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Abstract. Vegetation patterns arise from the interplay be- particular exhibit a complex interplay between meteorolog-
tween intraspecific and interspecific biotic interactions andical, hydrological and biological processes and interactions
from different abiotic constraints and interacting driving with the surrounding terrestrial and aquatic systems result-
forces and distributions. In this study, we constructed aning in a high spatial and short-term variabilitp4l'O’ et
ensemble learning model that, based on spatially distribute@l., 2001). The conceptual representation shown in Hig.
environmental variables, could model vegetation patterns atilustrates the relationships between hydrology, the physic-
the local scale. The study site was an alluvial floodplain withochemical environment and vegetation at the local scale.
marked hydrologic gradients on which different vegetation The direct effect of site hydrology on physicochemical site
types developed. The model was evaluated on accuracy, armgfoperties, such as soil moisture content, oxygen and nutri-
could be concluded to perform well. However, model ac- ent availability determines the productivity and species com-
curacy was remarkably lower for boundary areas betweerposition of the site {enterink et al. 200% Wassen et al.
two distinct vegetation types. Subsequent application of the2003. Vegetation, however, is not passive to the abiotical
model on a spatially independent data set showed a poor pesetting, but affects site hydrology and physicochemical prop-
formance that could be linked with the niche concept to con-erties through feedback processes of which transpiraiion (
clude that an empirical distribution model, which has beengel et al, 2005, soil aeration fainiero and Kazda2005
constructed on local observations, is incapable to be appliednd alterations in nutrient loadingsli{l, 1996 Fisher and
beyond these boundaries. Acreman 2004 are just some examples. These localized
direct and feedback processes result in spatial and tempo-
ral distributions of the abiotical constraints at a higher scale
level (Schibder, 2006. Together with intraspecific, interspe-
cific and anthropogenic interactions these distributed abioti-

. cal constraints result in vegetation patterns.
Ecosystems are complex, evolving structures whose charac-

teristics and dynamic properties depend on many interrelated Exploring vegetation patterns is a central goal in ecol-
links between direct gradients (nutrients, moisture, temperogy. Numerous studies examined environmental gradients
ature), their environmental determinants (climate, geology,n relation to vegetation type distributions in various ecosys-
topography) and potential natural vegetation, and the protems Gchulze et a).1996 Famiglietti et al, 1998 Molina et
cesses that mediate between the potential and actual veggt, 2004 Rudner 2009, and different techniques have been

tation cover Baird and Wilby 1999. Riparian wetlands in  developed to quantify vegetation-environment relationships.
Canonical ordinationJongman et al1995 for example, is

widely applied in ecological studies to detect patterns of vari-
Correspondence tal. Peters ation in vegetation data and quantify the main relations be-
BY (jan.peters@ugent.be) tween vegetation and environmental variables. Generalized
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2 Description of the study site

natural
disturbance

A lowland river valley in Belgium called “Doode Bemde”
was the research area of this study (Fy. The site is an
alluvial floodplain mire in the middle course of the river Di-
jle, situated approximately 30 m above sea level. The area
is bordered by the river Dijle in the west, the Molenbeek, a

Actual vegetation and land cover
~ species composition

I e |

~ productivity -
~ LAl tributary of the Dijle, in the north and the valley slope with
~elc. a number of permanent springs in the ed3¢ Becker et

al, 1999. The climatic conditions at the site are typically
temperate, with an average yearly rainfall~=e800 mm dis-
Fig. 1. Conceptual model illustrating the relationships between hy-rihuted evenly over the yeavérhoest et a).1997 De Jongh

drology, the physicochemical environment and vegetation at the 1o | 2009, an average annual pan evaporation of 450 mm

pal_scale. Leger_ld: full arrows indicate direct effects, broken arrows, L4 an average yearly air temperature of@.8van Herpe
indicate vegetation feedbacks, and rounded squares and bent arrovf\é%d Troch2000. Local conditions at the Doode Bemde have
indicate exogenous disturbances. Figure adapted froamklin ’ 0.

(1999; Baird and Wilby(1999; Mitsch and Gosselink2000. begn extensively described e Becker et al(1999 and
Joris and Feye(2003.

2.1 Ecohydrological monitoring scheme
linear models (e.g. multiple logistic regressidfoémer and
Lemeshow?2000) are frequently applied to construct distri- During the summer of 1993 and the spring of 1994, plant
bution models Austin, 2002 Bio et al, 2002 among oth-  species occurrences were mapped in the study area. There-
ers). Distribution models tend to predict spatial distribu- fore, the total area of 21.08 ha was subdivided in 519 regular
tions of species based on environmental variablgégigan  and adjacent 20 m by 20 m grid cells. Mapping was restricted
and Zimmerman200Q Guisan and Thuiller2005. In this to a selection of 56 plant species of which 45 were typically
study, an ensemble learning technique named random forestgoundwater dependent (phreatophysesisu_ondo(1988)
(Breiman 2001 Prasad et al2006), is applied to a spatially and 11 were differential species for several vegetation types
distributed data set containing information on environmen-at the Doode Bemde. Based on these species coverata,
tal conditions and vegetation type distributions. The randomBecker et al(1999 applied TWINSPAN Hill, 1979 in or-
forest distribution model was assessed in terms of: (i) its clas€er to define vegetation types. Seven different types were
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Table 1. Summary of the vegetation types: abbreviation, name, short description and area.

Nr.  Name Short description Characteristic species area [ha]
(English names) (number of grid cells)
DB SN
Ar  Arrhenatherion High yield potential pasture. Charac-Tall Oat Grass 2.80 (70) 0.83(83)

teristic species includérrhenatherum Cow Parsley
elatius(L.) J. & C. PreslAnthriscus sil- Lesser Trefoil
vestris(L.) Hoffm. and Trifolium du-

biumSibth,.
Cp  Calthion palustris ~ Species—rich mesotrophic fen meadowarch Marigold 4.24 (106) 0.93 (93)

dominated byCaltha palustrisL., Ly- Ragged Robin
chnis flos—cuculiL., and manyCarex Sedges
species.
Ce Carici elongetae — Mesotrophic forest type with domi- Alder 1.20(30) 1.21(121)
Alnetum glutinosae nance ofAlnus glutinosa(L.) Gaertn. Elongated Sedge
and a herblayer witlCarex elongatd.., Lesser Pond Sedge
Carex acutiformisEhrh. andLycopus Gipswort

europaeud...
Fi Filipendulion Tall herb fen withFilipendula ulmaria Meadowsweet 4.16 (104) 1.07 (107)

(L.) Maxim., Alopecurus pratensit., Meadow Foxtall
Cirsium oleraceungL.) Scop. andHer- Cabbage Thistle

acleum sphondyliurh.. Hogweed
Ph  Phragmitetalia Highly fertile reedswamps dominated Reed 2.12(53) 0.19(19)
by Phragmites australi¢Cav.) Steud..
MP  Magnocaricionwith  Magnocaricionvegetation withPhrag- Reed 3.72(93) 0.78(78)
Phragmites mites australigCav.) Steud.. Slender Tufted Sedge
Lesser Pond Sedge
Skullcap
Reed Canary Grass
Ma  Magnocaricion Tall sedge swamp withCarex acuta Slender Tufted Sedge 2.52 (63) -

L., Carex acutiformi€hrh.,Scuttelaria Lesser Pond Sedge
galericulata L. and Phalaris arundi- Skullcap
naceal.. Reed Canary Grass

DB = Doode Bemde; SN = Snoekengracht

distinguished (Tablé), and their spatial distribution can be composition compared to the other vegetation types which
seen in Fig2. All vegetation types are herbaceous, excepthave lower values. Between the different vegetation types,
for Carici elongetae — Alnetum glutinosadere a tree layer marked differences in similarity can be observédagno-
of Common Alder is present. The similarity in species com- caricion with Phragmiteshas high similarities wittPhrag-
position between grid cells was compared using the JaccardhitetaliaandMagnocaricion Between the other vegetation
index of similarityJS=c/(a+b-+c) wherec is the number of  types, similarities are generally lower, but nevertheless dif-
species shared by both cells, amadnd b are the numbers ferences can be observeflrrhenatherionfor example, has
of species unique to each of the cella¢card1912. The  twice as much species in common wilipendulion than
Jaccard similarity of two grid cells expresses their ecologicalwith Magnocaricion
resemblance concerning species composition, and ranges be-A groundwater monitoring network consisting of
tween 0 (when both cells have unique species) and 1 (whe@5 piezometers was installed in 1989. Groundwater depths
both cells have equal species composition). Averag®d were measured every fortnight during the period 1 January
values are given in Tabl@ for the seven different vegeta- 1991-31 December 1993. Time series of linear interpolated
tion types. The values of the diagonal elements in T@ble groundwater depths measured at several piezometers (A-E,
are a measure of similarity between grid cells of the samdocations can be seen in Fi@) along a topographical
vegetation type. Based on these values, patché2hadg-  transect are plotted in Figa. A yearly pattern of high
mitetalia, Magnocaricionwith Phragmitesand Magnocari- summer depths and low winter depths was observed at all
cion can be concluded to be more homogeneous in speciegiezometers. Based on these time series, hydrological dura-
tion lines expressing the probability (%) that a groundwater
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Table 2. Jaccard index of similarity between the vegetation types in \ A B C— D E
(a)
the Doode Bemde. = 0.5
. g == — R
Ar Cp Ce F Ph MP Ma g s A

Ar  0.40 g ) - .

Cp 018 0.37 515

Ce 0.11 0.17 0.46 5

Fl 024 021 020 039 0-12/01/91 01/61/92 ) 01/0‘1/93 31/12/93
Ph 009 019 035 022 055 ime
MP 010 019 030 0.23 044 051

Ma 0.11 024 030 033 038 042 054

groundwater depth [m]

depth is exceeded are calculated (F3). Groundwater . 5 o 5 n .

depths corresponding to a probability of exceedance of 50% probability to exceed groundwater depths [%]

are yearly average groundwater depths. They differed con-

siderably along the transect (Figh). At the levee near the Fig. 3. (a) Time series of the groundwater depth, as monitored by
river an average value of 1.27 m was measured (piezometetiezometers A-E along a topographic transect (seefigb) Hy-

'A)7 Wh|Ch decreased gradua”y mov|ng further down toward drOlOglcal duration lines expressing the prObablllty that measured
the depression (piezometer—BC—D), with a minimal groundwater depths are exceeded. The line colours correspond to

yearly average groundwater depth of 0.05m measured agw vegetation types wherein these piezometers were installed (see

piezometer D in the center of the depression. Blgalso '9.2)
shows different periods of superficial groundwater depths

(<0.3m) in all piezometers, ranging from 75% of the year  The spatially explicit variables were structured into a data
in piezometer C to 35% of the year in piezometers B andset  The data set containg=519 measurement vectors

D. Groundwater depths measured in piezometer A arey. —(x;1, x;2, ..., xip) consisting of the values qf=13 vari-
never<0.3m. Additional to the monitoring of groundwater gpeg describing the abiotic environment:

dynamics, all 25piezometers were sampled on several
groundwater quality variables during a sampling campaign — Groundwater dynamics: mean groundwater depth (con-
in September 1993 with respect to pH; CC&*, Faq, K, tinuous variable);

Mg?*, NO; -N, NH; -N, Ho,PO, and SG . All val _

vd CS A e and q values are — Groundwater quality: pH, Cl, C&", Faot, KT, Mg?t,
in [mgL~"] except for pH [-]. A soil type map was made NO-—N. NH*—-N. H-PO- and S(ﬁ‘ All these vari-
e . - 3 1 4 1 2 4 .

based on 60drillings to a depth of 1 m, evenly distributed : )
. ables are continuous;
over the study area. Management regime was assessed for
each grid cell separately. Four different regimes could be — Soil: soil type (silt/peat, categorical);
distinguished: . . .
— Management: yearly mowing, cyclic mowing, no man-
— Yearly mowing in early summer, followed by grazing or agement, transition (categorical).

mowing of the aftermath;

_ _ Seven different vegetation types, ..., c7 are considered.
— Cyclic mowing (once every 5 to 10 years) or not mown To each measurement vectora unigue vegetation type €
at all since at least 5, and up to 10 years; {c1,...,c7} is assigned. The data set will be denoted as:
— No management for at least 10 years; L={(x1l),...,0xN,In)}. (1)
— Transition from yearly to cyclic mowing. 2.3 Independent evaluation data set

2.2 Data set A spatially independent ecohydrological data &ef was
constructed for a similar valley ecosystem, “Snoekengracht”.
Groundwater depth measurements were used to calculate Bhe Snoekengracht is an alluvial floodplain of the river Velp,
dynamic groundwater variable, the mean groundwater deptisituated approximately 15km from the Doode Bemde. The
(MGD) below surface [m]. Values of this variable, together climatic setting of both nature reserves is very much alike,
with the groundwater quality variables, were assigned toand local environmental conditions and floral composition
each grid cell by spatial interpolation of measurement dateare very similar Bio et al, 2002. The monitoring scheme
over the entire area using block kriging (for details, B&®  was largely the same as in the Doode Bemidayprechts
et al.(2002). and De Becker1999, and a grid-based (with a grid size of
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10m by 10 m) data set consisting 8f=501 elements was Table 3. Confusion matrix of the classification made by the random

constructed, which will be denoted as: forest distribution model. Predicted vegetation types are compared

Ley = {(y1, 1) (yts L)) @) with the observations at the Doode Bemde.
ev — i 3 ey ) .
wherel; is the vegetation type assigned to measurement vec- Observed
tor y;. Most vegetation types coincide with those found Ar Cp Ce F Ph MP Ma
at Doode Bemde, except fdlagnocaricionwhich was not At 5 4 0 4 0 0 0
found at Snoekengracht (see Tah)e T Cp 6 8 0 7 0 5 4
o Ce 0 1 19 O 1 4 4
o ® F 9 2 0 8 1 0 7
3 Distribution model O ph 0 2 7 1 45 4 2
MP O 2 3 1 4 68 9
The distribution model used in this study applies the random Ma 0 6 1 4 2 12 137

forest techniqueBreiman 2001). Random forest is an en-
semble learning technique which generates many classifica-
tion trees Breiman et al.1984) that are aggregated to com-

number of randomly selected variables to split the nodes, and

pute a classification. Each classification tree is grown usingc the number of trees within the random forest. where op-
another bootstrap subskt of the original data set and the D . . ' P
t1[m|zed using the oob error, and suitable parameter values

nodes are split using the best split variable among a subse . _ X
of m randomly selected variablesiéw and Wieney 2002. werem=3 andk=1000. The results include an ensemble of

. e 7 k=1000 predictions, one made by each classifier, which are

The pseudo-code for growing a random forest is given in Ap- S . : e

. . aggregated based on majority votes into a final classification.
pendixAl. The number of treesk] and the number of vari- ) : 2 : T

. ' A confusion matrix summarizing the final classification is
ables used to split the nodes)(are two user-defined param- . . A
. . . iven in Table3, and results are shown in Fida.

eters required to grow a random forest. An unbiased estimatéd
of the genera'llzatlon error (the so calleq out-of-bag error, oob4_2 Model evaluation
error) is obtained during the construction of a random forest
(AppendixA2). Breiman(2001) proved that random forests 421 Classification accuracy
produce a limiting value for the oob error. As the number
of trees increases, the generalization error always converge®ut of the 519 grid cells included in the study, the model
The number of treestf needs to be set sufficiently high to classified 395 (76.1%) correctly, and 124 (23.9%) incorrectly
allow for this convergence. The oob error can be used to op{Table3). A « (Cohen 1960 value of 0.716 was calculated,
timize the other user-defined parameterin order to get a  indicating a substantial agreement between observations and
minimal random forest erroPeters et al2007). The model  predictions. A threshold-independent evaluation using re-
outcome is an ensemble bfclassification trees which are ceiver operating characteristic (ROC) graphs was performed
aggregated based on majority votes to compute the final clagHosmer and Lemeshg®000Q. ROC graphs are useful for
sification. Since every classification tree votes for a certainvisualizing classifier performance&gwcett 200§. ROC
vegetation type:; based on the measurement vectprof graphs are two-dimensional graphs in which the true posi-
grid cell i, the probability of occurrence of vegetation type tive rate,tp, is plotted on the y-axis, and the false positive
cj is given byP(c;) = N.;/k, whereN,, is the number of  rate,fp, on the x-axis, where

trees voting for vegetation type;, andk the total number . .
9 9 b __ positives correctly classified

of trees. The highest probability of occurrend®(¢;)max) tp e (3)
determines the predicted vegetation type total positives

Additionally, the random forest algorithm can estimate R .
variable importances (AppendiX3), i.e. variables can be fp= negatives incorrectly cIassnﬁgd 4)

ranked according to their importance in determining vege- total negatives

tation distributions at the study site. The area under the ROC curve, abbreviated AUC, is a scalar

value between 0 and 1 representing the classifier perfor-

4 Modelling vegetation distributions mance Fawcett 20069. Since random guessing produces a
diagonal line between (0,0) and (1,1) in ROC space, with an
4.1 Model construction and results AUC value of 0.5, a classifier with a hlgher AUC value than

0.5 does better than random guessing. For multi-class ROC
At first instance the data sdt was randomly split into 3  graphs, which should be applied here since 7 vegetation types
data subsets for 3-fold cross-validation. The model wasare considered, a methodology describelddawceti(2006 is
constructed using the random forest program provided byused. For each class a different ROC curve is produced, with
Breiman and Cutle2005. User-defined parameters the ROC curvej plotting the classification performance using

www.hydrol-earth-syst-sci.net/12/603/2008/ Hydrol. Earth Syst. Sci., 12,63(832008
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e —— Fig. 5. Receiver operating characteristic (ROC) curves visualiz-
ing the classification performances of the 3-fold cross-validated
LEGEND (a) random forest distribution model for the 7 vegetation types (full
Observations Predictions curves). The AUy €quals 0.96. Model performances for bound-
I Arhereterion o Arhenaterion ary cells only are summarized by the dashed ROC curves, yielding
= g:lrtiz:on palustn? ) : g:lrtig;on palustn? . an AUCtotaI value Of 092
[ Filipendulion Filipendulion
[ Phragmitetalia o Phragmetitalia
[_] Magnocaricion with Phragmites icion with P
[ Magnocaricion @ Magnocaricion
LEGEND (b) 4.2.2 Spatially explicit evaluation
® Incorrect predictions R . R
Probability class For each grid cell, the ensemble/of1000 classification re-
0-0.4 i i iliti
% a0 sults is aggregated by calculating prqbab|llt|es of occurrence
= Ly P_(c ;) for all J vegetation types of wh|ph the veggtatlon type
= [or-odl with the h.lghe'SlP(c j') valug (f’(c )max) is the predlgted one.
I [09-1] As seen in Fig6 this decision rule leads to an increasing

number of correct classifications with increasiRgc ;j)max
Fig. 4. (a)Observed vegetation types overlaid by the classificationvalues. Indeed, 252 elements are correctly classified with a
made by the random forest distribution mod@) Modelled prob-  probability higher than 0.7, whereas only 2 elements are cor-
abilities (P (c j)max) on which the classification is based. rectly classified with a probability lower than 0.3. 50% of
the correctly classified elements are based on probabilities
>0.78. The incorrect classifications show a maximum in the

vegetation class; as positive and all other classes as neg_[0.4,0.5] interval, with 1 element incorrectly classified with a

ative. For each ROC curve. the AUC can be calculated an(Probability lower than 0.3, and 28 elements incorrectly clas-

averaged over the different classes using class weights base led with probabilities higher than 0.7. 50% of the incor-

on class prevalences in the test d&eofost and Dominggs rect_ly classified elements ar_e ba?sefj or? probabilitiés55.
2001): Figure4b shows the spatial distribution @f(c;)max val-

ues at the study site in graduated colours. Correctly classi-
fied grid cells with highP (c;)max values are situated within
_ , , the central areas of homogeneous vegetation clusters, and
AUCrotl = Z AUC(e)) - wie)) ©) P(c;)max values tend to decrease toward the boundaries of
these areas (see also Hg). Incorrectly classified grid cell
are mainly found where two adjacent vegetation types meet,
where AUC(;) is the area under the class reference ROCand are based on I0®(c;)max vValues at the central depres-
curve forc;, andw(c;) a weighing factor. Weighing fac- sion and the north-eastern side of the study site. The vegeta-
tors are obtained from Table Figure5 visualizes the ROC tion types found in these areas &aerici elongetae-Alnetum
curves for each vegetation type. The Aldg value equals  glutinosae Phragmitetaliag Magnocaricionwith Phragmites
0.96 and the random forest distribution model is concludedand Magnocaricion A Jaccard similarity matrix was con-
to perform well. structed for the boundary grid cells only (Takle TheJS

L‘jGC
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150
I correct predictions
[ TJincorrect predictions

609

Table 4. Jaccard index of similarity for boundary grid cells between
two vegetation types at the Doode Bemde. Non-adjacent vegetation

types are indicated by —.

Ar Cp Ce Fi Ph MP  Ma

wer Ar  0.59

Cp 0.38 0.60
5 Ce - 045 0.66
5 Fi 034 021 - 054

Ph - 018 0.52 027 067
B MP - 030 036 0.19 057 065

Ma - 034 039 057 059 053 066

: +  Calthion palustris at the Doode Bemde
N O Calthion palustris at the Snoekengracht|

4 Fundamental niche

Realized niche at
Snoekengracht

1 1 -
[0,0.1] [0.1,0.2[ [0.2,0.3[ [0.3,0.4[ [0.4,0.5[ [0.5,0.6[ [0.6,0.7[ [0.7,0.8] [0.8,0.9] [0.9,1]
probability class

Fig. 6. Probability distribution of correct and incorrect classified
grid cells of the Doode BemdeV(=519).

PCA2
=)

Realized niche at
Doode Bemde

values in Tablet express averaged resemblances in species
composition of each boundary grid cell with its 8 neighbor-
ing grid cells. Boundary grid cells d?hragmitetalia Mag-
nocaricionwith PhragmitesandMagnocaricioncan be con- -4
cluded to share a large proportion of their species Wih
values higher than 0.5. This is reflected in the modelling
results, P(c;)max values for these grid cells are generally i
low because comparable numbers of ## 000 classifiers
classify these grid cells aBhragmitetalia Magnocaricion  Fig. 7. Conceptual representation of realised niche<afthion

with Phragmitesand Magnocaricion Another conclusion palustris at the Doode Beemde and Snoekengracht. The funda-
should be drawn for isolated grid cells and small isolatedmental niche ofCalthion palustrisranges over all environmental
vegetation clusters surrounded by another vegetation typétates which would permit tBalthion palustristo exist indefinitely

(e.g. as occurs along the western border of the study aredHutchinson1957.

see Fig4a). These grid cells are frequently incorrectly clas-

sified with high P(c;)max values, and are the weak point ments included irLey, only 99 elements were classified cor-

of the random forest distribution model. The worse perfor-rectly (19.8%). This can be explained by the niche con-
mance of the model on boundary grid cells can also be seeniept Hutchinson 1957. The fundamental niche of a plant
Flg 5, where ROC curves of classification results CompUtEdspecies, and by extension a Vegetation type, is defined as an
for boundary grid cells only are lower than those computed;,-dimensional hypervoluméutchinson1957 in which ev-

for the entire data set. The corresponding As#value for ey point corresponds to a state of the environment which
model performances in boundary areas equaled 0.92, whilgould permit the species to exist and reproduce. Due to
being 0.96 for the entire study area. interspecific competition species generally occupy only an
elementary part of this volume, the realized niche. The
niches realized by each of the vegetation types found at the
Doode Bemde differ from those realised by the same vege-
The use of independent test data allows us to assess the modation types at Snoekengracht. Although similar results were
generalization abilities.Edwards et al(2006 pointed out  observed for all vegetation types, the exampleCafthion

that cross-validated model accuracies are frequently differpalustrisis given in Fig.7. Since 13 environmental vari-
ent from accuracies assessed with truly independent data. Hbles are used in this study, a principle component analy-
is easy to conclude that the random forest vegetation dissis was performed to reduce dimensions and make results
tribution model, which was trained on the data fetid visible. Fig.7 graphs the component scores of grid cells
not classify data seLey satisfactory. From the 501 ele- where Calthion palustriswas observed on the 2 principle

'
N
T

4.2.3 Performance on independent test data
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mean importance score

MGD pH Cl S04 Fe M K Mg NH4 Ca NO3 H2PO4 S
variable

oob error [%]

1 2 3 4 5 6 7 8 9 10 11 12 13
number of variables included in the model

(c)

Nr vars included 1 2 3 4 5 6 7 8 9 10 11 12 13

Accuracy [%] 345 540 76.1 76.5 78.6 78.4 79.0 78.4 80.5 80.0 80.5 79.8 80.2
K 0.218 0452 0.715 0.720 0.745 0.743 0.750 0.742 0.768 0.761 0.768 0.759 0.763
AUC 0.75 0.88 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96  0.96

Fig. 8. (@) All variables ranked according to their importance as calculated with the variable importance measure (ApB&ndik

stands for management regime, S represents the variable soil type, and MGD the mean groundwais) d@miherror of random forest
distribution models constructed on data sets with reduced complexity. The model containing only the most important variable (MGD) has
an oob error of 65.5%. The oob error decreases gradually when more variables are indu8athmarizing table of model performances:
accuracy, Cohen’s and AUC values associated with a decreasing number of variables included.

component axes (cumulatively explaining 70% of variance).Applying this procedure on data setresults in a ranking of
Although partly intersecting, two different realized niches all 13 variables according to importance (F8g). The most
can be distinguished. Obviously, a random forest distibutionimportant variable is mean groundwater depth. This means
model that is trained on the vegetation distributions at thethat, according to this classification technique, the spatial dif-
Doode Bemde and which uses explicit environmental threshferences in mean groundwater depths at the Doode Bemde
olds to compute a classification, cannot perform well on suchare determinative for the vegetation distributions at the study
an independent test data set of an apparantely similar ecosysite. Based on this variable ranking, 13 random forest dis-
tem. tribution models were constructed, each on a data set with
reduced complexity, i.e. each based on a different number
of variables by eliminating the variables in order of impor-
5 Reduction of model complexity tance. Results are summarized in terms of the oob error, and
plotted in Fig.8b. A stable oob error value was found for
The random forest algorithm includes a procedure to estimatéhe models with complexities between 4 and 13 variables.
the importance of the independent variables (Appeadix The models constructed on the 3, 2 and 1 most important
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variables showed a significant increase in oob error, whichmany data would be needed, ranging over the entire ecologi-

is reflected in lower accuracy, and AUC values for these cal amplitude of the modelled attributes. Finally, gradual re-

models (Fig8c). ductions in model complexity were analysed. Based on these
Based on this result, a simplification of the ecohydrologi- results, a significant reduction of the ecohydrological moni-

cal monitoring scheme for distribution modelling is prelimi- toring scheme could be proposed for a similar groundwater-

narily assessed. Since the random forest performances werependent ecosystem. The random forest distribution model

similar when all 13 or just a part=(3) of these variables were made a reasonably accurate classification (AdS0.94)

included, there seems to be no need to describe the envirowhen constructed on spatially distributed measurement of

mental conditions of the study area by that many variablesfive easily measured environmental variables only.

Therefore, a simplification of monitoring efforts can be made

based on various criteria such as relevance and measurement )

costs. For similar alluvial ecosystems with groundwater de-~PPENdiX A

pendent vegetations, the inclusion of groundwater depth to-

gether with some — easily measurable — groundwater qualityRandom Forest

variables such as pH, NB-N, NH;—N, and management

as environmental variables on which the vegetation distri-

bution modelling is based, is proposed. The independenirhe gigorithm for growing a random forestiotlassification

test data seLey was redesigned only to include 5 variables: {raeg goes as follows:

mean groundwater depth, pH, IJON, NHX—N, and man-

agement. A random forest distribution model was trained (i) fori = 1tok do:

on this data set, and 3-fold cross-validation resulted in an

overall accuracy of 72.5% (363 grid cells correctly classi-

Al Growing a random forest

1. draw a bootstrap subseX; containing approxi-

fied, 138 incorrectly classified), andcavalue of 0.657 and mately 2/3 of the elements of the original data set
an AUGytq value of 0.94 were computed. The reduced ran- X;

dom forest distribution model did perform satisfactorily, even 2. use X; to grow an unpruned classification tree to
when compared to the 3-fold cross-validated results of the the maximum depth, with the following modifica-
random forest model constructed on the entire datd.sgt tion compared to standard classification tree build-
(accuracy=76.6%=0.709, AUGu3~=0.96). ing: at each node, rather than choosing the best split

among all variables, randomly selegt variables

and choose the best split among these variables;
6 Conclusions

(i) predict new data according to the majority vote of the

Vegetation patterns arise from the interplay between in- ~ €nsemble ok trees.
traspecific and interspecific biotic interactions and from dif- .
ferent abiotic constraints and interacting driving forces andA2 Out-of-bag error estimate
distributions Gchibder, 2006. In this study, we constructed
a vegetation distribution model based on spatially distribute
environmental variables which were linked with the occur-
rence of a certain vegetation type. Biotic interactions were (i) fori = 1 tok do:
only included indirectly, i.e. their effect was included through

dAn unbiased estimate of the generalization error is obtained
during the construction of a random forest by:

the observed vegetation distribution pattern, not directly as 1. each tree is constructed using a different bootstrap
independent variables underlaying the vegetation distribu- sampleX; from the original data se¥. X; consists
tion. As far as classification accuracy of the random forest is of about 2/3 of the elements of the original data set.
concerned, results were satisfactory (Ablg=0.96). Model The elements not included ij;, called out-of-bag
errors were located in boundary areas (Ald§adary area= elements, are not used in the construction ofithe
0.92) between adjacent vegetation types. A proportion of th tree;

these errors could be attributed to high similarities between 2. these out-of-bag elements are classified by the fi-
neighboring grid cells. These incorrect predictions were nalizedi-th tree.

generally based on low probabilities of occurrence of sev-

eral similar vegetation types. Furthermore, the random for- (i) At the end of the run, on average each element of the
est distribution model cannot be applied beyond the local ~ original data sek is out-of-bag in one-third of theetree
conditions upon which it was constructed, because realized ~ constructing iterations. Or, each element of the original
niches of species/vegetation types do seldom coincide, even data set is classified by one-third of thetrees. The
between apparently similar sites. This restricts the model's ~ Proportion of misclassifications [%] over all out-of-bag
applicability. In order to make it operational on a larger scale ~ €lements is called the out-of-bag error.
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A3 Variable importance P. De Becker from the Institute of Nature Conservation, Belgium,
for providing the data gathered through the Flemish Research

The random forest algorithm can estimate the importanceProgramme on Nature Development (projects VLINA 96/03 and

of each variable by using the variable importance measureYLINA 00/16).

Defining variable importances is done by looking at how

much the oob error increases when oob data are permutegdited by: S. Manfreda
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