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Abstract

An efficient X-ray projector for the ASTRA Toolbox is presented thataipable of simulating X-ray radiographs directly from
CAD data in STL format. The projector is implemented on the GPU usinig\tdia OptiX frameworklt can be used in 3D X-
ray inspection tasks or projection-based metrology. To that end, vedogded a framework for the 3D registration of CAD
models to few-view projection data. The efficiency of the projastquantified and the registration framework is evaluated on
simulated and measured projection data. Finally, an example of 3Db@sdal X-ray inspectios shown.
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1 Introduction

3D Computed Tomography (CT) is a powerful, non-destructive technigue th
allows computing cross-sectional images of an object from a large aefuifed
X-ray projection images using a reconstruction algorithm. It is isorgly used in
dimensional metrology to inspect the deviation of the measured gedmetrthe
nominal geometry. The latter is usually defined in Computer Aided Design)(C
models. Conventional X-ray based inspection methods first generate a §® i
of the object to be inspected. Subsequently, the reconstructed volsegenented,
after which the surface of the object is extracted through edge detectiba ¢! source
binary volume. Finally, a CAD model of the object is registered to the/8kel- CAD model
based) reconstructed image in order to perform the analysis. Theaeg of the virtual detector
final analysis directly depends on the reconstructed image qualityh vidic

influenced by object parameters (material, size, shape), measurement Figure 1: A simulation setup with a virt
(orientation, magnification, machine settings, temperature) and data prgcesource, a triangle mesh of a CAD model a
(reconstruction, edge detection, calibration, alignment with CAD models)Hat. virtual detector.

is, the conventional CAD based X-ray inspection processing pipeline idta m

step procedure that can suffer from substantial error propagation.

An alternative to the conventional inspection approach is to performmdf)ahe 3D inspection in projection space [2], by
creating realistic radiographs of a CAD model, which are then directly comfmaradasured X-ray images. The procedure
requires a reliable method to generate projections of 3D CAD models anisterrégg 3D objects to the acquired 2D projections
[3]. As a first step towards projection-based inspection, we developAD pKjector, capable of simulating X-ray radiographs
directly from CAD dataThe projector was accelerated with a GPU implementation using the Nvidia @pttkacing engine
[8,9] and is integrated in our X-ray reconstruction frameworkABERA Toolbox [5-7] We propose to use the CAD projector
for 3D projection-based inspection, by combining it with a 3D registraftiamework that estimates the 3D position and
orientation of the CAD model from few-view projection data.

2 Methods

We propose a workflow for fast X-ray projection-based inspectiosection 2.1, we introduce the reader to the algorithms we
use to create realistic projections of the CAD models. First, we describe hawahisition geometry is set up and used to
calculate line lengths a ray travels inside the CAD object between the smartke detector pixels. Neit, section 2.2, we
show methods to convert the calculated line lengths to realistically looiopgrpon images. In section 2.&¢ show how the
X-ray spectrum of the imaging system is estimated during 3i3tration to projection data for both simulated and measured
data. In section 2.4, an example of 3D X-ray inspection is showlnostrate the potential of the method.

2.1 Calculating linelengths

The CAD projector is an extension to the ASTRA Toolbox, an opercsdamographic framewors-7]. With the current

improvements, the toolbox is now able to create simulated X-rageisndased on CAD files in STL (STereoLithography) file
format. Such files describe the surface of an object by dividintpitiiangles. First, this triangle mesh is loaded into the Nvidia
Optix engine, which is a general purpose, GPU accelerated raytracing IManyse this framework due to its capabilities of
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executing raytracing tasks parallelized on the GPU, while it has a high legehpmming interface. The loaded triangle mesh
is stored in the memory of the graphics card encapsulated in abstractaededtmuctures. Next, the projection geometry is
defined by specifying the trajectory of the virtual source andithgal/flat panel detector in the coordinate system of the CAD
model. The size and the number of detector pixels also have to be set. ifkd debmetry therefore describes a cone beam
setup, as depicted in Figure 1. The projection geometry is definedthsifigxible tool sets that are already built in the ASTRA
Toolbox. Therefore it is easy to define conventional circular source anctateteajectories, as well as specifying unique
geometries, such as tomosynthesis, laminography, or a conveyagtbplt s

Once the triangle mesh and the acquisition geometry are defined, the Optix lilused i® cast rays from the X-ray source to
the middle of each detector pixel. It detects collisions between the rayseatmiingle mesh, and calculates the distance a ray
travels within the CAD model. First intersection points between the ray and theibg box of the triangles are calculated
using the built-in functionalities of the Optix library. The exact location @f ititersectionis determined using our
implementation of a watertight ray-triangle intersection algorithm describedl ifh@ cited method determines whether the ray
actually has an intersection with a given triangle, and also calculatesttredibetween the point of intersection and the source
of the ray. We use these distances to calculate the distance the raywithielshe volume. Assuming that the triangle mesh
represents a closed objeittjs determined as the difference of the distances between the sodregeay second point of
intersection.

The usage of the line length calculation algorithm is similar to the redteof/drious reconstruction and forward- and
backprojection methods in the ASTRA Toolbox. The user canaitterith the high level Matlab interface, whereas the
calculations are executed on the GPU.

2.2 Creating polychromatic projections

From the calculated line lengths, realistically looking projections of the CAD naoealynthesized. We formulate the problem
using a polychromatic adaptation of thembert-Beer law, using the notations of [8]:

1= I, f:;‘;:"D(E) s(E) e~ irEDAGE 1)

whereE is the photon energy ardmin and Emax are the minimum and maximum photon energiE,) is the normalized
spectrum of the sourcB®(E) is the product of the detector response function, and any filter tlydberaresent in the imaging
setup L is the path from the source to a given detector pixel,| asdhe measured intensity value. After discretization and
introducing two new variable®y (E) = IoD(E) s(E) and4; = e~ Zilu#iEndl Equation (1) becomes

1= Y,W(E)A; AE;, (2)

whereW (E;) is the effective spectrum, i.e. a weight of the i-th energyidirch is evaluated at enerd¥;. It also incorporates
the effect of all energy dependent processes in the imaging syktesa monochromatic projection image, evaluated at energy
E;. AE; is the width of the i-th energy bin. The effective spectifE;) andAE; are therefore independent of the phantom
being imaged and they are strictly dependent on the imaging settheearedolution of the discretized spectrum. The estimation
of these parameters is discussed in section 2.3.

The factor in Equation (2) that is related to the CAD model being imagkd liscan be computeas
A; = e ZinEDL; (3)
wherel; is the line length of the ray within materialrj conclusion, we propose to synthesize realistic images using the
following scheme:
1. Calculate the line lengths of each single-material CAD mdgglusing the ASTRA Toolbox.

2. Create the mono-energetic imagdg)(according to Equation (3).
3. Calculate the final intensity values using Equation (2).

2.3 Estimating the spectrum

In order to efficiently compare the CAD projections with real radiograhbsenergy spectrum and the detector response of the
imaging system, i.e. teri¥ (E;) in Equation (2), must be known. This quantity, however, dependnany factors, such as the
materials and the geometry of the X-ray source and the detector, the apptiaelfiter, etcThe precise measurement of this
term can be a complex process, requiring specialized measuring equidm&ater, the spectrum can also be approximately
estimated by measuring the intensity values on the projections ahtophwith a known material and thickness. The method
described inQ] uses the projections of a polycarbonate and an aluminium step-wedgenplfiantiois purpose. Based on the
attenuation values and the thickness of the different parts of theopheDuan et al. calculate the teAy) introduced in Equation
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(2). Then, an Expectation Maximization algorithm is used to solve tharliequation system (2) for the effective spectrum
W(E)).

The spectrum estimation method we propose is similar to the oneaof @l [10], with the difference of using a man-made
product, of which we have a CAD model and its material specification, asnoph In this processhetermA4; is calculated
using the CAD model, according to Equation (3). Then, similar talthee mentioned approach, X-ray images are taken of the
product and the effective spectrdd(E;) is calculated by solving the equation system (2). For this step, insteathgfthe
proposed Expectation Maximization algorithm, we used a convex optimizatitivox [L1], to solve the problem defined in
Equation (4). In contrast to the EM method, which needs a close initia guesnverge to the optimal solution, the optimization
based approach does not require initialization

W(E;) = argmin) 1= X;W(E)A; AE;||,. 4)

The method relies on the knowledge of the thickness of different maiartls product, along each line between the source
and the different pixels of the detector. To use these line lengths acctwrdiquation (2) and (4), it is required to measure the
line lengths using the same acquisition geometry, as the reference pngjeetie measured.

Even if the acquisition geometry is known, misalignments of thdyato such as tilt, rotation, translation, may result in poor
spectrum estimation. In these cases, the trajectories of the rays th&Dhaddlel projector uses to calculate the line lengths
may differ from the trajectory of the X-ray beam in the actual aitgrigprocess. Therefore, a method is needed to register the
posture of the physical object to the CAD model in the simulation env@onrior this purpose, a projection based 2D-3D
registration approach similar to [3] was developed to correct for misadigts. After registration, the quality of the inspected
object can be evaluated by comparing its simulated projection data to th&tetmar measured sample data.

3 Experiments and results
3.1 Computational speed of the CAD projector

We evaluated the speed of the CAD projector process, that was describetioim 2€g in function of the number of detector
pixels as well as the number of triangles in the CAD model and the nofriirejections. For these studies, we useddhegoni

CAD model from the library of the Stanford University Computer Graphatsoratory. The model is available in 4 different
resolutions. They contain arouBd@ 1k, 202k, 8k and 11k triangles, respectively. The most detailed 3D dragon model and its
simulated projection is illustrated in Figure 1.

=——dragon_871k_triangles
==dragon_202k_triangles

102 dragon_47k_triangles
==dragon_11k triangles

=—=dragon_871k_triangles

=——dragon_202k_triangles
dragon_47k_triangles

==dragon_11k_triangles
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Computational time required [sec]
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Figure 2: Computation time as function of the numbe Figure 3: Computation time as function of the number of de
projections. pixels.

The computation time as function of the number of projections éodifferent models with a fixed (1000x1000 pixels) detector
size was measured on an NVidia Tesla K80 graphical processing unit artélatehonE5-2620 v4 central processing unit.
The results are shown in Figure 2. Similarly, the computation time fggqpireg a batch of 1000 projections in function of the
number of detector pixels is shown in Figure 3. These results illutet@verhead of the Optix library to create accelerated
data structures while the triangle mesh is loaded. The computation time astioregd to the size of the mesh and it causes
small amount of projections to be generated relatively slowly. Howenee, the mesh is loaded, the computation time is almost
independent of the size of the mesh and if enough projections aratgerermake use of the parallel architecture, it is nearly
proportional to the number of generated pixels.
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3.2 Estimation of the effective sour ce spectrum of an imaging system using CAD models

The spectrum estimation method described in section 2.3 was firsaeehbin simulated data with known circular cone beam
acquisition geometry (i.e. without introducing misalignmeRtlychromatic projections of a CAD model were generated, using
the scheme described in section 2.2. For this study, a generimdgiroth spectrum was used with 180kV peak voltage. The
spectrum, shown in Figusewas binned to 180 bins of 1keV. As a phantom, the CAD modglnoédical device, the K-pack
Surshield needle, produced by Terumo Europe NV was used. It carfsi€tdifferent parts, which are made of various types
of polymers and steel. The CAD model and one of the simulateddjtauth projections are shown in Figure 4.

108
5 X

Spectrum
H N W A o oX

—

0 50 100 150 200
Energy [keV]

Figure 4 Ground truth spectrum (left) and the 3D CAD model along with an examiylehpomatic projection (right).

Next, the spectrum was estimated using a different number of projectidrenargy bins in the recovered spectrum. In each
case, the projection angles were evenly distributed on the interval [0°, 36@°idth of the energy bins was adjusted to the
number of energy bins, such that each within the energy range [0,180keV] had the same width. To test the accfiracy o
spectrum estimation, we simulated projections using the estimated spaottuneasured their mean square error (MSE) to the
ground truth projections. The results are shown in Table 1. It istblgtaa very low MSE can be achieved, which indicates that
the unknown spectrum is estimated well with respect to the energyhlainare required to approximate the projection data
intensity values of this specific sample.

MSE Number of energy bins

numbe_r of 2 36 72 108 144 180

projections
1 4.35E+5 5.36E-3 3.88E-6 7.39E-7 7.95E-7 2.30E-7
2 4.39E+5 5.48E-3 4.83E-6 6.03E-7 1.27E-6 6.96E-7
4 4.40E+5 5.15E-3 3.60E-6 5.10E-7 1.83E-6 2.16E-6
6 4.39E+5 5.19E-3 1.23E-5 4.53E-7 1.83E-6 1.98E-6
10 4.40E+5 5.21E-3 3.96E-6 6.51E-7 1.05E-5 3.04E-6
14 4. 40E+5 5.18E-3 3.33E-6 7.75E-7 1.92E-6 3.75E-6
18 4.40E+5 5.21E-3 3.62E-6 8.40E-6 1.85E-6 1.18E-5

Table * Spectrum estimation accuracy expressed as the projection distancel@®\8&9n the simulated polychromatic forward
projection and the ground truth projection data.

Due to the fact that the sample itself is rotationally symmetric (constraiméngariety of line lengths) and contains only a
limited amount of materials, it is obvious that the spectrum estimation chetlmot recover the full spectrum. However, as
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Figures 5 and 6 clearly show, this is not required in orderaihmhe projection data of a specific sample and an excellent
agreement can already be found with less than 18 projections #avd @&s 36 energy bins. The specific amount of data required
to approximate the spectrum will however be sample dependant. It éotleeexpected that it is beneficial to estimate the
spectrum from a variety of different samples with 108 or more gri@ng to obtain a closer agreement to the true spectrum if a
large variety or different samples are to be inspected.
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Figure 5 Spectrum estimation and difference image of a single CAD projecttbrtlve ground truth for 32 energy bins (left) and 72
energy bins (right).
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Figure 6 Spectrum estimation and difference image of a single CAD projectthrtive ground truth for 108 energy bins (left) and 18
energy bins (right).
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Finally, the CAD model based spectrum estimation and 2Be3D

registration of CAD data to projections are combined to approximate

intensity values of experimentally measured projection data. For

experiment, a real K-pack Surshield needle was used of wefich AR
projections of 966 by 752 pixels were acquired over 360° withel pixe

of 74.8 micron. The source to detector distance was 765mm and the s -
to object distance was 489.4mm. A CAD model of the spring andlene
was not taken into account for the registration and spectrum estimdtion
spectrum estimation and registration was performed with a subset ¢
projections and for 108 energy bins. The results in Figure 7 clgaoly an
excellent agreement for both the registration and the intensity valties c
projection data. This result clearly indicates the potential of our methoc

non-destructive testing and quality control using 3D registered projec -
data.

4 Conclusions —— AR
We demonstrated a GPU-based CAD projector along with an auton -

procedure to approximate the intensity values of few-view meast. ...

projection data by estimating the spectrum of a polychromatic >seasce Figure 7 Simultaneous spectrum and 3D registrati
using 3D registered CAD data and material specifications as festimation with 108 energy bins of experimentally
knowledge. We also described how our methadbe used in the field ofmeasured projection data. A single measured

non-destructive testing. projection is shown (top) along with its corresponc
3D registered CAD projection (middle) and a
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