

This item is the archived peer-reviewed author-version of:

KPC-Like carbapenemase-producing enterobacteriaceae colonizing patients in Europe and Israel

Reference:

Baraniak A., Izdebski R., Fiett J., Goossens Herman, et al..- KPC-Like carbapenemase-producing enterobacteriaceae colonizing patients in Europe and Israel Antimicrobial agents and chemotherapy - ISSN 0066-4804 - 60:3(2016), p. 1912-1917 Full text (Publishers DOI): http://dx.doi.org/doi:10.1128/AAC.02756-15 To cite this reference: http://hdl.handle.net/10067/1341840151162165141

uantwerpen.be

Institutional repository IRUA

AAC Accepted Manuscript Posted Online 28 December 2015 Antimicrob. Agents Chemother. doi:10.1128/AAC.02756-15 Copyright © 2015, American Society for Microbiology. All Rights Reserved.

1	
2	
3	
4	
5	
	KDC like containing and using Enterphysicatorization
6	KPC-like carbapenemase-producing Enterobacteriaceae
7	colonizing patients across Europe and Israel
8	
9	
10	
11	A. Baraniak ^{1±} , R. Izdebski ^{1±} , J. Fiett ¹ , M. Herda ¹ , L. P. G. Derde ² , M. J. M. Bonten ² ,
12	A. Adler ³ , Y. Carmeli ³ , H. Goossens ⁴ , W. Hryniewicz ¹ , C. Brun-Buisson ⁵ ,
13	and M. Gniadkowski ^{1*} on behalf of the MOSAR WP2, WP3 & WP5 study groups ^{\dagger}
14	
15	¹ National Medicines Institute, Warsaw, Poland
16	² University Medical Center Utrecht, Utrecht, The Netherlands
17	³ Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
18 19	 ⁴ University of Antwerp, Antwerp, Belgium ⁵ INSERM U957 & Université Paris-Est, Créteil, France
19 20	INSERIM 0957 & Université Paris-Esi, Créteri, France
20	Running title: KPC producers in Europe and Israel
22	
23	Key words: Enterobacteriaceae, MLST, carbapenemase, KPC, plasmid
24	
25	* Corresponding author:
26 27	Marek Gniadkowski, National Medicines Institute, ul. Chełmska 30/34, 00-725 Warsaw Poland. Fax: (+48) 22 - 841 29 49. E-mail: gniadkow@cls.edu.pl
27	Foldidi. 1'ax. (+46) 22 - 641 29 49. E-mail. ginadkow@cis.cdu.pi
29	$^{\pm}$ these authors contributed equally to this work
30	
31	[†] members are listed in the Acknowledgement section
32	
33	

In a 2008-11 survey, 17,945 patients in 18 hospital units in Europe and Israel were screened
for carriage of KPC-producing *Enterobacteriaceae*, resulting in identification of 124 positive
patients. The isolates were dominated by *Klebsiella pneumoniae* ST258 KPC-2 and ST512
KPC-3, mainly from Greece and Italy, respectively, whereas Israeli isolates were of diverse
species, clones and KPC variants. Various *bla*_{KPC} platforms were observed, among which
IncFII_K+FIB_K plasmids with *bla*_{KPC-2/-3} genes in the Tn*4401*a transposon prevailed.

40

Carbapenemase-producing Enterobacteriaceae (CPE) constitute an urgent epidemiological 41 issue (1). One of their major, globally-spread mechanisms are the Klebsiella pneumoniae 42 43 carbapenemases (KPCs), hydrolyzing most of β -lactams (1, 2). KPC-2 and -3 are the most prevalent variants, while K. pneumoniae is their predominant host species (3, 4). KPCs have 44 45 occurred in many K. pneumoniae clones (sequence types, STs) (5-8), but ST258 and its close relative ST512 are key players in the pandemic spread (2-4, 6, 9-11). $bla_{\rm KPC}$ genes are located 46 in Tn4401 transposon variants (12-15), inserted into plasmids of various replicon types and 47 transmission potential (5, 7, 16-20). One type of these, pKpQIL, found first in KPC-3-48 producing K. pneumoniae ST258 in Israel, has two specific replicons, FII_K and FIB_K, and low 49 50 conjugation efficiency (21-23). Later KPC-2- or -3-encoding pKpQIL-like molecules were observed in other countries, usually in K. pneumoniae ST258 (2, 3, 10, 24, 25). 51

52 During the EU project MOSAR patients in ICUs and rehabilitation units (RUs) in Europe and 53 Israel were screened for *Enterobacteriaceae* resistant to expanded-spectrum cephalosporins 54 (ESCs) (26). Since KPCs and metallo-β-lactamases (MBLs) confer resistance to ESCs (1), the 55 project allowed performing a large-scale comparative study of the KPC and MBL CPE 56 carriage. A previous report concerned MBL CPE (27), while here we present the KPC data.

Between mid-2008 and mid-2011 all patients in 13 ICUs and five RUs in nine countries 57 (n=17,945) were screened for ESC-resistant (ESC-R) Enterobacteriaceae (Table 1). Rectal 58 59 swabbing was performed regularly from admission until discharge. Swabs were plated onto Brilliance[™] ESBL Agar (Oxoid, Basingstoke, UK); enterobacterial colonies were stored for 60 definite analysis. Species were identified with Vitek 2 (bioMérieux, Marcy l'Etoile, France). 61 All isolates were tested for extended-spectrum β-lactamases (ESBLs) and AmpC-type 62 cephalosporinases by the ESBL double-disk synergy test (DDST) without and with 250µg/ml 63 cloxacillin (28), and for susceptibility to ertapenem, imipenem and meropenem. 64 Carbapenemase screening breakpoints were from EUCAST (http://eucast.org). All suspected 65

66 CPE isolates were subjected to KPC, MBL and OXA-48 phenotypic detection, using the 67 combined disk test with phenylboronic acid (PBA CDT) (29), DDST with EDTA (30), and 68 temocillin disk (31), respectively. All non-duplicate PBA CDT-positive organisms were 69 tested by PCR for *bla*_{KPC} genes (32), performed also for putative MBL producers (27).

70 A total of 124 patients carrying 127 unique KPC CPE organisms were identified in six of 18 71 clinical sites, located in Greece (centers AT, n=44, and LA, n=35), France (RP, n=1), Israel (LH, n=6, and TA, n=16) and Italy (FS, n=22) (Table 1). They were 59.0% of all patients with 72 73 CPE. Four Greek patients had K. pneumoniae co-producing KPC and MBL (VIM-1) and were reported previously too (27). The results for individual countries concurred with other reports. 74 75 After the nation-wide outbreak in 2006-07, the KPC situation in Israel has been endemic at a lower level since 2008 (2, 33, 34). Consistently, the KPC cases in the Israeli RUs were 76 scattered during the study, being $\sim 1\%$ of all patients screened and $\sim 2\%$ of those with ESC-R 77 organisms (Table 1). The KPC spread in Greece commenced in 2007 and was much advanced 78 by the mid-2008 (2, 34-36). Both Greek ICUs recorded KPC cases from the survey start and 79 80 their contribution to all patients screened and to ESC-R Enterobacteriaceae carriers was ~6% and ~35%, respectively. Italy reported the first KPC case in 2008, followed by an outbreak 81 progressing rapidly from 2010 (2, 34, 37). The RUFS, screening patients from February 2009 82 to February 2011, had first two cases late in 2009, then 12 in 2010, and eight in the first two 83 84 months of 2011, being ~3% of all patients and ~6% of those with ESC-R organisms.

The *bla*_{KPC} amplicons were digested by RsaI (Fermentas, Vilnius, Lithuania), distinguishing *bla*_{KPC-2} and *bla*_{KPC-3} (38), followed by sequencing for representative isolates. KPC-producing isolates were typed by pulsed-field gel electrophoresis (PFGE), as described (39). PFGE types and subtypes were distinguished visually according to Tenover et al. (40). Selected isolates were analyzed also by multi-locus sequence typing (MLST) (41-44); databases available at http://pubmlst.org/cfreundii/ (*Citrobacter freundii*), http://pubmlst.org/ecloacae (*Enterobacter*) 91 *cloacae*), http://mlst.warwick.ac.uk/mlst/dbs/Ecoli (*Escherichia coli*) and
92 http://bigsdb.web.pasteur.fr/klebsiella/klebsiella.html (*K. pneumoniae*) were used for
93 assigning STs. *E. cloacae* STs and β-lactamases were shown previously (45).

K. pneumoniae isolates, being the predominant species (n=110; 86.6%), were classified into 94 95 10 STs (Table 2). ST258 prevailed (n=76; 69.1%) and was observed in all but one of the sites (FS, Italy), dominating in Greece with bla_{KPC-2} (n=73; 93.6%). The next prevalent clone, 96 ST512 (n=21; 19.1%), was originally identified in this study in an Israeli isolate from 2008 97 (http://bigsdb.web.pasteur.fr/klebsiella/klebsiella.html). This SLV of ST258 carried bla_{KPC-3} 98 and dominated in the Italian RU FS (n=19; 86.4%), being sporadic in Israel. Four KPC-99 100 2+VIM-1-positive Greek isolates belonged to ST147, the major VIM producer in Greece (27), while the remaining STs represented single isolates with KPC-2 or -3 in individual sites. C. 101 102 freundii, E. cloacae and E. coli, usually producing KPC-2, were identified vastly in Israel and were clonally diverse, except for E. coli ST131 with three KPC-2 or -3 isolates. Most of the E. 103 cloacae, E. coli and K. pneumoniae isolates represented international clones (45, 46). For C. 104 105 freundii the clonality data are scarce (27, 41, 47) but KPC-producing C. freundii ST14, originally identified here, was found in 2015 in Malaysia [http://pubmlst.org/cfreundii/]. In 106 general the clonality plus KPC type data were congruent with national reports. The high KPC 107 108 CPE diversity in the Israeli centers corresponds to the endemic situation, following the 109 polyclonal outbreak of KPC-2 and clonal spread of K. pneumoniae ST258 KPC-3 (7, 19, 22, 48, 49), even if other studies still indicate importance of K. pneumoniae ST258/ST512 (50). 110 In contrast, the high prevalence of ST258 KPC-2 in Greece and ST512 KPC-3 in Italy 111 reflected their clonal dissemination in real time (35-37). This study is also a yet another report 112 113 on KPC-producing E. coli ST131, repeatedly identified in Israel (4, 49, 51, 52).

Location of $bla_{\rm KPC}$ genes within Tn4401-like transposons and polymorphism of these was analyzed by PCR mapping (12). For the Tn4401g variant (15) an additional primer was

designed (5'-GTTCCACTGAGCGTCAGAC-3') for use with primer 3781L (12) (expected 116 product size, 370bp). All bla_{KPC} genes were located in Tn4401 variants (12). The main type 117 118 was Tn4401a (12), observed in all isolates from Greece, Italy and France, and in 9/22 Israeli isolates, including most of K. pneumoniae with bla_{KPC-2} or bla_{KPC-3} (Table 2). Tn4401c (14) 119 120 and Tn4401g (15) were found only in Israel in various species and clones, always containing *bla*_{KPC-2}. Tn4401a has been the main type of Tn4401, strongly associated with K. pneumoniae 121 ST258 worldwide (6, 10, 18, 21, 36), while Tn4401c has been observed in diverse KPC-2-122 producing organisms in Israel (15, 49). Interestingly, the Tn4401c-derived Tn4401g was 123 identified only recently in a single K. pneumoniae KPC-2 isolate recovered in Israel in 2008 124 125 (15), whereas here it occurred frequently in C. freundii, E. coli and K. pneumoniae. Plasmid profiling and identification of bla_{KPC} -carrying plasmids was done by the nuclease S1 126

(New England Biolabs, Beverly, MA) analysis (53) and hybridization with the bla_{KPC} probe, 127 using ECL Random-Prime Labeling and Detection system (Amersham Pharmacia Biotech, 128 Little Chalfont, United Kingdom). The analysis comprised 44 isolates of all species, STs and 129 130 pulsotypes (15 K. pneumoniae ST258/ST512 isolates), revealing highly variable plasmid profiles, with *bla*_{KPC}-carrying plasmids ranging in size from ~60 to ~320kb (Table 2). Plasmid 131 DNA of 27 isolates of various species, STs and S1 profiles was purified with the QIAGEN 132 Plasmid Midi Kit (QIAGEN, Hilden, Germany) and electroporated into E. coli DH5a, with 133 134 the transformant selection by $0.5\mu g/ml$ imipenem or $1\mu g/ml$ cefotaxime. Subsequently, plasmids of the transformants were purified and subjected to PCR-based replicon typing 135 (PBRT) (54-57). KPC-positive transformants were obtained for 22 isolates (Table 2). PBRT 136 revealed that 12 of these had plasmids with FIIk and FIBk replicons (alternating in two cases) 137 138 of ~90-~140kb. PCR mapping, performed as proposed by Baraniak et al. (10), showed that all 139 these were of the pKpQIL type (21), and molecules positive in that assay were identified also 140 in selected isolates for which no transformants were available (Table 2). The pKpQIL-like

AAC

plasmids carried *bla*_{KPC-2} or ₋₃ (Tn4401a), and were mainly hosted in K. pneumoniae ST258 & 141 ST512; however, these occurred also in other organisms (10, 22, 23). The other group were 142 143 IncN plasmids of ~60-~150kb, identified in various C. freundii, E. coli and K. pneumoniae Israeli strains, usually carrying bla_{KPC-2} (Tn4401g). These plasmids have been observed 144 145 among diverse KPC-2-producing E. coli and non-CG258 K. pneumoniae in Israel (15, 49). 146 However, some of our isolates fell beyond this pattern, like K. pneumoniae ST833 (SLV of ST258) with bla_{KPC-2} on a pKpQIL-like plasmid or K. pneumoniae ST512 with bla_{KPC-3} on an 147 IncN molecule. Finally, the bla_{KPC-2} gene in the Tn4401c variant was observed in C. freundii 148 and E. cloacae in large plasmids (\sim 300- \sim 320kb) that could not be separated by transfer 149 150 despite repeated attempts; their replicon types thus remained not determined.

The KPC CPE isolates were analyzed for other acquired β-lactamase genes, namely *bla*_{SHV-5/-} *i*₂, *bla*_{CTX-M}, *bla*_{CMY-2}, *bla*_{TEM}, and *bla*_{OXA-1} types by PCR and sequencing (32, 58-60). The
isolates had various β-lactamase combinations, including SHV- and CTX-M-like ESBLs,
AmpCs of the CMY-2 type and broad-spectrum enzymes TEM-1 and OXA-1 (Table 2).

155 We assessed the KPC CPE carriage among ICU and RU patients on a large international scale, using the same time frame and methodology. Not surprisingly, KPC producers were 156 found mainly in the countries which reported their wide spread, i. e. Greece, Italy and Israel 157 (2, 33-37). Considering the study period, 2008-2011, the rhythm of occurrence of cases in 158 159 individual centers and characteristics of the organisms reflected the situation in the countries, *i. e.* the onset and advanced stage of nation-wide outbreaks in Italy and Greece, respectively, 160 and the post-outbreak endemicity in Israel (33, 35-37). The analysis provided a comparative 161 snapshot of the geographic and quantitative distribution of species/clones, Tn4401 transposon 162 163 variants and $bla_{\rm KPC}$ -carrying plasmids, often observed in national reports. Also, this has been 164 one of the first studies of C. freundii and E. cloacae that included MLST data.

165

166 ACKNOWLEDGEMENTS

The MOSAR WP2, WP3 and WP5 study groups also included the following: - M. J. 167 168 Dautzenberg – University Medical Center Utrecht, Utrecht, The Netherlands; M. Kazma, S. Navon-Venezia - Division of Epidemiology and Preventive Medicine, Tel-Aviv Sourasky 169 170 Medical Center, Tel Aviv, Israel; S. Malhotra-Kumar, C. Lammens - University of Antwerp, 171 Antwerp, Belgium; P. Legrand – Hopital Henri Mondor, Créteil, France; D. Annane – Hôpital Raymond Poincaré, Garches, France; A. Chalfine – Groupe Hospitalier Paris – Saint Joseph, 172 Paris, France; H. Giamarellou – Attikon General Hospital, Athens, Greece; G. L. Petrikkos – 173 Laikon General Hospital, University of Athens, Athens, Greece; G. Nardi - Azienda 174 175 Ospedaliera S Camillo Forlanini, Rome, Italy; A. Balode, U. Dumpis - Paul Stradins University Hospital, Riga, Latvia; P. Stammet - Centre Hospitalier de Luxembourg, 176 Luxembourg, Luxembourg; I. Aragăo - Central Hospital of Porto, Porto, Portugal; F. Esteves 177 - Centro Hospitalar Trás-os-Montes e Alto Douro, Vila Real, Portugal; I. Muzlovic -178 179 University Medical Centre Ljubljana, Ljubljana, Slovenia; V. Tomic - University Clinic of 180 Respiratory and Allergic Diseases, Golnik, Slovenia; A. Torres Martí - Hospital Clínic, University of Barcelona, Barcelona, Spain; C. Lawrence - Hôpital Maritime de Berck, 181 Berck/Garches/Paris, France; J. Salomon - INSERM, Institut Pasteur, Cnam, Paris, France; 182 183 M. Paul – Loewenstein Hospital, Ra'anana, Israel; Y. Lerman – Geriatric Division, Tel-Aviv 184 Sourasky Medical Center, Tel-Aviv, Israel; A. Rossini, A. Salvia, - Fondazione Santa Lucia IRCCS, Rome, Italy; J. Vidal Samso, J. Fierro - Institute Guttmann, Barcelona, Spain. We 185 thank curator teams of the Medical University in Białystok, Poland, the National Center for 186 Global Health and Medicine in Tokyo, Japan, the University of Warwick, UK, and the Institut 187 188 Pasteur in Paris, France, for curating the MLST data of C. freundii, E. cloacae, E. coli, and K. 189 pneumoniae, respectively, and making them publicly available. This work was part of the 190 activities of the MOSAR integrated project (LSHP-CT-2007-037941) supported by the 191 European Commission under the Life Science Health priority of the 6th Framework

192 Programme (WP2, WP3 & WP5 Study Teams). The study also was partially financed by the

- 193 grant UMO-2012/07/B/NZ6/03528 from the Polish National Science Centre.
- 194

196

195 **REFERENCES**

- Nordmann P, Poirel L. 2014. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect 20:821-830.
- Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Woodford N, Quinn JP. 2013. Clinical epidemiology of the global expansion of *Klebsiella pneumoniae* carbapenemases. Lancet Infect Dis 13:785-796.
- Pitout JD, Nordmann P, Poirel L. 2015. Carbapenemase-producing *Klebsiella pneumoniae*, a key pathogen set for global nosocomial dominance. Antimicrob Agents
 Chemother 59:5873-5884.
- Mathers AJ, Peirano G, Pitout JD. 2015. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant *Enterobacteriaceae*. Clin Microbiol Rev 28:565-591.
- Cuzon G, Naas T, Truong H, Villegas MV, Wisell KT, Carmeli Y, Gales AC,
 Venezia SN, Quinn JP, Nordmann P. 2010. Worldwide diversity of *Klebsiella pneumoniae* that produce β-lactamase *bla*_{KPC-2} gene. Emerg Infect Dis 16:1349-1356.
- Kitchel B, Rasheed JK, Patel JB, Srinivasan A, Navon-Venezia S, Carmeli Y,
 Brolund A, Giske CG. 2009. Molecular epidemiology of KPC-producing *Klebsiella pneumoniae* isolates in the United States: clonal expansion of multilocus sequence
 type 258. Antimicrob Agents Chemother 53:3365-3370.
- Leavitt A, Carmeli Y, Chmelnitsky I, Goren MG, Ofek I, Navon-Venezia S. 2010.
 Molecular epidemiology, sequence types, and plasmid analyses of KPC-producing *Klebsiella pneumoniae* strains in Israel. Antimicrob Agents Chemother 54:3002-3006.
- Curiao T, Morosini MI, Ruiz-Garbajosa P, Robustillo A, Baquero F, Coque TM,
 Canton R. 2010. Emergence of *bla*_{KPC-3}-Tn4401a associated with a pKPN3/4-like
 plasmid within ST384 and ST388 *Klebsiella pneumoniae* clones in Spain. J
 Antimicrob Chemother 65:1608-1614.
- Navon-Venezia S, Leavitt A, Schwaber MJ, Rasheed JK, Srinivasan A, Patel JB,
 Carmeli Y. 2009. First report on a hyperepidemic clone of KPC-3-producing
 Klebsiella pneumoniae in Israel genetically related to a strain causing outbreaks in the
 United States. Antimicrob Agents Chemother 53:818-820.
- Baraniak A, Grabowska A, Izdebski R, Fiett J, Herda M, Bojarska K, Zabicka D, Kania-Pudlo M, Mlynarczyk G, Zak-Pulawska Z, Hryniewicz W, Gniadkowski
 M. 2011. Molecular characteristics of KPC-producing *Enterobacteriaceae* at the early stage of their dissemination in Poland, 2008-2009. Antimicrob Agents Chemother
 55:5493-5499.
- Warburg G, Hidalgo-Grass C, Partridge SR, Tolmasky ME, Temper V, Moses
 AE, Block C, Strahilevitz J. 2012. A carbapenem-resistant *Klebsiella pneumoniae* epidemic clone in Jerusalem: sequence type 512 carrying a plasmid encoding *aac(6')- Ib.* J Antimicrob Chemother 67:898-901.

237	12.	Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordn
238		Genetic structures at the origin of acquisition of the β -lactamase
239		Antimicrob Agents Chemother 52:1257-1263.
240	13.	Kitchel B, Rasheed JK, Endimiani A, Hujer AM, Anderson KF,
241		Patel JB. 2010. Genetic factors associated with elevated carbapener
242		KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemo
243		4207.
244	14.	Naas T, Cuzon G, Truong HV, Nordmann P. 2012. Role of ISKpn7 a
245		bla_{KPC} gene expression. Antimicrob Agents Chemother 56 :4753-4759.
246	15.	Chmelnitsky I, Shklyar M, Leavitt A, Sadovsky E, Navon-Venezia
247		M, Edgar R, Carmeli Y. 2014. Mix and match of KPC-2 encoding
248		Enterobacteriaceae-comparative genomics. Diagn Microbiol Infect Dis
249	16.	Andrade LN, Curiao T, Ferreira JC, Longo JM, Climaco EC,
250		Bellissimo-Rodrigues F, Basile-Filho A, Evaristo MA, Del Peloso Pl
251		Barth AL, Paula MC, Baquero F, Canton R, Darini AL, Coqu
252		Dissemination of <i>bla</i> _{KPC-2} by the spread of <i>Klebsiella pneumoniae</i> clona
253		clones (ST258, ST11, ST437) and plasmids (IncFII, IncN, In
254		Enterobacteriaceae species in Brazil. Antimicrob Agents Chemother 55
255	17.	Gootz TD, Lescoe MK, Dib-Hajj F, Dougherty BA, He W, Della-L
256		RC. 2009. Genetic organization of transposase regions surrou
257		carbapenemase genes on plasmids from Klebsiella strains isolated in a l
258		hospital. Antimicrob Agents Chemother 53:1998-2004.
259	18.	Gomez SA, Pasteran FG, Faccone D, Tijet N, Rapoport M
260		Lastovetska O, Albornoz E, Galas M, Group KPC, Melano RG, Co
261		A. 2011. Clonal dissemination of Klebsiella pneumoniae ST258 harbor
262		Argentina. Clin Microbiol Infect 17:1520-1524.
263	19.	Goren MG, Navon-Venezia S, Chmelnitsky I, Carmeli Y. 2010
264		resistant KPC-2-producing Escherichia coli in a Tel Aviv Medical C
265		2008. Antimicrob Agents Chemother 54:2687-2691.
266	20.	Mataseje LF, Boyd DA, Willey BM, Prayitno N, Kreiswirth I
267		Poutanen SM, Low DE, Jenkins SG, Katz K, Mulvey MR.
268		comparison and molecular analysis of Klebsiella pneumoniae harbouring
269		New York City and Toronto. J Antimicrob Chemother 66:1273-1277.
270	21.	Leavitt A, Chmelnitsky I, Carmeli Y, Navon-Venezia S. 2010. Comp
271		sequence of KPC-3-encoding plasmid pKpQIL in the epidemic Klebsiel
272		sequence type 258. Antimicrob Agents Chemother 54:4493-4496.
273	22.	Leavitt A, Chmelnitsky I, Ofek I, Carmeli Y, Navon-Venezia S.
274		pKpQIL encoding KPC-3 and TEM-1 confers carbapenem resistance i
275		drug-resistant epidemic Klebsiella pneumoniae strain. J Antimicro
276		65: 243-248.
277	23.	Adler A, Shklyar M, Schwaber MJ, Navon-Venezia S, Dhaher Y, E
278		E, Benenson S, Masarwa S, Carmeli Y. 2011. Introduction of OXA
279		Enterobacteriaceae to Israeli hospitals by medical tourism. J Antimica
280		66: 2763-2766.
281	24.	Garcia-Fernandez A, Villa L, Carta C, Venditti C, Giordano A
282		Mancini C, Carattoli A. 2012. Klebsiella pneumoniae ST258 pro
283		identified in italy carries novel plasmids and OmpK36/OmpK35
284		Antimicrob Agents Chemother 56:2143-2145.
285	25.	Chen L, Chavda KD, Melano RG, Jacobs MR, Koll B, Hong T,

- mann P. 2008. se bla_{KPC} gene.
- F, Bonomo RA, em resistance in nother 54:4201
 - and deletions in
 - ia S, Ben Dalak ling plasmids in 79:255-260.
 - C, Martinez R, PF, Ribeiro VB, que TM. 2011. nal complex 258 IncL/M) among **55:**3579-3583.
 - Latta P, Huard ounding *bla*_{KPC} New York City
 - M, Lucero C, orso A, Petroni ouring KPC-2 in
 - 0. Carbapenem-Center, 2005 to
 - N, Gelosia A, 2011. Plasmid ring bla_{KPC} from
 - nplete nucleotide ella pneumoniae
 - . 2010. Plasmid in an extremely crob Chemother
 - Edgar R, Solter A-48-producing crob Chemother
 - A, Venditti M, oducing KPC-3 porin variants.
- Chen L, Chavda KD, Melano RG, Jacobs MR, Koll B, Hong T, Rojtman AD, Levi MH, Bonomo RA, Kreiswirth BN. 2014. Comparative genomic analysis of 286

289	20.	Derue Lr, Cooper DS, Goossens H, Mamotra-Kumar S, Winems KJ,
290		Gniadkowski M, Hryniewicz W, Empel J, Dautzenberg MJ, Annane D, Aragao I,
291		Chalfine A, Dumpis U, Esteves F, Giamarellou H, Muzlovic I, Nardi G, Petrikkos
292		GL, Tomic V, Marti AT, Stammet P, Brun-Buisson C, Bonten MJ. 2014.
293		Interventions to reduce colonisation and transmission of antimicrobial-resistant
294		bacteria in intensive care units: an interrupted time series study and cluster randomised
295		trial. Lancet Infect Dis 14:31-39.
296	27.	Papagiannitsis CC, Izdebski R, Baraniak A, Fiett J, Herda M, Hrabak J, Derde
297	27.	LP, Bonten MJ, Carmeli Y, Goossens H, Hryniewicz W, Brun-Buisson C,
298		Gniadkowski M. 2015. Survey of metallo-β-lactamase-producing Enterobacteriaceae
298		colonizing patients in European ICUs and rehabilitation units, 2008-11. J Antimicrob
		Chemother. 70: 1981-1988.
300	20	
301	28.	Drieux L, Brossier F, Sougakoff W, Jarlier V. 2008. Phenotypic detection of
302		extended-spectrum β -lactamase production in Enterobacteriaceae: review and bench
303	•	guide. Clin Microbiol Infect 14 Suppl 1:90-103.
304	29.	Doi Y, Potoski BA, Adams-Haduch JM, Sidjabat HE, Pasculle AW, Paterson DL.
305		2008. Simple disk-based method for detection of Klebsiella pneumoniae
306		carbapenemase-type β -lactamase by use of a boronic acid compound. J Clin Microbiol
307		46: 4083-4086.
308	30.	Lee K, Lim YS, Yong D, Yum JH, Chong Y. 2003. Evaluation of the Hodge test and
309		the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-
310		producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol
311		41:4623-4629.
312	31.	Glupczynski Y, Huang TD, Bouchahrouf W, Rezende de Castro R, Bauraing C,
313		Gerard M, Verbruggen AM, Deplano A, Denis O, Bogaerts P. 2012. Rapid
314		emergence and spread of OXA-48-producing carbapenem-resistant Enterobacteriaceae
315		isolates in Belgian hospitals. Int J Antimicrob Agents 39: 168-172.
316	32.	Baraniak A, Izdebski R, Herda M, Fiett J, Hryniewicz W, Gniadkowski M, Kern-
317		Zdanowicz I, Filczak K, Lopaciuk U. 2009. Emergence of Klebsiella pneumoniae
318		ST258 with KPC-2 in Poland. Antimicrob Agents Chemother 53:4565-4567.
319	33.	Schwaber MJ, Lev B, Israeli A, Solter E, Smollan G, Rubinovitch B, Shalit I,
320	00.	Carmeli Y. 2011. Containment of a country-wide outbreak of carbapenem-resistant
321		<i>Klebsiella pneumoniae</i> in Israeli hospitals via a nationally implemented intervention.
322		Clin Infect Dis 52: 848-855.
323	34.	Canton R, Akova M, Carmeli Y, Giske CG, Glupczynski Y, Gniadkowski M,
323	54.	Livermore DM, Miriagou V, Naas T, Rossolini GM, Samuelsen O, Seifert H,
324		Woodford N, Nordmann P. 2012. Rapid evolution and spread of carbapenemases
		among Enterobacteriaceae in Europe. Clin Microbiol Infect 18 :413-431.
326	25	
327	35.	Pournaras S, Protonotariou E, Voulgari E, Kristo I, Dimitroulia E, Vitti D,
328		Tsalidou M, Maniatis AN, Tsakris A, Sofianou D. 2009. Clonal spread of KPC-2
329		carbapenemase-producing Klebsiella pneumoniae strains in Greece. J Antimicrob
330		Chemother 64:348-352.
331	36.	Giakkoupi P, Papagiannitsis CC, Miriagou V, Pappa O, Polemis M,
332		Tryfinopoulou K, Tzouvelekis LS, Vatopoulos AC. 2011. An update of the evolving
333		epidemic of <i>bla</i> _{KPC-2} -carrying <i>Klebsiella pneumoniae</i> in Greece (2009-10). J
334		Antimicrob Chemother 66:1510-1513.
335	37.	Giani T, Pini B, Arena F, Conte V, Bracco S, Migliavacca R; AMCLI-CRE
336		Survey Participants, Pantosti A, Pagani L, Luzzaro F, Rossolini GM. 2013.

KPC-encoding pKpQIL-like plasmids and their distribution in New Jersey and New 288 York Hospitals. Antimicrob Agents Chemother 58:2871-2877.

Derde LP, Cooper BS, Goossens H, Malhotra-Kumar S, Willems RJ,

287

289

26.

337		Epidemic diffusion of KPC carbapenemase-producing <i>Klebsiella pneumoniae</i> in Italy:
338		results of the first countrywide survey, 15 May to 30 June 2011. Euro Surveill 18.
339	38.	Lopez JA, Correa A, Navon-Venezia S, Correa AL, Torres JA, Briceno DF,
340		Montealegre MC, Quinn JP, Carmeli Y, Villegas MV. 2011. Intercontinental
341		spread from Israel to Colombia of a KPC-3-producing Klebsiella pneumoniae strain.
342		Clin Microbiol Infect 17:52-56.
343	39.	Seifert H, Dolzani L, Bressan R, van der Reijden T, van Strijen B, Stefanik D,
344		Heersma H, Dijkshoorn L. 2005. Standardization and interlaboratory reproducibility
345		assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter
346		baumannii. J Clin Microbiol 43:4328-4335.
347	40.	Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH,
348		Swaminathan B. 1995. Interpreting chromosomal DNA restriction patterns produced
349		by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol
350		33: 2233-2239.
351	41.	Bai L, Xia S, Lan R, Liu L, Ye C, Wang Y, Jin D, Cui Z, Jing H, Xiong Y, Bai X,
352		Sun H, Zhang J, Wang L, Xu J. 2012. Isolation and characterization of cytotoxic,
353		aggregative Citrobacter freundii. PLoS One 7:e33054.
354	42.	Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. 2005. Multilocus
355	12.	sequence typing of <i>Klebsiella pneumoniae</i> nosocomial isolates. J Clin Microbiol
356		43: 4178-4182.
357	43.	Miyoshi-Akiyama T, Hayakawa K, Ohmagari N, Shimojima M, Kirikae T. 2013.
358	10.	Multilocus sequence typing (MLST) for characterization of <i>Enterobacter cloacae</i> .
359		PLoS One 8:e66358.
360	44.	Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR,
361		Maiden MC, Ochman H, Achtman M. 2006. Sex and virulence in <i>Escherichia coli</i> :
362		an evolutionary perspective. Mol Microbiol 60 :1136-1151.
363	45.	Izdebski R, Baraniak A, Herda M, Fiett J, Bonten MJ, Carmeli Y, Goossens H,
364	10.	Hryniewicz W, Brun-Buisson C, Gniadkowski M. 2015. MLST reveals potentially
365		high-risk international clones of <i>Enterobacter cloacae</i> . J Antimicrob Chemother
366		70:48-56.
367	46.	Woodford N, Turton JF, Livermore DM. 2011. Multiresistant Gram-negative
368	40.	bacteria: the role of high-risk clones in the dissemination of antibiotic resistance.
369		FEMS Microbiol Rev 35:736-755.
309	47.	Gaibani P, Ambretti S, Farruggia P, Bua G, Berlingeri A, Tamburini MV,
370	ч /.	Cordovana M, Guerra L, Mazzetti M, Roncarati G, Tenace C, Moro ML,
372		Gagliotti C, Landini MP, Sambri V. 2013. Outbreak of Citrobacter freundii
372		carrying VIM-1 in an Italian Hospital, identified during the carbapenemases screening
373		actions, June 2012. Int J Infect Dis 17: e714-717.
374	48.	Marchaim D, Navon-Venezia S, Schwaber MJ, Carmeli Y. 2008. Isolation of
375	- 0.	imipenem-resistant <i>Enterobacter</i> species: emergence of KPC-2 carbapenemase,
		molecular characterization, epidemiology, and outcomes. Antimicrob Agents
377 378		Chemother 52 :1413-1418.
378	49.	Adler A, Miller-Roll T, Assous MV, Geffen Y, Paikin S, Schwartz D, Weiner-
	49.	Well Y, Hussein K, Cohen R, Carmeli Y. 2015. A multicenter study of the clonal
380		
381		structure and resistance mechanism of KPC-producing <i>Escherichia coli</i> isolates in Israel. Clin Microbiol Infect 21 :230-235.
382	50	
383	50.	Adler A, Hussein O, Ben-David D, Masarwa S, Navon-Venezia S, Schwaber MJ,
384		Carmeli Y, Post-Acute-Care Hospital Carbapenem-Resistant Enterobacteriaceae Working C 2015 Persistance of Klabsialla programming ST258 as the predominant
385		Working G. 2015. Persistence of <i>Klebsiella pneumoniae</i> ST258 as the predominant

Antimicrobial Agents and Chemotherapy

386		clone of carbapenemase-producing Enterobacteriaceae in post-acute-care hospitals in
387		Israel, 2008-13. J Antimicrob Chemother 70: 89-92.
388	51.	Naas T, Cuzon G, Gaillot O, Courcol R, Nordmann P. 2011. When carbapenem-
389		hydrolyzing β-lactamase KPC meets <i>Escherichia coli</i> ST131 in France. Antimicrob
390		Agents Chemother 55:4933-4934.
391	52.	O'Hara JA, Hu F, Ahn C, Nelson J, Rivera JI, Pasculle AW, Doi Y. 2014.
392		Molecular epidemiology of KPC-producing Escherichia coli: occurrence of ST131-
393		fimH30 subclone harboring pKpQIL-like IncFIIk plasmid. Antimicrob Agents
394		Chemother 58 :4234-4237.
395	53.	Barton BM, Harding GP, Zuccarelli AJ. 1995. A general method for detecting and
396		sizing large plasmids. Anal Biochem 226:235-240.
397	54.	Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. 2005.
398		Identification of plasmids by PCR-based replicon typing. J Microbiol Methods
399		63: 219-228.
400	55.	Villa L, Garcia-Fernandez A, Fortini D, Carattoli A. 2010. Replicon sequence
401		typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob
402		Chemother 65: 2518-2529.
403	56.	Garcia-Fernandez A, Fortini D, Veldman K, Mevius D, Carattoli A. 2009.
404		Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in
405		Salmonella. J Antimicrob Chemother 63:274-281.
406	57.	Johnson TJ, Bielak EM, Fortini D, Hansen LH, Hasman H, Debroy C, Nolan LK,
407		Carattoli A. 2012. Expansion of the IncX plasmid family for improved identification
408	50	and typing of novel plasmids in drug-resistant <i>Enterobacteriaceae</i> . Plasmid 68 :43-50.
409	58.	Woodford N, Fagan EJ, Ellington MJ. 2006. Multiplex PCR for rapid detection of
410		genes encoding CTX-M extended-spectrum β -lactamases. J Antimicrob Chemother
411 412	59.	57: 154-155. Empel J, Baraniak A, Literacka E, Mrowka A, Fiett J, Sadowy E, Hryniewicz W,
412	39.	Gniadkowski M. 2008. Molecular survey of β-lactamases conferring resistance to
413 414		newer β -lactams in <i>Enterobacteriaceae</i> isolates from Polish hospitals. Antimicrob
414		Agents Chemother 52 :2449-2454.
415	60.	Izdebski R, Baraniak A, Fiett J, Adler A, Kazma M, Salomon J, Lawrence C,
417	00.	Rossini A, Salvia A, Vidal Samso J, Fierro J, Paul M, Lerman Y, Malhotra-
418		Kumar S, Lammens C, Goossens H, Hryniewicz W, Brun-Buisson C, Carmeli Y,
419		Gniadkowski M. 2013. Clonal structure, extended-spectrum β -lactamases, and
420		acquired AmpC-type cephalosporinases of <i>Escherichia coli</i> populations colonizing
421		patients in rehabilitation centers in four countries. Antimicrob Agents Chemother
422		57: 309-316.
423		

AAC

424 TABLE 1. Occurrence of patients colonized by KI C CI E in study centers.	424	TABLE 1. Occurrence of patients colonized by KPC CPE in study centers.
--	-----	--

425

country	centre	unit type	patients enrolled in the	patients colonized by Enterobacteriaceae	patients colonized by CPE $(n)^{b,d,e}$	patients colonized by KPC CPE $(n)^d$
			study $(n)^a$	producing acquired	CFE (II)	KFC CFE (II)
			study (II)	ESC-hydrolyzing		
				β -lactamases (n) ^{b,c,d}		
France	HM	ICU	2,373	256 (10.8%)	$1(0.04\%)^{e}$	_
France	RP	ICU	1,328	85 (6.4%)	$1(0.08\%)^{f}$	1 (0.08%)
France	SJ	ICU	1,049	51 (4.9%)	4 (0.4%)	-
Greece	AT	ICU	796	117 (14.7%)	53 (6.7%) ^g	44 (5.5%)
Greece	LA	ICU	558	99 (17.7%)	83 (14.9%) ^h	35 (6.3%)
Italy	CA	ICU	788	49 (6.2%)	2 (0.3%)	-
Latvia	RI	ICU	1,464	526 (35.9%)	10 (0.7%)	-
Luxemburg	LU	ICU	1,823	54 (3.0%)	-	-
Portugal	PO	ICU	910	18 (2.0%)	-	-
Portugal	VR	ICU	628	24 (3.8%)	1 (0.2%)	-
Slovenia	GO	ICU	919	32 (3.5%)	-	-
Slovenia	LJ	ICU	685	115 (16.8%)	-	-
Spain	BA	ICU	1,069	41 (3.8%)	-	-
France	BM	RU	410	76 (18.5%)	-	-
Israel	LH	RU	564	177 (31.4%)	$6 (1.1\%)^i$	6(1.1%)
Israel	TA	RU	1,650	870 (52.7%)	$16(1.0\%)^{i}$	16 (1.0%)
Italy	FS	RU	704	340 (48.3%)	28 (4.0%)	22 (2.8%)
Spain	GI	RU	227	104 (45.8%)	5 (2.2%)	-
Total			17,945	3,034 (16.9%)	210 (1.2%)	124 (0.7%)

426

 a^{a} - all patients that were swabbed at least once at a clinical centre, regardless the length of hospitalization

429 b^{b} - these numbers were shown also in the report on colonization by MBL CPE in MOSAR 430 centers (27)

^c – acquired ESC-hydrolyzing β-lactamases include ESBLs, AmpC-type cephalosporinases,
 MBLs and KPCs

 d - patients in this column include both those who were colonized at admission and those who were colonized due to in-hospital transmission

^e - carbapenemases include KPCs and MBLs except for one patient in the French ICU HM
 who was colonized by *E. coli* co-producing OXA-48 carbapenemase and ESBL

f - this patient was colonized by KPC-producing K. pneumoniae and MBL-producing E. coli

438 ⁸ – one patient was colonized by KPC-producing *E. coli* and MBL-producing *K. pneumoniae*

439 h – four patients were colonized by *K. pneumoniae* co-producing KPC and MBL

440 i – one patient was colonized by KPC-producing *E. coli* and *K. pneumoniae*

441 j – two patients were colonized by two different KPC producers: *C. freundii* and *E. coli*, or *E.*

442 coli and K. pneumoniae, respectively

AAC

line
Ö
Posted
uscript
Man
pted
Accel

444TABLE 2. KPC CPE isolates: geographic distribution, species, clones, pulsotypes, S1 plasmid profiles, plasmids and Tn4401 transposons with445 bla_{KPC} genes, and other acquired β-lactamases (MBLs, ESBLs, AmpCs, broad-spectrum β-lactamases).

446 Centers	Species	ST		n pulsotypes	S1 profiles	plasmids with blaKPC	bla _{KPC} ^h	Tn4401	MBLs, ESBLs, AmpCs (n)
Centers	Species	$(CC \text{ or } CG)^{a,b,c,d}$	n isolates	(subtypes)	S1 promes	genes a.g	DIAKPC	variant ⁱ	MBLS, ESBLS, AmpCs (n)
AT (Greece)	E. coli	ST10 (CC10)	1	1	Eco1	~130kb; FII _K +FIB _K	bla _{KPC-2}	Tn4401a	TEM-1
	K. pneumoniae	ST258 (CG258)	43	2 (18)	Kpn1 Kpn2	~120kb; FII _K +FIB _K ~115kb; FII _K +FIB _K	bla _{KPC-2} bla _{KPC-2}	Tn4401a Tn4401a	SHV-12+TEM-1 SHV-12+TEM-1
LA (Greece)	K. pneumoniae	ST17 (CG17)	1	1	Kpn4	~115kb; FII _K +FIB _K	bla _{KPC-2}	Tn4401a	SHV-5+TEM-1
(0.0000)	K. pneumoniae	ST147 (CC147) ^k	4	1 (2)	Kpn6 Kpn9	~115kb; FII_K+FIB_K ~100kb; FII_K+FIB_K	bla _{KPC-2}	Tn4401a	VIM-1+TEM-1
	K. pneumoniae	ST258 (CG258)	30	1 (12)	Kpn2 Kpn10	~ 115 kb; $FII_K + FIB_K$ ~ 70 kb; nt	bla _{KPC-2} bla _{KPC-2}	Tn4401a Tn4401a	SHV-12+TEM-1 SHV-12
FS	K. pneumoniae	ST16 (CG17)	1	1	Kpn7	~90kb; nt	bla _{KPC-3}	Tn4401a	CTX-M-15
(Italy)	K. pneumoniae	ST45 (CG485)	1	1	Kpn3	~115kb; $FII_K + FIB_K$	bla _{KPC-3}	Tn4401a	TEM-1
	K. pneumoniae	ST383 (CC42)	1	1	Kpn8	~100kb; FII_{K}	bla _{KPC-2}	Tn4401a	CMY-4+TEM-1
	K. pneumoniae	ST512 (CG258)	19	1 (9)	Kpn2/6	~115kb; FII _K +FIB _K	bla _{KPC-3}	Tn4401a	TEM-1 (19); SHV-12+CMY-2 (1); OXA-1 (1) ^{<i>l</i>}
RP (France)	K. pneumoniae	ST258 (CG258)	1	1	nd	nd	bla _{KPC-2}	Tn4401a	CTX-M-15+ SHV+TEM-1
LH (Israel)	E. cloacae	ST78 (CC74) ^m	1	1	Ec11	nd	bla _{KPC-2}	Tn4401c	SHV-12+TEM-1 ^m
(Israel)	E. coli	ST131 (CC131)	2	1 (2)	Eco2	~75kb; N	bla _{KPC-2}	Tn4401g	TEM-1

Antimicrobial Agents and Chemotherapy

Antimicrobial Agents and Chemotherapy	

	E. coli	ST1571	1	1	Eco3	nd	bla _{KPC-2}	Tn4401c	SHV-12+TEM-1
	K. pneumoniae	ST258 (CG258)	1	1	Kpn5	~115kb; FII_K+FIB_K	bla _{KPC-3}	Tn4401a	TEM-1
	K. pneumoniae	ST512 (CG258)	1	1	Kpn11	~150kb; N	bla _{KPC-3}	Tn4401a	-
ТА	C. freundii	ST14	1	1	Cfr1	~80kb; N	bla _{KPC-2}	Tn4401g	TEM-1+OXA-1
(Israel)	5					·		C	
	C. freundii	ST12	1	1	Cfr2	~80kb; N	bla _{KPC-2}	Tn4401g	CTX-M-15+TEM-1
	C. freundii	nd	1	1	Cfr3	~80kb; N	bla _{KPC-2}	Tn4401g	SHV-12+TEM-1+OXA-1
	C. freundii	ST10	1	1	Cfr4	~300kb; nd	bla _{KPC-2}	Tn4401c	TEM-1+OXA-1
	C. freundii	ST15	1	1	Cfr4	~300kb; nd	bla _{KPC-2}	Tn4401c	TEM-1+OXA-1
	E. cloacae	ST118 ^m	1	1	Ecl3	~320kb; nd	bla _{KPC-2}	Tn4401c	CTX-M-27+SHV-12+TEM-1 ^m
	E. cloacae	ST146 ^m	1	1	Ecl2	~300kb; nd	bla _{KPC-2}	Tn4401c	TEM-1^m
	E. coli	ST69 (CC69)	1	1	Eco8	~70kb; N	bla _{KPC-2}	nt	TEM-1
	E. coli	ST131 (CC131)	1	1	Eco5	$\sim 115 kb; FII_K + FIB_K$	bla _{KPC-3}	Tn4401a	TEM-1
	E. coli	ST216	1	1	Eco6	~60kb; N	bla _{KPC-2}	Tn4401g	TEM-1+OXA-1
	E. coli	ST3541	1	1	Eco7	nd	bla _{KPC-2}	Tn4401c	CTX-M-15+ SHV-12+CMY-2+TEM-1+OXA-1
	K. pneumoniae	ST17 (CG17)	1	1	Kpn12	~140kb; N	bla _{KPC-2}	Tn4401g	TEM-1+OXA-1
	K. pneumoniae	ST34 (CC34)	1	1	Kpn13	nd	bla _{KPC-2}	Tn4401c	CTX-M-15+ SHV-12+TEM-1+OXA-1
	K. pneumoniae	ST36 (CG485)	1	1	Kpn14	${\sim}115kb;FII_{K}{+}FIB_{K}$	bla _{KPC-3}	Tn4401a	TEM-1
	K. pneumoniae	ST258 (CG258)	1	1	Kpn2	~115kb; $FII_K + FIB_K$	bla _{KPC-3}	Tn4401a	TEM-1

~90kb; FII_K+FIB_K

bla_{KPC-3}

Tn4401a

SHV-12+TEM-1

ST167 (CC10) 1

1

Eco4

E. coli

Manusa	
Accepted	

Antimicrobial Agents and

<u>Chemotherapy</u>

K. pneumoniae	ST383 (CC42)	1	1	Kpn15	~115kb; FIB _K	$bla_{\rm KPC-2}$	Tn4401a	CTX-M-15+CMY-4+TEM-1
K. pneumoniae	ST512 (CG258)	1	1	Kpn16	${\sim}140kb; FII_{K}{+}FIB_{K}$	bla _{KPC-3}	Tn4401a	TEM-1+OXA-1
K. pneumoniae	ST833 (CG258)	1	1	Kpn17	~100kb; FII _K +FIB _K	bla _{KPC-2}	Tn4401a	SHV-12

^a - nd, not determined; nt, non-typeable 448

^b - new STs are indicated in bold; numerous reports on *K. pneumoniae* ST512 have been published since 2012 (2, 11, 34, 37); however, this ST 449

was identified originally in this study (isolate ID 578 in the K. pneumoniae MLST database; http://bigsdb.web.pasteur.fr) 450 451 - CC, clonal complex; CG, clonal group

452

d - in groups of four or more isolates MLST was performed for representative isolates, based on the PFGE data

^e - in large groups of isolates of the same ST/pulsotype (K. pneumoniae ST258 & ST512) the S1 analysis was performed for representative 453 454 isolates

455 f – S1 plasmid profiles are numbered within species groups of isolates; profiles differed from each other by number and/or size of plasmids

^g - plasmids found in transformants are shown in bold; replicons shown in italics represent the probable types of bla_{KPC} plasmids (PBRT and 456 pKpQIL PCR mapping was performed on DNA of clinical isolates) 457

- in groups of four or more isolates of the same ST/pulsotype the bla_{KPC} sequencing was performed for representative isolates; for the 458 remaining isolates the RsaI PCR-RFLP analysis distinguishing between bla_{KPC-2} and bla_{KPC-3} sequences (38) was carried out 459

460 - in groups of four or more isolates of the same ST/pulsotype the PCR mapping of Tn4401-like elements was performed for representative 461 isolates

- in groups of four or more isolates of the same ST/pulsotype and bla genes' PCR profile sequencing was performed for representative isolates 462 In groups of rout of more notated of the study of MBL CPE isolates identified during the MOSAR project (27) 463

¹ – all isolates of this group produced TEM-1; one isolate had additionally SHV-12 & CMY-2, and another one had OXA-1 464

^{*m*} – STs and β -lactamases of the *E. cloacae* isolates from LH & TA were reported previously (45) 465

466 467

A A C

17