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Abstract: Past accident analyses indicate that fire escalation is responsible for most of the domino 

effects that happened in the process industries. The evolution of domino accidents triggered by fire is 

different from domino accidents triggered by other primary scenarios, since the escalation caused by 

heat radiation is delayed with respect to the start of the fire. In this study, a methodology involving a 

Domino Evolution Graph (DEG) model and a Minimum Evolution Time (MET) algorithm is proposed 

to model the spatial-temporal evolution of domino accidents. Synergistic effects and parallel effects of 

the spatial evolution, as well as superimposed effects of the temporal evolution possibly occurring in 

complex domino evolution processes, are considered in this study. A case study demonstrates that the 

methodology is able to not only capture the spatial-temporal dimension but also to overcome the 

limitation of the “probit model” w.r.t only able to estimate the damage probability of the first level 

propagation. Besides, different from simulation or Bayesian approaches, our methodology can quickly 

provide evolution graphs (paths), the evolution time and the corresponding probability given a primary 

scenario. Therefore our approach can also be applied to domino risk assessment within an industrial 

park level and provide support for the allocation decision of safety and security resources. 

Keywords: Domino effects; heat radiation; spatial-temporal evolution; Domino Evolution Graph; 

Minimum Evolution Time 

1. Introduction 

Safety and security are different in the nature of incidents: safety is unintentional whereas security is 

intentional (Hessami, 2004; Reniers and Pavlova, 2013). Regardless of the nature of incidents, they may 

become a primary accident in a chain of accidents, a phenomenon which is well known as a domino 

effect (Reniers and Cozzani, 2013). Therefore the modeling or assessment of the evolution of domino 

events is essential for protecting chemical and process installations against knock-on accidents. A 

growing public concern since the 1990s raised the attention in scientific and technical literature on 

domino effects (Necci et al., 2015).  

Traditional risk identification and evaluation approaches such as HAZOP analysis, What–If analysis 

and the risk matrix are recommended for domino risk analysis in chemical industrial clusters (Reniers 

et al., 2005). Chemical industrial parks consist of various hazardous installations with different domino 

effect potentials. Some installations exhibit a high probability of initiating domino accidents while other 

installations are more likely to propagate domino events. These installations can be regarded as nodes, 

and the quantitative possibility of accident propagation may be represented by the weight of the links 

between nodes in a network graph (Reniers and Dullaert, 2007). Based on this concept, critical 

installations contributing to possible domino effects can be identified and this information may support 

the allocation of domino prevention resources (Reniers et al., 2008; Zhang and Chen, 2011). The 

methodology was extended for vulnerability analysis and protection decision making by using graph 

theory metrics (e.g. betweenness and closeness) (Khakzad et al., 2017; Khakzad and Reniers, 2015; 

Khakzad et al., 2016). These quick and reliable graph-based approaches are able to assess domino risks 
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within an entire industrial area and identify the most critical units. They are however unable to capture 

temporal evolution characteristics. 

A Quantitative Risk Assessment (QRA) framework was proposed for domino effects mainly including 

three steps: the identification of domino scenarios, a frequency analysis, and a consequence assessment 

(Cozzani et al., 2005). Only the first level propagation is considered in the framework due to the 

complexity of higher level propagations. The damage probability models used in the QRA methodology 

were extended and improved by considering different escalation vectors such as radiation, overpressure, 

and fragments (Gubinelli and Cozzani, 2009a, b; Jia et al., 2017; Landucci et al., 2012; Landucci et al., 

2009). For example, a damage probability model for fire escalation assessment is established based on 

the results of finite element models (FEM) and experimental data (Landucci et al., 2009), as shown in 

Eq. (1).  

 lnPr a b ttf                                                                          (1) 

The damage probability model is called “probit model” and the probit value is related to the “time to 

failure” (ttf) of installations, the estimation time required to start the emergency operations and the 

estimation time required to start the mitigation actions. The parameters of a and b are determined by 

considering the uncertainty of emergency response and the ttf in the first level propagation. Hence the 

“probit model” may be unreasonable for accurately estimating the damage probability of installations 

in second level or higher level propagations due to the delay of the “time to failure” compared with the 

first level propagation. In other words, using the model may result in over-estimation of the probability 

propagation in second or higher levels. Taking an extreme case as an example, if a primary fire was 

controlled by emergency actions (such as cooling with water, external firefighters arriving) before the 

second level propagation, the propagation probability of the second level would be zero.  

In addition, a simulation approach was proposed based on a Monte Carlo method to model higher level 

propagations. The approach successfully models the spatial evolution of domino accidents but the 

shortcoming is obvious, i.e. it is time-consuming (Abdolhamidzadeh et al., 2010). An agent-based 

modeling approach considering installations’ states was proposed to analyze the higher-level 

propagations and temporal dependencies (Zhang et al., 2017). The Monte Carlo simulation method is 

also used to solve the model, and takes a high computation time, especially for realistic chemical clusters 

with a large number of installations. Other simulation work concentrates on emergency response 

assessment and optimization (Zhou and Reniers, 2016; Zhou et al., 2016). Besides, a Bayesian network 

methodology was proposed to model domino effect propagation (Khakzad, 2015; Khakzad et al., 2013). 

The methodology can model higher level propagations while it is difficult to apply it to chemical clusters 

with a large number of installations (Khakzad and Reniers, 2015).  

In the light of these findings and considering the evolution of domino effect research, the present work 

is aimed at establishing a new methodology for modeling the spatial-temporal evolution of domino 

effects (STED) and overcoming the above shortcomings. The spatial propagation and the temporal 

propagation are integrated using a chain of graphs. First, we expound on spatial-temporal evolution 

characteristics of domino accidents triggered by fire in section 2. Next, the STED methodology 

procedures, the Domino Evolution Graph (DEG) model and the corresponding algorithm of Minimum 

Evolution Time (MET) are all elaborated and explained in section 3, following by a case study in section 

4 and the related discussion in section 5. Finally, conclusions are drawn in section 6. 

2. Fire-based domino evolution 

2.1 Spatial propagation  

Propagation is the main characteristic of domino accidents, linking a primary scenario with one or 

several higher level scenarios. Propagation patterns are divided into three categories according to spatial 
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propagation features: simple propagation, multilevel domino chain, and multilevel propagation (Reniers 

and Cozzani, 2013). These propagation patterns are shown in Fig.1 and can be defined as follows:  

 Simple propagation: a primary scenario triggering a secondary scenario (a “one-to-one” 

correspondence). 

 Multilevel domino chain: a multilevel propagation, i.e., a primary scenario triggers a second 

accident scenario, and the second accident scenario triggers a third accident scenario, and so on.  

 Multilevel propagation: a complex propagation including parallel effects and/or synergistic effects. 

In severe domino accidents, the propagation of the primary accident results in several secondary 

scenarios, and the secondary scenarios also trigger more than one higher order scenarios, which can 

be defined as parallel effects (Reniers and Cozzani, 2013). Alternatively, several scenarios of a 

lower level may trigger a higher level scenario, and synergistic effects may thus be present. As 

shown in Fig.1, installation 2.1 triggers installations of 3.1, 3.2 and 3.3, which may be regarded as 

a parallel effect, and the installation 3.1 triggered by installations 1 and 2.1 can be considered to be 

a synergistic effect.  

The parallel effect reflects the escalation capability of installations and the synergistic effect is related 

to the damage probability caused by the escalation. Thus the parallel effect and the synergistic effect are 

essential for modeling the complex evolution of domino effects. 

Simple propagation 11 22

Multilevel domino chain 11 22

Multilevel Propagation 11 2.12.1

2.22.2

3.23.2

3.33.3

3.13.1

3.43.4

33

 

Fig. 1 Example of propagation patterns (Source: Reniers and Cozzani (2013)). 

2.2 Temporal propagation 

Fire scenarios such as pool fire and jet fire are responsible for most of the escalation events in industrial 

accidents (Gómez-Mares et al., 2008). These primary scenarios may induce serious heat loads on 

installations, possibly resulting in the failure of process units, storage vessels, pipework and other target 

installations by one or several of the following possible escalation vectors: heat radiation, fire 

engulfment, and fire impingement (Alileche et al., 2015; Landucci et al., 2009). Taking a simple 

propagation (a vessel to a vessel) as an example, the fire escalation process can be described as follows:  

 The heat load is transferred from the fire to the target vessel by radiation and convection.  

 The target vessel wall (shell) is heated and the temperature rises when radiation and convection are 

in progress. 
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 The heat transfers to the liquid and liquid vapor due to the existing temperature gradients among 

the vessel wall, the liquid and the liquid vapor in the vessel (conduction).  

 The internal pressure of the vessel increases while the temperatures of the liquid and the liquid 

vapor rise.  

 The above processes will continue until one of the following scenarios emerges: (1) vessel wall 

failure and loss of containment; (2) the fire is extinguished due to the burning out of the fuel; (3) 

the fire is controlled effectively by emergency response actions. 

Higher-level propagations caused by fire occur when the target vessel fails, and in this case the escalation 

is delayed with respect to the start of the fire. The period of time between the start of the fire and the 

failure of the target equipment is called “time to failure” (ttf) (Necci et al., 2015). The escalation process 

can also end when the fuel burns out. The burning time of an installation is named “time to burn out” 

(ttb) (Khakzad et al., 2014). Similarly, the period of time between the start of the fire and the effective 

controlling of the fire is named “time to control effectively” (ttc) in this study.  

As can be observed, the spatial propagation is an important characteristic in the evolution of domino 

effects triggered by fire. For integrating the spatial propagation and temporal propagation, a new 

methodology based on a chain of graphs for modeling the spatial-temporal evolution of domino effects 

(STED) is elaborated in the next section. 

3. STED methodology 

3.1 Overview 

For modeling the spatial-temporal evolution of domino effects (STED) and obtaining the domino 

evolution graphs (paths), the evolution time and the evolution probability, a five-step methodology is 

proposed (Fig. 2).  
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Fig. 2 Steps for performing STED methodology. 

First, all necessary information of plants and installation data are collected, such as installation types, 

stored materials, process substances and emergency response plans. The second step analyzes the 
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domino escalation capability of installations and the domino elimination capability of plants. Heat 

radiation and burning time data of installations is obtained, as well as the distribution function of ttc. 

Step 3 determines primary accident scenarios. The next step inputs all the above data into the Domino 

Evolution Graph (DEG) model and solves the model using the Minimum Evolution Time (MET) 

algorithm. Finally, step 5 conducts the post-processing of the results obtained in step 4 and thus delivers 

installations’ damage probabilities and the corresponding advice on preventing domino accidents. The 

different steps will be elaborated hereafter. 

3.2 Collecting plant information and installation data 

Step 1 collects all necessary information and data for different steps of this methodology. The main plant 

information and installation data required to perform the STED methodology are summarized as follows:  

 A layout of the chemical industrial park: installation positions, distances between different 

installations; 

 installation data: installations’ types, shapes, and sizes;  

 Information of hazardous materials in installations: types, quantities, and states (e.g., phase state, 

pressure and temperature); 

 Emergency response information: internal emergency response information and external 

emergency response information; 

 Environmental parameters: temperature, wind direction, speed, humidity, etc. 
 

The above information and data required are easy-to-collect and thus the step can be performed by either 

safety experts or plant employees. 

3.3 Domino escalation and elimination capability analysis 

3.3.1 Heat Radiation Capability (HRC)  

The Heat Radiation Capability (HRC) of installations is an evaluation index of the domino escalation 

capability. It is obtained via heat radiation calculation in the second step of the methodology after 

collecting all the necessary information and data. Considering that n installations are identified in the 

first step, then the HRC matrix of dimension n×n can be obtained, as shown in Eq. 2. An element of 

HRC matrix (HRCij) denotes the heat radiation load caused by installation i on installation j if the 

installation i is on fire, in kw/m2. The HRCij can, for instance, be obtained by the ALOHA software 

(Khakzad and Reniers, 2015a), or by other commercial software such as PHAST and FLUENT (Wang 

et al., 2013). 

12 1

21 2

1 2

0

0

0

0

n

n

n n

HRC HRC

HRC HRC
HRC

HRC HRC

 
 
 
 
 
 

L

L

L L

L

                                                        (2) 

0 if ijHRC i j                                                                          (3)                    

=0 if =ijHRC i j                                                                                   (4) 

3.3.2 Burning Time Capability (BTC)  

The Burning Time Capability (BTC) of installations is another index required for evaluating the domino 

escalation capability.  The Burning Time Capability matrix with dimension of n×1 consists of the ttb of 

all critical installations, as shown in Eq. (5) and Eq. (6). An element of BTC matrix (BTCi) denotes the 

time to burn out (ttbi) of installation i if i is on fire, in min. It can also be obtained by the ALOHA 
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software (Khakzad, 2015). Both the HRCij and BTCi can be seen as indexes for evaluating the domino 

escalation capability of installation i.  

1

2

n

BTC

BTC
BTC

BTC

 
 
 
 
 
 

L
                                                                           (5) 

i iBTC ttb R  (i=1,2,3…n)                                                              (6) 

3.3.3 Emergency Response Capability (ERC)  

Emergency response plans in the chemical industry are essential to protect installations, the public, and 

workers’ health and safety, to reduce the environmental impacts, and the recovery time of normal 

operations (Hosseinnia et al., 2018). The emergency response also influences the development of the 

accident and has important impacts on the occurring of domino effects (Zhou and Reniers, 2017). The 

emergency response time is affected by many human factors such as safety training and human response 

time, varying within different chemical plants. For performing static risk assessment, the uncertainty of 

the emergency response time is considered to obtain the “probit model” parameters (Landucci et al., 

2009). In this study, the emergency response capability of a chemical plant is evaluated by the possible 

ttc values and the capability probability (CP). Considering there are k possible identified values of ttc, 

the Emergency Response Capability (ERC) matrix composed of ttc and CP can be represented by Eq. 

(7). The possible ttc values can be obtained by expert judgment, emergency exercises or other 

emergency simulation methods (Bandyopadhyay and Singh, 2016; Zhou and Reniers, 2017). 

1 1

2 2

k k

ttc CP

ttc CP
ERC

ttc CP

 
 
 
 
 
 

L L
                                                                      (7)   

The ERC matrix presents a discrete distribution of ttc by providing limited ttc values and the cumulative 

probabilities. The discrete distribution can also be transformed into a continuous distribution by 

assuming a cumulative distribution function (ERC function) for the ttc. The parameters of the 

cumulative distribution function can be estimated by Maximum Likelihood Estimation (MLE) (Myung, 

2003). For example, assuming a log-normal distribution (Landucci et al., 2009) of ttc, the distribution 

of ttc is denoted by Eq. (8)~ (10).  

 2log ~ ,ttc N u                                                                          (8) 

1

ln
k

i

i

ttc

u
k




                                                                                (9) 

 
2

2 1

ln
k

i

i

ttc u

k
 






                                                                        (10) 

In Eq. (8), u is the mean of log ttc or expectation of the distribution; σ is the standard deviation of log 

ttc and σ2 is the variance; ttci is the ith possible value of ttc. It should be noted that the cumulative 

distribution function should satisfy hypothesis testing. Therefore, the capability probability (CP) given 

any ttf value can be obtained by the ERC function, as shown in Eq. (11). 

ERC( )CP ttc                                                                         (11) 
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3.4 Primary scenario identification 

Possible primary scenarios are identified according to the plant information and installation data 

collected in step 1. The primary scenarios are divided into two categories: intentional scenarios and 

unintentional scenarios. Intentional scenarios can be obtained by any security risk assessment 

methodology, including threat analysis, vulnerability analysis and consequence analysis (API, 2013). 

Game theory approaches are widely used to analyze the intentional scenarios by considering strategies 

of defenders and adversaries (Reniers et al., 2015; Zhang and Reniers, 2016). Unintentional scenarios 

can be identified by traditional approaches such as HAZOP analysis, What-If analysis, and Fault-Tree 

analysis. Different from the previous domino risk assessment methodologies mainly identifying the 

scenario related to only one installation, the methodology proposed in this paper also accounts for the 

primary scenario involving multiple installations.  

3.5 Modelling spatial-temporal evolution of domino accidents 

3.5.1 State model 

Installations in chemical plants are the main contributors to domino accidents. Four states of installations 

may be present in evolution processes according to a chronological sequence because domino accidents 

caused by heat radiation have distinct temporal characteristics. Table 1 describes the four states: 

“normal”, “heating up”, “fire” and “extinguished”. It should be emphasized that installations with a 

“normal” state, “heating up” state or “extinguished” state are regarded to exhibit no heat radiation on 

other installations. These states are named “no-escalation” states. Alternatively, “escalation” state 

defines a “fire” state causing heat radiation on target installations.  

Table 1 State description. 

State Description 

Normal 
The installation operates normally in an initial state, and the state is assumed to be 

invariable without external interferences. 

Heating up 

The installation is not physically damaged but is heating up due to heat radiation 

received from installations with the “fire” state. This is a transition state: the state 

can transfer to either “normal” state or “fire” state. 

Fire 

The installation is on fire due to an unintentional primary scenario or due to 

escalation from an external installation. It is also a transition state and can only 

transfer to the “extinguished” state. 

Extinguished 
The installation fire is extinguished due to burning out of fuel or effective 

emergency response. This is a termination state. 

 

There are four transfer relationships among these states, as shown in Fig. 3. “No-escalation” states are 

marked as an ellipse and the “escalation” state is marked as a circle in Fig. 3. All the states can only 

transfer to the next state except the state of “heating up” which possibly changes to a “normal” state or 

a “fire” state according to the heat radiation received. The transfer relationships related to the “fire” state 

are essential for domino evolution because these transfers change the heat radiation load of the system.  

Heating upHeating upNormalNormal ExtinguishedExtinguishedFireFire

 

Fig. 3 State transfer relationships. 
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3.5.2 Domino evolution stage model 

For modeling the spatial-temporal evolution of a domino accident, time is a distinct factor for evolution 

because time is related to the installations’ damage and the performance of emergency response. The 

evolution time is dispersed into discrete time nodes by transfers related to the “fire” state. Each period 

between two adjacent time nodes is a stage. The evolution stage m counts the occurrence number of the 

“fire” state and the “extinguished” state from the beginning of the evolution to the present stage, as 

shown in Eq. (12). The time of evolution stage m (tm) defines the period of time between two adjacent 

time nodes. So the tm varies with different transfer types and different installations and it is determined 

in section 3.5.4.  

 

 

if all installations are in the normal  state

if an installation s state transfers to fire  or ex

0

1 < tinguis ed, h
m

m m M


 



“ ”

‘ “ ” “ ”
                  (12) 

Where M is the total number of stages of a domino evolution process. For a domino evolution process, 

the influence of the current stage can be superimposed to the next stage (i.e., superimposed effects). 

According to the superimposed effects, a Domino Evolution Graph (DEG) model with a chain of graphs 

corresponding to the stages is proposed in the following section. 

3.5.3 Domino Evolution Graph (DEG) model 

A Domino Evolution Graph (DEG) is defined as a chain of graphs connected sequentially by 

superimposed effects, i.e., the next stage graph is only related to the graph of the current stage. Fig. 4 

depicts a Domino Evolution Graph with 4 sequential graphs. The DEG4 is determined by DEG3, DEG3 

by DEG2 and DEG2 by DEG1. The domino accident begins when installation 1 is on fire (a primary 

scenario) and ends when installation 3 catches fire caused by the escalation.  

A domino graph in stage m of the DEG (DEGm) consists of vertices (installations), directed edges 

(escalation vectors) and the related parameters. The domino graph in stage m can be presented as follows: 

                              , , , , , ,mDEG N S E EH HR RF RB                                                          (13)  

 (1) N: is a set of vertices represent installations. The N doesn’t change over time and can be expressed 

as the following: 

1

2
N

n

 
 
 
 
 
 

L
                                                                           (14) 

(2) S: is a set of states denoting the state of installations in evolution stage m. The S can be expressed as 

follows: 

1

2

n

S

S
S

S

 
 
 
 
 
 

L
                                                                           (15) 

In the Domino Evolution Graph, the states are represented by the vertices’ colors: “white” represents 

“normal” state, “yellow” represents “heating up” state, “red” represents “fire” state and “gray” 

represents “extinguished” state.  

(3) E: is a matrix with dimension of n×n representing a set of directed edges from installations with the 

“fire” state to installations with the “heating up” state in stage m. In this study, we set a threshold 
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(1kW/m2) (Zhang et al., 2017) to judge whether there is a directed edge between each pair of installations. 

The two installations are connected by a directed edge when the heat radiation caused by installation i 

on installation j is greater than 1kW/m2. An element of matrix E (Eij) is determined by Eq. (16). The 

domino evolution will continue until there is no edge, i.e., SE =0. SE is the sum of all the elements of 

the matrix E, determined by Eq. (17). The row i of matrix E represents a parallel effect caused by 

installation i, and the column j of matrix E represents a synergistic effect received by installation j. 

0     if there is no directed edge from installation  to installation  

1 if there is a directed edge from installation  to installation 
ij

i j
E

i j


 


                       (16) 

1 1

n n

ij

i j

SE E
 

                                                                     (17)                                                 

(4) EH: is a matrix of dimension n×n denoting the directions and values of heat radiation in stage m. 

Any element of the matrix EHij is determined by the Heat Radiation Capability (HRC) matrix and E, as 

shown in Eq. (18). 

               
ij ij ijEH HRC E                                                                   (18)                  

(5) HR: is a set of heat radiation loads received by installations in the evolution stage m. Considering 

the synergistic effects of spatial evolution, the heat radiation received by installation j is equal to the 

sum of heat radiation loads caused by other installations on installation j,  as shown in Eq. (19).  

   
1

 =1, 2
n

j ij

i

HR EH j n


 L                                                          (19)          

(6) RF: is a set of residual time to failure of all installations in the evolution stage m. For the first 

evolution step (without superimposed effects), the RF can be estimated by the lumped model (Landucci 

et al., 2009), as shown in Eq. (20). 

   1 1

10 10log logj jRF c HR d                                                       (20) 

Where c and d are constants given a special volume, V (m3), as shown in Table 2. This lumped model is 

obtained by assuming that a failure occurred when the equivalent intensity of combined stress is greater 

than the maximum allowable stress (Landucci et al., 2009). The worst condition is considered in higher 

level propagations: the installation is on fire when it fails (Khakzad, 2015; Khakzad et al., 2013). The 

HR also varies over time in the spatial-temporal evolution because of superimposed effects. So the RF 

in higher level stages can’t be directly determined by Eq. (20). For stage m (m>1), first calculate the ttf 

only under the radiation load in stage m (HRj
m), namely, 

   10 10log logm m

j jttf c HR d                                                       (21) 

With respect to the same installation or installations with the same volume, Eq. (21) can be rewritten as 

follows: 

    10
c

m d m

j jttf HR                                                               (22) 

It is obvious that 
m

jttf is directly proportional to  
c

m

jHR (c<0)，so a simple recurrence formula is 

obtained to estimate the RF as shown in Eq. (23): 

 1

11

c
m

jm m

j j mm

j

HR
RF RF t

HR





 
   
 
 

      (m>1)                                          (23) 
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Integrating Eq. (21), Eq. (22) and Eq. (23), a general expression of RF in stage m is obtained: 

   

   1

11

10                       1

 1

c
d m

j

m c
m

j
j m

j mm

j

HR m

RF HR
RF t m

HR





 



  
    
  

                                             (24) 

 (7) RB: is a set of residual time to burn out of all installations in evolution stage m. If the state of 

installation i transfers from “heating up” to “fire” at the beginning of stage m, RBi can be calculated as 

follows: 

   m

i iRB BTC                                                                      (25) 

1m

i i mRB BTC t                                                                  (26) 

In other cases, the RBi is regarded as infinite. 
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2
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                  (a) Graph of stage 1(DEG1)                                     (b) Graph of stage 2(DEG2) 

1 3

2

                         

1 3

2

 

                 (c) Graph of stage 3(DEG3)                                      (d) Graph of stage 4(DEG4) 

Fig.4 An example of a domino evolution process presented by the Domino Evolution Graph. 

 

Table 2 The parameter value of c and d. 

Installation c d 

Atmospheric tank -1.13 −2.67×10−5 V+9.9 

Pressurized tank -0.95 8.845V0.032 

 

3.5.4 Evolution principle 

In stage m of the evolution, the next stage (m+1) is determined by the minimum time of RF and RB, 

namely, 
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min( , ) 1,2,m i jt RB RF i, j n  L                                                       (27)  

Thus the total evolution time at the beginning of stage m (Tm) can be obtained by Eq. (28). 

 

 11

0 1

1m

m

m

m
T

T t m


 

 

                                                              (28)  

Finally, the probability of stage m (Pm) is calculated by using the distribution function of ERC, as shown 

in Eq. (29). 

 1 ERCm mP T                                                                    (29)  

The evolution principle indicates that an evolution enters into the next stage when any installation’s state 

transfers to ‘fire’ or ‘extinguished’. And the evolution ends when SE=0 or Pm<Pmin (Pmin is the minimum 

probability settled by experts). 

3.5.5 Minimum Evolution Time (MET) algorithm 

In this section, the Minimum Evolution Time (MET) algorithm is proposed to solve the Domino 

Evolution Graph model. Fig. 5 shows the flowchart of the MET algorithm.  

The MET algorithm flowchart can be explained as follows. First, all installations are in the “normal” 

state and all basic data are inputted in stage 0. Next, model parameters including S, E, and EH are 

updated according to the primary scenario. If there are installations with the “heating up” state, then the 

evolution will continue, otherwise, the evolution will be terminated. Third, the HR is calculated 

according to Eq. (19). The RF in stage m is updated based on the current HR, the HR and RF in the last 

stage (m-1) using Eq. (24). Similarly, the RB in stage m is updated based on the time of the last stage 

Tm-1 and the RB in the last stage (m-1) using Eq. (25) and Eq. (26). Afterwards, the time of the current 

stage can be obtained according to the principle of minimum evolution time. Finally, the probability of 

the next stage Pm+1 is obtained by using Eq. (29). The evolution will enter into the next stage (m+1) and 

the above steps will continue until the probability Pm+1 is less than a minimum value Pmin.  

Using this algorithm, the stage time, the graph of each stage, and the probability of each stage can be 

obtained quickly. It is obvious that the algorithm has a fast convergence speed because of the maximum 

evolution stage less than 2n (i.e, all installations are damaged). The number of iterations is linearly 

related to the number of installations, which is a huge advantage for the methodology’s application in 

practical chemical industrial parks with possibly hundreds or even thousands of installations and 

installation parts to be taken into account for the domino effect assessment. 
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Update EUpdate E

Update SUpdate S

Update EH Update EH 

YesYes

Input a primary scenario, HRC matrix, BTC matrix and ERC 

function;  initialization

Input a primary scenario, HRC matrix, BTC matrix and ERC 

function;  initialization

m=m+1m=m+1

Calculate  HR using Eq. (19) Calculate  HR using Eq. (19) 

Update RF using Eq. (24)Update RF using Eq. (24)
Update RB  using Eq. (25) and 

Eq. (26)

Update RB  using Eq. (25) and 

Eq. (26)

Tm=Tm-1+tmTm=Tm-1+tm

Pm<PminPm<Pmin

NoNo

EndEnd

tm=Min(RBi, RFi)tm=Min(RBi, RFi)

SE=0SE=0

NoNo

YesYes

Calculate  Pm Calculate  Pm 

m=0m=0

Start

 

Fig. 5 Flowchart of the Minimum Evolution Time (MET) algorithm. 

3.6 Post-processing 

The domino evolution graphs, the evolution time, and the evolution probability of a primary scenario 

are obtained by using the DEG model and the MET algorithm in step 4. The objective of post-processing 

is to analyze the results to obtain the damage probability of installations and evaluate the escalation 

capability of the primary scenario. The installation’s damage probability is equal to the stage probability 

if the installation fails in the stage while it is zero if the installation is not damaged in the entire evolution 
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process. The escalation capability of the primary scenario is evaluated by the number of installations 

possibly damaged and the damage probability. Finally, the step also provides advice on safety and 

security resource allocation for preventing domino accidents based on the damage probability analysis 

and the escalation capability analysis. 

4. Illustrative case study 

For illustrative purposes, the fundamentals of the methodology are demonstrated via an illustrative tank 

storage area. The layout of the area is shown in Fig. 6. The features of the tanks are summarized in Table 

3. Considering the primary accident probability of each tank caused by safety events is 10-5. Assuming 

a log-normal distribution of the time to control effectively (ttc), i.e., log  2~ ,ttc   , the mean of ttc is 

equal to 10 min and the corresponding variance is equal to 2 min. 

1 3

2 4

5
20m

20m

20m

 

Fig. 6 Scheme of an illustrative chemical plant with five atmospheric storage tanks. 

Table 3 Features of chemical storage tanks in the plant. 

Tank Type 
Dimension 

(m3) 

Chemical 

substance 

Size  

(m3) 

Chemical content 

(t) 

1 Atmospheric 10×6.5 Benzene 500 350 

2 Atmospheric 7.0×5.5 Benzene 200 120 

3 Atmospheric 10×6.5 Acetone 500 300 

4 Atmospheric 7.0×5.5 Acetone 200 140 

5 Atmospheric 7.0×5.5 Acetone 200 15 

 

Let us assume that the main environmental parameters are as follows: a wind speed of 1m/s measured 

at 10m above the ground and blowing from Northwest, partly cloudy, air temperature of 25℃, 50% 

relative humidity, and stability class of E. The heat radiation caused by pool fire and the burning rate of 

each tank are calculated through the ALOHA software. The possible heat radiation load caused by tank 

i on tank j (i.e., HRCij) is depicted in Table 4. Table 5 shows the burning rate and the BTC of all tanks.  

Table 4 Heat Radiation Capability, HRC (kW/m2). 

Tank j 

Tank i 1 2 3 4 5 

1 - 20.3 20.3 12.3 6.7 

2 20.3 - 12.3 20.3 5.4 

3 15.6 9.0 - 15.6 15.6 

4 9.0 15.6 15.6 - 9.0 

5 4.68 3.76 15.6 9.0 - 
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Table 5 Burning Time Capability, BTC. 

Tank i Burn rate (kg/min) BTCi (min) 

1 860 407.0 

2 860 139.5 

3 817 367.2 

4 817 171.4 

5 817 18.4 

 

Three unintentional primary scenarios are assumed as follows: (1) a pool fire on tank 1; (2) a pool fire 

on tank 5; (3) simultaneous pool fires on tank 1 and 5. Using the STED methodology proposed in this 

paper, three DEGs corresponding to the three primary scenarios are obtained and separately shown in 

Fig. 7, Fig. 8 and Fig. 9. 
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              (a) Graph of stage 1 at T=0 min                                 (b) Graph of stage 2 at T=10.9 min   
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          (c) Graph of stage 3 at T=11.0 min                            (d) Graph of stage 4 at T=12.8 min   

1 3

2 4

5

 

(e) Graph of stage 5 at T=15.5 min 

Fig. 7 Domino Evolution Graph of primary scenario (1): a pool fire on tank 1. 

Fig. 7 depicts the evolution process of primary scenario (1). In the first stage, tank 1 is on fire, the heat 

radiation produced by tank 1 is received by tank 2, 3, 4 and 5. Stage 2 starts at T=10.9 min when tank 3 

is on fire, following by tank 2 in stage 3, inducing synergistic effects on other tanks and accelerating the 
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evolution. In stage 4, tank 4 catches fire at T=12.8 min. Finally, the evolution ends in stage 5 when all 

the tanks are on fire.  

The evolution process of the second scenario is shown in Fig. 8. For the scenario, tank 5 burns out at 

stage 3 after tank 3 catches fire, so the evolution is slower than the evolution of the first scenario. The 

evolution ends when tank 2 is on fire. So all tanks may be damaged under this primary scenario.  

The methodology proposed in the study can model different kinds of primary scenarios, even including 

the scenario involving multiple installations, as shown in Fig. 9. In this case, both tank 1 and tank 5 are 

on fire simultaneously in the first stage. A synergistic effect caused by tank 1 and tank 5 results in the 

rapid failure of tank 3 at T=5.7min. The domino accident propagates rapidly and terminates at T=8.1min 

due to the combination of synergistic effects and superimposed effects. 
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           (a) Graph of stage 1 at T=0 min                              (b) Graph of stage 2 at T=14.7 min   
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   (c) Graph of stage 3 at T=18.4 min                                 (d) Graph of stage 4 at T=19.1 min  
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    (e) Graph of stage 5 at T=22.2 min                                 (f) Graph of stage 6 at T=23.3 min   

Fig. 8 Domino Evolution Graph of primary scenario (2): a pool fire on tank 5. 

The probability of each evolution stage with different primary scenarios is shown in Table 6. It is 

obvious that the probability of each stage in the primary scenario (1) is higher than that in the primary 

scenario (3) because the former evolution speed is lower than the latter. In other words, the likelihood 

of the domino effect being eliminated by emergency response actions increases with decreasing the 
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evolution speed. The probability of each stage in the primary scenario (3) is in the same order of 

magnitude due to the highest evolution speed. The results are coincident with reality since the probability 

of ttc increases over time. The damage probability of each tank can be obtained, as shown in Table 7. 

The damage probability of each tank in the first scenario is higher than that in the second scenario, which 

indicates that the occurrence probability of a domino accident increases with increasing heat radiation 

caused by the primary scenario. The difference of the probability among each tank is very small in 

scenario (3), demonstrating that the escalation range increases with a growing number of primary events. 

The damage probability of tank 3 is the highest in all of the cases because tank 3 is the first to be damaged, 

that is, tank 3 is more likely to be damaged by domino propagation and should be allocated more safety 

barriers. Compared with tank 5, tank 1 has a higher probability of initiating domino effects and is more 

likely to be attacked by terrorists. Thereby more security resources should be allocated to tank 5. The 

probability of the third primary scenario with two tanks on fire simultaneously (10-10) is lower than the 

first primary scenario (10-5) and the second primary scenario (10-5). The primary scenario similar to 

scenario (3) is more likely to occur when the area is attacked by terrorists. So primary scenarios related 

to multiple installations cannot be ignored compared with primary scenarios where only one installation 

is damaged, since domino effects may be inevitable once the scenario occurs (as shown in table 5).  

1 3

2 4

5

               

1 3

2 4

5

 

        (a) Graph of stage 1 at T=0 min                                 (b) Graph of stage 2 at T=5.7 min   
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        (c) Graph of stage 3 at T=8.0 min                                (d) Graph of stage 4 at T=8.1 min   

Fig. 9 Domino Evolution Graph of primary scenario (3): pool fires on tank1 and tank 5. 

Table 6 Domino evolution stages and the corresponding probability. 

Primary 

scenario 
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 

1 10-5 0.24×10-5 0.23×10-5 0.36×10-6 0.77×10-7 - 

2 10-5 0.25×10-7 0.53×10-10 0.14×10-10 0.43×10-13 0.65×10-14 

3 10-10 1.00×10-10 0.93×10-10 0.91×10-10 - - 
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Table 7 Damage probability of each tank in different unintentional primary scenarios. 

Primary 

scenario 
Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 

1 1.00×10-5 0.23×10-5 0.24×10-5 0.36×10-6 0.77×10-7 

2 0.43×10-13 0.65×10-14 0.25×10-7 0.14×10-10 1.00×10-5 

3 1.00×10-10 0.93×10-10 1.00×10-10 0.91×10-10 1.00×10-5 

 

5. Discussion 

The case study implemented in section 4 demonstrates that the STED methodology is an effective tool 

to model the domino evolution process triggered by fire. The domino evolution graphs (paths), domino 

evolution time, and the evolution probability can be obtained by using the DEG model and the MET 

algorithm proposed in this methodology. The methodology can also model different kinds of primary 

scenarios and capture the characteristic that the damage probability of installations decreases with 

increasing the evolution time due to emergency response.  

Table 8 shows the residual time to failure (RF) of each tank in the evolution process of scenario (1). The 

obvious acceleration of evolution demonstrates that superimposed effects and synergistic effects play 

important roles in the evolution process. For example, tank 3 catches fire at T=10.9 min and tank 2 

catches fire at T=11.0 min. The time of stage 2 (t2) is only 0.1 min but the residual time to failure of tank 

4 (RF4) is shorted by 1.6 min due to the synergistic effect in stage 3 caused by tank 1 and tank 2.  

Table 8 Residual time to failure (RF) of each tank in scenario (1) 

Tank Residual time to failure (RF) in different stages (min) 

 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

1 - - - - - 

2 11.0 0.1 - - - 

3 10.9 - - - - 

4 19.4 3.4 1.8 - - 

5 38.5 7.1 5.5 2.7 - 

 

Fig. 10 illustrates curves of evolution time T versus evolution stages of primary scenario (1) under the 

condition (i) with superimposed effects and (ii) regardless of superimposed effects by using a heat 

radiation threshold (15 kW/m2). The former is represented by a dotted curve and the latter is marked by 

a solid curve. The evolution sequence doesn’t change but the time nodes of stage 4 and 5 are respectively 

delayed by 2.3 min and 2.6 min, regardless of superimposed effects. Therefore, the severity of domino 

effects is underestimated, regardless of either superimposed effects or synergistic effects, which may 

cause huge losses. 

Fig. 11 depicts the evolution graphs of scenario (2) regardless of the Burning Time Capability of tanks. 

The evolution stage, evolution sequence and evolution time are totally different from the evolution 

process considering the Burning Time Capability (as shown in Fig. 8). The emergency resources may 

be allocated unreasonably if the Burning Time Capability is not considered. For instance, excessive 

emergency resources may be assigned to tank 5 thus weakening the elimination capability of domino 

effects.  
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Fig. 10 Curves of evolution time T versus evolution stage m. 
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           (a) Graph of stage 1 at T=0 min                              (b) Graph of stage 2 at T=14.7 min   
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      (c) Graph of stage 3 at T=18.8 min                                 (d) Graph of stage 4 at T=21.5 min   
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(e) Graph of stage 5 at T=22.4 min  

Fig. 11 Domino Evolution Graph of primary scenario (3) regardless of BTC. 



19 

 

In this study, the DEG model can easily be solved by the Minimum Evolution Time (MET) algorithm, 

avoiding the time-consuming approach of repeatedly generating random numbers. The maximum 

number of iterations of the MET algorithm is 2n while the minimum number of iterations of Monte 

Carlo-based simulation tools is 106 (Abdolhamidzadeh et al., 2010; Zhang et al., 2017). So the 

calculation efficiency is improved greatly. For the case with 5 installations, the maximum number of 

iterations is 10. The real iteration in scenario (1) is 5, 6 in scenario (2) and 4 in scenario (3). The 

calculation time is dramatically shorted (e.g., the scenario (1) with 5 iterations only takes 0.018s). Thus 

this methodology can truly be applied to real-life chemical industrial parks containing hundreds or 

thousands of chemical installations. For example, for a real chemical cluster with 227 installations 

(Reniers et al., 2008), the maximum number of iterations of an evolution is only 454. So this 

methodology can be applied to predict the potential attack targets in large chemical parks. Besides, 

further research may focus on modeling the uncertainty of ignition after installations’ failure and 

considering the effects of safety barriers on the accident evolution.    

6. Conclusions 

In this study, a methodology including a Domino Evolution Graph (DEG) model and a Minimum 

Evolution Time (MET) algorithm is proposed to model the evolution of domino accidents. The evolution 

process is divided into stages according to chronological order. Each stage starts with the occurrence of 

a “fire” state or an “extinguished” state and also ends with a new ‘fire’ state or an ‘extinguished’ state 

emerging. The characteristics of each evolution stage are modeled by a graph consisting of vertices 

(installations), directed edges (escalation vectors) and the related parameters. All the graphs of a domino 

evolution process are sequentially connected by superimposed effects, making up a Domino Evolution 

Graph. The Minimum Evolution Time (MET) algorithm based on the principle of minimum evolution 

time is proposed to solve the DEG model. The model results, including evolution graphs, evolution time, 

and the evolution probability, can be quickly obtained by using this algorithm since the maximum 

number of iterations of the MET algorithm is 2n.  

A case study shows that the proposed methodology is able to not only capture the spatial-temporal 

dimension but also overcome the limitation of the “probit model” approach in higher level propagations. 

The evolution graphs (paths), the evolution time and the damage probability of installations in second 

or higher level propagations can easily be obtained by this dynamic methodology. Besides, a quantitative 

analysis indicates that the synergistic effects, the superimposed effects and the installation’s burning 

capability considered in the methodology have important effects on domino evolution and cannot be 

ignored. The primary scenario related to multiple installations cannot be ignored compared with primary 

scenarios where only one installation is on fire, because domino effects may be inevitable once the 

primary scenario occurs.  

This study is the first work to employ a Domino Evolution Graph (DEG) approach modeling the spatial-

temporal evolution of domino effects. The outcome of this research can be used to support the decision-

making of safety and security barriers and emergency resources. Furthermore, this methodology can 

also be extended to domino risk (safety and security) assessment of an entire industrial park consisting 

of hundreds or even thousands of installations. 
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