Vτ )dτ + ξ
√
VτdWτ ,

where κ, η, ξ are strictly positive parameters. The corresponding density func-
tion is given by, see e.g. [9],

p(v, τ) = ce−u0−u1(u1

u0
)f/2If(2

√
u0u1), (8.2.18)
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Figure 8.2: Convergence results within the 1D Black–Scholes model. The parameter
values are rd = 0.03, rf = 0.01, σBS = 0.2, T = 1.

where

c = 2κ
ξ2(1−e−κτ ) , u0 = cV0e

−κτ , u1 = cv, f = 2κη
ξ2 − 1,

and If(·) is the modified Bessel function of the first kind of order f. Note that
the value of f is directly related with the so-called Feller condition, i.e. with
the possibility that Vτ = 0 is attainable, cf. Chapter 7. The density function
(8.2.18) satisfies the forward Kolmogorov equation

∂
∂τ p = ∂2

∂v2

(
1
2ξ

2vp
)
− ∂

∂v (κ(η − v)p) , (8.2.19)

for v, τ > 0, with p(v, 0) = δ(v − V0). It is readily seen that if the Feller
condition is violated, i.e. if f < 0, then the density from (8.2.18) is not defined
at v = 0 and the density function tends to infinity as v tends to zero. In
addition, around v = 0 the PDE (8.2.19) is strongly convection dominated
which is very challenging for numerical discretization methods.

The domain is truncated to [vmin, vmax] = [0, 15] and we construct a non-
uniform grid 0 = v1 < v2 < · · · < vm = vmax of the type (2.2.3). The spatial
grid is shown in Figure 8.3 for the values V0 = 0.0625,m = 50 and from v = 0
to v = 0.2 to illustrate the smaller mesh widths around v = 0 and v = V0.
Afterwards the FV discretization is applied which leads to approximations
Pk(T ), (1 ≤ k ≤ m). Recall that if f < 0, then the density function tends to
infinity as v tends to zero and at v = 0 the exact density function is not defined.
By increasing the number of spatial grid points m, the value of the second grid
point v2 tends to zero and adequately comparing the difference between p(v2, T )
and P2(T ) becomes difficult. In view of this, we opt to compute the error on
similar spatial domains. Let vlow be the smallest non-zero grid point, i.e. the
point v2, if the total number of spatial grid points m is 50. We then define the
total mixed spatial error by

max
k1≤k≤m

εk(m),
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where, for given m, k1 is the lowest index such that vk1 ≥ vlow and

εk(m) =


∣∣∣p(vk,T )−Pk(T )

p(vk,T )

∣∣∣ if p(vk, T ) > 1,

|p(vk, T )− Pk(T )| else.

The approximations Pk(T ) are determined by considering a large number of
time steps with the Crank–Nicolson scheme such that the temporal discretiza-
tion error is negligible. Please note that the choice m = 50 for defining vlow
is not crucial. The conclusions of the numerical experiments are essentially
unchanged as long as vlow is defined via one of the coarsest grids considered in
the experiment.

v
0 0.1 0.2

Figure 8.3: Illustration of the non-uniform grid around v = 0 and v = V0 for the CIR
example and the actual values V0 = 0.0625,m = 50.

For the actual experiment we consider two sets of parameters:

κ η ξ V0 T f
Set A 5 0.16 0.9 0.0625 0.25 0.98
Set B 1.15 0.0348 0.39 0.0348 0.25 −0.47

Table 8.1: Parameter sets for the CIR example.

These sets are taken from [19] and were also used in [60]. For Set A we have
f = 0.98 and the variance process remains strictly positive. For Set B we
have f = −0.47 and Vτ = 0 is attainable. In the left plot of Figure 8.4,
respectively Figure 8.5, the total mixed spatial error is shown for the param-
eters of Set A, respectively Set B, and for the number of spatial grid points
m = {50, 100, . . . , 1000}. In the right plots, the corresponding numerical so-
lutions are shown for m = 200. The convergence plots indicate that the FV
discretization is convergent with respect to the current initial-boundary value
problems. Additional experiments suggest that FV discretization is second
order convergent if the Feller condition is satisfied. If f < 0 the order of con-
vergence can drop to one. In addition, all the experiments confirm that the
total numerical mass (8.2.6) stays constantly equal to one, even if the Feller
condition is strongly violated.

8.2.4. Two-Dimensional Forward Kolmogorov Equations

In this subsection, the FV discretization from the one-dimensional case is
used to define a spatial discretization for the general two-dimensional for-
ward Kolmogorov equation (8.2.1). Suppose the spatial domain is truncated
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Figure 8.4: Convergence results within the CIR model. The parameters are given by
Set A.
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Figure 8.5: Convergence results within the CIR model. The parameters are given by
Set B.

to [xmin, xmax] × [ymin, ymax], and the spatial grid points in the x-direction,
respectively y-direction, are given by

xmin = x1 < x2 < . . . < xm1
= xmax,

respectively
ymin = y1 < y2 < . . . < ym2

= ymax.

Let ∆xj = xj − xj−1 and ∆yk = yk − yk−1 be the spatial mesh widths, where
∆x1 = ∆xm1+1 = ∆y1 = ∆ym2+1 = 0, and define volumes

Ωj,k := [xj−0.5, xj+0.5]× [yk−0.5, yk+0.5],

where xi±0.5, respectively yk±0.5, are defined analogously as in the one-dimen-
sional case.

We can now consider the two-dimensional equivalent of the cell averages,
volume averages, pj,k(τ) which are defined by

pj,k(τ) =
1

|Ωj,k|

∫
Ωj,k

p(x, y, τ)dxdy,
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with |Ωj,k| = (xj+0.5 − xj−0.5)(yk+0.5 − yk−0.5) the area of the corresponding
volume. The volume average pj,k(τ) is again a second order approximation
to p(xj , yk, τ), provided that the underlying meshes are smooth, and is the
quantity that is approximated by the FV discretization. It is readily verified
that

|Ωj,k|
∂

∂τ
pj,k(τ) =

∫ yk+0.5

yk−0.5

[ ∂∂x
(

1
2σ

2
1p
)
− µ1p]|x=xj+0.5

x=xj−0.5
dy (8.2.20a)

+

∫ xj+0.5

xj−0.5

[ ∂∂y
(

1
2σ

2
2p
)
− µ2p]|y=yk+0.5

y=yk−0.5
dx (8.2.20b)

+
[

[ρσ1σ2p]|x=xj+0.5

x=xj−0.5

]∣∣∣y=yk+0.5

y=yk−0.5

(8.2.20c)

and the two-dimensional discretization is based on the approximation

|Ωj,k|
∂

∂τ
pj,k(τ) ≈

[ [
∂
∂x

(
1
2σ

2
1p
)
− µ1p

]∣∣x=xj+0.5

x=xj−0.5

]∣∣∣∣
y=yk

∆yk + ∆yk+1

2

(8.2.21a)

+

[ [
∂
∂y

(
1
2σ

2
2p
)
− µ2p

]∣∣∣y=yk+0.5

y=yk−0.5

]∣∣∣∣
x=xj

∆xj + ∆xj+1

2

(8.2.21b)

+
[

[ρσ1σ2p]|x=xj+0.5

x=xj−0.5

]∣∣∣y=yk+0.5

y=yk−0.5

. (8.2.21c)

Equation (8.2.20) includes several flux terms that are similar to the flux terms
in Subsections 8.2.1 and 8.2.2. It reflects the fact that the total integral of p
over a volume changes only as a result of the flux difference over the volume
boundary. This is completely analogous with the one-dimensional interpreta-
tion of (8.2.3). If the total flux over the boundary of the spatial domain is zero,
i.e. if

0 =

∫ ymax

ymin

[
∂
∂x

(
1
2σ

2
1p
)
− µ1p

]∣∣x=xmax

x=xmin
dy

+

∫ xmax

xmin

[
∂
∂y

(
1
2σ

2
2p
)
− µ2p

]∣∣∣y=ymax

y=ymin

dx

+
[
[ρσ1σ2p]|x=xmax

x=xmin

]∣∣y=ymax

y=ymin
,

then the total integral of p over the entire domain is constant in time.
Let P j,k(τ) denote approximations to the exact value pj,k(τ), denote by

P (τ) the m1 ×m2 matrix with entries P j,k(τ) and let

P (τ) = vec[P (τ)],

where vec[·] again denotes the operator that turns any given matrix into a vec-
tor by putting its successive columns below each other. The bold notation is
only introduced to indicate the subtle difference between the matrix form and
the vectorised form of the approximations. Similarly to the one-dimensional
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discretization in Subsections 8.2.1 and 8.2.2, we discretize (8.2.21) in the fol-
lowing way by introducing numerical fluxes

P ′j,k(τ) =
[
f j−0.5,k(P, τ)− f j+0.5,k(P, τ)

]
2

∆xj+∆xj+1
(8.2.22a)

+
[
f j,k−0.5(P, τ)− f j,k+0.5(P, τ)

]
2

∆yk+∆yk+1
(8.2.22b)

+

1∑
j1,k1=0

(−1)j1+k1fm,j−0.5+j1,k−0.5+k1
2

∆xj+∆xj+1

2
∆yk+∆yk+1

,

(8.2.22c)

for 1 ≤ j ≤ m1, 1 ≤ k ≤ m2. For the ease of presentation, denote

µ1,j±0.5,k = µ1(xj±0.5, yk, τ), σ1,j,k = σ1(xj , yk, τ),
µ2,j,k±0.5 = µ2(xj , yk±0.5, τ), σ2,j,k = σ2(xj , yk, τ),
σ1,j±0.5,k±0.5 = σ1(xj±0.5, yk±0.5, τ), σ2,j±0.5,k±0.5 = σ2(xj±0.5, yk±0.5, τ).

Since the actual form of the fluxes in (8.2.21) is completely similar to the form
of the fluxes in Subsection 8.2.4, we define the numerical fluxes by

f j±0.5,k(P, τ) = fa,j±0.5,k(P, τ) + fd,j±0.5,k(P, τ),

with

fa,j−0.5,k(P, τ) = µ1,j−0.5,k
P j−1,k(τ)+P j,k(τ)

2 ≈ µ1,j−0.5,kp(xj−0.5, yk, τ),

and

fd,j−0.5,k(P, τ) =
1
2σ

2
1,j−1,kP j−1,k(τ)− 1

2σ
2
1,j,kP j,k(τ)

∆xj

≈ − ∂
∂x

(
1
2σ

2
1(x, yk, τ)p(x, yk, τ)

)
|x=xj−0.5

,

for 2 ≤ j ≤ m1, 1 ≤ k ≤ m2. Moreover

f j,k±0.5(P, τ) = fa,j,k±0.5(P, τ) + fd,j,k±0.5(P, τ),

where

fa,j,k−0.5(P, τ) = µ2,j,k−0.5
P j,k−1(τ)+P j,k(τ)

2 ≈ µ2,j,k−0.5p(xj , yk−0.5, τ),

and

fd,j,k−0.5(P, τ) =
1
2σ

2
2,j,k−1P j,k−1(τ)− 1

2σ
2
2,j,kP j,k(τ)

∆yk

≈ − ∂
∂y

(
1
2σ

2
2(xj , y, τ)p(xj , y, τ)

)
|y=yk−0.5

,

for 1 ≤ j ≤ m1, 2 ≤ k ≤ m2 Finally, for the mixed spatial derivative we define

fm,j−0.5,k−0.5(P, τ) = ρσ1,j−0.5,k−0.5σ2,j−0.5,k−0.5

× P j−1,k−1(τ)+P j−1,k(τ)+P j,k−1(τ)+P j,k(τ)
4

≈ ρσ1,j−0.5,k−0.5σ2,j−0.5,k−0.5p(xj−0.5, yk−0.5, τ),
(8.2.23)
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for 1 ≤ j ≤ m1 + 1, 1 ≤ k ≤ m2 + 1, where it is assumed that

P 0,k(τ) := P 1,k(τ), Pm1+1,k(τ) := Pm1,k(τ),

P j,0(τ) := P j,1(τ), P j,m2+1(τ) := P j,m2
(τ),

(8.2.24)

such that the general formula is naturally extended at the boundaries of the
spatial domain. The numerical flux term (8.2.23) can be viewed as the result
of applying the discretization for the convection part first in the x-direction
and then in the y-direction.

The semidiscretization is completed by defining boundary conditions and
discretizations at the boundaries of the truncated domain. Since p is again a
density function, it follows that∫ ∞

−∞

∫ ∞
−∞

[
∂
∂τ p
]
dxdy = 0.

Inserting the right-hand side of the PDE (8.2.1), this can be rewritten as

0 =

∫ ∞
−∞

(∫ ∞
−∞

[
∂2

∂x2

(
1
2σ

2
1p
)
− ∂

∂x (µ1p)
]
dx

)
dy

+

∫ ∞
−∞

(∫ ∞
−∞

[
∂2

∂y2

(
1
2σ

2
2p
)
− ∂

∂y (µ2p)
]
dy

)
dx

+

∫ ∞
−∞

∫ ∞
−∞

∂2

∂x∂y (ρσ1σ2p) dxdy.

Analogously to the one-dimensional case it is assumed that the boundaries
are chosen sufficiently far away from the spot value (X0, Y0) or that they are
defined by a natural truncation of the spatial domain. The condition above is
then approximated by

0 =

∫ ymax

ymin

[
∂
∂x

(
1
2σ

2
1p
)
− µ1p

]∣∣x=xmax

x=xmin
dy

+

∫ xmax

xmin

[
∂
∂y

(
1
2σ

2
2p
)
− µ2p

]∣∣∣y=ymax

y=ymin

dx

+

∫ ymax

ymin

∫ xmax

xmin

∂2

∂x∂y (ρσ1σ2p) dxdy. (8.2.25)

Note that by assuming that

ρσ1σ2p|x=xmin,y=ymin
= ρσ1σ2p|x=xmin,y=ymax

= 0,

ρσ1σ2p|x=xmax,y=ymin
= ρσ1σ2p|x=xmax,y=ymax

= 0,
(8.2.26)

the last integral, corresponding to the mixed derivative term, is always equal
to zero. Next, we generalise the idea that there are no fluxes at the boundaries,
i.e. that no mass is coming in or going out at the boundaries. In light of this
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it is assumed that the following boundary conditions hold:[
∂
∂x

(
1
2σ

2
1p
)
− (µ1p)

]∣∣
x=xmin

= 0, for ymin ≤ y ≤ ymax,[
∂
∂x

(
1
2σ

2
1p
)
− (µ1p)

]∣∣
x=xmax

= 0, for ymin ≤ y ≤ ymax,[
∂
∂y

(
1
2σ

2
2p
)
− (µ2p)

]∣∣∣
y=ymin

= 0, for xmin ≤ x ≤ xmax,[
∂
∂y

(
1
2σ

2
2p
)
− (µ2p)

]∣∣∣
y=ymax

= 0, for xmin ≤ x ≤ xmax.

By combining these boundary conditions with the assumption (8.2.26) it follows
that condition (8.2.25) is satisfied.

For the discretization of the one-dimensional fluxes in (8.2.21a), respectively
(8.2.21b), at the boundaries of the truncated domain, the approach from the
one-dimensional case is generalised. By using a similar discretization of the
boundary conditions, one ends up with numerical fluxes which are zero at the
boundaries, i.e. with

f0.5,k(P, τ) = fm1+0.5,k(P, τ) = f j,0.5(P, τ) = f j,m2+0.5(P, τ) = 0,

for 1 ≤ j ≤ m1, 1 ≤ k ≤ m2. The fluxes stemming from the mixed deriva-
tive term, see (8.2.21c), are discretized at the boundaries by using (8.2.23) in
combination with (8.2.24). It is readily verified that if

0 = ρσ1,1,1σ2,1,1P 1,1(τ) = ρσ1,1,m2σ2,1,m2P 1,m2(τ)

= ρσ1,m1,1σ2,m1,1Pm1,1(τ) = ρσ1,m1,m2σ2,m1,m2Pm1,m2(τ),

which is the semidiscrete version of (8.2.26), then the total numerical flux over
the boundary of the spatial domain is equal to zero and the total numerical
mass is kept constant in time, i.e.

m1∑
j=1

m2∑
k=1

P j,k(τ)|Ωj,k| = constant, for τ ≥ 0.

As stated above, some processes are naturally bounded, e.g. the general
variance process from Section 8.1 can never become negative. Suppose for
example that the process corresponding to the y-variable in the PDE (8.2.1)
is bounded from below. Then, ymin is naturally taken equal to this lower
boundary. Moreover, it can happen that this lower boundary is attainable (cf.
the variance process from Section 8.1 with α < 1/2) and probability mass can
stack up at this boundary. This can cause instabilities in the approximation
of the mixed derivative term near this boundary. In order to deal with this, if
for example the boundary ymin is attainable, the central FV scheme in the y-
direction for the “mixed derivative fluxes” (8.2.21c) at ymin+ 1

2∆y2 are replaced
by a first-order forward scheme. More precisely, the fm,j±0.5,1.5(P, τ) from
above are then replaced by

fm,j−0.5,1.5(P, τ) = ρσ1,j−0.5,1.5σ2,j−0.5,1.5
P j−1,2(τ)+P j,2(τ)

2 ,

for 1 ≤ j ≤ m1 + 1, where

P 0,2(τ) := P 1,2(τ), Pm1+1,2(τ) := Pm1,2(τ).
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The total spatial discretization (8.2.22) yields a large system of differential
equations. By making use of a well-known property of the Kronecker product,
this system of differential equations can be written as a system of ODEs

P ′(τ) = A(τ)P (τ), (8.2.27)

for τ > 0 and with given matrix A(τ). Analogously to the one-dimensional
case, since the values P j,k(τ) can be seen as approximations of the cell averages
p(xj , yk, τ), it is natural to define the initial vector as P (0) = vec[P (0)] where

P j,k(0) =


1

|Ωj,k| if (X0, V0) ∈ Ωj,k,

0 else.

Note that the matrix A can be split as

A = A0 +A1 +A2, (8.2.28)

where A1, respectively A2, represents the discretization of the spatial deriva-
tives in the first, respectively second, spatial dimension. The matrix A0 rep-
resents the discretization of the mixed spatial derivative term in (8.2.1). Due
to this decomposition, the four ADI schemes from Section 3.2 can easily be
applied for the temporal discretization of the semidiscrete system (8.2.27).

8.2.5. Numerical Experiments for Two-Dimensional Forward
Kolmogorov Equations

In this section the performance of the two-dimensional FV discretization is
tested for two practical examples. For the first experiment we consider the
two-dimensional Black–Scholes model which can be described by the system of
SDEs  dS1,τ = rS1,τdτ + σ1,BSS1,τdW

(1)
τ ,

dS2,τ = rS2,τdτ + σ2,BSS2,τdW
(2)
τ ,

with dW
(1)
τ · dW (2)

τ = ρdτ , −1 ≤ ρ ≤ 1 and r, σ1,BS , σ2,BS strictly positive
constants. The corresponding forward Kolmogorov equation is given by

∂
∂τ p = ∂2

∂s21

(
1
2σ

2
1,BSs

2
1p
)

+ ∂2

∂s1∂s2
(ρσ1,BSσ2,BSs1s2p) + ∂2

∂s21

(
1
2σ

2
2,BSs

2
2p
)

− ∂
∂s1

(rs1p)− ∂
∂s2

(rs2p) ,

for s1, s2, τ > 0 and with p(s1, s2, 0) = δ(s1 − S1,0)δ(s2 − S2,0) for given values
S1,0, S2,0. The exact solution is known analytically and can be written as

p(s1, s2, τ) = n2(log(s1/S1,0), log(s2/S2,0), τ) 1
s1

1
s2
, for s1 > 0, s2 > 0, τ > 0,

where this time n2(x, y, τ) is the density function of a two-dimensional normally
distributed random variable with mean µ and covariance matrix Σ given by

µ =

 (r − 1
2σ

2
1,BS)τ

(r − 1
2σ

2
2,BS)τ

 , Σ =

 σ2
1,BSτ ρσ1,BSσ2,BSτ

ρσ1,BSσ2,BSτ σ2
2,BSτ

 .
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Similarly to the domain truncation in the one-dimensional numerical exper-
iment from Subsection 8.2.3, the spatial domain is truncated to [s1,min, s1,max]×
[s2,min, s2,max] = [0, 30S1,0]× [0, 30S2,0]. The Cartesian spatial grid,

(s1,j , s2,k) for 1 ≤ j ≤ m1, 1 ≤ k ≤ m2,

is constructed by considering the spatial grid from Subsection 8.2.3 in both
spatial dimensions. In Figure 8.6 this spatial grid is illustrated within the
region [0, 5S1,0]× [0, 5S2,0] for S1,0 = S1,0 = 100 and m1 = m2 = 50.

s
1

0 100 200 300 400 500

s
2

0

100

200

300

400

500

Figure 8.6: Illustration of the non-uniform grid around (S1,0, S2,0) for the 2D Black–
Scholes example and the actual values S1,0 = S2,0 = 100, m1 = m2 = 50.

The FV discretization from Subsection 8.2.4 then defines approximations
P j,k(τ) to p(s1,j , s2,k, τ) and we compute the total mixed spatial error

max
1≤j≤m1,1≤k≤m2

εj,k(m),

where

εj,k(m) =


∣∣∣p(s1,j ,s2,k,T )−P j,k(T )

p(s1,j ,s2,k,T )

∣∣∣ if p(s1,j , s2,k, T ) > 1,

|p(s1,j , s2,k, T )− P j,k(T )| else.

The values P j,k(T ) are calculated by using the HV scheme with θ = 1
2 + 1

6

√
3

and a large number of time steps such that the temporal discretization error is
negligible. In the left plot of Figure 8.7 the total mixed spatial error is shown for
the parameter values r = 0.03, σ1,BS = 0.2, σ2,BS = 0.25, ρ = −0.7, T = 1 and
for the number of spatial grid points m1 = m2 = {50, 100, . . . , 500}. The right
plot shows the numerical solution for m1 = m2 = 100. The convergence plot
indicates that the FV discretization is second order convergent with respect to
the current initial-boundary value problem.

For the second example we consider the popular Heston model [30], i.e.
the SV model (7.1.3) with ψ(v) =

√
v and α = 1/2. The underlying density
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Figure 8.7: Convergence results within the 2D Black–Scholes model. The parameter
values are r = 0.03, σ1,BS = 0.2, σ2,BS = 0.25, ρ = −0.7, T = 1.

function satisfies the forward Kolmogorov equation

∂
∂τ p = ∂2

∂x2

(
1
2vp
)

+ ∂2

∂x∂v (ρξvp) + ∂2

∂v2

(
1
2ξ

2vp
)

− ∂
∂x

(
(rd − rf − 1

2v)p
)
− ∂

∂v (κ(η − v)p) ,
(8.2.29)

for x ∈ R, v > 0, τ > 0 and with initial condition p(x, v, 0) = δ(x)δ(v − V0)
where X0 = 0 and V0 is given. To the best of our knowledge, no analytical
solution is available in the literature for the density function p that satisfies
(8.2.29). In order to test the performance of our FV discretization, we compute
a reference solution with an alternative discretization method described in [19].
The latter method is based on rewriting

p(x, v, τ) = p1(x, τ |VSV,τ = v)p2(v, τ), (8.2.30)

where p2(v, τ) denotes the one-dimensional density of the volatility process,
and p1(x, τ |VSV,τ = v) denotes the conditional density of Xτ given the variance
value VSV,τ = v. In [19] the characteristic function

ψ(ω|VSV,τ = v) = E[exp( iωXSV,τ )|VSV,τ = v]

corresponding to p1(x, τ |VSV,τ = v) is given in semi-analytical form and it
is stated that p2(v, τ) is given by (8.2.18). By using the COS-method [18]
we approximate the conditional density function p1(x, τ |VSV,τ = v) and our
reference solution pref is then defined via (8.2.30).

In the numerical experiment, we opt to truncate the domain in the x-
direction to [X0− log(30), X0 + log(30)]. The spatial domain in the v-direction
is truncated to [0, 15], analogously to the CIR example. We consider spatial
grids

− log(30) = x1 < x2 < · · · < xm1 = log(30),

0 = v1 < v2 < · · · < vm2
= 15,

with m1 = 2m2, which are similar to the ones described in Subsection 2.2.1
and such that there exist indices j0, k0 such that (xj0 , vk0) = (X0, V0). In
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Figure 8.8: Illustration of the non-uniform grid around (X0, V0) for the Heston ex-
ample and the actual values X0 = 0, V0 = 0.0625, m1 = 2m2 = 50.

Figure 8.8 the spatial grid is shown for X0 = 0, V0 = 0.0625 and the sample
value m1 = 2m2 = 50.

Applying the FV discretization from Subsection 8.2.4 yields approximations
P j,k(τ) to p(xj , vk, τ). From equation (8.2.30) and the CIR example it follows
that if f = 2κη

ξ2 − 1 < 0, then the density function can tend to infinity as v
tends to zero and at v = 0 the exact density is not defined. Analogously to the
remark in Subsection 8.2.3, it is readily seen that adequately comparing the
difference between p(xj , v2, T ) and Pj,2(T ) then becomes difficult for increasing
values of m2. The error is therefore computed on similar spatial domains. Let
vlow again be the smallest non-zero grid point in the v-direction if the total
number of grid points in that direction is m2 = 50. For given m2, let k1 be the
lowest index such that vk1 ≥ vlow and define the total mixed spatial error by

max
1≤j≤m1,k1≤k≤m2

εj,k(m),

where

εj,k(m) =


∣∣∣pref (xj ,vk,T )−P j,k(T )

pref (xj ,vk,T )

∣∣∣ if pref (xj , vk, T ) > 1,

|pref (xj , vk, T )− P j,k(T )| else.

The values Pj,k(T ) are once more approximated by applying the HV scheme
with θ = 1

2 + 1
6

√
3 and a small temporal step size such that the temporal

discretization error is negligible.

For the actual numerical experiments we consider an extension of the two
sets of parameters used in Subsection 8.2.3. The extensions are also taken
from [19], used in [60], and given by
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κ η ξ ρ rd V0 T f
Set C 5 0.16 0.9 0.1 0.1 0.0625 0.25 0.98
Set D 1.15 0.0348 0.39 −0.64 0.04 0.0348 0.25 −0.47

Table 8.2: Parameter sets for the Heston example.

with X0 = 0 and rf = 0. Recall that for Set C we have that f = 0.98 and
for Set D it holds that f = −0.47. In the left plot of Figure 8.9, respectively
Figure 8.10, the total mixed spatial error is shown for the parameters from
Set C, respectively from Set D. The number of spatial grid points is given by
m1 = 2m2 = {50, 100, . . . , 500}. In the right plots, the corresponding numerical
solutions are shown for m1 = 2m2 = 100. The convergence plots indicate
that the FV discretization is convergent with respect to the current initial-
boundary value problems. Additional experiments again suggest that the FV
discretization is second order convergent if the Feller condition is satisfied. If
f < 0 the order of convergence can drop to one. Please note that the conclusions
of the numerical experiments are essentially unchanged for different values of
vlow as long as it is defined via one of the coarsest grids considered in the
experiment. The two-dimensional tests also confirm that the total numerical
mass is, indeed, kept constantly equal to one, even if the Feller condition is
strongly violated.
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Figure 8.9: Convergence results within the Heston model. The parameters are given
by Set C.

8.3. Temporal Discretization

Spatial discretization of forward Kolmogorov equations with the FV method
leads to large systems of stiff ODEs. In the one-dimensional case, the matrix
corresponding to the semidiscrete system (8.2.16) is tridiagonal and temporal
discretization can be performed very efficiently with standard implicit time
stepping methods such as the Crank–Nicolson scheme, see e.g. Subsection 2.3.4.
It is readily seen that in the two-dimensional case, the semidiscretization matrix
stemming from (8.2.27) has in general nine non-zero elements per row and
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Figure 8.10: Convergence results within the Heston model. The parameters are given
by Set D.

column. Application of standard implicit time stepping methods often requires
solving linear systems of equations involving a matrix

B = I − θ∆tA,

where I denotes again the identity matrix of the same size as A, ∆t is the
temporal step size and θ denotes a parameter of the method. As illustrated in
Figure 8.11, FV discretization of two-dimensional forward Kolmogorov equa-
tions gives rise to a matrix B with non-zero subdiagonals that lie at a distance
m1 + 1 from the main diagonal. The number of operations required in ev-
ery time step can grow faster than the total number of spatial grid points, cf.
Subsection 2.3.4, which is not favourable.

15 30 45 60 75

15

30

45

60

75

Matrix B (2D)

Figure 8.11: Sparsity structure of the matrix B corresponding to the semidiscrete
system (8.2.27) where m1 = 15, m2 = 5.

At the end of Subsection 8.2.4 it is shown that these semidiscrete systems,
stemming from spatial discretization with the FV method of two-dimensional
forward Kolmogorov equations, allow for a splitting (8.2.28). This splitting is
of the type (3.2.2) and, hence, the four ADI schemes introduced in Chapter 3
can be applied very naturally. It is readily verified that A1 from (8.2.28) is



138 8. Finite Volume Calibration of SLV Models

8

tridiagonal, A2 is essentially tridiagonal and A0 has in general nine non-zero
elements per row and column. Application of the ADI schemes requires solving
linear systems of equations involving matrices

B1 = I − θ∆tA1 and B2 = I − θ∆tA2,

which are both essentially tridiagonal. The matrix A0 is only used in the
explicit steps. Since solving linear systems of equations involving essentially
tridiagonal matrices can be performed very efficiently, the application of ADI
schemes can lead to a major computational advantage in comparison with
classical implicit time stepping methods, cf. Section 3.1.

In this chapter, we opt to employ the HV scheme (3.2.6) with parameter
θ = 1

2 + 1
6

√
3. An overview of the existing stability results for the HV scheme,

relevant to semidiscretized two-dimensional convection-diffusion equations with
mixed derivative term, is presented in Section 3.3. In Chapter 5 it is shown
that, under natural stability and smoothness assumptions, the HV scheme is
second order convergent with respect to the temporal step size. The temporal
convergence result has the key property that it holds uniformly in the spatial
mesh width. In this chapter, the vector P (0) is stemming from an initial
function that is non-smooth. The analysis in Chapter 6 shows that convergence
can then be seriously impaired. Based on our analysis in the pertinent chapter,
we apply Rannacher time stepping with N0 = 2, i.e. we replace the first two
HV time steps by four half-time steps of the implicit Euler scheme.

8.4. Calibration of the SLV Model to the LV Model

As stated in the introduction of the chapter, the goal is to calibrate state-of-
the-art SLV models to its underlying LV model in order to reproduce the known
market prices for European call and put options. This is done by defining the
leverage function σSLV such that the relationship (8.1.3) is satisfied. By com-
bining equations (8.1.3)–(8.1.5), it is readily seen that a highly non-linear PDE
needs to be solved. In this section the FV-ADI method is used in combination
with an inner iteration to approximate the corresponding leverage function and
density function.

In order to use the FV-ADI discretization, one first has to define spatial and
temporal grids. Since the initial function of forward Kolmogorov equations is
highly non-smooth around the spot value (X0, V0), and the region of interest is
also situated around this value, it is natural to consider non-uniform Cartesian
grids that are concentrated around the value (X0, V0). If the parameter α from
the SLV model is chosen smaller than or equal to 1/2, then the natural bound-
ary Vτ = 0 can be reached and probability mass stacks up at the boundary
v = 0. It is then natural to additionally require smaller mesh widths in the
v-direction at this boundary. The non-uniform grids define volumes of which
the volume average is approximated by the FV scheme. Denote by m1, respec-
tively m2, the number of spatial grid points in the x-direction, respectively
v-direction. We consider spatial grids

xmin = x1 < x2 < · · · < xm1
= xmax,



8.4. Calibration of the SLV Model to the LV Model

8

139

0 = v1 < v2 < · · · < vm2
= vmax,

which are similar to the ones described in Subsection 2.2.1 and such that there
exist indices j0, k0 such that (xj0 , vk0) = (X0, V0). Recall that the pertinent
meshes are smooth. Denote the corresponding mesh widths by ∆xj ,∆vk and
define volumes

Ωj,k = [xj−0.5, xj+0.5]× [vk−0.5, vk+0.5],

where the values xj−0.5, vk−0.5 are defined similarly as in Section 8.2. The
values xmin, xmax, vmax are chosen sufficiently far away from the spot value such
that the boundary conditions from Section 8.2 can be applied. An example of
the spatial grid for the small sample values m1 = 2m2 = 50 was already shown
in Figure 8.8 for the case where (X0, V0) = (0, 0.0625). For the discretization
in time we always consider uniform grids τn = n∆τ where the temporal step
size is given by ∆τ = T/N and N denotes the total number of time steps.

Once the spatial grid and corresponding volumes are defined, the FV dis-
cretization from Section 8.2 can be applied. This yields a large system of
ordinary differential equations

P ′(τ) = A(τ)P (τ) = (A0(τ) +A1(τ) +A2(τ))P (τ) (0 ≤ τ ≤ T ), (8.4.1)

with given matrices A0(τ), A1(τ), A2(τ) and initial function defined via

P j,k(0) =


2

∆xj−1+∆xj
2

∆vk−1+∆vk
if (j, k) = (j0, k0),

0 else.

The matrices A0, A1 contain, however, the unknown function σSLV at the spa-
tial grid points. P (τ) can be used in combination with a numerical integration
technique to approximate the conditional expectations (8.1.4) and hence the
pertinent leverage function. We opt to perform numerical integration with the
trapezoidal rule and define approximations

Ej(τ) =

∑m2

k=1 ψ
2(vk)P j,k(τ)∆vk+∆vk+1

2∑m2

k=1P j,k(τ)∆vk+∆vk+1

2

≈ E[ψ2(Vτ )|Xτ = xj ], (8.4.2)

where we recall that ∆v1 = ∆vm2+1 = 0. Inserting the approximations (8.4.2)
into (8.4.1) leads to a non-linear system of ODEs.

As a final step, the system of ODEs (8.4.1) is discretized in time with the HV
scheme and an inner iteration to handle the non-linearity, cf. e.g. Section 7.7
and [64]. By applying the HV scheme, the conditional expectations (8.4.2) are
naturally replaced by their fully discrete versions

En,j =

∑m2

k=1 ψ
2(vk)P n,j,k

∆vk+∆vk+1

2∑m2

k=1P n,j,k
∆vk+∆vk+1

2

, (8.4.3)

and we define the leverage function σSLV at the spatial and temporal grid by

σSLV(xj , τn) =
σLV(xj , τn)√

En,j
. (8.4.4)
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It is readily seen that at the initial time level, i.e. at n = 0, the expression
(8.4.3) is only defined if j = j0. To render the calibration procedure feasible
we put

E0,j = ψ2(V0) for 1 ≤ j ≤ m1.

For strictly positive time levels, i.e. for n > 0, the exact density p(xj , vk, τn) is
always non-negative. By performing the spatial and temporal discretization,
however, it is possible that some of the values P n,j,k become (slightly) negative.
In order to prevent the numerical solution from undesirable behaviour, the
expression (8.4.3) is replaced in the calibration procedure by

En,j =

∑m2

k=1 ψ
2(vk)|P n,j,k|∆vk+∆vk+1

2∑m2

k=1 |P n,j,k|∆vk+∆vk+1

2

for 1 ≤ j ≤ m1, n > 0. (8.4.5)

Note that this approach, involving absolute values, is slightly different than
our approach in the previous chapter. If some of the P j,k(τ) in (7.5.6) are
negative, the numerator and denominator in the pertinent expression can still
be positive and Theorem 7.5.1 remains valid. Applying absolute values in such
a situation would lead to the unfavourable result that equality (7.5.7) no longer
holds.

Theoretically it is possible that the denominator (and hence also the nu-
merator) of (8.4.5) equals zero and the fully discrete conditional expectation
is undefined. In this case we assume that the conditional expectation is locally
constant in time and set En,j = En−1,j .

Let Q ≥ 1 be a given integer. For the actual calibration of the SLV model
to the LV model, we employ the following numerical procedure.

for n is 1 to N do

let Pn = Pn−1 be an initial approximation to P (τn);

for q is 1 to Q do

(a) approximate E[ψ2(Vτn)|Xτn = xj ] by (8.4.5);

(b) Define σSLV(·, τn) on the grid in the x-direction by

formula (8.4.4);

(c) update Pn by performing a numerical time step for (8.4.1)
from τn−1 to τn;

end

end

Whenever a time step from τn−1 to τn with the HV scheme is replaced by
two half-time steps of the implicit Euler scheme, the inner iteration above is
first performed for the substep from τn−1 to τn−1/2 = τn−1 + ∆τ/2, yielding
an approximation of P (τn − ∆τ/2) and σSLV(·, τn − ∆τ/2). Next, the inner
iteration is performed for the substep from τn−∆τ/2 to τn, yielding an approx-
imation of P (τn) and σSLV(·, τn). Upon completion of the time stepping and
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iteration procedure above, the original approximation for σSLV(·, 0) is replaced
on the grid in the x-direction by σSLV(·, τ1). This appears more realistic as the
original approximation was actually only valid for the index j = j0.

8.5. Numerical Experiments

In this section, the effectiveness of the calibration procedure is illustrated by
applying it to a practical example. Here, we opt to consider the popular and
challenging Heston-based SLV model, i.e. SLV model (8.1.1) with ψ(v) =

√
v

and α = 1/2, to describe the evolution of the EUR/USD exchange rate.

As stated in the introduction of the chapter, in financial practice it is com-
mon to first determine the SV parameters of the underlying SV model and to
define the LV function such that the LV model reproduces the known market
prices for European call and put options. Afterwards, the calibration procedure
aims at matching the SLV model with its underlying LV model, i.e. at obtaining
equality (8.1.2). We assume that the SV parameters and the LV function are
known and we then apply the calibration procedure from Section 8.4. In this
chapter, the performance is illustrated by comparing the numerical densities
stemming from the LV model and from the SLV model, and by comparing the
corresponding fair values of European call options.

For the actual experiments we consider the following sets of SV parameters:

κ η ξ ρ T V0 f
Set E 5 0.16 0.9 0.1 0.25 0.0625 0.98
Set F 1.15 0.0348 0.39 −0.64 0.25 0.0348 −0.47
Set G 1.50 0.0154 0.24 −0.11 1 0.0154 −0.20

Table 8.3: SV parameter sets for the SLV calibration experiments.

The Sets E and F correspond with the SV parameters from Sets C and D, and
are taken from [19]. Set G is taken from [8] and corresponds to the EUR/USD
exchange rate for a maturity of T = 1 (market data as of 16 September 2008).
For Set E it holds that f = 2κη

ξ2 −1 = 0.98 and the process Vτ is strictly positive.
For Set F, respectively Set G, it holds that f = −0.47, respectively f = −0.20,
such that Vτ = 0 is attainable. The LV model is completely determined by the
LV function, the risk-free interest rates and the spot value S0. We assume that
the risk-free interest rates are given by

rd = 0.02, rf = 0.01,

and that the LV function is as displayed in Figure 8.12. The pertinent LV
function originates from actual EUR/USD vanilla option data (market data as
of 2 March 2016) and is constructed by using an SSVI-type method for implied
volatility interpolation, [21]. The corresponding spot rate is given by

S0 = 1.08815.
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Figure 8.12: Local volatility function originating from actual EUR/USD vanilla op-
tion data (market data as of 2 March 2016) on the full domain in the x-direction
(left) and on a subdomain around the spot rate (right). The spot rate S0 = 1.08815.

Note that, even if the LV function is given, there is often no analytical
expression available for the density function pLV or the option values. It is
well-known, see e.g. Chapter 7, that the density function satisfies the one-
dimensional forward Kolmogorov equation

∂
∂τ pLV = ∂

∂x2

(
1
2σ

2
LVpLV

)
− ∂

∂x

(
(rd − rf − 1

2σ
2
LV)pLV

)
, (8.5.1)

for x ∈ R, τ > 0. By applying the FV discretization described in Subsec-
tion 8.2.2 one defines approximations PLV,j(τ) of the exact density values
pLV(xj , τ). Fully discrete approximations PLV,N,j of pLV(xj , T ) are then ob-
tained by applying a suitable time stepping method. In Figure 8.13 the latter
approximations are shown for τ = 0.25, respectively τ = 1, and the practical
value m = 400.

x
-3 -2 -1 0 1 2 3

P
LV

,N

0

2

4

6

8

Density function within the LV model, T = 0.25
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Figure 8.13: Approximation of the density function pLV(x, 0.25) (left) and pLV(x, 1)
(right) by applying the FV discretization from Subsection 8.2.2 with m = 400.

Once the underlying SV model and LV model are specified, the calibration
procedure from Section 8.4 can be applied. For the actual experiments we
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consider the discretization parameters

m1 = 400, m2 = 200, ∆τ = 1/200, θ = 1
2 + 1

6

√
3, Q = 2.

In Figure 8.14 the resulting discrete leverage function is shown for set G. In
order to illustrate the performance of the calibration, we first consider a discrete
version of (8.1.2). More precisely, the discrete numerical densities PLV,N,j from
the LV model are compared with

PSLV,N,j :=

m2∑
k=1

PN,j,k
∆vk+∆vk+1

2 ,

which can be seen as the fully discrete approximations of∫ ∞
0

p(xj , v, T )dv,

within the SLV model after applying the trapezoidal rule for numerical inte-
gration.

Figure 8.14: Leverage function on the full domain in the x-direction (left) and on
a subdomain around the spot rate (right), stemming from the calibration procedure
with local volatility function from Figure 8.12, SV parameters from Set G and values
m1 = 400, m2 = 200, ∆τ = 1/200, θ = 1

2
+ 1

6

√
3, Q = 2.

In the left plots of Figure 8.15 the approximations PSLV,N are shown for
each of the three sets of parameters. In the right plots, the corresponding
differences PLV,N − PSLV,N are plotted. Note that the final time T = 0.25 for
Set E and Set F, and T = 1 for Set G. From Figure 8.15 it is readily seen that
the difference between the fully discrete numerical densities is very small and
hence that the calibration procedure performs well.

The main goal of the calibration procedure is to define the leverage function
in such a way that the LV model and the SLV model define the same fair values
for non-path-dependent European options. If the leverage function is defined
by (8.1.3), then it follows for the fair value (FaV) of such an option with payoff
u0(x), x ∈ R, at maturity T that

FaV = e−rdT
∫ ∞
−∞

pLV(x, T )u0(x)dx = e−rdT
∫ ∞

0

∫ ∞
−∞

p(x, v, T )u0(x)dxdv.
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Figure 8.15: Comparison of the fully discrete density functions PLV,N and PSLV,N

for each of the parameters sets and for values m1 = 400, m2 = 200, ∆τ = 1/200,
θ = 1
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Given the approximations PLV,N and PN , the pertinent fair value can easily
be approximated by applying numerical integration with the trapezoidal rule.
In case of the SLV model, it is readily seen that defining the approximated fair
value via PN and the trapezoidal rule is equivalent with defining the fair value
via PSLV,N and the trapezoidal rule. Denote by FaVLV, respectively FaVSLV,
the approximated fair values obtained via PLV,N , respectively PSLV,N . We now
compare these approximations for a set of European call options with a range
of strikes given by

K = 0.75S0, 0.8S0, 0.9S0, S0, 1.1S0, 1.2S0, 1.25S0.

When the strike increases relatively to S0, the fair value of European call
options tends to zero and it is difficult to adequately compare approximations.

T = 0.25 Set E Set F T = 1 Set G
K/S0 σimp,LV εimp εimp σimp,LV εimp

0.75 19.18 0.1005 0.1208 21.94 0.0021
0.80 18.40 0.0212 0.0454 20.20 0.0015
0.90 15.01 0.0033 0.0154 16.65 0.0008
1.0 11.26 0.0011 0.0030 13.14 0.0004
1.10 11.59 0.0011 0.0153 11.38 0.0003
1.20 13.20 0.0009 0.0937 11.77 0.0003
1.25 14.03 0.0006 0.1888 12.12 0.0003

Table 8.4: Comparison of the approximated implied volatilities σimp,LV and σimp,SLV

for values m1 = 400, m2 = 200, ∆τ = 1/200, θ = 1
2

+ 1
6

√
3, Q = 2.

In financial practice, European call and put options are often quoted in
terms of implied volatility. Let σimp,LV, respectively σimp,SLV, denote the im-
plied volatility (in %) corresponding to FaVLV, respectively FaVSLV. In the
following we test the performance of the calibration procedure by calculating
the absolute implied volatility errors

εimp = |σimp,LV − σimp,SLV|.

In Table 8.4 these errors are presented for the different SV parameter sets,
taking the same values of m,m1,m2,∆τ, θ,Q as above. The somewhat larger
values εimp for T = 0.25 compared to T = 1 can be explained from the fact
that the implied volatility is more sensitive to changes in the fair value when
the maturity is low. The results in Table 8.4 confirm that the calibration
procedure performs well. They indicate that the fully discrete leverage surface
is, indeed, defined such that the SLV model reproduces accurately the known
market prices for European call options.

8.6. Comparison of the Calibration Methods

In Chapter 7, the adjoint calibration procedure is based on Theorem 7.5.1 which
creates an exact calibration at the semidiscrete level. The implied volatility
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errors εSLVB, εSLVF in the pertinent chapter are mainly dependent on the error
introduced by numerically solving the non-linear system of ODEs (7.4.3) with
coefficients defined by (7.5.6). Calibration of the implied volatilities σimp,SLVB,
σimp,SLVF to the market implied volatility can be decoupled into two separate
steps. First, the number of spatial and temporal grid points can be chosen such
that the error introduced by discretization of the one-dimensional backward
Kolmogorov equation (7.2.7), i.e. the error in the fully discrete LV model, is
sufficiently small. In a second step, one can choose a temporal step size ∆τ and
a number of iterations Q such that the implied volatility errors εSLVB, εSLVF

are sufficiently small.
In the current chapter, there is no direct relationship between the implied

volatilities σimp,LV and σimp,SLV. They both form approximations to the market
implied volatility, but the FV discretization of the one-dimensional PDE (8.5.1)
is not used explicitly for the FV calibration of the SLV model. To the best
of our knowledge, neither the implied volatility error εimp, nor the difference
between σimp,SLV and the market implied volatility, can be decoupled. They
are dependent on the accuracy of the discretization of the one-dimensional
forward Kolmogorov equation, on the accuracy of the discretization of the
two-dimensional forward Kolmogorov equation, and on the error introduced
by handling the non-linearity in the system of ODEs (8.4.1) with coefficients
given by (8.4.2). This constitutes a disadvantage in comparison with the adjoint
calibration method.

The decoupling in the calibration method from Chapter 7 has the additional
advantage that, for non-path-dependent options, the approximations of the fair
value under the LV model and under the SLV model are the same up to a small
temporal discretization error. As such, one can use the one-dimensional LV
model for the (very) fast valuation of vanilla options consistently with the two-
dimensional SLV model. The latter model can be used for the correct valuation
of path-dependent options.

By using the adjoint spatial discretization, the difference between the ap-
proximated fair value obtained by numerically solving the forward equation
and the one obtained by discretization of the backward equation, is of the
(very small) size of the temporal discretization error. This is a useful property
since the solution of the forward Kolmogorov equation can be used very effi-
ciently for the valuation of a non-path-dependent option for a range of strikes,
whilst the backward equation is often used to calculate the Greeks, i.e. the
sensitivity of the option value to its underlying variables. By matching the
approximations, the numerical solutions obtained via the forward and back-
ward Kolmogorov equation can be interchanged. In the current Chapter 8,
the backward Kolmogorov equation is never used and such a property is not
applicable.

The numerical experiments in Section 8.2 reveal that the FV spatial dis-
cretization method is convergent with respect to the pertinent initial-boundary
value problems. If the boundary conditions are smooth, then the FV method
shows second order convergence behaviour, see e.g. the experiments for the one-
dimensional and two-dimensional Black–Scholes model and the experiments
for the CIR and Heston model with f ≥ 0. Next, consider the adjoint spa-
tial discretization method for the numerical solution of forward Kolmogorov
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equations. Recall that this adjoint discretization is completely defined by the
spatial discretization of the corresponding backward equation. To the best of
our knowledge, there is no clear relationship between the convergence proper-
ties of the original spatial discretization method and the convergence properties
of the corresponding adjoint spatial discretization.

In our opinion, the adjoint method from Chapter 7 is preferable for the
calibration of SLV models and the valuation of financial options. However,
if one is interested in the properties of the numerical solution of the forward
Kolmogorov equation, then the FV spatial discretization method is more ap-
propriate.

8.7. Conclusion

Stochastic local volatility models constitute state-of-the-art models to describe
asset price processes. Their calibration to the underlying local volatility model
is, however, highly non-trivial. It incorporates the solution of non-linear for-
ward Kolmogorov equations. In general, no analytical solution is available and
one relies on numerical methods in order to approximate the exact solution.
Here, we introduce a FV-ADI method for the numerical solution of general
one-dimensional and two-dimensional forward Kolmogorov equations. The FV
spatial discretization does not require a transformation of the PDE, which con-
stitutes a main advantage in the calibration of SLV models, and handles the
boundary conditions in a natural way. Moreover, the FV scheme preserves
the crucial property that the total mass of a density function is always equal
to one. Our numerical experiments for relevant practical applications confirm
that the pertinent spatial discretization is convergent. Temporal discretization
is performed by using the HV scheme and the non-linearity in the calibration
procedure of stochastic local volatility models is handled by introducing an
inner iteration. Our numerical experiments reveal that the proposed calibra-
tion procedure performs well. The calibrated stochastic local volatility model
matches the underlying local volatility model, both in terms of the density
function and of the implied volatilities of European call options.

Comparing the FV-ADI method with the adjoint method from Chapter 7,
we prefer the former one for the numerical solution of forward Kolmogorov
equations. For the calibration of SLV models and the valuation of financial
options, we prefer the adjoint method.





CHAPTER 9

Conclusions & Outlook

9.1. Conclusions

In this thesis a convergence analysis has been presented for four ADI time
stepping methods adapted to mixed spatial derivative terms that are widely
used for the numerical solution of partial differential equations (PDEs) from
financial mathematics. More precisely, we considered convergence of the Dou-
glas (Do) scheme, the Craig–Sneyd (CS) scheme, the Modified Craig–Sneyd
(MCS) scheme and the Hundsdorfer–Verwer (HV) scheme, in application to
semidiscretized two-dimensional time-dependent convection-diffusion equations
with mixed derivative term. Subsequently, it was demonstrated that the ADI
schemes can be very useful for the fast, stable and accurate calibration of
stochastic local volatility (SLV) models. We proposed two techniques for the
calibration of SLV models that are new in the literature. Ample numerical
experiments indicate that both techniques perform well.

The preliminary Chapter 2 dealt with the first step of the method-of-
lines, i.e. with spatial discretization. We introduced the smooth, non-uniform
Cartesian grids and second order finite difference (FD) schemes that are used
throughout the thesis. Application of the FD schemes for semidiscretiza-
tion of initial-boundary value problems for general one-dimensional and two-
dimensional convection-diffusion equations leads to large systems of ordinary
differential equations (ODEs). An analysis of the sparsity structure of the
semidiscretization matrices revealed that, if the semidiscrete system is stem-
ming from a two-dimensional PDE, then application of standard implicit time
stepping methods can lead to a computational effort that increases faster than
the total number of spatial grid points.

In the preliminary Chapter 3 the four ADI time stepping schemes were for-
mally introduced. They employ a splitting of the semidiscrete operator in the
different spatial dimensions, which can lead to a major computational advan-
tage. We presented an overview of the existing stability and consistency results
relevant to semidiscretized two-dimensional convection-diffusion equations. It
is shown that the analysis of the local discretization errors in [34] leads to a
convergence result for the Do scheme.

In Chapter 4 we proved a first convergence result for the CS scheme and
the MCS scheme. Considering a perturbed version of the MCS scheme led to
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a recursion formula for the total error. By Taylor expansion, expressions for
the local errors in the perturbed scheme have been obtained. We split the
local discretization error so that each component allowed application of a key
lemma from [33]. Under natural stability and smoothness assumptions, this
resulted in a second order convergence theorem. The convergence result has
the important property that it holds uniformly in the arbitrarily small spatial
mesh width. Positive results on the stability assumptions have been obtained
in the von Neumann framework.

A convergence result for the HV scheme has been obtained in Chapter 5. As
in the previous chapter, it was shown that the total error satisfies a recursion
formula and expressions for the local errors were derived by Taylor expansion.
A subtle splitting of the local discretization error was used to prove a second or-
der convergence theorem under natural stability and smoothness assumptions.
As before, we obtained positive results on the stability assumptions in the von
Neumann framework.

A motivating example next showed that convergence of ADI schemes can
be seriously impaired if the initial data are non-smooth. In Chapter 6 we
analysed the positive effect of Rannacher time stepping, i.e. replacing the first
N0 ADI time steps by 2N0 half-time steps of the implicit Euler scheme, on
the order of convergence of the ADI schemes when they are applied for the
numerical solution of a model two-dimensional convection-diffusion equation
with constant coefficients and provided with Dirac delta initial data. A dis-
crete/continuous Fourier transformation led to the important insight that, for
every ADI scheme, the total discretization error can be written as the sum of a
low-wavenumber error and a high-wavenumber error. An asymptotic analysis
for the MCS scheme (and CS scheme) revealed that its low-wavenumber error
decreases in a second order fashion as a function of the temporal step size. The
order of the high-wavenumber error is 2N0 − 2. Based on ample numerical ex-
periments we conjectured that for the Do scheme, respectively the HV scheme,
the order of the low-wavenumber error is equal to the classical order of consis-
tency of the ADI scheme, and that the order of the high-wavenumber error is
2N0 − 2. The value N0 = 2 is then a lower bound on N0 for the Rannacher
time stepping in order to ensure convergence of the numerical solution to the
exact solution. A brief consideration of alternative initial data revealed that
the order of the high-wavenumber error is mainly dependent on N0 and the
degree of smoothness of the initial data. Finally, our analysis showed that for
each of the ADI schemes it seems favourable to consider smaller values of the
ADI parameter θ.

In Chapter 7 an adjoint method has been introduced for the exact cali-
bration of SLV models to the underlying local volatility (LV) model. Given
a spatial discretization for the backward Kolmogorov equation, we defined an
adjoint spatial discretization for the corresponding forward Kolmogorov equa-
tion such that both discretizations yield the same approximation for the fair
value of non-path-dependent options. It was shown that, if similar spatial dis-
cretizations are considered for the backward equation stemming from the LV
model and for the backward equation stemming from the SLV model, then the
adjoint spatial discretization can be used to create an exact match between the
semidiscretized LV model and the semidiscretized SLV model. Since there is
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often no analytical solution available for the fair value of vanilla options un-
der (S)LV models, this is the best result one can aim for. The adjoint spatial
discretization that is used for the exact calibration leads to a large system of
non-linear ODEs. The MCS scheme proved to be very useful for the efficient
numerical solution of this system of ODEs. An inner iteration was described
to handle the non-linearity.

A common approach for the calibration of SLV models is numerically solv-
ing the associated two-dimensional non-linear forward Kolmogorov equation.
In Chapter 8 we presented a new finite volume (FV) method for the spatial
discretization of general one-dimensional and two-dimensional forward Kol-
mogorov equations. The FV scheme is mass-conservative. This is a key prop-
erty since the solution of these convection-diffusion equations represents a den-
sity function. Moreover, the FV method does not require a transformation of
the PDE. This constitutes a major advantage in comparison with standard FV
methods as the PDE coefficients are often non-smooth. Application of the FV
scheme for the calibration of SLV models to the underlying LV model led to
a large system of non-linear ODEs. In Chapter 8 we demonstrated that the
HV scheme is very useful for the efficient numerical solution of such systems of
ODEs. As before, the non-linearity was handled by an iteration procedure.

Ample numerical experiments exemplified that both calibration techniques
are promising. For the adjoint technique we showed that the calibration error
can be decoupled and that each part can be controlled. A similar property does
not hold for the FV method. In our opinion, the adjoint calibration technique is
more appropriate for the calibration of SLV models to the underlying LV model.
If the objective is numerically solving the forward Kolmogorov equation, then
we prefer the FV spatial discretization.

9.2. Outlook

In this thesis we have derived a variety of results that provide important new
insight in the convergence properties and applicability of ADI schemes. It is
inherent to research that every answer raises new questions. Completing the
research in this PhD thesis we arrived at a number of interesting problems and
ideas for future research.

The use of Cartesian grids for the numerical solution of higher-dimensional
PDEs can lead to an enormous amount of spatial grid points, even if the num-
ber of points in each spatial direction is small. This is known as the curse of
dimensionality and forms an important topic in computational finance. Sparse
grid methods reduce the total number of spatial grid points and can be promis-
ing.

Three- and four-dimensional time-dependent convection-diffusion equations
are becoming more common in financial mathematics and their approximate
solution is often obtained via the numerical techniques described in this thesis.
Applying the ADI schemes leads to a computational advantage in comparison
with classical implicit time stepping schemes. The advantage is often more
prominent than in the two-dimensional case. To the best of our knowledge,
there are no second order convergence results available for the CS scheme, the
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MCS scheme and the HV scheme if the number of spatial dimensions l ≥ 3.
A convergence analysis is, however, imperative. It provides a basis for the
schemes being used in practice.

The analysis in [34], Chapter 4 and Chapter 5 can be used as a starting
point for a convergence analysis relevant to higher-dimensional PDEs provided
with smooth initial and boundary-data. The expressions for the total error and
the local discretization error derived in the pertinent literature are valid for a
general number of spatial directions. In order to arrive at a useful second order
convergence result for the (M)CS scheme and the HV scheme with l ≥ 3, a new
ingenious splitting of the local discretization error can be performed. Based on
the second order convergence result in [34] for the Do scheme with l = 3 and
F0 = 0, we foresee a mild restriction on the temporal step size.

The adverse effect of non-smooth initial data on the convergence of ADI
schemes is also present in higher-dimensional applications. Consider for ex-
ample a l-dimensional model convection-diffusion equation with constant co-
efficients, provided with an initial function that is the product of Dirac delta
functions in each of the l spatial dimensions. Comparing the results in [22] for
the Crank-Nicolson scheme in one spatial dimension and our results in Chap-
ter 6 for the ADI schemes in two spatial dimensions, we expect that for larger
values of l a larger value N0 for the Rannacher time stepping is needed to
ensure convergence of the numerical solution the exact solution. A theoretical
convergence analysis can be performed by extending the discrete/continuous
Fourier transformation to a higher number of spatial dimensions.

In this thesis it has been assumed that all risk-free interest rates are con-
stant. Considering SLV models with stochastic interest rates for the modelling
of foreign exchange rates naturally leads to four-dimensional forward and back-
ward Kolmogorov equations. Under some assumptions, an expression for the
leverage function that calibrates a four-factor SLV model exactly to the under-
lying LV model has been obtained in [10]. Determining this leverage function
for a four-factor SLV model is, however, inherently more difficult than for the
corresponding SLV model with deterministic interest rates. It is interesting to
examine whether the adjoint spatial discretization can be used to create an ex-
act match between the semidiscretized SLV model with stochastic interest rates
and the semidiscretized LV model. Alternatively, our FV spatial discretization
can be extended for the numerical solution of a four-dimensional forward Kol-
mogorov equation. Its numerical solution is useful for the approximation of the
leverage function that calibrates the SLV model exactly.

The existing stability results for ADI schemes relevant to higher-dimensional
pure diffusion equations with mixed derivative terms reveal that a larger num-
ber of spatial directions l often leads to a stronger restriction on the ADI
parameter θ. Moreover, the number of linear systems that has to be solved
in each time step of the ADI scheme is directly proportional with l. For
higher-dimensional PDEs it might be interesting to split the semidiscrete op-
erator into suboperators that represent spatial derivatives in multiple spatial
dimensions. For example, the semidiscrete operator stemming from a four-
dimensional convection-diffusion equation could be split into an operator F0,
representing all the mixed spatial derivative terms, and suboperators F1, F2

that each represent unidirectional spatial derivatives in two spatial dimensions.
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The total number of spatial dimensions then no longer corresponds with the
number of suboperators that are handled implicitly. A stability and conver-
gence analysis relevant to this situation is lacking in the literature. It can be
investigated whether the results from Chapter 4 and Chapter 5 are applicable.
In the case of non-smooth (Dirac delta) initial data, we conjecture that the
lower bound on N0 for the Rannacher time stepping in order to ensure conver-
gence of the numerical solution to the exact solution, is mainly dependent on
the number of spatial directions and not on the number of suboperators.
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Conference talks and poster presentations

• SPRING 2017: Spring Meeting of the Dutch-Flemish Numerical Anal-
ysis community, An adjoint method for the calibration of SLV models,
Antwerp, Belgium, May 19, 2017.

• MF 2017: MathFinance Conference 2017, ADI finite difference schemes
for the calibration of stochastic local volatility models, Frankfurt am Main,
Germany, April 20-21, 2017.

• SIAMFM 2016: SIAM Conference on Financial Mathematics and Engi-
neering 2016, ADI finite difference schemes for the calibration of stochas-
tic local volatility models, Austin, Texas, United States, November 17-19,
2016.

• SCFD 2016: Student Computational Finance Day 2016, ADI finite
difference schemes for the calibration of stochastic local volatility models,
Delft, The Netherlands, May 23, 2016.

• SEM 2015: Seminar of the Mathematical Finance research group at
the University of Manchester, ADI schemes for pricing European options
under the Heston model, Manchester, United Kingdom, December 10,
2015.

• WSC 2015: 40th Woudschoten Conference of the Dutch-Flemish Nu-
merical Analysis community: Poster presentation, Convergence analysis
of the Modified Craig–Sneyd scheme in 2 dimensions for nonsmooth ini-
tial data, Zeist, The Netherlands, October 7-9, 2015.

• NUMDIFF 2015: 14th Conference on the Numerical Solution of Differ-
ential and Differential-Algebraic Equations, Convergence analysis of the
Modified Craig–Sneyd scheme for two–dimensional convection–diffusion
equations with nonsmooth initial data, Halle, Germany, September 7-11,
2015.

• WMNFM 2015: Workshop Models and Numerics in Financial Math-
ematics 2015: Poster presentation, Convergence analysis of the Modified
Craig–Sneyd scheme in 2 dimensions for nonsmooth initial data, Leiden,
The Netherlands, May 26-29, 2015.

• ICNAAM 2014: 12th International Conference of Numerical Analy-
sis and Applied Mathematics, Convergence of the Hundsdorfer–Verwer
scheme for two–dimensional convection–diffusion equations with mixed
derivative term, Rhodes, Greece, September 22-28, 2014.

• WCBFS 2014: 8th World Congress of the Bachelier Finance Society,
Convergence of the Modified Craig–Sneyd scheme for multi–dimensional
convection–diffusion equations with application to the Heston PDE, Brus-
sels, Belgium, June 2-6, 2014.



Scientific Résumé 163
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