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Electrostatics of electron-hole interactions in van der Waals heterostructures
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The role of dielectric screening of electron-hole interaction in van der Waals heterostructures is theoretically
investigated. A comparison between models available in the literature for describing these interactions is made and
the limitations of these approaches are discussed. A simple numerical solution of Poisson’s equation for a stack
of dielectric slabs based on a transfer matrix method is developed, enabling the calculation of the electron-hole
interaction potential at very low computational cost and with reasonable accuracy. Using different potential
models, direct and indirect exciton binding energies in these systems are calculated within Wannier-Mott theory,
and a comparison of theoretical results with recent experiments on excitons in two-dimensional materials is
discussed.
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I. INTRODUCTION

The physics of excitons and other electron-hole complexes
in atomically thin materials [1–6] has attracted great attention
in the past few years, in part due to the high electron-
hole binding energies observed in these systems, which are
approximately ten times higher than those of conventional
semiconductors, such as III-V and II-VI compounds, even
when the latter are structured in quantum dots, wires, or wells
[5,7–9]. Excitons in 2D materials are strongly confined to a
plane, so that the screening from their surrounding dielectric
environment is reduced, thus increasing the exciton binding
energies [10,11]. Excitonic Rydberg spectra of WS2 [10]
and WSe2 [12] have been measured in recent absorption
experiments, where one can verify up to 3 excited states. These
series, however, differ from that expected for a hydrogen-like
electron-hole pair. Two-photon absorption measurements have
also been used to investigate excitonic states with p symmetry,
where a slight degeneracy break with respect to s states is
expected [12]. These features suggest that the electron-hole
interaction potential in this system is not Coulombic: indeed,
due to the lack of screening by the environment above the
material layer, the interaction is expected to acquire a different
form, as discussed decades ago [13,14] in the context of thin
semiconductor films.

The effective electron-hole interaction potential is straight-
forwardly found by analytically solving the Poisson equation
for a dielectric slab surrounded by two media with different
dielectric constants. This approach clearly provides a fully
classical electrostatic description of the problem. It is far from
guaranteed, however, that such a classical approach provides
reasonable results in the limit of atomically thin materials,
where quantum and dynamical effects may be sizable. Using
a classical effective potential to calculate exciton eigenen-
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ergies leads to a reasonable agreement between theory and
experiment [10], but only if additional screening due to the
SiO2 substrate in the experiment is taken into account. A
more recently developed approach [15–17], involving quantum
mechanical effects via ab initio calculations, is expected to
provide better agreement in few-layer cases, which has been
confirmed by comparison to the same experimental results of
Ref. [10]. In this approach, known as the quantum electrostatic
heterostructure (QEH) model, as well as the simple classical ef-
fective potential approach, the main effects of the environment
on the electron-hole interactions are all included in the form of a
static (ω = 0) dielectric function. Dielectric functions for both
approaches match for low wave vectors, but strongly disagree
as k increases, thus suggesting the QEH model captures
important contributions to the dielectric function which are
not captured by the simple classical effective model.

It is important to point out that despite the limitations of
classical effective potential approaches [13,14] for describing
atomically thin materials, they are a physical and efficient way
of obtaining the electron-hole potential in the limit of a large
number of layers. It is thus worthwhile to investigate how this
approach compares to the QEH model as the number of layers
increases, in order to obtain a deeper understanding of the
limitations of this simple approach. In the same spirit, it is
important to compare both approximations for the case where
substrate screening is important, as well as in the presence
of layers of different materials, i.e., in van der Waals (vdW)
heterostructures [18].

In this paper, we explore the effective electron-hole inter-
action potential, suitable for charged particles in an N -layer
vdW stack. This is accomplished by solving the Poisson
equation for the potential experienced by a charged particle
in a given layer due to a test charge placed in the same or any
other layer. We demonstrate that such a classical electrostatic
approach provides a very fast and computationally efficient
means of achieving results which are surprisingly accurate
when compared to those obtained from more sophisticated
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FIG. 1. Sketch of the series of interfaces between slabs with
dielectric constants εn describing each material layer. The charge
(e) placed at the cth slab generates a screened Coulomb potential
at each layer, that obeys the Poisson equation with a space-dependent
dielectric constant.

and expensive approaches based on ab initio calculations.
Our results for the binding energy of interlayer excitons in
heterobilayers, as well as for intralayer excitons in the presence
of additional graphene capping layers [19], are discussed in
light of recently reported experimental PL and absorption data
for these systems. In addition, a detailed comparison is made
with the recently developed QEH approach [15].

II. THEORETICAL FRAMEWORK

Theoretical approaches available in the literature for inves-
tigating electron-hole interactions in low-dimensional systems
surrounded by different dielectric media are usually based
either on (i) classical electrostatics, where the interaction
potential is obtained, e.g., by solving the Poisson equation
for a stack of dielectric slabs [13,14], or (ii) via direct or
parametrized first-principles calculations, the latter of which
forms the basis of the recently proposed quantum electrostatic
heterostructure approach [15], where the effective dielec-
tric function of the vdW stack is obtained with the aid of
ab initio–obtained density response functions of the separated
layers that compose the heterostructure. In what follows, these
two approaches are discussed in greater detail.

A. Electrostatic transfer matrix method

Let us assume a series of N stacked layers along the z direc-
tion, each with dielectric screening εn (n = 1,2, . . . ,N ), sepa-
rated by interfaces at z = dn (n = 1, . . . ,N − 1), as sketched
in Fig. 1. We take the origin as the center of the cth layer,
where the source charge is placed. Our aim is to calculate the
potential at the t th layer, where the test charge is. For instance,
spatially direct (indirect) excitons would have c = t (c �= t).
For the nth layer, the Poisson equation reads

ε‖
n∇2

ρ,θ�n,c + ε⊥
n

∂2�n,c

∂z2
= qn, (1)

where qn = −eδn,cδ(�r) is the point charge at this layer (which
is nonzero only at the cth layer). The negative sign implies we
are assuming the source charge to be an electron.

The solution for the electrostatic potential at any layer n is
written in the form

�n,c(ρ,z) = e

4πεcε0

∫ ∞

0
{J0(kρ)[An(k)ekz

+Bn(k)e−kz + e−k|z|δn,c]}dk. (2)

The electron-hole interaction potential V
t,c

eh = e�t,c is more
conveniently rewritten as

V
t,c

eh (ρ) = e2

4πε0

∫ ∞

0

J0(kρ)

εt,c(k)
dk, (3)

where the effective dielectric screening function for a hole in
the t th layer, at a distance zt from the point charge, is εt,c(k) =
εc[At (k)ekzt + Bt (k)e−kzt + δt,c]

−1
. Notice that this expression

covers both the direct (zt = 0) and indirect exciton cases. We
shall now look for a means of calculating At (k) and Bt (k).

Boundary conditions are imposed so that B1 ≡ 0 and AN ≡
0, in order to avoid divergence as z → ±∞. In addition,
boundary conditions at each of the N − 1 interfaces require
continuity of the potential and its derivative, thus leading to a
system of 2(N − 1) equations. Alternatively, one can represent
each pair of equations for each interface in a matrix form

Mn

(
An+1

Bn+1

)
= M̄n

(
An

Bn

)
−

(
ekdc−1

εce
kdc−1

)
δn,c−1

+
(

e−kdc

−εce
−kdc

)
δn,c, (4)

where

M̄n =
(

ekdn e−kdn

εne
kdn −εne

−kdn

)
, Mn

(
ekdn e−kdn

εn+1e
kdn −εn+1e

−kdn

)
.

(5)

Combining all boundary conditions together yields(
0

BN

)
= M

(
A1

0

)
− M′

(
ekdc−1

εce
kdc−1

)
+ M′′

(
e−kdc

−εce
−kdc

)
,

(6)

where M = M−1
N−1M̄N−1 . . . M−1

1 M̄1,M′ = M−1
N−1M̄N−1

. . . M−1
c M̄cM

−1
c−1, and M′′ = M−1

N−1M̄N−1 . . . M−1
c+1M̄c+1M

−1
c

can be seen as electrostatic transfer matrices (ETMs). This
allows us to solve for A1 as

A1 = (M′
11 + εcM′

12)ekdc−1 − (M′′
11 − M′′

12εc)e−kdc

M11
. (7)

Finally, once A1 is obtained from the transfer matrices, At (k)
and Bt (k) are calculated simply by applying the appropriate
transfer matrices on (A1 0)T , according to Eq. (4).

B. Quantum electrostatic heterostructure model

For the sake of completeness, here we briefly discuss the
quantum electrostatic heterostructure model for calculating
the effective dielectric function in vdW stacks. More de-
tails concerning the derivation of this method are found in
Ref. [15].

The QEH model uses in-plane averaged density response
functions χi(k,ω) that are obtained from ab initio calculations
for each of the materials composing a van der Waals stack of
layers. With a Dyson-like equation that couples the building
blocks together via the Coulomb interaction, it is possible to
calculate a full density response function χia,jb that gives the
magnitude of the monopole (dipole) density induced in the ith
layer by a constant (linear) potential applied in the j th layer.
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Hence, the inverse dielectric matrix is obtained as

ε−1
ia,jb(k,ω) = δia,jb +

∑
lc

Via,lc(k)χlc,jb(k,ω), (8)

where indices i,j,l label the layers and a,b,c = 0,1 correspond
to monopole (0) and dipole (1) contributions. The Coulomb
matrix is obtained from the potential �lc(z,k) associated with
the induced potential ρia(z,k), which is solution of a 1D
Poisson equation, averaged over the thickness of the slab,

Via,lc(k) =
∫

ρia(z,k)�lc(z,k)dz. (9)

Finally, an inverse Fourier transform of the potential,

V (k) =
∑

ia,jb,lc

ρe
ia(k)εia,jb(k)−1Vjb,lc(k)ρh

lc(k), (10)

results in the electron-hole potential in real space.

C. Wannier-Mott model

Once the electron-hole potential is obtained from the meth-
ods described in the previous subsections, exciton eigenstates
can be calculated within the Wannier-Mott model [20]. The
exciton Hamiltonian in this approach is given by

H = − 1

μij

∇2
2D − V

t,c
eh ( �ρ), (11)

where μij = (1/mi
e + 1/m

j

h)
−1

is the reduced effective mass
of the electron-hole pair, with an electron (hole) confined in the
ith (j th) layer, �ρ = �ρe − �ρh is the relative coordinate, and the
center-of-mass contribution to the kinetic energy is taken to be
zero. V t,c

eh ( �ρ) is the in-plane electron-hole interaction potential,
calculated either by the QEH or the ETM methods. Energies
and spatial coordinates are written in units of the Rydberg
energy Ry and the Bohr radius a0, respectively.

In the case of vdW heterostructures of transition-metal
dichalcogenides (TMDCs), which will be discussed in the
following sections, the band offsets between the layers are
finite, and thus the particles are able to tunnel between
layers. Therefore, one should in principle consider, for each
carrier, wave functions that are distributed across all layers,
although with a much smaller probability in cases where band
offsets are large. The problem can then be treated as coupled
quantum wells, described by a Hamiltonian matrix where the
diagonal terms contain band offsets and in-plane potentials,
whereas off-diagonal terms are hopping parameters [21–23].
However, for the sake of simplification, we will assume the
off-diagonal contributions to be small and the problem is
then approximated by electrons and holes completely confined
in individual layers. This approximation is reasonable, as
demonstrated by the fact that recent density functional theory
(DFT) calculations [21,24,25] for vdW heterostructures show
that their band structures at K (where the direct gap takes
place and, consequently, the exciton is expected to be) are
not significantly different from a superposition of the bands
of their composing monolayer materials. This suggests that a
quasiparticle Hamiltonian matrix for conduction and valence
bands could be simply described each by a 2 × 2 diagonal
matrix, whose diagonal elements are just the monolayer bands,

within a basis of completely layer-localized states. This situa-
tion supports the Hamiltonian in the form proposed in Eq. (11),
which is then numerically diagonalized in order to provide the
exciton binding energies shown in the following sections.

It is worth pointing out that a more accurate description
of the excitonic properties of vdW heterostructures should
take into account the effect of the stacking order and even
the relative interlayer rotation on the band structure [26–28].
However, binding energies calculated in the following section
involve only electrons and holes in the vicinity of the K

(K ′) point of the Brillouin zone, whereas recent experimental
and theoretical papers [21,29–31] systematically demonstrate
that the electronic band structure of a MoS2 bilayer around
the K (K ′) point does not significantly depend either on the
stacking order or interlayer twist. We thus assume, as an
approximation, that these corrections are also negligible in the
case of heterobilayers of TMDCs investigated in what follows.

III. RESULTS AND DISCUSSION

A. Classical limits

Let us first investigate the limits of the effective dielectric
functions of stacks of the same material, thus interpolating
from the monolayer towards the bulk limit of a homogeneous
system. An example is shown in Fig. 2(a), where results
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FIG. 2. (a) Average dielectric function for MoS2 as calculated by
QEH model for increasing number of layers. (b) Maximum value (red,
left scale) of the curves shown in (a), along with their derivatives
at k = 0 (black, right scale) as a function of the number of layers.
Numerical results are shown as symbols. The curve on top of the εmax

(red) symbols is a fitting function (see text), whereas the one on top
of the derivative results (black) is a guide to the eye.
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obtained by the QEH method for the macroscopic dielectric
function [15] of MoS2 with N = 1,3,5,10,20,30, and 40
layers are illustrated. All curves exhibit a maximum εmax, that
increases with N until it converges to a fixed value, as shown
by (red) squares in Fig. 2(b), left scale. A fitting function for
this maximum, F (N ) = A + Be−N/n1 + Ce−N/n2 , is shown
as a (red) solid curve, with A = 12.96ε0, B = −4.13ε0, C =
−5.42ε0, n1 = 13.2, and n2 = 1.9. Despite such proposed
exponential fitting being inspired only by the form of the
numerically obtained curve, one can still obtain a physically
meaningful parameter from it, namely A, which illustrates
that for bulk MoS2 (i.e., as N → ∞), the maximum of the
dielectric function approaches ε ≈ 12.96ε0. In addition, we
expect that the low-k part of the dielectric function, which
is an increasing function of k for a finite number of layers,
becomes negligibly small as the bulk limit is approached. In
fact, the derivative of εm at k = 0, shown as a function of N

as (black) squares (right scale) in Fig. 2(b), goes to infinity
as N → ∞. Both analyses suggest a dielectric function that
converges to a dielectric constant ε = 12.96ε0 as the bulk limit
is reached, which agrees well with the dielectric constant of
bulk MoS2, ε ≈ 13ε0–15ε0, found in the literature [9]. The
same procedure was done for other TMDCs, where we obtain
the dielectric constants for bulk MoSe2 (ε = 14.83ε0), WS2

(ε = 11.74ε0), and WSe2 (ε = 13.47ε0). This information will
be used further in this section for the ETM calculations of the
electron-hole potential in vdW heterostructures.

As for the verification of the expected limits of the ETM
method, let us use it to revisit the problem of a monolayer
surrounded by two semi-infinite media, i.e., N = 3. This
problem was analytically solved by Rytova [13] and, later, by
Keldysh [14], within some approximations, namely ε2 � ε1,3

and d2 − d1 = d 
 a0 [14]. These approximations are such
that for a charge in layer c = 2, the potential at layer t = 2 is
given by

V R−K
eh = e2

2πε0ε2d

∫ ∞

0

J0(kρ)

1 + ε2d
ε1+ε3

k
dk

= e2

4πε0(ε1 + ε3)ρ0

[
H0

(
ρ

ρ0

)
− Y0

(
ρ

ρ0

)]
, (12)

with ρ0 = ε2d/(ε1 + ε3), which is equivalent to Eq. (3) with
an effective dielectric function

εR−K (k) = ε1 + ε3

2

(
1 + dε2

ε1 + ε3
k

)
. (13)

In fact, for N = 3, after some algebra, our model yields

ε(k) =
ε1 + ε3 + (

1 + ε1ε3

ε2
2

)
ε2 tanh(dk)(

1 + ε1ε3

ε2
2

) + (
1 − ε1ε3

ε2
2

)
sech(dk) + ε1+ε3

ε2
tanh(dk)

.

(14)

One can straightforwardly verify that Eq. (13) is the dk →
0, ε1,3/ε2 → 0 limit of Eq. (14), as expected. Our model, thus,
extends the classical approximation [13,14] to any value of
dielectric constant and slab width, although the approximated
linear dielectric function εR−K (k) can still be seen as a low-k
limit of ε(k).

The agreement between the effective dielectric functions
of suspended monolayer MoS2 obtained from the theory of

FIG. 3. (a) Effective dielectric function of a suspended mono-
layer MoS2 as obtained by ETM and QEH methods, as well as
with the Rytova-Keldysh effective potential approach. The effective
interaction potential between electron and hole, as obtained by these
methods, is shown in (b) and (c), for monolayer MoS2 in the suspended
case and over Ns layers of BN substrate, respectively.

Rytova and Keldysh and the ETM approach for low k is verified
in Fig. 3(a), which also shows the results obtained by the QEH
method, illustrating somewhat worse agreement with these
simpler approaches. Nevertheless, the effective interaction po-
tential for both the suspended case (b) and for MoS2 over a BN
substrate (c) exhibits excellent agreement between all methods,
including even the linear (Rytova-Keldysh) approximation for
the dielectric function. For these calculations, we have assumed
ε1 = 4ε0 (BN substrate), ε2 = 12.96ε0 (MoS2), and ε3 = 1ε0

(vacuum), with d1 = −d2 = 3.15 Å . Results for other TMDCs
are qualitatively the same, and thus we will investigate only
MoS2 in what follows, unless otherwise explicitly stated. In
addition, BN is chosen as the substrate (and in some cases
capping) material because (i) of the similarity between its static
dielectric constant and that of SiO2, which has been commonly
used as substrate in actual experiments, (ii) it is a layered
material, which makes it suitable for the QEH calculations
(although the ETM method allows for use of any kind of
material, layered or not, as substrate or capping material), and
(iii) because it has been used as capping material in some recent
experiments [23,32]. Increasing the number of layers involved
in the QEH calculations requires more computational memory;
therefore one needs to limit the number of BN layers in the
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FIG. 4. Screened interaction potential between electron and hole,
as obtained by QEH (symbols) and ETM (curves) methods, for N -
layer MoS2 (a) in the suspended case, (b) over a BN substrate, and
(c) encapsulated by a BN substrate and a BN capping medium.

substrate. The QEH-obtained potential for MoS2 over a BN
substrate is shown as symbols in Fig. 3(c) for Ns = 30 (red
squares) and 50 (blue circles) BN layers. Indeed, increasing
the number of BN layers renders the QEH-obtained potential
closer to that of the ETM (black solid) one.

The dependence of the screened electron-hole interaction
potential on the number of MoS2 layers is illustrated in Fig. 4,
for (a) the suspended case, as well as for few-layer MoS2 (b)
over a BN substrate, and (c) encapsulated by BN. In all cases,
increasing the number of MoS2 layers produces qualitatively
the same effect in both QEH (symbols) and ETM (curves)
methods. However, quantitative agreement between results
from these two methods becomes somewhat worse as the
number of layers increases. In the case of multilayer MoS2 over
or encapsulated by BN, the lack of quantitative agreement is
partially due to the small number of BN layers in the substrate
and capping layers employed in our QEH calculations, which
are taken as Ns = 30 in the former case and Ns = 15 (with 15
more BN capping layers) in the latter case. A larger number of
BN layers, which would improve this agreement as previously
discussed, is found to be very memory intensive when a large
number of MoS2 layers are considered, as in the N = 20
case.

The good agreement between these two methods for the
monolayer case, especially for high values of k, suggests that
low-lying exciton energy states, whose wave functions are

FIG. 5. Exciton energy states, as obtained by ETM (black full
circles) and QEH (red open squares) methods, for monolayer MoS2

(a) in the suspended case, (b) over a BN substrate, and (c) encapsulated
by BN. Curves are guides to the eye.

narrower (wider) in real (reciprocal) space, as calculated by
both approaches will also exhibit similar results. This is indeed
verified in Fig. 5, which shows the exciton state energies as
obtained by ETM (black full circles) and QEH (red open
squares) methods for (a) suspended monolayer MoS2, as well
as for this material (b) over a BN substrate and (c) encapsulated
by BN. Ground state binding energies are found to be 0.616 eV
in the suspended case, in good agreement with previous
calculations [9,15], whereas in the presence of a BN substrate,
this energy is reduced to 0.419 eV and, when encapsulated by
BN, it is further reduced to 0.336 eV, due to the additional
dielectric screening by the surrounding environment. The
difference between the two methods is almost zero for the
ground state, but it reaches ≈13% for the 8th excited state
of suspended MoS2. Nevertheless, for all cases studied here,
the highest energy difference found was ≈0.01eV for highly
excited states, which is within the accuracy limitations of the
usual experimental measurements of these states.

In order to investigate the practical consequences of the
observed difference between curves obtained with the ETM
and QEH methods in the N > 1 case (see Fig. 4), we calculate
the binding energy of a bound state composed of a positive and
a negative charge inN -layer MoS2. Notice that quantum effects
are taken into account only in the QEH method; therefore, this
comparison allows us to investigate how strong are these effects
on the binding energies, especially for very thin samples, where
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FIG. 6. (a) Exciton ground state energy as a function of the
number of MoS2 layers, as obtained by ETM (full symbols) and QEH
(open symbols) methods, in the suspended case (black squares), over
a BN substrate (red triangles), and encapsulated by BN (blue circles).
(b) Relative difference between results obtained with the ETM and
QEH methods. Lines are guides to the eye.

quantum effects are expected to play a significant role. As
this material acquires an indirect gap for N � 2, the bound
state proposed here is not relevant for excitonics, although it
can still be used as a measure of the strength of the effective
screened Coulomb interaction in the system which is relevant,
e.g., for a charge-impurity bound state. Ground state binding
energies are shown in Fig. 6(a) as a function of the number of
MoS2 layers in the suspended case (black squares), as well as
for layers deposited on (red triangles) or encapsulated by BN
(blue circles), as obtained by ETM (full symbols) and QEH
(open symbols). Differences between methods (relative to the
QEH results) are shown in Fig. 6(b) to be restricted to a range
between 5% and 17%. We point out that as the number of
layers increases towards the bulk limit, the ETM method leads
to the correct interaction potential. Nevertheless, both methods
are demonstrated to agree to a good extent for any number of
layers.

We now investigate how the ETM approach performs for
an electron-hole interaction potential in two cases recently
experimentally investigated, namely, a heterobilayer, i.e., a
bilayer composed by two different TMDCs [18,33–40], and
a TMDC monolayer with extra dielectric screening due to a
graphene capping layer [19].

FIG. 7. Comparison between interlayer electron-hole interaction
potentials obtained by the ETM (solid) and the standard Coulomb
form (dashed), for a MoS2/WS2 heterostructure encapsulated by
BN and with an Ns-layer BN spacer between the TMDCs, for
Ns = 0 (black), 5 (red), 10 (blue), and 30 (green). Inset: Comparison
between interlayer electron-hole interaction potentials for suspended
MoS2/WS2 heterobilayer, as obtained by ETM (black solid) and QEH
(red symbols) methods.

B. Interlayer excitons in heterobilayers

We have applied the theoretical model described in Sec. II
to calculate exciton binding energies in vdW heterostructures
consisting of the most common combinations of TMDCs
experimentally investigated to date. Since a major focus in
these systems is the study of interlayer excitons, here we
consider only heterostructures that exhibit a type-II band
alignment, where this kind of exciton is energetically favorable.
As part of the search for Bose-Einstein condensation of
spatially polarized (interlayer) excitons, recent studies [41–43]
have investigated the binding energy of excitonic complexes
in TMDC double layers. In order to provide control of the
interlayer separation, the use of a few-layer BN spacer between
the TMDCs that compose the vdW heterostructure has been
proposed [18].

Previous calculations of excitonic complexes in these sys-
tems were mostly made under the approximation of a pure
Coulomb interaction between electrons in one layer and holes
in the other. The interaction potential in this case is given
by VCoulomb(ρ) = −1/εs

√
ρ2 + d2

z , where dz is the distance
between the center of the TMDC layers (where the charges are
confined) and εs is the effective dielectric constant of the sur-
rounding environment. In Fourier space, this potential is given
by the expression VCoulomb(k) = −2πe−kdz/εsk. A comparison
between this approximation and the actual potential obtained
from solution of the Poisson equation by the ETM method
for this combination of dielectric slabs is shown in Fig. 7. We
consider a MoS2/WS2 heterostructure with a BN substrate,
a BN capping medium, and a Ns-layer BN spacer between
the TMDCs (εr = 4.4ε0), to provide control of the distance
between them. We point out that this encapsulation with BN is
not necessary for actual heterostructures, but we consider it to
enable the comparison with the same situation described by the
recent use of the Coulomb approximation, where the possible
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difference between the dielectric constants of the interlayer
spacer, substrate, and capping media has not been taken into ac-
count. We observe that interaction potentials obtained from the
ETM (solid curves) assuming no BN spacer (i.e., Ns = 0, black
curves) are not well described by the Coulomb approximation
(dashed curves). As the number of layers in the spacer increases
to 5 (red), 10 (blue), and 30 (green), the results from these two
approaches become more similar. This is reasonable, as the
TMDC layer thickness becomes less significant as compared
to the BN media surrounding these layers.

The ETM method and Coulomb approximation are both
classical approaches for the interlayer exciton problem. It is
then important to compare the ETM results with the more
sophisticated, ab inito–based QEH method. Notice that cal-
culations assuming BN as a surrounding environment and
spacer would require a very large number of layers in QEH,
which makes these calculations computationally expensive.
We therefore investigate only the sample case of a suspended
MoS2/WS2 heterobilayer with no BN spacer. Results for
this case are shown in the inset of Fig. 7, where the ETM
(QEH) obtained potential is shown as a black solid curve
(red symbols). Potentials from both methods agree very
well, and this is true for all combinations of TMDCs we
investigated. As a measure of the consequences of the small
difference between methods, we compare the exciton bind-
ing energies for MoS2/WS2, MoS2/WSe2, MoSe2/WS2, and
MoSe2/WSe2. We obtain from the QEH method E

MoS2/WS2
b =

281 meV, E
MoS2/WSe2
b = 271 meV, E

MoSe2/WS2
b = 279 meV,

and E
MoSe2/WS2
b = 264 meV, while ETM results overestimate

these values by only 4%, 8%, 8%, and 7%, respectively. For the
sake of simplicity, reduced effective masses are kept as 0.27m0

for all combinations, but numerical results will differ only by
a few meV if the true values are considered. One conclusion is
immediately drawn from these results: the interlayer exciton
binding energy for all combinations of TMDCs is on the order
of ≈250–300 meV, which is consistent with previous reports in
the literature [16,24,44]. This is important for the interpretation
of experimentally observed photoluminescence peaks for vdW
heterostructures. In order to substantiate that a given spectral
peak observed in these experiments arises from such fully
polarized interlayer excitons, the energy of this peak needs to
be consistent with the interlayer quasiparticle gap, deduced by
a binding energy of the appropriate order of magnitude. Never-
theless, we emphasize that our calculations were done assum-
ing full electron-hole polarization, i.e., with each charge carrier
confined exactly at a single layer, with no wave function pro-
jection on the other layer. This is expected to be the case for K-
to-K point transitions in TMDC heterobilayers. Recent experi-
ments [21], however, suggest the presence of indirect (in recip-
rocal space) excitons associated withK-to-� transitions, where
holes are distributed across both layers, which naturally signifi-
cantly increases the binding energy of these interlayer excitons.

Since the ETM provides a realistic interlayer exciton po-
tential at a low computational cost, it would be interesting to
use this improved potential to revisit the problem of interlayer
excitons, trions, and biexcitons discussed in the literature
[41–43]. This is, however, outside of the scope of this paper
and is left as a goal for future work.

FIG. 8. Difference between ground (1s) and first excited (2s)
exciton states in WS2 as calculated by ETM (black circles), assuming
substrate dielectric constants εs = 7.6ε0 and 3.9ε0. Experimental
values for this system [19] are shown as red triangles.

C. Dielectric screening due to a graphene capping layer

In a recent experiment [19], capping a WS2 monolayer with
multilayer graphene has been proposed as a way to provide
control of the optical gap in the TMDC by engineering of the
dielectric screening of the Coulomb interaction. It has been
shown that the extra screening due to the graphene capping
layer reduces the exciton binding energy, which is verified
by the reduction of the energy difference between 1s and 2s

states, observed as peaks in the reflectance spectrum around
the A-exciton energy range. Although the optical gap of WS2

is redshifted after it is covered with graphene, we point out that
the optical gap is composed of a combination of this binding
energy with the quasiparticle gap, which is also renormalized
(reduced) via the change in the dielectric environment due
to this graphene deposition. The separation between 1s and
2s peaks, however, is unaffected by the quasiparticle gap
renormalization; therefore, its reduction after deposition of
graphene is a measure of the enhanced dielectric screening
of the electron-hole interactions in the WS2 exciton state.

Figure 8 shows the 2s-1s separation for exciton states of
monolayer WS2, as a function of the number of deposited
graphene layers. In order to obtain the correct 2s-1s separation
for bare WS2 as compared to the experiment, we had to assume
a substrate with dielectric constant around 7.6ε0, which is
higher than that of SiO2, the actual substrate in the sample
[19]. The need for such an adjusted dielectric constant for the
substrate may be due to imperfections on the interface between
WS2 and the substrate, which are effectively accounted for in
the modified constant. In fact, assuming the actual dielectric
constant εs = 3.9ε0 for the substrate (blue squares), the separa-
tion is found≈0.22 eV, which is higher than the experimentally
observed ≈0.16 eV (red triangles). We assume each deposited
graphene layer to have a 3.36 Å thickness and the same
dielectric constant as graphite (εg = 10ε0), as required by the
ETM method. As the number of graphene layers increases,
the numerically obtained 2s-1s separation decreases, which
qualitatively agrees with the experimental data, but theoretical
results in the εs = 3.9ε0 case are still significantly higher than
the experimental ones. On the other hand, numerical results
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with the adjusted dielectric constant 7.6ε0 (black circles) are
found with an approximately rigid downshift, thus showing a
very good quantitative agreement with the experimental data
(red triangles). These results validate the ETM method as a
powerful tool to investigate the tuning of exciton peaks in
Coulomb-engineered systems.

IV. CONCLUSIONS

We have proposed a classical (electrostatic) model for
describing the electron-hole interaction potential in few-layer
TMDCs and their vdW heterostructures. With its transfer-
matrix-like structure, the method developed here is easily
manipulated to calculate the screened electron-hole interaction
potential in any combination of TMDCs layers and substrates
for either spatially direct (intralayer) or indirect (interlayer)
excitons. We verify this method correctly converges to the
standard effective potential of Rytova and Keldysh in the limit
of small thickness and large differences between dielectric
constants. It also yields the ordinary Coulomb potential for
an interlayer electron-hole interaction if the layers in which
the charges are confined are separated by a large distance.
A comparison between the proposed electrostatic transfer
matrix method and the recently developed ab initio–based
quantum electrostatic heterostructure (QEH) method [15] is
performed, where semiquantitative agreement between results
from both methods is demonstrated. Results from the ETM
method are demonstrated to be very accurate for the exciton
ground state and reasonably accurate (up to 0.01 eV error)
for excited states, in comparison with those from the QEH
method. Worse accuracy is observed in the case of interlayer
excitons in heterobilayers, where the difference in ground state
binding energies may reach 0.02 eV (≈8%). Nevertheless,
by paying the price of somewhat lower accuracy, the ETM
method requires much lower computational overhead and an
input based only on the dielectric constants of the bulk parent
materials, in contrast to the input required by DFT-based
methods. By providing a facile and inexpensive means of
obtaining the interaction potential, the ETM proves to be

a powerful tool for calculations where interactions between
charges need to be computed numerous times, such as in
diffusion and variational Monte Carlo based techniques for
studying many-particle states, such as trions and biexcitons in
2D materials [20,38,45–47].

Interlayer exciton binding energies are found to be around
≈250–300 meV, which is substantially lower than those of
intralayer excitons in monolayer TMDCs, ≈550 meV [9]. This
result is of importance in the interpretation of photolumines-
cence peaks in experiments involving vdW heterostructures.
We have also successfully applied our method in the modeling
of recently observed Coulomb engineered exciton states in
WS2 capped by few-layer graphene [19].

We believe the fast and highly adjustable method developed
here will be of use for verification, interpretation, or prediction
of excitonic peak positions in future experiments involving
light-matter interactions in vdW stacks of layered materials.
Work using the ETM approach to investigate excitons in
interlayer situations is currently under way.

Note added. Recently we became aware of two related
studies with some overlap with the discussions in the present
paper: Ref. [48] focuses on the effect of the dielectric envi-
ronment on the optical and electronic properties of monolayer
MoS2, whereas Ref. [49] calculates band-gap renormalization
of a TMDC from the monolayer to the bulk limits, combining
the bulk DFT-obtained dielectric tensor and a massive Dirac
fermion model.
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