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Nuclear cusp conditions for components of the molecular energy density
relevant for density-functional theory
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Nuclear cusp conditions are obtained for the full electron-electron interaction energy density as well as for
the exchange and correlation energy densities of density-functional theory. Their form is the same as the form
of the well known Kato cusp condition for the electron-number density. All these cusp conditions are valid for
both the ground and excited states of a molecule or solid.
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[. INTRODUCTION A=T+V+0, (1.4
A singularity at the nuclear positioR, of the electron-

T=>N f(r) v=3N Y 0= o )
nucleus interaction potential where T=3i_,t(r;), V=2j_50(r), U=Zi<icj=n U("i,

r;). Herex;={r; ,s;} denotes the space-spin coordinate of the

ith electron,t(r)=—1V?(r) is the kinetic energy operator,
(1.D)  wv(r)=Zava(r) [Eqg. (1.2)] is the external potentialdue to
clamped nuclgi and u(r;,r;)=1/r;—r;| is the electron-
electron interaction potential. Atomic units are used through-
out. Let theN-electron, antisymmetric, normalized¥ | V)
=1) wave functionW (x4, ... Xy) be some eigenfunction
of the Schrdinger equation

Za
A= TR
causes thé\-electron wave function of a molecule to be a
nonanalytic function of each electron-position variahlgi
=1,2,... N, atr;=R,, but the function remains bounded
(finite) everywhere. The character of this non-analyticity,
known as the nuclear cusp condition, was determined for an N
atom by Kato[1]. His result was extended to a molecule by HY=EY. (1.9
Bingel [2], and generalized by Pack and BroWs] to the ) , . )
cas% where nuc?ear motion isyincluded. For a molecule wit?'SCussing cusp conditions due to the particiér nucleus,
fixed nuclear positions, as considered in the present investV® choose its position to be &,=0. Of all (equivalent
gation, Kato's cusp condition for the wave function leads@rguments of¥ we focus our attention oy =ry &({),).

(see Steinef4]) to the following condition for the electron- _ 1h€ presentation of the nuclear cusp problem given by
number density,(r): Davidson[6] serves us now as a starting point of our inves-
tigation. SinceW is finite everywhere, we have from Eq.
dmy(r) (19
dr =—ZZAI’11(O), (12) . N
r=0 lim rlH\PZO. (16)
r1—>0

whereZ, is the nuclear charge, while the center of the co-
ordinate system is placed at ti#h nucleus positionR4 This means thaﬁ_'(rl,sl,xz, ... Xy) is also the eigenfunc-
—0. The angular averagé(r) of a functionF(r) is defined  tion, with zero eigenvalue, of the operator
by . . .
b(ry)=limr;T+y=limrt(rqy)+v, 1.7
o dZQ r,—0 ri—0
Fin= [ GoFe o, 13
where

where, in spherical coordinatesyr (Q)), |g=1.

We are going to show that the nuclear cusp condition is
satisfied not only by the electron-number density, @2,
but also by other densities used for the calculation of thq:or the wave function’(r
energy of a molecule. Such results may be relevant fo ’
density-functional theory(DFT) applications to both the
ground and excited statésee Nagyf5]).

Consider a molecule as &hkelectron system described by W(r,,X)=
the Hamiltonian i

y=limry(V+0)= limroa(r)=—2Za. (1.9

r1—>0 I‘l—>0

X) whereX={s;,X,, ..., Xn},
{expanded in spherical harmonics

M s

m=|
;2 Yin(Q0) 1 fim(r,X) (1.9
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with f;,(r1,X) an analytic function of ;, the eigenequation and the electron-number density is the diagonal element of

mentioned above, the 1DM,
b(r))¥=0, (1.10 Ny(ry)=pa(ryiry). 2.7
leads to the following conditiong3,6] on the partial waves
amplitudes: In order to establish the cusp condition foy(r,r5), let
us calculate this DM using the expansi@h9) for ¥ and
Ifim(r4,X P* in Egs.(2.4),(2.5:
—'m;rl . o hn(0X). (11D In Egs. (2429
1 r,=0

N(N—-1)
Equations(1.8—(1.11) are sufficient for obtaining all in- Na(ry,ro)= Tf dQ Z , Yim( Q1) Y] (1)
teresting cusp conditions. These for the system described by mitm
the Hamiltonian in Eq(1.4) will be considered in Sec. I, ><r'1+" fim(r1,F2, Qf5 (r1,r2,Q). (2.8
and those for systems of adiabatic connectmmethod that
leads to the construction of DFT objectsa Sec. Ill. The , ) )
implications of our results will be discussed in Sec. Iv. ~ According to Eq(1.3), its angular average is

Il. RESULTS FOR THE FULLY INTERACTING SYSTEM — 1
Ny(ry,ry)= EJ' szl Na(r,&(Q4),r,)

As is well known(see, e.g., Davidsdi®]) the total energy

E=(W|H|¥)—the eigenenergy ifl’ is the solution of the _ N(N-1) 1 S 2 )
Schradinger equation1.5—can be written in terms of the - dQE,m r1 fim(ro,r2, Q)
first and second order density matfikDM, 2DM) derived
from ¥, namely, (2.9
E:T+V+Eee:f d3f1{8kin(f1?[P1]) The derivative of this function,

+u(r)ny(ry) +eedra;[na])}, (2.2) (11,15 _ N(N—l)J' ol

Where &rl 2 47T
en(r1;[p1 ) =H(r)pa(rairle =, (22 x[lZl 21271 [fim(ry,12,Q)[
= m
is the kinetic energy density;(r{)n.(r;) is the electron- o N Fim(F1,72,Q)[2
nucleus interaction energy density, and +> ra > "“;—2} (2.10
=0 m s

gedr1;[N )=fd3r u(ry,ro) ny(ry,ry) (2.3 .
odruilnz] 2r a2 together with the result
is the electron-electron interaction energy density. The DMs 5
p1, Ny, andn; can be obtained from the 2DM | fim(r1,r2,Q)|
arq

2y
= |f|m(0,r2,Q)|2 (211)
o I+1
., N(N-1) 1=0
p2(rlrr2;rl'r2):TJ dQW(ry,ry,Q)
obtained from Eq(1.11), leads, in the limitr;—0, to the

XW*(ry,ry,Q). (2.4  cusp condition for the electron-pair density
Here the notatiorQ={s;,s,,Xs, ... Xy} IS introduced to —
split the previousK asX={s;,r,,5,,Xz, . . . Xn}= {r,Q}, INa(r,ra) — —2Z,n,(0,r) (212
andfdQ means summation over and integration oved®r; ary

r,=0
for all variables included iQ. Thus, the electron-pair den- '

sity is the diagonal element of the 2DM, . ) _ _
[using Eq.(1.8)]. We note that its form is the same as in the

No(rq,r)=pa(ry,f2ir1,15), (2.5 case of the electron-number density, Ef.2). In fact, we
can confirm the validity of Eq.1.2) by integrating both sides
the 1DM is the reduced 2DM, of Eq. (2.12 overd®, and recalling the definition afi; in

) Egs.(2.7), (2.6).
A 3 - To find the cusp condition fog.{r;[n,]), EQ.(2.3), we
pa(reiry) N—lf drzpa(r1nrzifara), (2.6 calculate the derivative of its angular average,
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deedri;[nz])
dry

d20
f 1fd%z—5wuaﬂow9

XNn(r1€(€21),2))r, 0

d2Q
f d®r, f !

r

% nZ(O,rZ)&u(rlj(rQl)’rZ) condition (1.2), we arrive at the cusp condition
1 -
deedrq;[n
any(r16(Qy),rp) deedrailne)) =—2Z,e60;[N1])  (2.20
+u(0,ry)————F . dry _
arl (=0 ry=0
(2.13  in the same form as for the densities already considered.
But, for the Coulombic interaction, lil. RESULTS FOR THE ADIABATIC CONNECTION TO
THE NONINTERACTING EFFECTIVE SYSTEM
u(r16(€2y),r,6(Q5)) _ () e(Qy)
ar, T2 (2.14 Adiabatic connection, developed by Harris and Jdids
ry=0 2 (see also Parr and Yang], Sec. 8.5, and references thepein
S is a very convenient tool of DFT for obtaining characteristics
0 of the noninteracting effective Kohn-Shaf{S) system by
— linking it with the fully interacting system via intermediate
deedriilna]) :f 43 n2(0r2)e( e systems. For that purpose, a Hamiltonian depending on a
dr, o 2\ 2 2, parameterx e [0,1] is introduced,
aNo(rq,ro) He=T+V*+ a0, (3.1
+ U(O, 2) 2( rl 2 ) .
toIn=o whereVe=3N v4(r;). This H*, for a=1, due to the re-
(2.15  quirement
The first term vanishes because the angular average of the V=V, vi(n=uv(n), (3.2

unit vector is zero and for the second term the reguli2
should be used, so, finally,

deedry;[nal)

dr, =—2Zped0[Ny]).

r;=0

(2.19

The remaining two densities in ER.1) satisfy the equa-
tion

lim ry(ekin(ri;Lpa]) +v(ry) ny(ry))
ri—0

= lim ryeyn(ry;[p1]) =Zan1(0)=0, (2.17)

r{—0

which follows directly from the eigenequatigi.10, when

the definitions(1.7), (1.8), and(2.2) are taken into account.

The result(2.17 demonstrates that, at the nuclear position
Ra=0, the singularity of the kinetic energy density cancels
exactly the singularity of the electron-nucleus interaction en-

ergy density.
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where the energy density,s, defined in analogy withe g
[Eq.(2.3)], is

8es(r1i[n1]):f d3rpu(ry,ry) 3n5(ry) Ny(ry).
(2.19

By applying the same steps as in Eq8.13—(2.15 with
ny(ry,ry) replaced bysn,(r;) ny(ry), and, next, using the

reduces to the original Hamiltonidh!=H [Eq. (1.4)], while

for =0 it represents the noninteracting systetd {s
switched ofj characterized by the KS potential

Uo(r):UKs(r)- (3.3

From the eigenfunction’® of the Schrdinger equation
Haq,a:

E*Pe, (3.9

the electron densityy(r) can be calculated lika(r) in
Egs. (2.9—(2.7) from V. The effective one-body potential

v¥(r) is defined by the requirement that the electron density

of the “intermediate” system remains independentaof

n$(r)=ng(r)=ny(r). (3.5

In order to investigate the cusp conditions for the inter-
mediate system, let us suppose that the properties*@f)

For DFT applications the classical electrostatic energy ofof unknown explicit form allow for a finite value of the

electrons is of interest:

Ees[nl]zJ' A3 eedra;[N1)), (2.18

limit

y*= lim ry(V¥+a0)= lim rp9(ry),
r{—0

(3.6

r{—0
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the analog of Eq(1.8). Then, with¥,f,,,v replaced by
vt y® Egs.(1.9-(1.11) hold, and, therefore, all previ-

ous cusp conditions can be written ferdependent densities

in terms ofy“, in particular,

d n{(r)
dr

=2vy"n1(0),
r=0

3.7

the analog of Eq(1.2). In view of the requiremen(3.5), we
conclude from Egs(3.7) and(1.2) that

Yi'=y=—2a, (3.9

what justifies a posteriori our supposition in Eq.(3.6).
Therefore all cusp conditions obtained @t 1, Egs.(1.2),
(2.12, (2.19, (2.20, hold for n{, N3, ege €os at ANy
e[0,1].

Let us represent the intermediate-system potential as a
sum of the original potential due to clamped nuclei and an
additional potential that takes into account effective interac-

tions (int) between electrons

ve(r)=uv(r)+uo(r). (3.9

Then from Egs.(3.8), (3.6), and (1.8 it follows that the
singularity ofvi(r) at Ry,=0 (if it occurs at al) must be
weaker than the Coulombic singularity:

lim rlvﬁ]t(rl) =0.
r{—0

(3.10

It should be noted that thﬁ?1t part of the KS potential, Egs.
(3.3,(3.9), is traditionally split into the electrostatiHar-
tree) and exchange-correlation contributions:

vks(N=0(N+v(N=v(r)+vedr)+uv,(r),

(3.11

where vedr;[n])=/d " u(r,r')ny(r"). Evidently, the
electrostatic potentialve{r;[n;]) is finite everywhere.
Therefore, Eq(3.10 at «=0 leads to

limriv,(ry)=0
r1~>0

(3.12
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Ec=Eee Eget T'—T°, (3.15

can also be written in terms of the adiabatic-connection av-
erage(aa

Eczfdfﬂr ec(r)zfdfﬂr[agjr)—sge(r)], (3.1

where

1
sgjr):J' daegdr). (3.17
0
Hereed{r)=edr;[n5]), Eqg. (2.3. Knowing that the cusp
conditions hold foregfr) at any «, and for e.{r), Egs.

(2.16,(2.20, we can immediately obtain the cusp condition
for the exchange energy densjsee Eq.(3.14)],

dey(ry)
drq

=—2Z,8,(0),
r,=0

(3.18

and for the correlation energy densitysee Egs.
(3.16,(3.17)],
dedr
)|y o). (3.19
dr,

r=0

IV. DISCUSSION AND CONCLUSIONS

It is worth stressing that all results for the cusp conditions
are obtained from an arbitrary eigenfunctionfbf Eq. (1.4),

or H¢, Eq. (3.1); therefore they are valid not only for the
ground state(GS of the system, but also for an arbitrary
excited state. While the DFT was formulated originally for
the GS, various generalizations for excited states are avail-
able now too. Thus some of our results such as Ej42),
(3.18, and(3.19 may prove to be useful for development of
approximate density functionals for both the GS and excited
state versions of DFT: the quality of an approximation may
be checked against fulfillment of these results, or these re-
sults may be imposed as constraints during construction of
approximate functionals.

—an exact property of the exchange-correlation potential at The DFT approach to aingle excited state proposed re-

the nucleus positiofR,=0.

cently by Nagy[5] is based on the arguments that the cusp

In the KS approach to DFT, the total molecular energy,condition holds for the density; corresponding to an ex-

Eqg. (2.2, is rewritten as

E=T+V+E+E+E, (3.13

(see, e.g., Parr and Yafg]), whereT,=T= [d% &2 (r) is
the kinetic energy of the noninteracting € 0) systemEgg
is given in Egs(2.18 and(2.19, the exchange enerdy, is
defined as

Ex=Ege—EeS=f d3r[sge(r)—ses(r)]=f d3r e4(r),
(3.14

and the correlation energy, given by

cited state and that it remains valid also during the adiabatic
connection to the effective KS system that describes this ex-
cited state. However, these arguments were criticized re-
cently by Moiseye\9]. Actually, he quotes reasoning from
Gross[10] that Nagy’s arguments cannot be true for the ef-
fective KS system, because the KS one-electron potential
does not belong to the class of bare nuclear Coulomb poten-
tials (Nagy’'s argument is valid only for that class, according
to his opinion. Our reasoning, given in Eq$3.6)—(3.8),
supports Nagy’s arguments and shows that there is no foun-
dation for Gross’ reservation.

From the fact that the results for the cusp conditions are
valid for an arbitrary eigenstate of the system, it follows also
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that they remain valid if the pure-system densities are re- The cusp conditions obtained in the present paper are sat-
placed by ensemble densities. Ensemble DFT is used fasfied not only by exact solutions of many-electron problems,
describing a system at a finite temperat(see, e.g.[8]), for ~ but also by approximate solutions that are derived from an
obtaining excited state energigkl], or for handling degen- approximate Hamiltonian, provided its potential energy term
eracy of either the GS or excited stafég, and so on. An satisfies Eq.(1.8). The Hartree-Fock approximation evi-
ensemble 2DM is defined as dently belongs to this class. Finally, since solutions for solids
can be viewed as obtained by considering solutions for larger
and larger clusters, all derived cusp conditighsing local
properite$ remain valid for condensed matter.

In concluding, our paper demonstrates that nuclear cusp
where A denotes a set of quantum numbers of a particulagonditions are satisfied by various terms of the energy den-
eigenfunction¥, , from whichp, , is derived according to sity that occur in quantum chemistry in general and in a
Eq. (2.4). From this ensemble 2DM other ensemble DMs aremultitude of DFT approaches.
obtained according to Eq$2.5—(2.7), and they satisfy the
cusp conditiong1.2) and (2.12. The same is true for the
ensemblex-dependent densities. Since all considered energy
densities depend on DMs linearly, the densitigs, e, & The Flemish Science FoundatiGRWO) is acknowledged
for ensembles satisfy the cusp conditiai?s16),(3.19 and by I.A.H. for support under Grant No. G.0347.97 and also by
the densitye;,+ v n; satisfies the relatiof2.17). After cal-  P.S. for fiancial support. The University of Antwe{fRUCA)
culating g5 in terms of the ensemble;, Eq. (2.19, the is thanked by I.A.H. for its support. This work was also
exchange energy density for an ensemfyjes sge—ses also  supported by the Concerted Action Program of the Univer-

PzZ; PaPA2,  PA=0, ; pr=1, 4.1

ACKNOWLEDGMENTS

satisfies the cusp conditidi3.18). sity of Antwerp.
[1] T. Kato, Commun. Pure Appl. Mati.0, 151 (1957). (1974.
[2] W. A. Bingel, Z. Naturforsch. AL8, 1249(1963. [8] R. G. Parr and W. Yand)ensity-Functional Theory of Atoms
[3] R. T. Pack and W. B. Brown, J. Chem. Phy§, 556 (1966. and MoleculegOxford University Press, New York, 1989
[4] E. Steiner, J. Chem. Phy39, 2365(1963. [9] N. Moiseyev, Chem. Phys. Let821, 469 (2000.
[5] A. Nagy, Int. J. Quantum Chen0, 681 (1998. [10] E. K. U. Gross(unpublished] quoted in[9].
[6] E. R. DavidsonReduced Density Matrices in Quantum Chem-[11] E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev3&,

istry (Academic Press, New York, 19¥.6 2805(1988; 37, 2809(1988.

[7] 3. Harris and R. O. Jones, J. Phys. F: Met. PRys1170

012520-5



