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Electronic states in a graphene flake strained by a Gaussian bump
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The effect of strain in graphene is usually modeled by a pseudomagnetic vector potential which is, however,
derived in the limit of small strain. In realistic cases deviations are expected in view of graphene’s very high
strain tolerance, which can be up to 25%. Here we investigate the pseudomagnetic field generated by a Gaussian
bump and we show that it exhibits significant differences with numerical tight-binding results. Furthermore, we
calculate the electronic states in the strained region for a hexagon shaped flake with armchair edges. We find that
the sixfold symmetry of the wave functions inside the Gaussian bump is directly related to the different effects
of strain along the fundamental directions of graphene: zigzag and armchair. Low energy electrons are strongly
confined in the armchair directions and are localized on the carbon atoms of a single sublattice.
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I. INTRODUCTION

A single layer of carbon atoms called graphene has become
a very active field of research in nanophysics.1,2 Graphene
has excellent electrical and thermal properties, e.g., massless
and chiral Dirac fermions which move with a Fermi velocity
of about 1/300 the speed of light, a linear spectrum close
to the K and K ′ points1,3 of the Brillouin zone, an anomalous
integer quantum Hall effect in the presence of a magnetic field,
the Klein paradox, i.e., unusual high transmission when elec-
trons pass classically forbidden regions, the Aharonov-Bohm
effect in graphene rings, extraordinary stiffness, unexpected
mechanical properties, and thermomechanical and electronic
properties that are highly affected by external particles and
dopants. These properties of graphene have attracted consid-
erable attention and make it a promising material for future
electronic and optoelectronic devices.

An interesting recent prediction is that a geometrical defor-
mation of the graphene lattice results in local strain that acts as
a pseudomagnetic field on the electronic degrees of freedom
and which leads to a pseudo-quantum-Hall effect.4 Deforma-
tion due to elastic strain changes the hopping amplitude of
the carbon atoms and induces an effective vector potential that
shifts the Dirac points.5 With a proper geometrical deformation
it is possible to create large pseudomagnetic fields which can
reach up to several hundreds of tesla.6,7 Over the past few years
much effort has been devoted to finding ways of controlling
graphene’s electronic properties by strain. Applying in-plane
strain with triangular symmetry has been shown4 theoretically
to result in an uniform pseudomagnetic field of the order of
10 T. It was reported experimentally8 that nanobubbles grown
on a Pt(111) surface induce pseudomagnetic fields of more
than 300 T. Landau quantization of the electronic spectrum was
observed by scanning tunneling microscopy. Thus, with such
large strain-induced pseudomagnetic fields, one can control the
electronic properties of graphene through strain engineering.9

Recently, it was shown experimentally that an external
nonuniform electric field is able to induce local deformations in
graphene with different curved shapes10 and thus one should be
able to induce a pseudomagnetic field through an electric field.

In this paper we investigate the different effects that are
induced by inhomogeneous strain in graphene. We consider

a hexagon shaped graphene flake that is strained out of plane
by a Gaussian bump placed in its center. The effects of strain
in graphene can be modeled using a pseudomagnetic vector
potential. In the case of a Gaussian bump, the traditional
form of this vector potential11 results in a threefold symmetric
pseudomagnetic field, as illustrated in Fig. 1(b). Recently, it
has been shown in Ref. 12 that additional lattice corrections are
required in order to accurately calculate the pseudomagnetic
vector potential. However, these strain-induced lattice vector
corrections do not contribute to the pseudomagnetic field
and may be neglected.13–15 Only the strain-induced hopping
parameter changes will affect the intensity of the pseudomag-
netic field, but this is generally derived only up to first order
in strain. Given graphene’s excellent mechanical properties,
it can sustain strain up to 25%.16 At that point strain can
no longer be considered to be small. For this reason, we
investigate additional corrections to the vector potential to
higher order in the strain and we compare this pseudomagnetic
field model to results obtained with the full tight-binding
result.

Furthermore, we investigate the confinement of electrons
inside the strained region. It was shown earlier, using the
Dirac equation formalism, that such a Gaussian bump results
in low energy localized states.17,18 However, those models
do not fully explain the origin of the sixfold symmetry of
the localized states. Here we investigate the system using
the tight-binding model and show that the influence of strain
in the zigzag (zz) and armchair (ac) directions of graphene
result in different pseudomagnetic fields and consequently to
different localization properties for the electrons. Furthermore,
we examine the energy levels and wave functions in order to
show the different confinement regimes.

This paper is organized as follows. In Sec. II we present
the tight-binding model, the system geometry, and the specific
strain model that we use in the present paper. In Sec. III we
evaluate the different approximations for the pseudomagnetic
field for high strain. In Sec. IV we calculate the electronic
states using the tight-binding approach and we compare the
results with the Landau levels predicted by the pseudomagnetic
field model. We also examine the confined electronic states
inside the strained region. Our concluding remarks are given
in Sec. V.
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FIG. 1. (Color online) (a) Hexagon shaped graphene flake with
armchair edges strained by a Gaussian bump in the center. The
dashed arrows show the armchair and zigzag directions in the radial
direction of the bump. (b) The bump-generated pseudomagnetic field,
as calculated from the traditional form of the pseudovector potential.
Red (blue) color corresponds to positive (negative) magnetic field.

II. THE MODEL

We consider the tight-binding model of graphene with the
nearest-neighbor Hamiltonian,

H =
∑
m,n

tmna
†
mbn + H.c. (1)

Here tmn is the strained hopping energy between nearest-
neighbor atoms at lattice positions m and n, while am and
bn are field operators acting, respectively, on sublattices A and
B at their given positions. Previously, it has been shown that
the strained hopping parameter is given by19

tmn = t0e
−βωmn, (2)

where ωmn = lmn/acc − 1. Here t0 = −2.8 eV is the unstrained
hopping parameter, lmn is the strained distance between atoms
m and n, acc = 0.142 nm is the unstrained carbon-carbon
distance, and β = 3.37 is the strained hopping energy modu-
lation factor. The nearest-neighbor vectors are �d1 = acc(0,1),
�d2 = acc/2(

√
3,−1), and �d3 = acc/2(−√

3,−1), as shown in
Fig. 2(a). The corresponding Brillouin zone and the six K

points are shown in Fig. 2(b).
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FIG. 2. (Color online) (a) The unstrained nearest-neighbor vec-
tors �dn0. (b) The six K points in the unstrained Brillouin zone (black,
solid). The zone is also shown for 20% armchair uniaxial strain,
as calculated from the first approximation of the pseudomagnetic
vector potential (blue, dotted) and from the full solution of the vector
potential (orange, dashed).

In the present paper we consider a finite size system which
is taken as a hexagon with armchair edges. There are NS

atoms on the hexagon edge, which corresponds to an edge
width of WS = acc(3NS/2 − 1). The total number of atoms in
this hexagonal system is N = 9NS (NS/2 − 1) + 6. We limit
ourselves to a hexagonal system that consists only of armchair
edges in order to avoid the presence of zigzag edge states
which would draw attention away from the bump-induced
states. In the following calculations we take an edge width
of WS = 9 nm, which corresponds with a flake consisting of
8322 C atoms. The x axis of the system is aligned with the
zigzag direction in graphene.

In our model we strain the graphene flake by using a
Gaussian bump located at the center of this system, as
illustrated in Fig. 1(a). Such a strain profile can be induced with
a scanning tunneling microscope (STM) tip.20 The bump’s
height profile is given by h(r) = h0e

−r2/b2
, where r is the

distance from the center of the system, and h0 and b are
parameters that characterize the Gaussian bump. The Gaussian
function is defined to infinity (r → ∞), which is inconvenient
because increasing the system size would also change the total
area of the bump. For that reason we add a cutoff radius R after
which the height of the bump will be zero. With this cutoff the
bump height profile is expressed as

h(r) = h0e
−r2/b2

�(R − r), (3)

where � is the Heaviside step function. It is important to
choose the cutoff radius R correctly in relation to the width
parameter b so that the most significant part of the bump is
included before the cutoff. Taking R = 3b/

√
2 will ensure that

99.7% of the Gaussian is inside the radius R. In the following
calculations we take R = 6.2 nm as typically realized in
experiments.8

III. THE PSEUDOMAGNETIC FIELD

The pseudomagnetic vector potential in graphene �Aps =
(Re Aps,Im Aps) is given by6

Aps = 1

evF

3∑
n=1

tne
−i �K· �dn , (4)

where �dn and tn are the strained nearest-neighbor vectors and
hopping parameters, respectively, and �K is the location of a K

point. The pseudomagnetic field is found as �Bps = �∇ × �Aps .
The strained hopping parameter from Eq. (2) can be

expanded to third order as

tn ≈ t0 + δt (1)
n + δt (2)

n + δt (3)
n , (5)

tn ≈ t0
(
1 − βωn + 1

2β2ω2
n − 1

6β3ω3
n

)
. (6)

The nearest-neighbor vectors �dn are also strained, but their total
contribution to the pseudomagnetic field is zero for any strain,
so they may be safely neglected.13,14 While their inclusion
would change the value of the vector potential, the resulting
field would not be affected. As we are mainly interested in
the pseudomagnetic field, we will use the unstrained values
of the vectors which are constant. Because of the out-of-plane
deformation, the hopping will also be affected by curvature
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(hybridization between π and σ bands), but this contribution
may be omitted as it is 100–1000 times smaller than the
changes induced by the bond length modulation.6

Plugging the expansion (5) into Eq. (4), we can expand the
pseudomagnetic vector potential to third order as

Aps ≈ 1

evF

3∑
n=1

(
δt (1)

n︸︷︷︸
A1

+ δt (2)
n︸︷︷︸

A2

+ δt (3)
n︸︷︷︸

A3

)
e−i �K· �dn , (7)

which we subdivided into three parts Ai . A1 is a first order
term that was originally derived in Ref. 11. A2 and A3 are
second and third order terms which turn out to be important
for large strain.

Figure 3(a) shows the pseudomagnetic field calculated from
the first approximation (A1) of the vector potential. It exhibits
threefold symmetry with positive and negative peaks along
the armchair directions of graphene and zero field along the
zigzag directions. The pseudomagnetic field based on the
full vector potential, Eq. (4), without any approximations,
is shown in Fig. 3(b). To better see the difference in field
magnitude between the different approximations, we take a
cut along the armchair direction of graphene, as show in
Fig. 3(c). We compare the pseudomagnetic field resulting from
the vector potential approximations with successively higher
terms included (A1, A2, and A3) with the full form Afull from
Eq. (4). The differences are shown in Fig. 3(d) as A

(i)
diff =

Ai − Afull. The first order approximation A1 overestimates
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FIG. 3. (Color online) Top: Contour plots of the pseudomagnetic
field generated by a Gaussian bump. The field is calculated (a) using
the A1 approximation of Eq. (7) and (b) using the full form of
the vector potential Eq. (4). The dashed lines show cuts at x = 0,
along the armchair direction of graphene. Bottom: (c) Plot of the
field calculated using successively higher order terms of the vector
potential approximation (A1, A2, and A3) as well as the full form Afull

from Eq. (4). (d) The difference between the approximations and full
solution as A

(i)
diff = Ai − Afull. In all cases the height of the bump is

h0 = 2.2 nm, which corresponds to a peak strain of 20%.
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FIG. 4. (Color online) (a) Pseudomagnetic field at the location of
maximum strain along the cut (x = 0, y = 2.2 nm). (b) The difference
between the approximations and full solution as A

(i)
diff = Ai − Afull.

The bump height h0 is increased from 0 to 2.5 nm, as indicated on the
top x axis, which generates the strain shown on the bottom x axis.

the magnitude by as much as 800 T. Adding the second
order corrections (A2) will give better agreement, but there
are still large deviations in the region around y = 2.2 nm
where the strain is maximum, as well as near the center of the
bump. Finally, including the third order term A3 will result in
generally good agreement.

In order to better evaluate the accuracy of the different
vector potential approximations as a function of the strain,
we plot the field at a fixed point while changing the bump
height. As can be seen in Figs. 4(a) and 4(b), approximation
A1 diverges from the full solution at values as low as 5% strain.
Adding A2, we find good agreement up to about 15%, after
which the field is increasingly underestimated. Finally, adding
term A3 yields good agreement up to 25% strain.

These results bring up two issues. First, even the second
order term A2 is not enough to sufficiently approximate the
pseudomagnetic field for strain above 15%. Expanding the
approximation to third order would improve results, but that
would just needlessly complicate matters. Second, even if the
second order term were sufficiently accurate, its form is too
complicated for analytical results. On the other hand, using
the numerical approach, there is no need for this, as the full
vector potential Eq. (4) can easily be calculated. Thus, we find
that numerical methods are best suited for correctly calculate
the pseudomagnetic field at graphene’s high tolerance of up
to 25% strain.

IV. THE ELECTRONIC STATES

We derive the energy levels En and wave functions �(x,y)
of the bump strained graphene flake using the tight-binding
Hamiltonian Eq. (1) with the effect of strain included via the
modulation of the hopping parameter given by Eq. (2). We
shall compare the results from the tight-binding approach with
the pseudomagnetic field model from the previous section.

The local density of states (LDOS) is given by

D(E,x,y) =
∑

n

|�(x,y)|2δ(E − En). (8)

To calculate the LDOS numerically we introduce a Gaussian
broadening,

δ(E − En) → 1

	
√

π
exp

[
− (E − En)2

	2

]
. (9)
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FIG. 5. (Color online) Contour plot of the LDOS for sublattice
(a) A and (b) B as a function of bump height and energy, at the location
of maximum strain (x = 0, y = 2.2 nm). The dashed curves are the
Landau levels based on the pseudomagnetic field model, calculated
using unstrained (white curves) and strained (black curves) Fermi
velocity.

As we did previously in Fig. 4, we select the location of highest
strain along the armchair direction and we calculate the LDOS
at that point in space as a function of bump height and energy.
The results are shown in Fig. 5. At large bump heights, the
LDOS shows Landau levels up to the second. Sublattice B has
a lower LDOS at the zero Landau level, which is consistent
with what is found for a magnetic field in graphene.

For comparison, we calculate the Landau levels using the
pseudomagnetic field model from the previous section and we
overlay them on the LDOS as dashed curves in Fig. 5. In this
case the pseudomagnetic field is calculated according to the
full vector potential Eq. (4). Note that the Landau levels do not
follow the usual square root function. This is because the plot
is a function of bump height. The Landau levels still behave
as a square root of the pseudomagnetic field.

In the first case (white dashed curves), the Landau levels
are plotted for a constant unstrained Fermi velocity vF =
3acct0/2h̄. This does not give good agreement with the LDOS
when the bump height is large. In the second case (black dashed
curves), the Landau levels are fitted to the LDOS with an ad-
justed strained Fermi velocity v

(s)
F = 3(acct0 + αlmnδtmn)/2h̄,

where δtmn = tmn − t0, and α = 0.28 is a fitting constant.
Next, we are interested in finding the spatial localization

of the different electron states. We plot the energy levels as
a function of bump height in Fig. 6. The levels split into two
groups: Some energy levels decrease toward zero as the height
of the bump increases, while the other group has the opposite
behavior and increases slowly in energy with h0. To better
understand these two types of levels, we examine their wave
functions. A point on a rising energy level is marked as H

in Fig. 6. The spatial probability for this state (see the right
panel in Fig. 6) shows an electron state localized away from the
center of the system, i.e., it is localized outside the bump. As the
height of the bump is increased, the confinement area between
the bump and the system edge is reduced. This reduction in
confinement area results in an increase of the energy.

On the other hand, we have point L which marks the
level that splits downward, away from level H . The spatial
probability in point L is plotted in the right bottom panel
of Fig. 6. These decreasing levels are confined inside the
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FIG. 6. (Color online) Energy spectrum of a hexagonal armchair
graphene flake strained by a Gaussian bump. Left: Energy levels as a
function of bump height. Right: Spatial probability at the split levels
marked with L and H .

bump, in contrast to the previous case. The probability peaks
are found in the armchair directions which coincide with the
peaks of the pseudomagnetic field from Fig. 3. These levels
converge toward zero energy, thus forming the zero Landau
level. Because the pseudomagnetic field is nonhomogeneous
in this system, higher Landau levels are not clearly visible in
the global energy spectrum.

The wave functions on the individual sublattices A and B
are shown in Fig. 7 for both the L and H branches. Each
sublattice contributes to three of the six probability peaks.
The peak heights for each sublattice are the same, but the
peaks are positioned opposite to one another. The areas of high
probability for sublattice A are positioned at the positive peaks
of the pseudomagnetic field, while those localized on sublattice
B coincide with the negative peaks of the pseudomagnetic field.
Note that for the H level, the probability peaks are rotated by
60◦ in the two sublattices as compared to the L level. This also
points to the different origin of these levels.

Another interesting feature of the energy levels are anti-
crossing points that switch the two types of energy levels. We
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FIG. 7. (Color online) Electron probability for different sublat-
tices at the points L (bottom figures) and H (top figures) from Fig. 6.
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FIG. 8. (Color online) Energy levels as a functions of bump height
in a hexagonal graphene flake with armchair termination. Left: An-
ticrossing point at bump height h0 = 1 nm and energy E = 0.24 eV.
Right: Spatial probability before and after the anticrossing point.

examine one of these anticrossing points in detail in Fig. 8.
We mark points H1, H2 (L1, L2) on the higher (lower) level
before and after the anticrossing, respectively. Following the
higher level from H1 to H2, we can see a transition from
confinement inside the bump to confinement outside the bump.
This is consistent with the previously discussed confinement
types for decreasing and increasing energy levels with h0.
Following the lower level from L1 to L2 reveals the opposite
behavior, with the confinement switching from outside to
inside. Note also that when we go from H1 (L1) to L2 (H2)
the positions of the peaks are rotated by 60◦. The direction of
the appearance of the peaks in the lower (higher) branch does
not change when passing the anticrossing point.

The probability plots around the anticrossing point do not
show perfect sixfold symmetry as we have seen in previous
cases. Instead, we have two sets of three probability peaks with
different magnitudes. We examine this asymmetry in Fig. 9 by
plotting the separate probabilities for the two sublattices. At
point H1, sublattice A has larger probability, but at point H2
(after the anticrossing) this is reversed. Thus, following an
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FIG. 9. (Color online) Electron probability for different sublat-
tices before and after the anticrossing point from Fig. 8.
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FIG. 10. (Color online) Electron probability at the lower (L) and
higher (H) extrema of the anticrossing shown in Fig. 8.

energy level through an anticrossing point from H1 to H2 (or
L1 to L2) will result in two transitions: Both the confinement
type (inside or outside the bump) and the sublattice dominance
are switched.

For completeness, we plot the probability distribution at the
extrema of the anticrossing in Fig. 10. Notice that they exhibit
an appreciable probability both inside and outside the bump.
Both points are threefold symmetric but are rotated by 60◦
relative to one another.

Since the bump is radial, it is natural to express the electron
probability in polar coordinates as P (r,θ ). We are specifically
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FIG. 11. (Color online) Left: (a) Radial and (b) angular electron
probability at low energy as a function of the bump height. The dashed
line labeled R marks the radius of the bump and RB is the spatial
position of the maximum of the pseudomagnetic field. In (b) the
dashed lines indicate the armchair and zigzag directions in graphene.
Right: Cuts of the probability at h0 = 0 and 2 nm. The energy is fixed
at E = 0.05 eV.
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interested in finding electron states that are confined inside
the bump and that are not influenced by the finite size of the
simulated system. We can take an integral over the angle and
only leave the radius dependent part of the probability

P (r) =
∫ 2π

0
P (r,θ )dθ. (10)

Alternatively, we can do the opposite and take the integral over
the radius, which leaves just the dependence on the angle.

The radial probability of low energy electrons as a function
of bump height is shown in the left part of Fig. 11(a). As
expected, the probability near zero bump height is practically
uniform across the full radius of the system. As the height
of the bump increases, we start seeing confinement inside the
bump. More specifically, the probability peak is close to the
position of the maximum of the pseudomagnetic field, marked
as RB .

Figure 11(b) shows the angular probability. The dashed
lines indicate the armchair (black) and zigzag (white) direc-
tions of graphene, which alternate every π/6 radians. For low
bump height, the angular distribution is practically uniform.
As the height of the Gaussian bump increases, probability
maxima start to form in the armchair directions and minima
appear in the zigzag directions.

Next, we fix the bump height at h0 = 2 nm and we present
the probability as a function of energy in Fig. 12(a). For low

 0  0.2  0.4  0.6  0.8  1
E (eV)

 0

 1

 2

 3

 4

 5

 6

 7

r 
(n

m
)

 0  0.01  0.02  0.03  0.04

 0  0.2  0.4  0.6  0.8  1
E (eV)

-3

-2

-1

 0

 1

 2

 3

θ 
(r

ad
)

 0.004  0.008  0.012  0.016  0.02

 0  0.01  0.02  0.03  0.04
P(r)

E = 0.2 eV 
E = 0.8 eV 

 

 

 0.01  0.015  0.02
P( θ)

E = 0.2 eV 
E = 0.8 eV 

 

 

(a)

R

RB

(b)

zz

ac

FIG. 12. (Color online) Left: (a) Radial and (b) angular electron
probability as a function of energy. The marked lines are the same as
in Fig. 11. Right: Cuts of the probability at E = 0.2 and 0.8 eV. The
bump height is fixed at h0 = 2 nm.

energy, we find that the state is mostly confined inside the bump
near the strain maximum. But for energies above 0.3 eV, we
find substantial probability outside the bump and thus weaker
confinement.

Looking at the angular plot in Fig. 12(b), we find probability
peaks in the armchair directions and minima in the zigzag
directions. As the energy increases, the peaks disappear around
0.3 eV, which is the same energy where we started seeing
substantial probability outside the bump in the radial plot.
Once the probability outside the bump becomes substantial
(above 0.4 eV), the highest probability shifts to the zigzag
directions. As we will see later, the zigzag directions are
associated with directions along which the probability current
flows, connecting the center and the outside of the bump.

The single valley probability current at carbon atom m is
given by

�jm = i

h̄

3∑
n=1

�∗
mHm,m+n�m+n

�dn, (11)

where Hm,m+n = −tm,m+n is the tight-binding Hamiltonian
matrix element. We plot the current inside the hexagonal flake
in Fig. 13 for the same L state as in Fig. 6. For clarity, the
current is plotted separately for sublattices A and B. Circular
orbits coincide with the positions of the six probability peaks
in the armchair directions. The current is very low at the exact
positions of the probability peaks, but there is an appreciable
circular current flowing around the peaks. Each sublattice
contributes three circular orbits, where sublattice A orbits have
a clockwise direction and sublattice B is counterclockwise.
This coincides with the probability peaks of the individual
sublattices, as well as with the positive and negative peaks
of the pseudomagnetic field. Lines where the pseudomagnetic
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FIG. 13. (Color online) Probability current for the L point
electron state from Fig. 6, for sublattices (a) A and (b) B. (c) An
enlarged region around snake states. The dashed line indicates the
zigzag direction.
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field is zero lie along the zigzag directions. Figure 13(c) shows
the current along this line, where we find the current flowing
successively across the line in both directions. These are snake
orbits which are present because of the interface between the
positive and negative pseudomagnetic field.

V. CONCLUSIONS

We showed that a circular symmetric straining of a
hexagonal graphene flake induces a noncircular symmetric
pseudomagnetic field. The average induced pseudomagnetic
field is zero and the field changes sign when we cross a zigzag
direction. The pseudomagnetic field was calculated up to third
order in the strain. The first order term was found to be valid
only up to 5% strain. The second order term extends the validity
of the pseudomagnetic field expression for a Gaussian bump up
to 15%, while the third order is needed to go up to graphene’s
full strain limit (25%).

Next, we investigated the confinement of electronic states
in the same system. We found that nonuniform strain has a
significantly different effect in the two fundamental directions
of graphene. The sixfold symmetry of the confinement is
directly related to the armchair and zigzag directions. Electrons
are well confined in the armchair directions, while the zigzag
directions allow the flow of probability current between the
inside and outside of the strained region. This mirrors the form
of the strain-generated pseudomagnetic field, which has peaks

in the armchair direction and zero magnitude in the zigzag
directions.

The energy levels of the Gaussian bump system show
splitting and anticrossing states that correspond to different
regions of localization of the electron. The levels that increase
in energy with increasing bump height are confined between
the bump and the edges of the graphene flake, while the
decreasing levels correspond to states confined inside the
bump. We also identified several anticrossing points which
switch the confinement type (inside or outside the bump) as
well as the sublattice dominance.

We examined the probability of finding the electron in
the system as a function of the radius and angle. At low
enyergy there is strong confinement inside the bump near the
strain maximum. At higher energy, confinement is weaker
as more states are found outside the bump. As for directional
confinement, we found that low energy states are well confined
in the armchair directions, where we see closed circular
electron orbits. Higher energy states are more likely found
in the zigzag directions, where the probability current shows
channels to and from the center of the bump.
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