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Abstract

Since port capacity investments involve expensive large projects with high uncertainty and
irreversibility, we use real options calculations to study the optimal size and timing of the
investment decision in new port capacity. This paper focuses on cases where the managing
port authority (PA) is responsible for the investment in infrastructure on the one hand. On
the other hand, the terminal operating company (TOC) that obtained a concession from the
PA to handle the containers, invests in the superstructure. Moreover, the PA is often partly
or fully publicly owned, leading to the consideration of social welfare among its objectives.
Examples of such container ports include Gioia Tauro in Italy when it was developed, and
the port of Luanda in Angola. In the type of ports considered, the PA’s strategy could be to
urge the TOC to invest in the PA’s individual optimum. When a share of the PA is owned
publicly, social welfare is to be maximised. In this light, the PA and the TOC could agree
to invest at the service ports’ single actor optimum and redistribute the additional aggregate
gains. Higher public involvement leads to a larger investment that is also made earlier, aug-
menting benefits generated by the port. This relationship between investment size and timing
is exceptional in the real options literature. Moreover, the investment decision is complicated
by the fact that port users are averse to congestion and the costs it involves. When this
cost or uncertainty are higher, it is found that more capacity will be installed, but at a later
moment.

Highlights:

• The port capacity investment decisions of two actors are studied under uncertainty: a
terminal operator and a port authority, which can be (partly or fully) publicly owned.

• Higher uncertainty and congestion costs lead to postponing the investment, which will
be larger.

• More public money involvement leads to larger and earlier investment.

• The concession fee allows the port authority to urge the terminal operator to follow the
same investment strategy.

• The joint investment decision could also result from negotiation.

Keywords: port capacity; two port actors and public ownership; real options for flexible
investment decisions.
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1 Introduction

Port activities drive worldwide trade, maritime transportation, economic activity and develop-
ment of a region. Maritime and hinterland access, infrastructure (e.g., docks), superstructure and
equipment (e.g., cranes) are important interrelated elements determining port capacity (Verho-
even, 2015; Vanelslander, 2014). Compared to a production environment, capacity has an even
more important role in a port, since the transport service is not storable (de Weille & Ray, 1974).
Capacity that is not used at the actual time period cannot be stored and used in the next, as
opposed to warehoused goods. Undercapacity cannot be covered either by unused outputs from a
previous period. UNCTAD (2015); De Langen et al. (2018) emphasize that the demand for cargo
handling is uncertain but growing, especially the container trade segment. Hence, it might occur
that moments of empty berths are followed by moments in which ships are waiting to be serviced
at a berth that is currently occupied. In this way, congestion and waiting time might start to
build up.

Congestion poses a problem to the shipping companies, as they are waiting time averse because
of the cost it involves (Blauwens et al., 2016). As a result, without sufficient capacity, the port
risks losing clients and profit. Congestion and insufficient capacity may also lead to a slowdown
of the economy, decreased GDP and increased trade distances and freight delays. To avoid such
negative effects, sufficient capacity should be provided by investing in it (Kauppila et al., 2016).
Such investments moreover lead to increased employment. De Langen et al. (2018) indicate that
in the period 2018-2027, 50 billion euro of port investments are needed in Europe, of which about
70% involve capacity expansion projects. This type of projects is deemed crucial by the majority
of port authorities. The question however remains when the investment should be made, and how
large it should be, given the growth and uncertainty that are present.

Oppositely, installing too much capacity involves a downside as well, as money is invested
in capacity that might never be used and that might hence not generate revenues. Finding the
optimal amount of capacity in which to invest under the present uncertainty, is crucial (Blauwens
et al., 2016; de Weille & Ray, 1974). In a port, this capacity investment decision (i) is often taken
by different actors and (ii) often involves public money, because ports create value beyond the
border of a port. The objective of this paper is to analyse how the optimal investment decision
in new port capacity under congestion and uncertainty is influenced by these two specific port
characteristics. To this end, a real options (RO) model is developed and applied to a port with
two actors: a port authority (PA) who manages the port and a terminal operating company (TOC)
who handles the containers under a concession agreement with the PA. Among the shareholders
of the PA, a public government is included. Examples of such container ports include the port of
Gioia Tauro in Italy during its development (CSIL, 2012, p. 10) and the port of Luanda in Angola
(Porto de Luanda, 2018). Kauppila et al. (2016) indicate that the largest capacity needs exist in
Africa and Asia. As the number of container ports is low in such developing countries, these ports
experience almost no competition from nearby ports yet.

The structure of this paper is as follows: the next section introduces the economic background
through a literature study and the economic model incorporating the distinction between the
different actors in a port and the involvement of public money. Section 3 explains how the values
for the model parameters are set. Section 4 presents the RO model and calculations. Section 5
discusses the results, followed by a sensitivity analysis in Section 6. The conclusions and avenues
for future research are given in Section 7.

2 Economic environment of the case study

The port capacity investment decision has received a lot of attention in literature. Some authors
take congestion (Xiao et al., 2012) and uncertainty (Chen & Liu, 2016) into account. These
studies are however situated in a port entirely operated by a single actor. In such a service port,
the port operator owns the infrastructure and superstructure and is responsible for providing
cargo handling services (Trujillo & Nombela, 2000; Slack & Frémont, 2005). In the majority of
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ports worldwide, the port product is realised by a combination of actors under the landlord model
(Suykens & Van de Voorde, 1998). The infrastructure and land are owned by the PA, the actor
who manages the port, while the TOC owns the superstructure and handles the cargo under a
concession agreement with the PA. The involvement of public money is another typical aspect of
large infrastructure projects such as port infrastructure (Brooks & Cullinane, 2007). In this light,
Xiao et al. (2012) studied the influence of multiple port owners on capacity, showing that private
ports tend to invest less in capacity than publicly owned ports. A port with public involvement
exhibits a faster expansion path, since profit maximisation is not its only objective (Asteris et
al., 2012). They also want to maximise social welfare, value added, and/or employment, which is
often linked to the amount of throughput. This offers an explanation for a large number of ports
trying to maximise their throughput (Tsamboulas & Ballis, 2014; Jiang et al., 2017). A similar
study of Zhang & Zhang (2003) for airports unveiled that publicly owned airports invest sooner
in capacity than private airports. However, these papers allowing for different types of ownership
do not consider uncertainty.

As Balliauw et al. (2017) already demonstrated for lumpy port capacity investments in a service
port, the combination of congestion and uncertainty alters the investment decision a lot. This
paper adds to the literature by studying the impact of congestion and uncertainty in (i) a landlord
port with two actors, where (ii) public ownership is possible. To this end, a real options model
is constructed, which allows answering the following research question: ”How are the investment
decisions of the PA and the TOC in new port capacity influenced by each other’s decisions and
public PA ownership under congestion and uncertainty in the absence of competition?”

In the type of ports considered here, the PA and the TOC invest in complementary elements
of port capacity and earn in return different revenues. The sources of these revenues and the
investment outlays of both actors are displayed in Figure 1. Other TOC income sources than the
terminal tariff (e.g., storage) are ignored here, as they do not apply for every unit of throughput
handled or they are negligible, depending on the trade and period of time considered (Jenné,
2017). Demand originates from a receiver buying goods from the shipper, who ships them through
a shipping line (Coppens et al., 2007). This paper focuses on containerised goods. Containers,
the pricing base of the TOC that handles them, are carried by shipping lines on their ships, which
is the pricing base of the PA. As the focus is on the supply side with the PA and the TOC,
the complexity of the demand side needs simplification. The number of ships or throughput can
therefore be expressed in terms of the other variable through a conversion factor. As throughput
generates welfare (Xiao et al., 2012), the number of ships is converted to throughput in Section 3
(see footnote 10). In this way, demand depends on one single variable, which reduces mathematical
complexity.

Figure 1: Revenue sources and investment outlays of the PA and the TOC.
Source: Own composition.

The objectives of the PA and the TOC often diverge, because of their different activities
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and type of ownership (Heaver et al., 2000; Meersman et al., 2015; Xiao et al., 2012). As a
result, our model presents two expansions compared to the available literature on port capacity
investments and real options. First, the distribution of revenues and costs over the different actors
is included in the model. Second, public ownership is accounted for through an extension of the
PA’s operational objective function with social welfare. Before discussing and quantifying both
elements, the assumptions regarding the economic environment and the behaviour of the port are
discussed.

2.1 Assumptions

This paper looks at the development of new ports, where the dock and terminal are installed at
once and without time to build, by respectively one PA and one TOC. Since we look at ports
experiencing little or no competition, the investment decision in only one port is studied.

Next to these assumptions related to the economic environment, some behavioural assumptions
are made in relation to the described cases. the PA and the TOC have the option to make a once
and for all investment decision, of which the size and timing are flexible. Moreover, the assumption
is made that the PA has full information on the TOC’s price and cost decisions. In reality, the PA
often only has full information about the realised throughput of the TOC. The PA could however
make decent predictions of prices and costs of an efficient TOC, based on the limited available
information about terminal operators already active in other ports and the expected demand.
These predictions allow the PA to ex-ante calculate its expected part of the income from terminal
operations, charged to the TOC through a concession fee. This income constitutes a considerable
part of the port’s profit and its correct inclusion in the calculations is required to correctly decide
about the optimal size and timing of the infrastructure investment. In reality, also the price is little
transparent for the customers, since it is set by a number of actors (Meersman et al., 2015). Here
however, price transparency is assumed to give rise to the demand function specified in the next
subsection. The specific assumptions regarding the concession agreement and the mathematical
model are included in the next subsections.

2.2 Differentiating between TOC and PA

This subsection describes how the distinction between the PA and the TOC is made in the economic
model. The division of revenues and costs is described in Section 2.2.1. The modelling of the
concession fee and the related assumption of a renewal of the concession agreement are discussed
in Section 2.2.2. Additionally, our model does not consider the time to build a project. Since the
project is installed at once, Section 2.2.3 explains why it follows that the PA and the TOC are
assumed to install the same capacity at the same time.

2.2.1 The distribution of revenues and costs between both actors

The port customer faces a full price ρ, which depends on throughput q at time t as follows:

ρ(t) = X(t)−Bq(t), (1)

with X(t) a random demand shift parameter and B the slope of the inverse demand function.
X(t) follows a Geometric Brownian Motion (GBM):

dX(t) = µX(t)dt+ σX(t)dZ(t), (2)

specified by parameters µ (expected drift, expressing growth) and σ (drift variability, expressing
uncertainty) and with Z(t) a standard Wiener process. In what follows, the time dependencies
will be omitted for the sake of readability.

Since the full price ρ consists of p (the sum of the terminal tariff and port dues) plus a congestion
cost, p can be derived as follows:

p = X −Bq −AX q

K2
, (3)
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with the latter term expressing unit congestion costs (Xiao et al., 2012). Total congestion costs then
equal AX(q/K)2. They increase with a higher occupancy rate, q/K (De Borger & Van Dender,
2006; De Borger & De Bruyne, 2011).1 The square of the occupancy rate is used as a proxy for
the amount of waiting time to express the non-linear relation with occupancy (Blauwens et al.,
2016). The monetary scaling factor A converts delays to costs and is port-user and good-type
dependent. The height of the congestion cost is also related to the uncertain price level through
the multiplication with X.

Since p is the sum of the terminal tariff pTOC = α1 · p, paid by the shipping company to the
TOC, and port dues pPA = (1 − α1) · p, paid by the shipping company to the PA; it holds that
p = pTOC + pPA. In this paper, the TOC and the PA independently set their respective prices
for servicing ships and handling cargo, before the capacity is operated. The chosen relative prices
determine α1, the average share of the terminal tariff in the total price. The calculation of α1

in practice, using real data and average port occupancy, is illustrated in Section 3. This share
then remains fixed over time, as both the port dues and terminal tariff subsequently follow the
evolutions of the demand shift parameter X, which determines the evolution of the market.2 A
growth of X leads to a higher total price p. This market growth, with its uncertainty as expressed
by the GBM, is distributed accordingly over the TOC and the PA by shares α1 and 1− α1. As a
result, the customers’ reduced willingness to pay due to congestion is also distributed by the same
shares α1 and 1− α1 respectively.

A similar reasoning holds for the operational costs of the TOC and the PA. The shares of the
TOC and the PA in the total operating cost cq, with c the constant marginal operational cost,
are α2 and 1−α2 respectively. These shares, like the other division parameters, are constant over
time. The operational cost for the TOC encompasses for example labour and electricity, whereas
the cost of the PA encompasses among other things administration (Lacoste & Douet, 2013). Also
the total investment cost and the capital holding cost chK are divided between the TOC and the
PA. The investment cost is a fourth order function of capacity:

I(K) = FCI + γ1K − γ2K2 + γ4K
4, (4)

to indicate fixed investment costs (FCI), economies of scale in investment size (negative second
order term) and a boundary of maximum investment size (positive fourth order term). For the
division of the investment cost, the shares α3 and 1−α3 are used, whereas for the capital holding
cost, they are α4 and 1 − α4 respectively. These express the cost structure differences between
superstructure and infrastructure investments.3

2.2.2 Modelling the concession fee

An additional element that needs to be modelled to account for the different actors involved, is the
concession fee. The PA grants a TOC the right to exploit a certain area of the port to handle the
cargo. In this paper, one TOC handles all the containers in the port. In return, the PA receives
a concession fee from the TOC. Many different concession fee schemes exist, such as a lump sum,
an annual fee, a quantity-dependent fee, a percentage of the revenue or a combination of these
elements (Saeed & Larsen, 2010). Hence and in order to avoid setting an arbitrary value for the
concession fee, it is modelled as the TOC paying a share α5 of its annual operational profit to the
PA.4 In this way, the modelled concession fee values are endogenous and more realistic. This would
not be the case if the concession fee had been based on revenue, since the PA creaming off a too
high percentage of the TOC’s revenue would leave the TOC with losses and being discouraged to

1It should be noted that throughput q (determined by the TOC, as will be explained later) cannot exceed total
capacity, denoted by K.

2In reality however, it might happen that the PA and the TOC alter their prices separately over time, e.g. when
an actor applies peak-load pricing.

3Note that α1, α2, α3 and α4 do not need to be equal, as they encompass different elements of the project cash
flows (i.e. revenues and costs).

4A consequence is that the capacity holding cost does not influence the concession fee payment, as it is a fixed
cost related to capacity and not to throughput.
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invest. Setting an arbitrary percentage of the revenue can only be avoided by ex-ante calculating
the concession fee as a share of the TOC’s operational profit, taking in this way both revenues
and costs into account. If operating is profitable for the TOC, it will remain so after paying the
concession fee, since only a share of this profit is to be paid. In case the TOC cannot be profitable
from operations, it could decide to suspend operations, especially if losses are persistent in the long
run. Hence, operational profit will always remain greater than or equal to zero after deducting
the concession fee. This is a prerequisite for a meaningful calculation of the concession fee.5

As it is assumed that the PA has full information about the TOC, the PA can a priori estimate
the discounted profit of the TOC over time. With this information, the PA can decide on model
parameter α5, the percentage of this TOC profit to be creamed off, resulting in a discounted
income stream from the concession fee. This can subsequently be converted into one of the in
reality commonly applied concession fee systems with an equal net present value, e.g., a lump
sum, annual, throughput or revenue based fee (Pallis et al., 2008). This conversion is required to
be able to implement the outcome of the ex-ante calculations and outcomes from the model in
reality.

Because the concession fee has an impact on the returns of both the TOC and the PA and
is set by the PA, the latter can influence its own profit and optimal investment decision as well
as those of the TOC. This makes the concession fee an important decision variable for the PA to
obtain desired behaviour of the TOC, without resorting to penalties that are in reality difficult
to enforce. In fact, such penalties involve negative consequences for both parties. When the
concession agreement terminates prematurely, the port foregoes future throughput and income
from this site. For the TOC, it involves the loss of the residual value (future profits) from the
irreversible investment in the superstructure, such as pavement, warehouses or specific equipment
(e.g., cranes) that is very costly to transport. As a consequence of the TOC fulfilling the negotiated
concession agreement conditions to the extent that the economic situation and demand allow it,
future renewals of the agreement are assumed (Wang & Pallis, 2014). This leads to an infinite
project life time.

2.2.3 Possible investment and concession strategies for the PA

In the described port, the optimal timing (expressed as a threshold XT , triggering investment as
soon as demand shift parameter X reaches the threshold for the first time from below)6 and size
(K) of the investment decision of the PA and the TOC may differ, because they have different
operational objective functions to optimise. In the framework of Xiao et al. (2015) studying port
infrastructure investments preventing disasters, different investments of the PA and the TOC are
possible. In our paper however, the chosen investment size and timing of both actors need to be
the same, as they are the outcome of a cooperative game. Also Xiao et al. (2015) take the contract
of cooperation between the PA and the TOC into account. As a public party considers aggregated
social welfare rather than individual profits, cooperation can be justified. However, results in this
paper are compared to the (non-cooperative) individual optima as well.

In a landlord port, the PA and the TOC need each other’s efforts to maximise their objectives
through throughput generation. The PA’s infrastructure investment facilitates the TOC servicing
the ships and handling the goods. In our cooperative game considering a lumpy once and for all
investment without time to build, it would be disadvantageous for both actors or even impossible
to invest at a different moment or in a different size. Infrastructure needs to be installed before
superstructure can be installed and the capacity of the infrastructure poses a limit to the capacity
of the superstructure. In this way, the decision of the PA can limit the TOC’s investment options.
If phased investment is not an option and construction lead times are omitted from the analysis,

5This explains why it is crucial to focus on operational profit and leave the capacity holding cost out. The
capacity holding cost is a sunk cost once the investment is made and has no influence on the optimal level of
output. As a result, the TOC could decide to operate if operational profit is positive, but total profit is negative, as
long as a part of the sunk cost chK is recovered. Since total profit could become negative, calculating the concession
fee as a percentage of this could lead to the unrealistic case of a negative concession fee. This would be equivalent
to the port subsidising a TOC and the TOC would be discouraged to invest.

6The higher the threshold, the later investment takes place.
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it does not make sense for a PA to invest in more capacity than the TOC’s capacity investment
under the concession agreement, as it causes in this case only a loss of money because of unused
capacity. The same holds for the PA investing before the TOC, which would result in a period
without profits, as the infrastructure would not yet be operated. As a result, the PA would not
invest in the infrastructure before the moment the TOC is willing to install the superstructure.
Hence, if optimal timing and size differ for both individual actors, their optima constitute an
interval from which the unique final investment decision needs to be determined. (Meersman &
Van de Voorde, 2014)

Two possible investment strategies are discerned in this setting, depending on the negotiation
power the PA possesses during the concession negotiations. Both are numerically illustrated in
Section 5. Because of the previous considerations and the model disregarding time to build, the
concession negotiations, as compared to reality, are in the model anticipated to a moment before
the project is installed.

A first investment strategy involves both the TOC and the PA giving in from their individual
optima to invest at the aggregated optimum of a service port, which is often comprised in the
decision interval. If the PA invests in a size at a threshold deviating from its optimum, it can urge
the TOC to deviate as well through the concession negotiation or auction following the concession
tender. If the TOC is not willing to deviate, it could be denied the concession. In that case,
the PA of course needs to search for a new concessionaire. Under the described strategy, the
concession fee can be interpreted as a redistribution of the project value after the deduction of
investment costs (V − I) from one actor to another. The concession fee should always be below a
critical value that ascertains that the TOC’s V − I is sufficient to be willing to invest. It should
be positive and exceed the opportunity cost of investing in a different port with a higher V − I. In
this way, the concession fee height is market- and competition-dependent. These conditions set, a
port wondering what the best concession fee is, could pursue different objectives when determining
its concession fee:

• reaching an equal distribution of the entire project’s V − I over both actors;

• reaching a distribution of V − I according to each actor’s share in the operational cost,
investment cost or a weighted sum of both;

• reaching a distribution according to other objectives based on the port’s strategy, e.g., the
relative effort made for marketing and attracting port customers;

• equalling the amount of discounted V−I given up by each actor to deviate from the individual
optimum to the agreed decision.

An important consideration when following this first investment strategy is that incentives for the
TOC to deviate from the concession agreement should be avoided or at least minimised. Such
incentives are present if the optimal size and/or threshold of the TOC are respectively below
and/or above the optima of the PA.

A second investment strategy for the PA to deal with deviating optima in the described scenario
could be to urge the TOC to decide at the same time to invest in the same amount of capacity
through economic incentives.7 If the PA invests later or in a smaller amount than the TOC’s
optimum, the TOC is urged to adapt its strategy by taking this limiting investment decision
variable as given for its own investment decision. The remaining decision variable can then be
optimised conditional on the already fixed variable. With a carefully selected concession fee, the
TOC’s conditional optimal value for this remaining decision variable will equal the PA’s optimum.
This strategy hence leads to the TOC and the PA investing in the same amount of capacity at
the same market threshold. The downside of this strategy however is that less profit is realised at
port level, aggregated over TOC and PA, as it differs from the global optimum in a service port.

7In this light, it is crucial to recall that time to build and phased investment are disregarded in the RO model.
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2.3 Allowing for both public and private ownership of the PA

In reality, very often, public money is involved in a landlord port with a (partly) publicly owned
PA (Suykens & Van de Voorde, 1998; Bichou & Gray, 2005). If a government is involved, the PA
will not maximise profit, but social welfare (SW ), as infrastructure involves a benefit for society as
a whole (Jenné, 2017). Social welfare is the sum of profit, spillover benefits for the local economy
generated by the throughput handled in the port and consumer surplus (CS). Spillover benefits
are included in the operational objective function as λq, with λ the spillover benefit per unit
q. Consumer surplus is in this case calculated as Bq2/2. Some governments however only tend
to consider the CS relevant for the region they govern. To account for this in the operational
objective function, sCS is the share of total consumer surplus considered by the government. (Xiao
et al., 2012)

The previous reasoning results in the following expression for social welfare:

SW (X,K, q) = πPA(X,K, q) + λq + sCS ·Bq2/2, (5)

with πPA(X,K, q) the instantaneous annual profit of the PA, given the instantaneous value for X,
the size of the port K and the instantaneous annual throughput q. It might also be the case that
the port is owned by a combination of public and private entities. Let sG be the relative number
of PA shares owned by the government. Then the private parties together own a share of 1−sG of
the PA, as the sum of the shares equals 1. The aggregated operational objective function (Π) of
the PA now becomes the weighted sum of the individual owners’ operational objective functions.
The shares of ownership are used as the weights:

ΠPA(X,K, q) = (1− sG) · πPA(X,K, q) + sG · SW (X,K, q)

= πPA(X,K, q) + sG · λq + sGsCS ·Bq2/2. (6)

2.4 Model summary

To summarise, the profit and investment cost functions resulting from the division of revenues and
costs between the two actors are given. For the TOC, this results in:

πTOC(X,K, q) = (1− α5) · {α1 · [p(q) · q]− α2 · cq} − α4 · chK, (7)

ITOC(K) = α3 ·
(
FCI + γ1K − γ2K2 + γ4K

4
)
, (8)

whereas for the PA, it results in:

πPA(X,K, q) = [(1− α1) + (α1α5)] · [p(q) · q]
−[(1− α2) + (α2α5)] · cq − (1− α4) · chK, (9)

IPA(K) = (1− α3) ·
(
FCI + γ1K − γ2K2 + γ4K

4
)
. (10)

The profits and costs of both actors are determined by the same drivers. However, these drivers
are distributed differently over the TOC and the PA. It is hereby interesting to note that the sum
of the profit functions on the one hand and the investment functions on the other hand both result
in the profit and investment function of a private service port with one single actor. In this way,
the presented model can be used to calculate the private service port optimum as well. Because a
(partly) publicly owned PA also considers social welfare, the operational objective function of the
PA has been extended in Eq. (6) with spillover benefits and consumer surplus, weighted by the
share of public ownership.

Table 1 gives an overview of the entire economic model. It contains a short explanation of all
the variables, equations and parameters, together with the values for the numerical examples as
determined in the next section.
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Table 1: Model overview.

Variables
p = price
q = throughput
K = capacity
α5 = concession fee parameter: share of TOC’s annual operational profit paid to PA

Aggregated inverse demand function: p = X −Bq −AX q
K2

B(= 1) = slope
A(= 5) = monetary scaling factor of congestion cost

Demand shift parameter X: dX(t) = µX(t)dt+ σX(t)dZ(t)
t(=annual) = time horizon
Z = standard Wiener process
µ(= 0.015) = drift of Z
σ(= 0.1) = drift variability of Z

Aggregated total cost TC = cq + chK
c(= 1) = constant marginal operational cost
ch(= 0.5) = cost to hold one unit of capital in place

TOC investment cost ITOC = α3 ·
(
FCI + γ1K − γ2K2 + γ3K

3 + γ4K
4
)

PA investment cost IPA = (1− α3) ·
(
FCI + γ1K − γ2K2 + γ3K

3 + γ4K
4
)

α3(= 0.35) = share of total investment cost I incurred by TOC
FCI(= 80) = fixed investment cost
γ1(= 180) = first order coefficient
γ2(= 19) = coefficient reflecting investment economies of scale
γ3(= 0) = omitted third order coefficient
γ4(= 0.12) = coefficient reflecting boundary of project size

TOC profit = operational objective function πTOC = (1− α5) · {α1 · [p(q) · q]− α2 · cq} − α4 · chK
PA profit πPA = [(1− α1) + (α1α5)] · [p(q) · q]− [(1− α2) + (α2α5)] · cq − (1− α4) · chK

α1(= 0.9) = share of terminal tariff in total price p
α2(= 0.95) = share of c incurred by TOC
α4(= 0.5) = share of capital holding cost incurred by TOC

PA operational objective function ΠPA = πPA + sG · λq + sGsCS · CS
λ(= 0.4) = spillover benefit per unit q
CS = consumer surplus, i.c. Bq2/2
sG(∈ [0; 1]) = share of PA owned by the government
sCS(∈ [0; 1]) = share of total CS taken into account by the government
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3 Case study description and parameter calibrations

The current analysis concentrates on the investment decision in a new port such as Gioia Tauro
(in its development phase) or Luanda, with one PA and one TOC and without competition from
nearby ports. The case calculations rely on numerical simulations of the RO model, as described
in the next section, since analytical solutions cannot be calculated. Proxies for the parameters
are calculated using real data from a number of sources (Port of Antwerp, 2016; Vanelslander,
2014; Zuidgeest, 2009). The investment cost lies between one and three billion euro, depending
on the construction size (between 8 and 14 million TEU) and technologies applied. Therefore,
q and K are expressed in million TEU, while p and c(= 1) are in euro per TEU and ch(= 0.5)
in euro per TEU per year. In this way, it is reflected that the operational variable cost (c) in
infrastructure projects is relatively low (Wiegmans & Behdani, 2018). As a simplification, the
slope of the demand function is normalised to 1. The values for the drift (µ = 0.015) and the
drift variability (σ = 0.1) are estimated in the port context, using data of the port of Antwerp
and Rotterdam from 2010 to 2015 Vlaamse Havencommissie (2016).8 The discount rate r of 6%,
used by Aguerrevere (2003) in his real options analysis, lies between the 4 (Blauwens, 1988) and
8% (Centraal Planbureau, 2001) often used in a transportation context. The monetary scaling
factor of congestion, A, is the most difficult parameter to estimate. Here, it is set to 5, to model
a sufficiently high impact of congestion on the investment decision and yield realistic results for
the price. Yet, A is altered in the sensitivity analysis.

Next to these parameters that are common with a private service port, additional parameters
are introduced to account for public ownership and the landlord port model. Spillover effects within
the port perimeter are estimated at 20 to 30 percent of the cost c to process one TEU (Coppens
et al., 2007). However, depending on the method used, a wide variety is observed (Benacchio &
Musso, 2001). Depending on the level of aggregation of the local government’s jurisdiction, the
spillover effects could even amount to 60 percent of c. This would leave λ in the range of 0.2 to
0.6 euro per TEU. Here it is set to 0.4 euro per TEU, to account for a port’s spillover effects in
an entire country. Two other parameters that result from allowing multiple owners are the share
of ownership of the government and the share of the CS taken into account by this government,
respectively sG and sCS ∈ [0; 1]. The shares are not fixed in advance, as they will be varied to
study different types of port ownership.

As a result of differentiating between the TOC and the PA, five alphas are introduced. α5(∈
[0; 1]) is a variable that can be set by the PA to determine the height of the concession fee.
The share of the superstructure cost in the total investment cost is expressed by α3. Based on
Vanelslander (2005), Jacob (2013) and Jenné (2017), it is set to 0.35.9 The share of superstructure
holding cost in the total capacity holding cost chK, i.e. α4, varies a lot depending on the specific
project considered and the related dredging contract. As an average, it is set here to 0.5, but it
is varied in the sensitivity analysis (Zheng, 2015; Jan De Nul, 2012; Keskinen et al., 2017; Luck,
2017). Next, α2 expresses the relative share of the TOC’s operational cost in the total operational
cost of the cargo handling services. To load and unload ships, the TOC encounters the cost of
labour and electricity, which is the major part. The PA’s marginal operational cost is negligible
and mainly incurred by administration. By consequence, α2 is set to 0.95.

Finally, α1, the share of the terminal tariff in the total price needs to be set. The share of the
port dues is then 1− α1. This is the most difficult parameter to determine. Port dues depend on
many different factors like ship size and the number of locks that need to be passed; they are not
only throughput dependent (Meersman et al., 2015). Among other things the ship characteristics
and the location in the port determine the port dues. Hence, the amount of goods loaded and
unloaded only partly influence the heigth of these port dues. As a result, a conversion is required
to find an expression for the average amount of port dues per TEU. Conversions have an influence
on α1, which is in reality not fixed, but is the result of the demand function taking into account the

8The growth rate is approximated by the significant coefficient of an estimated exponential growth model. The
root of the squared error is used to approximate σ.

9For a project with a capacity of 10 million TEU, the infrastructure would cost about 1 billion euro and the
superstructure about 550 million euro, including cranes, straddle carriers, warehouses and gates.
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ship size, location in the port and the relative ship capacity loaded and unloaded. The difference
in price calculation method per port and the limited transparency complicate the calculation of
α1 even more. As a result, α1 is calculated here as an average ratio over a full year of operations
using data from the Port of Antwerp (2017a,b), to come to a value of 0.9.10 Since detailed data on
the ports of Gioia Tauro and Luanda has proven difficult to obtain, proxies have been determined
based on data from other ports. To study the impact of the determined values and changes in
these values, they will be altered in the sensitivity analysis in Section 6.

4 Methodology to solve for the optimal investment strategy
in a landlord port

With the operational objective functions of the port actors deciding on capacity and the numerical
values for the parameters at hand, the optimal investment decision in a landlord port can be
calculated. In reality, the PA first decides at which moment it would invest in infrastructure and
how much capacity it would provide. Once this investment is made, it poses two boundaries to the
superstructure investment of the TOC that obtained a concession agreement through negotiations
or an auction following a tender. Since the TOC is responsible for the operation of the terminal, it
sets the optimal throughput maximising its own profit: qoptTOC. This needs to be below K, because
throughput cannot exceed total design capacity K. Moreover, the assumption of full ex-ante
information for the PA and the interactions with the TOC preceding a concession agreement lead
to the consequence that the PA and the TOC select the same size and timing of the investment.
The decision will often be somewhere between the extrema of both actors’ optima, which constitute
the decision interval as described in Section 2.2.3. If the TOC deviates from the PA’s decision,
the PA will not grant the concession and the TOC cannot invest in and operate the terminal.

In this paper, the dynamic programming methodology of Dixit & Pindyck (1994) and Dangl
(1999) is adapted to backwardly solve the real options problem including congestion and multiple
actors (a: TOC and PA) in a port. The way congestion is modelled gives rise to hypergeometric
functions (2F1) in the expressions of the project value functions (after investment at time Ta) of
the TOC:

VTOC = E

∞∫
0

max
qTOC

{πTOC(TTOC + τ)}e−rτdτ (11)

and the PA:

VPA = E

∞∫
0

ΠPA(qTOC, TPA + τ)e−rτdτ, (12)

after applying Bellman Equation and Itô’s Lemma to this equation (Dixit & Pindyck, 1994). These
equations highlight the important difference compared to a service port that the optimisation is
to be executed for the two actors separately, but that only one actor handles the goods. In order
to find the optimal investment decision of each actor, each actor maximises his expected future
discounted profit stream minus the investment outlay of his project, with respect to timing Ta
when X(t = Ta) =

↗
XT,a, and capacity Ka (Huisman & Kort, 2015). If X(t = 0) < XT,a so that

it is not optimal to invest from the beginning, this gives rise to each actor’s investment problem

104500 container ships called the Port of Antwerp (2017b) in 2016, with an average GT of 55000 BT. Moreover,
about 10 million TEU was handled in the same year. The prices of Port of Antwerp (2017a) show that the port
dues per BT are 0.2 euro, if the ship is operated by a container line, without reductions included. The container
supplement is 0.2 euro per ton and the Port of Antwerp (2017b) assumes 12 ton per TEU on average, so that the
additional port dues for handling one TEU are 2.4 euro. As a result, the average total port dues equal 7.35 euro
per TEU. The terminal tariff is 69 euro per TEU, as handling a container, involving two moves, costs about 110
euro and the average container is 1.59 TEU (Port of Antwerp, 2017b; Saeed & Larsen, 2010; Wiegmans & Behdani,
2018).
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objective function:

max
Ta>0,Ka>0

E
{

[Va(XT,a,Ka)− Ia(Ka)] e−rTa |X(t = 0) = X
}
. (13)

Because each actor has the option to postpone the investment, this investment decision contains
an option value Fa(X), based on the economic equations in Section 2. The optimisation with
respect to timing comes down to finding the critical threshold value XT,a for which it is better to
invest rather than to wait. Investment will take place as soon as this threshold is reached for the
first time from below. If however X(t = 0) exceeds XT,a, investment takes place right away. As
long as X < XT,a, actor a will postpone the investment and Fa(X) equals the value of waiting:

Fa(X|X < XT,a) = e−rdt E [Fa(X) + dFa(X)] . (14)

As soon as the X > XT,a, actor a invests in Ka and the option value equals the expected return
of the investment, dependent on the value of X at the moment of investment and the installed
capacity which maximises this return:

Fa(X|X > XT,a) = max
Ka

[Va(X,Ka)− Ia(Ka)]. (15)

In order to solve this RO problem and optimise the investment decisions of both actors, the
first step of the methodology determines the TOC’s optimal throughput qoptTOC(X,K) through the
first and second order conditions for the πTOC(q,X,K) of Eq. (7). This results in

qoptTOC(X,K) =


0, X <

α2

α1
c,

(α1X − α2c)K
2

2α1(AX +BK2)
,

α2

α1
c 6 X <

(2α1BK + α2c)K

α1(K − 2A)
,

K, X >
(2α1BK + α2c)K

α1(K − 2A)
,

(16)

given the size of the port K and the instantaneous value for X. Because it should hold that
0 6 qoptTOC 6 K, qoptTOC is divided into three mathematical regions, defined by boundaries for X.

Plugging qoptTOC into πTOC(q,X,K) leads to πTOC(X,K), defined in the same three regions.
Second, through differential equation

σ2

2
X2 ∂

2VTOC

∂X2
(X,K) + µX

∂VTOC

∂X
(X,K)− rVTOC(X,K) + πTOC(X,K) = 0, (17)

VTOC(X,K), the value of the TOC’s project of size K, installed at the moment that the demand
shift parameter equals X and for which the TOC pays ITOC(K), is derived. Here again, the same
three mathematical regions apply. Third,

FTOC(X) = max{e−rdt E(FTOC(X) + dFTOC(X)), max
KTOC

[VTOC(X,KTOC)− ITOC(KTOC)]} (18)

gives the option value of investment postponement, which is maximised in order to find the optimal
investment timing threshold and size of the TOC’s investment (X∗∗T,TOC,K

∗∗
TOC). Fourth, the

resulting operational objective function of the PA, ΠPA(X,K), is determined by plugging qoptTOC

into ΠPA(q,X,K) from Eq. (6), as it is the TOC that sets the throughput quantity. Using qoptTOC

results in the same three regions for the PA’s operational objective function as found for the TOC’s
profit. Fifth, the differential equation

σ2

2
X2 ∂

2VPA
∂X2

(X,K) + µX
∂VPA
∂X

(X,K)− rVPA(X,K) + ΠPA(X,K) = 0 (19)

allows deriving VPA(X,K), the value of the PA’s project of size K, installed at the moment that
the demand shift parameter equals X and for which the PA pays IPA(K). Finally, the option
value

FPA(X) = max{e−rdt E(FPA(X) + dFPA(X)),max
KPA

[VPA(X,KPA)− IPA(KPA)]} (20)
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allows calculating the optimal investment timing threshold and size for the PA (X∗∗T,PA,K
∗∗
PA).

Both (X∗∗T,TOC,K
∗∗
TOC) and (X∗∗T,PA,K

∗∗
PA) together constitute the decision interval from which the

final investment decision is to be selected. The flowchart in Figure 2 summarises the steps of the
RO methodology.

Economic model
and numerical

parameter values

First and second
order conditions

for πTOC(q,X,K)

Differential
Eq. (17)

Differential
Eq. (19)

FTOC(X) (18) FPA(X) (20)

Final decision
(X∗∗T ,K∗∗) from
decision interval

qoptTOC(X,K) and πTOC(X,K) qoptTOC(X,K) and ΠPA(X,K)

VTOC(X,K) VPA(X,K)

(X∗∗T,TOC,K
∗∗
TOC) (X∗∗T,PA,K

∗∗
PA)

Figure 2: Summary of the RO cooperative game methodology.

5 Results and discussion

In this section, numerical solutions for different port types are calculated using the previously
described methodology. The investment decisions are compared to the optimal decision for a
private service port with the same values for the common parameters. This optimum is calculated
as X∗∗T = 37.63 euro per TEU and K∗∗ = 11.17 million TEU per year.11. Note that each optimal
X∗∗T , given the optimal capacity, can be converted through each actor’s inverse demand function
into an optimal throughput quantity (in million TEU) that needs to be demanded at a certain price
(in euro per TEU) before investment takes place. In this section, the impact on the investment
decision of the division between the PA and the TOC and the height of the concession fee in a
private landlord port is first studied separately from the impact of government involvement as a
PA shareholder in a service port, partly or fully owned by the government. Afterwards, both are
combined in a landlord port setting with public money involvement.

11This is done by setting the α’s, sG and sCS to 0 and calculating the PA’s optimum.

13



5.1 Division between PA and TOC

If the distinction between the PA and the TOC in a private landlord port (no government in-
volvement, or sG set to zero) is made according to the model in Table 1, an individual optimal
investment threshold can be calculated for both the PA and the TOC. Numerical simulations
prove that an α5 leading to the same optimal investment size (αK5 ) and an α5 leading to the
same optimal timing for both actors (αX5 ) exist for different values of α1, α2, α3 and α4, leading
to a different division of the revenues and costs between the PA and the TOC (see e.g. Table
8). Moreover, this optimal value common for both actors is almost equal to the optimum of the
private service port where the port is directed and operated by one single actor. The other deci-
sion variable determining the optimal investment strategy then differs per actor, giving rise to a
decision interval. This interval often comprises the optimum value from the private service port.

Table 2: Optimal X∗
T,a(K), K∗

a (X) and (X∗∗
T,a,K

∗∗
a ) under different α5 in a private landlord port.

Timing Size Decision
α5 Actor a X∗

T,a(Ka = 11.17) K∗
a (X = 37.63) (X∗∗

T,a,K
∗∗
a )

0.4 PA 47.12 10.21 (47.30, 11.21)
TOC 28.97 12.45 (28.85, 11.14)

0.469 PA 43.18 10.56 (43.18, 11.17)
TOC 31.30 12.07 (31.30, 11.17)

0.5 PA 41.69 10.71 (41.63, 11.16)
TOC 32.53 11.89 (32.59, 11.19)

0.59475 PA 37.86 11.12 (37.63, 11.12)
TOC 37.31 11.26 (37.63, 11.26)

0.6 PA 37.67 11.14 (37.44, 11.11)
TOC 37.62 11.22 (37.97, 11.26)

Parameter values: A = 5, B = 1, c = 1, ch = 0.5, µ = 0.015, σ = 0.1, r = 0.06, FCI = 80, γ1 = 180, γ2 = 19, γ3 =
0, γ4 = 0.12, α1 = 0.9, α2 = 0.95, α3 = 0.35, α4 = 0.5.

Source: Own calculations.

The previous reasoning is illustrated with the numerical example in Table 2. If the TOC needs
to pay 59.48% of its operational profit as a concession fee to the PA, the optimal investment
threshold X∗∗T,TOC = X∗∗T,PA = 37.63 euro per TEU will be the same for both actors, which is

nearly the same investment threshold as found in a private service port.12 In that case, the
optimal capacity for the PA will equal 11.12 million TEU per yera, whereas for the TOC it will
be optimal to invest in 11.26 million TEU per year. Indeed, the optimal capacity from a similar
private service port (11.17 M TEU p.a.) is comprised in this decision interval. With a lower
concession fee (α5 set to 0.469) however, the optimal size of the investment is equal for both the
PA and the TOC, almost equalling the optimal capacity K∗∗ = 11.17 M TEU p.a. from a private
service port. The optimal thresholds are then X∗∗T,PA = 43.18 euro per TEU and X∗∗T,TOC = 31.30
euro per TEU. Through mutual concessions, the same optimal threshold X∗∗T = 37.63 euro per
TEU from a private service port is attainable. It is also possible for other concession fees to select
the global optimum from the decision interval.

Table 2 moreover illustrates the influence of the concession fee on the optimal investment
decisions of both the PA and the TOC. If the TOC is required to pay a higher share of its
operational profit, the TOC will invest later, or in less capacity ceteris paribus, because the
project will be less attractive. This is opposed to the investment becoming more attractive for
the PA, leading to an earlier investment or a larger investment size. Every parameter change
increasing X∗T , reduces K∗ and vice versa. When looking at the final optimal investment decision

12Only the rounded numbers are slightly different. Since XT >> c and the chosen α1 and α2 do not differ by
much in this numerical example, their impact on qoptTOC in Eq. (16) and the optimal investment strategy is limited.
Note moreover that each optimal threshold, given the capacity available, can be translated into a quantity for which
a certain price can be charged. This allows observing the threshold in reality through real indicators.
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combining timing and size however, X∗∗T will always be close to X∗T , which does not hold for K∗∗

and K∗. A later optimal timing coincides with a higher optimal design capacity K∗∗, because the
effect of the positive K∗(X) and X∗T (K)-functions dominate the opposite shifts of these functions
following a change in α5.

Additional numerical calculations further illustrate the strategy of selecting the private service
port optimum, which has a total project value minus investment costs V − I of 1.76 billion
euro. If the PA and the TOC in a private landlord port invest both at this optimum, their
aggregated (V − I) also equals 1.76 billion euro, independent of the height of the concession fee.
This concession fee only has an impact on the distribution of the revenues and costs among both
actors. The different concession fee strategies from Section 2.2.3 are illustrated in Table 3. The
table shows that α5 = 0.5204 leads to an equal V − I for both actors, and that α5 = 0.6058 equals
the share each actor has in both V − I and I, which is 65% for the PA and 35% for the TOC.

Table 3: V − I of PA and TOC under different concession fees, if both actors invest at the optimum of
a private service port.

α5 (V − I)PA (V − I)TOC Σi(V − I)i

0.4 508 1252 1760
0.469 721 1039 1760
0.5 817 943 1760
0.5204 880 880 1760
0.59475 1110 650 1760
0.6 1126 634 1760
0.6058 1144 616 1760

Parameter values: A = 5, B = 1, c = 1, ch = 0.5, µ = 0.015, σ = 0.1, r = 0.06, FCI = 80, γ1 = 180, γ2 = 19, γ3 =
0, γ4 = 0.12, α1 = 0.9, α2 = 0.95, α3 = 0.35, α4 = 0.5, XT = 37.63,K = 11.17.

Source: Own calculations.

The case involving a TOC paying 59.475% of its operational profit to the PA as a concession fee
allows easily calculating each actor’s impact of diversion from its own optimum. As it is optimal
with this concession fee for both actors to invest at the same time, V − I of both can be compared
at the moment of investment. No additional discounting is required.13 This scenario is quantified
in Table 4 for different investment strategies included in Table 2.

Table 4: V − I of PA and TOC with α5 = 0.59475 under possible investment strategies, equally followed
by both actors.

Common investment strategy: (XT ,K) (V − I)PA (V − I)TOC Σi(V − I)i

a) PA individual optimum: (37.63, 11.12) 1110.0 649.8 1759.8
b) Private service port optimum: (37.63, 11.17) 1109.8 650.1 1759.9
c) TOC individual optimum: (37.63, 11.26) 1109.0 650.3 1759.3

Parameter values: A = 5, B = 1, c = 1, ch = 0.5, µ = 0.015, σ = 0.1, r = 0.06, FCI = 80, γ1 = 180, γ2 = 19, γ3 =
0, γ4 = 0.12, α1 = 0.9, α2 = 0.95, α3 = 0.35, α4 = 0.5, α5 = 0.59475.

Source: Own calculations.

The results show that the PA investing in the service port optimum, which entails more capacity
than its own optimum, leads to a decrease in V − I for itself of 0.2 million euro. This allows the
TOC to make a larger investment, which is already closer to its own optimum. As the TOC
can now invest in K = 11.17 M TEU p.a. instead of 11.12, the TOC’s V − I increases with 0.3

13With a GBM, the stochastic discount factor at t where X(t) = X, is equal to (X/XT )β1 , with β1 =

σ2

2
− µ+

√(
σ2

2
− µ

)2

+ 2rσ2

σ2
(Huisman & Kort, 2015).
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million euro. This leads to an aggregated gain of 0.1 million euro. In reality, such a situation
would hardly be observed if the PA were privately owned, since only the own welfare would be
maximised. Therefore, a public PA owner, caring about aggregated social welfare, is introduced
in the next subsections. Deviating from the aggregated optimum would lead to a destruction of
welfare, compared to situation b). Both actors investing at the TOC’s optimum would make the
TOC win an additional 0.2 million euro, but the PA would lose 0.8 million euro, destroying 0.6
million euro of aggregated profit. As argued before, the additional aggregated profit in situation
b) can be distributed among the PA and the TOC through the adaptation of the concession fee.
The height of the concession fee set by the PA is part of its strategy as discussed in Section 2.2.3.
Additionally, it is noteworthy that the deviations in project V − I are limited in absolute terms
for both actors. This favours the negotiations between the actors.

The results in Table 2 also bear worthy information for a PA searching for a good concession
fee. For any value of α5 between 46.9% and 59.475%, the PA poses a limit to both the size and
timing of the TOC’s optimal investment decision. In this range for the concession fee, the optimal
timing of the TOC is earlier than the timing of the PA and the optimal capacity of the TOC would
exceed that of the PA. In such a case, the PA knows that as soon as it invests in the negotiated
capacity, the TOC will be willing to invest too in the same amount of capacity, as long as this
still is a profitable strategy. This is important from a game-theoretic point of view, as the TOC’s
incentives to deviate from the contract should be minimised. In this light, the PA needs to have
sufficient power to enforce the concession contract (Wang & Pallis, 2014).

However, if α5 is below 0.469, the TOC may be willing to invest in less capacity than what is
decided on, whereas any α5 above 0.59475 could lead to the TOC investing later than the moment
agreed upon. Although these latter two cases bear an incentive for the TOC to deviate from
the PA’s optimum, the PA still has some negotiation power that could turn out to be sufficient.
In the first case, the PA could install the project at its own optimal threshold, which is higher
than what is optimal for the TOC. As was explained before, this is a limiting factor and the
TOC will internalise this higher threshold. Subsequently the TOC’s optimal size is determined
as K∗TOC(X∗∗T,PA), which might come closer to or even equal or exceed the optimal size of the PA.
In this way, the PA retains a strong position. In the second case, a smaller project than what is
optimal for the TOC could be installed. The TOC then takes the size as given and determines its
remaining investment decision degree of freedom, its optimal threshold, conditional on the size of
the PA. This X∗T,TOC(K∗∗PA) might come closer to or even equal or be below the optimal threshold
of the PA. An illustration is given in Table 5 for the unique α5, given the other parameters,
allowing the PA to force the TOC to invest exactly at the PA’s optimum.

Table 5: Illustration of PA’s concession fee strategy forcing the TOC to take the same investment deci-
sion.

Actor Optimal investment strategy Conditional optimal investment strategy

PA (37.43, 11.11 ) =
TOC (38.00, 11.26 ) → (X∗T,TOC(11.11 ),11.11 ) = (37.43,11.11 )

Parameter values: A = 5, B = 1, c = 1, ch = 0.5, µ = 0.015, σ = 0.1, r = 0.06, FCI = 80, γ1 = 180, γ2 = 19, γ3 =
0, γ4 = 0.12, α1 = 0.9, α2 = 0.95, α3 = 0.35, α4 = 0.5, α5 = 0.60035.

Source: Own calculations.

If α5 = 0.60035, the optimal decision for the TOC is to invest later and in more capacity than
the PA. Hence, the TOC knows that it has to reduce its investment size accordingly, to the 11.11
million TEU per year of the PA. Taking this into account, the TOC calculates its conditional
optimal threshold X∗T,TOC(11.11) = 37.43 euro per TEU, which is equal to the threshold of the
PA. The impact on the individual and aggregated discounted V − I is limited and is given in
Appendix A. For any other α5, X∗T,TOC(K∗∗PA) will be either higher than the X∗∗T,PA, meaning
that the TOC is even more forced to deviate from its conditional optimum, or below X∗∗T,PA, still
implying an incentive for the TOC to invest below the PA’s optimal capacity. In the presented
numerical calculations, in the other situation where the optimal timing of the PA is later than the
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optimal timing of the TOC, the resulting optimal size of the TOC will still exceed the PA’s size.
So there the TOC has to deviate even more from its optimum. There is no concession fee leading
to an X∗∗T,PA > X∗∗T,TOC, coinciding with K∗TOC(X∗∗T,PA) = K∗∗PA.

5.2 Government involvement

Next to a private owner maximising profit, also a social welfare-maximising government has to be
considered as a PA shareholder in the analysis. As was explained, the government owns a share sG
of the service port. The private partner then has the remaining share 1− sG. The share of total
consumer surplus taken into account by the government is given by sCS . Some possible scenarios
are given in Table 6.

Table 6: Optimal X∗
T (K), K∗(X) and (X∗∗

T ,K∗∗) under different sG and sCS in a service port, partly
or fully publicly owned.

Timing Size Decision
sG sCS X∗

T (K = 11.17) K∗(X = 37.63) (X∗∗
T ,K∗∗)

0 N/A 37.63 11.17 (37.63, 11.17)
1/2 1/2 35.89 11.40 (35.98, 11.19)
1/2 1 34.39 11.64 (34.74, 11.27)
1 1/2 34.05 11.66 (34.25, 11.22)
1 1 30.70 12.22 (31.40, 11.38)

Parameter values:
A = 5, B = 1, c = 1, ch = 0.5, µ = 0.015, σ = 0.1, r = 0.06, FCI = 80, γ1 = 180, γ2 = 19, γ3 = 0, γ4 = 0.12, λ = 0.4.

Source: Own calculations.

The first line in Table 6 reflects the situation with a privately owned single port actor in a
private service port. If the government’s share of ownership or the considered share of consumer
surplus is higher, the considered project benefits will be higher as well, as the local benefits and
CS are taken more into account in the PA’s operational objective function ΠPA(X,K). This
is translated into a lower threshold for X∗T (K), which goes again hand in hand with a larger
investment size K∗(X). The analysis confirms the finding that public entities tend to invest
sooner or in more capacity than private entities (Asteris et al., 2012). The optimal investment
strategy (X∗∗T ,K∗∗) changes accordingly. If the government’s share of ownership or the considered
share of CS increases, the project is valued a lot higher because social welfare is taken more into
account. As a result, the individual effects of earlier and larger investment dominate the positive
relation between size and timing, to result in a larger project that is also installed earlier. This
finding is remarkable, as it is opposite to the common real options finding, where more capacity
leads to a later timing or vice versa due to the dominating effect of the positive K∗(X) and
X∗T (K)-functions.

5.3 Landlord port with public ownership

The previous subsections illustrated separately the impact of the landlord port model and public
ownership on the port capacity investment decision. In this subsection, both are combined. The
analysis is made for a landlord port in which the PA’s shares are equally divided among the private
parties and the government, who in turn takes 50% of total CS into account.
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Table 7: Optimal X∗
T,a(K), K∗

a (X) and (X∗∗
T,a,K

∗∗
a ) under different α5 in a landlord port with public

ownership.

Timing Size Decision
α5 Actor a X∗

T,a(Ka = 11.17) K∗
a (X = 37.63) (X∗∗

T,a,K
∗∗
a )

0.4 PA 43.19 10.61 (43.57, 11.26)
TOC 28.97 12.45 (28.85, 11.14)

0.504 PA 38.45 11.09 (38.54, 11.20)
TOC 32.70 11.86 (32.77, 11.20)

0.55 PA 36.77 11.28 (36.76, 11.17)
TOC 34.82 11.57 (35.01, 11.23)

0.5693 PA 36.12 11.35 (36.08, 11.16)
TOC 35.84 11.44 (36.08, 11.24)

0.6 PA 35.16 11.47 (35.06, 11.15)
TOC 37.62 11.22 (37.97, 11.26)

Parameter values: A = 5, B = 1, c = 1, ch = 0.5, µ = 0.015, σ = 0.1, r = 0.06, FCI = 80, γ1 = 180, γ2 = 19, γ3 =
0, γ4 = 0.12, α1 = 0.9, α2 = 0.95, α3 = 0.35, α4 = 0.5, sG = 1/2, sCS = 1/2, λ = 0.4.

Source: Own calculations.

The results are similar to the outcomes in Table 2 for a private landlord port. The table shows
that the inclusion of mixed ownership with governments involved does not have an impact on the
TOC’s decision, as this remains a private party with the same profits, costs and operational ob-
jective function as before. For the same concession fee, their optimal decision remains unchanged.
Public involvement in the model only has an impact on the PA’s optimal decision, which will be
earlier and larger. As a result, the α5’s matching the timing or size of the project will alter.

From both Table 2 and Table 7, it can be noted that, independent of the amount of public
money involved, the project will become less attractive for the TOC with a higher concession fee.
The reason is that they retain a lower share of their profit. Unexpectedly however, it is optimal
for the TOC individually to invest in more capacity. This counter-intuitive result is explained by
the fact that the TOC reacts by postponing the investment to a moment when the market has
grown more, requiring more capacity. At the same time, the investment becomes more attractive
for the PA. As a result, the PA wants to invest earlier, although its optimal capacity will then be
lower.

The combination of mixed ownership of the PA and a landlord port model leads to two different
results compared to the private landlord port setting. First, as was also apparent from Table 6,
an increased share of public involvement leads to the PA investing earlier and in more capacity,
because welfare effects other than profit are considered in the analysis too. Second, the optimum
with the same sG = sCS = 1/2 as for the equivalent service port in Table 6 lies in some cases
further outside the decision interval than in the case of a private port. At αX5 for example, X∗∗T,PA
equals X∗∗T,TOC = 36.08 euro per TEU, which is higher than the threshold X∗∗T (= 35.98) in Table 6.
This is caused by the fact that the PA’s optimum is influenced by its public ownership, whereas the
TOC’s optimal investment decision and optimal throughput level are not altered, as the private
TOC does not take social welfare into account. As a private party, it only considers profit in its
operational objective function.14

In the present scenario, the two described concession strategies remain possible. First, the
PA could aggregate the operational objective functions of itself and the TOC and invest at the
optimum of a service port. Through the concession agreement, the PA could then urge the TOC to
handle at least a certain minimal throughput. Negotiating a favourable (i.e. lower) concession fee
could be an adequate incentive for this. Second, if α5 = 0.57252, the optimal investment decision
for the PA would be (35.96, 11.16), and the TOC would be forced to reduce its optimal investment

14Because a private TOC is a profit and not a social welfare maximiser, the optimal throughput set by the TOC
in a public landlord port will differ from the optimal throughput set by the single public actor in a public service
port. This in turn influences the operational objective function and investment decision of both actors.
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of (36.27, 11.24) to a size of KTOC = 11.16 M TEU p.a. The corresponding X∗T,TOC(11.16) would
then be 35.96 euro per TEU, which equals X∗∗T,PA.

6 Investment decision sensitivity to an altered economic
situation

In this section, the sensitivity of the results to changes in other parameters is discussed. Table 8
shows how the investment decisions of the different actors alter with each parameter change. To
this end, the decisions at respectively αX5 and αK5 are given for each situation, as this information
allows understanding the direction of change of the optimal investment decision caused by different
concession fees.

Table 8: Changes of the PA and the TOC’s optimal investment decision (X∗∗
T,a,K

∗∗
a ) at the respective

αK5 ’s and αX5 ’s under different parameter changes in a landlord port with public ownership.

Decision
Parameter alteration α5 Actor a (X∗∗

T,a,K
∗∗
a )

Base case 0.504 PA (38.54, 11.20)
TOC (32.77, 11.20)

0.5693 PA (36.08, 11.16)
TOC (36.08, 11.24)

A = 4 0.472 PA (35.09, 10.85)
TOC (28.40, 10.85)

0.5643 PA (32.12, 10.81)
TOC (32.12, 10.89)

σ = 0.15 0.5624 PA (49.88, 12.74)
TOC (49.88, 13.02)

0.829 PA (41.04, 12.81)
TOC (91.83, 12.81)

λ = 0.5 0.491 PA (38.89, 11.19)
TOC (32.19, 11.19)

0.5673 PA (35.96, 11.15)
TOC (35.96, 11.24)

α1 = 0.95 0.546 PA (37.94, 11.19)
TOC (33.41, 11.19)

0.594 PA (36.07, 11.17)
TOC (36.07, 11.23)

α2 = 0.9 0.521 PA (37.92, 11.19)
TOC (33.43, 11.19)

0.5714 PA (36.07, 11.17)
TOC (36.07, 11.23)

α3 = 0.3 0.5124 PA (40.20, 11.20)
TOC (30.29, 11.20)

0.6235 PA (36.08, 11.15)
TOC (36.08, 11.28)

α4 = 0.45 0.5448 PA (37.13, 11.19)
TOC (34.45, 11.19)

0.57434 PA (36.08, 11.18)
TOC (36.08, 11.21)

Base case parameter values: A = 5, B = 1, c = 1, ch = 0.5, µ = 0.015, σ = 0.1, r = 0.06, FCI = 80, γ1 = 180, γ2 =
19, γ3 = 0, γ4 = 0.12, α1 = 0.9, α2 = 0.95, α3 = 0.35, α4 = 0.5, sG = 1/2, sCS = 1/2, λ = 0.4.

Source: Own calculations.
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With the monetary scaling factor of congestion A = 4 instead of 5, the equalled investment
threshold and installed capacity for the PA and the TOC are lower. Also, αK5 and αX5 are lower
than in the base case. With a lower A, congestion poses less of a problem to the port users, so
that relatively more throughput is acceptable at the same infrastructure and that less capacity
is required. If uncertainty is higher, the investment is made at a later moment, but the installed
capacity will also be higher. These conclusions can also be drawn in a private service port setting,
confirming robustness of our model. Additionally, the increase of uncertainty (σ) leads to another
interesting observation. In this case, αX5 is below αK5 . This inversion of α5’s has an important
consequence on the negotiation power of the PA. Below α5 = 0.5624, the port still has negotiation
power through timing the project at a higher threshold than what is optimal for the TOC. Above
α5 = 0.829, the power of the PA also still lies in providing less capacity than what would be
optimal for the TOC. However, between αX5 and αK5 , the TOC has a larger incentive to deviate
from the PA’s optimum, because it is optimal to install less capacity than what has already been
provided by the PA and at a later timing. This contains a reasonable incentive for the TOC to
deviate by handling less cargo than agreed under the concession agreement. To avoid this, the PA
could select the second investment strategy of urging the TOC to follow the PA’s optimal strategy
by reducing the TOC’s investment decision degrees of freedom.

The sensitivity of the results to changes in the parameters discerning a public landlord port
from a private service port are also included in Table 8. If the average local benefits per TEU
were higher (λ = 0.5), the social welfare generated by the project would be higher too, making
the project itself more attractive for the PA. As a result, the investment would be made slightly
earlier, but it would also be smaller. Moreover, lower α5’s are required for the port to equal the
size or timing of both actors’ investment decision. As was already explained, local benefits and
consumer surplus are not included in the private TOC’s operational objective function (πTOC) and
hence do not influence the TOC’s optimal investment decision. This is opposed to the PA, whose
project’s attractiveness is now higher. Hence, the PA requires less income from the concession
since already more welfare has been generated. The last four blocks of Table 8 show the impact
of the PA receiving less of the total port revenue or incurring a higher share of the port costs
(represented respectively by an increase of α1 and a decrease of α2, α3 or α4). Qualitatively, the
decision intervals remain similar. Additionally, almost identical optima as in the base case can be
achieved, although through a higher value for α5. In each of the altered cases, the PA has a lower
share of total port profit. Hence, the PA requires a higher concession fee, expressed as a share of
the TOC’s profit, to obtain the same level of welfare as in the base case.

7 Conclusions and future research

A private service port with one actor is the easiest setting to analyse new port capacity investment
decisions, since this single, profit maximising actor takes all decisions in the port. This paper
presents the case of a new public port with two actors: a TOC handling the cargo under a
concession agreement with the PA that manages the port and owns the land. This PA can be
(partly or fully) publicly owned and experiences little competition from nearby ports. The case
studied here leads to two extensions to real options modelling of capacity investment decisions in
a port under congestion and uncertainty. This paper adds (i) the division of the port income and
costs between the actors, as expressed by the α’s in our model, and (ii) the inclusion of social
welfare in the PA’s operational objective function to the model.

Our results show that the PA’s and TOC’s different objectives in a landlord port lead to a
decision interval constituted by the different optimal investment strategies for both actors. From
this interval, a common investment decision is to be made. Through the concession agreement,
the PA could persuade the TOC to invest in the strategy that is optimal for a service port in
order to maximise the aggregate project value minus investment costs V − I. The concession fee
can then be used as a redistribution mechanism of this V − I. Another possible strategy for the
PA is to urge the TOC to invest in the PA’s optimal strategy. This can be achieved by setting
a concession fee that limits one of the two investment decision degrees of freedom of the TOC.
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The remaining investment decision variable is then conditionally optimised and could equal the
optimal value of the PA.

The results also bear worthy capacity investment policy lessons to be learnt. Since the benefits
of port capacity are not only for current and future port users, but also for the economy of an
entire region, the involvement of public money has a positive impact. First of all, more PA shares
held by the government leads to larger and earlier investments in port capacity, leading to more
benefits and positive externalities for the entire economy. This finding is opposite to the common
RO finding, where more capacity leads to a later timing or vice versa. Another advantage of
involving a public owner in the PA is that the concession fee can be set to trigger investment at
the aggregated optimum. In such a case, the concession fee instrument will not merely be used to
maximise PA profits, but can rather enable an equitable distribution of income and costs in the
port. Of course, the PA should at the same time avoid incentives for the TOC to deviate from
the concession agreement. Interesting to observe in light of reaching the aggregated optimum is
that the optimum of a service port is not always reachable by a landlord port when the PA is
(partly) publicly owned and the TOC privately. The TOC sets the optimal throughput without
taking social welfare into account. This leads to a higher deviation from the aggregated optimal
throughput and hence the investment strategy in a service port made by a single port actor,
partly or fully owned publicly. As a result, the concession agreement is an important instrument
to align the objectives of the TOC, the PA and the government. Finally, the model allows drawing
two additional conclusions. Both an increase in congestion costs and uncertainty lead to a port
investing in more capacity, but at a later timing.

Considering the decision of one single port in this paper, where the port operator is one
company (TOC or part of the PA), opens up some viable ways for future research. The impact
of inter- and intra-port competition following the presence of multiple competing operators, as
well as the impact of vertical integration with other logistics chain actors such as hinterland
companies, would be interesting to analyse in a future capacity investment decision making model
(De Borger & De Bruyne, 2011; Huisman & Kort, 2015). Moreover, asymmetrical information
between parties may exist, with some parties not disposing of perfect information. The impact
of a relaxation of this assumption would be an interesting topic of a new analysis. To model
the difference in bargaining power of actors, Schneider et al. (2010) proposes among other things
a Nash-bargaining game. This would be an interesting approach to define the concession fees
optimising the actors’ discounted project values in a specific situation.
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A Discounted V − I in a private service port where the PA
can force the TOC to invest in the PA optimum.

Table 9 contains the discounted V − I for both the PA and the TOC under different possible
strategies at the moment where X(t) = 35. These strategies are equally followed by both actors.
This discounted V − I is calculated as (X/XT )β1 · (V − I), with (X/XT )β1 the stochastic discount

factor at time t where X(t) = X and with β1 =

σ2

2
− µ+

√(
σ2

2
− µ

)2

+ 2rσ2

σ2
(Huisman &

Kort, 2015). It is shown that the PA forcing the TOC to invest at its own optimum does in this
case only cause small deviations in individual and aggregated discounted V − I from the private
service port optimum, or even from the optimal TOC’s investment strategy.

Table 9: Discounted V − I under under possible investment strategies equally followed by both actors
in a private service port where the PA can force the TOC to invest in the PA optimum at time
t : X(t) = 35.

Common investment strategy: Discounted Discounted Discounted
(XT ,K) (V − I)PA (V − I)TOC Σi(V − I)i

PA individual optimum: (37.43, 11.11) 933.3 523.7 1457.0
Private service port optimum: (37.63, 11.17) 933.2 523.9 1457.1
TOC individual optimum: (38.00, 11.26) 932.9 524.0 1456.9

Parameter values: A = 5, B = 1, c = 1, ch = 0.5, µ = 0.015, σ = 0.1, r = 0.06, FCI = 80, γ1 = 180, γ2 = 19, γ3 =
0, γ4 = 0.12, α1 = 0.9, α2 = 0.95, α3 = 0.35, α4 = 0.5, α5 = 0.60035, X = 35.

Source: Own calculations.
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