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INTRODUCTION

In [5], a class of birational algebras has been introduced as a generaliza-
tion of Zariski central rings. These classes of rings received some interest
on one hand because all semiprime PI rings are birational algebras over
their centre, and on the other hand because birationality properties
determine interesting classes within the classes of fully left bounded
Noetherian rings, PI rings, HNP-rings, fully idempotent rings like regular
rings a la Von Neuman, V-rings, and biregular rings. Birationality is
defined in purely topological terms, that is, in terms of open sets in the
Zariski topologies of the prime ideal specture of the rings involved, very
similar to the commutative case of birationality in algebraic geometry. In
the latter situation however the birationality is defined between rings that
are contained in their common ring of fractions which forms the rational
function field of the algebraic varieties associated to the rings. In the
non-commutative situation, the topological definition does not entail any
result in the direction of a relation between the rings of fractions; in fact
the latter may even not exist at all. Nevertheless, since M. Artin defined
non-commutative Proj in connection with the geometry of quantum spaces
in a category theoretical way there is some interest in knowing which
non-commutative rings define isomorphic Proj’s or, more generally, for
which rings we can introduce birationality of their Proj in a suitable way.
For graded PI algebras, birationality of Proj’s becomes expressible in
prime ideals, Zariski topologies (as in [6]), and their sheaves.

*UIA-Research Fellow, in a channel system supported by the Egyptian Government.

97

0021-8693 /95 $6.00
Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.



98 ABBAS NOUH AND VAN OYSTAEYEN

All of this has prompted us to reconsider the theory of birational
extensions and to add algebraic considerations stemming from the phiioso-
phy that the topological conditions have to be completed with the corre-
sponding sheaf information in order to extend the geometrical situation to
the non-commutative case. The algebraically birational extensions we
introduce are birational extensions 4 — B such that B = ACy(A4), where
CylA) is the commuting ring of A in B, and Cy(A) is an Azumaya
algebra or more generally a relative Azumaya algebra in the sense of [7].
This extra information is intrinsically non-commutative, it adds nothing to
birationality when A4, B are commutative, and as it turns out it will imply a
lot about the extension 4Z(B) <> B but nothing extra about Z(A) —
Z(B). The method of ab-extensions combined with properties of the
extension Z(A) = Z{B), for example, properties like the “arithmetical
situation” appearing in connection with the study of maximal orders over
Noetherian integrally closed domains (cf. [6, 7]), provides a useful tool for
obtaining non-commutative information from central information.

In Section 2 we introduce the “global case,” that is, the case where
C,(A) is an Azumaya algebra, and study the behavior under localization.
In Section 3 we focus on the “Zariski local case,” that is, the case where
C,(A) is a relative Azumaya algebra and in fact the case fitting in the best
way the generality of birational extensions.

The aim of this paper is to introduce the basic ideas and tools essential
in describing the ring theoretical structure, or one could say: the ideal
theory of birational extensions; the actual description of the effect of
the existence of an ab-extension within certain concrete classes of non-
commutative rings is the topic of forthcoming work.

1. PRELIMINARIES

All rings are associative with unit. A ring homomorphism f: A — B is
an extension in the sense of C. Procesi (4] when B = f(A)Cy(f(A)). In
this paper we shall only consider inclusions 4 = B, so the condition
reduces to B = AC,(A). For any ring R the set of prime ideals X =
Spec( R) may be equipped with the Zariski topology given by the open sets
X(I) = {P € Spec{R), [ ¢ P} associated to (two-sided) ideals I of R. An
extension f: A — B is a birational extension if there exist non-empty open
sets U CY = Spec(B) and V < X = Spec(A4) such that a P €Y and
f~'(P) € V then P € U and the correspondence P — f~'(P) restricts to
a topological isomorphism U = V. The fact that f is an extension is
important for f~'(P) € X. It is easily verified that there exists a unique
maximal pair of open sets satisfying the foregoing birationality condition
and we may assume from now on that U and V' are maximal with respect
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to that property. There are uniquely determined semiprime ideals / C B,
I’ € A such that Y(I) = U, X(I') = V and we say that (I, I’) determines
the birationality U = V for 4 — B.

1.1. Lemma. Let f: A — B be a birational extension determined by
(1, 1'); then I = rad{ BI'). To an ideal J of B there corresponds an ideal J' of
A such that Y(J1) = X(J'l') and rad(JI) = rad(J'I).

1.2. ProposITION.  For a birational extension f: A — B determined by
(1, I') the following statements are equiralent:

a. To any ideal J of B there corresponds an ideal J' of A such that
J' cJand X(I'J') = Y(UJ) under f~ .
b. For each ideal ] of B we have Y(IJ) = X(I'(J N A)) under "

Note that the statement in (b) is always true if J is semiprime.

1.3. Observation. A birational extension f: A — B automatically satis-
fies the properties of Proposition 1.2 in each of the following cases:

i. A is commutative.
il. B is Noetherian. (cf. [5, Sect. 1]).

A birational extension f: A — B is globally birational if U = Spec(B);
a globally birational extension is determined by (B, I') with BI' = B.

A birational extension f: A — B having one of the equivalent proper-
ties of Proposition 1.2 is called a Zariski extension.

A globally birational extension 4 — B is a globally Zariski extension if
and only if for all ideals J of B, rad(J) = rad(B(J N A)).

1.4. ProrosITION.  Let A C B be a Zariski extension.

a. If B is semiprime then every nonzero ideal J of B contained in I
has a non-trivial intersection with A.

b. If B is semiprime and U is dense in Y then every nonzero ideal of
B has a non-trivial intersection with A.

C. If B is prime then b applies.

d. If B is semiprime and A is simple then B is simple.

e. If B is a Zariski extension of A and A is a Zariski extension

(U, V") of C; assuming that U’ is dense in X, then B is a Zariski extension
of C.

It is clear that the ideal theory connected to birational extensions is
expressed in terms of radical ideals, i.e., ideals equal to their prime
radical. This property is essential in the study of relations between
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localizations of A4 and B, respectively. For generalities on localization,
kernel functors (or torsion theories) we refer to [2, 6]. A kernel functor x
on R-mod is said to be radical if (k) has a cofinal subset consisting of
ideals and moreover J € ¥(x), for an ideal J of R, if and only if
rad(J) € Z (k).

If R is left Noetherian, the latter condition follows from the first; hence
in this case a radical kernel functor is just a symmetric one. In the absence
of the Noetherian condition it is still true that every symmetric k that is
perfect (having property T or equivalently such that the corresponding
localization functor Q, is exact on R-mod) is also radical. Note that here,
we will always deal with idempotent kernel functors whereas in [5] kernel
functors were not assumed to be idempotent from the start.

1.5. ProrosiTiON.  Let A C B be a Zariski extension and let k be a
radical kernel functor on B-mod such that | € ¥ (k). Then the set {H' ideal
of A such that YCH N I) = X(H') under restriction for some ideal H €
L)} is a filter basis for (k') determining a radical kernel functor k' on
A-mod. If «' is idempotent then so is « and moreover « is induced by '
under restriction of scalars, k = f(«'), that is, a B-module M is k-torsion if
and only if ;M is «'-torsion.

To an ideal J of a ring R we associate a radical kernel functor x, by
putting ~#(x,;) = {L left ideal of R, L contains an ideal H or R such that
rad(//) DJ}. To a prime ideal P of R we associate kp_, given by
Llug_p) ={L left ideal of R, L contains an ideal H of R such that
H ¢ P}.

1.6. THEOREM. Let A C B be a Zariski extension. Let H be an ideal of B
such that 1 € Z(H), that is, H C [ since I is semiprime; then «;, is a radical
kernel functor such that (k) = k., where H' is any ideal of A such that
X(H') = Y(H) under restriction. If P is a prime ideal of B such that I ¢ P
then ky_p is a radical kernel functor such that (kgz_p) = «,_,, where
p=PNnAeX.

In order to relate the localization functors Q, and Q,. acting on B-mod,
we could evoke Theorem 2.7 of [5]. However, we now have a much more
general result of that type, which we include here. The rings that one
usually hopes to apply birationality arguments to are never too far away
from the class of Pl rings, and in any case one wants them to have a
classical ring of fractions (usually semisimple Artinian) that is at least a
two-sided ring of fractions. So we let y be a kernel functor such that it is
true that Qf/, and Q7 coincide, e.g., the kernel functor corresponding to a
classical ring of fractions, and consider kernel functors ¢ < y.
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1.7. ProrosiTiON. Let A C B be any extension and let x be a symmetric
kernel functor on B-mod such that x <y and B C Q (B); then Q (B) =
Q.(B), i.e., O (B)is a B-module and the isomorphism is one of B-modules.

Proof. Since ideals of A extend to ideals of B we have «'(B) = k(B)
and so we may assume that B is «-torsionfree.

Since Q,(B) = limse.sx)Hom (J', B) we may represent a q €
Q,(B) by an A-linear f,: J' — B: j — jq, where J' € #(«') is such that
J'q € B. 1t is clear that Q_(B) is a right B-module in the obvious way. But
we may also define the structure of a left B-module as (b -g): J' — B,
j — (jb)gq, where jb € BJ' yields jb =X _b,j, with b, € B, j € J’, and
(jb)g = Lb,(j,q) € B. It remains to check that (b - g) is well-defined;
indeed jb = Xb,j, may arrive in several ways and in each case Lb,(/j q)
should define the same element of B. In other words, if Xb,j, = 0 then is
b (j,qg)=0in B?

Now g € Q,(B) c Q (B) yields that gH , C B for some H €. Z(y)
and then we calculate

0= (X b, )(aH,) = Lb,(j.aH,) = Lb.(j.9)H,.

This yields that £b,(j,q) is (right) y-torsion but since B € Q_(B) it then
follows that £b6,(j, q) = 0, as desired.

Now Q. {(B)/B is a B-module and «'-torsion, hence «-torsion as a
B-module, consequently Q .(B) c Q(B). On the other hand Q (B)/B is
k-torsion, hence «’-torsion as an 4-module, so @, (B) = Q, (B) follows.

1.8. CoroLLARY. Let A C B be an extension and assume that B C
Q. /(B), where the latter is a left and a right ring of quotients; then for any
symmetric k on B-mod, Q,.(B) = Q (B).

In particular we may apply this in the situation of Theorem 1.6 for «,
and kg_p, €.8., O, _p(B) = Qp_p(B) for every prime ideal P of B such
that 71 ¢ P.

For more results on birational extensions we refer to [5]. In the next
section we turn to the added condition that they be algebraically bi-
rational.

2. ALGEBRAICALLY BIRATIONAL EXTENSIONS

A birational (Zariski) extension A4 <= B is said to be algebraically
birational (Zariski) (ab-extension) whenever B = ACgz(A) and Cx(A) is an
Azumaya algebra. By definition it is clear that Z(4) Cc Z(B) and Z(B) =
Z(Cgz( A)). For detail on Azumaya algebras, cf. [1].
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2.1. Lemma.  Let A < B be an ab-extension; then Cy(Cy( A)) = AZ(B).

Proof. 1t is obvious that AZ(B)  C,{C,(A)). Since Cy(A) is a pro-
jective Z(B) module we have a commutative diagram:

0 — Ci(A) 8y, AZ(B) = o A) 8y, Co(Ch A))
J

i

B

Clearly ij(Cy(A) ®, 4, AZ(B)) = C,(A)A = B, hence j is an isomor-
phism. By the faithful flatness of C,(B) over Z(B) it then follows that

2.2. CoroLLARIES. 1. B is faithfully projective as an AZ(B)-module.

2. There is a Noetherian subring Z(BY in Z(B) and over Z(B') there
is a Noetherian Azimaya algebra A in Cy(A) such that B = AZ(B)A,
("[J‘(A) = Z(B)A".

3. If M is any (Cy(A), Z(B)-bimodule over B then we have M =
CylA) &y, Coy af M), where Co (M) ={m € M, Am = mA for A €
Cy( ). In particular when T is an ideal of B then T = C L AXT N AZ(B)).

4. In view of 3, there is bijective correspondence between ideals of B
and ideals of AZ(B). In particular if T < Z(B) is such that BT = B then
AT = AZ(B).

5. If AZ(B) is a Zariski extension, globally birational or Zariski, of A
then B is resp. a Zariski extension, globally birational or Zariski, of A too.
This follows directly from 3 and 4.

6. If pis a prime ideal of AZ(B) then Bp is a prime ideal of B.

Indeed, if I and J are ideals of B such that IJ < Bp then (I N AZ(BIXJ 0
AZ(B)) C p yields 1 N AZ(B) C p, say, and thus | = C,{ AXI N AZ(B))
C Bp. Therefore restriction defines a homeomorphism Spec B =
Spec AZ(B).

7. If p € X(I') consider pZ(B) € P N AZ(B).

Since P = rad Bp € Y(I) it follows that for a prime ideal Q of AZ(B)
such that Q O pZ(B), we have BQ (see 6) D P, hence Q D P N Z(B). This
yields P N AZ(B) = rad pZ(B).

Moreoter if p € X(I') then this is clearly equivalent to P 2 1 and also
to PN AZ(B) 3 1 0 AZ(B). Consequently restriction also defines an ab-
extension structure A = AZ(B) given by (I', I N AZ(B)), where of course
the Azumaya algebra part is now trivial in the sense that it is commutative.

2.3. LEMma.  Let A <> B be an ab-extension. Then this extension decom-
poses in an ab-extension A —> AZ(B) with I', I n AZ(B)) and an ab-exten-
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sion AZ(B) — B that is a global Zariski extension. Hence the study of
ab-extensions reduces to central ab-extensions plus global Zariski extensions.
Moreover I N AZ(B) = rad(I'Z(B)) ( from Lemma 1.1).

The extension AZ(B) —, B is a very nice one; in fact it is clear that
the restriction of scalars functor corresponding to g is a separable functor
in the sense of [3]. As an immediate consequence we obtain the following.

2.4. Properties (cf. [3]). (i). If P is a projective, resp. injective, B-
module then P is projective, resp. injective.

ii. 4: B®,,5 B— B, b®b — bb, splits as an AZ(B)-bimodule
map.

iii. There is an idempotent ¢ € B ®,, 4, B such that ¥(e) = 1 and
eb = be forall b€ B.

2.5. Note. If H is an ideal of 4 then HZ(B) c BH N AZ(B). The
restriction of the isomorphism Cg(A) &, (BH N AZ(B)) = BH to
Cy(A) &, 5, HZ(B) still has image BH because Cp{ A)H = Cu( A)AH =
BH. The faithful projectivity of C,(A4) over Z(B) yields HZ(B) = BH N
AZ(B).

For any ideal J of B we will write J* =J N AZ(B). The bijective
correspondence of ideals between B and AZ(B) entails that (HJ)" =
H<J*, (rad(H)) = rad(H¢), etc. In particular [ is semiprime and [ =
rad(I'Z(B)). If k is a symmetric kernel functor on B-mod then x_. denotes
the symmetric kernel functor on AZ(B)-mod obtained by taking #(«“) =
{H, H € ¥(x)}. Clearly x¢ defines the same «' on A-mod if 1 € ¥ («);
indeed {H' ideal of A4 such that Y(H N 1) = X(H') under restriction, for
some H € ¥ ()} = {H” ideal of A such that Z(H, N [) = X(H”) under
restriction, for some H, € #(x)}, where Z = Spec(AZ(B)) and /¢ €
#(k") because [ € ¥(k).

2.6. ProrosiTion,  Let A <> B be an ab-extension and let k be as above,
i.e., I € A(k); then Q (AZ(B)) = Q, (AZ(B)) and also Q,.(B) = Q,(B)

Proof. The first statement follows from Theorem 2.7(1) in [5] up to the
remark C,, z(A) = Z(B), that is, A — AZ(B) is a central extension.

The second statement is a variation on Theorem 2.7(2) in [5] (basis is to
be understood as a set of generators). Note that this result also follows
from Proposition 1.7 if we assume that B has a left and right ring of
fractions.

2.7. PROPOSITION. Let A = B be a Zariski ab-extension and suppose
that w: B — B, is a surjective ring homomorphism such that | ¢ rad Ker(w)
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(or Kerm ¢ L(k,)). Then A, — B, is a Zariski ab-extension, where A, =
m(A).

Proof. By Proposition 1.1 of [5], or an easy straightforward argument,
it is clear that A, — B, is a Zariski extension. So it remains to verify that
Cp(A)) is an Azumaya algebra such that B, = 4,C,z(A)).

It is clear that B, = A;m(Cx( A)) and 7(C4(A)) is an Azumaya algebra.
Since T, = w(Cx{(ANZ(B,) is an epimorphic image of the Azumaya alge-
bra m(Cy(A)) B, 4 py Z(B)) it follows that T, is an Azumaya algebra
such that Z(T) = Z(B,).

Now A,Z(B)) € C,(T) and A,Z(B,)) &, T, = Cp(T) &, T,
B,. From A,T, = B, and the faithful projectivity of T, over Z(B,) we
obtain A4,Z(B,) = Cp(T)). On the other hand:

Cp{ A Z(B ) = Cp(T))) contains T, and it is a T, — Z(B,)-bimodule,
therefore S| = Cp( A Z(B,\) = T\Cy(T)).

If x € Cy(T)) then x commutes with A,Z(B,) since it is in S, and
it commutes with 7, by definition, hence x commutes with 4 T, = B,
or x € Z(B)) ¢ T\. Consequently Cy(T))=Z(B) and T, =S5, =
Cu(AZ(B)) = CulA), ie, By =ACp(A) and Cp(A) is an
Azumaya algebra.

It

28. CoroLLARY. If A = B is a Zariski ab-extension then for « on
B-mod such that I € #(«) we have that A/k'(A) = B/k(B) is a Zariski
ab-extension. So in studying properties of the localized extension Q _{(A) =
QAB)=Q(B) we may assume that A and B are without «'—resp.
K-torsion.

In the sequel we assume that B is a left Noetherian ring; then 4 — B
being an ab-extension is the same as its being a Zariski ab-extension and it
simplifies terminology (but results can be extended for non-Noetherian
rings if one absolutely desires to do so). By the separability of the
restriction of scalars with respect to AZ(B) <> B it follows that AZ(B) is
a left Noetherian ring too (but 4 need not be, as one can see by taking for
A a prime Pl ring and for B = Q (A) = AZ(B), where Z(B) is a field
and B is a central simple algebra).

2.9. THEOREM. Let A — B be an ab-extension such that B is a left
Noetherian ring and let I € (k) for some kernel functor « on B-mod. Then
Q,.(A) = Q(B) need not be an extension but nevertheless Cy, p(Q,.(A))
= T is an Azumaya algebra over Z(Q((B)) and we have the equalities

T = Cy(A)Z(Q(B)) = Cy s (Qu(AZ(B))),
Com(T) = Q.(AZ(B))
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and

Q.(B) = Cp(A)Q(AZ(B)) = TQ, (AZ(B)).

Proof. First note that x € Q (B) commutes with B if and only if
x € Z(Q,(B)); indeed if x is such an element then for any v € Q,(B)
there is an ideal H € #(x) such that Hy C B (note that we have assumed
that B 1s k-torsionfree, A4 is «k'-torsionfree since B is left Noetherian so
Corollary 2.8 applies, and 0 = xhy — hyx = k(xy — yx) for all h € H,
yields H(xy —yx) = 0 or xy —yx = 0 because @,(B) is k-torsionfree.
Now we consider § = Q (A)Z(Q(B)) and T = C, 5(5) >
Cx(A)Z(Q (B)). The latter is an epimorphic image of the Azumaya
algebra Cg(A4) &, Z(Q,(B)); hence it is an Azumaya algebra over
Z(Q . (B)). Therefore, T = Cx(A)Z(Q (BNC(Cx(AVZ(Q, (B))).

However, if z € CAC,(AZ(Q,(B))) then z € T, hence z commutes
with Q,.(A4) and z commutes with C,(4) by definition. Thus z commutes
with ACx(A) = B and thus z € Z(Q,(B)) by the opening remark. Conse-
quently 7 = Cg(A)Z(Q,(B)) follows. Next consider an element ¢ € Q,(B)
that commutes with Cz(A)Z(Q,(B)); then H'¢ C B for some H' € #(«')
(we use the fact that Q,(B) = Q, (B)). Obviously we have, for all i € H’
and for all ¢ € Cgx(A), that ch'é = Wéc; hence H'E C Cu(Cyu(A)) =
AZ(B). Then ¢ € Q,(AZ(B)). This establishes Cy p(T) < Q, (AZ(B)).
The latter obviously commutes with Cgx(A4), so in fact Cgy 5(T) =
Q.(AZ(B)) and thus Q (B) = TQ (AZ(B)).

From T < Cy 5(Q.(AZ(B)) = V it follows that Cg_{(Q.(AZ(B)))
= TC (T). Now note that n € C (T) if and only if » commutes with T,
hence with C»z(A4), and n commutes with Q,.( AZ(B)), hence with A4, and
thus n commutes with B or n € Z(Q (B)). Therefore we arrive at
Co.8{Q(AZ(B))) = T, finishing the proof of all claims.

2.10. THEOREM. If in the situation of Theorem 2.9, «' is moreover a
perfect kemel functor then Cyp(Q,(A)) is an Azumaya algebra and
QB) = QA Q. (A) = Q(ACH(A). In particular Q,.(A)
Q.(B) is a global Zariski ab-extension.

Proof. As in the foregoing proof, consider a y € Q,(B) commuting
with Cy(A); then for some H’' € #(x) we have H'y C Chx(Cp(A)) =
AZ(B), hence Q. (A)H'y = Q.(A)y ¢ Q. (A)Z(B) and y €
Q. (AZ(B).

It follows that C, z(Cp(AIZ(Q (B)) = Q (A)Z(B) =
Q. (AZ(Q(B) and Q (B) = Q,(A)Cx(A) follows because Q,.(A4)Z(B)
contains Z(Q,(B)) by the foregoing equality.
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2.11. Note. 1. Without the assumption on the perfectness of «' we still
have that Z(Q(B)) c Q (AZ(B)) but is is not necessarily true that
Z(Q . (B)) may be obtained as a localization of Z(B). Note that the
essential problem in trying to prove that Cy, ,(T) = Q (A)Z(Q (B)) is
that we do not know in general whether it is true that

QA A)Co(A)Z(Q.(B)) = O.B). (4)

However, if « is a central localization, or indeed any localization such that
BZ(Q,.(B)) = Q,(B) then the equality (A) holds and again it will then be
true that Q,(B) is a global ab-extension of Q,.(A4), Q.(B) = Q.(A) - T.

2. Note that «’ is perfect if and only if k is perfect (] € #(«)). This
follows from rad(J!) = rad(J'!) in Lemma 1.1, so it is easy to see that
QA = Q,.(A4) for all J' € #(«') is equivalent to Q,(B) = Q,(B) for
all J € (k).

3. Instead of Q,(B) one could consider Q% (see [6]). In [6] it was
shown that Q%(B) = Z(Q,(B))B (in particular B — Q" (B) is a central
ab-extension). In this case we do obtain Q% (B) = QY (A)C,(AYZ(Q . (B))
= OU(AC yri 5 { Q2 A)), where Cipp(QF(A)) is an Azumaya algebra
equal to Cyx(A)Z(QY(B)).

4. If x and &’ are as in the theorem then « is geometric if and only if
k" is geometric (in the sense of {6]), this follows from 2 and the obvious
property of ideals extending to ideals of the extension. This allows one to
use the ab-extensions in connection with the theory of affine PI algebras
and geometric localizations appearing in the sheaf theory of the non-
commutative geometry of PI algebras. We call A — B a geometrically
birational extension if it is an ab-extension such that B and A have a

common classical quotient ring. Then a gb-extension is a central extension
A = AZ(B) such that Z(A) — Z{B) is classically birational.

The rings A, and A, are said to be algebraically birational if they have
a common extension B such that A, = B and A4, «» B are ab-extensions
such that the intersection of the open sets of birationality in B is
non-empty. Note that, if B is Noetherian, these ab-extensions are Zariski
extensions (cf. 1.3).

2.12. ExamprLe. Witten's Gauge algebras for SU, are given as
C{ X, Y, Z) modulo the relations

XY +aYX +8Y =0
YZ + yZY + 6X?2 +eX =0 (%)
ZX + EXZ +nZ =0,

where a, B, v, 8, £, £, 7 are constants.
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On the other hand the quantum enveloping algebra W, (s/,) may be
defined as C{ X, Y, Z) modulo relations

VaXz-a 'ZX=\g+aq 'z
Ja XY ~Vavx =Yg +q 'y (%)
YZ-2zY=(Va —va )X*-Vag+a'x

(where classically g = exp(27i/(k + 2)), k = Chern coupling constant).
The deformed Casimir operator C = g 'zy + Va YZ + X? is central

in W(sl,)andsois A =1—-CGJg — g Vg +q ") If we put
~(x-(Va +va 'Wava ' clawa 'a
v=Y(Va+rqa ' )WA) (M)
c=z(Ya+a ') (VA)

then the relations (* * ) become (up to adding (¥4 )~ ! to the ring)

ﬁxz - q‘]zx =7z
Va ' - Vax =y (x*)
g 'zy —qyz = x.

Now C{x, y, z> modulo (* =Y is of type (*) up to choosing a, 8,7v,... .
For that choice of constants the algebra given by (*) localized at VA
yields the localization of the algebra given by (* *) at VA, where A’ is
obtained by writing A4 in a function of x, y, z via (T).

3. ReLATIVE ab-EXTENSIONS

It is self-evident that the combination of a Zariski local condition like
birationality with a global condition like Cz(A) is an Azumaya algebra,
calls for a generalization in such a way that both parts of the definition
become Zariski local conditions. The notion that prompts itself here is the
notion of a relative Azumaya algebra with respect to a localization or, i1
particular, with respect to an ideal of the centre.



108 ABBAS NOUH AND VAN OYSTAEYEN

Throughout, R is a commutative ring and A is an R-algebra. We say
that A is a x-Azumaya algebra with respect to some kernel functor x on
R-mod such that R is «-closed {that is, Q (R) = R} if the canonical
R-morphism u, u: A 8 A° — Endg(A), A, ® A, = (x = A, x4,), induces
an isomorphism Q. (A ®, A°) = Endg(A) and A is a k-progenerator in
the sense of [7]. In particular a k-Azumaya algebra A is x-closed, that is,
Q.(A) = A.

The following criterion, which stems from [7], is useful.

3.1. PROPOSITION. Let A be a k-closed R-algebra and assume that A
is finitely presented as an R-module; then the following statements are
equirvalent:

1. A is a k-Azumaya algebra with centre R.

2. Forevery P € C(k),i.e., P & (k) and maximal as such, @, _p(A)
is an Azumaya algebra over Qr_p(R).

3.2. ExampLEes. a. Put x = k; = inf{kp, p € Spec R, htp < 1} and R is
a Krull domain. Then for any R-lattice L. we have QK,(L) = [** where
L* = Homy(L, R), A «k,-Azumaya algebra is then exactly a reflexive
Azumaya algebra; cf. [6, 7].

In [6] it was pointed out that reflexive graded Azumaya algebras turn up
as algebras representing elements of the Brauer group of low dimensional
projective schemes. On the other hand reflexive Azumaya algebras appear
in the theory of maximal orders over Krull domains (in central simple
algebras).

b. Put k =k, associated to the Zariski open subset X(I) of
SpecC = X, and let R be ring of sections of the structure sheaf O, over
X(1) (that is, R = Q,{C)). Then «;-Azumaya algebras appear as rings of
sections over X(/) of locally separable sheaves over X.

For a basic open set, i.e., X{(f), f€ R, a x ~Azumaya algebra is nothing
but an Azumaya algebra over O (R).

3.3. Provosttion [7].  If A is a k-Azumaya algebra over R and M is a
k-closed (A, R)-bimodule then M = Q (A & M), where M* ={m € M,
Am = mA for A € A},

Now we shall look at a birational extension A4 = B and a central
localization « on R-mod, where R = Z(B) such that | € ¥ (k).

Throughout we use notation and conventions of Section 2. Looking at a
central k on B-mod we have also a central k¥ on A-mod and in this
situation Q,.(B) = Q,(B) holds without further condition on the exten-
sion A = B. When B is «-closed it follows that C,(A4) is «-closed too.
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Indeed, if ¢ € B satisfies H¢ € Cix(A) for some H € (k) (and we may
assume H = B(H N R) with H N R € #(«) if « is considered as a func-
tor on Z(B)-mod) for all h €« H N R and a € A we have héa — ahé =
h(éa — a&) =0, hence £a — a¢ = 0 because there is no «-torsion in B.
We say that a birational extension 4 <> B is a relative algebraically
birational (r.a.b.-extension) whenever B is «-closed and B = AC,(A),
where Cz(A) is a k-Azumaya algebra over Z(Cyz(A4)) = Z(B). In view of
Proposition 3.3. we obtain B = Q,(Cg(A) &, 5, Cx(Cx(A)N)).
One has to distinguish two cases.

34. Case 1. I"e (k') or 1 € X(k). If pe Spec(A) is such that
p &.X(k') then I' ¢ p, that is, p € X(I'). Hence there is a unique
P € Spec(B) such that p =P N A, [ ¢ P, that is, P € Y({) such that
Q,_{B)= 0, p(B). We write Y(k) for the prime ideals of B not in
(k) and C(«) for the maximal elements of Y(«), and similarly, X(«’) and
C(«’). This case corresponds therefore to the situation X(«') c X([I'),
Y(x) c Y(I).

35, Case 2. I' ¢ (k') or I ¢ #(k). In this case X(x') ¢ X(1'),
Y(«) ¢ Y(I). Now only prime ideals of X(«’) N X(I') correspond nicely
to prime ideals of Y{(«) N Y([), such that localization at these ideals yields
Azumaya algebras. A minor problem in this case (in fact also in Case 1) is
that Y(x) N Y(/) is not open in the Zariski topology.

In the Noetherian case we can eliminate this drawback.

3.6. LemMma. Let Z(B) be a Noetherian domain and A a «k-Azumaya
algebra over Z(B); then A is a k,Azumaya algebra for some ideal J of
Z(B).

Proof. We have « = A« , q € Spec(Z(B)) — .#(«)}, where we write
K, k, for the kernel functors on Z(B)-mod.

For g € Spec(Z(B)) — #(«) we know that A, is an Azumaya algebra
and this property is characterized by the existence of a separability
idempotent e, in A, &, 5, A5 If ¢, € Z(B) — g is a denominator for ¢,
then A, ®,, A"Cq ts also an Azumaya algebra and then for every prime
q' of Z(B) ¢, & g, we have that A, is an Azumaya algebra So we may
enlarge Spec(Z(B)) — (k) to the open set U, ={q’,q" 3 c,}, which
corresponds to some ideal J of Z(B). It is clear that Z(B) is K,—Closed
since it is k-closed and A remains a «,-progenerator (note that the
relative progenerator property for A yields that A, is a progenerator
Z(B),-module and again A, is a progenerator Z(B)-module for some
¢ & q. This yields a J' such that A is a «,-progenerator and we may
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replace J and J* by J N J’ and call this ideal J again). From (A ®,,,
A%), = (End (A, for all q, J ¢ q, it follows that
Q. (A By A = Ny (A By Ay = N g dEnd ) (A), =
Q, (End 4(A)) =nd ., (A) (the latter because A is a « ~closed «,-pro-
generator) and therefore A is a « ,-Azumaya algebra.

3.7. CoroLLArY. Let A = B be a r.a.b.-extension such that Z(B) is a
Noetherian domain. Then there exists a Zariski open set Y(J) such that
Y(J)cY(I) and Cy(A) is a «,Azumaya algebra; i.e., for all g€
Spec Z(B), J N Z(B) € q we have that C,(A), is Azumaya.

Proof. Easy from the lemma combined with 3.4 and 3.5.

3.8. Note. 1If Q € Y issuch that Q & (x) then Q is x-closed because
it is a prime ideal of B and B is k-closed. Put g = Q N Z(B).

In view of Proposition 3.3 we have Q = Q {Cu(ANQ N CuCu(A))) and
0 N CulA) = QC,(A)g).

3.9. THEOREM. Let A = B be a r.a.b.-extension. Then this extension
decomposes as A — AZ(B), which is an ab-extension, and AZ(B) — B,
which is a r.a.b.-extension such that the k-closed ideals of Q ( AZ(B)) and B
correspond bijectively.

Proof. In view of Proposition 33 we have B = QJ(C,(A)®,,
Cy(Cy(A)) and B is a «-finitely generated Q,(AZ(B))-module. It is
obvious that Q (AZ(B)) C C,(Cy(A)). Since C,(A) is a k-progenerator
over Z(B) and because Q (Cu(A) ®, 5 Q(AZ(B)) = B too, we derive
from Q(Cu(A) ® CL(Ch(AN/QLAZ(B)) = O that Cu(C(A)) =
Q0 (AZ(B)).

1f J is a «-closed ideal of B then again from Proposition 3.3 we have
J = QUC,(A) &y, Cp 1IN = QACLLAXI N Q(AZ(B))).

Conversely, if H is a k-closed ideal of Q (AZ(B)) then Cx(A)H is an
ideal of B and H = Q(C,(A)H) is a x-closed ideal becausc « is a
central localization on B-mod. It is clear that H € H" n @ (AZ(B)), and
Q(Cx(A) ® (H N QLAZ(B))/H) = 0. Thus H = H* N Q,(AZ(B))
again follows from the fact that C,{ A) is a «-progenerator (in particular
r-faithfully flat; cf. [6]). Hence, the bijective correspondence between the
sets of k-closed ideals in B and in Q {(AZ(B)), resp. B.

For any ideal H' cl'c A, with H=rad BH' ] cB, we have
QH'Z(B)) = Q(H)N Q (AZ(B)).

Of course for H' and H as before, the birationality property alone leads
to X(H')=Z(H'Z(B)) = Z(H N AZ(B)) = Y(H), ie., rad(H' Z(B)) =
H N AZ(B) and also rad(H'Z(B)) ¢ Q (H'Z(B)).

So if rad(H'Z(B)) is k-closed then rad( H'Z(B)) = Q (H'Z(B)).
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3.10. Examere. It is well known that a semiprime PI ring is a bira-
tional extension of the centre and moreover for the primes in the open set
of birationality of the centre localization yields an Azumaya algebra.
Therefore maximal orders over an integrally closed Noetherian domain
are close to being r.a.b.-extensions of their centre but they are not unless
they are relative Azumaya algebras (the catch is in the x-progenerator
property!).

3.11. Remark. For every perfect 7 on Z(B)-mod such that 7 > «, i.c.,
(k) (1), an r.ab.-extension A — B localizes to a global Zariski
ab-extension Q_(A) = Q.(B).

Proof.  First, it is clear that B, = B/7B,Cy(A)/7Cu(A), Z(B)/7Z(B)
are k-closed as well as Z(B)). That Cx(A)/7C(A) = Q(Cp(A) &, 4,
Z(B)/7Z(B)) is a k-Azumaya algebra is clear and similarly for

T, = Q. ((Cy(A) /7Cx(A))Z(B))) = Q(Cu(A) Bp, Z(B)))

From the «-faithful projectivity of 7, over Z(B,) we obtain Cy(T,) =
QA,Z(B))), where A, = A/tA C B,. Moreover (,(A4,) =
Cp(O LA Z(B)Y) = Cp(Cu(T))). Since Cp(Cu(T)) is a x-closed
(T,, Z(B,)-bimodule it follows that §, = C,,l(A]5 =T\C(T). If x€
Cy(T)) then x commutes with 4, since x € §; and x commutes with 7
by definition, hence x commutes with A (Cy(A)/7CKx(A)) = B,; therefore
Cy(T) cZ(B)) and hence Cy(AD=T,, B, =AT, and 7, is a «-
Azumaya algebra.

From here on the proof follows the lines of Theorem 2.10 and in this
case we have that Q@ (B) = BZ(Q_.(B)) = BQ (Z(B)) because of the prop-
erties of 7; hence we may use the argumentation of Note 2.11(1).

At this point we have obtained a good part of the desired *‘ideal theory”
for birational extensions. This will allow us to study the transfer of
properties from A to B and vice versa, much like the theory obtained in
[7], but there it was necessary to assume 4 commutative in order to obtain
stringent results. In the present casc, if A4 is commutative then B is a
relative Azumaya algebra and this is relatively well understood; the
non-commutative situation of a r.a.b.-extension 4 — B presents us with a
restriction of scalars functor that is “locally separable™ on a Zariski opcn
set. Again we arc able to study rings A, and A4, having a common
r.a.b-cxtension B such that the open sets of birationality used in B have a
non-empty intersection and use the same x over B for both 4, =, B and
A, =, B. Properties relating A, and A, are studied by going up /, and
descending i,; we do not go more deeply into this here.
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