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IMPORTANCE Neurofilament light protein (NfL) is elevated in cerebrospinal fluid (CSF) of a
number of neurological conditions compared with healthy controls (HC) and is a candidate
biomarker for neuroaxonal damage. The influence of age and sex is largely unknown, and
levels across neurological disorders have not been compared systematically to date.

OBJECTIVES To assess the associations of age, sex, and diagnosis with NfL in CSF (cNfL) and
to evaluate its potential in discriminating clinically similar conditions.

DATA SOURCES PubMed was searched for studies published between January 1, 2006,
and January 1, 2016, reporting cNfL levels (using the search terms neurofilament light and
cerebrospinal fluid) in neurological or psychiatric conditions and/or in HC.

STUDY SELECTION Studies reporting NfL levels measured in lumbar CSF using a commercially
available immunoassay, as well as age and sex.

DATA EXTRACTION AND SYNTHESIS Individual-level data were requested from study authors.
Generalized linear mixed-effects models were used to estimate the fixed effects of age, sex,
and diagnosis on log-transformed NfL levels, with cohort of origin modeled as a random
intercept.

MAIN OUTCOME AND MEASURE The cNfL levels adjusted for age and sex across diagnoses.

RESULTS Data were collected for 10 059 individuals (mean [SD] age, 59.7 [18.8] years; 54.1%
female). Thirty-five diagnoses were identified, including inflammatory diseases of the central
nervous system (n = 2795), dementias and predementia stages (n = 4284), parkinsonian
disorders (n = 984), and HC (n = 1332). The cNfL was elevated compared with HC in a
majority of neurological conditions studied. Highest levels were observed in cognitively
impaired HIV-positive individuals (iHIV), amyotrophic lateral sclerosis, frontotemporal
dementia (FTD), and Huntington disease. In 33.3% of diagnoses, including HC, multiple
sclerosis, Alzheimer disease (AD), and Parkinson disease (PD), cNfL was higher in men than
women. The cNfL increased with age in HC and a majority of neurological conditions,
although the association was strongest in HC. The cNfL overlapped in most clinically similar
diagnoses except for FTD and iHIV, which segregated from other dementias, and PD, which
segregated from atypical parkinsonian syndromes.

CONCLUSIONS AND RELEVANCE These data support the use of cNfL as a biomarker of
neuroaxonal damage and indicate that age-specific and sex-specific (and in some cases
disease-specific) reference values may be needed. The cNfL has potential to assist the
differentiation of FTD from AD and PD from atypical parkinsonian syndromes.
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I dentifying neuroaxonal damage and quantifying the in-
tensity of this process is a critical step in patient care be-
cause it may support diagnosis and help estimate the prog-

nosis of neurological conditions. In addition, it is essential for
the evaluation of drug candidates with disease-modifying
potential. Neurofilament light protein (NfL) is an abundant
cytoskeletal protein exclusively expressed by central and pe-
ripheral neurons. Elevated levels of NfL in cerebrospinal fluid
(CSF) were first reported in neurodegenerative conditions more
than 20 years ago,1 sparking interest in the potential of this
neuron-specific protein as a biomarker. Since then, elevated
levels of NfL in CSF (cNfL) have been described in a number
of neurological and psychiatric conditions. The magnitude of
the increase in inflammatory, degenerative, infectious, ische-
mic, and traumatic neurological conditions, as well as in psy-
chiatric disorders, varies between conditions and studies.
To date, cNfL levels have not been compared systematically
between neurological disorders, and patient numbers in indi-
vidual studies are often low. A positive association between
cNfL and age has been reported in healthy controls (HC)2 but
was not systematically investigated in neurological condi-
tions and may alter the performance of this biomarker across
age categories. Together, these questions limit clinical imple-
mentation of cNfL. To compare cNfL levels between diagno-
ses, assess the association of age and sex with these vari-
ables, and evaluate the potential of cNfL level as a diagnostic
biomarker, we performed a systematic review and meta-
analysis on individual data collected from studies reporting
cNfL levels in diseases and controls.

Methods
Search Strategy
This systematic review and meta-analysis followed Preferred
Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) reporting guidelines.3 We searched PubMed for articles
published in English between January 1, 2006, and January 1,
2016, reporting cNfL levels (using the search terms neurofilament
light and cerebrospinal fluid) in neurological or psychiatric
conditions and/or in HC. Titles and abstracts were reviewed, and
relevant studies were selected. The quality of primary articles
was assessed using relevant criteria from the Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE)
guidelines4 and the QUADAS-2 guidelines.5 All studies were
approved by local ethics committees.

Inclusion Criteria
Studies were included if lumbar cNfL was reported for neuro-
logical patients and/or HC and/or individuals with subjective
neurological or cognitive complaints and/or a psychiatric con-
dition and/or a systemic disease that may affect the central ner-
vous system (CNS). A reference method for the measurement
of cNfL is lacking to date. To limit between-cohort heteroge-
neity due to the measurement tool, we included only those
studies that used the same commercially available immuno-
assay (NF-light ELISA [enzyme-linked immunosorbent as-
say]; UmanDiagnostics) on the market since 2006. This assay

was selected because it was used in a majority of publications
(71 of 112) since 2006 and was reported to be sensitive and
robust.6

Data Collection
We contacted the corresponding authors to request access to
individual-level cNfL, age at CSF sampling, sex, and diagno-
sis. An individual’s data were included only if all of those
variables were available. For patients with multiple sclerosis
(MS) and HIV-positive individuals, treatment status was
also collected.7,8 Information on study procedures was
extracted from the publication or requested from the corre-
sponding author.

Diagnostic Categories
Diagnosis was established by the original study authors ac-
cording to published criteria when applicable (Table 1). Infor-
mation about the clinical subtype of neurodegenerative con-
ditions was not retained, and all clinical subtypes of a condition
were pooled in a single diagnostic group. Stroke, cardiac ar-
rest, HIV infection, chronic inflammatory demyelinating poly-
radiculoneuropathy (CIDP), Guillain-Barré syndrome (GBS),
Cushing disease in remission, and optic neuritis (ON) were di-
agnosed according to clinical guidelines. Presymptomatic ge-
netic frontotemporal dementia (pgFTD), Huntington disease
(HD), and premanifest HD (pHD) were diagnosed by genetic
testing. The HIV-infected individuals with cognitive impair-
ment (iHIV) included individuals with mild neurocognitive im-
pairment and individuals with HIV-associated dementia.

Individuals with subjective neurological complaint (SNC)
or subjective cognitive decline (SCD) had complaints but no
objectifiable neurological condition after extensive workup.
Inflammatory neurological diseases (IND) were inflamma-
tory diseases of the CNS, excluding MS, clinically isolated syn-
drome (CIS), and ON. Noninflammatory neurological dis-
eases (NID) were any CNS disease that was not of inflammatory
nature. Mixed dementia (MD) was dementia of assumed mixed
pathology, and dementia not specified (DNS) was dementia of
uninvestigated origin. Healthy controls were individuals who
did not have neurological complaints or signs of a neurologi-
cal condition.

Key Points
Question How do levels of neurofilament light in cerebrospinal
fluid (cNfL) compare between neurological conditions and with
healthy controls?

Findings Among 10 059 individuals in this systematic review and
meta-analysis, cNfL was elevated in most neurological conditions
compared with healthy controls, and the magnitude of the
increase varies extensively. Although cNfL overlaps between most
clinically similar conditions, its distribution did not overlap in
frontotemporal dementia and other dementias or in Parkinson
disease and atypical parkinsonian syndromes.

Meaning The cNfL is a marker of neuronal damage and may be
useful to differentiate some clinically similar conditions, such as
frontotemporal dementia from Alzheimer disease and Parkinson
disease from atypical parkinsonian syndromes.
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Diagnostic Groups
We clustered a subset of frequent neurological conditions into
3 groups of clinically similar disorders. These included the fol-
lowing: (1) untreated relapsing-remitting MS (uRRMS), indi-
viduals with relapsing-remitting MS treated with disease-
modifying therapy (tRRMS), CIS, ON, primary progressive MS
(PPMS), secondary progressive MS (SPMS), and IND; (2) Alz-
heimer disease (AD), FTD, combined FTD and amyotrophic lat-
eral sclerosis (FTD/ALS), vascular dementia (VaD), dementia
with Lewy bodies (DLB), idiopathic normal-pressure hydro-
cephalus (iNPH), mild cognitive impairment of suspected AD
pathology (MCI), SCD, and iHIV; and (3) Parkinson disease (PD),
PD dementia (PDD), DLB, multiple system atrophy (MSA),
progressive supranuclear palsy (PSP), and corticobasal syn-
drome of suspected tau underlying pathology (CBS).

cNfL Measurement
The cNfL was measured at 17 different centers using the com-
mercially available kit (NF-light ELISA assay). The cNfL val-
ues were reported in picograms per milliliter or nanograms per
liter. A systematic error in the reported concentration of cNfL
was identified at 8 centers due to a misinterpretation of the
assay’s protocol. The protocol indicated to perform a 1:1 dilu-
tion of CSF before performing the assay. However, because this
dilution is included a priori in the value assignment of the stan-
dard curve, this initial dilution should not be corrected for at
calculation of the concentration. Raw NfL values obtained from
the 8 implicated centers were corrected for the systematic er-
ror (divided by 2).

Statistical Analysis
We performed an individual-level meta-analysis based on cNfL
measurements provided by the corresponding authors. Lin-
ear mixed-effects models were used to estimate the fixed ef-
fects of age, sex, and diagnosis on log-transformed NfL lev-
els, with cohort of origin modeled as a random intercept, using
the R packages “lme4” and “lmerTest” (R Project for Statisti-
cal Computing). Age was centered according to the mean. First,
we tested all 2-way and 3-way interaction terms between all
fixed effects, which were retained in the model when statis-
tically significant. No 2-way interaction of age and sex or 3-way
interaction of age, sex, and diagnosis on cNfL was observed,
and the best-fitting model included all fixed effects and inter-
action terms for diagnosis by age and diagnosis by sex. Next,
we used the R package “emmeans” to obtain marginalized
change folds and 95% CI cNfL and cNfL-age slope estimates
for all diagnoses and to perform post hoc pairwise compari-
sons between diagnoses in the mean cNfL levels and in the
strength of the associations between cNfL age, adjusting P val-
ues for multiple testing with the Tukey procedure. Finally, we
calculated point estimates of fold-change increases for each
diagnostic group compared with controls for specific ages. The
consequences of study variability on the results was assessed
using the intraclass correlation coefficient, which reflects the
proportion of variance that can be attributed to between-
study variation, for the total sample and per diagnostic group
(analyses for the latter were performed on models the in-
cluded the fixed effects of age and sex). Values higher than 0.60

were considered to be indicative of substantial heteroge-
neity. The results were considered statistically significant when
they had an adjusted 2-sided P value below .05. All analyses
were performed in R version 3.4.2.

Results
Data Set Characteristics, Population, and Demographics
The literature search resulted in 153 records. On the basis of
title and abstract, 112 publications were selected for full-text
review, and 44 data sets met our selection criteria and were
included in the meta-analysis. In addition, 3 data sets
unpublished at the time of data collection were provided by
study authors, resulting in a total of 47 data sets (Table 2 and
eFigure 1 in the Supplement). Data were obtained for 10 059
individuals (mean [SD] age, 59.7 [18.8] years; 54.1% female),
and 35 diagnoses were identified, including control groups
(HC [n = 1332], SNC [n = 45], and SCD [n = 24] [eTable 1 in
the Supplement]), inflammatory diseases of the CNS (CIS,
ON, RRMS, SPMS, PPMS, and IND [n = 2795]) (eTable 1 in the

Table 1. Diagnostic Criteria Used by the Original Study Authors

Diagnosis Abbreviation Diagnostic Criteria

Multiple sclerosis and clinically
isolated syndrome

MS and CIS McDonald criteria,9

2005 revisions,10

and 2010 revisions11

Alzheimer disease and mild
cognitive impairment

AD and MCI Criteria by McKhann et al12

and IWG-2 criteria13

Parkinson disease PD United Kingdom Parkinson
Disease Society Brain Bank
criteria14 and National
Institute of Neurological
Disorders and Stroke
criteria15

Parkinson disease dementia PDD Movement Disorder Task
Force16

Progressive supranuclear palsy PSP Criteria by Litvan et al17

Multiple system atrophy MSA Criteria by Gilman et al18

Corticobasal syndrome CBS Criteria by Lee et al,19

criteria by Litvan et al,17

and criteria
by Mathew et al20

Dementia with Lewy bodies DLB Criteria by McKeith et al21

Frontotemporal dementia
(including all clinical
subtypes)

FTD Criteria by Neary et al22

and The Lund and
Manchester Groups23

Amyotrophic lateral sclerosis ALS Revised El Escorial criteria24

Combined frontotemporal
dementia and amyotrophic
lateral sclerosis

FTD/ALS

Vascular dementia VaD Criteria by Erkinjuntti et al25

and National Institute of
Neurological Disorders
and Stroke

Idiopathic normal-pressure
hydrocephalus

iNPH Criteria by Relkin et al26

Bipolar disorder BD Diagnostic and Statistical
Manual of Mental Disorders
(Fourth Edition)

HIV positive with cognitive
impairment (including entire
spectrum of cognitive
impairment)

iHIV Global Deficit Score27

Abbreviation: IWG-2, International Working Group 2.
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Table 2. Data Sets Included in the Meta-analysis

Source
Contributed Diagnostic Categories
(No. of Individuals) Diagnostic Criteria

Healthy Controls
Contributed, No.

Anckarsäter et al,28 2014 None NA 34

Axelsson et al,29 2014 SPMS (n = 30), PPMS (n = 5) McDonald criteria 2010 revisions11 14

Bäckström et al,30 2015 PD (n = 99), MSA (n = 11), PSP (n = 12) PD: United Kingdom Parkinson Disease Society
Brain Bank criteria14

30

MSA: Criteria by Gilman et al18

PSP: Criteria by Litvan et al17

Bjerke et al,31 2011 AD (n = 30), VaD (n = 26) AD: Criteria by McKhann et al12 30

VaD: Criteria by Erkinjuntti et al25

Bjerke et al,32 2014
and Jonsson et al,33 2012

MCI (n = 31) Criteria by McKhann et al12 15

Bruno et al,34 2012 None NA 19

Burman et al,35 2014 RRMS (n = 43), SPMS (n = 20), National
Institute of Neurological Disorders and Stroke
(n = 7), SNC (n = 6)

McDonald criteria 2010 revisions11 2

Fialová et al,36 2013 CIS (n = 32), RRMS (n = 18) McDonald criteria 2005 revisions10 24

Fialová et al,37 2017 AD (n = 25), DNS (n = 13), IND (n = 17) AD: Criteria by McKhann et al12 25

Gunnarsson et al,38 2011 RRMS (n = 92) McDonald criteria 2010 revisions11 0

Hall et al,39 2012
and Hall et al,40 2015

AD (n = 48), PD (n = 196), PDD (n = 56),
PSP (n = 53), MSA (n = 67), CBS (n = 15),
DLB (n = 69)

AD: Criteria by McKhann et al12 150

PD: National Institute of Neurological Disorders
and Stroke criteria15

PDD: Movement Disorder Task Force16

MSA: Criteria by Gilman et al18

PSP and CBS: Criteria by Litvan et al17

DLB: Criteria by McKeith et al21

CBS: Criteria by Mathew et al20

Herbert et al,41 2015 PD (n = 64), MSA (n = 50) PD: United Kingdom Parkinson Disease Society
Brain Bank criteria14

70

MSA: Criteria by Gilman et al18

Hjalmarsson et al,42 2014 Stroke (n = 20) Clinical 20

Jakobsson et al,43 2014
and Rolstad et al,44 2015

BD (n = 133) Diagnostic and Statistical Manual of Mental Disorders
(Fourth Edition)

38

Jeppsson et al,45 2013 iNPH (n = 27) Criteria by Relkin et al26 20

Jessen Krut et al,46 2014 iHIV (n = 13) Global Deficit Score27 152

Khademi et al,2 2013 Aeinehband
et al,47 2015, and unpublished
data

CIS (n = 203), RRMS (n = 682),
IND (n = 387), National Institute of
Neurological Disorders and Stroke (n = 370)

McDonald criteria9 30

Khalil et al,48 2013 CIS (n = 47), NID (n = 15) McDonald criteria 2010 revisions11 0

Kuhle et al,49 2013 CIS (n = 62), RRMS (n = 38), SPMS (n = 25),
PPMS (n = 23)

McDonald criteria 2005 revisions10 72

Kuhle et al,50 2013 RRMS (n = 30) McDonald criteria 2005 revisions10 0

Kuhle et al,51 2015 RRMS (n = 36) McDonald criteria 2005 revisions10 0

Magdalinou et al,52 2015
and unpublished data

AD (n = 26), CBS (n = 16), FTD (n = 16),
MSA (n = 30), PD (n = 10), PSP (n = 29)

AD: Criteria by McKhann et al12 28

CBS: Criteria by Mathew et al20

FTD: The Lund and Manchester Groups23

MSA: Criteria by Gilman et al18

PD: United Kingdom Parkinson Disease Society
Brain Bank criteria14

PSP: Criteria by Litvan et al17

Martínez et al,53 2015
and unpublished data

PPMS (n = 17), SPMS (n = 6),
RRMS (n = 192), CIS (n = 109)

McDonald criteria9 0

Martínez et al unpublished data CIS (n = 51), RRMS (n = 46) McDonald criteria9 0

Martínez et al unpublished data NID (n = 6), IND (n = 2), stroke (n = 4),
GBS (n = 1), ON (n = 1)

Clinical 0

Meeter et al,54 2016 pgFTD (n = 42), FTD (n = 90) Not specified 49

(continued)
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Table 2. Data Sets Included in the Meta-analysis (continued)

Source
Contributed Diagnostic Categories
(No. of Individuals) Diagnostic Criteria

Healthy Controls
Contributed, No.

Menke et al,55 2015
and Lu et al,56 2015

ALS (n = 38) Revised El Escorial criteria24 20

Modvig et al,57 2013
and Modvig et al,58 2016

ON (n = 56) Clinical 27

Modvig et al,59 2015 ON (n = 85) Clinical 0

Paterson et al,60 2015 AD (n = 94) IWG-2 criteria13 30

Pérez-Santiago et al,61 2016 iHIV (n = 14), HIV (n = 14) Global Deficit Score27 0

Pijnenburg et al,62 2015 FTD/ALS (n = 26), FTD (n = 4), AD (n = 25),
SCD (n = 24)

ALS: Revised El Escorial criteria24 0

AD: Criteria by McKhann et al12

Neuropathological confirmation (11 of 25 for AD,
15 of 23 for FTD)

Genetic confirmation (12 of 23 for FTD)

Pyykkö et al,63 2014 iNPH (n = 29), MD (n = 3), AD (n = 8) AD: Criteria by McKhann et al12 0

iNPH: Clinical

Ragnarsson et al,64 2013 Cushing disease (n = 12) Clinical 6

Romme Christensen et al,65 2014 PPMS (n = 12), SPMS (n = 12) McDonald criteria 2005 revisions10 0

Rosén et al,66 2014 Cardiac arrest (n = 21) Clinical 20

Sandberg et al,67 2016 RRMS (n = 97), SPMS (n = 44), PPMS (n = 12) McDonald criteria 2010 revisions11 0

Scherling et al,68 2014 FTD (n = 83), PSP (n = 23), CBS (n = 16),
PD (n = 6), AD (n = 45)

FTD: Criteria by Neary et al22 54

PSP: Criteria by Litvan et al17

AD: Criteria by McKhann et al12

CBS: Criteria by Lee et al19

Skillbäck et al,69 2014 AD (n = 1417), PDD (n = 45), FTD (n = 146),
LBD (n = 114), MD (n = 517), VaD (n = 465),
DNS (n = 545)

AD: IWG-2 criteria13 107

DNS: International Statistical Classification
of Diseases, 10th Revision

PDD: Movement Disorder Task Force16

FTD: The Lund and Manchester Groups23

DLB: Criteria by McKeith et al21

VaD: National Institute of Neurological Disorders
and Stroke

Stilund et al,70 2015 RRMS (n = 44), PPMS (n = 15), CIS (n = 27),
SNC (n = 39)

McDonald criteria 2010 revisions11 0

Tortelli et al,71 2015
and Tortelli et al,72 2012

CIDP (n = 25), ALS (n = 37), MCI (n = 3),
AD (n = 15), MSA (n = 1), CBS (n = 2),
NID (n = 5)

ALS: Revised El Escorial criteria24 0

CIDP: Clinical

AD and MCI: Criteria by McKhann et al12

CBS: Criteria by Lee et al19

MSA: Criteria by Gilman et al18

Tortorella et al,73 2015 CIS (n = 21) McDonald criteria 2005 revisions10 0

Trentini et al,74 2014 PPMS (n = 21), SPMS (n = 10),
National Institute of Neurological Disorders
and Stroke (n = 15)

McDonald criteria9 0

Vågberg et al,75 2015 None NA 53

Villar et al,76 2015 RRMS (n = 98), CIS (n = 29) McDonald criteria 2010 revisions11 37

Wild et al,77 2015 HD (n = 30), pHD (n = 13) Genetic testing 14

Zetterberg et al,78 2016 MCI (n = 193), AD (n = 95) Criteria by McKhann et al12 111

Abbreviations: AD, Alzheimer disease; ALS, amyotrophic lateral sclerosis;
BD, bipolar disorder; CBS, corticobasal syndrome; CIDP, chronic inflammatory
demyelinating polyradiculopathy; CIS, clinically isolated syndrome;
DLB, dementia with Lewy bodies; DNS, dementia not specified;
FTD, frontotemporal dementia; FTD/ALS, combined frontotemporal dementia
and amyotrophic lateral sclerosis; GBS, Guillain-Barré syndrome;
HD, Huntington disease; iHIV, HIV positive with cognitive impairment;
IND, inflammatory neurological disorders other than multiple sclerosis;
iNPH, idiopathic normal-pressure hydrocephalus; IWG-2, International Working

Group 2; MCI, mild cognitive impairment; MD, mixed dementia; MSA, multiple
system atrophy; NA, not applicable; NID, noninflammatory neurological
disorders; ON, optic neuritis; PD, Parkinson disease; PDD, Parkinson disease
dementia; pgFTD, presymptomatic genetic frontotemporal dementia;
pHD, premanifest Huntington disease; PPMS, primary progressive multiple
sclerosis; PSP, progressive supranuclear palsy; SCD, subjective cognitive decline;
SNC, subjective neurological complaint; SPMS, secondary progressive multiple
sclerosis; RRMS, relapsing-remitting multiple sclerosis; VaD, vascular dementia.
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Supplement), dementias and predementia stages (MCI, AD,
pgFTD, FTD, VaD, DLB, iNPH, DNS, MD, pHD, HD, iHIV, and
FTD/ALS [n = 4339]) (eTable 1 in the Supplement), and par-
kinsonian syndromes (PD, PDD, MSA, PSP, CBS, and DLB
[n = 984]) (eTable 1 in the Supplement). Three diagnostic
categories were excluded from the statistical models
because they had fewer than 5 observations per sex (Cushing
disease, cardiac arrest, and HIV), resulting in 32 diagnostic
categories and 10 012 individuals included in the analysis.

cNfL Distribution Across Diagnoses
We first examined the distribution of cNfL across diagnostic
categories (Figure 1). The cNfL was increased compared with
HC in most neurological conditions (Figure 1A). The fold
changes compared with HC varied extensively between indi-
vidual conditions, with the largest effect sizes observed in iHIV
(21.36; 95% CI, 9.86-46.30), FTD/ALS (10.48; 95% CI, 4.85-
22.67), ALS (7.58; 95% CI, 4.49-12.81), and HD (5.88; 95% CI,
2.43-14.27) (Figure 1B; eTable 2 in the Supplement).

Association of cNfL With Age and Sex
In HC, we observed a yearly increase of 3.30% (95% CI, 2.98%-
3.62%) in cNfL levels (eTable 2 in the Supplement). A positive
association between cNfL and age was also observed in indi-
viduals with subjective complaints, BD, and in most neurode-
generative conditions (eTable 2 in the Supplement). In MS, iHIV,
and rapidly progressive neurodegenerative conditions (FTD,
ALS, FTD/ALS, MSA, PSP, CBS, and HD), no such association
was observed (eTable 2 in the Supplement). In HC, cNfL was
higher in men (26.0%, 95% CI, 16.0%-37.0%) (eTable 3 in the
Supplement). This was also the case in a minority of neuro-
logical conditions, including MS, AD, VaD, and PD (eTable 3 in
the Supplement).

cNfL Levels Within 3 Groups of Clinically Similar Disorders
We next compared cNfL between neurological conditions
within 3 groups of clinically similar disorders. In inflamma-
tory conditions of the CNS, the mean cNfL levels were similar
in ON, CIS, and MS subtypes (eTable 4A in the Supplement).
The association between cNfL and age was positive in ON, CIS,
and IND but was negative in uRRMS (Figure 2A; eFigure 2 and
eTable 2 in the Supplement). The ratio of cNfL between ON and
CIS, ON and IND, and CIS and IND remained stable across the
age range of the study, while the ratio between uRRMS and CIS
decreased with increasing age (eTable 5A in the Supple-
ment). No association between cNfL and age was observed in
tRRMS and PPMS (Figure 2A and eTable 4 in the Supple-
ment). The ratio of cNfL between uRRMS and tRRMS and be-
tween uRRMS and PPMS remained stable across the age range
of the study (eTable 5B in the Supplement). No association be-
tween cNfL and age was observed in SPMS (Figure 2A; and
eTable 2 in the Supplement). Although cNfL levels tended to
be higher in young uRRMS compared with age-correspond-
ing SPMS, this did not reach statistical significance (eTable 5C
in the Supplement). In dementias and related disorders, the
mean cNfL levels were statistically significantly higher in FTD
compared with other causes of dementia, such as AD (2.08;
95% CI, 1.72-2.56 [eTable 4B in the Supplement]), VaD (1.56;

95% CI, 1.25-1.96 [eTable 4B in the Supplement]), and DLB
(2.50; 95% CI, 1.89-3.33 [eTable 4B in the Supplement]). An as-
sociation of cNfL with age was positive in AD, VaD, and DLB
but was absent in FTD (Figure 2B; eFigure 2B and eTable 4B
in the Supplement). The ratio of cNfL between AD and FTD in-
creased with age; in individuals 90 years and older, the dis-
tribution of cNfL in both conditions overlapped (eTable 5D in
the Supplement). An association between cNfL and age was
absent in FTD and FTD/ALS, while it was present in pgFTD
(eFigure 2 and eTable 2 in the Supplement). A positive asso-
ciation with age was observed in AD, MCI, and SCD (Figure 2B;
eTable 2 in the Supplement), and the ratio of cNfL between AD
and MCI remained stable across the age range (eTable 5E in the
Supplement). In parkinsonian syndromes, the mean cNfL lev-
els did not differ between PD and PDD and between PDD and
DLB, while they were higher in MSA, PSP, and CBS compared
with PD (eTable 4C in the Supplement). In MSA, PSP, and CBS,
no association with age was observed, while a positive asso-
ciation was found in PD, PDD, and DLB (Figure 2C and eTable 2
in the Supplement). The ratio of cNfL between MSA and PD,
PSP and PD, and CBS and PD decreased with age but re-
mained high across the age range of the study (Figure 2C and
eTable 5G in the Supplement).

Assessment of Cohort Heterogeneity
In this meta-analysis, we pooled individual patient data origi-
nating from 42 different data sets. To estimate the proportion
of the total variance of cNfL accounted for by the data set
(cohort) of origin, we calculated the intraclass coefficient for
cohort-related random intercepts. Across the total sample
(n = 10 012), the intraclass coefficient was low at 0.15. Like-
wise, in a majority of diagnostic categories, the intraclass co-
efficient was low to moderate (<0.60). However, in 7 of the 32
diagnostic categories (MD, DNS, PDD, DLB, NID, iHIV, and
stroke), the intraclass coefficients were high (>0.60), indicat-
ing that a large proportion of the variance in cNfL was due to
the data set of origin (eTable 6 in the Supplement).

Discussion
In this meta-analysis that included 10 012 individuals, we found
that cNfL was increased compared with HC in most neurologi-
cal conditions studied. The largest effect sizes were observed
in iHIV, FTD/ALS, ALS, and HD, while the effect sizes in in-
flammatory conditions of the CNS were low. Other neurologi-
cal disorders showed much subtler increases that failed to reach
statistical significance (PD and CIDP/GBS). However, the ef-
fect sizes in these conditions were positive, and larger sample
sizes may allow for more robust estimates. In HC, we ob-
served a positive association between cNfL and age. A posi-
tive association, albeit weaker, was also present in a majority
of neurological conditions. An association with sex was ab-
sent in most diagnostic categories except for HC, PPMS, AD,
VaD, and PD, where levels were higher in men. In clinically simi-
lar disorders, the distribution of cNfL relative to age mostly
overlapped, suggesting limited use for differential diagnosis.
Exceptions were FTD, which segregated from other common
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causes of dementia (including AD and VaD), and PD, which seg-
regated from atypical parkinsonian syndromes. These data in-
dicate that cNfL may contribute to the differentiation of these
conditions, particularly in younger individuals.

cNfL and Age
In about two-thirds of the diagnoses, including HC, we ob-
served a positive association between cNfL and age. In the con-
trol groups (HC, SNC, and SCD), as well as in pgFTD and BD,

Figure 1. Neurofilament Light in Cerebrospinal Fluid (cNfL) Levels Across Diagnostic Categories
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A, Levels of cNfL are shown corrected for age and sex. B, Estimated fold
changes are compared with healthy controls (HC). AD indicates Alzheimer
disease; ALS, amyotrophic lateral sclerosis; BD, bipolar disorder;
CBS, corticobasal syndrome; CIDP/GBS, chronic inflammatory demyelinating
polyradiculopathy and Guillain-Barré syndrome; CIS, clinically isolated
syndrome; DLB, dementia with Lewy bodies; DNS, dementia not specified;
FTD, frontotemporal dementia; FTD/ALS, combined frontotemporal dementia
and amyotrophic lateral sclerosis; HD, Huntington disease; iHIV, HIV positive
with cognitive impairment; IND, inflammatory neurological disorders other than
multiple sclerosis; iNPH, idiopathic normal-pressure hydrocephalus; MCI, mild

cognitive impairment; MD, mixed dementia; MSA, multiple system atrophy;
NID, noninflammatory neurological disorders; ON, optic neuritis; PD, Parkinson
disease; PDD, Parkinson disease dementia; pgFTD, presymptomatic genetic
frontotemporal dementia; pHD, premanifest Huntington disease;
PPMS, primary progressive multiple sclerosis; PSP, progressive supranuclear
palsy; SCD, subjective cognitive decline; SNC, subjective neurological complaint;
SPMS, secondary progressive multiple sclerosis; tRRMS, treated
relapsing-remitting multiple sclerosis; uRRMS, untreated relapsing-remitting
multiple sclerosis; and VaD, vascular dementia.
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the association of cNfL with age was strongest. This positive
association in diagnostic categories without an overt neuro-
logical condition may reflect a decrease in CSF clearance with
age, the presence of a preclinical age-related neurological
condition, or age-related neuronal loss.79 The association of
cNfL with age in HC implies that age-specific reference val-
ues may be needed and that the diagnostic potential of cNfL
may decrease with age. In neurological conditions with sub-
stantially elevated levels of cNfL, such as FTD, ALS, FTD/ALS,
HD, and iHIV, as well as in atypical parkinsonian syndromes,
no association with age was observed, suggesting that neuro-
pathological processes may cause plateau levels or mask age
associations. In MS, an association with age was absent or nega-
tive, which may reflect the observation that younger patients
with MS have more active diseases.2

cNfL and Sex
In a minority of diagnoses, including HC, cNfL was higher in
men than women. The clinical relevance of these findings is
uncertain, but the results suggest that sex-specific reference
values may be needed.

Other Determinants of cNfL Levels
Age, sex, and the random (cohort) association explained 46%
of the variance of cNfL in the best-fitting model, indicating that
many determinants of cNfL remain to be identified. Disease
duration and severity could influence cNfL levels. However,
these data were not available in the data sets that were in-
cluded in this meta-analysis, and studies designed specifi-

cally to evaluate the association of these variables and others
(eg, smoking, physical activity, and body size) are ongoing.

cNfL in Inflammatory Conditions of the CNS, Including MS
The cNfL was increased in all inflammatory conditions of the CNS
examined in this meta-analysis, but the effect sizes were small.
The distribution of cNfL in CIS, ON, and RRMS overlapped, which
may be expected because CIS and a proportion of ON are initial
manifestations of RRMS. Neurodegeneration has a central role
in MS, contributing to disease progression and long-term
disability.80 Poor understanding of the processes driving neuro-
degeneration, together with the lack of biomarkers allowing dy-
namic measurement of its rate, hampers the development of
specific treatments.81 The cNfL has been reported to correlate
with brain atrophy,50,82 which is considered a marker of
neurodegeneration.83,84 We found that levels of cNfL did not dif-
fer statistically significantly between RRMS, PPMS, and SPMS,
indicating that on a population level cNfL may not differentiate
acute inflammation-induced neuronal damage in the context of
relapsesfromprogressiveneurodegenerationiftheconsequences
of recent relapses or novel lesion formation are not considered.
In individual patients, cNfL has been reported to reflect acute
neuronal and axonal damage in MS, with levels transiently in-
creasing during relapse.85-87 We found that cNfL levels in uRRMS
and tRRMS did not differ statistically significantly. However, pa-
tients with the most active RRMS with potentially highest cNfL
levels are also those who are most likely to be treated, and cNfL
has been reported to decrease after treatment initiation in indi-
vidual patients.38,50,51

Figure 2. Neurofilament Light in Cerebrospinal Fluid (cNfL) in Neurological Conditions According to Age
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disease; CBS, corticobasal syndrome; CIS, clinically isolated syndrome;
DLB, dementia with Lewy bodies; FTD, frontotemporal dementia; HC, healthy
controls; iHIV, HIV positive with cognitive impairment; MSA, multiple system

atrophy; PD, Parkinson disease; PDD, Parkinson disease dementia;
PPMS, primary progressive multiple sclerosis; PSP, progressive supranuclear
palsy; SPMS, secondary progressive multiple sclerosis; tRRMS, treated
relapsing-remitting multiple sclerosis; uRRMS, untreated relapsing-remitting
multiple sclerosis; and VaD, vascular dementia.
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cNfL in Dementia and ALS
The higher levels of cNfL observed in FTD compared with other
frequent causes of dementias, including AD, VaD and DLB, may
be related to the anatomical location of neurodegeneration or
the rate of neuronal death. This finding suggests that cNfL may
support the differentiation of FTD from other dementias, in
line with a recent study88 not included in this meta-analysis,
which reported that in combination with YKL40 and Aβ42 cNfL
assists in the differentiation between FTD and AD with high
accuracy. In iHIV, which included both mild cognitive impair-
ment due to HIV and HIV-associated dementia, we observed
highest levels of cNfL, setting it apart from neurodegenera-
tive and vascular causes of dementia. This may reflect a high
rate of neuroaxonal damage due to the presence of HIV and
the inflammatory response to it in the CNS, or it may indicate
additional peripheral nervous system damage contributing to
the elevation of cNfL. In predementia stages, such as MCI and
pgFTD, cNfL values were similar to levels in HC, suggesting that
CNS damage must reach a certain extent before it is reflected
by increased cNfL. However, the pgFTD cohort was small
(n = 42); therefore, a small effect size could have been missed.
The cNfL levels were highly elevated in ALS and FTD/ALS com-
pared with HC. These results are in line with single-center stud-
ies not included in this meta-analysis that used different as-
says to measure NfL in CSF.89 Together with the high levels of
cNfL observed in stroke, these findings indicate that the rate
of neuroaxonal damage may be an important determinant of
the magnitude of NfL increase in CSF, possibly by overriding
CSF clearance mechanisms.

cNfL in Degenerative Parkinsonian Syndromes
In degenerative parkinsonian syndromes, cNfL clustered into 2
groups. The first group consisted of PD, PDD, and DLB, in which
cNfLlevelsweresimilartothoseinHC,andthesecondgroupcon-
sisted of atypical parkinsonian syndromes MSA, PSP, and CBS,
with elevated levels of cNfL compared with HC and the absence
of association with age. This finding is in line with the results of
another meta-analysis90 that focused on parkinsonian disorders,
examining data sets not included in the present meta-analysis,
further underscoring the robustness of our findings. These data
have important clinical implications because they suggest a po-
tential for cNfL in supporting the differentiation of PD from atypi-
cal parkinsonian syndromes. Accurate and early differential di-
agnosis of these conditions is crucial because their prognosis and
management differ substantially.

Serum NfL
A few years ago, an ultrasensitive assay was developed that al-
lows measurement of NfL in serum (sNfL). This assay uses the
same antibody pair as the immunoassay used in the studies
included in this meta-analysis, and studies91,92 have re-
ported high correlations between serum and CSF levels. These
findings indicate that sNfL may replace cNfL. In addition, it may

likely be that the findings of the present meta-analysis, which
collected data over 10 years, can be readily translated to sNfL.

Limitations of the Study
Our systematic review and meta-analysis has some limitations.
In all studies included in the meta-analysis except one,93 diag-
nosiswasbasedonclinicalcriteria.Thislimitationismostlyacon-
cern for dementias and parkinsonian syndromes, for which
definitivediagnosisrequirespostmortemexamination.However,
the agreement between clinical and pathological diagnoses was
reported to be high when diagnoses were established in special-
ized centers using consensus criteria.94,95 For AD and MCI, 2 con-
sensus criteria were applied (criteria by McKhann et al12 and the
International Working Group 2 [IWG-2] criteria13), for which a
high concordance rate was reported.96 For VaD, the 2 consensus
diagnostic criteria used (criteria by Erkinjuntti et al25 and the
National Institute of Neurological Disorders and Stroke criteria)
were also reported to have a high agreement.97 For PD, 2 consen-
sus criteria were applied, for which concordance evaluation is
not available. For ALS, FTD, PSP, MSA, PDD, DLB, and iHIV, the
same consensus criteria were applied in all studies. In MS, the
McDonald criteria were revised over time, and this may have in-
fluenced classification of RRMS and CIS. A further limitation is
the inability to capture dementia of multifactorial origin, which
mayhaveincreasedheterogeneityinthedementiadiagnosticcat-
egories and blurred the difference in cNfL distributions between
dementia subtypes. Further classification of neurodegenerative
conditions into clinical phenotypes could not be performed be-
cause this information was absent in a majority of studies. There-
fore,thespecificvalueofcNfLinsubphenotypescouldhavebeen
missed in this meta-analysis. In addition, for some conditions,
data and age ranges were limited, resulting in large standard er-
rors and low statistical power, and conclusions for these condi-
tions should be interpreted with caution. Finally, we included
only those studies that used a specific immunoassay for cNfL in
an attempt to reduce heterogeneity due to the analytical proce-
dure. However, the range of conditions that were explored in the
studies not included in the meta-analysis for the same reason did
not differ from those included.

Conclusions
Our study was designed to compare cNfL levels across neurologi-
cal conditions and controls, assess the association of age and sex
with these variables, and evaluate the potential of cNfL to dif-
ferentiate clinically similar conditions. Our meta-analysis found
that cNfL was elevated in a majority of the neurological condi-
tions included in this study. Although cNfL overlapped between
most clinically similar conditions, its distribution did not over-
lap in FTD compared with other dementia subtypes or in PD com-
pared with atypical parkinsonian syndromes, indicating clinical
potential in differentiating these conditions.
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