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Optimal capacitated ring trees

Alessandro Hill and Stefan Voß

A. Hill, Department of Engineering Management, University of Antwerp, Prinsstraat
13, 2018 Antwerp, Belgium, alessandro.hill@uantwerpen.be

S. Voß, Institute of Information Systems (IWI), University of Hamburg,
Von-Melle-Park 5, 20146 Hamburg, Germany, stefan.voss@uni-hamburg.de

Abstract. We study a new network design model combining ring and
tree structures under capacity constraints. The solution topology of this
capacitated ring tree problem (CRTP) is based on ring trees which are
the union of trees and 1-trees. The objective is the minimization of edge
costs but could also incorporate other types of measures. This overall
problem generalizes prominent capacitated vehicle routing and Steiner
tree problem variants. Two customer types have to be connected to a dis-
tributor ensuring single and double node connectivity, respectively, while
installing optional Steiner nodes. The number of ring trees and the num-
ber of customers supplied by such a single structure are bounded. After
embedding this combinatorial optimization model in existing network
design concepts, we develop a mathematical formulation and introduce
several valid inequalities for the CRTP that are separated in our exact
algorithm. Additionally, we use local search techniques to tighten the ob-
tained upper bounds. For a set of literature-derived instances we consider
various reliability scenarios and present computational results.

Keywords: capacitated ring tree problem, Steiner tree, ring tree, vehi-
cle routing, survivable network design, integer programming

1 Introduction

In supply network design as well as telecommunications, the graph class of trees
is widely used as a base structure to model optimization problems. Typically,
a set of specified customer nodes has to be connected to a central distributor
by a selection of supply edges for which individual installation costs apply. In a
natural way there exists a tree that minimizes the overall connection costs when
considering this basic setting. The determination of such a tree is well known as
the spanning tree problem (SPTP). However, many real-world networks would
allow the establishment of links that do not necessarily connect two customers
directly, but utilize optional intermediate nodes. The usage of these Steiner nodes
might be either essential for the network connectivity, result in an overall cost
reduction or be non-advantageous. Although providing a broader applicability,
the resulting well-known Steiner tree problem (STP) [32] is more challenging as
its complexity is known to be NP-hard.



A crucial requirement for the design of networks in various applications is
the ability to provide reliable service to the customers. Even after a link failure
due to technological or environmental reasons the customer connectivity might
be highly desirable in the remaining network. Since trees can be characterized
as graphs in which two nodes are connected by a unique path, any missing
link disconnects the network. To overcome this weakness, the ring structure has
proven to be a suitable option because of its 2-connectivity property: after the
removal of any single edge the graph is still connected.

The model that we introduce in this work fills a gap in the existing literature.
We bring together the tree structure and the ring structure under additional
capacity constraints. In this capacitated ring tree problem (CRTP) we are given
two categories of customers that have to be connected to a central distributor
by using optional Steiner nodes. We say customers are of type 2 if they require a
link-failure reliability with respect to the distributor, sometimes also called 1+1
protection. The remaining customers are labeled as of type 1 and need simple
connectivity. Albeit, the latter might be equipped with additional reliability if
this is favorable in terms of the overall network cost. We want to find a set of
rings that intersect in the distributor node and contain all type 2 customers.
At the same time the remaining type 1 customers have to be connected to
these ring structures by forming trees or be ring nodes themselves. Such an
individual structure that is connected to the distributor, either a pure tree or a
ring with its attached trees, is called a ring tree. We impose two capacity limits
on the resulting network: the number of these ring trees as well as the number
of customers in such a ring tree are bounded. We allow these ring trees to be
pure trees that are directly attached to the distributor but count each incident
non-ring edge as one ring tree. The objective is to minimize the overall costs for
the installed edges. Fig. 1 illustrates a solution for the CRTP implementing four
ring trees.

To the best of our knowledge the modeling of this advanced ring extension
structure under capacity constraints has not been explicitly considered in the
literature so far. By allowing the assignment of trees to rings in the CRTP
we present the first research approach into this direction. A major strategical
planning feature of these models is the anterior two-type categorization of the
customers. Ring tree problems find applications in the design of telecommu-
nication networks. The CRTP can be used in local access network design, for
modeling backbone networks or even combining these levels. It can be used to
integrate ring-based reliability in recent real world applications which are based
on Steiner trees [12]. In transportation network planning we can represent ship
routes by rings and simultaneously model the inter-modal freight distribution
networks from their ports of call. Here we see another particular strength of the
model in the ability of linking two strategical levels.



Fig. 1: A solution for a capacitated ring tree problem based on 4 ring trees (3 of
which are 1-trees and one is a tree).

Given the above exposition, the idea of this work is to provide a new type
of problem, the CRTP, which allows for generic treatment and extended un-
derstanding of developing new algorithmic approaches for the CRTP as well as
some of the arising subproblems. This paper is structured as follows. In Section 2
we relate our new model to existing concepts in the greater network design lit-
erature. A formal definition of the CRTP is presented in Section 3 with the
notation used throughout this work. In Section 4 we present our mathematical
formulation on which the exact algorithm is based. Along the description of our
exact algorithm in Section 5 we develop valid inequalities and show in detail how
these can be separated. In our computational study we apply our algorithms on
literature-derived test instances for di↵erent reliability scenarios. The results and
an analysis of the impact of reliability variation are provided in 6. We close with
our conclusions in Section 7.

2 Related models

In this section we show the originality of the CRTP by summarizing relationships
to existing related network design models. We focus on the models with an overall
edge cost minimization objective function and do not address various extensions
such as price-collecting problems or revenue maximization. Figure 5 illustrates
the relationships between the models mentioned in the following. In addition
to the 1-connectivity required for type 1 nodes and the 2-connectivity for the
type 2 nodes, we denote the optional Steiner node usage as a 0-connectivity
requirement.



2.1 Ring models

The ring component of the CRTP is used in classical capacitated vehicle routing
problems (VRPs) to represent vehicle routes. The CRTP reduces to a VRP with a
homogeneous vehicle fleet and constant customer demands in the case of no type
1 customer presence. As a consequence, the CRTP generalizes the prominent
travelling salesman problem (TSP) asking for a Hamiltonian cycle of minimal
total edge costs. The Steiner travelling salesman problem (STSP) [21] asks for a
cost minimal tour in which an edge may be traversed multiple times as illustrated
in Figure 2. Moreover, we pay the edge cost for each of the edges in a solution
network, which is generally not a simple graph. For a set of predefined clusters
the generalized travelling salesman problem (GTSP) [6] asks for a ring that just
includes one node of each cluster rather than all of them. Figure 2 illustrates
such a non-spanning tour. In contrast to most routing models we allow Steiner
nodes when designing ring trees in the CRTP. A collection of related vehicle
routing models and existing exact algorithms can be found in [4].

Fig. 2: A generalized travelling salesman tour (left) and a solution for the Steiner
travelling salesman problem (right).

2.2 Tree models

The CRTP generalizes the capacitated minimum spanning tree problem (CSPTP)
with unit node demands. The CSPTP asks for a minimum spanning tree in which
the sum of given node demands in each subtree induced by an edge incident to
the distributor is bounded by �. A CSPTP can be formulated as a CRTP when
setting the limit on the number of ring trees to infinity, bounding the customers
per ring tree by � and labelling all its non-distributor nodes as type 1 customers.



A survey on heuristics for related problems can be found in [2]. The minimum
capacitated Steiner problem (CSTP) shares the cardinality constraints but allows
the usage of Steiner nodes in the network. We note in passing that an explicit
consideration of the CSTP is somewhat lacking in literature. When even relaxing
the ring tree capacity constraints, this problem is equivalent to the STP.

2.3 Ring star models

A ring that is extended by single node assignments is known to follow the ring
star pattern ([19]) as illustrated in Figure 3. Each node either belongs to a ring or
is a leaf node of degree 1. An e�cient layout then usually means the interlinkage
of customers to a central distributor by (disjoint) ring stars such that the overall
edge costs are minimized. Due to practical requirements capacity limits may
apply to the number of customers per ring star or the number of installed ring
stars ([3]). In this capacitated ring star problem (CRSP) the customers that are
allowed to be assigned to rings are given in advance and are therefore of type
1. The CRTP goes beyond this idea by replacing single customer assignments
by assignments of trees but does not generalize the CRSP. In ring star problems
the allowed assignments of customers to the rings are commonly the result of a
previous optimization-based modeling step. Once a solution is at hand, the actual
assignment is realized by the installation of a shortest path from the assigned
type 1 customer to its chosen ring supplier. Multiple such paths are possibly
implemented by a combining tree structure as illustrated in Figure 3. Hence,
the optimization potential is fully utilized in the CRTP by the integration of
the design of the type 1 customer assignment structures into the overall model.
With an increasing rate of the latter customers we magnify the overall cost saving
potential compared to the described two-step approach.

In the travelling purchaser problem (TPP) [28] a cost-e�cient tour has to
be designed to purchase required products at selected markets. These products
can be obtained from various markets at di↵erent prices. A decision to purchase
a certain product at a market on the route can be interpreted as a product
assignment to a route that includes this market, resulting in a ring star structure.
In [11] an extension is considered in which the tour length as well as the number
of assignments per market are restricted. However, in the TPP the assignable
products cannot be tour nodes whereas a type 1 customer can be a ring node in
the CRTP and the CRSP, respectively.

2.4 Survivable network design

Requiring a certain degree of connectivity between network nodes is the ba-
sic concept in survivable network design problems (SNDPs). The survivability
of a node is either measured by the number of edge-disjoint paths to the re-
maining network or the stronger node-disjoint paths. In the CRTP these un-
derlying connectivity requirements with respect to the distributor are of order
0, 1 and 2, depending on the node type. They are typical for low connectivity
constrained survivable network design problems ([31],[8]). However, the CRTP



Fig. 3: A CRTP approximating ring star network (left) and its realization using
the ring tree structure (right).

enforces a ring tree topology whereas SNDP models do not restrict the obtained
network structure as long as the connectivity requirements are fulfilled. Figure 4
gives examples for optimal SNDP topologies that result from the given surviv-
ability requirements and the edge cost structure. Related models, polyhedral
results and solution methods can be found in [31] and [17]. Due to its rather
generic survivability requirement, special cases including regular survivability
and bounded survivability got particular attention. Some results with a special
focus on low redundancy are summarized in [7]. The numerous suitable appli-
cations for SNDP-based models motivated their extensions to design networks
that satisfy various supplementary requirements. These additional restrictions
are largely of capacity-bounding type which reflect technological or business
limitations. Well-established representatives are node degree constraints, hop
constraints, diameter constraints, node/edge supply capacity constraints, cardi-
nality constraints, mesh constraints and their combinations. In [8] the authors
introduce a capacity constraint on the number of customers on the rings in a two-
connected network to bound the rerouting distances in the case of a link failure.
Several network design models can be considered as SNDPs with imposed ca-
pacity constraints. Figure 5 summarizes the major problems and problem classes
discussed in this section. It also puts the CRTP into perspective.



Fig. 4: SNDP solution topologies for SNDlib instances ZIB54, DFN-GWIN and
SUN [27].

Fig. 5: The capacitated ring tree problem and related literature network design
models.



3 The capacitated ring tree problem

Before giving a formal definition of the capacitated ring tree problem we intro-
duce the base topology of the CRTP in a graph theoretic manner. Throughout
this work we denote the node set of a graph G as V [G], its set of edges by E[G]
and the arc set by A[G] if G is directed. Recall that a 1-tree can be characterized
as a connected undirected graph containing a unique cycle.

Definition 1. A ring tree is a connected graph containing at most one cycle.

In other words, a ring tree is a connected graph Q with at most |V [Q]| edges.
Therefore, the graph class of ring trees is the disjoint union of trees and 1-trees.
Since the class of cycle graphs is included in 1-trees, ring trees generalize both,
rings and trees. We recall that 1-trees have been proven useful for deriving lower
bounds and solution techniques for the classical TSP [13].

Fig. 6: Some ring trees and their fundamental subcycles.

Given a tree T we can create (|V [T ]|2 � |V [T ]|)/2 � |E[T ]| distinct subcycles
in T by the insertion of single chords which are called the fundamental cycles.
Figure 6 depicts examples for the ring tree structure and fundamental cycles.
Similarly, we can define a directed ring tree as a directed graph that is either an
arborescence or the union of a directed (fundamental) cycle C and arborescences
rooted in V [C].

Definition 2. We are given an undirected complete simple graph G. Its node set
is the disjoint union of type 1 customers, type 2 customers and Steiner nodes,
complemented by a distributor node: V [G] = U

1

[̇ U
2

[̇ W [̇ {d}. Each edge
e 2 E[G] is associated with a non-negative weight c

e

. Let a ring tree limit m
and a customer per ring tree limit q be given. For a set of ring trees S = {Q

1

✓
G, ..., Q

k

✓ G} we denote the network graph by N
S

= (
S

Q2S

V [Q],
S

Q2S

E[Q]).
S represents a solution for the CRTP if

• each type 1 customer is contained in exactly one ring tree,
• each type 2 customer is contained in exactly one ring tree’s fundamental
cycle,



• each Steiner node is contained in at most one ring tree,
• the number of ring trees k is at most m,
• the number of customers in a ring tree does not exceed q, and
• for each ring tree, d is either a degree-two cycle node or a leaf if no funda-
mental cycle is present.

The CRTP asks for a solution of minimal total cost, i.e. minimized sum of edge
costs

P
e2E[NS ]

c
e

.

Note that following our definition of the CRTP we allow the direct assignment
of trees to the distributor. It is easy to see that requiring every distributor-
outbound structure to link back to it would favor solutions containing Steiner
rings which we want to avoid here. We assume that the distributor has the same
capacity consumption through a tree serving a certain number of customers as it
has by a ring (tree) with equally many customers. When applying the customer
limit we consider each tree induced by an edge incident to d individually. Some
ring-based models require m to be met exactly (e.g. [3]), which we relax here for
the sake of overall cost e�ciency. We define U to be the set of customers U

1

[U
2

that require to be contained in a solution and assume that mq > |U | since the
CRTP instance is obviously infeasible. The NP-hardness of the CRTP follows
from its reducibility to the TSP, for instance. Fig. 1 above illustrates a solution
for the CRTP.

4 Mathematical formulation

We present a mathematical model for the CRTP that is based on a directed
network representation. Since non-compact formulations were shown to be com-
putationally more e�cient than flow-based formulations in many cases (e.g.[3])
we propose a 2-index cut set formulation. Advanced branch & cut techniques for
an e�cient algorithm are developed in the next section. As concluded in [22], the
LP lower bounds obtained by a directed formulation of the Steiner tree problem
are at least as good as their counterparts from the undirected case. Similarly,
this holds for directed formulations of vehicle routing problems. Therefore, we
formulate the CRTP based on the complete orientation of G, denoted by H. The
resulting forward and backward arcs are assigned the cost of the corresponding
edge in E[G]. We search for a solution based on directed ring trees which can
be transformed into a solution of the CRTP by definition. A binary variable
x
a

indicates whether an arc a is used in such a directed representation. The
installation of a forces a corresponding binary edge variable y

e

to take value
1. A continuous flow variable f

a

2 [0, 1] takes value 1 if the arc a is part of a
directed ring and 0 otherwise. Our directed formulations might also be used for
an asymmetric capacitated ring tree problem (ACRTP) that we will not further
investigate in this paper. The CRTP can be formulated as a Steiner arborescence
problem with additional side constraints. To achieve this, artificial sink nodes
have to be introduced that represent terminals for the arborescence rooted in



the distributor whenever a directed path is closed to a ring. However, we de-
cided to develop a separate model for the CRTP without such a reformulation
to underline its importance in its own right.
In our mathematical formulation we occasionally use ij to denote an arc (i, j)
for the sake of simplified notation. For two disjoint node sets X,Y ⇢ V [H] in
a directed graph H, we define ��

Y

(X) = {(i, j) 2 A[H] : i 2 X, j 2 Y } and
�+
Y

(X) = {(i, j) 2 A[H] : i 2 Y, j 2 X}. If clear from context we may omit
to mention Y in the case that V [H] \ X ✓ Y . For X = {i}, i 2 V [H], we
may use ��

Y

(i) and �+
Y

(i), respectively. We also use X(Y ) = X \ Y for denoting
intersecting sets, as for example the customers U(S) in a node set S ✓ V [G].

min
X

e2E[G]

c
e

y
e

(1)

s. t.
X

a2�

�
(S)

x
a

> |U(S)|
q

8 S ⇢ V [H] \ d, (2)

X

a2�

�
(i)

x
a

= 1 8 i 2 U, (3)

X

a2�

�
(i)

x
a

6 1 8 i 2 W, (4)

X

a2�

�
(d)

x
a

6 m, (5)

x
ij

+ x
ji

= y
ij

8 {i, j} 2 E[G], (6)

X

a2�

�
(i)

f
a

=
X

a2�

+
(i)

f
a

. 8 i 2 V [H], (7)

X

a2�

�
(i)

f
a

= 1, 8 i 2 U
2

, (8)

0 6 f
a

6 x
a

8 a 2 A[H], (9)

x
a

2 {0, 1} 8 a 2 A[H], (10)

y
e

2 {0, 1} 8 e 2 E[G]. (11)

Our cut set formulation is based on binary arc variables x
a

for the arcs
in A[H]. The assignment constraints (3) ensure an in-degree equal to one for
each customer, whereas the capacity constraints (4) limit the inbound arcs to
one for each Steiner node. The capacitated connectivity constraints (2) bound the
number of customers per ring tree to q. We model an underlying single commodity
flow (SCF) structure by arc flow variables f

a

and (in)equalities (7), (8) and (9).
Since we consider directed ring trees, inequality (5) is su�cient to limit the
number of ring trees to m. To obtain a simple undirected solution network and



identify its edges we implement the variable linking equalities (6). When q = |U |
and U

2

= ; the right hand sides of (2) is bounded by 1, leading to a well-known
cut set formulation for the STP. If q = |U | and U

1

= W = ; then we obtain
a corresponding model for the TSP. Although we are just dealing with a total
of 3|E[G]| variables we are faced with an exponential number of constraints of
type (2). The objective 1 measures the network cost of by summing up the costs
of installed edges.

A CRTP variant that considers a di↵erent cost function for edges on funda-
mental cycles than for edges of attached trees can be modeled by modifying the
objective. Let cr

e

be the cost of a ring edge e 2 E[G] and ct
e

0 the cost of an edge
that is connected to d by a unique path in a solution. Then the total cost of
a ring tree design can be measured by replacing (1) by the following objective
function.

X

e={i,j}2E[G]


cr
e

(f
ij

+ f
ji

) + ct
e

(y
e

� f
ij

� f
ji

)

�
. (12)

5 Exact solution techniques

In this section we develop an e�cient branch & bound algorithm based on our
non-compact mathematical formulation in Section 4. An emphasis is put on
bound-tightening, which we achieve by CRTP specific cutting techniques and
solution polishing. These two matters are crucial for the e�ciency of a math-
ematical programming based approach as extensively discussed in the litera-
ture (e.g. [23]). For various hard combinatorial optimization problems the most
competitive algorithms rely on the application of sophisticated cutting planes
combined with e�cient primal heuristics.

5.1 Strengthening the lower bounds

In the following we present valid inequalities and corresponding separation tech-
niques in order to improve the lower bounds during the branch & cut algorithm.
Due to the specific CRTP topology we combine cutting planes based on ideas
from network design models for trees and vehicle routing. In the special cases
that U

2

= ; or U
1

= ; some of our valid inequalities collapse to equivalent ones
for the STP or the VRP, respectively. Let LP denote the linear program obtained
after relaxing the integrality of variables x and y in our formulation. We consider
an optimal fractional arc solution for the LP-relaxed subproblem in the branch
& bound tree as the assignment of values x⇤ : a 2 A[H] ! [0, 1] and f⇤ for
the ring flow, respectively. Such a typical solution combines characteristics from
the Steiner tree problem with VRP typical subtours as depicted in Figure 7.
For a more convenient formulation of the inequalities we introduce a continuous
auxiliary ring node variable z

i

for each node i 2 V [H] \ {d} that identifies i as a
fundamental cycle node. These variables are linked to the node’s total inbound
ring flow as follows.



Fig. 7: A typical solution of a LP-relaxed CRTP in the directed formulation
(x⇤

a

|f⇤
a

).

z
i

=
X

a2�

�
(i)

f
a

8 i 2 V [H] \ {d}. (13)

Inasmuch as z
i

= 1 holds 8 i 2 U
2

we are more interested in the connectivity of
type 1 customers and Steiner nodes with respect to d. Optimal ring node values
complementing x⇤ and f⇤ are denoted by z⇤. The di↵erent node types in the
CRTP give rise to various cut arc configurations for a given node subset. We
refer to the illustration in Figure 8 along our descriptions.

Ring flow inequalities The inequalities (9) that link the ring flow to the ring
arc variables can be further tightened for mandatory cycle nodes through (14).

f
a

= x
a

8 a 2 ��(i), i 2 U
2

[ {d}. (14)

In the CRTP we even allow non-type-2 nodes to obtain double connectivity by
being a ring node. In terms of our formulation such a node i 2 U[W is equipped
with reliability if there is ring flow entering i, i.e. z

i

> 0. If this is the case then
the cycle structure requires a unique subsequent ring node on i’s ring. Thus there
is at most one natural ring node (type 2 customer or distributor) connected by
an arc from i. X

a2�

+
U2[{d}(i)

x
a

6 z
i

8 i 2 V [H] \ d. (15)

To avoid reverse ring flow we can require the outbound ring flow from j to nodes
in V [H] \ i to be at least the ring flow f

ij

on each arc (i, j) 2 A[H].

f
ij

6
X

a2�

+
V [H]\{i}(j)

f
a

8 (i, j) 2 A[H]. (16)

Since there are |A[H]|2 such inequalities (16) we separate them dynamically by
a straightforward arc search.



Fig. 8: A CRTP cut set and examples for the various types of intersections with
ring tree structures considered by cutting planes.



Connectivity inequalities The following inequalities are also well-known as
subtour elimination constraints and impose a unitary lower bound on the right
hand side of (2).

X

a2�

�
(S)

x
a

> 1 8 S ⇢ V [H] \ d : i 2 S, 8 i 2 U. (17)

To separate (17) for a customer i we compute a directed d � u cut (D,S) of
minimal weight w in H with respect to arc weights x⇤. If w < 1 then we add an
inequality (17) for the cut set S.

Capacitated connectivity inequalities Instead of inequalities (2) we add
the stronger capacitated connectivity inequalities.

X

a2�

�
(S)

x
a

> |U(S)|
q

8 S ⇢ V [H] \ d. (18)

In fact, we can even assume that the sum of the inbound arc variable values is
integer to get dominating rounded versions.

X

a2�

�
(S)

x
a

>
⇠
|U(S)|

q

⇡
8 S ⇢ V [H] \ d. (19)

The separation of (18) requires the computation of a minimal d � s cut (R,S)
in a directed auxiliary graph H�

1,2

with node set V [H�
1,2

] = V [H] [ {s} and arc

set A[H�
1,2

] = A[H] [ {(i, s) : i 2 U}. An arc (i, s) has weight 1/q 8i 2 U and
the remaining arcs have weight f⇤

ij

. S is a violating cut set if the obtained cut
weight is less than |U |/q.

Capacitated ring tree multi-star inequalities Furthermore, we introduce
several capacitated ring tree multi-star inequalities for the CRTP which gener-
alize (2). For a set of nodes S not including d, we additionally estimate the
number of distinct customers in U \ S that are connected to a node in S to
ensure a su�cient number of arcs entering S. Due to the (ring) tree topology
such a customer can be incident to multiple arcs in ��

U\S(S). Hence counting all
these inbound customer arcs generally results in an overestimation of the number
of inbound customers. Nevertheless, we can give a lower bound on the inbound
customers for a given a subset X of S by calculating the inbound customer ring
flow

P
a2�

�
(X)

f
a

. Moreover, for each type 2 customer i 2 X(S) we can replace
an in-flow variable f

ji

by the in-arc variable x
ji

. At the same time we obtain a
lower approximation by using the fact that the out-degree of a customer node is
at most q. Thus we can sum over all the inbound customer arc variables while
correcting by dividing through this decremented ring tree customer capacity
q�1. These two arguments are combined in the following inequalities on X ✓ S



and its complementary set S \X.

X

a2�

�
(S)

x
a

> 1

q

✓
|U(S)|+

X

a2�

�
U\S(X(U2(S)))

x
a

+
X

a2�

�
U\S(X(S\U2)))

f
a

+
1

q

X

a2�

�
U\S(S\X)

x
a

◆

8 X, S ⇢ V [H] \ d

(20)

These inequalities are similar to partial multi-star inequalities known for the
VRP. We are able to e�ciently separate these CRTP specific inequalities for a
fixed setX ⇢ V [H]\d. The separation of inequalities (20) is based on the minimal
cut computation for (18) with modified arc costs inH�

1,2

. We set the weight for an
arc a 2 U⇥U

2

(X) to (1�1/q)x⇤
a

and for a 2 U⇥(X \U
2

) to x⇤
a

�f⇤
a

/q using the
fact that f⇤

a

6 x⇤
a

. The arc weight for a 2 U⇥(V [H]\X) is (1�1/q2)x⇤
a

. The sets
we selected are inspired by the cut arc node type combinations illustrated in Fig-
ure 8. More precisely, we enforce (20) for X ✓ {

S
L2P

L : P 2 P({W,U
1

, U
2

})}
resulting in at most eight di↵erent types of inequalities. When adding such a cut
we can replace the maximal out-degree q by min{q, |S|} and if S \ W = ; by
min{q � 1, |S|}.
An alternative way to strengthen (2) is to count arcs leaving S towards cus-
tomers not in S since they consume capacity. Actually, even a non-ring arc (i, j)
in �+

W

(S) implies at least one more customer since there exists an optimal so-
lution without Steiner leave nodes. However, this customer might be already
incorporated as a node in S. Such potential ears with respect to S are the rea-
son that we cannot relate inbound and outbound arcs at the same time. In
contrast to (20), every customer that is reached from S can be counted without
approximation as follows.
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�
(S)

x
a

> 1

q

✓
|U(S)|+

X

a2�

+
U\S(S)

x
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◆
8 S ⇢ V [H] \ d (21)

Note that the separation of inequalities (21) is NP-hard since it is equivalent to
finding a directed cut of maximal weight.

Rounded ring tree multi-star inequalities Although rounding the right
hand side of (21) results in further dominating valid inequalities, the constraint
linearity would be violated. So we use the techniques from [3] to derive linear
inequalities through an estimate as follows. Lemma 1 of [3] states that for integers
(↵,�, �) 2 N3 with ↵ > � > 0 and ↵ mod � 6= 0 the inequality d↵��

�

e >
d↵

�

e � �

↵ mod �

holds. We use this after rewriting the summation terms for the

case that |U | > q and |U | mod q 6= 0. Note that if |U | 6 q then we deal with an



instance that is e↵ectively uncapacitated.
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8 S ⇢ V [H] \ d : S 6= ;.

(22)

The partial multi-star inequalities (21) and (22) cannot be separated polynomi-
ally [20]. Therefore, we check whether any of these is violated by any cut set
identified in a previous separation procedure and eventually add it.

Ring closure inequalities Compared to (2) the following inequalities ensure
type 2 customer connectivity towards d in our directed formulation.

X

a2�

+
(S)

f
a

> 1 8 S ⇢ V [H] \ d : i 2 S, 8 i 2 U
2

. (23)

Inequalities (23) can be adapted to be applicable to nodes of type 0 and 1. Since
such a node i is not a ring node of necessity, we express the constraint based on
the optional ring flow z

i

through i.
X

a2�

+
(S)

f
a

> z
i

8 S ⇢ V [H] \ d : i 2 S, 8 i 2 U
1

[W. (24)

The separation of (23) and (24) is done by minimal i�d cut computations in H
using arc weights f⇤. The violation of the first inequality is detected as for (17)
and we add (24) if the obtained cut weight is lower than z⇤

i

.

Capacitated ring closure inequalities The connectivity requirement in in-
equalities (23) can be extended to capacitated ring closure inequalities that take
into account the ring tree capacity q when imposing necessary rings.
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q

8 S ⇢ V [H] \ d. (25)

After rounding the constant term as in(19) we obtain rounded capacitated ring
closure inequalities.
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8 S ⇢ V [H] \ d. (26)



Inequality (25) is separated by the computation of a minimal s� d cut S,D on
the directed auxiliary graph H+

2

with V [H+

2

] := V [H][ {s} and additional arcs
from s to all the type 2 customers: A[H+

2

] := A[H][{(s, i) : i 2 U
2

}. The weight
of an arc (i, j) 2 A[H+

2

] is 1/q if i = s and else x⇤
ij

. The cut set S violates (25)
if the cut weight is less than |U

2

|/q. Furthermore, we can take into account type
1 ring customers in S since they consume ring tree capacity, too. They can be
identified by the conveyed ring flow z

i

8i 2 U
1

. Therefore, inequalities (25) are
generalized by stronger inequalities (27) that count the number of type 1 ring
nodes based on the ring flow.
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We separate them on the graphH+

1,2

which is obtained fromH+

2

by extending the

arc set to A[H+

1,2

] = A[H+

2

][{(s, i) : i 2 U
1

} with arc weights z⇤
j

8(s, j) 2 s⇥U
1

.
A s � d cut weight less than (|U

2

| +
P

j2U1
z⇤
j

)/q indicates that S is a cut set
that violates the inequality the most. We note that an alternative separation
technique can be derived by expressing z

i

as
P

a2�

+
(i)

using (7) and modifying

the corresponding arc costs in H+

2

.

Capacitated ring closure multi-star inequalities To ensure ring-to-distributor
connectivity we take into account a unitary capacity consumption for each arc
from a ring node in S to a customer in V [H] \S. This does not hold for an arbi-
trary node in S since the connected customer outside of S is not necessarily part
of a ring that intersects with S. However, we can tighten the capacitated ring
closure inequalities (27) by a similar counting argument. We utilize the ring flow
information to count the number of customers outside of S that are connected
from ring nodes in S as follows.
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To derive an even tighter version of (28) we first rewrite the introduced outbound
customer ring flow term as
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.
(29)

We observe that values of the ring flow variables in the last summation term
will be equal to the corresponding arc variable values by (14). The second term
counts the customers in U \ S that are connected from type 2 customers in
S by ring arcs. In fact every customer that is connected from a type 2 node
consumes capacity of a ring tree that requires a fundamental cycle. Thus we can
exchange the summation flow variables f to arc variables x for this term as well.
Unfortunately, this argument can just be applied conditionally to the first sum.
More precisely, we cannot count an outbound arc (i, j) since we do not know



whether the originating node i 2 S is connected to a ring. This lifting procedure
on the right hand side of (28) yields the following right hand side.
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(30)

The separation procedure for inequalities (28) can be deduced from (23) and (27).
An arc a 2 A[H+

1,2

] has weight (1� 1/q)f⇤
a

if a 2 (U [W )⇥U and f⇤
a

otherwise.
We extend this by include an approximating component to reflect (30). Thereby,
the weight of an arc a 2 U

2

⇥U of H+

1,2

is set to max{0, f⇤
a

� x⇤
a

/q} based on the
suggested variable exchange. So far we tried to enforce connectivity from ring
nodes to the depot. Conversely, we are able to formulate capacitated inequalities
that ensure su�cient inbound ring flow for a cut set as follows.
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(31)

The separation procedure can be adapted from (28) including (30) on H�
1,2

which
we will not elaborate here. The obtained types of ring closure inequalities all
together ensure a certain outbound connectivity of S whereas the various ring
tree inequalities target su�cient inbound connectivity in a similar way. However,
we remind that due to the ring tree structure we will not be able to match the
number of arcs entering such a cut set S with the order of the leaving arcs in
general.

5.2 Strengthening the upper bounds

In a branch & bound algorithm it is crucial to generate tight upper bounds that
are used for pruning. During the initial branching process integer feasible CRTP
solutions are found scarcely and are at best of moderate quality. Therefore, we
compute an integer-feasible start solution in our algorithm using a multi-start
local search heuristic as described in [14]. Based on several construction strate-
gies various single and multi ring tree exchange neighborhoods are explored to
identify potential improvements. Ties can be broken by reusing these techniques
for a CRTP specific solution polishing to optimize solutions found during the
exact method. Consequently, each time an integer feasible solution is found we
perform local search and if this results in an improved solution we replace the
incumbent.

5.3 Cut management

In our algorithm we add (14) and (15), separate (16), (17), (20) and (28). Inequal-
ities incorporating (30) are separated heuristically as explained in the previous



subsection whereas (21), (19), (26) and (22) are added if violated for any of the
obtained cut sets. In addition to these inequalities we include constraints in our
initial model which do not improve the theoretical lower bounds computed by
solving the LP but in practice speed up the overall solution process.
Since customers of type 2 are required to be ring nodes and Steiner leave nodes
cannot improve a solution, we add (32). These inequalities are implied by (23)
and (3). X

a2�

+
(i)

x
a

>
X

a2�

�
(i)

x
a

8 i 2 U
2

[W. (32)

We additionally add inequality (28) for S = U
2

to the initial model. Further-
more, we add inequalities (19) for S = V [G] \ {d} and S = {v} 8 v 2 V (G) \ d.
Besides our own CRTP-specific cutting techniques we activated the solver’s in-
ternal cutting routines that implement common cuts. Various experiments with
the di↵erent branching strategies using di↵erent prioritizations of arc and edge
variables have shown that the pseudo cost branching is most e↵ective for our
instances.
We let the CPLEX-internal cut management decide whether to purge added cuts
if convenient. However, integrality enforcing cuts of type 19 and capacitated ring
closure cuts 28 are forced to stay in the model.

6 Computational study

In our computational study we follow two objectives. On the one hand we give
results of our exact branch & cut algorithm and compare them to the results of
our heuristic solution approach from [14]. On the other hand we consider various
reliability scenarios and draw some conclusions about the cost of reliability in
terms of overall costs and computational e↵ort.

6.1 Implementation details

The algorithms was implemented in C++ using the CPLEX 12.6 branch & cut
framework. Computations were done on an Intel i7-3667U 2.00 GHz processor
unit. CPLEX was set to run in the single thread mode. We searched for an
optimal LP-feasible solution at the root node and generated inequalities for all
violated cuts. In our experiments it turned out that our algorithm performed
better when additionally utilizing the solver cutting techniques. Among the var-
ious branching strategies suggested in the literature, we decided to use a strategy
based pseudo costs which is implemented in the solver.

6.2 Scenarios

Our 675 CRTP instances1 are derived from the 45 class A random instances
generated for the CRSP in [3]. These TSPLib-based instances with 12 6 |U | 6
1 The instances can be obtained from the corresponding author.



100, 3 6 q 6 38 and m 2 {3, 4, 5} also served for computational studies in [15]
and [25]. During our adaptation process we assigned customers to be of type 1
using the following strategies. We prioritized according to their closeness to d
(DC), remoteness to d (DF), closeness to a random customer (RC), remoteness
to a random customer (RF) or performed a random assignment (R). For each
class of obtained instances we use five di↵erent type 1 customer rates: r

1

2
{0, 0.25, 0.5, 0.75, 1}. Note that U

1

= ; and U
1

= U result in a VRP variant and
a CSTP, respectively. The used random seed depends on the CRSP instance and
is constant for its derived CRTP instances. For two instances I and I 0 that are
constructed based on the same strategy with r

1

< r0
1

we have U 0
1

⇢ U
1

. Hence
the optimal values z and z0 obey z > z0. The scenarios are illustrated in Figure 9
for the base instance A30.

6.3 Results

Tables 1, 2 and 3 shows the computational results for selected instances. The
first 8 columns indicate the base CRSP instance, the type 1 customer rate r

1

,
graph details and the capacity bounds. Lower and upper bounds obtained by our
exact method using a one hour time limit can be found in columns lb and ub,
respectively. The root node relaxation objective is given in lb

0

and the primal
bound resulting from the heuristic from [14] can be found in ub

0

. The corre-
sponding computation time (in seconds) and the number of explored nodes in
the branch & bound tree can be found in columns t(s) and nodes, whereas the
lower bound computed in the root node can be found in column lb

0

. The initial
upper bound computed by our heuristic is given in column ub

0

. The run time of
the heuristic procedure never exceeded 25 seconds during our tests.

As expected, the pure tree or ring structured problems can usually be solved
more e�ciently in terms of optimality gap and number of explored nodes. We ob-
served the instances with balanced customer reliability requirements as the most
challenging. Even though we could solve 64% of the purely ring based instances
and all the purely tree based instances to optimality, we proved optimality for
just 31% of the problems with r

1

= 0.5. Our heuristic algorithm from [14] pro-
duced solutions that were optimal for 68% of the instances. Additionally, the
local search techniques polished integer-feasible solutions during the branch &
cut procedure in many cases for the remaining instances. For the entire test set
we obtained an average optimality gap of 2.6%.

6.4 The cost of reliability

We are particularly interested in the e↵ect of increased reliability requirements
on the overall costs. Certainly, di↵erent cost functions as well as parameters such
as the capacity limits m, q and the reliability distribution have a strong impact
on solutions for CRTP instances. Nevertheless, we give some consequences of
reliability parametrization in our di↵erent scenarios based on our solution ap-
proaches. As the ring tree structure suggests, the CRTP solutions can be quite
di↵erent, from pure tree or ring based ones.



Fig. 9: CRTP random instances (left to right: 0, 0.25, 0.5, 0.75, 1 - type 1 cus-
tomer rate; top to bottom: R, DC, DF, RC, RF - type 1 customer assignment
strategy).



Table 1: Results for CRTP instances for reliability expansion scenario (R) and
type 1 customer rates r

1

2 {0, 0.25, 0.5, 0.75, 1}.
Instance r1 |V | |U2| |U1| |W | m q lb0 lb ub ub0 � t(s) nodes

Q-1 1 26 0 12 13 3 5 157 157 157 157 0 2 0

0.75 3 9 207 210 210 215 0 4 4

0.5 6 6 221 227 227 227 0 8 45

0.25 9 3 236 236 236 236 0 3 5

0 12 0 241 242 242 242 0 1 0

Q-2 1 26 0 12 13 4 4 163 163 163 164 0 2 0

0.75 3 9 207 207 207 207 0 2 0

0.5 6 6 233 240 240 240 0 9 118

0.25 9 3 247 249 249 249 0 3 2

0 12 0 251 251 251 251 0 1 0

Q-3 1 26 0 12 13 5 3 170 170 170 173 0 1 0

0.75 3 9 235 242 242 244 0 11 81

0.5 6 6 245 251 251 251 0 4 2

0.25 9 3 278 279 279 279 0 3 0

0 12 0 279 279 279 279 0 1 0

Q-4 1 32 0 18 13 3 7 207 207 207 207 0 1 0

0.75 4 14 249 256 256 256 0 10 97

0.5 9 9 267 274 274 274 0 6 27

0.25 13 5 284 292 292 292 0 12 161

0 18 0 292 301 301 305 0 5 20

Q-5 1 26 0 18 7 4 5 217 217 217 220 0 1 0

0.75 4 14 277 285 285 285 0 17 116

0.5 9 9 304 313 313 318 0 27 128

0.25 13 5 317 334 334 334 0 102 889

0 18 0 334 339 339 339 0 5 26

Q-6 1 26 0 18 7 5 4 227 227 227 231 0 1 0

0.75 4 14 276 278 278 278 0 5 22

0.5 9 9 320 336 336 336 0 67 433

0.25 13 5 353 361 361 361 0 13 73

0 18 0 374 375 375 375 0 2 2

Q-7 1 26 0 25 0 3 10 245 245 245 248 0 0 0

0.75 6 19 283 294 294 294 0 11 135

0.5 13 12 296 313 313 313 0 55 1414

0.25 18 7 312 327 327 327 0 20 501

0 25 0 326 328 328 328 0 1 4

Q-8 1 26 0 25 0 4 7 252 252 252 267 0 0 0

0.75 6 19 300 311 311 315 0 12 132

0.5 13 12 319 345 345 345 0 769 5530

0.25 18 7 342 357 357 357 0 60 754

0 25 0 358 362 362 362 0 1 8

Q-9 1 26 0 25 0 5 6 254 254 254 262 0 0 0

0.75 6 19 307 319 319 322 0 17 150

0.5 13 12 352 369 369 372 0 326 2882

0.25 18 7 369 378 378 379 0 20 296

0 25 0 394 396 396 397 0 2 11

Q-10 1 51 0 12 38 3 5 156 156 156 156 0 16 0

0.75 3 9 181 192 192 196 0 234 32

0.5 6 6 203 215 215 215 0 340 365

0.25 9 3 220 222 222 222 0 9 2

0 12 0 238 242 242 242 0 7 0

Q-11 1 51 0 12 38 4 4 159 159 159 163 0 16 0

0.75 3 9 199 209 209 209 0 89 54

0.5 6 6 226 230 230 230 0 54 34

0.25 9 3 238 238 238 238 0 7 0

0 12 0 250 251 251 251 0 10 0

Q-12 1 51 0 12 38 5 3 170 170 170 172 0 15 1

0.75 3 9 203 203 203 203 0 20 0

0.5 6 6 240 251 251 251 0 508 116

0.25 9 3 271 278 278 278 0 77 46

0 12 0 279 279 279 279 0 11 0

Q-13 1 51 0 25 25 3 10 244 245 245 248 0 28 2

0.75 6 19 279 293 302 305 3.1 3600 2686

0.5 12 13 295 312 312 312 0 2760 2482

0.25 18 7 310 322 322 322 0 858 796

0 25 0 323 328 328 328 0 32 30

Q-14 1 51 0 25 25 4 7 250 252 252 267 0 17 3

0.75 6 19 296 304 304 321 0 583 301

0.5 12 13 327 341 352 352 3.1 3600 2050

0.25 18 7 344 357 357 357 0 1795 1145

0 25 0 355 362 362 362 0 55 29

Q-15 1 51 0 25 25 5 6 254 254 254 262 0 14 2

0.75 6 19 320 331 335 339 1.1 3600 3035

0.5 12 13 348 359 370 372 3 3600 1440

0.25 18 7 360 372 387 387 3.9 3600 1012

0 25 0 344 390 390 397 0 13 9



Table 2: Results for CRTP instances for reliability expansion scenario (R) and
type 1 customer rates r

1

2 {0, 0.25, 0.5, 0.75, 1}.
Instance r1 |V | |U2| |U1| |W | m q lb0 lb ub ub0 � t(s) nodes

Q-16 1 51 0 37 13 3 14 303 304 304 304 0 7 0

0.75 9 28 346 350 375 375 6.6 3600 3745

0.5 18 19 356 364 376 378 3.2 3600 2878

0.25 27 10 366 379 379 380 0 1428 4254

0 37 0 376 380 380 381 0 32 21

Q-17 1 51 0 37 13 4 11 308 308 308 309 0 13 2

0.75 9 28 351 363 363 369 0 3472 2867

0.5 18 19 376 384 399 399 3.8 3600 2361

0.25 27 10 384 396 404 404 1.9 3600 3852

0 37 0 404 410 410 418 0 358 200

Q-18 1 51 0 37 13 5 9 311 314 314 314 0 11 24

0.75 9 28 372 374 408 408 8.2 3600 1239

0.5 18 19 397 401 431 431 7 3600 1700

0.25 27 10 411 417 436 436 4.5 3600 1880

0 37 0 435 446 446 452 0 359 1316

Q-19 1 51 0 50 0 3 19 376 376 376 377 0 1 0

0.75 12 38 407 418 427 436 2.1 3600 5032

0.5 25 25 425 435 445 447 2.3 3600 6217

0.25 37 13 453 451 451 454 0 1953 2396

0 50 0 462 462 462 473 0 1311 1068

Q-20 1 51 0 50 0 4 14 384 384 384 386 0 4 56

0.75 12 38 418 423 458 458 7.7 3600 2236

0.5 25 25 444 448 493 493 9.1 3600 2700

0.25 37 13 464 471 502 502 6.2 3600 4800

0 50 0 480 493 493 513 0 799 2042

Q-21 1 51 0 50 0 5 12 391 390 390 392 0 6 80

0.75 12 38 488 447 491 501 8.9 3600 1474

0.5 25 25 514 478 526 526 9.1 3600 2132

0.25 37 13 489 497 525 525 5.3 3600 3233

0 50 0 506 522 526 541 0.8 3600 5792

Q-22 1 76 0 18 57 3 7 213 214 214 214 0 77 2

0.75 4 14 271 272 272 272 0 624 28

0.5 9 9 282 288 318 318 9.6 3600 268

0.25 13 5 294 303 318 318 4.8 3600 414

0 18 0 320 332 332 332 0 1020 953

Q-23 1 76 0 18 57 4 5 229 233 233 235 0 97 139

0.75 4 14 300 302 309 312 2.1 3600 396

0.5 9 9 333 336 336 336 0 1869 144

0.25 13 5 352 359 369 369 2.8 3600 0

0 18 0 383 386 386 390 0 1710 339

Q-24 1 76 0 18 57 5 4 249 259 259 259 0 223 369

0.75 4 14 314 325 325 325 0 1829 161

0.5 9 9 357 368 379 379 2.9 3600 330

0.25 13 5 395 397 397 397 0 345 3

0 18 0 450 448 448 451 0 2663 370

Q-25 1 76 0 37 38 3 14 252 320 320 320 0 856 9

0.75 9 28 360 363 390 390 6.8 3600 502

0.5 18 19 369 372 402 402 7.4 3600 622

0.25 27 10 384 390 403 403 3.3 3600 607

0 37 0 410 409 409 413 0 2586 1556

Q-26 1 76 0 37 38 4 11 326 326 326 336 0 231 123

0.75 9 28 378 382 402 402 5 3600 372

0.5 18 19 408 410 455 455 9.8 3600 312

0.25 27 10 415 418 460 460 9.2 3600 361

0 37 0 434 446 458 458 2.6 3600 1176

Q-27 1 76 0 37 38 5 9 333 340 340 343 0 539 1379

0.75 9 28 405 407 446 446 8.7 3600 240

0.5 18 19 422 426 473 473 9.9 3600 149

0.25 27 10 443 443 497 497 10.9 3600 223

0 37 0 472 477 506 506 5.6 3600 1110

Q-28 1 76 0 56 19 3 21 382 383 383 395 0 21 7

0.75 14 42 426 427 462 462 7.6 3600 869

0.5 28 28 436 438 477 477 8.1 3600 659

0.25 42 14 451 461 465 472 1 3600 4168

0 56 0 467 476 476 495 0 3600 2353

Q-29 1 76 0 56 19 5 13 388 389 389 402 0 28 14

0.75 14 42 437 441 488 488 9.7 3600 396

0.5 28 28 462 466 520 520 10.4 3600 316

0.25 42 14 487 492 532 532 7.4 3600 610

0 56 0 500 514 535 543 4 3600 1725

Q-30 1 76 0 56 19 5 13 396 399 399 414 0 38 148

0.75 14 42 468 469 533 533 11.9 3600 253

0.5 28 28 492 493 554 554 11 3600 234

0.25 42 14 509 512 558 558 8.2 3600 545

0 56 0 534 546 557 561 1.9 3600 1411



Table 3: Results for CRTP instances for reliability expansion scenario (R) and
type 1 customer rates r

1

2 {0, 0.25, 0.5, 0.75, 1}.
Instance r1 |V | |U2| |U1| |W | m q lb0 lb ub ub0 � t(s) nodes

Q-31 1 76 0 75 0 3 28 473 473 473 478 0 2 0

0.75 18 57 515 516 551 551 6.4 3600 1676

0.5 37 38 532 537 564 564 4.9 3600 1399

0.25 56 19 547 554 564 573 1.8 3600 2800

0 75 0 567 572 572 584 0 230 463

Q-32 1 76 0 75 0 4 21 478 482 482 494 0 8 35

0.75 18 57 530 531 573 573 7.4 3600 539

0.5 37 38 550 552 612 612 9.8 3600 954

0.25 56 19 581 586 618 618 5.2 3600 1640

0 75 0 597 603 626 626 3.7 3600 3890

Q-33 1 76 0 75 0 5 17 482 488 488 495 0 88 456

0.75 18 57 546 552 623 623 11.3 3600 178

0.5 37 38 576 585 623 623 6.1 3600 343

0.25 56 19 598 608 656 656 7.4 3600 522

0 75 0 623 641 674 674 4.9 3600 2358

Q-34 1 101 0 25 75 3 10 274 277 277 282 0 450 20

0.75 6 19 308 314 314 327 0 1760 114

0.5 12 13 332 337 353 353 4.6 3600 323

0.25 18 7 351 356 363 363 2 3600 180

0 25 0 365 366 366 366 0 121 0

Q-35 1 101 0 25 75 4 7 288 289 289 293 0 333 24

0.75 19 6 344 344 367 367 6.2 3600 34

0.5 12 13 367 367 405 405 9.3 3600 60

0.25 18 7 385 385 416 416 7.5 3600 27

0 25 0 407 409 425 425 3.8 3600 362

Q-36 1 101 0 25 75 5 6 295 299 299 299 0 330 47

0.75 19 6 362 361 393 393 8.1 3600 10

0.5 12 13 377 378 403 403 6.2 3600 15

0.25 18 7 406 407 429 429 5.1 3600 17

0 25 0 435 440 452 452 2.7 3600 48

Q-37 1 101 0 50 50 3 19 409 411 411 411 0 410 10

0.75 12 38 457 457 492 492 7.1 3600 9

0.5 25 25 472 473 499 499 5.3 3600 70

0.25 37 13 482 483 503 503 3.9 3600 45

0 50 0 492 493 508 523 2.9 3600 645

Q-38 1 101 0 50 50 4 14 415 415 415 420 0 380 0

0.75 12 38 460 460 480 480 4.1 3600 117

0.5 25 25 484 484 517 517 6.5 3600 43

0.25 37 13 501 501 531 531 5.7 3600 76

0 50 0 521 525 537 537 2.3 3600 223

Q-39 1 101 0 50 50 5 12 422 426 426 443 0 790 67

0.75 12 38 479 481 505 505 4.8 3600 128

0.5 25 25 569 495 527 527 6.1 3600 65

0.25 37 13 523 523 564 564 7.3 3600 49

0 50 0 551 553 574 574 3.6 3600 126

Q-40 1 101 0 75 25 3 28 498 511 511 516 0 840 168

0.75 18 57 554 555 594 594 6.6 3600 223

0.5 37 38 569 570 592 592 3.8 3600 159

0.25 56 19 586 588 612 612 4 3600 220

0 75 0 600 606 606 622 0 2098 916

Q-41 1 101 0 75 25 4 21 500 516 516 519 0 780 112

0.75 18 57 560 558 595 595 6.2 3600 40

0.5 37 38 583 582 607 607 4.2 3600 141

0.25 56 19 600 603 619 619 2.6 3600 177

0 75 0 623 624 639 642 2.3 3600 532

Q-42 1 101 0 75 25 5 17 521 522 522 529 0 93 85

0.75 18 57 584 584 653 653 10.6 3600 20

0.5 37 38 597 598 645 645 7.3 3600 189

0.25 56 19 623 622 670 670 7.1 3600 123

0 75 0 648 649 689 689 5.8 3600 223

Q-43 1 101 0 100 0 3 38 554 555 555 555 0 1 0

0.75 25 75 612 611 652 652 6.2 3600 260

0.5 50 50 623 624 657 660 5 3600 532

0.25 75 25 639 644 648 656 0.7 3600 2170

0 100 0 660 663 663 683 0 292 578

Q-44 1 101 0 100 0 4 28 561 564 564 568 0 2 50

0.75 25 75 624 624 663 663 5.9 3600 207

0.5 50 50 642 644 690 690 6.7 3600 455

0.25 75 25 661 665 683 691 2.7 3600 1523

0 100 0 681 684 700 700 2.3 3600 993

Q-45 1 101 0 100 0 5 23 570 570 570 576 0 2 1

0.75 25 75 625 629 695 695 9.5 3600 100

0.5 50 50 670 674 717 717 6 3600 203

0.25 75 25 687 689 730 730 5.6 3600 206

0 100 0 708 709 743 743 4.6 3600 952



Fig. 10: Solutions for CRTP random instances (left to right: 0.25, 0.5, 0.75 -
type 1 customer rate; top to bottom: R, DC, DF, RC, RF - type 1 customer
assignment strategy).



The series of optimal solutions for the di↵erent type 1 customer scenarios
in Figure 10 give an impression of the topological spectrum covered by the
CRTP. With an increasing type 1 customer rate, we expect a smaller number of
fundamental cycles as it is the case the exemplary evolution for instance Q-1 in
Figure 11.

Fig. 11: Optimal solutions for the CRTP instances derived from Q01 (m = 3,
q = 5) with type 1 customer rates 0.00, 0.25, 0.50, 0.75, and 1.00 using random
type 1 customer assignments (R).

For the increasing type 1 customer rates, we extended the type 1 customer
set incrementally in our scenarios. Therefore, we can assume that the function
of optimal network costs is monotonically increasing for decreasing type 1 cus-
tomers. Depending on the distribution of the reliability requirements among the
customers this results in di↵erent correlations between the optimal network cost
and the type 1 customer rate, as shown in Figure 12. The curves show the rel-
ative cost increase with a decreasing type 1 customer rate averaged over all the
instances for our scenarios. We observe that providing additional reliability to all
the customers increased the overall network costs by 35 to 65% for our instances.
More precisely, installing initial reliability is costly, whereas it gets less expen-
sive the more reliability is already implemented. This is intuitive due to the fact
that the rerouting of an existing ring is more e�cient than the implementation
of a ring structure on a widely tree-spanned customer domain. Therefore, the
reliability cost function tends to be concave. In the scenario that assigns relia-
bility to customers closer to the distributor first (DF), we see this function to
be less curved on average than when randomly turning customers into type 2
(R). In turn, providing reliability in remote areas (DC) requires to close rings
towards a distant d which is more elaborate when the ring tree capacity limits
are tight. We expect this e↵ect to become even stronger when reducing the ring
tree customer limit since the number of required ring trees increases.

In Figure 13 we show the average relative optimality gaps for di↵erent re-
liability scenarios. It can be seen that our algorithm achieves tighter results
for instances of type DF compared to DC. However, type R instances are even
harder to solve.



Fig. 12: The relative cost of reliability for di↵erent reliability expansion scenarios
based on the best upper bounds for the network costs. Upper bounds on the left
and lower bounds on the right.

Fig. 13: The average relative optimality gaps for di↵erent reliability scenarios.



7 Conclusions

We presented a novel model for designing cost-optimized capacitated networks.
This capacitated ring tree problem (CRTP) combines ring and tree structures
that are common models in telecommunication applications and in logistics. Our
approach generalizes existing optimization models and allows a broader use due
to its capability of embracing problems that were previously modeled indepen-
dently. We related the resulting ring tree topology to tree-based, ring-based,
ring-star-based and survivable network design concepts previously studied in
the literature. The presented mathematical formulation for the problem was
used to elaborate an e�cient branch & cut algorithm based on mathematical
programming. Therefore, we developed cutting techniques that are tailored to
the capacitated ring tree structure. We showed how to separate valid inequal-
ities exactly and explained our heuristic addition of violated inequalities with
hard separation problems. A local search based heuristic was used to produce
starting solutions that support the solver’s search and to polish integer-feasible
solutions during the branch & bound method. For a set of small and medium
sized capacity-tight literature derived instances we gave computational results
for our algorithms. Using di↵erent reliability scenarios we observed that a bal-
anced type 1 and type 2 reliability ratio yields the most di�cult instances for
our methods. After studying di↵erent reliability distributions we obtained an in-
dication that instances with uniformly distributed customers with an additional
reliability tend to be of increased di�culty. Nevertheless, we were able solve in-
stances with up to 50 nodes to optimality. When considering existing scenarios
that imply a purely tree or ring structure we could even solve instances up to
100 nodes.
We suggest further research on the CRTP in terms of heuristics and model
extensions. It seems to be a fruitful model for the application of e�cient meta-
heuristics or matheuristics that take advantage of the specific solution network
structure. Corresponding e�cient solution techniques could either be integrated
in our exact methods or could be used to tackle bigger problem sizes. We are also
aware that a column generation based algorithm could improve the presented
results, especially in the case of an increasing number of ring trees. A model
extension that could be of practical use concerns the integration of lower bounds
on the number of customers served by a ring tree. Another balancing measure
could be the introduction of separate lower and upper bounds q

1

, q
2

, q
r

for type
1 customers, type 2 customers or ring customers, respectively.
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