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Nuclear cusp conditions for components of the molecular energy density
relevant for density-functional theory
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Nuclear cusp conditions are obtained for the full electron-electron interaction energy density as well as for
the exchange and correlation energy densities of density-functional theory. Their form is the same as the form
of the well known Kato cusp condition for the electron-number density. All these cusp conditions are valid for
both the ground and excited states of a molecule or solid.
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I. INTRODUCTION

A singularity at the nuclear positionRA of the electron-
nucleus interaction potential

vA~r !52
ZA

ur2RAu
~1.1!

causes theN-electron wave function of a molecule to be
nonanalytic function of each electron-position variabler i , i
51,2, . . . ,N, at r i5RA , but the function remains bounde
~finite! everywhere. The character of this non-analytici
known as the nuclear cusp condition, was determined fo
atom by Kato@1#. His result was extended to a molecule
Bingel @2#, and generalized by Pack and Brown@3# to the
case where nuclear motion is included. For a molecule w
fixed nuclear positions, as considered in the present inve
gation, Kato’s cusp condition for the wave function lea
~see Steiner@4#! to the following condition for the electron
number densityn1(r ):

d n1̄~r !

dr
U

r 50

522 ZAn1~0!, ~1.2!

whereZA is the nuclear charge, while the center of the c
ordinate system is placed at theAth nucleus position,RA

50. The angular averageF̄(r ) of a functionF(r ) is defined
by

F̄~r !5E d2V

4p
F„r e~V!…, ~1.3!

where, in spherical coordinates,r5r e(V), ueu51.
We are going to show that the nuclear cusp condition

satisfied not only by the electron-number density, Eq.~1.2!,
but also by other densities used for the calculation of
energy of a molecule. Such results may be relevant
density-functional theory~DFT! applications to both the
ground and excited states~see Nagy@5#!.

Consider a molecule as anN-electron system described b
the Hamiltonian
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Ĥ5T̂1V̂1Û, ~1.4!

where T̂5( i 51
N t̂ (r i), V̂5( i 51

N v(r i), Û5(1< i , j <N u(r i ,
r j ). Herexi[$r i ,si% denotes the space-spin coordinate of t
i th electron,t̂ (r )52 1

2 ¹2(r ) is the kinetic energy operator
v(r )5(AvA(r ) @Eq. ~1.1!# is the external potential~due to
clamped nuclei!, and u(r i ,r j )51/ur i2r j u is the electron-
electron interaction potential. Atomic units are used throu
out. Let theN-electron, antisymmetric, normalized (^CuC&
51) wave functionC(x1 , . . . ,xN) be some eigenfunction
of the Schro¨dinger equation

ĤC5EC. ~1.5!

Discussing cusp conditions due to the particularAth nucleus,
we choose its position to be atRA50. Of all ~equivalent!
arguments ofC we focus our attention onr15r 1 e(V1).

The presentation of the nuclear cusp problem given
Davidson@6# serves us now as a starting point of our inve
tigation. SinceC is finite everywhere, we have from Eq
~1.5!

lim
r 1→0

r 1ĤC50. ~1.6!

This means thatC(r1 ,s1 ,x2 , . . . ,xN) is also the eigenfunc-
tion, with zero eigenvalue, of the operator

b̂~r1!5 lim
r 1→0

r 1T̂1g5 lim
r 1→0

r 1 t̂~r1!1g, ~1.7!

where

g5 lim
r 1→0

r 1~V̂1Û !5 lim
r 1→0

r 1vA~r1!52ZA . ~1.8!

For the wave functionC(r1 ,X) whereX[$s1 ,x2 , . . . , xN%,
expanded in spherical harmonics

C~r1 ,X!5(
l 50

`

(
m52 l

m5 l

Ylm~V1! r 1
l f lm~r 1 ,X! ~1.9!
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with f lm(r 1 ,X) an analytic function ofr 1, the eigenequation
mentioned above,

b̂~r1!C50, ~1.10!

leads to the following conditions@3,6# on the partial waves
amplitudes:

] f lm~r 1 ,X!

]r 1
U

r 150

5
g

l 11
f lm~0,X!. ~1.11!

Equations~1.8!–~1.11! are sufficient for obtaining all in-
teresting cusp conditions. These for the system describe
the Hamiltonian in Eq.~1.4! will be considered in Sec. II
and those for systems of adiabatic connection~a method that
leads to the construction of DFT objects! in Sec. III. The
implications of our results will be discussed in Sec. IV.

II. RESULTS FOR THE FULLY INTERACTING SYSTEM

As is well known~see, e.g., Davidson@6#! the total energy
E5^CuĤuC&—the eigenenergy ifC is the solution of the
Schrödinger equation~1.5!—can be written in terms of the
first and second order density matrix~1DM, 2DM! derived
from C, namely,

E5T1V1Eee5E d3r 1 $«kin~r1 ;@r1# !

1v~r1!n1~r1!1«ee~r1 ;@n2# !%, ~2.1!

where

«kin~r1 ;@r1# !5 t̂~r1!r1~r1 ;r18!ur
185r1

~2.2!

is the kinetic energy density,v(r1)n1(r1) is the electron-
nucleus interaction energy density, and

«ee~r1 ;@n2# !5E d3r 2 u~r1 ,r2! n2~r1 ,r2! ~2.3!

is the electron-electron interaction energy density. The D
r1 , n2, andn1 can be obtained from the 2DM

r2~r1 ,r2 ;r18 ,r28!5
N~N21!

2 E dQ C~r1 ,r2 ,Q!

3C* ~r18 ,r28 ,Q!. ~2.4!

Here the notationQ[$s1 ,s2 ,x3 , . . . ,xN% is introduced to
split the previousX asX5$s1 ,r2 ,s2 ,x3 , . . . ,xN%5 $r2 ,Q%,
and*dQ means summation oversi and integration overd3r i
for all variables included inQ. Thus, the electron-pair den
sity is the diagonal element of the 2DM,

n2~r1 ,r2!5r2~r1 ,r2 ;r1 ,r2!, ~2.5!

the 1DM is the reduced 2DM,

r1~r1 ;r18!5
2

N21E d3r 2 r2~r1 ,r2 ;r18 ,r2!, ~2.6!
01252
by

s

and the electron-number density is the diagonal elemen
the 1DM,

n1~r1!5r1~r1 ;r1!. ~2.7!

In order to establish the cusp condition forn2(r1 ,r2), let
us calculate this DM using the expansion~1.9! for C and
C* in Eqs.~2.4!,~2.5!:

n2~r1 ,r2!5
N~N21!

2 E dQ (
lml8m8

Ylm~V1!Yl 8m8
* ~V1!

3r 1
l 1 l 8 f lm~r 1 ,r2 ,Q! f l 8m8

* ~r 1 ,r2 ,Q!. ~2.8!

According to Eq.~1.3!, its angular average is

n2̄~r 1 ,r2!5
1

4pE d2V1 n2„r 1e~V1!,r2…

5
N~N21!

2 E dQ
1

4p(
lm

r 1
2l u f lm~r 1 ,r2 ,Q!u2.

~2.9!

The derivative of this function,

]n2̄~r 1 ,r2!

]r 1
5

N~N21!

2 E dQ
1

4p

3H (
l 51

`

2l r 1
2l 21 (

m
u f lm~r 1 ,r2 ,Q!u2

1(
l 50

`

r 1
2l (

m

]u f lm~r 1 ,r2 ,Q!u2

]r 1
J , ~2.10!

together with the result

]u f lm~r 1 ,r2 ,Q!u2

]r 1
U

r 150

5
2g

l 11
u f lm~0,r2 ,Q!u2 ~2.11!

obtained from Eq.~1.11!, leads, in the limitr 1→0, to the
cusp condition for the electron-pair density

]n2̄~r 1 ,r2!

]r 1
U

r 150

522ZAn2~0,r2! ~2.12!

@using Eq.~1.8!#. We note that its form is the same as in th
case of the electron-number density, Eq.~1.2!. In fact, we
can confirm the validity of Eq.~1.2! by integrating both sides
of Eq. ~2.12! over d3r 2 and recalling the definition ofn1 in
Eqs.~2.7!, ~2.6!.

To find the cusp condition for«ee(r1 ;@n2#), Eq. ~2.3!, we
calculate the derivative of its angular average,
0-2
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d «eē~r 1 ;@n2# !

dr1
U

r 150

5E d2V1

4p E d3r 2

]

]r 1
„u„r 1e~V1!,r2…

3n2„r 1e~V1!,r2…) r 150

5E d3r 2 E d2V1

4p

3S n2~0,r2!
]u„r 1e~V1!,r2…

]r 1

1u~0,r2!
]n2„r 1e~V1!,r2…

]r 1
D

r 150

.

~2.13!

But, for the Coulombic interaction,

]u„r 1e~V1!,r 2e~V2!…

]r 1
U

r 150

5
e~V1!•e~V2!

r 2
2

. ~2.14!

So

d «eē~r 1 ;@n2# !

dr1
U

r 150

5E d3r 2 S n2~0,r2!

r 2
2

e~V2!•ē

1u~0,r2!
]n2̄~r 1 ,r2!

]r 1
U

r 150
D .

~2.15!

The first term vanishes because the angular average o
unit vector is zero and for the second term the result~2.12!
should be used, so, finally,

d «eē~r 1 ;@n2# !

dr1
U

r 150

522ZA«ee~0;@n2# !. ~2.16!

The remaining two densities in Eq.~2.1! satisfy the equa-
tion

lim
r 1→0

r 1„«kin~r1 ;@r1# !1v~r1! n1~r1!…

5 lim
r 1→0

r 1«kin~r1 ;@r1# !2ZA n1~0!50, ~2.17!

which follows directly from the eigenequation~1.10!, when
the definitions~1.7!, ~1.8!, and~2.2! are taken into account
The result~2.17! demonstrates that, at the nuclear positi
RA50, the singularity of the kinetic energy density cance
exactly the singularity of the electron-nucleus interaction
ergy density.

For DFT applications the classical electrostatic energy
electrons is of interest:

Ees@n1#5E d3r 1 «es~r1 ;@n1# !, ~2.18!
01252
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where the energy density«es, defined in analogy with«ee
@Eq. ~2.3!#, is

«es~r1 ;@n1# !5E d3r 2 u~r1 ,r2! 1
2 n1~r1! n1~r2!.

~2.19!

By applying the same steps as in Eqs.~2.13!–~2.15! with
n2(r1 ,r2) replaced by1

2 n1(r1) n1(r2), and, next, using the
condition ~1.2!, we arrive at the cusp condition

d «es̄~r 1 ;@n1# !

dr1
U

r 150

522ZA«es~0;@n1# ! ~2.20!

in the same form as for the densities already considered

III. RESULTS FOR THE ADIABATIC CONNECTION TO
THE NONINTERACTING EFFECTIVE SYSTEM

Adiabatic connection, developed by Harris and Jones@7#
~see also Parr and Yang@8#, Sec. 8.5, and references therein!,
is a very convenient tool of DFT for obtaining characterist
of the noninteracting effective Kohn-Sham~KS! system by
linking it with the fully interacting system via intermediat
systems. For that purpose, a Hamiltonian depending o
parameteraP@0,1# is introduced,

Ĥa5T̂1V̂a1aÛ, ~3.1!

where V̂a5( i 51
N va(r i). This Ĥa, for a51, due to the re-

quirement

V̂15V̂, v1~r !5v~r !, ~3.2!

reduces to the original HamiltonianĤ15Ĥ @Eq. ~1.4!#, while
for a50 it represents the noninteracting system (Û is
switched off! characterized by the KS potential

v0~r !5vKS~r !. ~3.3!

From the eigenfunctionCa of the Schro¨dinger equation

ĤaCa5EaCa, ~3.4!

the electron densityn1
a(r ) can be calculated liken1(r ) in

Eqs. ~2.4!–~2.7! from C. The effective one-body potentia
va(r ) is defined by the requirement that the electron den
of the ‘‘intermediate’’ system remains independent ofa:

n1
a~r !5n1

1~r !5n1~r !. ~3.5!

In order to investigate the cusp conditions for the int
mediate system, let us suppose that the properties ofva(r )
~of unknown explicit form! allow for a finite value of the
limit

ga5 lim
r 1→0

r 1~V̂a1aÛ !5 lim
r 1→0

r 1va~r1!, ~3.6!
0-3
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the analog of Eq.~1.8!. Then, with C, f lm ,g replaced by
Ca, f lm

a ,ga, Eqs.~1.9!–~1.11! hold, and, therefore, all previ
ous cusp conditions can be written fora-dependent densitie
in terms ofga, in particular,

d n1
ā~r !

dr
U

r 50

52 ga n1
a~0!, ~3.7!

the analog of Eq.~1.2!. In view of the requirement~3.5!, we
conclude from Eqs.~3.7! and ~1.2! that

ga5g52ZA , ~3.8!

what justifies a posteriori our supposition in Eq.~3.6!.
Therefore all cusp conditions obtained ata51, Eqs.~1.2!,
~2.12!, ~2.16!, ~2.20!, hold for n1

a , n2
a , «ee

a , «es
a , at anya

P@0,1#.
Let us represent the intermediate-system potential a

sum of the original potential due to clamped nuclei and
additional potential that takes into account effective inter
tions ~int! between electrons

va~r !5v~r !1v int
a ~r !. ~3.9!

Then from Eqs.~3.8!, ~3.6!, and ~1.8! it follows that the
singularity of v int

a (r ) at RA50 ~if it occurs at all! must be
weaker than the Coulombic singularity:

lim
r 1→0

r 1v int
a ~r1!50. ~3.10!

It should be noted that thev int
0 part of the KS potential, Eqs

~3.3!,~3.9!, is traditionally split into the electrostatic~Har-
tree! and exchange-correlation contributions:

vKS~r !5v~r !1v int
0 ~r !5v~r !1ves~r !1vxc~r !,

~3.11!

where ves(r ;@n1#)5*d3r 8 u(r ,r 8) n1(r 8). Evidently, the
electrostatic potentialves(r ;@n1#) is finite everywhere.
Therefore, Eq.~3.10! at a50 leads to

lim
r 1→0

r 1 vxc~r1!50 ~3.12!

—an exact property of the exchange-correlation potentia
the nucleus positionRA50.

In the KS approach to DFT, the total molecular ener
Eq. ~2.1!, is rewritten as

E5Ts1V1Ees1Ex1Ec ~3.13!

~see, e.g., Parr and Yang@8#!, whereTs5T05*d3r «kin
0 (r ) is

the kinetic energy of the noninteracting (a50) system,Ees
is given in Eqs.~2.18! and~2.19!, the exchange energyEx is
defined as

Ex5Eee
0 2Ees5E d3r @«ee

0 ~r !2«es~r !#5E d3r «x~r !,

~3.14!

and the correlation energy, given by
01252
a
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Ec5Eee
1 2Eee

0 1T12T0, ~3.15!

can also be written in terms of the adiabatic-connection
erage~aa!

Ec5E d3r «c~r !5E d3r @«ee
aa~r !2«ee

0 ~r !#, ~3.16!

where

«ee
aa~r !5E

0

1

da «ee
a ~r !. ~3.17!

Here«ee
a (r )5«ee(r ;@n2

a#), Eq. ~2.3!. Knowing that the cusp
conditions hold for«ee

a (r ) at any a, and for «es(r ), Eqs.
~2.16!,~2.20!, we can immediately obtain the cusp conditio
for the exchange energy density@see Eq.~3.14!#,

d « x̄~r 1!

dr1
U

r 150

522ZA«x~0!, ~3.18!

and for the correlation energy density@see Eqs.
~3.16!,~3.17!#,

d « c̄~r 1!

dr1
U

r 150

522ZA«c~0!. ~3.19!

IV. DISCUSSION AND CONCLUSIONS

It is worth stressing that all results for the cusp conditio
are obtained from an arbitrary eigenfunction ofĤ, Eq. ~1.4!,
or Ĥa, Eq. ~3.1!; therefore they are valid not only for th
ground state~GS! of the system, but also for an arbitrar
excited state. While the DFT was formulated originally f
the GS, various generalizations for excited states are av
able now too. Thus some of our results such as Eqs.~3.12!,
~3.18!, and~3.19! may prove to be useful for development
approximate density functionals for both the GS and exci
state versions of DFT: the quality of an approximation m
be checked against fulfillment of these results, or these
sults may be imposed as constraints during construction
approximate functionals.

The DFT approach to asingleexcited state proposed re
cently by Nagy@5# is based on the arguments that the cu
condition holds for the densityn1 corresponding to an ex
cited state and that it remains valid also during the adiab
connection to the effective KS system that describes this
cited state. However, these arguments were criticized
cently by Moiseyev@9#. Actually, he quotes reasoning from
Gross@10# that Nagy’s arguments cannot be true for the
fective KS system, because the KS one-electron poten
does not belong to the class of bare nuclear Coulomb po
tials ~Nagy’s argument is valid only for that class, accordi
to his opinion!. Our reasoning, given in Eqs.~3.6!–~3.8!,
supports Nagy’s arguments and shows that there is no fo
dation for Gross’ reservation.

From the fact that the results for the cusp conditions
valid for an arbitrary eigenstate of the system, it follows a
0-4
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that they remain valid if the pure-system densities are
placed by ensemble densities. Ensemble DFT is used
describing a system at a finite temperature~see, e.g.,@8#!, for
obtaining excited state energies@11#, or for handling degen-
eracy of either the GS or excited states@5#, and so on. An
ensemble 2DM is defined as

r25(
L

pLrL,2 , pL>0, (
L

pL51, ~4.1!

whereL denotes a set of quantum numbers of a particu
eigenfunctionCL , from which rL,2 is derived according to
Eq. ~2.4!. From this ensemble 2DM other ensemble DMs a
obtained according to Eqs.~2.5!–~2.7!, and they satisfy the
cusp conditions~1.2! and ~2.12!. The same is true for the
ensemblea-dependent densities. Since all considered ene
densities depend on DMs linearly, the densities«ee, «ee

a , «c

for ensembles satisfy the cusp conditions~2.16!,~3.19! and
the density«kin1v n1 satisfies the relation~2.17!. After cal-
culating «es in terms of the ensemblen1, Eq. ~2.19!, the
exchange energy density for an ensemble«x5«ee

0 2«es also
satisfies the cusp condition~3.18!.
m
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The cusp conditions obtained in the present paper are
isfied not only by exact solutions of many-electron problem
but also by approximate solutions that are derived from
approximate Hamiltonian, provided its potential energy te
satisfies Eq.~1.8!. The Hartree-Fock approximation ev
dently belongs to this class. Finally, since solutions for sol
can be viewed as obtained by considering solutions for lar
and larger clusters, all derived cusp conditions~being local
properites! remain valid for condensed matter.

In concluding, our paper demonstrates that nuclear c
conditions are satisfied by various terms of the energy d
sity that occur in quantum chemistry in general and in
multitude of DFT approaches.
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