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Singlet pairing in a Fermi superfluid is frustrated when the amounts of fermions of each pairing partner are
unequal. The resulting “imbalanced superfluid” has been realized experimentally for ultracold atomic gases
with s-wave interactions. Inspired by high-temperature superconductivity, we investigate the case of d-wave
interactions and find marked differences from the s-wave superfluid. Whereas s-wave imbalanced Fermi gases
tend to phase separate in real space, in a balanced condensate and an imbalanced normal halo, we show that the
d-wave gas can phase separate in reciprocal space so that imbalance and superfluidity can coexist spatially. We
show that the mechanism explaining this property is the creation of polarized excitations in the nodes of the
gap. The Sarma mechanism, present only at nonzero temperatures for the s-wave case, is still applicable in the
temperature zero limit for the d-wave case. As a result, the d-wave BCS superfluid is more robust with respect
to imbalance and a region of the phase diagram can be identified where the s-wave BCS superfluidity is
suppressed whereas the d-wave superfluidity is not. When these results are extended into the Bose—Einstein
condensate limit of strongly bound molecules, the symmetry of the order parameter matters less. The effects of
fluctuations beyond mean field is taken into account in the calculation of the structure factor and the critical
temperature. The poles of the structure factor (corresponding to bound molecular states) are less damped in the
d-wave case as compared to that in s wave. On the BCS side of the unitarity limit, the critical temperature 7,
follows the temperature 7* corresponding to the pair binding energy and as such will also be more robust
against imbalance. Possible routes for the experimental observation of the d-wave superfluidity have been

discussed.
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I. INTRODUCTION

In a metal exhibiting superconductivity at low tempera-
ture, the amount of spin-up and spin-down electrons are
equal and the electron-phonon interaction leading to Cooper
pairing has a given, fixed strength. Both the population of the
spin components and the electron-phonon interaction
strength cannot be arbitrarily tuned, and this restricts the ex-
perimental study of superconductivity to some given values
in parameter space. Nevertheless, one would like to access a
much larger region of parameter space to gain insight on
pairing and superconductivity.

Superfluid Fermi gases have recently gained a lot of in-
terest, precisely because of the accurate adaptability of the
system parameters. The interaction strength between the two
hyperfine spin states is an adjustable parameter. This allows
us to probe pairing and superfluidity in the crossover be-
tween a Bardeen—Cooper—Schrieffer (BCS) state of weakly
bound Cooper pairs and a Bose—Einstein condensate (BEC)
of tightly bound molecules.!> Moreover, in a mixture of two
hyperfine spin states of a fermionic element, the amount of
each hyperfine spin component can be experimentally con-
trolled. This permits us to investigate the effect that a popu-
lation imbalance between the spin components has on
pairing.>* Not surprisingly, these recent experimental
breakthroughs'~* have relaunched the theoretical efforts to
understand imbalanced Fermi superfluids in the crossover
regime.’

The first theoretical study of Cooper pairing in an imbal-
anced Fermi mixture was performed in the context of BCS
superconductors by Clogston,® who showed that a population
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imbalance destroys the superconductivity when the imbal-
ance in chemical potentials is of the same order as the “bal-
anced” order parameter. Experiments confirm that imbalance
frustrates pairing and reveal that the excess spin component
is preferentially expelled from the superfluid:>? demixing
occurs.” More exotic pairing scenarios have been predicted,
most notoriously the “Fulde—Ferrell-Larkin—Ovchinnikov”
scenario,’ in which the Fermi spheres of the two components
spontaneously deform, leading to Cooper pairs with nonzero
center-of-mass momentum.

When the temperature is raised and excitations are popu-
lated, the superconductivity may be restored by creating a
balanced pair condensate with an “imbalanced” gas of exci-
tations. This may lead to “reentrant superconductivity” as
proposed by Sarma.” In the Sarma state, the excess spin com-
ponent is expelled from the superfluid, not in position space,
but in energy space.

In the context of the Sarma state, the case of an imbal-
anced Fermi gas with a d-wave order parameter is particu-
larly interesting. In the current experiments on superfluid
Fermi gases, the temperatures are low enough so that only
the s-wave partial wave matters and the d-wave scattering is
much weaker than the s-wave interactions. However, the
d-wave order parameter has directions in momentum space
where it vanishes, even at zero temperature. This allows for a
Sarma scenario where the excess spin component is expelled
from the superfluid, not in position or energy space, but in
momentum space. In this contribution, we show that d-wave
symmetry enables the superfluid to cope with imbalance all
the way to temperature zero, using a similar scenario as pro-
posed by Sarma for nonzero temperature. This leads to the
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conclusion that imbalance can stabilize the d-wave pairs with
respect to the s-wave pairs since the d-wave superfluid is
more robust against population imbalance. Moreover, since
also the d-wave scattering length can be tuned through the
Feshbach mechanism, we investigate the d-wave superfluid-
ity both in BEC and BCS regimes.

The case of the d-wave pairing in the BEC/BCS crossover
is also interesting from the point of view of high-temperature
superconductivity,'® where the order parameter is found to
exhibit d-wave symmetry.'! The current results, derived in
the context of cold atomic gases, can also shed light on the
properties of the pseudogap state in the underdoped regime.
This pseudogap (which appears to have the same d-wave
symmetry as the order parameter'?) has been associated ei-
ther with some competing order parameter in the normal
state or with the existence of “preformed pairs,”!? where a
notable candidate is the noncondensed bipolaron.'* Also in
the current treatment, preformed d-wave pairs appear, and
we present results for the pair binding energy of these objects
as a function of temperature, density, and interatomic inter-
action strength.

Our formalism of choice to treat the imbalanced Fermi
gases is path integration. The path-integral formalism was
effectively applied to study fermionic superfluidity in dilute
gases by using the approach with the Hubbard—Stratonovic
transformation, choosing a saddle point, and performing the
integration over the fermionic variables. This leaves an ef-
fective action depending on the saddle point value and the
chemical potential. The effective action can be applied to
study the Fermi superfluid in optical lattices'® or to investi-
gate vortices in Fermi superfluids.'® In Ref. 17, that approach
was extended in order to take into account the fluctuations
around the saddle point. The treatment starts from the parti-
tion function, which is the path integral over fermionic
(Grassmann) variables. After introducing the auxiliary
bosonic variables and integrating over the fermionic vari-
ables, the exact expression for the partition function from
Ref. 17 is the path integral over only the boson fields with an
effective bosonic action. That action is then represented as a
sum of the saddle-point contribution (which is calculated ex-
actly) and the contribution due to Gaussian fluctuations,
which is taken into account as a perturbation. At T=T,, this
approximation for the fluctuations is equivalent to that of
Nozieres and Schmitt-Rink.!8

The further development of this idea can be found, e.g., in
Refs. 19 and 21. In Ref. 19, the superfluid density is derived
for a uniform two-component Fermi gas in the BCS-BEC
crossover regime in the presence of an imposed superfluid
flow, taking into account pairing fluctuations in a Gaussian
approximation following Ref. 18. In Refs. 20 and 21, the
effects of quantum fluctuations about the saddle-point solu-
tion of the BCS-BEC crossover at 7=0 in a dilute Fermi gas
are included at the Gaussian level by using the functional
integral method. In Ref. 22, the superfluid density and the
condensate fraction are investigated for a fermion gas in the
BCS-BEC crossover regime at finite temperatures. The fluc-
tuation effects on these quantities are included within a
Gaussian approximation. The gas of interacting fermions in
Refs. 19, 21, and 22 is considered for the s-wave pairing and
with no population imbalance. A study of the balanced
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d-wave system using the path-integral method can be found
in Ref. 23. Finally, the current work applies the path-integral
theory to the imbalanced d-wave superfluids, including
finite-temperature fluctuations, to show that d-wave pairing
is particularly robust against imbalance fluctuations.

The formalism is presented in Sec. II. In Sec. III, we
develop the mean-field approach and discuss the resulting
pair binding energy. In Sec. IV, we also include the fluctua-
tions to treat the finite-temperature case and determine the
critical temperature for superfluidity. Near the unitarity limit
where mean-field is known to fail, it is necessary to include
fluctuations, but also to incorporate the normal-state interac-
tions in the description. The current approach achieves this
through an expansion of the action around the saddle point
that keeps the terms related to the particle-hole excitations.
To investigate these excitations, we calculate in Sec. V the
structure factor for the d wave and compare it to the structure
factor in the s-wave pairing state.

II. FORMALISM
A. d-wave interactions

As in Refs. 17 and 21, we start by writing down the par-
tition function of the interacting Fermi gas as a path integral
over Grassmann variables:

Zo f Dl;_bk,n,UDl//k,n,a CXP(_ S) (1)

Rather than using position and imaginary time variables, we

have Grassmann fields tzk,,,,g, i n. that depend on the wave
number k and the fermionic Matsubara frequency w,
=n/ B, with n an odd integer and B=1/kpT the inverse
temperature. Two different hyperfine spin states are trapped
so that we include a spin quantum number ¢ in the descrip-
tion. We will denote the two states as “spin up” (o=1) and
“spin down” (o= ).

The action functional S=S+S; consists of a “noninteract-
ing part” S, and the interaction terms S;. The former is given
by

SO = E 2 (_ iwn + k2 - IU’O') Jk,n,awk,n,o’ (2)

kn o

where u,, is the chemical potential fixing the amount of at-
oms of species o and where the summations run over all
possible indices of the Grassmann variables. We use units
such that ﬁ:kF=2mf= 1, where m, is the mass of the fermi-
onic atoms and kg is the Fermi wave vector of the noninter-
acting balanced Fermi gas with the same total particle den-
sity. In what follows, we will use the average chemical
potential p=(u;+u,)/2 along with the difference in chemi-
cal potentials {=(u;—u,)/2 rather than the chemical poten-
tials of the individual species.

The interaction terms of the action functional are written
in the following form that emphasizes the pairs of colliding
fermions:
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Here, V,, is the interaction potential. The wave numbers in
this collision term are written as the sum of a center-of-mass
wave number q and the relative wave numbers k,k’ before
and after collision. Similarly, the Matsubara frequencies are
decomposed in a center-of-mass bosonic frequency (1,
=2m/ B and relative fermionic frequencies w,,w, . Here,
we consider only interactions that couple fermions from dif-
ferent hyperfine spin states. We will need a further assump-
tion on the interaction potential to proceed. As in Refs. 23
and 24, we assume that the interatomic interaction potential
can be factorized as

(k.k') =gl(K)I'(K). (4)

1’[’

This is possible for s-wave pairing

g=g,» Iik)=1, (5)

and also for d-wave pairing

(klky)? 287

F - vz
alk) = (1+ktkg)? NV 15

8 =8a> Yzo(e ®). (6)

Here, YZ,O(H, @) is the spherical harmonic and k;,k, are the
parameters fixing the range of the potential. The constant g
<0 (g>0) corresponds to attraction (repulsion). These con-
stants can be related to the s- and d-wave scattering
lengths.?> The usefulness of the factorization (4) lies in the
fact that it allows us to rewrite the interaction terms as

Sl = gz Aq,mAq,m’ (7)
q.m

where we introduced the collective fields

I'(k)
Aq,m_ ﬁ/lﬂ(q/z) —k,(m/2)-n,| Y24k, (m/2)+n,1 >
_ I'k) -
Agm= /B—¢(q/2)+k (m/2)+nT¢(q/2) K, (m/2)=n, | - (8)

Here, V is the system volume. The Hubbard-Stratonovic
transformation can transform the product over these collec-
tive fields into a sum over them, at the expense of introduc-
ing an additional functional integration:

Zx f Dy raDibs s J DAquDAgmexp(=5),  (9)

with the action
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V(KK )l:b(q/Z +k (m/2)+nTl;b(q/2 )=k, (m/2)-n, | Y(qr2)—k' (mr2)=n" | Plaq/2)+k" (mi2)+n’ 1 - (3)

S= 2 (_ iwn + k2 - IU’O') le,n,O'wk,n,O'

k,n,o0

—E(—‘”’—L AgmAgm+0q W,Aqm) (10)

m,q

Note that the auxiliary fields Eq’m,Aqm are bosonic in nature
and characterized by the center-of-mass pair wave number
and bosonic Matsubara frequency (),,=2m/ 8. The decou-
pling of the collective fields is necessary to perform the func-
tional integral over Grassmann variables, resulting in

Z o f DA DAy

1 _
Xexp(tr In[G~Y(q,m;k,n)]+ _E Aq,mAq,m> )
8maq

(11)

where —G~! is the inverse Nambu tensor and the trace has to
be taken over the fermionic degrees of freedom.

The value where the (exponential) integrand becomes
largest is called the saddle point. By interpreting A ,, as the
field of bosonic pairs, we can claim that when these pairs are
condensed, the largest contribution is derived from the terms
with Ayo=A. By performing the Bogoliubov shift, we
change integration variables from Ay, to vy ,,, Where

Aqn=VVBAGS, 0840+ Yam: (12)

Ay =\VBAS, 1840+ Vqum- (13)
If, at this point, we choose the saddle point not as the g=0
state but as a state with a finite wave number, which is equal
to the difference between the Fermi wave numbers of
each component, we obtain the Fulde—Ferrell-Larkin—
Ovchinnikov state.® Since this has not yet been observed, we
restrict the current calculations to q=0 pairs. This allows us
to split up the inverse Nambu tensor

= G @ msk,n) = 8,004,001 G (k)] + Flg,m:k),

(14)
where the saddle-point contribution is
—iw, + k= -T'(k)A
—‘{J_l(k n) ( — ! 2 (15)
-T'(k)A —ilw, =k +

and the fluctuation contribution is
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(k)( 0 —yq,m>
F(q,m;k) = \’@ 7_q,_m 0 . (16)

We are left with the functional integration over the bosonic
fields g, and g, The simplest approximation consists ig-
noring these fluctuations and setting =0 ,—this yields the
saddle-point results, which will be explored in Sec. III. Ex-
panding In[G~!] in successive orders of I yields a perturba-
tion series in 7, corresponding to an ever increasing dia-
grammatic expansion, with possible Dyson resummations.
The term of the order of I? is still quadratic and we calculate
it in Sec. III C. Up to second order,

Z = exp{-S,,} f D¥gmDYqm eXpi=Spt, (17)
where
Sy =trIn[G, ]—— (18)
and
1 ~ ~
Sp= (G Gy gZ Vg Yam- (19)

Since the partition sum is a product Z=Z,, X Zy, the corre-
sponding thermodynamic potential will be the sum of a
saddle-point contribution and fluctuations: F=F +Fﬂ The
contributions are defined by Z=¢#f and Z, p =€ Fsp A
These thermodynamic potentials will be necessary to calcu-
late the two number equations in Sec. III D.

B. Saddle-point action

The trace over (y;pl (k,n) can be performed, yielding
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Zsp = CXP(_ Ssp) = eXp(— IBFsp) s

where S, is the saddle-point action as follow:

= Inf(iwy - £~ E)(= iy + £~ E)] - PLAA.
k.,n 8

(20)

The reader is reminded that {=(u—pu)/2 is the difference
in chemical potentials. The Bogoliubov energy is

E, = V(- w)*+ |T(K)AP.

The sum over fermionic Matsubara frequencies can be cal-
culated. We find for F, the saddle-point thermodynamic po-
tential per unit volume as follows:

vl

21

B )3{ ! In(2 cosh B + 2 cosh BE) — &

(22)

where the fermion energy is & =k’—pu. Thus, the saddle-
point result is generic for all interaction potentials of the
form (4).

C. Quadratic fluctuations

When the terms of order O(IF?) and higher are neglected
in Sg, the functional integral over ¥, Yqm 0 expression
(17) can be performed. The result is written as

Fn_1
BV 2

- M 2(q,i€,) ],

d
Sﬂ f (2 q)SE 11’1[|M1 1(%19 )|2

(23)

where now the trace is to be taken over bosonic Matsubara
frequencies and center-of-mass wave numbers. Here,

M (4,10, = f Tk ){ - sinh BEx_(q/2) ( . (iQ, = Ex_(q) + §k+(q/2.))(Ek—(q/2)+ k-(q12)
(2m) 2k*  2Ey_(q)(cosh BEy_(q2) + cosh BO) \ (i€, = Ex_(q2) + Ex+(q/2) (i), = Ex_(q2) = Ex+(q/2))
~ (i + Ex_(g2) + &xr@2) (Ex—(q2) — &k-(q12)) ) ] M), (24)
(i€, + Ex_(q2) = Ex+(q2) (i + Exi(q2) + Ex—(q/2))
where the parameters \(a) describe the coupling strength for the s-wave and d-wave pairings:>
Ma)= g Ma)= s, os)
and
M (q,i€,) |A|2f 5 )3F2(k)F< 2)F<k—g)
» sinh BEy_(q/2) ( 1
2Ey_(qn)(cosh BEy_(q2) + cosh BO)\ (i), — Ex_(q/2) + Exs(q2) (12, = Ex_(q12) = Ex+(q12)
. L ) (20
(i€, + Ex_(g2) = Excr(q2) (i + Ex_(g2) + Ex(q2)
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In the particular case of the s-wave pairing and of the
balanced fermion gas, Egs. (24) and (26) are equivalent to
the matrix elements derived in Ref. 20. In the present treat-
ment, as distinct from Refs. 20 and 21, we do not assume the
low-temperature limit.

D. Gap and number equations

The gap equation is determined by S, alone through
S,/ 6A=0. The gap equation can be written in a unified
form for the s-wave and d-wave pairings as follows:

' (k)|2( sinh BEy _%>
2m) 2Ey(cosh BEy +cosh B¢) 2k
+\a) =0. (27)

The number equations are determined from the thermody-
namic potential through

oF
-n, 28
<3M>TVA " (28)

oF
— =-on, 29
(5'§>TVA " (29)

where n=n;+n; is the total local density and dn=n;-n; is
the local population imbalance. For a finite temperature be-
low T, the chemical potentials x and £, and the gap A are
determined self-consistently as a solution of the gap equation
(27) coupled with the number equations (28) and (29). In
principle, we can write the exact thermodynamic potential
F=F,+Fg+F ., where Fy, and Fy are given by expres-
sions (22) and (23), and F,,,,, comes from the contributions
of all higher-order terms, O(I), in the exact action. The
local density and the local population imbalance can be writ-
ten as a sum of several contributions,

n=ng, + g+ Noggers (30)

on = dng,+ g+ Mygers (31)

where ny, and dng, are the saddle-point results, n, and dny
are the fluctuation contributions, and n,,,.,, ., are higher-
order fluctuation contributions to the density and population
imbalance, which are neglected in the present treatment.

The saddle-point contributions to the density and popula-
tion imbalance are obtained using the saddle-point term of
the thermodynamic potential (22) and Egs. (28) and (29) as
follows:

)

’772

2 dk( e sinh(BEy) )
Ey cosh(B¢) + cosh(BEy)

(32)

1 s sinh(37)
57’ls17 - 2772,[) g COSh(,Bg) + COSh(BEk) . >

The fluctuation contribution to the number equations is
determined on the basis of the fluctuation contribution to the
thermodynamic potential as follows:
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1 oo
== (2 )3 _E_OOJ(q,zQ) (34)
_ S
5”fz——,6,f (277)3,1:2_30[(((1’19'1)’ (35)

where the functions J(q,z) and K(q,z) for a complex argu-
ment z are given by

1 oM, (q,2)
J(q.2) = m{MM(Q,—Z)T
oM ,Z
—M1,2<q,—z>—1j(q Z)}, (36)
w
1 M, (q,z)
K(q,z) = M{MI,I(Qa_Z)ﬂ—g
M ,
- M, ,(q,- Z)é 12;(1 2)} (37)
where
I'(q,2) = Ml,l(qu)Ml,l(q’_ 7)— Ml,z((LZ)Ml,z(qs— 2).
(38)

The functions M ;(q,z) and M, ,(q,z) of the complex ar-
gument z are analytical in the complex z plane except for the
branching line, which lies at the real axis z=w. Similar to
Refs. 17 and 18, the summations over the boson Matsubara
frequencies in Egs. (34) and (35) are converted to the con-
tour integrals in the complex plane as described in the Ap-
pendix. Here, we write down the following final result for
the fluctuation contributions to n and dn:

dq (1 (7 J(q,0+iy)
I’lﬂ:— (277_)'5 7_7_ . Im gﬁ(wﬂ'y)_l do
R
+— > J(q.iQ, )) (39)
JCp——
dq (1 (~ K(q,w+iv)
onp=- (277)3< f Im{m dw
1 &
+— > K(q,iﬂn)>. (40)
BVZ:—VLO

Here, the number ny, is arbitrarily chosen and the parameter y
lies in the range Qn0< < Qn0+l-

In particular, if one chooses ny,=0, formula (A5) leads to
the following expression for the fluctuation contribution to
the fermion density similar to that derived in Ref. 17:

1 dq

nﬂ— (2 )3 zf d(DS(q,(J)) (41)

—o0

Here, the structure factor is
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kx/kF

FIG. 1. Even a small difference between the chemical potential
leads to population imbalance. This plot shows the contours of Ey
={ for different values of { in the k,,k, plane for a d-wave interac-
tion characterized by ko=k;=10kp. Within the regions Ej < {, spin-
polarized Bogoliubov excitations are present, which carry the ex-
cess spin component of the imbalanced gas.

2 .
g Im[J(q,w+id)]
S(q,w) =- o
e’ -1

, 00— +0. (42)

The results obtained in the present section extends the path-
integral approach of Ref. 21 to the case of the d-wave pairing
and of an imbalanced Fermi gas at arbitrary temperatures. In
agreement with the proof made in Ref. 18, the function

0(q,w) = lim {Im[J(q,w +id)]} (43)
6—+0

at T=T, is equal to zero at w=0. Furthermore, Q(q,w)
changes its sign as w passes through w=0. This is necessary
to ensure that the relative contribution to the fluctuation den-
sity from excitations with given (q, w) remains positive; this
contribution is proportional to S(q, ®).

III. ROBUSTNESS OF THE d-WAVE PAIR BINDING
ENERGY

First, we look at the saddle-point results for temperature
zero in order to investigate the pair binding energy. In the
limit of temperature zero 8— o, the gap equation becomes

2 dk {(E)(Ek>§) ! }IF(k)

p— f— —_— 2
mw(kpay)’ 2m)? 2E, 2k% ’

(44)

where O is the logical Heaviside function. Simultaneously,
the two saddle-point number equations (32) and (33) become

L dk ] £
1 on dk
§7=f (27)3®(Ek<§)- (46)

The O(E, <) function cuts off all the wave numbers with
energy less than {. These are shown in Fig. 1. Near o ky}
={\2,V2}kp, the gap vanishes and excitations are always
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present. To have nonzero imbalance in an s-wave superfluid,
{ has to be of the order of |A|.2 This is the Clogston limit,
and superfluidity will break down. However, for the d-wave
superfluid, all values of { lead to imbalance and small values
of { do not destroy superfluidity.

By solving for a given imbalance and interaction strength
a, the saddle-point number and gap equations (44)—(46), we
can derive the saddle-point value A. This value is necessary
to compute the fluctuation effects, but it has an interpretation
by itself, namely, as the pair binding energy. A corresponding
temperature T*=|A|/ky can be associated with the pair bind-
ing energy. In the BCS limit, superfluidity is destroyed by
breaking up Cooper pairs. Thus, the transition temperature is
determined by the binding energy of the Cooper pairs and
T.~T*. However, in the BEC limit, superfluidity is de-
stroyed not by breaking up the bosonic molecules but by
phase fluctuations, and, typically, 7.<T*. The BEC limit,
with its tightly bound molecules, is relatively insensitive to
the addition of atoms of one of the spin species: the imbal-
anced system can be described as a mixture of fermionic
atoms and bosonic molecules. The BCS limit, however, is
very sensitive to imbalance. Since in the BCS limit 7., is
directly related to the pair binding energy |A|, we gain in-
sight on the effect of imbalance on s- and d-wave superfluids
through the saddle-point gap.

The result for |A| is shown in Fig. 2 for s-wave (top panel)
and d-wave (bottom panel) pairings. There are some notable
differences between s- and d-wave results. First, for the
d-wave interaction, the x axis is a function of 1/(kFad)5 in-
stead of 1/kra,. This means that the d-wave scattering length
should be much closer to resonance as compared to the
s-wave case before superfluidity enters the resonant regime.
The absolute scale still depends on k(, which is related to the
range of the interaction potential. Also, the scale of the y axis
in the graph (representing |A|) has this dependence on the
details of the potential embodied in I'(k).

A second difference between s- and d-wave resonant pair-
ings is that for s-wave interactions, we find that there is
pairing for all values of a,<<0. For d-wave interactions, it is
no longer true that for any attractive potential there is pair-
ing. There needs to be a fatal attraction before pairing occurs
on the BCS side. The BEC side, however, is more or less the
same for s and d waves. Deep in the BEC regime, indeed, it
should not matter whether we have an s-wave or a d-wave
internal parameter.

A third difference is that the d-wave order parameter on
the BCS side is much more robust to imbalance than the
s-wave order parameter. For all negative scattering lengths,
there exists a critical imbalance that destroys superfluidity in
the s-wave system. However, in the d-wave case, there is a
range of negative scattering lengths for which the pairs re-
main bound up to the maximal imbalance. This confirms our
intuition that the excess spin component can be nicely
stowed away in the minima of the gap, near the k/kp
={1/ 2,1/ 2} point. At these points, the gap naturally van-
ishes and it does not cost any energy to make excitations or
to store broken pairs.

The d-wave order parameter shows similarity to that of
the s wave when some imbalance is already present (the
on/n=0 curve looks like the s-wave curve for nonzero im-
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FIG. 2. (Color online) The dependence of the pair binding en-
ergy on the interaction strength for the s-wave (top) and d-wave
(bottom) interactions is influenced by the imbalance &n/n
=0.0,...,0.9. On the BCS side, the imbalance destroys s-wave
Cooper pairs for all values of a;<<0, but fails to break up the
d-wave Cooper pairs.

balance), but it is much more robust to imbalance. One can
imagine increasing imbalance in such a way that it sup-
presses the s-wave pairing channel and still allows the
d-wave pairing channel.

IV. CRITICAL TEMPERATURE FOR THE d-WAVE
PAIRING IN THE REGION OF THE BCS-BEC
CROSSOVER

At finite temperatures, both phase fluctuations and ampli-
tude fluctuations in A are important. The amplitude fluctua-
tions dominate the thermodynamics in the BCS regime,
whereas the phase fluctuations dominate in the BEC regime.
This will be borne out in more detail by a study of the struc-
ture factor in Sec. IV. For a given temperature 7, density n,
and density imbalance dn, we can numerically solve the gap
and number equations and determine A, w, and {. The criti-
cal temperature can be found as the temperature where A
vanishes. In Fig. 3, we plot the critical temperature in the
case of the d-wave scattering as a function of the inverse
scattering length 1/kra,. The saddle-point results for the pair
breaking temperature T#=|Al|/ky are plotted with the solid
black curves, and the values of 7, calculated taking into ac-

PHYSICAL REVIEW B 77, 134502 (2008)

count the fluctuations are plotted with red solid dots.

For all considered values of the parameters k(,k; of the
d-wave scattering potential, we can see the following three
regions of 1/kpa,, with different behaviors of 7,:

(1) A region corresponding to the weak-coupling regime
(at 1/kpay;<0). In this regime, with increasing 1/kgpay,, the
critical 7, starts from the value 7,=0 at a certain value
1/kpay, and rapidly increases. This is consistent with the
finding in the previous section that a critical strength of the
interatomic interaction is required before pair formation oc-
curs.

(2) The region of the “plateau” around the unitarity point
1/kpa,=0, where T, varies extremely slowly.

(3) The region corresponding to the strong-coupling re-
gime (at 1/kpa,;>0), where T, tends to the finite value 7.
=~().218. This is the same value as obtained in Ref. 17 for the
s-wave case. Indeed, we expect in the deep BEC limit the
details of the internal structure of the molecule to be of sec-
ondary importance.

Compared to the case of the s-wave scattering,!” the de-
pendence T.(a,) for the d-wave scattering has a broad pla-
teau around the point 1/kpa,;=0 for both the saddle-point
results and those taking into account the fluctuations. This
plateau is explained by the fact that the factor 1/kra, enters
the gap and number equations through its fifth power,
1/(kpa,)’, which varies very slowly as compared to the case
of the s-wave scattering in the unitarity region. Another dif-
ference with the s-wave case is that there is a critical value of
ay so that both 7" and T, turn to zero. This means a mini-
mum strength of the attraction is necessary to achieve pairing
in the d wave, whereas in the s-wave case, for all values of
the (negative) scattering length, one has pairing.

As the BEC limit is approached, T* strongly increases,
while 7. tends to a constant value. Again the behavior in the
BEC limit is similar to that of the s-wave case, as can be
expected. In the BCS regime, T,.~T* as anticipated in the
previous section. For ky=10, 5, and 3, T, is a slightly in-
creasing function of 1/kpa, at positive 1/kpa,; and remains
lower than T* everywhere. For ky=1, however, we see that
T. achieves a maximum at a negative value of 1/kpa,; and
then decreases to the BEC limit. This behavior of 7, shows
that at k,=10, 5, and 3, the anticrossing of BCS and BEC
regimes occurs at a;>0, and that with decreasing kg, the
region of the anticrossing of BCS and BEC regimes shifts to
lower values of the inverse scattering length.

V. STRUCTURE FACTOR FOR THE s-WAVE AND d-WAVE
PAIRINGS

In the case with y— +0, and for a balanced Fermi gas,
the contribution ny; given by Eq. (39) is expressed through
the integral (41) with the structure factor S(q,w) given by
Eq. (42). The structure factor is of particular interest, because
it represents the spectrum of the elementary excitations of
the fermion gas below T,. Further on, we analyze the struc-
ture factor S(q,w) at T=T, and the excitation spectra for the
cases of the s-wave and d-wave scatterings by comparing to
existing results for the s-wave case.”® Whereas the poles of
the single-particle Green’s function can be associated with
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FIG. 3. (Color online) Critical temperature for the fermion system with the d-wave scattering calculated taking into account the
fluctuations around the saddle point as a function of the inverse scattering length (red solid dots). The saddle-point critical temperature 7°*

is plotted with the solid black curves.

single-particle excitations, the poles of S(q, ) are related in
the present case to the two-particle bound state. Note that the
next term in the fluctuation expansion, which is proportional
to the fourth power of A, gives rise to a spectral function, the
poles of which are related to the collective excitations of
these bound modes.

In Fig. 4, we have plotted the excitation region of the
fermion gas in (¢, w) space for the d-wave scattering at dif-
ferent values of the inverse scattering length 1/a, and at T
=T.,. The solid black curve denotes the lower bound wy(g)
=q*/2-2u for the continuum of free two-particle excita-
tions, which is determined by the inequality w> wy(g). The
dashed red curve corresponds to the solution of the equation
w=0,(q), where Q,(q) is the pole of the structure factor
S(q,w). In the case when Q,(q) < wy(g), i.e., when the pole
Q,(q) lies outside the continuum of two-particle excitations,
Q,(q) is given by Q,(q)=w,(q)—2u, where w,(q) is the
energy of the two-body bound state.'” In the strong-coupling
limit, the energy of the two-body bound state tends to
w,(q)=—E,+¢*/2, where E, is the pair binding energy,
which in this limit and at 7=T, tends to —2u. For a suffi-
ciently weak coupling, the pole ,(q) lies within the con-
tinuum and, therefore, the two-body bound state is damped.

In the case of d-wave scattering, for all considered values
of ¢, the two-body bound states are damped at 1/a,<0

[Figs. 4(a) and 4(b)] and undamped at 1/a,Z0 [Fig. 4(d)].
For 1/a,=0 [Fig. 4(c)], wy(g) and Q,(q) practically coin-
cide. This allows us to interpret, in the case of d-wave scat-
tering, the value 1/a,=0 as the boundary between the re-
gimes of the BCS pairing (for 1/a,<0) and the BEC pairing
(for 1/a,%Z0).

The three dimensional (3D) plots in Fig. 5 represent the
structure factors for the s-wave and d-wave pairings at weak
coupling. Because the scattering potential for the d-wave
scattering is angle dependent, the structure factor S(q, w) de-
pends on three variables: S(q,w)=S(q,cos 6,w). Here, we
discuss the results for S(g,w) averaged over the directions,

S(g,w) = 1quS(q,a))sin 0do. (47)

2Jo

In Fig. 5(a), the structure factor for the case of s-wave
pairing is shown for 1/a;=—1, which lies on the BCS side of
the resonance. In the BCS regime, the poles corresponding to
the two-body pair excitations are damped since they lie in
the continuum area. The spectral weight of those poles in the
overall structure factor is significant only at small wave vec-
tors. This results in a peak around ¢=0 in Fig. 5(a). Further-
more, there is a distinctive extremum of the structure factor
at the boundary of the continuum of two-particle excitations.
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FIG. 4. (Color online) Excitation region of a gas of interacting fermions in (g, w) space (the case of the d-wave scattering) at T=T, for
ko=10, k;=10, and cos #=1/2. The shaded area shows the continuum of the two-particle excitations. The black curve denotes the lower-
frequency bound of the damping area. The dashed red curve shows the points given by w=0,(q), where Q,(q)=w,(q) —2u with the energy

wp(q) of the two-body bound state.

In Fig. 5(b), we switch from s-wave to d-wave pairing, but
remain within the BCS side of the resonance: this shows the
structure factor for the d-wave pairing for 1/a,=-0.17. This
value of the d-wave scattering length is close to the lowest
value of the inverse scattering length at which pairing can
occur. Also, in the d-wave BCS regime, the two-body bound
states are damped and, therefore, the peak corresponding to
the two-body bound excitations has a finite width. However,
the width of that peak in the case of the d-wave scattering is
relatively low. From this we can see that in the case of the
d-wave scattering, the two-body bound state plays a signifi-
cant role even in the weak-coupling regime. For the d-wave
scattering, as distinct from the s-wave scattering, the BCS

pairing mechanism can be realized only in a narrow range of
the inverse scattering length close to the lowest value of 1/a,
from those for which pairing can occur.

Figure 6 describes the strong-coupling case (on the BEC
side of the resonance), where there is an undamped isolated
pole in the structure factor. Therefore, the structure factor in
the strong-coupling regime contains a é-like peak, which lies
outside the continuum of free-pair excitations. In order to
visualize those o-like peaks, we use a finite damping param-
eter y=0.01. In the strong-coupling regime, the regular part
of S(q,w) is negligibly small with respect to the main con-
tribution due to the aforesaid isolated pole, which describes
the BEC pairing.

0.10
FIG. 5. (Color online) 3D plot

of the structure factor S(q,w) (a)
for the s-wave scattering and (b)
for the d-wave scattering at T=T,
in the weak-coupling regime. The
critical temperatures are given in
units of the Fermi temperature
Tp= h2k§/2mk3. At the top, there
are the contour density plots for
S(q,w).

~0.00
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VI. DISCUSSION AND CONCLUSIONS
A. Unitarity limit

A first point to discuss is the predicament of mean-field
theory in the unitarity limit, 1/a—0. It is crucial that fluc-
tuations are taken into account, as we have done in the pre-
vious section. Higher-order fluctuation contributions can be
taken into account, and many different approaches were de-
veloped for the balanced s-wave Fermi superfluid. These ap-
proaches differ in the types of higher-order processes they
take into account. Perali et al.?° diagrammatically worked to
improve on the results obtained by Nozieres and Schmitt-
Rink for 7=T.. Chen et al.?® constructed a finite-temperature
theory similar to that of Perali ef al., but included different
diagrams in the summation. Alternatively, quantum Monte
Carlo simulations?® can be used to obtain results on the
crossover physics and the balanced s-wave Fermi superfluid,
and put the crossover theories to the test. At the unitarity
limit, the existing theories did not succeed in finding the free
energy of the system with more than 10% accuracy with
respect to the Monte Carlo results. As such, we expect the
current theory to have a similar level of accuracy in the uni-
tarity limit for the d-wave system.

The problem that lies at the root of the difficulty in mak-
ing a theory for unitarity is that one needs to correctly take
into account not only the fluctuations of the order parameter
but also the normal-state interactions. The diagrammatic
approaches?”?® are based on a zeroth-order decoupling that
emphasizes pair formation rather than normal-state interac-
tions. Put in the language of functional integration,”’ we
have made a particular choice for the Hubbard—Stratonovic

decoupling: we took ¢ and ¢ types of products of Grass-
mann variables. This emphasizes pairing, but when the pair-
ing goes to zero at the saddle point, the resulting normal state
has no interactions and fluctuation corrections are needed to

remedy this. We could have made the choice to group

and ¢ and apply the Hubbard—Stratonovic scheme to de-
couple the four products in these densities rather than in the
pairs. The resulting saddle-point approximation would yield
the random phase approximation (RPA) results for the inter-
acting normal state, but it would lack pairing. The inability to
include—on the level of a saddle-point approximation—both
pairing and RPA normal-state interactions through the intro-
duction of two collective fields is discussed by Kleinert,*

PHYSICAL REVIEW B 77, 134502 (2008)

FIG. 6. (Color online) 3D plot
of the structure factor S(q,w) (a)
for the s-wave scattering and (b)
for the d-wave scattering at T=T,
in the strong-coupling regime.

who propose variational perturbation theory as a solution.’!
The fluctuation expansion used in the current work goes be-
yond that of Ref. 21, in that we take not only the particle-pair

iy and hole-pair i excitations but also particle-hole terms

. These contributions appear in terms that do not vanish as
the saddle point goes to zero, A — 0, so that the normal state
in the present treatment is the interacting Fermi gas rather
than the ideal Fermi gas. As such, the present treatment will
be better suited in the unitary limit.

B. Routes for experimental observation

Magnetically tuning the population imbalance in a Fermi
superfluid is out of reach at present in high-temperature su-
perconductors. In cold atomic gases, it has been successfully
demonstrated and applied to reach the superfluid regime. The
currently realized atomic Fermi superfluids have s-wave
symmetry of the order parameter. The d-wave coupling
strength generally is too small to dominate the s-wave scat-
tering at low temperature. This can be overcome using a
Feshbach resonance in the d-wave scattering channel.
d-wave Feshbach resonances have been observed, for ex-
ample, in various isotopes of rubidium.?? However, to reach
the unitary limit for the d-wave scattering, one needs a better
control over the magnetic field than in the s-wave case, since
the interaction parameter N [expression (25)] scales as af
instead of a;l. The current results suggest a different route
toward d-wave superfluidity: imbalancing the gas. The domi-
nant s-wave pairing is easily suppressed on the BCS side of
the resonance by adding imbalance, whereas d-wave super-
fluidity is less sensitive to imbalance. The use of both a
d-wave Feshbach resonance to obtain a large enough d-wave
coupling strength and imbalance to suppress s-wave pairing
will be needed to realize d-wave superfluidity in the atomic
gases.

In an inhomogneous trapping potential, phase separation
can occur in real space. For s-wave superfluidity, this leads
to a balanced superfluid at the center of the trap, surrounded
by a halo of imbalanced (or fully polarized) normal gas.* In
effect, the excess spin component has been expelled from the
balanced s-wave superfluid. The additional energy cost of
placing the excess atoms higher up the trapping potential is
compensated by the energy gained by allowing the balanced
superfluid state to form. In the d-wave superfluid, this energy
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balance is different. Increasing imbalance in the BCS side
does not strongly reduce the free energy of the superfluid. As
can be seen from Fig. 2, the d-wave order parameter is not
strongly affected. Therefore, expelling the excess atoms to
the edge of the trap raises the total energy and we do not
expect real-space phase separation. The situation is different
on the BEC side: here, the free energy of the d-wave super-
fluid is reduced by imbalance and it becomes energetically
favorable to expel excess atoms.

C. Exotic pairing scenarios

Note that the action for the fluctuations depends (through
M, and M,,) on the choice of the saddle point A. This
means that the spectrum of excitations (obtained from the
diagonalized fluctuation action) also depends on the choice
of the saddle point. Excitations for a vortex condensate may
be different from excitations on top of a ground-state con-
densate. At nonzero temperature, those excitations will be
populated through Bose statistics. However, the physics is
more complex than just Bose populating excitations: the ex-
citation spectrum itself (the dispersion and lifetime of those
excitations) is temperature dependent: additional single-
particle and collective modes appear and shift as a function
of temperature. At zero temperature, the only single-particle
excitations are Ej, the energy spectrum for breaking a Coo-
per pair, but at finite temperature, we also have the excita-
tions of the thermal gas. These consist in taking the atoms of
a broken Cooper pair and giving those atoms an extra kick:
Ey.q—Ex. Besides those single-particle excitations, we will
have collective excitations whenever M M= My M,
=0.

In the case of an imbalanced Fermi gas, an alternative
choice for the saddle point is Ae’’, where k represents the
shortest wave vector connecting the Fermi surface of the
minority component to that of the majority component. The
resulting equations describe the Fulde—Ferrell-Larkin—
Ovchinnikov state.33* However, this state has not yet been
experimentally reported, so we have restricted the present
analysis to the usual pairing scenario.

D. Conclusions

We have investigated the imbalanced d-wave Fermi gas,
both at zero and at nonzero temperatures and as a function of
the d-wave interaction strength. We find that in the BCS
regime, the d-wave pairing is more robust to the presence of
population imbalance than the s-wave case. For a range of
interaction strengths, we find that the s-wave superfluidity is
suppressed, whereas the d-wave superfluidity is not. This is
shown to be related to the possibility of creating a polarized
gas of excitations in the nodes of the gap. Rather than phase
separation in real space, phase separation can occur in recip-
rocal space. An additional difference with the s-wave BCS
case is that a critical attraction strength is needed in the
d-wave case before pairing can occur (in s wave, pairing
occurs for all attractive interaction strengths). In the BEC
regime, the symmetry of the pairing interaction plays a less
important role: as the molecule gets more tightly bound, the
details of its internal wave function matter less, and we re-
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FIG. 7. (Color online) Integration contour in the complex z
plane. The solid dots indicate the poles z=i(),, n=0,*=1,*x2,....

trieve known results for the s-wave system in the same BEC
limit.?%-8 We then investigate how our results are affected by
Gaussian fluctuations, important both to describe the
nonzero-temperature thermodynamics. Both the critical tem-
perature and the effect of temperature on the spectral density
of the excitations are calculated. Our investigation of the
structure factor reveals that for the d-wave scattering, the
damping of the pole for S(q,w) is very small even in the
BCS regime, in contrast to that for the s-wave scattering. The
critical temperature in the BCS regime reflects the pair bind-
ing energy. This implies that the critical temperature for the
d-wave superfluid in the BCS regime will also be more ro-
bust against population imbalance.
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APPENDIX: MATSUBARA SUMMATION FOR THE
DENSITY

Let us consider the following contour integral on the con-
tour C shown in Fig. 7:

(A1)

where the points z=i{), with |n|>n, lie inside the contour,
and the other points z=i(), are outside the contour. The func-
tion f(z) possesses the following properties: (i) it is analytic
in the entire complex z plane except, possibly, the branching
line on the real axis, and (ii) f(z) decreases at Re z— —
faster than z~!, so that the integral [ O flo*iy)dw, where
and vy are real, converges. The functions J(q,z) and K(q,z)
determined, respectively, by Egs. (36) and (37), satisfy these
conditions. The fraction ﬁ has the poles at z=iQ),, n
=0,*1,*x2,.... The residues of e&+1 in the points z=i(),

are equal to é
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On the one hand, the integral (A1) is equal to the sum of
the residues of the function ﬁ% in the points z=i(),, inside
the contour C:

1
I=— 2 fiQ,). (A2)
[n|>nq
On the other hand, the integral [ is
1 7 flo+iy) 1 (7 flo-iy)
I=2—1 By ~ o | LB _ 4
2mi)_ e Y1 2mi)_ e YV—1
(A3)
where the parameter vy satisfies the inequality
QnO < "y < Qn0+1 . (A4)

It follows from the equivalence of Eqs. (A2) and (A3) that

o . ng
Sio)=2] m M dot D fQ,).
, a)_., eBletiv) _q

n=-ng

(AS)
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According to the theorem (A5), the fluctuation contribu-
tions to the density and to the population imbalance can be
represented as follows:

dq (1 (7 J(q,w+iy)
ng=— (277)'% 7_1_ wIm eB(a)+i7)_1 dw

1
+ En:E_nO J(q’lQn)) s

dq (1" |K@o+iy
Qm)3\ 7 xIm eBl+iv) _ do

+é > K(q,iﬂ,»).

n=-n

(A6)

5}’lﬂ =-

(A7)

As follows from the above analytical transformations of the
integrals in the complex z plane, the sum (A5) does not de-
pend on the choice of the number n, and (for a given n,) on
the value of y within the range given by Eq. (A4).
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bridge, MA 02138, USA.
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