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Abstract 16 

Eggshell blue-green colouration (BGC) is caused by the pigment biliverdin which has anti-17 

oxidant capacities. Eggshell BGC has therefore been interpreted as being costly for the 18 

female, and therefore a signal of female quality (‘sexual signalling hypothesis’).   19 

Southern rockhopper penguins Eudyptes chrysocome exhibit both a reversed hatching 20 

asynchrony and a brood reduction strategy. First-laid (A-)eggs  are smaller and hatch on 21 

average one day after second-laid (B-)eggs, with B-eggs usually producing the only surviving 22 

chick. According to the sexual signalling hypothesis, we predicted a positive relationship 23 

between BGC and both female body mass and egg mass, and consequently within clutches a 24 

stronger BGC in B-eggs than A-eggs. Furthermore, we expected a negative relationship 25 

between BGC and clutch initiation date.  26 

Contrasting these expectations, we found no effect of female body mass or egg mass 27 

on BGC, and BGC in A-eggs increased with clutch initiation date, while there was no effect 28 

in B-eggs. Within clutches, A-eggshells were more intensely blue-green coloured than B-29 

eggshells. 30 

Concluding, our results appear to contradict the sexual signalling hypothesis. We, 31 

however, did not measure pigment concentrations and solely relied on BGC from eggshell 32 

photospectrometry, assuming that biliverdin concentrations were positively correlated with 33 

BGC. We therefore caution that before to preclude the sexual signalling hypothesis, future 34 

studies that include measurements of eggshell pigment concentrations in addition to BGC are 35 

necessary.  Altogether, a better understanding of the biological meaning of biliverdin, its 36 

biochemical synthesis and anti-oxidative function in the avian body is urgently needed.  37 

 38 

Keywords: Blue-green colouration, Eudyptes chrysocome, eggshell, hatching asynchrony, 39 

sexual signalling hypothesis 40 
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Introduction 41 

Avian eggshells exhibit a wide interspecific range of natural variation in both colouration and 42 

pigmentation, ranging from light blue to reddish-orange and from spotless to heavily spotted 43 

(Underwood and Sealy 2002; Kilner 2006; Cassey et al. 2012b). Potential explanations for 44 

this phenotypic diversity are as diverse as eggshell patterns and range from aposematism, 45 

crypsis, increased visibility in cavities, filtering solar radiation, thermal regulation, eggshell 46 

strength, egg recognition to sexual selection (reviewed in Underwood and Sealy 2002; Kilner 47 

2006; Cherry and Gosler 2010; Riehl 2011). 48 

Eggshell colouration and patterns are essentially determined by only two pigments, 49 

protoporphyrin (red-brown colouration) and biliverdin (blue-green colouration; hereafter 50 

BGC; Kennedy and Vevers 1976; Gorchein et al. 2009). Both pigments are derivatives of 51 

haemoglobin (Williams et al. 1994), and biliverdin has been shown to possess strong anti-52 

oxidant capacities (Stocker et al. 1990; Kaur et al. 2003). By pigmenting their eggs with 53 

biliverdin, females are therefore removing a valuable anti-oxidant from their own body, and 54 

this should come at the cost of the females’ health and survival (Moreno and Osorno 2003). 55 

The intensity of BGC has therefore been interpreted as being an honest signal of female 56 

quality to their male mates ('sexual signalling hypothesis'; Moreno and Osorno 2003). In fact, 57 

a range of both descriptive and experimental studies has demonstrated a positive relationship 58 

between the intensity of eggshell BGC and the physical condition, health state or antioxidant 59 

capabilities of females (Morales et al. 2006; Moreno et al. 2006; Siefferman et al. 2006; Krist 60 

and Grim 2007; Hanley et al. 2008; Morales et al. 2011; Navarro et al. 2011). Nevertheless, 61 

there are also several studies that did not support such associations (Cassey et al. 2008; 62 

Hargitai et al. 2008; Hanley and Doucet 2009; Honza et al. 2011; Johnsen et al. 2011), and 63 

eggshell BGC as a universal signal of female quality has thus been questioned (Riehl 2011; 64 

Cassey et al. 2012b). 65 
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 66 

Southern rockhopper penguins Eudyptes chrysocome chrysocome are unique models to test 67 

some predictions of the sexual signalling hypothesis because, like all the crested penguins 68 

(genus Eudyptes), they display the unique combination of both an extreme egg size 69 

dimorphism and a reversed hatching asynchrony. The second-laid B-eggs are about 28% 70 

larger and heavier than the first-laid A-eggs, yet chicks from A-eggs hatch on average one 71 

day after chicks from B-eggs (Poisbleau et al. 2008; Demongin et al. 2010). Due to the size-72 

dimorphism between siblings, A-chicks cannot compete for food and usually die from 73 

starvation within few days after hatching (Gwynn 1953; Warham 1975; Poisbleau et al. 74 

2008). However, A-eggs may serve as an insurance for the loss of the B-egg or -chick (St. 75 

Clair and St. Clair 1996; Poisbleau et al. 2008; Dehnhard et al. 2014), and very rarely parents 76 

manage to raise both chicks (Poisbleau et al. 2008). 77 

Both A- and B-eggshells appear light blue-green coloured to humans. Based on this, 78 

we used several measures of female quality to test some predictions of the sexual signalling 79 

hypothesis: female body mass (standardized to A-egg laying date), egg mass and total clutch 80 

mass as well as clutch initiation date (CID = A-egg laying date). Standardized female body 81 

mass has been shown to be a reliable predictor of reproductive success in many penguin 82 

species (Vleck and Vleck 2002; Robinson et al. 2005), including the southern rockhopper 83 

penguin (Crawford et al. 2008). Egg mass (and size) and consequently total clutch mass in 84 

birds is closely linked to female body mass (reviewed in Christians 2002) and a determinant 85 

of hatchling size (reviewed in Krist 2011), which has also been shown in penguins (Reid and 86 

Boersma 1990). Finally, CID in many bird species, including penguins (Moreno et al. 1997; 87 

1998) is constrained by the females’ ability to form eggs, with higher quality (often more 88 

experienced) females being able to lay earlier and consequently having higher breeding 89 

performances (Perrins 1973; Nisbet and Dann 2009; Polito et al. 2010).   90 
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If, as the sexual signalling hypothesis predicts, eggshell BGC is costly for females and 91 

signals female quality in southern rockhopper penguins, we should observe an increase of 92 

eggshell BGC with female body mass and A-egg mass, B-egg mass and consequently total 93 

clutch masses. Within clutches, we therefore expect B-eggs to have a stronger eggshell BGC 94 

than A-eggs since B-eggs are heavier and usually the egg that produces the only surviving 95 

chick. We should furthermore observe a decrease of eggshell BGC with increasing (later) 96 

CID.  97 
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Methods 98 

Study species and study site 99 

This study was carried out at the “Settlement Colony” on New Island, Falkland/Malvinas 100 

Islands (51°43’ S, 61°18’ W), from early October 2010 to mid-November 2010 (i.e. during 101 

the entire egg laying period). The colony held around 7500 pairs of breeding southern 102 

rockhopper penguins in December 2010. After the arrival of the first males (early October), 103 

we visited study sites daily, initially to mark active nests and subsequently to monitor egg 104 

laying dates. Laying period ranged from Oct 27
th

 (first A-egg) until Nov 9
th

 (last B-egg). 105 

Within clutches, A-eggs were laid on average four days (mean ± SD = 4.2 ± 0.5, N = 85 106 

clutches) before B-eggs. A total of 170 eggs from 85 clutches were colour measured (details 107 

see below) and subsequently weighed with a digital pocket balance (CM 320-IN, Kern, 108 

Germany; accuracy of 0.1 g), all within 24 hours after laying. 109 

Sixty out of the 85 study nest females were weighed to the nearest 10 g (digital spring 110 

balance) on the day they laid their first egg and their clutches were collected for the purpose 111 

of other studies after egg colouration was measured. The other 25 females were weighed two 112 

to three times between October 12
th

 and November 22
nd

, but not on the day they laid their 113 

first egg. We therefore used linear regressions to extrapolate female body mass at A-egg 114 

laying. We corrected female body mass by removing A-egg mass for captures before A-egg 115 

laying and by adding B-egg mass for captures after B-egg laying. We then calculated linear 116 

regressions individually for every female (all R² ≥ 0.99) and corrected body masses according 117 

to the individual slopes (average gradient -33.3 g ± 2.7 SD mass loss per day). 118 

 119 

Reflectance spectrophotometry 120 

Eggshell reflection was measured using a portable Ocean Optics JAZ Spectrophotometer 121 

(range 320−700 nm) connected to a bi-furcated encased fiber optic probe. Reflectance was 122 
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measured perpendicular to the surface while illuminated with a build-in pulsed xenon lamp 123 

relative to a diffuse white standard (WS1-SL, Ocean Optics Inc.). To minimize measurement 124 

error, dark and white standard reflectance calibration measures were taken regularly during 125 

sampling. We took three measurements from the blue-green background eggshell colouration 126 

at every area (blunt, equator and point) of the eggshell. Similar to previous studies (e.g. 127 

Morales et al. 2006; Siefferman et al. 2006; Cassey et al. 2008), we calculated reflectance-128 

based eggshell colouration using an index of BGC as the proportion of total reflectance in the 129 

blue-green wavelength region (R410−575) across the total spectrum (R410-575/R320–700). This is 130 

suggested to correspond to the region of highest reflectance of the pigment biliverdin 131 

(Falchuk et al. 2002) and to be a useful metric of eggshell BGC (e.g. Moreno et al. 2006; 132 

Siefferman et al. 2006).  133 

Notably, we did not measure biliverdin concentrations in the eggshell but assumed 134 

that the spectral measurement of eggshell BGC would reflect the biliverdin concentration. 135 

This relationship has been shown previously for two bird species with immaculate and (light) 136 

blue-green eggs (Moreno et al. 2006; López-Rull et al. 2008; Morales et al. 2013), and thus 137 

eggs which in their appearance resemble those of rockhopper penguins. 138 

All spectral measurements were performed by the same observer (JVC), and while 139 

covered by a dark cloth to avoid direct sunlight. We calculated repeatabilities in eggshell 140 

BGC between areas (blunt, point and equator) using REML-based linear mixed models as 141 

described in Nakagawa and Schielzeth (2010), in the rptR package (Schielzeth and Nakagawa 142 

2013) in the program R (see details below). BGC were repeatable between eggshell positions 143 

for both A-eggs (R = 0.47 ± 0.03 SE, p < 0.001) and B-eggs (R = 0.68 ± 0.04 SE, p < 0.001). 144 

Since it is easier to find a clean spot and because eggshell measurements are done faster (with 145 

the same accuracy) in the area around the equator than on the blunt and pointy ends, we used 146 

only the measurements taken at the equator. BGC of the three measurements at the egg 147 
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equator in each sampled egg were highly repeatable both in A-eggs (R = 0.79 ± 0.04 SE, p < 148 

0.001) and B-eggs (R = 0.98 ± 0.00 SE, p < 0.001). We therefore used the average values of 149 

the three measurements at the equator for the statistical analyses on eggshell BGC.  150 

 151 

 152 

Statistical analysis 153 

We fitted a linear mixed effect model (LMM) to test some predictions of the sexual signalling 154 

hypothesis. We first tested for correlations between potential covariates, and found a 155 

significant correlation between female body mass and CID (Pearson’s R = -0.24, p = 0.030, N 156 

= 85 clutches), but no significant relationship between either female body mass and total 157 

clutch mass (Pearson’s R = 0.10, p = 0.366, N = 85 clutches) or total clutch mass and CID 158 

(Pearson’s R = 0.13, p = 0.236, N = 85 clutches). We furthermore determined variance 159 

inflation factors (VIFs) to rule out possible issues with collinearity in the models. VIFs were 160 

calculated in the package car (Fox and Weisberg 2010) for the linear model with all main 161 

effects (interactions not included). VIFs were ≤ 2.35 and therefore did not indicate issues 162 

with collinearity (Zuur et al. 2010). The global LMM was run on eggshell BGC as dependent 163 

variable with nest as random factor, egg type (fixed factor: A- or B-egg), female body mass 164 

(covariate), total clutch mass (covariate) and CID (covariate) as explanatory variables. We 165 

furthermore included all possible two-way interactions between egg type and the covariates 166 

into this global model. We conducted backwards-stepwise model selection (for the fixed 167 

effects only), removing those explanatory variables that were not significant, commencing 168 

with the interaction terms. In case that an interaction term with egg type was significant, we 169 

proceeded with separate linear models (LMs) for A- and B-eggs (and therefore without any 170 

random factor). We used CID in models for both A- and B-eggs, as the laying date of the B-171 

egg was strictly linked to the laying date of the A-egg (= CID) (Pearson’s R = 0.98, p < 172 
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0.001, N = 85 clutches). As total clutch mass might inadequately account for the differential 173 

investment of females in A- and B-egg mass, we additionally ran LMs for the relationship 174 

between BGC (dependent variable) and egg mass (explanatory variable), separately for A- 175 

and B-eggs.  176 

We furthermore preformed a paired t-test for the entire dataset (N = 85 clutches) to 177 

test for differences between A- and B-eggs within clutches. All statistical analyses were 178 

performed in R (version 3.1.1; R Development Core Team 2014). LMMs and LMs were fit 179 

using restricted maximum likelihood (REML), and all models were performed in the package 180 

lme4 (Bates et al. 2011). We present t-values from model summaries. P-values were obtained 181 

by comparing the model with the variable in question with the model without this variable 182 

(and models were fit with maximum likelihood for this procedure). We further present both 183 

marginal R
2 

values (based on the variance explained only by fixed effects) and conditional R
2 

184 

values (based on the variance explained by both fixed and random effects) for the final LMM, 185 

calculated following Nakagawa & Schielzeth (2013). 186 
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Results 187 

The reflectance spectra of southern rockhopper penguin eggs have a bimodal shape: the 188 

major peak of reflectance is found in the blue-green part of the spectrum (~520 nm) and a 189 

minor peak is found in the UV part of the spectrum (~330 nm) (Fig. 1).  190 

 191 

LMMs showed that eggshell BGC was neither affected by the interaction between egg type 192 

and female body mass (LMM: t = -0.459, p = 0.638), nor by the interaction between egg type 193 

and total clutch mass (LMM: t = 0.895, p = 0.833). Contrasting the sexual signalling 194 

hypothesis, the effects of female body mass (LMM: t = 0.087, p = 0.929) and total clutch 195 

mass (LMM: t = -0.546, p = 0.580) were also not significant. These interaction terms and 196 

variables were stepwise removed from the global model. When tested separately in A- and B-197 

eggs, BGC did not correlate with individual egg mass either (LM: t = -0.43, p = 0.668 and t = 198 

0.49 and p = 0.626 for A-eggs and B-eggs, respectively; Fig. 2), confirming the earlier result 199 

that total clutch mass was not related to BGC. Nevertheless, within clutches, A-eggs had 200 

eggshells with a significantly stronger BGC than B-eggs (paired t-test (one-tailed): t84 = 9.91, 201 

p < 0.001; Fig. 3). This was observed in 76 out of 85 clutches.  202 

The final LMM therefore included egg type, CID and the interaction between egg 203 

type and CID as explanatory variables for eggshell BGC. These variables together explained 204 

39.0% of the total variance in eggshell BGC (marginal R
2
-value). In contrast, nest as a 205 

random factor added comparatively little explanatory power (conditional R
2
-value: 44.7%). 206 

Because of the significant interaction between egg type and CID in this final model (LMM: t 207 

= -2.785, p = 0.006), we continued with separate analyses for A- and B-eggs. In A-eggs, 208 

BGC increased with CID (LM with CID as only explanatory variable: t = 3.338, p = 0.001; 209 

Fig. 4), while there was no effect of CID on BGC in B-eggs (t = -0.330, p = 0.743; Fig. 4).  210 

 211 
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Discussion 212 

The sexual signalling hypothesis states that eggshell BGC should be an honest signal of 213 

female quality to their mates, as depositing biliverdin into the eggs is costly for the females 214 

(Moreno and Osorno 2003; Moreno et al. 2005; Morales et al. 2006). We therefore tested 215 

whether eggshell BGC increased with measures of female quality and differed between A- 216 

and B-eggs in crested penguins. We predicted a positive effect of female body mass on BGC, 217 

and that BGC would further increase with egg mass and total clutch mass. Due to the egg-218 

size dimorphism, we consequently expected to find a stronger BGC in B-eggs than A-eggs. 219 

However, we found no effect of female body mass, egg mass nor total clutch mass on 220 

eggshell BGC. Unexpectedly, within the same clutch, A-eggs had a stronger BGC than B-221 

eggs. Finally, the intensity of BGC increased with CID in A-eggs, while there was no effect 222 

on B-eggs. Altogether, our results appear to contradict the sexual signalling hypothesis and 223 

rather provide evidence for a negative association between BGC and female quality in 224 

southern rockhopper penguins. 225 

Our results are in line with several previous studies in other bird species that either 226 

found no relationship or the opposite effect as expected for eggshell BGC and either female 227 

body mass, egg mass/total clutch mass and laying dates (Cassey et al. 2008; Hargitai et al. 228 

2008; Hanley and Doucet 2009; Johnsen et al. 2011; Cassey et al. 2012a). Similarly, the 229 

literature shows  no consistent  relationship between eggshell BGC and laying order: BGC 230 

either increased (Siefferman et al. 2006; Hargitai et al. 2008), or decreased with laying order 231 

(Krist and Grim 2007; Johnsen et al. 2011; Morales et al. 2011), and in one study the middle 232 

egg was the most chromatic one (Hanley and Doucet 2009). Therefore, our data agree with 233 

the overall literature and once more speak against the ubiquitous application of the sexual-234 

signalling hypothesis (Riehl 2011). As female body mass, clutch mass and CID have been 235 

reliable indicators of female quality in other birds, including penguins (e.g. Perrins 1973; 236 
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Nisbet and Dann 2009; Polito et al. 2010), it appears unlikely that none of them would signal 237 

female quality in southern rockhopper penguins. On the other hand, a female’s antioxidant 238 

capacities and thus ability to deposit biliverdin into her eggs might not be reflected by its 239 

body mass but might necessitate the measurement of plasma antioxidants in the female’s 240 

blood (Morales et al. 2008). Our study is limited in this regard, as we did not measure the 241 

females’ antioxidant levels, and we are furthermore limited to correlative data. Nevertheless, 242 

our data showed an increase in BGC with CID in A-eggs, and therefore the opposite effect as 243 

expected under the sexual signalling hypothesis.   244 

Finally, our observation that BGC was stronger in A-eggshells compared to B-245 

eggshells within the same clutch also appears to contradict the sexual signalling hypothesis. 246 

Based on the egg mass differences between A- and B-eggs we had expected to find a stronger 247 

BGC in B-eggs. Under the assumption that egg mass would not reflect female quality and this 248 

would explain the lacking relationship between egg mass and BGC as discussed above, we 249 

would therefore have expected to find no difference in BGC between A- and B-eggs. The 250 

finding of a stronger BGC in A-eggshells than B-eggshells is therefore inconsistent in either 251 

way. Moreover, considering that in most clutches only the chick originating from the B-egg 252 

survives until fledging (Strange 1982; Poisbleau et al. 2008), it appears counterintuitive that 253 

females apparently invest more of a costly pigment into those eggs that usually fail to 254 

produce a chick (also see Poisbleau et al. 2011a, 2011b).  255 

 256 

To the best of our knowledge, this has been the first study on BGC in penguin eggs. It would 257 

be highly interesting to see whether there is evidence for or against the sexual signalling 258 

hypotheses in those penguin genera that do not show a reversed hatching asynchrony. To 259 

conclude, our results add to the growing amount of evidence against the sexual signalling 260 

hypothesis and once more raise the question why female birds lay – to the human eye – 261 
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peculiarly blue-green coloured eggs. Importantly, however, the majority of publications that 262 

tested the sexual signalling hypothesis, including ours, were based on the assumption that 263 

spectrophotometric measurements of the BGC are positively correlated with biliverdin 264 

concentrations. This relationship has indeed been shown in two species with spotless, blue-265 

green coloured eggs (Moreno et al. 2006; López-Rull et al. 2008; Morales et al. 2013), thus 266 

eggs which resemble rockhopper penguin eggs in appearance. Recently, however, Cassey et 267 

al. (2012a) have raised the concern that at least in spotted eggshells biliverdin concentrations 268 

might not correlate well with spectral measurements of BGC. We therefore caution that 269 

although our results appear to contradict the sexual signalling hypothesis, we cannot refute 270 

this hypothesis with certainty. We therefore recommend that future studies on eggshell 271 

colouration should include eggshell pigment concentrations in addition to spectrophotometric 272 

measurements. In addition, a better understanding of the biochemical pathway of the 273 

biliverdin synthesis and its anti-oxidative function in the avian body appears crucial to 274 

interpret the costs and benefits for females to produce coloured eggs. 275 
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Fig. 1. Mean spectral reflectance of southern rockhopper penguin eggs (displayed is the 449 

average per clutch). Reflectance spectra were averaged at 10 nm intervals. Vertical bars 450 

denote ± 95% confidence intervals. Sample sizes were N = 85 clutches. 451 
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 453 
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Fig. 2. Relationship between individual egg mass and intensity of eggshell blue-green 455 

colouration (BGC) in A- and B-eggs. Sample sizes were N = 85 for both A- and B-eggs. 456 
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Fig. 3. Intensity of eggshell blue-green colouration (BGC) in A- and B-eggs of southern 460 

rockhopper penguins. Lines represent the connection between eggs from the same clutch. 461 

Sample sizes were N = 85 for both A- and B-eggs. 462 
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Fig. 4. Relationship between clutch initiation date (CID) and intensity of eggshell blue-green 466 

colouration (BGC) in A- and B-eggs. We present linear regression lines to visualize the effect 467 

of CID (even though not significant for B-eggs). P-values were obtained from linear models 468 

conducted separately for A- and B-eggs. Sample sizes were N = 85 for both A- and B-eggs. 469 
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