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Cyclotron resonance of trilayer graphene
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The cyclotron resonance energies, the corresponding oscillator strengths, and the cyclotron absorption spectrum
for trilayer graphene are calculated for both ABA and ABC stacking. A gate potential across the stacked layers
leads to (1) a reduction of the transition energies, (2) a lifting of the degeneracy of the zero Landau level, and (3)
the removal of the electron-hole symmetry.
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I. INTRODUCTION

Monolayer graphene (MG) is a truly two-dimensional (2D)
crystal with a gapless linear electronic spectrum at low energy
which, along with the chiral nature of its charge carriers
is responsible for a variety of unusual properties.1 When
subjected to a magnetic field B, this electronic spectrum
evolves into unequally spaced quantized Landau levels (LLs)
that display a

√
B dependence, as well as a zero energy

level, in stark contrast with other two-dimensional electron
gases. These features were confirmed by means of infrared
transmission and cyclotron resonance (CR) experiments.2–5

This peculiar behavior of the electron gas in graphene in the
presence of a magnetic field is responsible for the anomalous
integer quantum Hall effect (IQHE),6–8 one of the most
remarkable among the new phenomena observed in graphene.
Equally interesting, bilayer graphene (BLG) has also shown
very unique properties. Presenting a parabolic gapless spec-
trum at low energies, BLG can be easily converted into a
semiconductor with a tunable gap by applying an external
electric field that breaks the two layers inversion symmetry.9–11

In the presence of a magnetic field this spectrum splits into LLs
presenting a rather intricate dependence on Landau level index
and magnetic field B. The LLs in BLG move from a linear in
B spectrum, characteristic of an ordinary 2D electron gas, to a√

B dependence as the energy increases,12,13 creating another
type of IQHE.14

Thicker graphene layers can be also a very attractive subject
of research since the stacking order of the layers plays an
important role in the features exhibited by the system. Among
the multilayer graphene films, trilayer graphene (TLG) has
received a lot of attention recently. The two main types of
stacking order appearing in nature are the Bernal or ABA
stacking, and the rhombohedral or ABC stacking. While
ABA TLG presents an electric-field tunable band overlap, the
ABC TLG exhibits a tunable band gap.15–19 The difference
in stacking order also affects the LL behavior in TLG,20,21

producing another two new types of IQHE.22,23 In the simplest
tight-binding model the LL spectrum of ABA TLG is found
to be a superposition of a monolayerlike and bilayerlike
LL.21,24–27 In contrast, the ABC TLG are predicted to have
a nearly B3/2 field dependence.21,24,27,28

In the present work we will concentrate on the cyclotron
resonance transitions in different stacked TLG. We will
compare the results of unbiased and biased layers, and discuss
as well the different features appearing due to the stacking

order in ABC and ABA TLG. We will concentrate on the
position of the cyclotron resonance peaks, and the oscillator
strength of those transitions.

The paper is organized as follows. In Sec. II we present the
model, calculate the oscillator strength, and present the results
for ABC stacking. In Sec. III we consider ABA stacking. The
main conclusions are summarized in Sec. IV.

II. ABC STACKING

Let us consider three coupled graphene layers with an ABC
stacking configuration in the continuum approximation. In the
present work we retain only the nearest-neighbor coupling
terms. In this case, the Hamiltonian can be written as

HABC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1 vF π † γ1 0 0 0

vF π U1 0 0 0 0

γ1 0 U2 vF π 0 0

0 0 vF π † U2 0 γ1

0 0 0 0 U3 vF π †

0 0 0 γ1 vF π U3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(1)

whose eigenstates are defined by the six components spinor
� = [ψA1 , ψB1 , ψB2 , ψA2 , ψA3 , ψB3 ]T . In the above Hamil-
tonian π ≡ px + ipy , π † ≡ px − ipy , vF = √

3aγ0/(2h̄) is
the Fermi velocity in terms of the in-plane nearest neighbor
hopping γ0 = 3.12 eV, and the carbon-carbon distance a =
1.42 Å. Ui (i = 1, 2, 3) is the potential in each layer which
we consider constant throughout each layer, and γ1 = 0.4 eV
is the nearest neighbor coupling term between adjacent layers.
In the presence of a magnetic field p → p + |e|A, where e

is the electron charge. By making use of the Landau gauge
A = B(0,x,0), we have [py,H ] = 0 and the eigenstates are
found to be

�ABC
n = An

[
idnψn+1,

−dn

δn
1 lB

ψn+2, icnψn+1,

bnψn,
−i2n

δn
3 lB

ψn−1, ψn

]T

,

with ψn given by

ψn = eikyye−x̄2/2Hn(x̄), (2)

where x̄ ≡ x/lB + lBky , lB ≡ √
h̄/eB is the magnetic length,

δn
i ≡ (En − Ui)/(h̄vF ), Hn(x̄) is the Hermite polynomial, and
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FIG. 1. (Color online) TLG Landau-level spectrum as a function
of magnetic field for ABC stacking with (a) U1 = U2 = U3 = 0, and
(b) U1 = 100 meV, U2 = 50 meV, U3 = 25 meV for n = 0 (black
solid lines), n = 1 (red dotted lines), n = 2 (green dashed lines), and
n = 3 (blue dot-dashed lines). The inset in (a) shows the coupling
between the three layers, while in (b) it shows an enlargement of the
LLs crossings for low magnetic fields. The vertical arrows indicate
some of the allowed optical transitions.

ψn ≡ 0 for n < 0. The other constants appearing in �ABC
n are

defined in Appendix A.
The magnetic field dependence of the LL are shown in

Fig. 1. The levels for unbiased layers are shown in Fig. 1(a)
where they behave as B3/2 for low fields and become linear
in B for large fields.21 When a bias is present, we show as an
example in Fig. 1(b) the LL for U1 = 100 meV, U2 = 50 meV,
and U3 = 25 meV. The arrows indicate some of the allowed
transitions dictated by the dipole selection rule.

The oscillator strength (OS) of the transition between the
initial state |�n〉 and the final one |�m〉 is usually defined
within the dipole approximation in terms of |〈�m|x|�n〉|2.
Since the only effect of ky is to shift the symmetry center of
the wave function and the system is assumed to be infinitely
extended, we set ky = 0 and work with the dimensionless
quantity

fmn = 1

lB
2

∣∣∣∣
∫

�∗
mx�ndx

∣∣∣∣
2

= lB
2

∣∣∣∣∣
∑
C

∫
�m

C
∗
x̄�n

Cdx̄

∣∣∣∣∣
2

, (3)

with C = A1, B1, B2, A2, A3, B3 that are defined in the inset of
Fig. 1(a). The analytical results of these integrals are given in
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FIG. 2. (Color online) Left panel (a) shows the transition energies
as a function of the magnetic field B for unbiased, i.e., U1 = U2 =
U3 = 0, ABC layers. The right panel (b) presents the oscillator
strength of the allowed transitions for the low-lying energy Landau
levels.

Appendix A. Throughout the paper we will refer to a transition
from the state |�n〉 to |�m〉 as (n,m).

Figure 2(a) shows the most important energy transitions
�E in ABC TLG as a function of the magnetic field for the
levels displayed in Fig. 1(a). The black solid, red dashed,
and blue dot-dashed lines present the intraband transitions
(0,1+), (1+,2+), and (2+,3+), while the red dotted and
blue dash-dash-dotted lines show the interband transitions
(1−,2+) and (2−,3+), respectively. Here the sign “+”(“−”)
stands for electron (hole) states. The transitions follow a
B3/2 dependence for low magnetic fields (B < 3 T) and this
behavior turns into a linear B dependence for higher values
of the field (B > 10 T). Figure 2(b) shows the corresponding
oscillator strength as a function of the magnetic field for the
same transitions appearing in the left panel. All transitions
show an oscillator strength that monotonically decreases with
increasing magnetic field with the exception of the transition
involving the zero LL [see inset of Fig. 2(b)]. Notice that the
OS associated with interband transitions are much smaller than
those involving the intraband transitions.

The effect of an applied bias is explored in Fig. 3, where
we show the energy transitions (a) and oscillator strength
(b) as function of magnetic field for biased layers with U1 =
100 meV, U2 = 50 meV, and U3 = 25 meV. The small differ-
ence between the transition energies of the dashed and dotted
red (green) lines reveals a clear asymmetry between electron
and hole transitions. For low magnetic fields, the energies
involved in the intraband electron transitions are slightly
negative due to the crossing between the LLs shown in the
inset of Fig. 1(b), which are also responsible for the crossings
happening between the interband energy transitions (solid
lines) in the left panel of Fig. 3. In contrast to the case with
unbiased layers, now the OS show a stronger dependence on
the magnetic field, and although the electron and hole have very
similar intraband energy transitions, their OS are remarkably
different and have the opposite magnetic field dependence.
While the holelike transitions (2−,1−), (3−,2−) gain in OS
as the magnetic field increases, the electronlike transitions

085412-2



CYCLOTRON RESONANCE OF TRILAYER GRAPHENE PHYSICAL REVIEW B 86, 085412 (2012)

0 5 10 15
B(T)

0

0.5

1

1.5

2

2.5

3

f m
n

0 5 10 15
B (T)

0

30

60

90

120

150

ΔE
 (m

eV
)

0 5 10 15
0

0.005

0.01

0.015

0 4 8
-3
0
3
6
9

(a) (b)

2-→3+

1-→2+

0-→1+

2-→1-

1+→2+

2+→3+

0+→1+

3-→2-

FIG. 3. (Color online) (a) Transition energies between the low-
lying energy LL in a biased ABC TLG as a function of the
magnetic field for U1 = 100 meV, U2 = 50 meV, and U3 = 25 meV.
(b) Oscillator strength vs magnetic field B for the transitions presented
in (a).

(1+,2+), (2+,3+) experience a considerable decrease in OS.
The inset in Fig. 3(b) shows the very small OS of the transitions
(1−,2+) and (2−,3+).

Figure 4 shows the TLG Landau-level spectrum as function
of U1 (with U2 = U3 = 0) (a) and U3 (with U1 = U2 = 0)
(b) for n = 0 (black solid lines), n = 1 (red dotted lines),
n = 2 (green dashed lines), and n = 3 (blue dot-dashed lines)
for a fixed magnetic field of 10 T. Among the differences
between the panels (a) and (b) it can be noticed that the
energies increase faster with U3 and also for n = 0 we have
that E = U3 is always an eigenenergy, although E = U1 is not.
Figure 5 shows the transition energies between some of the
levels appearing in Fig. 4. It also shows the behavior of the
oscillator strength as U1 (top left panel) and U3 (top right panel)
increase. The inset in top-right panel shows the transition
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FIG. 4. (Color online) TLG Landau-level spectrum with a fixed
magnetic field of 10 T for the ABC stacking as a function of U1 with
U2 = U3 = 0 (a) and U3 with U1 = U2 = 0 (b) for n = 0 (black solid
lines), n = 1 (red dotted lines), n = 2 (green dashed lines), and n = 3
(blue dot-dashed lines).
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FIG. 5. (Color online) Energy transitions (bottom panels) and
oscillator strength (top panels) as a function of U1 and U3 for fixed
magnetic field of 10 T. The potential in the other two layers is kept
zero. The inset in the top-left panel shows the transitions (1−,2+)
(red solid line) and (2−,3+) (green solid line), while the inset in the
top-right panel shows the transition (0+,1+) (black dashed line).

(0+,1+) which has a very small OS as compared to the other
ones. The legend for this graph is the same as in Fig. 3.
The transition energies shown in the bottom panels are very
similar, but when U3 is increased the interband (intraband)
transitions occur at slightly higher (lower) energies than when
U1 is increased. The difference in the role played by the top
and bottom layers can be better noticed when we look at
the oscillator strengths, which behave completely different
whether we vary U1 or U3. Among the discrepancies, we can
highlight the transition (0−,1+) (black solid line) that presents
a small monotonic increase with U1 and an accentuated
decrease with U3. It is also worth noticing the holelike
transitions (2−,1−) (red dotted line) and (3−,2−) (green dotted
line), that monotonically decrease as U1 increases, and show
the opposite behavior as we increase U3. On the other hand, the
electronlike transitions (1+,2+) (red dashed line) and (2+,3+)
(green dashed line) decrease as U3 is increased, while the
increase of U1 causes a gain in their OS.

For completeness we also calculated the CR spectrum as

σ (E) =
∑
n,m

(	/2π )Emnfmn

(E − Emn)2 + 	2/4
f (En)[1 − f (Em)], (4)

where Emn = Em − En is the transition energy, fmn is the
OS defined in Eq. (3), 	 is the broadening of the Lorentzian
function, and f (En) is the Fermi-Dirac distribution. In the
numerical results we set the temperature equal to zero and 	 =
2 meV. The position of the Fermi level EF is taken between
the levels 0 (0+) and 1+ (1+) for the unbiased (biased) case.

Figure 6 shows the optical absorption peaks for ABC TLG.
Panels (a) and (b) correspond to the unbiased case for B = 10 T
(black line) and B = 15 (red line) T, while the panels (c)
and (d) present the absorption for biased layers, respectively.
Notice in panel (a) the absence of the peak corresponding to
the transition (0,1) (around E = 22 meV), which is caused by
the small value of the OS of this transition [see Fig. 2(b)] that
makes the contributions of the other transitions outgrow the
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FIG. 6. (Color online) σ (E) vs energy in ABC TLG for B =
10 T (black lines) and B = 15 T (red lines). The left (right) panels
correspond to unbiased layers (biased). The inset shows the first
absorption peak corresponding to the transition (0,1).

absorption peak in this region of energy. In panel (b) this first
transition peak is now present around 36.5 meV, although very
small compared to the other absorption peaks. When a bias
is applied we observe the presence of an extra peak due the
lifting of the electron-hole degeneracy of the n = 0 LL.

III. ABA STACKING

Let us now turn our attention to the case of ABA stacking.
The Hamiltonian for ABA-stacked TLG around the K point is
given by

HABA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1 vF π † γ1 0 0 0

vF π U1 0 0 0 0

γ1 0 U2 vF π γ1 0

0 0 vF π † U2 0 0

0 0 γ1 0 U3 vF π †

0 0 0 0 vF π U3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5)

In the presence of a magnetic field the six-component spinor
of the nth LL is given by

�ABA
n = Bn

[
−ilBδn

1ψn−1, ψn, ibn
1ψn−1,

2(n− 1)bn
1

lBδn
2

ψn−2,

−ilBδn
3bn

1

bn
3

ψn−1,
bn

1

bn
3

ψn

]T

for n > 0, where bn
1(3) are given in Appendix B. It is worth

highlighting that in the case of unbiased layers the LLs
are simply the superposition of the monolayer and bilayer
spectrum, and the spinor components that correspond to the
third layer are identical to the ones of the first layer, as it
should be since the top and bottom layers are then symmetric
relative to the middle layer. For this reason, we will refer
now to the Landau index no longer as n, but as nm = n for
the monolayerlike levels and as nb = n − 1 for the bilayerlike
levels. The case nm = 0 generates two LL, as can be seen in
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FIG. 7. (Color online) ABA TLG Landau-level spectrum as a
function of B with U1 = 100 meV, U2 = 50 meV, and U3 = 25 meV
for n = 0 (black solid lines), n = 1 (red dotted lines), n = 2 (green
dashed lines), and n = 3 (blue dot-dashed lines). The upper inset
shows the coupling between the layers and the lower inset shows an
enlargement of the nonlinear behavior of the levels nb = 1+, 2+ for
low B.

Fig. 7, the level we call 0+ corresponds to E0 = U1, and for
the level 0−, E0 = U3. The spinor associated to these zero
levels are �ABA

0+ = 1/(lB
√

π )1/2[0, ψ0, 0, 0, 0, 0] and
�ABA

0− = 1/(lB
√

π )1/2[0, 0, 0, 0, 0, ψ0], respectively, while
nb = 0 (n = 1) produces E1 = U2 and a level starting from
E1 = (U1 + U3)/2 that presents a small monotonic decrease
with B.

The oscillator strength was calculated according to Eq. (3)
and the explicit expressions for the ABA stacking are given in
Appendix B. Figure 8(a) shows the energies of some possible
transitions between monolayerlike levels of the unbiased
layers. All these transitions occur at energies that follow
a

√
B dependence. The oscillator strengths related to these
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FIG. 8. (Color online) (a) Transition energies between monolay-
erlike levels as a function of the magnetic field B for unbiased,
U1 = U2 = U3 = 0, ABA layers. (b) The corresponding oscillator
strengths are shown in the left panel.

085412-4



CYCLOTRON RESONANCE OF TRILAYER GRAPHENE PHYSICAL REVIEW B 86, 085412 (2012)

0 5 10 15
B (T)

0

50

100

150

200

ΔE
 (m

eV
)

0 5 10 15
B (T)

0

0.5

1

1.5

f m
n

(b)(a)

2-→3+

1-→2+

1+→2+

2+→3+

0→1+

FIG. 9. (Color online) (a) Transition energies between bilayerlike
levels as a function of the magnetic field B for unbiased, U1 = U2 =
U3 = 0, ABA layers. (b) The oscillator strength for the transitions
shown in the left panel.

transitions are presented in Fig. 8(b), where we can see that
the transition involving the zero energy level is the most
pronounced one, and the interband transitions are very small
[see inset of Fig. 8(b)]. Figure 9 presents the same kind of
results, but now for transitions between levels characteristic of
the bilayer system. These transition energies are linear in B

for low values of the magnetic field (B < 5 T), however, as
B increases the linear behavior turns into a

√
B dependence.

The OS of the bilayerlike transitions present all the same kind
of behavior, i.e., a weak monotonic decrease as B increases.

In Fig. 10 the transitions between monolayerlike and
bilayerlike levels are presented. The transition energy (nb =
0,nm = 2+), black solid curve, follows a perfect

√
B depen-

dence, since the level nb = 0 is simply E = 0. The energies
correspond to the transition (nm = 1−,nb = 1+), red solid line,
(nb = 1−,nm = 3+), green solid line, and (nm = 2−,nb = 2+),
green dashed line, can be well fitted by a power law with

0 5 10 15
B (T)

0

50

100

150

200

250

300

ΔE
 (m

eV
)

0 5 10 15
B (T)

0.1

0.2

0.3

0.4

0.5

0.6

f m
n

(a) (b)
0b→2m

+

1b
+→3m

+

1b
-→3m

+

1m
-→1b

+

2m
-→2b

+

FIG. 10. (Color online) (a) Transition energies between mono-
layerlike and bilayerlike levels as a function of the magnetic field
B for unbiased, U1 = U2 = U3 = 0, ABA layers. (b) The oscillator
strength for the transitions shown in the left panel.
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FIG. 11. (Color online) σ (E) vs energy in an unbiased ABA TLG
for B = 10 T (black lines) and B = 15 T (red lines).

an exponent that varies from 0.5 (low fields) to 0.6 (high
fields) as B increases. The transition (nb = 1+,nm = 3+) can
be also fairly approximated by a power law, but in this case the
exponent varies from 0.4 to 0.5 as the magnetic field increases.
The OS are shown in panel (b) where we can see that all OS
decrease with increasing B with the exception of the intraband
transition (nb = 1+,nm = 3+), red dashed line, which exhibits
the opposite behavior.

The CR absorption peaks of an unbiased ABA TLG are
displayed in Fig. 11 for B = 10 T [panel (a)] and B = 15 T
[panel (b)]. The Fermi energy is taken to be E = 0. Above
each peak it is shown which transitions are involved. We
can notice that with the exception of the peaks associated to
transitions involving the level E = 0 each peak receives equal
contributions of two interband transitions. It means that if, for
instance, the Fermi level is increased in order to cross the level
nb = 1+, the first and third peaks will disappear, the second
and fifth peaks will drop to half of their values, and the other
ones will be unaffected.

The following results consider the effect of a bias (U1 =
100 meV, U2 = 50 meV, and U3 = 25 meV) that breaks the
mirror reflection symmetry of the ABA TLG. Figure 12(a)
shows some of the transitions between the monolayerlike
levels. We see two groups of transition energies: the intraband
transitons (dashed and dotted lines starting from E = 0) and
interband transitions (solid lines starting from E = 75 meV).
The inset displays the small asymmetry between the electron-
like (nm = 0+,nm = 1+) and holelike (nm = 1−,nm = 0−)
transitions due to the bias. In general, the transition energies
increase less fast with B when a bias is applied. In panel (b)
we notice that the OS of all the intraband transitions have the
same decreasing behavior as B increases, exhibiting a more
strong dependence on B up to 5 T. Remarkably, the OS of
the interband transitions exhibit the opposite behavior, i.e., a
small monotonically increasing behavior with B. The upper
inset displays an enlarged view of the OS for the transitions
(nm = 1−,nm = 2+) and (nm = 2−,nm = 3+).

Figure 13 focus on the transitions between bilayerlike
levels. The main effect of the bias on the transition energies
is the disappearance of the linear behavior for small values of
B (see the inset of Fig. 7) and the breaking of the symmetry
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FIG. 12. (Color online) (a) Transition energies between mono-
layerlike levels as a function of the magnetic field B for biased
ABA layers. The inset shows the small difference in energy of the
electron and holelike transitions. (b) The oscillator strength for
the transitions shown in the left panel. The lower inset shows the
small difference in OS of the transitions (nm = 0+,nm = 1+) and
(nm = 1−,nm = 0−), while the upper inset shows an enlargement of
the (nm = 1−,nm = 2+) and (nm = 2−,nm = 3+).

between electrons and holes, as shown in the inset of panel (a).
In panel (b) we see that for all the transitions, with the exception
of (nb = 1−,nb = 2+), the OS exhibit a strong dependence on
B, especially for low fields. The OS for the holelike transitions
have a strong increase up to 5 T and then they continue to
increase but now less fast, while for the electronlike transitions
the OS presents a significant increase for small values of B

with a subsequent decrease.
Figure 14 exhibits some transitions from monolayer to

bilayerlike levels. The energy of the transition (nm = 0−,nb =
0−) is 25 meV and constant while its OS exhibits a strong mag-
netic field dependence [panel (b)] due to the magnetic length
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FIG. 13. (Color online) (a) Transition energies between bilayer-
like levels as a function of the magnetic field B for biased ABA layers.
The inset shows the small difference in energy of the electron and
holelike transitions. (b) The oscillator strength for the transitions are
shown in the left panel.
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FIG. 14. (Color online) (a) Transition energies from monolayer to
bilayerlike levels as a function of the magnetic field B for biased ABA
layers. (b) The oscillator strength for the transitions shown in the left
panel. The inset shows the OS of the transitions (nm = 1−,nb = 1−)
in red solid line and (nm = 2−,nb = 2−) in blue solid line.

lB appearing in the constants of Appendix B. The other two
intraband transition energies (red and blue solid curves) can
be well fitted by a power law whose exponent approaches 0.3
and the oscillator strengths of these transitions are very small
as shown in the inset of panel (b). The interband transitions
(nm = 1−,nb = 1+), red dashed line, and (nm = 2−,nb = 2+),
blue dashed line, have energies that can be described by a B0.6

dependence for B > 5 T and their OS have a small increase for
low values of magnetic field followed by a monotonic decrease
as can be seen in panel (b). In Fig. 15 we present the same kind
of results for some transitions from bilayer to monolayerlike
levels. Note that in this case, with the exception of the intraband
transition (nb = 0+,nm = 0+), all the transitions have low
oscillator strengths for fields higher than 3 T.
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FIG. 15. (Color online) (a) Energies of some of the transitions
from bilayer to monolayerlike levels as a function of the magnetic
field B for biased ABA layers. (b) The oscillator strength for the
transitions shown in the left panel. The lower inset displays the OS
of the transition (nb = 0+,nm = 2+) in black dashed line, while the
upper inset displays the transitions (nb = 1−,nm = 3+) and (nb =
1+,nm = 3+).
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FIG. 16. (Color online) σ (E) vs energy in a biased ABA (U1 =
100 meV, U2 = 50 meV, U3 = 25 meV) TLG for B = 10 T (black
lines) and B = 15 T (red lines). The inset in (a) shows an enlargement
of the transition occurring around 181.5 meV, while the inset panel
(b) shows the formation of a double peak around 183 meV and
184.8 meV.

Figure 16 shows the CR spectrum for the biased ABA layers
for B = 10 T [panel (a)] and B = 15 T [panel (b)]. We assumed
that all levels are occupied until 0+

b . This result summarizes
the main effects of the bias on the transitions between the
LL, since it takes into account both transition energies and
oscillator strength. We observe more CR lines at low energies
due to the lifting of the fourfold degeneracy (without taking
into account spin and valley degeneracy) of the level 0. The
asymmetry between electrons and holes induced by the bias
are usually small, which makes, for instance, the transitions
(nb = 2−,nb = 1+) and (nb = 1−,nb = 2+) appear as a single
CR line, since the difference in energy of these transitions are
smaller than the broadening 	 of the peaks. The only evidence
of this kind of asymmetry in the CR spectrum is given by
the transitions (nm = 1−,nb = 1+) and (nb = 1−,nm = 1+)
which occur at 147.14 meV and 159.69 meV for B = 10 T,
respectively. The inset in panel (a) shows an enlargement
of the CR line corresponding to (nb = 0−,nm = 2+) around
181.5 meV. Note also that the transition (nb = 0+,nm = 2+)
is not visible since its OS is very small [see inset in Fig. 15(b)].
In panel (b) it can be seen that the first three peaks in panel (a)
become two double peaks, since the energies of the transitions
(nb = 0+,nm = 0+) and (nb = 0−,nm = 0+) do not change,
and the energies of (nb = 0+,nb = 1+) and (nb = 0−,nb =
1+) increase. A similar behavior occurs around 185 meV; the
transition energies of (nb = 2−,nb = 3+) and (nb = 3−,nb =
2+) increase faster than the energies of (nm = 1−,nm = 0+)
and (nm = 0−,nm = 1+) leading to the formation of the double
peak shown in the inset.

IV. CONCLUSIONS

We made use of the continuum approximation to describe
the TLG with both, ABA (Bernal) and ABC (rhombohedral),
stacking sequences by a 6 × 6 Hamiltonian in which we use the
Peierls substitution together with the Landau gauge to include
an external magnetic field. Using this approach we were able

to find analytical expressions for the six-component spinor that
we use in order to calculate, within the dipole approximation,
the oscillator strength of the transitions between the Landau
levels. We also calculated the cyclotron resonance spectrum
for neutral and biased layers.

We found that the effect of an applied bias on the transitions
between the LL are threefold: reduction of the transition
energies, lifting of the degeneracy of the level n = 0 (twofold
degeneracy in ABC TLG and fourfold degeneracy in ABA
TLG), and the breaking of the electron-hole symmetry. The
first and second effects can be easily observed in the CR
spectrum for both types of stacking: reduction of transition
energies causes a shift of the peaks and the lifting of the
degeneracy appears as extra peaks. Although the asymmetry
between electrons and holes has a considerable influence on the
OS of the transitions, the difference in the transition energies
are rather small, usually smaller than the broadening of CR
peaks, which will make it difficult to see this asymmetry
in the CR spectrum, with the exception of the transitions
(nm = 1−,nb = 1+) and (nb = 1−,nm = 1+) in ABA TLG
which occur at very distinguished energies.

It is worth mentioning that in the present work we have
neglected the trigonal warping effect caused by the coupling
parameters γ3 and γ2.28 We expect the inclusion of these terms
will split the n = 0 Landau level into three new ones which will
cause the appearance of new lines in the cyclotron spectrum
due to the additional transitions involving the lowest levels.
Nonetheless, this splitting will be very small (i.e., on the meV
level) and for current trilayer graphene devices it is expected to
be of no relevance because of the presence of disorder which
is at least on the 10 meV level.
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APPENDIX A

The constants appearing in �ABC
n are given by

bn ≡ 1

γ ′
1

(
δn

3 − 2n

lB
2δn

3

)
, (A1a)

cn ≡ lB

2(n + 1)

(
δn

2bn − γ ′
1

)
, (A1b)

dn ≡ 1

γ ′
1

(
δn

2cn − bn

lB

)
, (A1c)

An ≡
(

1√
πlBgn

)1/2

, (A1d)

gn ≡ 2nn!
(
1 + bn

2
) + 2n+1(n + 1)!

(
cn

2 + dn
2
)

+ 2n+2(n + 2)!
dn

2

δn
1

2lB
2

+ 2n−1(n − 1)!
4n2

δn
3

2lB
2
, (A1e)

where γ ′
1 = γ1/(h̄vF ).
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The integrals involved in the calculation of the oscillator strength for ABC TLG are given by∫
�m

A1

∗
x̄�n

A1
dx̄ = √

π2m+1(m + 1)!
dmdnAmAn

2
{2(m + 2)δm+2,n+1 + δm,n+1}, (A2a)

∫
�m

B1

∗
x̄�n

B1
dx̄ = √

π2m+2(m + 2)!
dmdnAmAn

2δm
1 δn

1 lB
2 {2(m + 3)δm+3,n+2 + δm+1,n+2}, (A2b)

∫
�m

B2

∗
x̄�n

B2
dx̄ = √

π2m+1(m + 1)!
cmcnAmAn

2
{2(m + 2)δm+2,n+1 + δm,n+1}, (A2c)

∫
�m

A2

∗
x̄�n

A2
dx̄ = √

π2mm!
bmbnAmAn

2
{2(m + 1)δm+1,n + δm−1,n}, (A2d)

∫
�m

A3

∗
x̄�n

A3
dx̄ = √

π2m−1(m − 1)!
2mnAmAn

δm
3 δn

3 lB
2 {2mδm,n−1 + δm−2,n−1}, (A2e)

∫
�m

B3

∗
x̄�n

B3
dx̄ = √

π2mm!
AmAn

2
{2(m + 1)δm+1,n + δm−1,n}, (A2f)

where m and n are Landau level indices for the different eigenstates. The selection rule is as usual |m − n| = 1. The result of
Eq. (A2e) is for m,n > 0; otherwise, this integral is zero.

APPENDIX B

The constants appearing in �ABA
n are given by

bn
1(3) ≡ 1

γ ′
1

(
2n

lB
− lBδn

1(3)
2
)

, (B1a)

Bn ≡
(

1√
πlBgn

)1/2

, (B1b)

gn ≡ 2n−2(n − 2)!
4(n − 1)2bn

1
2

δn
2

2lB
2

+ 2n−1(n − 1)! + 2n−1(n − 1)!

[
lB

2δn
1

2 + bn
1

2 + lB
2δn

3
2
(

bn
1

bn
3

)2]
+ 2nn!

[
1 +

(
bn

1

bn
3

)2]
.

(B1c)

The integrals needed to calculate the oscillator strength of the transitions are the following:∫
�m

A1

∗
x̄�n

A1
dx̄ = √

π2m−1(m − 1)!
δm

1 δn
1BmBn

2
{2mδm,n−1 + δm−2,n−1}, (B2a)

∫
�m

B1

∗
x̄�n

B1
dx̄ = √

π2mm!
BmBn

2
{2(m + 1)δm+1,n + δm−1,n}, (B2b)

∫
�m

B2

∗
x̄�n

B2
dx̄ = √

π2m−1(m − 1)!
bm

1 bn
1BmBn

2
{2mδm,n−1 + δm−2,n−1}, (B2c)

∫
�m

A2

∗
x̄�n

A2
dx̄ = √

π2m−2(m − 2)!
2bm

1 bn
1BmBn(m − 1)(n − 1)

lB
2δm

2 δn
2

{2(m − 1)δm−1,n−2 + δm−3,n−2}, (B2d)

∫
�m

A3

∗
x̄�n

A3
dx̄ = √

π2m−1(m − 1)!
lB

2δm
3 δn

3bm
1 bn

1BmBn

2bm
3 bn

3

{2mδm,n−1 + δm−2,n−1}, (B2e)

∫
�m

B3

∗
x̄�n

B3
dx̄ = √

π2mm!
bm

1 bn
1BmBn

2bm
3 bn

3

{2(m + 1)δm+1,n + δm−1,n}. (B2f)

Equations (B2a), (B2c), and (B2e) are valid for m,n > 0, while Eq. (B2d) is valid only for m,n > 1; otherwise, these integrals
are zero.
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