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STXBP1 encephalopathy
A neurodevelopmental disorder including epilepsy

ABSTRACT

Objective: To give a comprehensive overview of the phenotypic and genetic spectrum of STXBP1
encephalopathy (STXBP1-E) by systematically reviewing newly diagnosed and previously
reported patients.

Methods: We recruited newly diagnosed patients with STXBP1 mutations through an interna-
tional network of clinicians and geneticists. Furthermore, we performed a systematic literature
search to review the phenotypes of all previously reported patients.

Results: We describe the phenotypic features of 147 patients with STXBP1-E including 45 pre-
viously unreported patients with 33 novel STXBP1 mutations. All patients have intellectual dis-
ability (ID), which is mostly severe to profound (88%). Ninety-five percent of patients have
epilepsy. While one-third of patients presented with Ohtahara syndrome (21%) or West syndrome
(9.5%), the majority has a nonsyndromic early-onset epilepsy and encephalopathy (53%) with epi-
leptic spasms or tonic seizures as main seizure type. We found no correlation between severity of
seizures and severity of ID or between mutation type and seizure characteristics or cognitive out-
come. Neurologic comorbidities including autistic features and movement disorders are frequent.
We also report 2 previously unreported adult patients with prominent extrapyramidal features.

Conclusion: De novo STXBP1 mutations are among the most frequent causes of epilepsy and
encephalopathy. Most patients have severe to profound ID with little correlation among seizure
onset, seizure severity, and the degree of ID. Accordingly, we hypothesize that seizure severity
and ID present 2 independent dimensions of the STXBP1-E phenotype. STXBP1-E may be con-
ceptualized as a complex neurodevelopmental disorder rather than a primary epileptic
encephalopathy. Neurology® 2016;86:1–9

GLOSSARY
AED 5 antiepileptic drugs; EOEE 5 early-onset epilepsy and encephalopathy; ID 5 intellectual disability; ILAE 5 Interna-
tional League Against Epilepsy; STXBP1 5 syntaxin-binding protein 1; STXBP1-E 5 STXBP1 encephalopathy.

Syntaxin-binding protein 1 (STXBP1) (also known as MUNC18-1) is a protein of the SEC1
family of membrane trafficking proteins predominantly expressed in the brain, which plays
an important role in synaptic vesicle docking and fusion.1,2 Through interaction with both
vesicle-associated (synaptobrevin 2 or vesicle-associated membrane protein 2) and target-
associated (syntaxin-1 and synaptosomal-associated protein 25) soluble N-ethylmaleimide-
sensitive factor attachment protein receptors (SNARE) proteins, STXBP1 modulates the
presynaptic vesicular fusion reaction.3,4 STXBP1 is encoded by the STXBP1 gene
(NM_003165.3), consisting of 20 exons and located on chromosome 9q34.11.2,5

In 2008, Saitsu et al.6 described de novo STXBP1 mutations in 5 patients with Ohtahara
syndrome. Subsequently, mutations in STXBP1, including missense, frameshift, splice site, and
nonsense mutations, and intragenic and whole gene deletions have been described in different
patient cohorts, broadening the phenotypic spectrum of STXBP1mutations to West syndrome,
unclassified early-onset epileptic encephalopathy, Dravet syndrome, nonsyndromic epilepsy and
intellectual disability, and autism.5,7–41
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In this study, we aimed to provide a compre-
hensive picture of the phenotypic spectrum
of STXBP1 encephalopathy (STXBP1-E). We
report 45 previously unreported patients with
STXBP1-E, carrying 33 unreported mutations,
and summarize all STXBP1mutations reported
to date. We further discuss future treatment
options and pitfalls in the genetic diagnosis of
STXBP1-E.

METHODS Characterization of novel patients with
STXBP1-E. Forty-five previously unreported patients with a

STXBP1 mutation were included in this study. All patients were

referred through a network of collaborating clinicians and geneti-

cists. Mutations in STXBP1 were identified in research or

diagnostic laboratories. Referring physicians were provided a stan-

dardized phenotyping sheet to assess relevant clinical character-

istics, EEG, and neuroimaging findings. International League

Against Epilepsy (ILAE) criteria were used for epilepsy syndrome

classification, meaning that the diagnosis of Ohtahara syndrome,

Dravet syndrome, West syndrome, or Lennox-Gastaut syndrome

was only made when all criteria for seizure, developmental, and

EEG characteristics were present. For the purpose of this review,

we classified patients with frequent seizures and intellectual

disability (ID), both with onset in the first 2 years of life but

not fulfilling ILAE criteria for any specific syndrome, as early-

onset epilepsy and encephalopathy (EOEE; see Discussion). In

case of preexisting developmental delay or ID with epilepsy onset

after age 2 years, a diagnosis of ID and nonsyndromic epilepsy

was made.

Standard protocol approvals, registrations, and patient
consents. Written informed consent for participation in the

study was obtained. The study was approved by the Commission

of Medical Ethics of the University of Antwerp and the Ethics

Committee of Western Zealand, Denmark.

Review of patients reported in literature. We performed a

PubMed search for STXBP1. Articles not available in English

were excluded. We also included microdeletions involving mul-

tiple genes in addition to STXBP1 even though we recognize that

in these patients, deletions of other genes than STXBP1 might

influence the phenotype.

We classified all patients as explained above, based on clinical

information in the publication. For patients for whom no or little

clinical information was reported, we listed the phenotype men-

tioned in the respective publications, but they were not included

in summary statistics.

Statistical analyses. A x2 test was used to compare mutation

type (missense vs truncating) and cognitive outcome (mild to

moderate ID vs severe to profound) and cognitive outcome and

seizure outcome (seizure-free vs not seizure-free). A Fisher exact

test was used in case any of the cells had an expected count below 5.

A nonparametric Mann-Whitney U test was used to look for a

difference in age at seizure onset, age when seizure-free, and

duration of seizures between the groups with truncating

mutations and missense mutations and between the groups with

mild to moderate ID and severe to profound ID. Statistical analyses

were performed with SPSS Statistics 22 (IBM, Armonk, NY).

To estimate the frequency of STXBP1-E in the general pop-

ulation, we used the electronic population databases of National

Statistics at the Statens Serum Institute (Denmark) to calculate

the birth cohort from 2001 to 2010. The Danish Epilepsy Centre

is the only tertiary hospital in Denmark specialized in the treat-

ment of epilepsy, and the majority of patients with intractable

epilepsy are referred to this center. To ensure that all Danish

patients diagnosed with STXBP1-E were included, including pa-

tients with mild or no epilepsy, we contacted all major Danish

pediatric departments and clinical genetics departments for

STXBP1-E patients treated locally.

RESULTS STXBP1: The phenotypic spectrum. In total,
we reviewed the phenotypic features of 147 patients
with STXBP1-E, including 45 previously unreported
patients described in this article (tables e-1, e-2, and e-3
on the Neurology® Web site at Neurology.org). Age at
inclusion ranged from 6 months to 56 years (median 5.
75 years). At onset, the majority of patients had a
clinical diagnosis of EOEE (n 5 71; 53%) or
Ohtahara syndrome (n 5 28, 20.9%), 27 of whom
showed evolution to West syndrome over time.
STXBP1 mutations were also identified in patients
initially presenting with West syndrome (n 5 13;
9.7%), ID with nonsyndromic epilepsy (n 5 8;
6%), ID without epilepsy (n 5 9; 6.7%), or Dravet
syndrome (n 5 3; 2.2%). One patient had early
myoclonic encephalopathy and 1 patient had ID
with 2 possible seizures. For 13 patients, no clinical
description was available. Four of the 9 patients with
ID without epilepsy were identified in the group of
previously unreported patients.

Seizures in STXBP1-E. If present, epilepsy onset in
STXBP1-E tends to be early in life, with a median
onset age of 6 weeks (range 1 day–12 years).
Childhood-onset epilepsy has been described in 8
patients with first seizures occurring at up to 12
years of age.

A broad spectrum of seizure types is seen in pa-
tients with STXBP1-E. Most frequently, epileptic
spasms occur at some stage during the disease course
(65.3%). Other frequent seizure types are focal seiz-
ures (57.9%) and tonic seizures (41.3%).

Treatment of seizures is often difficult early in the
disease. Fifty-six of 104 (53.8%) patients for whom this
information was available were treated with more than
3 antiepileptic drugs (AEDs) (steroid treatment and
ACTH included). At last follow-up, 29 of 101 patients
(28.7%) for whom information was available still had
frequent seizures (more than once a week) despite treat-
ment. Forty-six patients out of 105 for whom informa-
tion was available (43.8%) nevertheless became seizure-
free between the ages of 1 month and 4 years with a
median age of 8 months. One patient became
seizure-free after corpus callosotomy; in another patient,
epilepsy surgery with resection of a focal cortical dyspla-
sia greatly reduced seizure frequency.10,18

For the 40 newly diagnosed patients with epilepsy,
different combinations of AEDs led to seizure
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freedom. Although numbers are small, the AEDs
most frequently reported to be effective were valproic
acid, which led to seizure freedom in 4 patients (pa-
tients 4, 9, 32, and 39), levetiracetam in 3 patients (pa-
tients 2, 36, and 43), and vigabatrin in 2 patients
(patients 28 and 41). In 8 out of 14 patients who
became seizure-free, treatment with AEDs eventually
could be discontinued. It should be noted that epilepsy
relapse after a longer period of seizure freedom has been
reported in 6 older patients with STXBP1
mutations.5,12,16

EEG and MRI characteristics. In most patients with
STXBP1-E, focal or multifocal epileptic activity on
EEG was described (64.1%). A burst-suppression
pattern was present at some point in disease history
in 42 patients (35.9%) and hypsarrhythmia in 44
patients (40%).

Following the recent description of MRI charac-
teristics in patients with STXBP1-E by Barcia
et al.,25 we reviewed all patients for the presence of
cerebral atrophy, thin corpus callosum, and an aber-
rant myelination pattern on brain MRI. Information
on MRI was present in 117 patients. Atrophic
changes were described in 39 (33.3%) patients and
thin corpus callosum or hypomyelination/delayed
myelination in 19 patients each (16.2%). In 55 pa-
tients (47%), MRI was reported as normal.

Development, behavior, and neurologic features. All pa-
tients had some degree of ID, and in 107 out of 121
patients (88.4%) for whom information was available
severe to profound ID was reported. In only 1 patient
with a de novo p.Asp285Tyr mutation, cognitive
impairment was limited to learning difficulties.27

More detailed information regarding development
was available for all 45 of our previously unreported
patients: of the 28 patients with epilepsy onset after
the neonatal period (after 30 days), 18 (64.3%) had
preexisting developmental delay (information of early
development not available in 1 patient). Out of all 45
unreported patients, 4 showed developmental regres-
sion (patients 1, 16, 34, and 37). In one patient (patient
34), regression occurred prior to epilepsy onset.
Twenty-one out of 45 patients obtained the ability to
walk (some steps) independently, acquiring this skill
between the ages of 14 months and 6 years. Two
learned to walk and then lost this ability later. Seven
patients were able to speak more than a few words,
allowing for some degree of verbal communication.

Autism or autistic features have been reported in
25 of the 147 patients reviewed. Fourteen of these pa-
tients (31.1% out of 45 patients) were identified in
our cohort of previously unreported patients where
this feature was specifically addressed in the question-
naire. Stereotypies have been described in 31 out of
147 patients. Other behavioral problems mentioned

were hyperactivity (n 5 6) and acting out or aggres-
sive behavior (n 5 5).

Finally, a number of neurologic symptoms have
been associated with STXBP1-E, including pyrami-
dal, extrapyramidal, and cerebellar features suggesting
involvement of various neurologic systems. The most
frequent findings were (axial) hypotonia (n 5 39),
ataxia or ataxic gait (n 5 34), (intentional) tremor
(n 5 31), spasticity (n 5 20), dyskinesia (n 5 17),
and dystonia (n5 14). Following a recent report of a
patient with STXBP1-E and juvenile-onset parkin-
sonism, we reviewed all new patients for features of
parkinsonism.30 We identified 2 adult patients (both
aged 20 years; 2/12 patients older than 12 years) with
prominent extrapyramidal features; 2 additional pa-
tients had only hypomimic facies.

Table 1 and figure 1 provide a summary of the
phenotypic features associated with STXBP1-E.

Mutation spectrum and inheritance. Table e-2 provides
an overview of all 147 STXBP1mutations reported to
date, accounting for 123 different mutations includ-
ing 33 previously unreported mutations. Out of 147
mutations, 56 (38.1%) were missense mutations (fig-
ure 2), and 91 (61.9%) were truncating mutations
including nonsense (n 5 21), splice site (n 5 24),
and frameshift mutations (n5 19), partial and whole
gene deletions, and larger microdeletions including
STXBP1 (n 5 25) (figure e-1). One patient (patient
28 of the new cohort) had a de novo synonymous
mutation in an essential splice site, predicted to lead to a
loss of the donor splice site (Human Splice Finder), and
one patient had a small in-frame deletion. None of
the mutations was present in the ExAC database
(http://exac.broadinstitute.org/). Forty-one missense
mutations were predicted deleterious or possibly/
probably damaging by both SIFT and PolyPhen-2, 14
only by SIFT, and 1 was predicted benign by both tools
(de novo p.His445Pro mutation in a patient with
Dravet syndrome). Out of all mutations, 124 (84.4%)
mutations were demonstrated to be de novo. One
STXBP1 mutation was inherited from a father
carrying a mosaic mutation.9 Two mutations were
absent in the mother and for 20 mutations
information on inheritance was not available,
including 6 mutations of previously unreported
patients. Five of these 6 mutations were truncating
and thus considered to be pathogenic. The sixth
mutation (patient 25) was a recurrent missense
mutation, absent in the mother, and proven to occur
de novo in 2 other unrelated patients.

In total, 13 recurrent mutations have been re-
ported, including the missense mutations p.Arg406His
in 7 patients and p.Arg551Cys in 4 patients. Seven
recurrent mutations occurred at CpG dinucleotides
leading to the substitution of an arginine residue.
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There was no obvious clustering of mutations in any of
the 3 STXBP1 domains (figure 2, figure e-1).

Genotype–phenotype correlations. We examined whether
truncating mutations are associated with a more
severe phenotype than missense mutations, and
whether recurrent mutations lead to similar pheno-
types. Forty-one of 45 patients with missense
mutations for whom information on cognition was
available had severe to profound ID (91.1%),
compared to 66 out of 76 in patients with truncating
mutations (86.8%). Out of the 9 patients without
epilepsy, 3 carried missense mutations and 6 carried
truncating mutations. In the group of 31 patients

who became seizure-free within 1 year after seizure
onset, 9 carried missense mutations and 22 truncating
mutations. These data suggest that truncating
mutations do not necessarily lead to a more severe
phenotype. The 7 patients with the most frequent
recurrent mutation p.Arg406His all had onset of
epilepsy in the first 2.5 months of life with severe to
profound ID while the seizure phenotype and cognitive
outcome was more variable for the other recurrent
mutations including p.Arg292Cys, p.Arg292His, and
p.Arg551Cys.

We next performed a statistical analysis of
phenotype–genotype relationships (e-Methods and
e-Results). No significant correlation was found
between mutation type (missense vs truncating) and
cognitive outcome (learning difficulties, mild to mod-
erate ID, vs severe to profound ID; x2, 2-sided p 5

0.478) or between mutation type and seizure outcome
(seizure-free vs not seizure-free; x2, 2-sided p5 0.127).
There was also no significant difference between the
different mutation types regarding age at seizure onset
(Mann-Whitney U, 2-tailed p 5 0.333) or age at sei-
zure freedom (Mann-Whitney U, 2-tailed p 5 0.225,
figure e-2). Furthermore, there was no significant cor-
relation between seizure outcome and cognitive out-
come (Fisher exact, 2-sided p 5 0.486), and no
statistical difference between the groups with learning
difficulties, mild or moderate ID, and severe to pro-
found ID with regard to age at seizure onset (Mann-
WhitneyU, 2-tailed p5 0.393), age at seizure freedom
(Mann-WhitneyU, 2-tailed p5 0.603, figure e-3), and
duration of seizures (time between seizure onset and
seizure freedom or age at inclusion; Mann-Whitney
U, 2-tailed p 5 0.809).

Frequency of STXBP1-E. Seven Danish children born
between 2001 and 2010 were referred to the Danish
Epilepsy Centre and diagnosed with STXBP1-E.
None was treated outside the Epilepsy Centre. Ac-
cording to the 10-year Danish birth cohort from
2001 to 2010, the number of live births in
Denmark in this period was 643,039. Based on
these numbers, we estimated that the frequency of
STXBP1-E in the Danish population is at least 1:
91,862.

DISCUSSION STXBP1 plays an important role in
vesicular docking and fusion, a necessary mechanism
for neurotransmitter secretion. An STXBP1 knockout
mouse model showed that total disruption of
STXBP1 leads to a complete loss of neurotransmitter
secretion from synaptic vesicles. STXBP1 knockout
mice further showed neurodegeneration after an ini-
tially normal brain assembly, indicating that neuro-
transmitter secretion, and thus functional STXBP1, is
important for the maintenance of neuronal synapses.42

Reduced STXBP1 expression was further shown to

Table 1 Clinical features of STXBP1 encephalopathy

Epilepsy

Approximately 95% of patients

Most frequent seizure types are epileptic spasms (65.3%), focal seizures (57.9%), and tonic
seizures (41.3%)

Seizure freedom is achieved in more than 1 in 3 patients, almost 1 in 3 remain therapy-
resistant

EEG

.60% have focal or multifocal epileptic activity

Burst suppression (35.9%) and hypsarrhythmia (40%) are frequent EEG findings

Intellectual disability

All patients; the majority has severe to profound intellectual disability (88.4%)

Behavioral problems

Autism or autistic features are seen in almost 1 in 5 patients

Motor features

(Axial) hypotonia, ataxia or ataxic gait, (intentional) tremor, spasticity and dyskinesia, or
dystonia are frequently seen

Imaging (brain MRI)

Normal in almost 1/2

Cerebral atrophy (33.3%), thin corpus callosum (16.2%), and hypomyelination or delayed
myelination (16.2%) are frequent (age related) findings

Figure 1 Spectrum of STXBP1-associated phenotypes

Epilepsy syndrome classification made as of age at onset of seizures. EME 5 early myoclonic
encephalopathy; EOEE5 early-onset epilepsy and encephalopathy; ID5 intellectual disability;
NSE 1 ID 5 nonsyndromic epilepsy and intellectual disability; OS 5 Ohtahara syndrome.
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increase synaptic depression at both GABAergic
and glutamatergic synapses with a greater impact on
GABAergic interneurons.43 This might result in a net
hyperexcitability and epileptic activity in case of
STXBP1 haploinsufficiency.

Over recent years, the phenotypic spectrum of pa-
tients with STXBP1 mutations has expanded. One
goal of our study was to assess the phenotypic spec-
trum of STXBP1-E. We found that ID and epilepsy
present the 2 major, independent, phenotypic dimen-
sions of STXBP1-E. All patients with STXBP1-E have
some degree of ID, which is severe to profound in
almost 90% of patients. Ninety-five percent of pa-
tients have epilepsy, although a recruitment bias
towards patients with epilepsy might be present in
many articles that were reviewed for our study.

Although stagnation of development can be seen at
seizure onset, some degree of developmental delay is
already present prior to seizure onset in many patients.
Regression is rarely seen, and does not always seem to
be related to seizure activity. We did not find a relation-
ship between the age at onset or duration of seizures and
the degree of intellectual impairment, although the
power of our analyses was limited. This reinforces the
notion that STXBP1 plays an important role in many
aspects of neurodevelopment and that STXBP1-E is
not a pure epileptic encephalopathy. A similar, but less
evident, observation has been made in other severe
genetic epilepsies such as Dravet syndrome.44 For the
purpose of this article, we therefore chose to define
EOEE as early-onset epilepsy and encephalopathy,
rather than early-onset epileptic encephalopathy.

With regards to the epilepsy phenotype, about
one-third of patients present with either Ohtahara
or West syndrome. Approximately one-quarter of pa-
tients with EOEE or Ohtahara syndrome evolve to
West syndrome over time. While most patients do
not fulfill precise ILAE criteria for these particular
electroclinical syndromes, the majority of the patients

with epilepsy have epileptic spasms or tonic seizures at
some point in their disease history. Accordingly, this
constellation may be considered the core seizure phe-
notype of STXBP1-E. More than one-third of the
patients eventually become seizure-free; however, in
some patients, epilepsy remains difficult to control.

The main EEG finding is (multi)focal epileptic
activity, while burst-suppression or hypsarrhythmia
are seen in approximately one-third of patients. MRI
of the brain is normal in almost half of the patients.
Nevertheless, cortical atrophy, delayed myelination,
and thin corpus callosum are recurrent findings. Since
MRI features are partially age-dependent, aberrant
MRI findings might be underreported because of the
young age of some of the patients reported.

Most patients with STXBP1-E present with addi-
tional neurologic features after infancy besides ID and
epilepsy. Autism or autistic features are present in
almost 20% of published cases, but might also be
underreported due to the focus of most studies on
the epilepsy phenotype. The combination of stereoty-
pies, autistic features, and regression in some patients
explains the identification of STXBP1 mutations in a
few patients with atypical Rett syndrome.37,38 Further-
more, patients with STXBP1-E frequently have addi-
tional neurologic features, including dyskinesia,
dystonia, tremor, (axial) hypotonia, and ataxia, which
suggest an impairment of various neurologic systems.
Moreover, in our cohort of previously unreported pa-
tients, we identified 2 patients with extrapyramidal
features at age 20 years. Levodopa-responsive parkin-
sonism has been described in adult patients with Dra-
vet syndrome.45 Further studies in adult patients with
STXBP1-E are warranted to establish the prevalence of
parkinsonism at older age, and to study the effect of
treatment with levodopa.

Treatment of STXBP1-E warrants a multidisciplin-
ary approach, and currently consists of symptomatic
treatment of seizures and behavioral and locomotor

Figure 2 STXBP1 missense mutations

STXBP1 missense mutations located on the protein that consists of 3 domains. There is no obvious clustering in either of the domains. The blue bars
represent the previously unreported mutations, the red bars the already published mutations, and the red and blue bars the mutations seen in newly
diagnosed and previously reported patients. The gray bars represent the ExAC missense variants reported once, the black the missense variants reported
more than once. None of the mutations reported in patients with STXBP1 encephalopathy is seen in ExAC.
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problems with physical therapy and occupational ther-
apy to maximize the developmental potential. A good
response of epileptic spasms to vigabatrin has been
reported in several studies,7,12,13,19,24,25,37 as has a good
effect of valproic acid12,25 and levetiracetam.40,46 The
latter is an interesting observation given that levetira-
cetam acts through modulation of synaptic vesicle
release.40,47 However, these beneficial effects are only
seen in some selected patients and larger prospective
studies are needed to identify the most favorable anti-
epileptic treatment regimen for STXBP1-E. Improve-
ment of prognosis on both seizure and cognitive
outcome may further come from the development of
a targeted disease-modifying treatment. For example,
protein–protein interaction inhibition has been sug-
gested as a possible therapeutic strategy in STXBP1
haploinsufficiency.48 Finally, STXBP1 was recently
shown to play a role in endothelial granule exocytosis,
and a significantly impaired histamine and stimulated
von Willebrand Factor secretion was observed in a
patient with STXBP1-E.49 Although this was insuffi-
cient to result in clinical symptoms, this decrease might
be a good biomarker to monitor the effect of future
targeted therapies.

Both de novo missense mutations and truncating
mutations or deletions can lead to STXBP1-E. In
our analyses, we did not find any correlation between
mutation type and the presence of seizures, age at
seizure onset, or cognitive outcome. Also taking into
account the phenotypic variability seen in patients
with some of the recurrent de novo mutations, other
factors such as genetic background or environmental
factors may play a role in defining the eventual
phenotype.

Confirming a pathogenic mutation and making a
diagnosis of STXBP1-E is not always straightforward.
Truncating mutations in STXBP1 are generally con-
sidered to be pathogenic. However, different truncat-
ing variants have been described in the ExAC
database. All are located at the end of the last exon,
outside the last domain 2, while all causative STXBP1
truncating mutations are positioned prior to this
region (figure e-1). Possibly, the truncating ExAC
variants escape nonsense-mediated decay and may
lead to a functional protein. Moreover, it remains
unclear whether the 6 individuals carrying any of
the 4 truncating variants are healthy controls or
derived from cohorts with late-onset neuropsychiatric
disorders who were recruited for ExAC.

Missense variants can be found in both healthy in-
dividuals and patients with STXBP1-E. Four of the
21 STXBP1 missense variants occurring more than
once in the ExAC database are predicted deleterious
by both SIFT and PolyPhen-2 (figure 2), demonstrat-
ing the limitations of in silico prediction tools alone
for clinical interpretation of missense variants. On the

other hand, one missense mutation, p.His445Pro,
identified in a patient with Dravet syndrome, was
predicted benign by both SIFT and PolyPhen-2.27

This variant was classified as pathogenic based on
its de novo status. Therefore, interpretation of novel
STXBP1 missense variants will remain challenging in
the absence of segregation data.

In this study, we describe 45 previously unreported
patients with STXBP1-E, resulting in a total of 147
reported patients. These numbers suggest that STXBP1
mutations are among the most frequent causative mu-
tations in patients with epilepsy and ID next to genes
like SCN1A, CDKL5, MECP2, and KCNQ2. We esti-
mate a frequency of 1:91,862 in a Danish birth cohort,
but this number might be an underestimate since
STXBP1-E is a heterogeneous condition and some pa-
tients may be undiagnosed. We illustrate the pheno-
typic spectrum of STXBP1-E and hypothesize that
STXBP1-E should be considered a complex neurode-
velopmental disorder rather than a primary epileptic
encephalopathy.
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