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“Fly, you fools.”

– Gandalf –
The Fellowship of the Ring





Samenvatting

Dynamische systemen vormen een belangrijke klasse van wiskundige model-
len, ze laten ons toe om veel fenomenen uit de fysica, chemie, biologie en zelfs
economie te bestuderen. Typisch houdt de studie van een dynamisch systeem
in dat de evolutie van bepaalde toestanden in de tijd worden gesimuleerd.
Vaak convergeren deze toestanden naar zogenaamde stabiele equilibria. Equi-
libria zijn toestanden van het systeem die constant blijven in de tijd, ze zijn
stabiel als ze ook aangehouden blijven onder kleine perturbaties. Niet enkel
zijn de toestanden met deze eigenschap zelf interessant om te bestuderen, ook
hun afhankelijkheid ten opzichte van fysische parameters, zoals bijvoorbeeld de
temperatuur of beginconcentraties van bepaalde stoffen, vormt een belangrijk
onderzoeksdomein. Een voorbeeld van een dynamisch systeem dat een aantal
keer zal terugkomen in de thesis, is het Ginzburg-Landau model. Dit model is
een niet-lineaire Schrödinger vergelijking die bepaalde types van supergeleiding
beschrijft. Toestanden van supergeleiding hangen typisch af van de tempera-
tuur en de sterkte van het toegepaste magnetische veld, we zullen in de thesis
focussen op deze laatste parameter.

In de praktijk wordt de afhankelijkheid tussen toestand en fysische parame-
ter onderzocht met een wiskundige techniek genaamd numerieke continuatie.
Hierbij worden verschillende continue, geconnecteerde, curves van equilibria be-
naderd met behulp van andere numerieke methoden. De verzameling van zo’n
curves wordt ook wel een (geconnecteerd) oplossingslandschap (of bifurcatiedi-
agram) van het dynamisch systeem genoemd. Door equilibria op de curves met
elkaar te vergelijken, kan men informatie afleiden omtrent de afhankelijkheid
tussen de mogelijke toestanden van het systeem en de fysische parameters. De
thesis focust op deze numerieke continuatie techniek, meer bepaald het onder-
deel dat bestaat uit automatische exploratie. Hiermee wordt het automatisch
genereren van een volledig oplossingslandschap bedoeld, in plaats van slechts
één curve. Dit wordt gerealiseerd in twee stappen: bifurcatiepunten (equilibria
die een transitie in eigenschappen van het systeem induceren) worden bena-
derd, en raaklijnen naar nieuwe curves uit deze punten worden geconstrueerd.

De huidige technieken om numerieke continuatie uit te voeren schieten
vaak te kort. Zo is een groot deel van de beschikbare software gebaseerd op
dichte lineaire algebra, wat hun gebruik op grootschalige systemen niet toelaat.
Verder zijn er problemen bij het benaderen van bifurcatiepunten, ten gevolge
van een eigenschap die deze equilibria hebben: de Jacobiaan van het systeem,
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geëvalueerd in een bifurcatiepunt, kan singulier zijn. Dit brengt problemen met
zich mee wanneer bijvoorbeeld de methode van Newton wordt toegepast in een
algoritme dat dient om het punt te benaderen. Ook bij het construeren van
raaklijnen naar nieuwe curves zijn er problemen. Hoewel ze efficiënt bepaald
kunnen worden voor systemen zonder symmetrie, is dit niet het geval als het
systeem wel bepaalde symmetrieën bevat.

De thesis tracht een oplossing voor de beschreven problemen te vinden.
Hiervoor zullen we de numerieke algoritmes afleiden die nodig zijn
voor de automatische exploratie van (geconnecteerde) oplossings-
landschappen, waarbij we ons volledig baseren op ijle lineaire alge-
bra. De voornaamste toepassing van deze technieken is het Ginzburg-Landau
model, dat in detail zal worden beschreven.

Om numerieke continuatie bruikbaar te maken voor grootschalige systemen,
zullen we gebruik maken van algoritmes gebaseerd op ijle lineaire algebra, zoals
Ritz paren en Krylov methoden. Deze technieken spelen ook een rol binnen een
klasse van aangepaste Newton algoritmes die beschreven zullen worden in de
thesis. De methode van Newton is een krachtig algoritme dat gebruikt wordt
om oplossingen van niet-lineaire vergelijkingen te benaderen, maar slaagt hier
mogelijk niet in als de Jacobiaan van de vergelijking slecht geconditioneerd is.
We zullen een alternatieve versie van het algortime afleiden, waarbij een op-
splitsingsstrategie wordt toegepast op de update vectoren en extra delen hier-
aan worden toegevoegd. Met behulp van enkele voorbeelden tonen we aan dat
de alternatieve methoden ook werken voor niet-lineaire vergelijkingen met een
slecht geconditioneerde Jacobiaan. Vervolgens tonen we aan hoe deze nieuwe
Newton methoden aangepast kunnen worden voor gebruik binnen numerieke
continuatie, met als toepassing het bepalen van bifurcatiepunten.

In het tweede deel van de thesis bespreken we details omtrent numerieke
continuatie zelf, waarbij we extra aandacht vestigen op het probleem omtrent
het bepalen van raaklijnen naar nieuwe oplossingscurves. We leiden hierbij twee
strategieën af, die gebruikt kunnen worden voor het geval waarin het dynamisch
systeem bepaalde symmetrieën bevat.

De numerieke technieken die besproken worden in de thesis geven uitein-
delijk de aanleiding tot een uitbreiding van het Python pakket PyNCT, een
toolbox gebaseerd op Python die gebruikt wordt voor het genereren van ge-
connecteerde oplossingslandschappen. Het pakket is volledig gebaseerd op ijle
lineaire algebra, en slaagt erin de twee stappen die vereist zijn voor automati-
sche exploratie uit te voeren. De thesis wordt afgesloten met enkele voorbeelden
van zo’n oplossingslandschappen, waarbij we extra aandacht vestigen op deze
van het Ginzburg-Landau model.

Bijdragen:

• Analyse omtrent convergentie van huidige Newton methoden bij toepas-
sing op een niet-lineaire vergelijking met slecht geconditioneerde Jacobi-
aan.

• Afleiden van aangepaste Newton methoden die wel werken op dit type
vergelijkingen.
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• Uitbreiding van deze aangepaste Newton methoden met blok eliminatie
technieken. Dit is nodig om ze toe te kunnen passen binnen algoritmes
voor het benaderen van bifurcatiepunten.

• Afleiden van twee algoritmes die het mogelijk maken om raaklijnen te
bepalen, gebruikt in het geval dat het onderliggend dynamisch systeem
symmetrieën bevat.

• Uitwerking van details rondom automatische exploratie in de praktijk.

• Beschrijving van pseudo-code voor de onderliggende numerieke metho-
den.

• Uitbreiding van het Python pakket PyNCT met methoden die het auto-
matisch exploreren van een geconnecteerd oplossingslandschap mogelijk
maken.

• Bespreking van enkele oplossingslandschappen, onder andere voor het
Ginzburg-Landau model.
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Summary

Dynamical systems form an important class of mathematical models, they al-
low us to study many phenomena in physics, chemistry, biology and even eco-
nomics. Typically, the study of a dynamical system involves simulating the
evolution of certain states over time. Often these states converge to so-called
stable equilibria. Equilibria are states of the system that remain constant in
time, they are stable if they persist under small perturbations as well. Not
only are the states with this property themselves interesting to study, their
dependence towards physical parameters, like the temperature or initial con-
centrations of certain substances, forms an important research domain as well.
An example of a dynamical system that appears several times in the thesis is
the Ginzburg-Landau model. This model is a nonlinear Schrödinger equation
that describes certain types of superconductivity. States of superconductivity
typically depend on the temperature and the strength of the applied magnetic
field, we will focus on this last parameter in the thesis.

In practice, the dependency between state and physical parameter is inves-
tigated with a mathematical technique called numerical continuation. Hereto
different continuous, connected, curves of equilibria are approximated using
other numerical methods. The collection of such curves is also referred to as a
(connected) solution landscape of the dynamical system. By comparing equi-
libria on the curves, information can be derived about the dependence between
the possible states of the system and the physical parameters. The thesis fo-
cuses on this numerical continuation technique, more specifically the part that
consists of automatic exploration. The automatic generation of a complete so-
lution landscape, instead of just a single curve, is meant by this. It is achieved
in two steps: bifurcation points (equilibria that induce a transition in prop-
erties of the system) are approximated, and tangent directions to new curves
that emanate from these points are constructed.

Current techniques for performing numerical continuation often fall short.
For example, a large part of the available software is based on dense linear
algebra, which does not allow their use for large-scale systems. Furthermore,
there are problems in the approximation of bifurcation points, due to a prop-
erty of these equilibria: the Jacobian of the system, evaluated in a bifurcation
point, is possibly singular. This causes problems when, for example, the New-
ton method is applied in an algorithm used to approximate the point. There
are also problems with the construction of tangent directions to new curves.
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Although they can be determined efficiently for systems without symmetry,
this is not the case if certain symmetries are contained in the system.

The thesis attempts to find a solution for the described problems. For this
purpose we will develop the numerical algorithms required to au-
tomatically explore (connected) solution landscapes, entirely based
on sparse linear algebra. Our main application for these techniques is the
Ginzburg-Landau model, which will be discussed in detail.

To make numerical continuation operable for large-scale systems, we will
use algorithms based on sparse linear algebra, such as Ritz pairs and Krylov
methods. These techniques also play a role within a class of modified New-
ton algorithms that will be described in the thesis. The Newton method is a
powerful algorithm that is used to approximate solutions of nonlinear equa-
tions, but might fail if the Jacobian of the equation is ill-conditioned. We will
derive an alternative version of the algorithm, whereby a splitting strategy is
applied to the update vectors and extra parts are added. We illustrate that the
alternative methods also work for nonlinear equations with an ill-conditioned
Jacobian by providing some examples. Next, we demonstrate how these new
Newton methods can be adapted for use within numerical continuation, with
the approximation of bifurcation points as an application.

In the second part of the thesis we discuss details about numerical contin-
uation itself, with extra attention being paid to the problem of determining
tangent directions to new solution curves. We derive two strategies that can
be used in the case where certain symmetries are contained in the dynamical
system.

The numerical techniques discussed in the thesis eventually give rise to
an expansion of the Python package PyNCT, a Python-based toolbox that is
used to generate connected solution landscapes. The package is entirely based
on sparse linear algebra, and is able to execute the two steps required for
automatic exploration. The thesis is concluded with some examples of solution
landscapes, where we draw extra attention to those of the Ginzburg-Landau
model.

Contributions:

• Analysis of convergence of current Newton methods when applied to a
nonlinear equation with ill-conditioned Jacobian.

• Derivation of adjusted Newton methods that do work on this type of
equations.

• Expansion of these adjusted Newton methods with block elimination
techniques. This is necessary for their application within algorithms used
to approximate bifurcation points.

• Derivation of two algorithms that make it possible to determine tangent
directions, used in the case that symmetries are contained in the under-
lying dynamical system.

• Elaboration of details regarding automatic exploration in practice.
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• Description of pseudo-code for the underlying numerical methods.

• Expansion of the Python package PyNCT with methods that allow for
automatic exploration of a connected solution landscape.

• Discussion of some solution landscapes, for example for the Ginzburg-
Landau model.
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CHAPTER 1
Introduction

“Before we get started, does anyone want to get out?”

– Steve Rogers –
Captain America: The Winter Soldier

1.1 Dynamical systems

Though direct applications of mathematics are often invisible in daily routines,
life without them has become almost unimaginable. Using mathematical mod-
els, a lot of physical, chemical, biological and even economical phenomena can
be studied without actually performing experiments. The behaviour of weather,
the growth of plant tissue, concentrations of chemical substances, or the price
of an economic asset all seem to follow certain rules, which can often be de-
scribed by mathematical equations. These four examples belong to the type
of model called the dynamical system: the time dependence of a certain state
is expressed by a mathematical evolution function. Such functions are often
defined through a partial differential equation (PDE), as is the case for the dy-
namical systems considered in this thesis. These partial differential equations
have the general form

∂Ψ(x, t)

∂t
= F (Ψ(x, t),Λ), (1.1)

where Ψ : Ω× R → C describes the physical/chemical/. . . state for each point
x (in a certain space Ω) and time t ∈ R. The function F that appears in the
equation is typically nonlinear, possibly containing other partial derivatives

like ∂Ψ(x,t)
∂x or ∂2Ψ(x,t)

∂x2 . Often the equation is dependent on certain physical
parameters, like the temperature, chemical substance properties, initial con-
centrations, . . . . These are denoted by Λ ∈ Rk (k ∈ N) in (1.1).

By analysing the corresponding partial differential equation, the evolution
of a physical/chemical/. . . state in time is studied, allowing scientists to make
predictions of future behaviour. By studying meteorology models (e.g. the
ECMWF model [70]), data of current and past conditions is used to make
weather forecasts, up to multiple days. The auxin transport models discussed
in [35, 34] allow for the prediction of hormone patterns in a plant tissue, used in
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1. Introduction

the simulation of the tissue’s growth. Certain autocatalytic, oscillating chemi-
cal reactions are described by the Brusselator system [2, 106], used to analyse
the evolution in concentrations of the different compounds. Prices of multiple
types of economical options are determined by studying the appropriate finan-
cial model, for example the Black-Scholes equation [58] for European options.

Another example of a dynamical system, which will be the main application
discussed in the thesis, are superconductors: materials that exhibit a complete
loss of electrical resistivity when certain conditions on the temperature, the
magnetic field and other physical properties are met. The states of a super-
conductor are described mathematically by the Ginzburg-Landau model [37],
a type of nonlinear Schrödinger equation. Superconductors have many appli-
cations. They are for example of interest when building nanoscale fluxonics
devices to use in e.g. SQUIDS [65], RSFQ processors [41] and supercomputers
[33, 54, 76].

Before predictions of a system’s behaviour can be made, the corresponding
partial differential equation needs to be analysed. This usually means that
the solution Ψ(x, t) of (1.1) is required. Solving such an equation is however
far from trivial. Though for some models it is possible to derive an analytical
expression for the solution, this is not true in general. Even if such an expression
exists, it might still not be practical to use for large-scale problems due to a
high computational and memory cost.

Instead of deriving analytical expressions to solve partial differential equa-
tions, the thesis will focus on numerical methods. These do not yield an exact
solution, but create approximations up to a certain tolerance. From a given
initial guess, better approximates are constructed in an iterative manner. Due
to their general low computational cost and memory requirements, they form
an interesting alternative. In many applications one would rather compute a
good approximation to a solution in a short period of time, instead of an ex-
act one that takes long to compute. Examples of numerical methods, that are
used for the analysis of a dynamical system, are the Crank-Nicolson time step
scheme and the Newton method. Both methods will be discussed throughout
the thesis.

1.2 Equilibria

The evolution in time of a certain state is an interesting topic in many branches
of science, but for many applications the eventual state, as time progresses, of
the dynamical system is especially important. If the state of the system becomes
constant over time, we call this eventual state an equilibrium (or steady state).
Note that for so-called chaotic systems the behaviour of states over time is
entirely unpredictable, and an equilibrium might even never be reached. We
will not consider such chaotic systems in the thesis.

We distinguish two different kinds of equilibria: physically stable and un-
stable ones. An equilibrium is called unstable if it does not persist under small
perturbations, these states are usually not physically realizable. Dynamical sys-
tems typically settle down at stable equilibria, which do persist under small
perturbations.
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1.2. Equilibria

One class of methods to determine equilibria consists of time stepping the
partial differential equation. Given an initial state, these methods simulate its
evolution over a set of discrete points in time. By generating many evaluations
and comparing the states at the discrete time steps, it is possible to determine
whether a state is near an equilibrium. Though time step methods generate
both the evolution in time and the eventual state, they are not able to find
physically unstable equilibria.

A second class of methods consists of setting the partial derivative ∂Ψ(x,t)
∂t

in (1.1) equal to zero, and solving the nonlinear equation that arises for Ψ(x, t):

F (Ψ(x, t),Λ) = 0. (1.2)

By setting the partial derivative of the state towards the time to zero, we
demand the solution of this equation to be constant in time, implying its equi-
librium property. One way to solve equations of the form (1.2) is by the Newton
method, used to approximate a zero of a function near a given initial guess.
Methods of this second class allow for the determination of both physically
stable and unstable equilibria.

Though the direct use of unstable equilibria is limited in real situations, they
still contain important information on transitions between different equilibrium
patterns of a dynamical system. This is motivated by example 1.1 below, where
the state of a superconductor is analysed.

Example 1.1. We consider a square-shaped, 2-dimensional extreme type-II
superconductor of side length 3 (measured in units of coherence length) sub-
ject to a homogeneous magnetic field (see section 9.5.1 for more details). The
strength of the field is fixed at a value that allows the material to adopt two
possible stable vortex patterns (this is the value µ = 1.3 in the (dimensionless)
Ginzburg-Landau equation, see chapter 2). These two states are shown in fig-
ure 1.1: both vortex patterns 1 and 2 are physically stable [92]. The significant
parts of their energies (the parts that depend on the order parameter, see chap-
ters 2 and 9) are respectively given by E1 = −0.23387 and E2 = −0.13271. We
keep the value for the magnetic field strength fixed and want to perform a tran-
sition from pattern 1 to pattern 2 through a temporary external perturbation,
by supplying additional energy.

It is, however, not sufficient to add the difference in energy between patterns
1 and 2 to the system. Instead, the minimal amount of energy that needs to
be supplied is given by the energy difference between pattern 1 and the state
presented by pattern 3 (figure 1.1c). This last pattern represents an unstable
equilibrium for the same magnetic field strength, with a significant energy part
of E3 = −0.14007. To perform a transition between patterns 1 and 2, we first
need to supply energy to the system to reach the barrier implied by pattern 3.
Afterwards energy is released to reach the equilibrium described by pattern 2.
This is further indicated in figure 1.2. �

In order to determine both physically stable and unstable equilibria of a
dynamical system, we will focus on the second class of methods in this thesis,
where a zero of a (typically nonlinear) system (1.2) needs to be approximated.
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(a) Pattern 1, with significant
energy part E1 = −0.23387.
This pattern is stable.

(b) Pattern 2, with significant
energy part E2 = −0.13271.
This pattern is stable.

(c) Pattern 3, with significant
energy part E3 = −0.14007.
This pattern is unstable.

Figure 1.1: Some possible vortex patterns for a square-shaped, 2-dimensional
extreme type-II superconductor of side length 3 subject to a homogeneous
magnetic field with strength µ = 1.3, as described in example 1.1.

A time step scheme, the Crank-Nicolson method, will be discussed as well. It
will however only be used to validate results on physical stability.

1.3 Numerical continuation

Equilibria often depend in an intricate way on the physical parameters (the
vector Λ in (1.1)) of the dynamical system. Due to its nonlinear nature, a slight
perturbation in one of these parameters might induce a huge change in the
state, possibly inducing sudden transitions in patterns or physical properties.

This sensitiveness of equilibria to the systems parameters is an important
research subject. For example, vortex patterns of superconductors in small
nano devices depend in an intricate way on the system parameters and the
geometry of the sample. Material scientists and device engineers are designing
devices that have an improved critical field and temperatures by exploiting
geometrical properties and engineering the material parameters [23, 38]. There
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Figure 1.2: Schematic transition between the two stable patterns presented in
example 1.1. t represents the time, E the part of the state’s energy that depends
on the order parameter. In order to perform a transition between patterns 1
and 2, the energy barrier implied by pattern 3 needs to be crossed.

is wide interest to understand what parameters determine the stability of su-
perconducting states. In particular, the aim is to understand the dynamics of
the transitions between vortex patterns and what needs to be changed in the
geometry or parameter settings to prevent the system from making a transition
that destroys a given pattern.

Under mild conditions on the dynamical system, the sensitivity of its equi-
libria to physical parameters is described by multiple, interconnected continu-
ous curves (also called branches) of solutions of (1.2). The collection of these
curves is called a (connected) solution landscape (or bifurcation diagram) of
the dynamical system. To analyse the sensitivity of states towards parameters
in a system, the appropriate solution landscape needs to be constructed. An
example of a solution landscape is given in figure 1.3, showing interconnected
solution curves that correspond to the problem described in example 1.1. Rep-
resentative solutions for these curves are given in figure 1.4.

Except for the analysis of sensitivity, connected solution landscapes are
also helpful when facing problems like the one described in example 1.1. This
is further indicated in example 1.2.

Example 1.2. We again consider the set-up of example 1.1, where a transition
is discussed between two stable patterns (see figure 1.1) for a fixed magnetic
field strength µ = 1.3. An energy barrier implied by an unstable pattern needs
to be crossed for this transition to occur (see figure 1.2). Figure 1.3 shows the
connected solution landscape of the problem. At magnetic field strength µ = 1.3
we have multiple solutions: two stable ones that lie on curves A (pattern 1 of
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Figure 1.3: Recreated from Schlömer [92]. Connected solution landscape for the
extreme type-II Ginzburg-Landau equation applied to a square-shaped material
with side length 3 (measured in units of its coherence length), subject to a
homogeneous magnetic field. Solid (dashed) lines represent stable (unstable)
solutions. Blue dots indicate intersection points, red dots the points associated
with the patterns given in figure 1.1. See section 9.5.1 for more details.

Figure 1.4: Recreated from Schlömer [92]. Representative solutions for the dif-
ferent curves of figure 1.3.
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figure 1.1) and curve D (pattern 2), and two unstable ones on curves B and
C (pattern 3). In order to perform a transition from the solution on A to the
one on D, we need to add enough energy to bypass the barrier induced by the
unstable solution on curve C - the unstable solution with the lowest energy
that lies on a curve connecting A and D. �

An essential tool for the construction of a connected solution landscape
is numerical continuation, used to approximate solution curves by generating
finite sets of equilibrium points. Numerical continuation is based on numeri-
cal algorithms like the Newton method. Though solving nonlinear systems of
the form (1.2) for a fixed set of physical parameters is already a challenge it-
self, using solvers for this equation in a numerical continuation setting further
complicates the problem.

Furthermore, a lot of applications yield solution landscapes with hundreds of
different curves. Though a relatively straight-forward algorithm (called pseudo-
arclength continuation) allows for the approximation of a single one, there is
also a need for techniques that automatically generate all of the intercon-
nected curves when performing numerical continuation. Without these tech-
niques, generated landscapes are possibly incomplete, giving rise to incorrect
conclusions about the behaviour in the considered dynamical system.

An essential step for automatic exploration techniques is the determination
of bifurcation points: equilibria of the dynamical system that mark transitions
in behaviour and properties of its states. Intersections of solution curves are an
important class of bifurcations, and lie at the base of automatic exploration.
These intersections are called branch points. Mathematically bifurcations are
defined by the (partial) Jacobian FΨ of the function F in equation (1.2). In
bifurcation points this Jacobian contains one or multiple eigenvalues with zero
real part.

Except for the determination of bifurcation points, a second essential step in
automatic exploration is the construction of tangent directions to new curves,
emerging from branch points. Given such a point and direction, new curves
can be initialized and approximated by the pseudo-arclength continuation al-
gorithm.

1.4 Aim of the thesis

The main goal of the thesis is to analyse and develop robust numerical meth-
ods that generate the complete solution landscape of interconnected curves for
bifurcation problems described by a partial differential equation. We limit our-
selves to dynamical systems for which the nonlinear function F , that appears
in the equilibrium equation (1.2), contains a Hermitian (or self-adjoint) partial
Jacobian FΨ. Systems with this property appear naturally in many branches
of physics, e.g. in multiple models that describe phenomena of quantum me-
chanics. We see three main challenges, which will be studied in detail in the
thesis.
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1.4.1 Challenge 1: Numerical methods must be based on
sparse linear algebra

To apply numerical continuation to problems derived from partial differential
equations, typically large, sparse systems need to be solved or analysed. For
example, some underlying problems require the (partial) Jacobian FΨ of (1.2):
Linear systems with this operator need to be solved when the Newton method
is applied, and its eigenvalues are required for e.g. stability analysis. For partial
differential equations, the equilibrium equation’s Jacobian is usually a large,
but sparse, operator.

Techniques based on dense linear algebra cannot be used for these kinds
of problems, due to unacceptable computational requirements. Instead, the
used numerical methods must be based on sparse linear algebra, like Krylov
methods for solving linear systems or approximation by Ritz pairs for eigenvalue
problems. When developing new numerical methods, we should be aware that
matrix/tensor forms of operators cannot be used. Their sparsity structure can
however be exploited. In this thesis we will develop the required tools that can
solve the large systems of equations appearing in numerical continuation, solely
based on sparse linear algebra.

1.4.2 Challenge 2: Need for a reliable solver near bifurcation
points

A second challenge concerns the determination of bifurcation points: equilibria
in which the Jacobian contains one or multiple eigenvalues with zero real part.
By restricting our analysis to Hermitian systems, all eigenvalues of the partial
Jacobian FΨ will have a zero imaginary part. This excludes multiple classes of
bifurcation points, like the Hopf bifurcation [72, 95], from the analysis. With the
restriction, bifurcations are exactly the points for which this partial Jacobian
becomes singular.

Though only a selected group of bifurcations is considered, the Jacobian’s
singularity induces issues when approximating these points by methods based
on the Newton algorithm. Several adjustments have already been proposed
to counter these issues, but these are either based on dense linear algebra
[28, 56, 111], or are only able to attain a reduced accuracy [4, 42].

Instead of applying one of the adjusted methods presented in [28, 56, 111]
or [4, 42], a new class of Newton methods will be derived in the thesis. The pro-
posed algorithm is able to effectively approximate the zeros of a given function
near and in the points where the Jacobian is singular. The algorithm works
for large-scale systems, and only requires the Jacobian to be given as a lin-
ear operator. Its matrix form is not required. The adjusted Newton method is
an essential part of the algorithms that we will use for the approximation of
bifurcation points.
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1.4.3 Challenge 3: Construction of tangent directions for
systems with underlying symmetries

Once the bifurcation points are identified, automatic exploration requires an
approximation to the tangent directions to curves emerging from these points.
For small-scaled problems derived from e.g. ordinary differential equations,
determining these directions is easily done by constructing and solving the
algebraic branching equation (ABE) [61, 3, 10, 62, 73]: a simple quadratic
equation that is solved for coefficients used to construct the tangent as a linear
combination of the Jacobian’s null vectors.

For partial differential equations the same is true for dynamical systems that
do not contain any underlying symmetries, in this case the algebraic branching
equation is sufficient. However, when symmetries are present in the system,
bifurcations arise for which an extended analysis is required. These symmetries
are often known in advance.

In the thesis an algorithm will be derived that constructs the tangent di-
rections for problems that contain a two-dimensional (e.g. dihedral) symmetry.
When available, the algorithm allows the use of prior knowledge on the symme-
try to reduce the computational work. Except for the construction of tangent
directions, prior knowledge on symmetries will also be incorporated in other
algorithms discussed throughout the thesis.

1.4.4 Implementation of the numerical methods

The numerical methods discussed throughout the thesis have been implemented
in Python. The package PyNCT [36], originally developed for numerical con-
tinuation in auxine transport models [34, 35], was used as a basis for the im-
plementation. The goal of PyNCT is to automatically generate a connected
solution landscape, given the equilibrium equation (and possibly its deriva-
tives) and an initial guess of a solution. The algorithms in PyNCT are entirely
based on sparse linear algebra and allow for prior knowledge on symmetries to
be provided as well, which is used to reduce computational work.

There are other software packages with the same goal as PyNCT, but these
have their shortcomings. Existing tools such as AUTO [31] and MatCont [30] for
example, are able to generate connected solution landscapes for small systems of
coupled ordinary differential equations. However, these tools are based on dense
linear algebra and they cannot scale to the large sparse systems that appear in
the models we will consider, like the Ginzburg-Landau equations. Furthermore,
it is not possible to incorporate prior knowledge on symmetries that appear in
the dynamical system, complicating the construction of a solution landscape.

Besides these tools there is LOCA [90] that is developed around sparse lin-
ear algebra, but is less easy to use and requires knowledge in advanced C++
programming. Furthermore it does not include an automatic exploration func-
tionality. In particular branch switching at bifurcation points is not provided.
Contrary to PyNCT, the discussed tools ([30, 31, 90]) do however contain bifur-
cation tracking algorithms, used to determine how the location of a bifurcation
is perturbed when a second physical parameter changes.
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1.5 Outline of the thesis

This thesis focusses on the development of the required tools for automatically
exploring a connected solution landscape for large-scale dynamical systems.
The derived algorithms are solely based on sparse linear algebra. When rele-
vant, pseudo-code for the discussed numerical methods will be provided in an
appendix at the end of the appropriate chapter. A summary of the forthcoming
chapters is given below.

Chapter 2. Applications We start by describing several dynamical systems
and other examples. These systems will be used throughout the thesis to illus-
trate some of the numerical techniques. Connected solution landscapes of these
problems will be constructed further in the thesis (chapter 9). The information
of the systems that is required for this construction, will be derived in chapter
2 as well. The Ginzburg-Landau model, our main application, is discussed in
detail.

Chapter 3. Review of numerical methods A lot of different numerical
methods are required for the construction of an approximate connected solu-
tion landscape. This chapter gives an overview of some of the algorithms that lie
at the base of numerical continuation, even though their immediate application
might not be apparent. We start by discussing the approximation of eigenpairs
by Ritz pairs, and continue with a discussion of Krylov solvers. The importance
of deflation techniques in these methods is underlined for ill-conditioned linear
operators. The chapter also discusses the nonlinear conjugate gradients and
Crank-Nicolson methods.

Chapter 4. The Newton-Krylov method near bifurcation points One
of the main contributions of the thesis will be discussed in this chapter. Though
the standard Newton-Krylov method is an efficient solver for general nonlin-
ear problems, its convergence is obstructed when the Jacobian of the equation
is ill-conditioned. This happens, for example, in the equilibrium equation of
dynamical systems near bifurcation points. The chapter derives the necessary
adjustments to the Newton-Krylov method, eventually yielding an alternative
that also works for nonlinear problems with an ill-conditioned Jacobian.

Chapter 5. The Newton-Krylov method for extended nonlinear sys-
tems To use the adjusted Newton-Krylov methods derived in chapter 4 in a
numerical continuation setting, they need to be combined with a block elimina-
tion technique. This technique allows to solve a nonlinear system with a linear
extension by application of the numerical tools used for the original system.
The chapter starts with a discussion of the standard method, and again derives
the necessary adjustments for application to problems with an ill-conditioned
Jacobian.

Chapter 6. Calculation of solution curves This chapter discusses pseudo-
arclength continuation, the numerical technique used for the approximation of
a single curve of a solution landscape. We start with a summary of the under-
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lying theory, and discuss complications that arise when the dynamical system
contains (continuous) symmetries. Except for the pseudo-arclength continu-
ation method, we also describe several algorithms for the approximation of
bifurcation points. The chapter ends with a discussion on physical stability.

Chapter 7. Automatic exploration The necessary requisites for automati-
cally exploring a connected solution landscape are derived in this chapter, fo-
cussing on the construction of tangent directions to curves that emanate from a
given bifurcation point. An algorithm is derived for a specific case that appears
in our applications, and techniques are discussed that allow a reduction of the
computational work by exploiting prior knowledge on the dynamical system’s
symmetries.

Chapter 8. Implementation in Python This chapter describes the last
details of numerical continuation, and contains the eventual algorithm used to
generate a connected solution landscape for a given nonlinear function (pos-
sibly derived from a dynamical system). An implementation of the required
techniques was made in Python. The structure of this implementation is dis-
cussed, and some other notes on the code are made as well.

Chapter 9. Numerical results Connected solution landscapes, for the dy-
namical systems and other examples of chapter 2, are provided and discussed
in chapter 9. Landscapes with many interconnected curves were generated, in-
dicating the effectiveness of the derived methods.

Chapter 10. Conclusions & outlook The final chapter of the thesis con-
tains a summary of the main numerical techniques, results and contributions.
Possible topics for future research are also proposed.
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CHAPTER 2
Applications

“What is mathematics? It is only a systematic effort of
solving puzzles posed by nature.”

– Shakuntala Devi –

Chapter highlights:

• We derive the equilibrium equation for multiple dynamical sys-
tems and other examples.

• We describe the properties of the Ginzburg-Landau model in de-
tail, including a proposition on its symmetries and a possible
preconditioner to use for derived linear problems.

• The results in this chapter are mainly based on the following
references: [37, 92, 93, 107].

2.1 Introduction

This chapter contains descriptions of dynamical systems and other examples
that will be used throughout the thesis. Some of these will mainly be used
to test the different techniques and their implementations, others yield more
interesting results, which are analysed in detail in chapter 9. To apply the
numerical continuation techniques described in chapters 6 and 7, a (nonlinear)
function of the form

F : V ⊆ Cn × R→W ⊆ Cn : (ψ, µ)→ F(ψ, µ) (2.1)

needs to be provided. Numerical continuation analyses the zeros of this func-
tion. We will call the vector ψ ∈ V ⊆ Cn and the value µ ∈ R respectively
the state and (physical) parameter of the system described by F . For dynami-
cal systems, the state is typically a discretized function of space. Examples of
physical parameters include the temperature and the strength of a magnetic
field.

13



2. Applications

Note that we only consider problems with a Hermitian (or self-adjoint)
partial Jacobian Fψ in the thesis. For some of the examples discussed in this
chapter a preconditioner is derived, which is used to reduce computational work
in the underlying numerical algorithms (see e.g. chapter 3). The preconditioners
discussed in the current chapter are Hermitian and positive definite (except in
possibly some uninteresting cases, in which the preconditioner is still positive
semi-definite, see e.g. section 2.5.6).

In the remainder of this chapter, we will derive the required equations of
form (2.1) for several examples.

2.2 Equation of a circle

One of the simplest examples numerical continuation can be applied to, is the
equation of a circle. The equation we consider is given by

ψ2 + µ2 − 1 = 0

with ψ, µ ∈ R. The associated function to use for numerical continuation is
provided by

F : R× R→ R : (ψ, µ)→ ψ2 + µ2 − 1. (2.2)

Though it lacks physical relevance, the example is often used to test the
implementation of a numerical continuation algorithm. Its bifurcation diagram
is predictable and consists of only a single solution curve, removing the require-
ment of automatic exploration techniques. If the constructed diagram does not
represent a circle with solutions that satisfy the relation

ψ = ±
√

1− µ2,

the implementation or used algorithm contains errors. Derivatives of F are
given by (for ψ ∈ R, µ ∈ R)

Fψ(ψ, µ) = 2ψ, Fµ(ψ, µ) = 2µ,

Fψψ(ψ, µ) = 2, Fψµ(ψ, µ) = 0, Fµµ(ψ, µ) = 2.

If not specified otherwise, we will use the values ψ(0) = 1, µ(0) = 0 as a starting
point when executing numerical continuation on the example.

2.3 Intersection of two cylinders

An example with two solution curves is described by the equation{
ψ2

1 + µ2 − 1 = 0,

ψ2
2 + µ2 − 1 = 0,

(2.3)

with ψ1, ψ2, µ ∈ R. This equation represents the intersection of two cylinders
(see figure 2.1), which yields two ellipses that intersect at the points

ψ =
(
0 0

)T
, µ = 1 and ψ =

(
0 0

)T
, µ = −1.
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2.3. Intersection of two cylinders

Figure 2.1: Intersection of two cylinders. The intersection consists of two ellipses
and is described by equation (2.3).

The associated equation for numerical continuation is given by

F : R2 × R→ R : (ψ, µ)→
(
ψ2

1 + µ2 − 1
ψ2

2 + µ2 − 1

)
. (2.4)

This example again lacks physical relevance, but is often used to test the
automatic exploration part of a numerical continuation algorithm: when the
implementation is applied, a bifurcation diagram that contains both solution
curves should be constructed. Derivatives of F are given by (for ψ ∈ R2, µ ∈ R)

Fψ(ψ, µ) : R2 → R2 : φ→
(

2ψ1φ1

2ψ2φ2

)
,

Fµ(ψ, µ) =

(
2µ
2µ

)
,

Fψψ(ψ, µ) : R2 × R2 → R2 : (φ, ξ)→
(

2φ1ξ1
2φ2ξ2

)
,

Fψµ(ψ, µ) : R2 × R→ R2 : (φ, τ)→
(

0
0

)
,

Fµµ(ψ, µ) =

(
2
2

)
.

Unless specified otherwise, the point

ψ =
(
1 1

)T
, µ = 0

will be used as the starting point when numerical continuation is applied.
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2. Applications

2.4 The Liouville-Bratu-Gelfand equation

For the next example, we consider the following partial differential equation,
defined on a domain Ω [107]:

∂Ψ(x, t)

∂t
= ∆Ψ(x, t)− λ

(
Ψ(x, t)− µeΨ(x,t)

)
,

with Ψ : Ω× R→ R,

where ∆ represents the Laplacian operator, λ ∈ R and µ ∈ R are parame-
ters. This equation is used in multiple aspects of physics to describe certain
dynamical systems. Examples include the density distribution of matter under
its own gravitation [19], the thermal reaction process in a combustible, non-
deformable material placed in a spherical vessel [60], and the space charge of
electricity around a glowing wire [83]. We will only consider domains of the
form Ω = [−a, a], a line segment of length a ∈ R, and Ω = [−a, a]2, a square
with side length a.

To study steady states, we set ∂Ψ(x,t)
∂t = 0 in this equation and drop the

dependency of Ψ on the time t. This yields the equation:

−∆Ψ(x) + λ
(

Ψ(x)− µeΨ(x)
)

= 0. (2.5)

To apply numerical continuation, we require a discretized version of this equa-
tion. In the line segment case, we discretize the domain Ω by considering n grid
points given by

∀i = 1, . . . , n : xi = −a+ 2a
i− 1

n− 1
.

We define ψi = Ψ(xi) for this case. If the mesh represents a square, the n grid
points (xi, yj) (for i, j = 1, . . . , k, with k =

√
n) are defined by:

∀i = 1, . . . , k : xi = −a+ 2a
i− 1

k − 1
,

∀j = 1, . . . , k : yj = −a+ 2a
j − 1

k − 1
.

In this case we define ψ as

ψ =



Ψ(x1, y1)
Ψ(x1, y2)

...
Ψ(x1, yk)
Ψ(x2, y1)

...
Ψ(x2, yk)

...
Ψ(xk, y1)

...
Ψ(xk, yk)



.
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2.4. The Liouville-Bratu-Gelfand equation

The discretized version of (2.5) becomes

−Aψ + λ
(
ψ − µeψ

)
= 0, (2.6)

with A the discretization of the Laplacian operator, where Neumann boundary
conditions are considered. When used as an example for numerical continuation,
we will set λ = 10 and a = 0.5 in the equation. The required function to use
in the algorithms becomes [107]

F : Rn × R : (ψ, µ)→ −Aψ + 10
(
ψ − µeψ

)
. (2.7)

As a starting point we use the trivial solution ψ = 0, µ = 0 of F(ψ, µ) = 0,
unless specified otherwise. The inner products

〈·, ·〉h =
1

n− 1
〈·, ·〉2, (2.8)

〈·, ·〉h2 =

(
1√
n− 1

)2

〈·, ·〉2 (2.9)

will be used in the algorithms and solvers for respectively the line segment and
square meshes.

For the line segment (Ω = [−a, a]), the resulting bifurcation diagram will
contain multiple solution curves, which will be generated by the same tech-
niques as used for the example described in section 2.3. The case where Ω
represents a square is an example of how symmetry complicates the construc-
tion of a bifurcation diagram. Due to the possibility of more than two solution
curves intersecting in a single point, the techniques described in sections 7.4 or
7.5 will be required. The derivatives of F (for ψ ∈ Rn, µ ∈ R) are given by:

Fψ(ψ, µ) : Rn → Rn : φ→ −Aφ+ 10
(
φ− µeψφ

)
,

Fµ(ψ, µ) = −10eψ,

Fψψ(ψ, µ) : Rn × Rn → Rn : (φ, ξ)→ −10µeψφξ,

Fψµ(ψ, µ) : Rn × R→ Rn : (φ, τ)→ −10τeψφ

Fµµ(ψ, µ) = 0.

Note that since A is a symmetric matrix, the linear operator Fψ(ψ, µ) is sym-
metric as well. This induces some interesting properties, for example, all of the
eigenvalues of Fψ(ψ, µ) will be real for any ψ ∈ Rn, µ ∈ R.

To perform numerical continuation efficiently, a fast method for solving
linear systems of the form

Fψ(ψ, µ)φ = b

for certain b ∈ Rn, needs to be derived. We will approximate the solutions of
these systems with a Krylov method (see section 3.3). To reduce the computa-
tional work, a preconditioner is used for the Liouville-Bratu-Gelfand problem.
This preconditioner consists of the inverse of the linear operator

R(ψ, µ) : Rn → Rn : φ→ −Aφ+ 10φ. (2.10)
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2. Applications

The linear operatorR(ψ, µ) consists of the part of Fψ(ψ, µ) that is independent
of the state ψ and physical parameter µ. Though independent of these variables,
we choose to use the notation R(ψ, µ) for generality. The used preconditioner
is symmetric and positive definite.

2.5 The Ginzburg-Landau equation

The main application that is considered in the thesis is the extreme type-II
Ginzburg-Landau equation, a nonlinear model that appears when describing
vortices in a wide range of superconductors.

These vortices organise themselves in regular patterns, for small nano de-
vices these patterns are very sensitive to system parameters and the geometry
of the considered sample. Scientists are trying to improve the critical field and
temperatures of superconductors by exploiting and engineering the properties
of geometrical and material parameters [23] or by understanding the effect of
the geometry on the vortex dynamics [38]. Numerical continuation allows to
predict the different patterns that might appear theoretically, as well as the
values for which transitions between these patterns happen.

We start this section with a brief introduction to the different types and
states of superconductors.

2.5.1 An introduction to superconductors

Superconductors are materials that, when below a certain characteristic tem-
perature (Tc1), expel magnetic fields and exhibit a complete loss of electrical
resistivity [44, 105]. We will consider mesoscopic samples of superconducting
material that occupy an open, bounded region Ω of the two-dimensional Eu-
clidean space, subject to an external, homogeneous magnetic field H0 (see figure
2.2). The total magnetic field is denoted as B : R3 → R3.

A superconducting material can adopt different states, depending on the
temperature T and strength µ of the applied magnetic field H0. We distin-
guish the normal (or homogeneously non-superconducting), the mixed and the
(homogeneously) superconducting state.

Material parameters of the sample, specifically the coherence length ξ and
the penetration depth λ, determine the type of the superconductor [44, 105].
If the ratio κ = λ

ξ is smaller than 1/
√

2 it is said to be of type I, otherwise the
superconductor is of type II. For extreme type-II superconductors the sample’s
penetration depth dominates its coherence length (κ� 1) [20, 74, 92].

Each type behaves like a normal conductor in the normal state (figure 2.2a).
The total magnetic field B entirely penetrates the sample in this case. The
normal state occurs for high temperatures (T > Tc2) or for magnetic field
strengths above a certain critical value µc2 .

In the homogeneously superconducting state (figure 2.2b) the total mag-
netic field B is expelled from the interior of the sample and the material ex-
hibits zero electrical resistance. The magnetic field is not entirely expelled,
instead it penetrates the superconductor to a very small distance characterized
by the penetration depth λ [64]. Note that for extreme type-II superconductors
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2.5. The Ginzburg-Landau equation

(a) The normal state (b) The superconducting state

(c) The mixed state

Figure 2.2: Possible states of an extreme type-II superconducting material,
subject to an external homogeneous magnetic field H0. Red and blue parts of
the domain correspond to respectively a high and low Cooper pair density.

this distance is more profound, for κ→∞ the field B even coincides with the
external one (H0) [92]. The superconducting state occurs for low temperatures
(T < Tc1) provided that the external magnetic field’s strength is sufficiently
low (µ < µc1).

A third state, called the mixed state (figure 2.2c), occurs for temperatures
and magnetic field strengths between two critical values (Tc1 < T < Tc2 and
µc1 < µ < µc2) [49]. In this case the material will only be locally penetrated
by the total magnetic field B. In type-II superconductors circular vortices of
non-superconducting currents will appear in the material [44]. In large samples,
these vortices organise themselves in regular patterns known as the Abrikosov
lattice [1]. Superconductors of type I typically cannot adopt the mixed state,
in this case the critical values for the transitions are equal: Tc1 = Tc2 and
µc1 = µc2 . When the critical temperature or field strength is crossed, the ma-
terial switches abruptly from the superconducting to the normal state [44]. For
certain mesoscopic samples however, mixed state patterns can occur even for
type-I superconductors [9].

In the thesis we will consider mesoscopic samples of extreme type-II super-
conductors. The amount of superconductivity at each location of the sample
Ω is measured by the density of superconducting charge carriers, also called
Cooper pairs. We denote this density by ρC : Ω ∪ ∂Ω→ R.
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2. Applications

2.5.2 Derivation of the Ginzburg-Landau equation

Both the total magnetic field B and the density of Cooper pairs ρC are de-
termined by the Ginzburg-Landau system [37], which will be described in this
section. The derivation is based on the analysis done in Schlömer [92]. We only
consider extreme type-II superconductors in the thesis, for which the system
decouples [20, 92].

For an open, bounded domain Ω ⊂ R2, with a piecewise smooth boundary
∂Ω, the Ginzburg-Landau problem is derived by minimizing the Gibbs free
energy functional [37]

G(Ψ,A(µ))−Gn = ξ
|α|2

β

∫
Ω

[
− |Ψ|2 +

1

2
|Ψ|4 + ‖− i∇Ψ−A(µ)Ψ‖2

+ κ2(∇×A(µ))2 − 2κ2(∇×A(µ)) ·H0

]
dΩ.

(2.11)

The state (Ψ,A(µ)) is in the natural energy space such that the integral is
well-defined. Ψ ∈ H2

C(Ω) represents a scalar-valued function and is commonly
referred to as the order parameter, and the magnetic vector potential corre-
sponding to the total magnetic field B is given by A(µ) ∈ H2

R2(Ω). This vector
potential depends on the parameter µ ∈ R, which represents the strength of
the applied magnetic field H0. The magnetic field B and Cooper pair density
ρC are determined by the state (Ψ,A(µ)) through

B = ∇×A(µ), (2.12)

ρC = |Ψ|2. (2.13)

The constant Gn that appears in (2.11) represents the energy associated
with the normal (non-superconducting) state. The total Gibbs free energy
depends upon the impinging magnetic field H0 and the material parameters
α, β, λ, ξ ∈ R. It is presented in its dimensionless form, where the domain Ω is
scaled in units of the coherence length ξ. As stated in section 2.5.1, the type
of the superconductor is completely determined by the ratio κ = λ/ξ, with λ
the penetration depth.

Using standard calculus of variations, minimization of the Gibbs free energy
functional gives rise to the Ginzburg-Landau equation [37]: a boundary-value
problem in the unknowns Ψ and A(µ). For extreme type-II superconductors the
limit κ→∞ is considered, in this case the Ginzburg-Landau problem decouples
for Ψ and A(µ) [92]. The magnetic vector potential A(µ) is determined by the
applied magnetic field H0 through the system{

∇× (∇×A(µ)) = 0 in Ω,

n× (∇×A(µ)) = n×H0 on ∂Ω.
(2.14)

With the magnetic vector potential determined, the order parameter Ψ is de-
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2.5. The Ginzburg-Landau equation

rived by solving the equation

G : X × R→ Y,

0 = G(Ψ, µ) =

{
(− i∇−A(µ))2Ψ−Ψ(1− |Ψ|2) in Ω,

n · (− i∇−A(µ))Ψ on ∂Ω.

(2.15)

The space X corresponds to the natural energy space over Ω associated with
the Gibbs energy (2.11) and Y to its dual space. The part

K(µ) = (− i∇−A(µ))2

is often referred to as the kinetic energy operator [93].

Numerical continuation will be applied to the discretization of (2.15), de-
scribed in section 2.5.5. A magnetic vector potential A0 is a priori defined, such
that ∇×A0 equals the external magnetic field strength H0 of strength µ = 1.
The potential

A(µ) = µA0 (2.16)

is then used in the discretization of (2.15). Remember that by taking the limit
κ→∞, the magnetic fields H0 and B coincide (see section 2.5.1), so (2.12) is
satisfied.

Note that a discretized version of the inner product

〈·, ·〉R = Re〈·, ·〉L2
C(Ω) (2.17)

is used in the algorithms and solvers of numerical continuation when applied to
the Ginzburg-Landau example, this inner product coincides with the natural
one in (L2

R(Ω))2 [92].

2.5.3 Underlying symmetries

One of the factors that influences the formed patterns is the geometry - more
specifically the symmetries - of the sample. In Schlömer [92] a square sample
subject to a perpendicular, homogeneous magnetic field is considered. The D4

symmetry of this mesh induces an invariance (see definition 6.8) of (2.15) under
the symmetry group S1×D4. A more general result is given in proposition 2.1.

Proposition 2.1. Let the domain Ω ⊂ R2 and the magnetic vector potential
A(µ) both be invariant under the actions of a dihedral group Dm = 〈τω, σ〉
(with ω = 2π/m, m ∈ N) defined by

τω : R2 → R2 :

(
x
y

)
→
(

cos(ω) − sin(ω)
sin(ω) cos(ω)

)(
x
y

)
,

σ : R2 → R2 :

(
x
y

)
→
(
−x
y

)
,

then (2.15) is invariant under the actions of S1 ×Dm = 〈θη, τω, σ〉, given by

θη : X → X : Ψ→ eiηΨ (∀η ∈ [−π, π]),

τω : X → X : Ψ(x, y)→ Ψ(τω(x, y)),

σ : X → X : Ψ(x, y)→ Ψ(−x, y).
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2. Applications

A similar result holds for invariance under the actions of the cyclic group
Cm = 〈τω〉.

The continuous S1 symmetry is independent of the domain Ω and will
further complicate the construction of bifurcation diagrams. This symmetry is
also referred to as phase symmetry [92]. Due to its continuity, every solution
Ψ of (2.15) is part of a complete family of solutions given by [93]

{θηΨ|θη ∈ S1}. (2.18)

We will only consider a single representative for each family of the form (2.18).
All of the solutions in one such family have the same density of Cooper pairs
(we have |Ψ| = |θηΨ| for each θη ∈ S1).

Remark 2.2. The phase symmetry of (2.15) is a special case of the Gauge
invariance: if a given state (Ψ,A(µ)) minimizes the Gibbs free energy functional
(2.11), so does the state (Υ,Q(µ)) defined by

Υ = ΨeiκΦ, Q(µ) = A(µ) +∇Φ,

for each possible choice Φ ∈ H2
C(Ω) [37]. The phase symmetry is derived from

this by choosing Φ a constant function. Note that the Gauge invariance is valid
for general superconductors (not necessarily of extreme type-II).

2.5.4 Derivatives and their properties

The Jacobian operator GΨ(Ψ, µ)

To derive the partial Jacobian GΨ(Ψ, µ) for Ψ ∈ X, µ ∈ R, take Ψ, δΨ ∈ X,
µ ∈ R. We have [92]:

G(Ψ + δΨ, µ)− G(Ψ, µ)

= (− i∇−A(µ))2 (Ψ + δΨ)− (Ψ + δΨ)
(

1− (Ψ + δΨ) (Ψ + δΨ)
)

− (− i∇−A(µ))2Ψ + Ψ
(
1−ΨΨ

)
= (− i∇−A(µ))2δΨ + 2δΨ|Ψ|2 + δΨΨ2 + Ψ|δΨ|2

− δΨ + Ψ|δΨ|2 + ΨδΨ2 + δΨ|δΨ|2.

Neglecting higher-order terms in δΨ, we obtain the Jacobian operator [92]:

GΨ(Ψ, µ) : X → Y : Φ→
(
(− i∇−A(µ))2 − 1 + 2|Ψ|2

)
Φ + Ψ2Φ. (2.19)

The operator GΨ(Ψ, µ) is linear when defined over X and Y as R-vector
spaces and is self-adjoint with respect to inner product (2.17) [92]. Its spectrum
is a subset of R. If (Ψs, µs) is a solution of (2.15), iΨs is a null vector of
GΨ(Ψs, µs) [92, 93]. We indeed have [92]:

GΨ(Ψs, µs) iΨs = (− i∇−A(µ))2 iΨs − iΨs + 2|Ψs|2 iΨs + Ψ2
siΨs

= iΨs

(
1− |Ψs|2

)
− iΨs + 2 i|Ψs|2Ψs − i|Ψs|2Ψs

= 0.
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2.5. The Ginzburg-Landau equation

The existence of this null vector is a consequence of the continuous S1 symmetry
(see proposition 2.1) [92, 93]. The singularity of the Jacobian operator (2.19)
in a solution hampers the convergence of classic solvers like the Newton-Krylov
method, and is one of the reasons for the introduction of deflation techniques
further in the thesis (see section 3.3.2).

Other derivatives

The partial Hessian GΨΨ(Ψ, µ) is derived in a similar way as (2.19): let Ψ, Φ,
δΨ ∈ X and µ ∈ R. We have

GΨ(Ψ + δΨ, µ)Φ−GΨ(Ψ, µ)Φ

=
(
(− i∇−A(µ))2 − 1 + 2|Ψ + δΨ|2

)
Φ + (Ψ + δΨ)2Φ

−
(
(− i∇−A(µ))2 − 1 + 2|Ψ|2

)
Φ−Ψ2Φ

= 2
(
ΨδΨΦ + ΨδΨΦ + ΨδΨΦ

)
+ 2|δΨ|2Φ + (δΨ)

2
Φ.

The Hessian operator is obtained from this equation by neglecting the higher-
order terms in δΨ:

GΨΨ(Ψ, µ) : X ×X → Y : (Φ1,Φ2)→ 2
(
ΨΦ1Φ2 + ΨΦ1Φ2 + ΨΦ1Φ2

)
.

Note that this operator is independent of the strength µ of the applied magnetic
field. It is bilinear when defined over X and Y as R-vector spaces. The third
partial derivative of (2.15) to Ψ is again derived in a similar way:

GΨΨΨ(Ψ, µ) :X ×X ×X → Y :

(Φ1,Φ2,Φ3)→ 2
(
Φ1Φ2Φ3 + Φ1Φ2Φ3 + Φ1Φ2Φ3

)
and is independent of the order parameter Ψ as well. These independencies
imply the following conditions on higher-order derivatives:

∀k ≥ 4 :
∂kG
∂Ψk

(Ψ, µ) = 0, ∀k ≥ 1 :
∂k

∂µk
∂2G
∂Ψ2

(Ψ, µ) = 0.

The partial derivatives that have not been discussed in this section so far
will be approximated by applying a second-order finite difference scheme [43].
This includes the partial Jacobian Gµ and partial Hessians GΨµ and Gµµ.

2.5.5 Discretization

Derivation of the discretized system

In order to apply numerical continuation, we need a discretized version of
(2.15). Let (x1, y1), . . . , (xn, yn) be a set of n discretization points of the domain
Ω. If possible, this set should be chosen in such a way that any symmetries of
Ω are preserved. States Ψ ∈ X will be approximated by ψ ∈ Cn, with

ψ =

ψ1

...
ψn

 =

Ψ(x1, y1)
...

Ψ(xn, yn)

 .
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2. Applications

Let {Ti}mi=1 (m ∈ N) be the Delaunay triangulation of (x1, y1), . . . , (xn, yn)
and {Vj}nj=1 its corresponding Voronoi tessellation [78]. An edge (xj , yj) −
(xk, yk) of a triangle Ti is denoted as ej,k (∀i = 1, . . . ,m, with j, k ∈ {1, . . . , n}).
We first discretize the operator (− i∇−A(µ))2, this discretization is given by
K(h)(µ), defined by the property [93]

∀ψ, φ ∈ Cn :
n∑
i=1

|Vi|φi
(
K(h)(µ)ψ

)
i

=

m∑
i=1

∑
edges ej,k of Ti

α
(i)
j,k

((
ψj − Uj,k(µ)ψk

)
φj

+
(
ψk − Uj,k(µ)ψj

)
φk

)
.

For a triangle Ti (i ∈ {1, . . . ,m}) consisting of the edges ej,k, ek,l and el,j

(j, k, l ∈ {1, . . . , n}), the coefficient α
(i)
j,k ∈ R is given by the formula

α
(i)
j,k =

1

2

tj,k√
1− t2j,k

with tj,k =

〈
ek,l
‖ek,l‖2

,
el,j
‖el,j‖2

〉
2

.

The coefficients α
(i)
k,l and α

(i)
l,j are defined by a similar formula. The values

Uj,k(µ) ∈ C are given by

∀j, k = 1, . . . , n : Uj,k(µ) = exp

(
− i

∫ (xj ,yj)

(xk,yk)

〈ej,k,A(µ, ω)〉2dω

)
with A(µ, ω) the magnetic vector potential evaluated at the location ω ∈ Ω.
Using the discretization K(h) of (− i∇ −A(µ))2, we discretize the Ginzburg-
Landau equation (2.15) as [93]

F : Cn × R→ Cn,

0 = F(ψ, µ) =


(
K(h)(µ)ψ

)
1
− ψ1

(
1− |ψ1|2

)
= 0,

...(
K(h)(µ)ψ

)
n
− ψn

(
1− |ψn|2

)
= 0.

(2.20)

By discretizing the equation as (2.20), the Gauge invariance (see remark 2.2)
is preserved [93].

The function (2.20) is used for the numerical continuation algorithms, where
the magnetic vector potential A(µ) is defined as in (2.16). Unless otherwise
specified, we use the trivial solution ψ = 1, µ = 0 as a starting point. In the
algorithms and solvers the inner product

〈·, ·〉R = Re〈·, ·〉2 (2.21)

will be used. This is the discretized version of (2.17). The partial Jacobian
Fψ and Hessian Fψψ are discretized in a similar way as (2.20). The partial
Jacobian becomes [93]:

Fψ(ψ, µ) : Cn → Cn : φ→ K(h)φ− φ+ 2

 |ψ1|2φ1

...
|ψn|2φn

+

ψ
2
1φ1

...

ψ2
nφn

 . (2.22)
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2.5. The Ginzburg-Landau equation

The partial Hessian is given by

Fψψ(ψ, µ) : Cn × Cn → Cn : (φ, ϕ)→ 2

 ψ1φ1ϕ1 + ψ1φ1ϕ1 + ψ1φ1ϕ1

...

ψnφnϕn + ψnφnϕn + ψnφnϕn

 .

Properties of the discretized system

Most properties of the discretized system are inherited from the continuous one.
Proposition 2.3 describes the symmetries of (2.20) and is similar to proposition
2.1.

Proposition 2.3. Let the domain Ω ⊂ R2, its set of discretization points
(x1, y1), . . . , (xn, yn) and the magnetic vector potential A(µ) be invariant under
the actions of a dihedral group Dm = 〈τω, σ〉 (with ω = 2π/m, m ∈ N). Then
(2.20) is invariant under the actions of S1 ×Dm = 〈θη, τω, σ〉, given by

θη : Cn → Cn : ψ → eiηψ (∀η ∈ [−π, π]),

τω : Cn → Cn : ψ → Pτωψ,

σ : Cn → Cn : ψ → Pσψ,

with Pτω and Pσ permutation matrices such that ∀Ψ ∈ X:

Pτω

Ψ(x1, y1)
...

Ψ(xn, yn)

 =

Ψ(τω(x1, y1))
...

Ψ(τω(xn, yn))

 ,

Pσ

Ψ(x1, y1)
...

Ψ(xn, yn)

 =

Ψ(−x1, y1)
...

Ψ(−xn, yn)

 .

A similar result holds for invariance under the actions of the cyclic group
Cm = 〈τω〉.

Each solution ψ of (2.20) is again part of a family of solutions {θηψ|θη ∈ S1},
and we will only consider a single representative for each such family when
performing numerical continuation. As in the continuous case, the S1 symmetry
induces a null vector for the partial Jacobian Fψ(ψs, µs) evaluated at a solution
ψs, µs of (2.20) [93]:

Fψ(ψs, µs) iψs = 0. (2.23)

The self-adjointness of the continuous Jacobian (2.19) with respect to the
inner product (2.17) induces the same property in the discretized case [93]: the
partial Jacobian Fψ(ψ, µ) is self-adjoint with respect to inner product (2.21)
for each ψ ∈ Cn, µ ∈ R. The spectrum of this operator is again a subset of R.
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2. Applications

2.5.6 A preconditioner for the Jacobian system

Multiple parts of the numerical continuation algortihm require solving linear
systems of the form

Fψ(ψ, µ)φ = b (2.24)

for a certain b ∈ Cn. The solutions of these systems will be approximated by
applying a Krylov method (see section 3.3). To accelerate these methods when
applied to the Ginzburg-Landau equation, approximate inverses of the operator

R(ψ, µ) : Cn → Cn : φ→ K(h)φ+ 2

 |ψ1|2φ1

...
|ψn|2φn

 (2.25)

are used as a preconditioner [93]. Approximate inversion is realized by an alge-
braic multigrid (AMG) strategy [93, 71]. The operator (2.25) is self-adjoint with
respect to the inner product (2.21) and is positive semi-definite. It is strictly
positive definite for A 6= 0, which is the case for the applications considered in
chapter 9. The approximate inverse of (2.25), derived with algebraic multigrid,
is also self-adjoint with respect to (2.21) and positive definite for A 6= 0 [93].

The use of the preconditioner together with a Krylov method yields an
optimal solver for linear systems of the form (2.24): the amount of Krylov
iterations required to converge is independent of the number of unknowns in
the linear system [93]. Numerical experiments in [93] show that the approximate
inversion of (2.25) with a single V-cycle yields the fastest solver.
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CHAPTER 3
Review of numerical methods

“It’s dangerous to go alone! Take this.”

– Old Man –
The Legend of Zelda

Chapter highlights:

• We explain how a linear operator’s eigenpairs are approximated
by Ritz pairs, and give an algorithm based on explicit restarts.

• We discuss Krylov methods, used to approximate the solution to
linear problems.

• We indicate the importance of deflation for problems with ill-
conditioned linear operators.

• We discuss the nonlinear conjugate gradients method, used for
small-scale nonlinear minimization problems.

• We review the Crank-Nicolson method, a time step scheme that
will be used to validate stability results.

• The results in this chapter are mainly based on the following
references: [7, 25, 45, 63, 97].

3.1 Introduction

The techniques used to create bifurcation diagrams rely on a lot of different
numerical solvers. Especially the Newton-Krylov method with block elimina-
tion is essential when performing the pseudo-arclength continuation algorithm
(see section 6.4). An alternative version of this method will play a key role
in the approximation of bifurcation points (see section 6.6.2). Newton-Krylov
methods rely on other solvers themselves, which will be discussed first. This
chapter reviews numerical methods used in Newton-Krylov solvers, or in other
algorithms throughout the thesis.
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3. Review of numerical methods

3.2 Eigenpair solvers

Solvers for the eigenvalues and -vectors of (Hermitian) Jacobian operators are
discussed in this section. The eigenvalues have multiple uses, for example to
determine the stability of a certain state (see section 6.8) and to indicate the
proximity of bifurcations (see sections 6.5 and 6.6), which the convergence
criterion used in algorithm 6.6 (page 198) is based on.

For certain bifurcation points, the approximate null vectors of the Jacobian
operator are required in the construction of tangent directions (see section
7.2.2). To find these points themselves, linear systems with a Jacobian that
is approximately singular need to be solved. A Krylov solver is used for this
purpose, we use deflation techniques to ensure convergence. It is essential to
provide the approximate null vectors for deflation to work (see section 3.3.2).

In this section we provide methods to calculate eigenpairs of a general,
Hermitian, linear operatorA : Cn → Cn (n ∈ N). The methods allow to provide
already known (approximate) null vectors that should not be returned. This is
for example useful when A is the Jacobian of a problem that is invariant under
certain continuous symmetries (see example 3.1). The provided (approximate)
null vectors are denoted by ϕ1, . . . , ϕl (for a certain l ∈ N).

Example 3.1. The discrete Ginzburg-Landau equation (2.20) described in
section 2.5 is invariant under the actions of S1 for any choice of domain Ω. For
a solution (ψs, µs) of (2.20), this continuous symmetry induces a null vector
iψs for the Jacobian Fψ(ψs, µs) given by (2.22). �

The eigenvalues of A and their corresponding eigenvectors will be denoted
by respectively λi and φi (for i = 1, . . . , n). The eigenvalues are ordered ac-
cording to absolute value:

|λ1| ≤ |λ2| ≤ |λ3| ≤ · · · ≤ |λn|.

In our applications we are mainly interested in eigenvalues close to zero.

When a (Hermitian, positive definite) preconditioner P is provided, eigen-
pairs of the preconditioned system are calculated:

PAφi = λiφi for i ∈ {1, . . . , n}.

In this case vectors τi (i ∈ {1, . . . , n}), defined by the formula

∀i = 1, . . . , n : Pτi = φi,

will be approximated and returned by the algorithms as well. Note that, if P
is invertible, Aφi = λiτi holds (∀i = 1, . . . , n). The unpreconditioned problem
can be derived from the preconditioned one by setting P = I.

Note that the eigenpairs of the preconditioned linear operator PA possibly
differ from the ones of the original operator A. Since only Hermitian, posi-
tive definite preconditioners are considered in the thesis (see chapter 2), the
qualitative properties of the eigenvalues are the same for both operators (see
proposition 3.2).
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3.2. Eigenpair solvers

Proposition 3.2. Let A : Cn → Cn and P : Cn → Cn be Hermitian linear op-
erators. Assume P is positive definite. Then each eigenvalue λ of A corresponds
to an eigenvalue λ′ of PA with the same sign and multiplicity.

Corollary 3.3. The kernels of the linear operators A and PA defined in
proposition 3.2 have the same dimension.

Only the signs of eigenvalues, and whether they approximate zero, are used
in the algorithms discussed in the thesis. By proposition 3.2 the eigenpairs
of the preconditioned operator PA can be used in these algorithms without
nullifying results on e.g. stability or bifurcation detection.

3.2.1 Approximation by Ritz pairs

We will approximate the eigenpairs of A by Ritz pairs [87]. To calculate Ritz
pairs, first a base for an appropriate Krylov subspace needs to be constructed.

Definition 3.4 (Krylov subspace). Given a linear operator A : Cn → Cn and
a vector b ∈ Cn. The m-dimensional Krylov subspace (m ≤ n) spanned by A
and b is given by [63]

Km(A, b) =

{
m−1∑
i=0

aiAib

∣∣∣∣∣a0, . . . , am−1 ∈ R

}
.

To construct a base for the Krylov subspace spanned byA and a given vector
b, the Arnoldi algorithm is applied (see algorithm 3.1 on page 42 in appendix
3.6, taken from Saad [86]). In absence of preconditioners, matrices V and H
are constructed by this algorithm. The columns of V form an orthonormal
base for Km(A, b), the matrix H is of upper Hessenberg form and represents
the orthogonal projection of the operator A onto Km(A, b). It is possible to
provide the inner product 〈·, ·〉 used for orthonormality of the base vectors in
algorithm 3.1. If the inner product is not specified, the Euclidean one is used.
The algorithm allows for the deflation of vectors given as the columns of a
deflation matrix K. When provided, the base vectors will be orthogonalized
to the columns of K as well. After the construction of matrices H and V , the
eigenpairs of A are approximated by Ritz pairs.

Definition 3.5 (Ritz pairs [87]). Let A be a Cn × Cn linear operator and
b ∈ Cn. The columns of V ∈ Cn×m form a base for the m-dimensional Krylov
subspace spanned by A and b, the upper Hessenberg matrix H ∈ Cm×m rep-
resents the orthogonal projection of A onto this subspace.

Let (λ1, β1), (λ2, β2), . . . , (λm, βm) be the eigenpairs of H. We call the val-
ues λ1, λ2, . . . , λm Ritz values of A. The vectors V β1, V β2, . . . , V βm are the
corresponding Ritz vectors.

If the Krylov subspace is constructed with a general (random) vector b, the
Ritz pairs approximate eigenpairs of A. The precision of the approximation is
determined by the dimension of the subspace, and can be improved by per-
forming more Arnoldi iterations. Typically Ritz values converge to the extreme
eigenvalues of A [87]. This is a valuable property, since we are mainly interested
in eigenvalues close to zero.
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3. Review of numerical methods

When a self-adjoint, positive definite preconditioner P is provided, the
Arnoldi algorithm (algorithm 3.1) constructs matrices V , P andH. The columns
of V , respectively P , form an orthonormal base for Km(PA,Pb) and Km(AP, b)
and satisfy the relation PP = V . The upper Hessenberg matrix H again repre-
sents the orthogonal projection of the two linear operators onto their respective
Krylov subspaces. This projected matrix is identical for both operators. The
columns of V and P are orthonormal for adjusted inner products 〈·, ·〉P−1 , re-
spectively 〈·, ·〉P , as defined in proposition 3.6. Note that the linear operator
P−1 itself does not appear in algorithm 3.1.

Proposition 3.6. Let 〈·, ·〉 be an inner product and P a linear operator that
is self-adjoint and positive definite with respect to 〈·, ·〉. Then the maps defined
by

〈·, ·〉P : Cn × Cn → R : (v, w)→ 〈v,Pw〉,
〈·, ·〉P−1 : Cn × Cn → R : (v, w)→ 〈v,P−1w〉,

are inner products as well.

Proof. This follows from the definitions of positive definiteness and an inner
product.

The columns V1, . . . , Vm and P1, . . . , Pm of matrices V and P satisfy

〈Vi, Vj〉P−1 = 〈Pi, Vj〉 = 〈Pi, Pj〉P = δij .

Ritz pairs of PA are calculated in a similar way as for the unpreconditioned
case. Remember that, when the preconditioner P is self-adjoint and positive
definite, the eigenvalues of A and PA have the same qualitative properties (see
proposition 3.2). The same holds for approximations by Ritz pairs.

A first algorithm for the approximation of eigenpairs of a linear operator PA
(with P the preconditioner) is given by algorithm 3.2 on page 42 in appendix
3.6 (taken from Saad [86]). First the Arnoldi algorithm is applied with a random
vector b, then k Ritz pairs are calculated. The unpreconditioned case is derived
from algorithm 3.2 by setting P = I. The algorithm returns a diagonal matrix

L =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λk


with the Ritz values on the diagonal, a matrix

W =
(
φ1 φ2 . . . φk

)
with the corresponding Ritz vectors as columns, and a matrix

U =
(
τ1 τ2 . . . τk

)
such that PU = W . If necessary, already known (approximate) null vectors
ϕ1, ϕ2, . . . , ϕl can be provided by setting the deflation matrix K as

K =
(
ϕ1 ϕ2 . . . ϕl

)
.
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3.2. Eigenpair solvers

3.2.2 Explicit restarts

Algorithm 3.2 (on page 42) did not contain any criteria to check the convergence
of the calculated Ritz pairs. An indication for the precision of a Ritz pair can
be derived from the Arnoldi factorization: if (λ, φH) is an eigenpair of the
upper Hessenberg matrix H, created for an m-dimensional Krylov subspace,
then the value γ = |Hm+1,m〈em, φH〉| (with em the mth unit vector) indicates
the proximity of the corresponding Ritz pair to the actual eigenpair of A. The
approximation becomes better for values of γ close to zero [86].

Typically Ritz values near the extreme eigenvalues of A converge fast, con-
vergence to other pairs can be slow. If multiple eigenpairs need to be approx-
imated, a lot of Arnoldi iterations are possibly required before the desired
tolerance is reached. This can lead to memory issues. To counter this problem,
we will create a new algorithm that allows for restarts. In this algorithm we
allow multiple Arnoldi factorizations to be calculated, but each factorization
should only require a low amount (m) of iterations.

Restarts are realized in two different ways [86]. If an Arnoldi factorization
(H,V ) for the Krylov subspace Km(A, b), constructed from a random vector b,
does not yield (low magnitude) Ritz pairs converged up to the desired tolerance,
a restart is made. A new Arnoldi factorization is started, this time for the
subspace Km(A, φ), with φ the current Ritz vector corresponding to the lowest
magnitude Ritz value. Note that when a preconditioner is provided, the vector
τ = P−1φ is used for the restart. Due to this explicit choice of the vector used
to span the Krylov subspace, the Ritz vector close to φ should converge faster
[86]. The process can be repeated until the desired tolerance is reached.

A second kind of restart is performed after one or more Ritz pairs, calculated
from a factorization (H,V ), have been accepted. To prevent the algorithm from
converging to these pairs again, they are included in the deflation matrix K. A
new factorization is constructed with this updated deflation matrix, which will
yield Ritz values that converge to the new extreme eigenvalues of A, excluding
the ones already approximated.

The updated algorithm, allowing for explicit restarts, is given by algorithm
3.3 on page 43 in appendix 3.6, taken from Saad [86]. Arnoldi factorizations
for m-dimensional Krylov subspaces are performed until one or more low mag-
nitude (magnitude below ε2) Ritz pairs converge up to the desired tolerance
(ε1). A maximum of nmaxiter restarts (of the first kind) are allowed for this
part. Accepted Ritz pairs are stored, and another restart (of the second kind)
is made, with an updated deflation matrix. This process is repeated until the
wanted amount k of Ritz pairs is calculated, or until no converged pairs are
found after nmaxiter restarts (of the first kind). The algorithm again allows for
a self-adjoint, positive definite preconditioner P to be provided, setting P = I
yields the unpreconditioned method.

3.2.3 Possible improvements and alternative methods

For the applications considered in the thesis, eigenpairs are efficiently approxi-
mated by algorithm 3.3. Though acceptable, the computational work required
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for solving eigenvalue problems is often quite high due to a possible need of
many restarts. Several improvements can however be made to the method.

A first improvement concerns the use of implicit restarts instead of explicit
ones. In section 3.2.2 each restart constructs an entirely new Arnoldi factor-
ization, using a new starting vector and possibly an updated deflation matrix,
produced by the previous iteration(s). A more efficient approach, called implicit
restarting, omits the requirement of multiple factorizations by combining the
Arnoldi algorithm with shifted QR iterations [68]. After each implicit restart,
part of the matrices V and H are removed. The shifts are chosen such that only
eigenvalues of interest remain in the factorization. Computational requirements
are strongly reduced compared to the method with explicit restarts.

Many eigenvalue problems need to be solved when numerical continuation
is applied. Often the linear operator A, for which eigenpairs are approximated,
resembles an operator A′ that appeared in a previous problem. This yields
a second possible improvement to algorithm 3.3: due to the resemblance, the
spectral information calculated for A′ can be included in the problem for A to
reduce computational work. For example, the initial vector used in the Arnoldi
factorization can be chosen as a linear combination of eigenvectors of A′, typ-
ically reducing the amount of Arnoldi steps required for convergence [89].

The proposed adjustments reduce the required computational work of al-
gorithm 3.3. However, if the linear operator A contains an eigenvalue λ of high
multiplicity (e.g. multiplicity 24, which might occur if A is the Jacobian of
a nonlinear system with certain three-dimensional symmetries), the computa-
tional work possibly remains high. A normal Arnoldi factorization (without
restarts) is only able to find a single eigenvector for each unique eigenvalue
[85]. To find all eigenvectors with eigenvalue λ, each time an eigenvector is ac-
cepted, it needs to be deflated by an appropriate restart. The minimal amount
of restarts that is required, to find all of the wanted eigenvectors, is equal to
the multiplicity of the eigenvalue. Since restarting the Arnoldi factorization
is computationally expensive, alternative methods for solving eigenvalue prob-
lems should be considered for such cases.

One such alternative method is the Jacobi-Davidson algorithm [99, 101,
100]. Similar to the Arnoldi factorization, the eigenvalue problem is projected
onto a subspace, which is extended in each iteration. Instead of approximating
the Ritz pair after a fixed amount of iterations, each Jacobi-Davidson step k
constructs a guess φ̃(k) for the wanted eigenvector. Contrary to the Arnoldi
factorization, where the subspace is extended by application of A to one of its
vectors, the subspace is extended by solving a projected linear system for an
update vector dφ. This update vector approximates the orthogonal correction
for φ̃(k−1). The subspace is extended by dφ (after orthogonalization), and a
new guess φ̃(k) is calculated similar to definition 3.5.

To reduce computational work and storage costs, restarting and deflation
strategies can also be incorporated in the Jacobi-Davidson method. When the
linear operator A contains an eigenvalue λ of high multiplicity, the method
should be slightly adapted such that all eigenvectors with this eigenvalue are
approximated simultaneously [8]. The resulting method is typically more effi-
cient than using an Arnoldi factorization for these kinds of problems.
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Though computational work can be reduced and alternative methods are
more efficient in certain cases, algorithm 3.3 will be used for approximating
eigenpairs in the remainder of the thesis. Wanted eigenvalues never had a mul-
tiplicity of more than 2, and were computed in an acceptable time for the
applications considered in chapter 2.

3.3 Krylov methods

In multiple applications a linear system of the form

Fψ(ψ, µ)x = b (3.1)

needs to be solved, for a certain right-hand side b ∈ Cn (n ∈ N) and Fψ(ψ, µ) :
Cn → Cn the partial Jacobian of a certain function evaluated at (ψ, µ). These
Jacobian systems appear naturally when executing the Newton algorithm (see
chapters 4 and 5), but they also appear in certain algorithms for the construc-
tion of tangent directions (see chapter 7).

We will not solve systems of the form (3.1) exactly. Often the size of the Ja-
cobian is too big for this to be practical, for some problems (e.g. the Ginzburg-
Landau equation, see section 2.5) it is even impossible due to the Jacobian
only being given in the form of a linear operator. Instead, a Krylov method
will be used to approximate the solution x of the linear system. These methods
make full use of the sparsity structure of operators, since only their application
to given vectors needs to be calculated [63]. The problems we consider (see
chapter 2) either have a small-scale or a sparse (Hermitian) Jacobian.

As in section 3.2, we will consider a general, Hermitian, Cn×Cn linear op-
erator A, not necessarily derived from a Jacobian. We will describe algorithms
that solve a linear system

Ax = b (3.2)

for x ∈ Cn, with b ∈ Cn. It is possible to provide a preconditioner P to speed
up the algorithm. In this case the solution of

PAx = Pb

is searched. We will only consider Hermitian, positive definite preconditioners.
We assume that any (approximate) null vectors of A are known (possibly after
application of algorithm 3.3) and denote these by ϕ1, . . . , ϕl (l ∈ N). If a
preconditioner is provided, these vectors are of the form

PAPϕi = λiPϕi for i = 1, . . . , l

with λi ≈ 0 (∀i = 1, . . . , l).

3.3.1 The GMRES algorithm

In Krylov methods an approximation to the solution is searched within a sub-
space x(0) + Km(A, r(0)) (m ≤ n), for a certain initial guess x(0), with initial
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residual r(0) = Ax(0)− b. In the GMRES method, the approximation is chosen
such that the residual norm is minimal [63, 88]. We will approximate x by x̃,
given by

x̃ = arg min
x∈x(0)+Km(A,r(0))

‖Ax− b‖.

In order to calculate x̃ with GMRES the Arnoldi procedure (see section
3.2.1) is used to construct an orthonormal base V for the Krylov subspace
Km(A, r(0)), and an upper Hessenberg matrix H that represents the orthogo-
nal projection of the operator A onto this subspace. Next, the required linear
combination y ∈ Rm such that V y = x̃ is calculated. This is done by minimizing
the Euclidean norm

‖‖r(0)‖e1 −Hy‖2 (3.3)

over y ∈ Rm, using Givens rotations [63]. The upper Hessenberg form of H
allows this minimization problem to be solved efficiently. The approximation x̃
is then calculated as x̃ = x(0) + V y.

GMRES remains unchanged when a preconditioner P is provided, except for
the construction of the matrices V and H. With preconditioning, bases V and
P for the Krylov subspaces Km(PA,Pr(0)) and Km(AP, r(0)) are constructed.
These bases are orthonormal with respect to the inner products 〈·, ·〉P−1 , re-
spectively 〈·, ·〉P . The remainder of the method remains unchanged.

We will not describe the GMRES method by an explicit algorithm. Instead,
we note that the standard GMRES method is a special case of algorithm 3.4
(see page 44 in appendix 3.6), when the deflation matrix K is set as an empty
n× 0 matrix.

If the operator A is well-conditioned, the standard GMRES method gener-
ally works fine and typically exhibits superlinear convergence [108]. This is not
necessarily the case when A is ill-conditioned, the (approximate) null vectors
of A possibly hamper the convergence [63]. To prevent their influence, these
vectors should be deflated. This is the topic of the next section.

3.3.2 Deflated GMRES

If the linear operator A is ill-conditioned, GMRES might yield an approxima-
tion far from the actual solution. To illustrate this, consider a linear operator
A with an eigenpair (λ, ϕ) such that |λ| � 1 and ‖ϕ‖ = 1, the eigenvector ϕ is
an approximate null vector:

Aϕ = λϕ ≈ 0. (3.4)

The operator A is ill-conditioned. Consider a right-hand side b ∈ Cn of the
form

b = b̂+ εϕ (3.5)

with 〈b̂, ϕ〉 = 0 and ε ∈ R0 small, such that |λ| . |ε|. The εϕ part of b is possibly
caused by (rounding) errors, and should ideally only have a small influence on
the approximation x̃.
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Assume we perform a small amount (m) of GMRES iterations. After m
steps the Arnoldi procedure yields matrices H,V , with V an m-dimensional
base for the Krylov subspace Km(A, b). Since Ritz pairs tend to converge to
the extreme eigenpairs of A first, a linear combination z ∈ Rm of V that
approximates ϕ will appear after only a few iterations. Indeed, if (λ̃, z) is the
eigenpair of H such that λ̃ ≈ λ, then the vector V z will approximate ϕ.

Let x̂ be the solution of
Ax̂ = b̂.

Since 〈b̂, ϕ〉 = 0, we have 〈x̂, ϕ〉 = 0 as well. The full solution x of the system

Ax = b = b̂+ εϕ

becomes:
x = x̂+

ε

λ
ϕ.

Though the right-hand side b only contained a small part in the ϕ direction
(|〈b, ϕ〉| = |ε| ≈ 0), for the solution of the linear system we get

|〈x, ϕ〉| = |ε|
|λ|

& 1.

The approximate null vector ϕ has a big influence on the solution of the sys-
tem, even though its part in the vector b is negligible. Since ϕ is approximately
contained in the base V , the ϕ part of the solution x will be approximated well
by x̃, the approximation found by the GMRES algorithm. This property leads
to problems for e.g. the Newton method (see example 4.3 in section 4.2), and
should be eliminated: we do not want a small perturbation of the right-hand
side b in the ϕ direction to have a big influence on the approximation x̃.

Note that in above illustration, we specifically chose the right-hand side b
to contain a part in the direction of the approximate null vector ϕ. However,
even for b orthogonal to this vector the GMRES algorithm might still blow up
the solution in the ϕ direction. This can be caused by rounding errors within
the algorithm, or due to the error made when approximating ϕ itself. This is
illustrated by example 3.7.

Example 3.7. Consider the discrete Ginzburg-Landau equation (see section
2.5), applied to a material shaped as a pentagon of side length 2.35, with
magnetic field strength µ = 1.06. n = 10401 discretization points are used.
The linear operator A is chosen as the Jacobian (2.22) evaluated in a point
ψ̃ near the solution of the system F(ψ, µ) = 0 (with F given by (2.20)). For
this choice the linear operator A = Fψ(ψ̃, 1.06) contains three approximate
null vectors. Approximations for these vectors are available by application of
algorithm 3.3, these are denoted by ϕ̃1, ϕ̃2 and ϕ̃3.

The right-hand side b is constructed by applying the linear operator A to a
random vector x̂ ∈ Cn, with x̂ orthogonal to the approximate null vectors ϕ̃1,
ϕ̃2 and ϕ̃3. By construction, b is orthogonal to these vectors as well. The exact
solution of the linear system Ax = b is given by the vector x̂.

We apply preconditioned GMRES (algorithm 3.4, page 44) to the linear
system Ax = b. The preconditioner is given by (2.25), and the inner product
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Figure 3.1: Residual plot of example 3.7. The GMRES method (without defla-
tion) is applied to an ill-conditioned linear problem. The residual norm con-
verges to approximately 10−12 after 27 iterations, which is the attainable ac-
curacy.

(2.21) is used. m = 50 iterations are allowed and the tolerance ε is set to 0
to better investigate the behaviour of the algorithm. As an initial guess x(0) a
random perturbation of the solution x̂ is used, with x(0) still orthogonal to ϕ̃1,
ϕ̃2 and ϕ̃3. Deflation of these vectors is not used.

The residual plot is given by figure 3.1, a plot with the error norms (calcu-
lated as ‖x̂−x(k)‖ for each iteration k) by figure 3.2. Though the residual norm
decreases fast (convergence up to a tolerance of 10−12 is reached in less than 30
iterations), the error norms do not. After 40 iterations, the guess x(k) diverges
from the solution x̂. This is due to parts in ϕ̃1, ϕ̃2 and ϕ̃3 being contained in
x(k), though the actual solution x̂ is orthogonal to these vectors. The residual
norm does however not increase because ϕ̃1, ϕ̃2 and ϕ̃3 are approximate null
vectors.

�

Solving linear systems with an ill-conditioned operator is required for multi-
ple applications in the thesis, for example when the Newton method is executed
near a bifurcation point (see section 6.6.2). Even far away from bifurcations
possible continuous symmetries induce null vectors in the Jacobian (see e.g. the
Ginzburg-Landau equation in section 2.5), leading to ill-conditioned systems
in the Newton method.

To reduce the influence of (approximate) null vectors ϕ1, . . . , ϕl in the
GMRES algorithm, we introduce deflation. Given the deflation matrix

K =
(
ϕ1 ϕ2 . . . ϕl

)
,
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3.3. Krylov methods

Figure 3.2: Error norms of example 3.7. The GMRES method (without defla-
tion) is applied to an ill-conditioned linear problem. After an initial decrease of
the error norm to approximately 10−3, at iteration 40 it suddenly increases to
10−2 and then 10−1. Note that the residual norm converged for this example
(see figure 3.1).

the projection operator

Q : Cn → Cn : y → y −K〈K,K〉−1〈K, y〉

is defined. This operator orthogonalizes a vector y ∈ Cn to the approximate
null vectors ϕ1, . . . , ϕl. Instead of solving the linear system (3.2), we search an
approximate solution of the system [16, 45, 46]

QAx = Qb. (3.6)

The base vectors Vi for the Krylov subspace are orthogonalized to the ap-
proximate null vectors ϕ1, . . . , ϕl in the Arnoldi procedure. The approximate
solution x̃ - which is constructed as a linear combination of the base vectors -
will be orthogonal to ϕ1, . . . , ϕl as well. Any influence of null vectors is elimi-
nated from this approximation.

If a preconditioner P is provided, the projection operator

Q : Cn → Cn : y → y −K〈K,L〉−1〈L, y〉

is used, with L = PK. The considered linear system becomes

PQAx = PQb. (3.7)

The deflated GMRES method is given by algorithm 3.4 on page 44 in ap-
pendix 3.6 (based on [45]). Each iteration performs one Arnoldi cycle, the con-
structed base vector is orthogonalized to the vectors provided by the deflation
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3. Review of numerical methods

Figure 3.3: Residual plot of example 3.8. The deflated GMRES method is
applied to an ill-conditioned linear problem. The residual norm converges to
approximately 10−12 after 20 iterations, which is the attainable accuracy.

matrix K by applying the projection operator Q. After the Arnoldi cycle the
vector y that minimizes (3.3) is calculated by Givens rotations, and the corre-
sponding approximation x̃ is created. The algorithm stops if the residual norm
lies below a provided threshold ε. If this does not happen after a maximum of
m iterations, x̃ is accepted regardless of this norm.

Note that the standard GMRES algorithm (without deflation) is derived
from algorithm 3.4 by setting K as an empty n × 0 matrix. In this case the
projection operator Q becomes the identity operator I.

When the deflated GMRES algorithm is applied to the illustration at the
start of this section (see (3.4) and (3.5)), the approximation x̃ will approximate
the solution x̂ of

Ax̂ = b̂.

If the εϕ part of b was caused by (rounding) errors, a good approximation for
x will be found. This is illustrated by example 3.8.

Example 3.8. Consider the same setting as example 3.7. We again apply
algorithm 3.4 to the linear system Ax = b, this time deflation is used. The
deflation matrix is given by K =

(
ϕ̃1 ϕ̃2 ϕ̃3

)
.

Figure 3.3 shows the residual plot of the example, figure 3.4 a plot of the
error norms. The residual norm decreases faster than before (20 iterations are
required to converge up to a tolerance of 10−12, instead of 30). The error
norms show that the guess x(k) does not diverge from the actual solution x̂
when deflation is applied. A guess orthogonal to ϕ̃1, ϕ̃2 and ϕ̃3 is found. �
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Figure 3.4: Error norms of example 3.8. The deflated GMRES method is applied
to an ill-conditioned linear problem. Contrary to the method without deflation
(see figure 3.2), the error norm does not show sudden increases. It converges to
approximately 10−3 after 10 iterations. The residual norm converged for this
example as well (see figure 3.3).

Note that if εϕ was not caused by (rounding) errors, the approximation
found with deflated GMRES might contain a big error in the null vector part.
The method only approximates the x̂ part of the solution. To approximate
the null vector parts of x different methods than GMRES should be used,
depending on the underlying problem.

3.4 Nonlinear conjugate gradients

In some of the Newton-Krylov methods (see chapters 4 and 5) a nonlinear
function g : Rl → R, with l ∈ N small (for example l = 3), needs to be
minimized. We use the nonlinear conjugate gradients method (NCG) for this
problem [81]. NCG is an iterative algorithm that uses the gradient g′ and
Hessian g′′ of g, given by

g′ : Rl → Rl : a→


∂g(a)
∂a1
∂g(a)
∂a2
...

∂g(a)
∂al

 ,
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g′′ : Rl → Rl×l : a→


∂2g(a)
∂a21

∂2g(a)
∂a1∂a2

. . . ∂2g(a)
∂a1∂al

∂2g(a)
∂a2∂a1

∂2g(a)
∂a22

. . . ∂2g(a)
∂a2∂al

...
...

. . .
...

∂2g(a)
∂al∂a1

∂2g(a)
∂al∂a2

. . . ∂2g(a)
∂a2l

 ,

to construct descent directions d(i). In each iteration i the vector d̂ is calculated
by

d̂ = −g′′(a(i))−1g′(a(i)),

with a(i) the current guess. This vector is then used either to update d(i+1)

(using the Fletcher-Reeves formula [81]), or as d(i+1) itself. A new guess is
then constructed by updating the old one in such a descent direction, where
line search is used to find the approximate minimum.

An implementation of the nonlinear conjugate gradients method is given
by algorithm 3.5 on page 45 in appendix 3.6 (taken from Shewchuck [97]). An
initial guess a(0) is updated over a maximum of mout iterations. The algorithm
stops if the relative difference in residual is sufficiently low (lower than a tol-
erance εout). In each iteration a line search is performed to find the minimum
of g along a single direction. Line search steps are performed until the relative
update lies below a certain tolerance εin, or until a maximum of min steps.

If the gradient function g′ is not provided, the algorithm approximates it
by the first-order central finite difference scheme [43]:

g′ : Rl → Rl : a→ g′(a) such that ∀i = 1, . . . , l :

g′(a)i =
1

2ε
(g(a+ εei)− g(a− εei))

(3.8)

with ε ∈ R+
0 a small real number (typically chosen as ε = 3

√
εmach, with εmach

the machine precision [63]), and ei the ith unit vector. The same is done for the
Hessian function g′′ if it is not provided, in this case we approximate it with
the second-order central scheme [43] (typically choosing ε = 4

√
εmach [63]):

g′′ : Rl → Rl×l : a→ g′′(a) such that ∀i, j = 1, . . . , l :

g′′(a)ij =


1
ε2 (g(a+ εei)− 2g(a) + g(a− εei)) if i = j

1

4ε2
(g(a+ εei + εej)− g(a+ εei − εej)
−g(a− εei + εej) + g(a− εei − εej))

if i 6= j

(3.9)

Though the nonlinear conjugate gradients method works well for general
functions g, it is only efficient if the number of variables l is small. For a higher
amount of variables the cost of calculating the elements in the gradient g′(a(i))
and Hessian g′′(a(i)) for each iteration would become too high. When used in
the Newton-Krylov methods discussed in chapters 4 and 5, l will approximate
the amount of null vectors in the Jacobian of the function a zero is searched
for. This is generally a small number.
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3.5 The Crank-Nicolson method

We end the chapter by a review of the Crank Nicolson scheme, a time step
method [25]. Consider a partial differential equation of the form

∂Ψ(t)

∂t
= F (Ψ(t)), (3.10)

with a Hermitian partial Jacobian FΨ(Ψ(t)). The state Ψ : R→ Cn is a function
of the time t. Given l ∈ N, a time step ∆t and initial time t0, the discretization

∀j = 0, . . . , l : tj = t0 + j∆t

is considered. Denoting Ψ(tj) as Ψ(j) (∀j = 0, . . . , l), the Crank-Nicolson
method calculates Ψ(1), . . . ,Ψ(l) from a given initial state Ψ(0) by iteratively
solving the equation

1

∆t

(
Ψ(j+1) −Ψ(j)

)
=

1

2

(
F (Ψ(j+1)) + F (Ψ(j))

)
(3.11)

for j = 0, . . . , l − 1. Pseudo-code for the method is given by algorithm 3.6 on
page 47 in appendix 3.6.

In practice solving (3.11) is performed by a Newton algorithm (see algorithm
4.1 on page 100, described in section 4.2). The function to solve with Newton
is given by (∀j = 0, . . . , l)

G(Ψ(j+1)) = −Ψ(j+1) + Ψ(j) +
∆t

2

(
F (Ψ(j+1)) + F (Ψ(j))

)
= 0. (3.12)

Note that the Newton method uses GMRES to solve its underlying Jacobian
system, it is possible to provide an inner product (〈·, ·〉) and (Hermitian, posi-
tive definite) preconditioner (P ) for this purpose.

The Crank-Nicolson method yields evaluations of the unknown function Ψ
for the given discrete points in time. It is used to generate an evolution in
time of a given initial state Ψ(0), by using the corresponding partial differential
equation (3.10).

Note that it is possible to find steady states by applying the Crank-Nicolson
method: Ψ(l) = Ψ(t0 + l∆t) should converge to a steady state when the amount
of time steps l is increased. Only states that are physically stable (see section
6.8) can be found by this method however. Since we are interested in both
physically stable and unstable steady states for our applications, we will not
use the Crank-Nicolson method for this purpose. It will only be used to verify
physical stability results (e.g. in section 9.5.1).
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3.6 Appendix

The Arnoldi algorithm

Algorithm 3.1 Arnoldi

Input meig ∈ N, Linear operator A : Cn → Cn, vector b ∈ Cn, Precondi-
tioner P : Cn → Cn, inner product 〈·, ·〉, deflation matrix K ∈ Cn×l

Output Matrices H ∈ Cmeig×meig , V ∈ Cn×meig and P ∈ Cn×meig

1: Set P = I if not specified
2: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
3: Set K an empty n× 0 matrix if not specified
4: L = PK
5: Define Q : Cn → Cn : y → y −K〈K,L〉−1〈L, y〉
6: Initialize H ∈ Cmeig+1×meig , V ∈ Cn×meig+1 and P ∈ Cn×meig+1

7: w = Qb
8: v = Pw
9: α =

√
〈w, v〉

10: P1 = α−1w
11: V1 = α−1v
12: for j = 2, . . . ,meig + 1 do
13: w = QAVj−1

14: for l = 1, . . . , j − 1 do
15: Hl,j−1 = 〈Vl, w〉
16: w ← w −Hl,j−1Pl
17: end for
18: v = Pw
19: Hj,j−1 =

√
〈v, w〉

20: Pj = H−1
j,j−1w

21: Vj = H−1
j,j−1v

22: end for
23: α = Hmeig+1,meig

24: P ← P1:meig

25: V ← V1:meig

26: H ← H1:meig,1:meig

27: Return H,V, P, α

Calculation of Ritz pairs

Algorithm 3.2 Ritz

Input keig ∈ N, Linear operator A : Cn → Cn, Preconditioner P : Cn →
Cn, inner product 〈·, ·〉, deflation matrix K ∈ Cn×l

Output Ritz pairs represented by matrices L,W,U such that PU = W and
PAW = WL

1: Set P = I if not specified
2: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
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3: Set K an empty n× 0 matrix if not specified
4: Initialize a random vector b ∈ Cn
5: Calculate (H,V, P, α) by executing Arnoldi (algorithm 3.1) with given A,
b, P, 〈·, ·〉 and K

6: Calculate keig eigenpairs L,WH of H exactly, ordered by increasing abso-
lute eigenvalue

7: W = VWH

8: U = PWH

9: Return L,W,U

Calculation of Ritz pairs with explicit restarts

Algorithm 3.3 RitzRestart

Input keig, neig ∈ N, tolerances εeig1, εeig2 ∈ R+
0 , Linear operator A :

Cn → Cn, Preconditioner P : Cn → Cn, inner product 〈·, ·〉, deflation matrix
K ∈ Cn×l

Output Ritz pairs represented by matrices L,W,U such that PU = W and
PAW = WL

1: Set P = I if not specified
2: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
3: Set K an empty n× 0 matrix if not specified
4: Initialize L an empty 0× 0 matrix
5: Initialize U an empty n× 0 matrix
6: Initialize W an empty n× 0 matrix
7: a = 0
8: stop = False
9: while a < keig and not stop do

10: Initialize a random vector b ∈ Cn
11: i = 0
12: conv = False
13: while i < neig and not conv do
14: i← i+ 1
15: Calculate (H,V, P, α) by executing Arnoldi (algorithm 3.1) with given
A, b, P, 〈·, ·〉 and K

16: Calculate keig−a eigenpairs LH ,WH of H exactly, ordered by increas-
ing absolute eigenvalue

17: j = 0
18: while j < keig − a and a < keig do
19: j ← j + 1
20: γ = |α〈em,WHj〉|
21: if γ ≤ εeig1 and |LHjj | ≤ εeig2 then
22: conv ← True
23: a← a+ 1
24: τ = PWHj
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25: L←
(
L 0
0 LHjj

)
26: W ←

(
W VWHj

)
27: U ←

(
U τ

)
28: K ←

(
K τ

)
29: end if
30: end while
31: if not conv then
32: τ = PWH1

33: b← τ
34: end if
35: end while
36: if not conv then
37: stop← True
38: end if
39: end while
40: Return L,W,U

GMRES

Algorithm 3.4 GMRES

Input mlin ∈ N, tolerance εlin ∈ R+
0 , Linear operator A : Cn → Cn, vector

b ∈ Cn, Preconditioner P : Cn → Cn, inner product 〈·, ·〉, deflation matrix
K ∈ Cn×l, initial guess x(0) ∈ Cn

Output Approximation x̃ for the system PAx = Pb
1: Set P = I if not specified
2: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
3: Set K an empty n× 0 matrix if not specified
4: Set x(0) = 0 if not specified
5: L = PK
6: Define Q : Cn → Cn : y → y −K〈K,L〉−1〈L, y〉
7: Initialize H ∈ Cmlin+1×mlin , V ∈ Cn×mlin+1 and P ∈ Cn×mlin+1

8: Initialize R ∈ Rmlin+1×mlin , S ∈ Rmlin , C ∈ Rmlin and b̃ ∈ Rmlin+1

9: w = Q(b−Ax(0))
10: v = Pw
11: α =

√
〈w, v〉

12: P1 = α−1w
13: V1 = α−1v
14: b̃1 = α
15: j = 1
16: stop = False
17: while j < mlin + 1 and not stop do
18: j ← j + 1
19: w = QAVj−1
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20: for i = 1, . . . , j − 1 do
21: Hi,j−1 = 〈Vi, w〉
22: w ← w −Hi,j−1Pi
23: end for
24: v = Pw
25: Hj,j−1 =

√
〈v, w〉

26: Pj = H−1
j,j−1w

27: Vj = H−1
j,j−1v

28: R1,j−1 = H1,j−1

29: for i = 1, . . . , j − 2 do
30: γ = CiRi,j−1 + SiHi+1,j−1

31: Ri+1,,j−1 = −SiRi,j−1 + CiHi+1,j−1

32: Ri,j−1 ← γ
33: end for
34: δ =

√
R2
j−1,j−1 +H2

j,j−1

35: Cj−1 = δ−1Rj−1,j−1

36: Sj−1 = δ−1Hj,j−1

37: Rj−1,j−1 ← Cj−1Rj−1,j−1 + Sj−1Hj,j−1

38: b̃j = −Sj−1b̃j−1

39: b̃j−1 ← Cj−1b̃j−1

40: Initialize y ∈ Rj−1

41: for i = 1, . . . , j − 1 do

42: yj−i = R−1
j−i,j−i

(
b̃j−i −

∑i−1
p=1Rj−i,j−i+pyj−i+p

)
43: end for
44: x̃ = x(0) +

∑j−1
i=1 Viyi

45: q = Qb−QAx̃
46: r = Pq
47: ρ =

√
〈q, r〉

48: if α−1ρ < εlin then
49: stop← True
50: end if
51: end while
52: Return x̃

Nonlinear conjugate gradients (NCG)

Algorithm 3.5 NCG

Input mNCG1,mNCG2 ∈ N, tolerances εNCG1, εNCG2 ∈ R+
0 , functions g :

Rl → R, g′ : Rl → Rl and g′′ : Rl → Rl×l, initial guess a(0) ∈ Rl
Output Approximation ã for the argument that minimizes g

1: Define g′ : Rl → Rl by (3.8) if not specified
2: Define g′′ : Rl → Rl×l by (3.9) if not specified
3: ã = a(0)
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4: k = 0
5: r = g(ã)
6: q = r
7: s = g′(ã)
8: h = g′′(ã)
9: d = h−1s

10: δ = s∗d
11: i = 0
12: stop = False
13: while i < mNCG2 and not stop do
14: i← i+ 1
15: δd = d∗d
16: ξ =∞
17: j = 0
18: while j < mNCG1 and ξ2δd < εNCG1 do
19: j ← j + 1
20: ξ ← − s∗d

d∗hd
21: ã← ã+ ξd
22: s← g′(ã)
23: h← g′′(ã)
24: end while
25: d̂ = −h−1s
26: δ0 = δ
27: δ = −s∗d̂
28: β = δ

δ0
29: if k = l or −s∗d < 0 or β ≤ 0 then
30: k ← 0
31: d← d̂
32: else
33: k ← k + 1
34: d← d̂+ βd
35: end if
36: r ← g(ã)

37: if
∣∣∣ r−qq ∣∣∣ < εNCG2 then

38: stop← True
39: end if
40: q ← r
41: end while
42: Return ã
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Crank-Nicolson

Algorithm 3.6 CrankNicolson

Input mCN ∈ N, time step ∆t ∈ R+
0 , function F : Cn → Cn, initial state

Ψ(0) ∈ Cn
Output Approximations Ψ̃(0), . . . , Ψ̃(mCN ) of the time evolution of Ψ(0),

corresponding to the PDE (3.10)

1: Ψ̃(0) = Ψ(0)

2: for j = 0, . . . ,mCN − 1 do
3: Define G by (3.12) (with Ψ(j) = Ψ̃(j))
4: Calculate Ψ̃(j+1) by executing NewtonClassic (algorithm 4.1) with F =
G and x(0) = ψ̃(j)

5: end for
6: Return Ψ̃(0), Ψ̃(1), . . . , Ψ̃(mCN )
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CHAPTER 4
The Newton-Krylov method near

bifurcation points

“Divide and conquer.”

– Philip II of Macedon –

Chapter highlights:

• We review several existing Newton methods, and highlight their
problems when applied to ill-conditioned nonlinear equations.

• We analyse how the approximate singularity of the nonlinear
equation’s Jacobian induces these problems.

• We derive a new class of Newton methods for use on ill-
conditioned nonlinear equations, based on splitting the update
vector in a range and kernel part.

• We show how the introduction of extra terms to the update vector
gives way to an improvement in convergence.

• We explain how these extra terms are replaced by incorporating
information contained in previous Newton iterations, yielding a
computationally more efficient alternative.

• The results in the first part of this chapter are mainly based on
the following references: [29, 46, 63].

• A journal article about the contents of this chapter and the next
is in preparation.

4.1 Introduction

The Newton method is an iterative algorithm used to approximate the zeros
of a nonlinear function F : Cn → Cn [29, 63]. In each iteration a linear system
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with the functions Jacobian needs to be solved, in the Newton-Krylov method
the solutions of these linear systems are approximated with a Krylov method
(see section 3.3).

The algorithm used to perform numerical continuation, described in sec-
tion 6.4, uses the Newton-Krylov method in combination with block elimina-
tion techniques (see chapter 5). When applied to general points of a system
without continuous symmetries, the standard method generally works well and
convergence is fast. Only in some special cases an adjusted method performs
better. If the system contains continuous symmetries, we will see that a simple
adjustment concerning the use of deflation yields a decent solver.

Bigger problems arise when the Newton method is executed near a bi-
furcation point, which is the case for the algorithm used to find such points
(see section 6.6.2). The Jacobian of the function becomes more and more ill-
conditioned the closer the algorithm converges to the bifurcation point [10, 62].
In order for the Newton method to work in this algorithm, adjustments need to
be made. Before the algorithms combined with block elimination are described,
we first derive the required adjustments for the normal Newton-Krylov method,
ignoring block elimination.

The goal is to create an alternative Newton-Krylov method that also works
for large-scale functions with an ill-conditioned Jacobian. Typically the Jaco-
bian is only ill-conditioned near the solution we search, and well-conditioned
for bad approximations. The alternative method will be based on splitting the
unknown vector in a range and kernel part. Note that we will restrict ourselves
to problems with a Hermitian Jacobian.

4.1.1 Literature review

Several adjustments to the Newton method have already been proposed to
speed up convergence or to counter the issues caused by an ill-conditioned
Jacobian. None of these are efficient for the large-scale systems considered in
the thesis however. The current section reviews a selection of these alternative
Newton methods.

Some of these methods use a perturbed linear system for the calculation of
update vectors. In regularized Newton (RN) methods [69], for example, a spe-
cific diagonal matrix is added to the Jacobian whenever an update is calculated.
By adding the perturbation, the used linear operator becomes nonsingular and
quadratic convergence is expected.

The RN method is however developed for application to problems with
a positive semi-definite Jacobian [69]. The problems discussed in the thesis
(see chapter 2) do not necessarily have this property. Though an extension
for general problems is made in [96], this requires application of the modified
Cholesky factorization algorithm [22] to the Jacobian. For large-scale systems,
this requires an unacceptable amount of computational work.

A similar approach as in the RN method is applied in [39, 112]. These
papers discuss the Levenberg-Marquardt (LM) method, which also uses a per-
turbed linear system in each Newton step: the adjoint Jacobian is first applied
to the standard system, and a perturbation by a specific diagonal matrix is
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added. As discussed in [69], quadratic convergence of the LM method, applied
to ill-conditioned problems, is not guaranteed.

Instead of basing each Newton step on the current guess for the solution,
previous iterations are used as well in the accelerated inexact Newton (AIN)
method [42]. Similar to Krylov methods, a search space is created for the so-
lution of the nonlinear problem. Each step calculates the update vector of the
standard Newton method by solving a linear system with the Jacobian, and
adds this vector to the search space. The actual vector used to update the guess
is then calculated as a linear combination in this space, e.g. by minimizing the
residual norm.

Though the AIN method speeds up convergence for well-conditioned prob-
lems, it generally fails when the Jacobian is approximately singular. This causes
errors in the search space, typically leading to stagnation of the residual. No
diverging updates are used when the update vector is calculated by minimizing
the residual norm however.

Similar to the AIN method we will not use the standard Newton update
vector, but create one as a linear combination of other vectors. The coefficients
for this linear combination will be calculated by minimizing the residual norm,
just as in the AIN method.

In tensor methods (described by [94, 5]) the linear model of the Newton
method is extended with a tensor term, resulting in a quadratic model. This
term is chosen such that the model interpolates one or more previous iterates.
By including second-order information, the authors hope to restore convergence
even when the Jacobian is ill-conditioned. The methods described by [94, 5]
are only applicable to small- or medium-scale problems. An extension for large-
scale ones is made in [4], where the tensor model is locally minimized by a
Krylov-like method.

Though applicable to the problems described in chapter 2, execution of a
tensor method typically leads to stagnation of the residual norms before con-
vergence up to the desired tolerance is reached. In [6] an average improvement
of around 40% (in terms of nonlinear iterations and function evaluations) over
standard methods (Newton-Krylov with line search, see section 4.4) is observed
for singular problems with rank deficiency 1. Though this is a significant im-
provement for many problems, it is not sufficient when a stagnation of residual
norms occurs.

Two similar methods are described by [11, 12] and [40]. The method of
[11, 12] solves the local tensor model using standard Krylov subspace methods
for linear equations, which involves constructing an inexact tensor step from
the approximate solutions of two linear Jacobian systems. Convergence up to
a specified tolerance is not guaranteed, raising the possibility of less accurate
steps [6]. The method described in [40] uses GMRES to first create the classic
Newton update, the actual update is then created as a linear combination of the
used Arnoldi base by minimizing a projected version of the quadratic model.
Though its performance is often on par with tensor methods, the method does
not always converge [6]. It’s also possible that the minimization of the quadratic
model is not optimal, due to the requirement that the Krylov subspace used to
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4. The Newton-Krylov method near bifurcation points

calculate the Newton update is large enough to capture important directions
in the tensor step.

The strength of the methods that will be derived in the current chapter
lies in gathering sufficient directions (vector parts) that include second-order
information to the model, accounting for the lack of first-order information
in the directions of the Jacobian’s null vectors. Tensor methods solely rely on
previous iterates to provide this information, which is often not sufficient.

Though not specifically developed for ill-conditioned problems, Chebyshev-
Halley (CH) methods [53] are also based on a quadratic model, the second-order
Taylor expansion around the guess. In [52] this model is solved by two linear
systems for each iteration. An inexact version of the methods is defined in [102].

For well-conditioned problems the methods typically converge fast, but no
convergence is guaranteed for ill-conditioned ones. One of the linear systems
solved in each iteration uses the ill-conditioned Jacobian, yielding an unreliable
solution. Nonsingularity of the operators that appear in the linear systems is
assumed in [52, 102].

Another adaptation of the Newton method, with the goal of solving ill-
conditioned nonlinear problems, is described by [63, 14]. The steps for calcu-
lating an update vector consist of solving two linear Jacobian systems, the
update is then constructed as a linear combination of the two solutions.

Several constants appear in the method, chosen to speed up the convergence
in the null space while keeping the guesses in the convergence region. A robust
method to determine the optimal values of these constants does, however, not
exist: a bad choice might result in diverging updates.

A generalization, based on applying multistage explicit Runge-Kutta dis-
cretization to the continuous Newton problem, is described by [82]. The method
does however not converge unless certain conditions on the solution are met.

The recursive projection (RP) method [98] is developed to stabilize general
fixed-point iterative procedures that solve nonlinear problems. This is done
by computing a projection onto the unstable subspace, on which a special
Newton iteration is performed. The fixed-point iteration is only applied to
the complement. Examples in [98] show how the method manages to restore
convergence of time integration methods for unstable equilibria.

For solving ill-conditioned problems by Newton’s method (a fixed-point it-
erative procedure) the unstable subspace consists of approximate null vectors
of the Jacobian. The goal of the RP method is to prevent convergence fail-
ure due to the Jacobian’s approximate singularity by splitting the space in a
stable and unstable part. Though the update part in the stable subspace is
successfully solved by the fixed-point iteration, solving the part of the unstable
subspace requires certain derivatives of the Jacobian’s inverse. These are usu-
ally not analytically available. Approximation by a finite difference scheme is
possible, but requires solving linear systems with the Jacobian. This operator
is approximately singular, inducing convergence issues.

The adaptations of the Newton method described in the current chapter
are based on splitting the update vector into parts concerning stable and un-
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stable subspaces as well (see section 4.5), the unstable part is solved by the
nonlinear conjugate gradients algorithm. This does not require application of
the Jacobian’s inverse to vectors in the unstable subspace.

The methods discussed so far are applicable to large-scale problems. Other
methods focus on small- to medium-scale ones, requiring the Jacobian to be
known as a (sparse) matrix. These methods cannot be applied to the ones
considered in the thesis, for which the Jacobian is often only available as a linear
operator. Methods developed for small- to medium-scale problems include [28,
56, 111].

4.1.2 Preliminaries

In the remainder of the chapter a nonlinear function F : Cn → Cn is considered,
we try to find an approximation x̃ ∈ Cn of the equation

F (x) = 0. (4.1)

We assume that the Jacobian Fx(x) : Cn → Cn is known as a linear operator
for each x ∈ Cn, its matrix form is not required. If Fx(x) is not available, it is
approximated by a first-order central finite difference scheme [43]:

Fx(x) : Cn → Cn : v → 1

2ε
(F (x+ εv)− F (x− εv)) (4.2)

with ε ∈ R+
0 a small real number. Typically the choice ε = 3

√
εmach is made

[63]. Since only problems with a Hermitian Jacobian are considered in the
thesis, we further assume Fx(x) to be self-adjoint, which also simplifies the
notation. The analysis done in this chapter can be straightforwardly extended
to non-Hermitian problems.

We assume the Hessian operator Fxx(x) : Cn × Cn → Cn to be known as
a bilinear operator for each x ∈ Cn as well, its tensor form is not required. If
not given, a second-order central scheme is used as approximation [43]:

Fxx(x) :Cn × Cn → Cn :

(v, w)→ 1

4ε2
(F (x+ εv + εw)− F (x+ εv − εw)

−F (x− εv + εw) + F (x− εv − εw)) ,

(4.3)

with ε ∈ R+
0 typically chosen as ε = 4

√
εmach [63].

Continuous symmetries of F induce (approximate) null vectors in its Jaco-
bian. Often these vectors are known, as in example 3.1. To save computational
work they can be provided in the algorithms derived in this chapter. If these
vectors are not known in advance, they are treated as normal null vectors and
will be calculated with an eigenpair solver when required.

The algorithms described in this chapter allow for a Hermitian, positive
definite preconditioner to be provided when eigenpairs need to be found or
linear systems need to be solved. We assume a single function P : Cn → C(Cn)
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4. The Newton-Krylov method near bifurcation points

is given to construct the preconditioner P (x) for each possible guess x ∈ Cn.
The derivation of the algorithms will be made for the unpreconditioned problem
first, notes and required changes to the algorithms in the preconditioned case
are provided afterwards. The algorithms themselves are always given such that
they allow for preconditioning. The unpreconditioned case is derived from these
by defining P as

P : Cn → C(Cn) : x→ I

with I the identity linear operator.

4.2 The standard method

4.2.1 Description of the method

We start by describing the standard Newton-Krylov method [63]. To find the
zeros of F , an initial guess x(0) needs to be provided. In each iteration i an
update vector ∆x is calculated by solving the linear system

Fx

(
x(i−1)

)
∆x = −F

(
x(i−1)

)
(4.4)

with GMRES. The right-hand side of this system is often called the residual.
The update vector is then used to update the guess:

x(i) = x(i−1) + ∆x.

This new guess should be a better approximation than the first. Though it is
possible for F to contain multiple zeros, only a single one is found when the
Newton method is applied. Depending on the chosen initial guess the method
will converge to a different solution.

The linear system (4.4) is derived from the Taylor expansion of F (x). Given
a guess x̃ and defining an update ∆x such that x̃+ ∆x = x, we have

0 = F (x) = F (x̃+ ∆x) = F (x̃) + Fx(x̃)∆x+O(‖∆x‖2). (4.5)

By dropping terms higher than order 2 and rearranging the remaining ones,
(4.4) is derived. A linear approximation is used in each iteration i:

F
(
x(i−1)

)
+ Fx

(
x(i−1)

)
∆x ≈ 0. (4.6)

Algorithm 4.1 on page 100 in appendix 4.10 (taken from Kelley [63]) con-
tains an implementation of the standard Newton method. In each iteration a
linear system is solved with GMRES (see algorithm 3.4 on page 44) and the
guess is updated. This process repeats itself until the residual norm ‖F (x̃)‖ is
sufficiently low (below a tolerance εNew), or after a maximum of mNew itera-
tions.
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4.2. The standard method

Figure 4.1: Residual plot of example 4.1. The standard Newton method is
applied to a well-conditioned nonlinear problem. The residual norm converges
to approximately 10−12 after 4 iterations, which is the attainable accuracy.
Quadratic convergence is observed in the iterations.

4.2.2 Analysis of convergence for ill-conditioned problems

In example 4.1 the method is applied to the Liouville-Bratu-Gelfand equation.
The algorithm is not executed near a bifurcation point, convergence is reached
fast. The residual plot (figure 4.1) shows quadratic convergence, which is typical
for the Newton method when applied to well-conditioned problems [63].

Example 4.1. Consider the Liouville-Bratu-Gelfand equation, described in
section 2.4. A square domain with 900 discretization points is used. The stan-
dard Newton algorithm is executed to find a zero of (2.7) for the parameter
µ = 0.3. As an initial guess the vector

ψ(0) =


0.372
0.372

...
0.372


is used, this is a solution of the equation for µ = 0.2565. The inner product
(2.9) is used, a preconditioner is not applied. The residual plot of the problem
is given by figure 4.1. After 4 Newton iterations, the algorithm converges to a
tolerance of 10−12. �

When applied to ill-conditioned problems, the standard Newton method
generally fails to find a good approximation.
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4. The Newton-Krylov method near bifurcation points

Lemma 4.2. An iteration of the standard Newton method possibly leads to
a diverging update if executed in a guess x̃ for which the Jacobian Fx(x̃) is
approximately singular. This is caused by a blow-up of the update vector in
the directions of the null vectors.

Proof. We split the update vector ∆x, calculated by (4.4), in a part ∆x‖ that
lies in the approximate kernel of the current Jacobian (spanned by the vectors
φ1, . . . , φl) and a part ∆x⊥ perpendicular to these vectors:

∆x = ∆x⊥ + ∆x‖ (4.7)

= ∆x⊥ +

l∑
j=1

ajφj (4.8)

with a1, . . . , al ∈ R given by

∀j = 1, . . . , l : aj = −λ−1
j 〈F (x̃), φj〉, (4.9)

λj the eigenvalue corresponding to φj (∀j = 1, . . . , l), and 〈∆x⊥, φj〉 = 0
(∀j = 1, . . . , l). Similar to the analysis done in section 3.3.2, one can show that

the kernel part ∆x‖ =
∑l
j=1 ajφj of the approximate update vector blows up

when the Jacobian becomes too ill-conditioned.

Lemma 4.2 shows how the approximate singularity of the Jacobian Fx(x̃)
causes the possible failure of the standard Newton method: the local linear
model (4.6) the method bases itself upon to calculate an update vector is not
valid in the null vector directions. A diverging update might be calculated in
this case, this results in a worse guess for the zero of F .

The standard Newton method is applied to two kinds of ill-conditioned
problems in examples 4.3 and 4.4. Both examples are applied to a point in the
Ginzburg-Landau equation.

In example 4.3 it is applied near a bifurcation point of the equation. Ini-
tially good updates are performed, for these iterations the approximation is far
enough of the actual solution and the Jacobian does not contain approximate
null vectors. When the approximate solution becomes better, a diverging up-
date is performed though, due to the Jacobian becoming ill-conditioned. For
this example, the Jacobian in the actual solution contains a three-dimensional
approximate kernel (l = 3).

Example 4.4 shows another application of the method to a point in the
Ginzburg-Landau equation. Though for this example no bifurcations are near,
the convergence behaviour is still not optimal due to the Jacobian’s singular-
ity caused by the continuous symmetry of the equation. In the solution, the
Jacobian contains a one-dimensional approximate kernel (l = 1).

Example 4.3. The Ginzburg-Landau equation (2.20), described in section
2.5, is considered. The equation is applied to a material shaped as a pentagon,
n = 10401 discretization points are used. The magnetic field strength is fixed
at µ = 1.05882456. As an initial guess for the solution of F(ψ, µ) = 0 (with
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4.2. The standard method

Figure 4.2: Residual plot of example 4.3. The standard Newton method is
applied to an ill-conditioned nonlinear problem, where the Jacobian contains
a three-dimensional kernel in the searched solution. The residual norm does
not converge, we observe a mixture of converging steps and sudden jumps that
increase the residual norm.

F given by (2.20)), one of the solutions at µ = 1.059 is used. The considered
solution is the one that lies on branch B in figure 9.23 (see section 9.5.3). For
the current set-up, the Jacobian (2.22) will be nearly singular in the solution
of the problem due to a nearby bifurcation point. We use (2.21) as an inner
product, (2.25) is used to precondition the linear systems.

Application of the standard Newton algorithm yields the residual plot in
figure 4.2. For this example convergence is not reached up to the desired toler-
ance (ε = 10−12) within 30 Newton iterations. Some iterations show a blow-up
of the residual norm, this is caused by the approximate singularity of the Ja-
cobian. �

Example 4.4. The same equation, domain, inner product and preconditioner
as for example 4.3 are considered. This time the magnetic field strength is fixed
at µ = 1.4, and one of the solutions (on branch B in figure 9.23) at µ = 1.383
is used as an initial guess.

The residual plot of the standard Newton algorithm is given by figure 4.3.
Though convergence (up to a tolerance ε = 10−12) is reached in 9 iterations,
some of the Newton iterations yield a blow-up of the residual norm. This is
again caused by the approximate singularity of the Jacobian near the solution
of the problem. �
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4. The Newton-Krylov method near bifurcation points

Figure 4.3: Residual plot of example 4.4. The standard Newton method is
applied to an ill-conditioned nonlinear problem, where the Jacobian contains
a one-dimensional kernel in the searched solution. This kernel is induced by
a continuous symmetry. The residual norm converges to approximately 10−12

after 9 iterations, which is the attainable accuracy. Some of the iterations show
sudden jumps that increase the residual norm.

4.2.3 The preconditioned case

If a preconditioner is provided, the linear system

P
(
x(i−1)

)
Fx

(
x(i−1)

)
∆x = −P

(
x(i−1)

)
F
(
x(i−1)

)
(4.10)

is solved with GMRES, instead of (4.4). The convergence criterium is adjusted
as well: Newton iterations are executed until the preconditioned residual norm
‖F (x̃)‖P (x̃) is sufficiently low (or until a maximum of mNew iterations). The
remainder of the method is unchanged.

Given a guess x̃ ∈ Cn, (4.10) is derived by substituting the Taylor expansion
(4.5) of F (x) in the equation

P (x̃)F (x) = 0

and dropping terms of order 2 and higher.

The preconditioned method has the same problem as the unpreconditioned
one. The update vector ∆x can be split in a part ∆x‖ consisting of approximate
null vectors φ1, . . . , φl of the preconditioned Jacobian P (x̃)Fx(x̃) and a part
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4.3. The use of deflation to prevent divergence

∆x⊥ perpendicular to these vectors:

∆x = ∆x⊥ + ∆x‖

= ∆x⊥ +

l∑
j=1

ajφj (4.11)

with aj = −λ−1
j 〈P (x̃)F (x̃), φj〉P (x̃)−1 (∀j = 1, . . . , l) and 〈∆x⊥, φj〉P (x̃)−1 =

0 (∀j = 1, . . . , l). When the Jacobian becomes too ill-conditioned, the part

∆x‖ =
∑l
j=1 ajφj blows up.

4.3 The use of deflation to prevent divergence

4.3.1 Description of the method

For problems with an ill-conditioned Jacobian the standard method (discussed
in section 4.2) did not work well, due to the local linear model (4.6) not being
valid in null vector directions. Consider a guess x̃ ∈ Cn. If the update vector
∆x, calculated by (4.4), is split into

∆x = ∆x⊥ + ∆x‖

= ∆x⊥ +

l∑
j=1

ajφj , (4.12)

with φ1, . . . , φl the approximate null vectors of Fx(x̃), a1, . . . , al ∈ R and

〈∆x⊥, φj〉 = 0 (∀j = 1, . . . , l), we observe that the kernel part, ∆x‖ =
∑l
j=1 ajφj ,

blows up. This possibly leads to a diverging update, resulting in a worse guess
for the searched zero of F .

We try to use deflation to prevent this. Given a matrix K with the approx-
imate null vectors φ1, . . . , φl of Fx(x̃) as its columns, the projection operator
Q(x̃) is defined as

Q(x̃) : Cn → Cn : y → y −K〈K,K〉−1〈K, y〉. (4.13)

Instead of solving (4.4), the deflated linear system

Q(x̃)Fx(x̃)∆x = −Q(x̃)F (x̃) (4.14)

is now used to calculate ∆x [46] . Due to the use of deflation, the calculated up-
date vector ∆x is perpendicular to the approximate null vectors: 〈∆x, φj〉 = 0
(∀j = 1, . . . , l). For this deflated system, the local linear model (4.6) is only
applied to vectors different from the ones in the kernel. The kernel part of the
update vector ∆x is not blown up, and a decent Newton update is expected.

Note that the use of the operator Q(x̃) is equivalent to setting aj = 0
(∀j = 1, . . . , l) in (4.12). We have ∆x = ∆x⊥ in this equation.

We call the adjusted Newton method, where the deflated linear system
(4.14) is used, the deflated Newton method. It is described by algorithm 4.2 on
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4. The Newton-Krylov method near bifurcation points

Figure 4.4: Residual plot of example 4.5. The deflated Newton method is ap-
plied to an ill-conditioned nonlinear problem, where the Jacobian contains
a three-dimensional kernel in the searched solution. The residual norm con-
verges to approximately 10−5 after 2 iterations, the attainable accuracy for
well-conditioned problems is however 10−12. After 2 iterations there is no fur-
ther significant decrease.

page 100 in appendix 4.10. In each iteration approximate null vectors of the
Jacobian are calculated with an eigenpair solver (algorithm 3.3, page 43). If the
system contains continuous symmetries and it is known how the corresponding
induced null vectors are calculated, these vectors can be provided separately
to save computational work. After the approximate null vectors have been
calculated, deflated GMRES (algorithm 3.4, page 44) is executed to solve the
linear system. This yields an update vector used to calculate the next guess.
Note that in absence of any null vectors, algorithm 4.2 is equivalent to algorithm
4.1.

4.3.2 Analysis of convergence for ill-conditioned problems

The same problem as described by example 4.3 is used in example 4.5: we
apply the deflated Newton method near a bifurcation of the Ginzburg-Landau
equation.

Example 4.5. Consider the same set-up as in example 4.3. Application of the
deflated Newton algorithm yields the residual plot in figure 4.4. After an initial
good update, the residual norms stagnate at approximately 10−5. �

Though no diverging updates are performed for this example, the residual
norms stagnate, possibly before the desired tolerance is reached. Note that
quadratic convergence is typically observed during the Newton iterations before
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4.3. The use of deflation to prevent divergence

stagnation, just like the standard method applied to well-conditioned problems.
The convergence behaviour is improved for the new method, but it is often not
yet sufficient for the application we are interested in (see section 6.6.2). The
stagnation of the residual is caused by the use of deflation.

Lemma 4.6. The deflated Newton method typically leads to stagnation of
residuals when applied to a problem for which the Jacobian is (approximately)
singular in the searched solution. This is caused by the update part consisting
of approximate null vectors being ignored.

Proof. When we split the calculated update vector ∆x (see (4.12)),

∆x = ∆x⊥ + ∆x‖

= ∆x⊥ +

l∑
j=1

ajφj ,

the values for a1, . . . , al are set to 0 when deflated Newton is applied. Although
the ∆x⊥ part of the update is calculated well, no update in the direction of
the approximate null vectors is performed (∆x‖ = 0). Stagnation occurs when
the residual F (x̃) resembles a linear combination of these null vectors, which
is often the case after some initial iterations. The right-hand side −Q(x̃)F (x̃)
of (4.14) equals the zero vector in this case, resulting in a zero update vector
∆x. No update is performed, resulting in stagnation.

To prevent stagnation of the residual norm, the approximate null vector
part ∆x‖ of the update vector ∆x should not be ignored.

Note that if the Jacobians singularity is solely caused by null vectors induced
by continuous symmetries, the deflated Newton method often works fine. This
is the case for example 4.7. Due to the continuous symmetry, each solution
x of F (x) = 0 is part of a family of solutions. It is sufficient to calculate a
single representative of such a family. Deflation prevents us from searching a
solution in certain null vector directions, but these are not required to reach
a single representative. Due to the continuous symmetries, we don’t need the
null vector directions they induce to find a solution.

Example 4.7. Consider the same set-up as in example 4.4. Figure 4.5 rep-
resents the residual plot associated with application of the deflated Newton
method. Convergence (up to a tolerance of 10−12) is reached in 4 iterations.
Similar to example 4.1, quadratic convergence is observed for the current ex-
ample. �

4.3.3 The preconditioned case

In the preconditioned case, the projection operator Q(x̃) required for deflation
is defined by

Q(x̃) : Cn → Cn : y → y −K〈K,L〉−1〈L, y〉, (4.15)
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Figure 4.5: Residual plot of example 4.7. The deflated Newton method is ap-
plied to an ill-conditioned nonlinear problem, where the Jacobian contains a
one-dimensional kernel in the searched solution. This kernel is induced by a
continuous symmetry. The residual norm converges to approximately 10−12

after 4 iterations, which is the attainable accuracy. Quadratic convergence is
observed in the iterations.

with

K =
(
τ1 τ2 . . . τl

)
,

L =
(
φ1 φ2 . . . φl

)
such that P (x̃)K = L. The vectors φ1, . . . , φl are the approximate null vectors
of P (x̃)Fx(x̃). The linear system to solve in each Newton iteration becomes

P (x̃)Q(x̃)Fx(x̃)∆x = −P (x̃)Q(x̃)F (x̃). (4.16)

The calculated update vector ∆x satisfies

∀j = 1, . . . , l : 〈∆x, φj〉P (x̃)−1 = 0.

A similar split as (4.11) shows that any updates in the direction of approxi-
mate null vectors φ1, . . . , φl are ignored (the calculated ∆x approximates ∆x⊥
in (4.11)), possibly leading to stagnation of the residual norm.

4.4 The use of line search to prevent divergence

4.4.1 Description of the method

The use of deflation prevents the blow-up of update vectors, but leads to stag-
nation of the residual norm. A different method to counter this blow-up is to
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apply a line search after the update vector ∆x is calculated from the standard
linear system (4.4). Consider a guess x̃ ∈ Cn. Instead of the update

x̃← x̃+ ∆x,

we consider an update of the form [29]

x̃← x̃+ ξ∆x,

where ξ ∈ R is calculated by minimizing the function

g : R→ R : ξ → ‖F (x̃+ ξ∆x)‖2 . (4.17)

Note that typically ξ ∈ [0; 1], but this is not guaranteed. In practice the
value for ξ is approximated with the nonlinear conjugate gradients (NCG)
algorithm (see section 3.4). This requires the first and second derivative of g,
given by

g′ : R→ R : ξ → 2〈F (x̃+ ξ∆x), Fx(x̃+ ξ∆x)∆x〉, (4.18)

g′′ : R→ R : ξ →2〈Fx(x̃+ ξ∆x)∆x, Fx(x̃+ ξ∆x)∆x〉
+ 2〈F (x̃+ ξ∆x), Fxx(x̃+ ξ∆x)∆x∆x〉.

(4.19)

The linear system (4.4) remains untouched when line search is applied, the
update vector ∆x will contain parts in the approximate null vector directions,
as well as in directions perpendicular to these. It is possible for ∆x to be blown
up due to the Jacobian’s singularity, but by choosing ξ sufficiently small, this
does not lead to a diverging Newton update.

The adaptation of the standard Newton method with a line search technique
is given by algorithm 4.3 on page 101 in appendix 4.10. This method will
be called the Newton method with line search (NLS) in the remainder of the
chapter. In each iteration a linear system is solved as in the standard algorithm,
but a line search is performed with nonlinear conjugate gradients before the
guess is updated. As an initial guess for this minimization, the value ξ(0) =
min(1, 2‖F (x̃)‖‖∆x‖−2) is chosen. This choice is explained in section 4.4.2 (see
the bound given in lemma 4.9).

4.4.2 Analysis of convergence for ill-conditioned problems

The algorithm is applied in example 4.8 to the same problem as the one de-
scribed in examples 4.3 and 4.5.

Example 4.8. Consider the same set-up as in example 4.3. Application of
the NLS method yields the residual plot in figure 4.6. The initial 5 Newton
iterations show a decent decrease in residual norm. After these iterations, con-
vergence slows down significantly: the residual norm remains at approximately
10−8. In fact the norm keeps decreasing, but this happens very slowly. �

Though no diverging updates are performed and initially convergence be-
haves fine, the decrease in residual norm slows down significantly after only a
few iterations.
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Figure 4.6: Residual plot of example 4.8. The NLS method is applied to
an ill-conditioned nonlinear problem, where the Jacobian contains a three-
dimensional kernel in the searched solution. The residual norm decreases to
approximately 10−8 after 5 iterations. Further iterations show a very slow de-
crease in residual norm, the attainable accuracy (10−12) is not reached in an
acceptable amount of Newton steps.

Lemma 4.9. After some initial iterations, convergence of the NLS method is
typically slow when applied to an ill-conditioned problem. The slowdown of
convergence has multiple causes:

• The update part perpendicular to the Jacobian’s null vectors is damped
due to the multiplication with ξ. This part does not cause any prob-
lems and is actually approximated well, its damping might lead to an
unnecessarily small update.

• The value ξ used in updating the guess x̃ typically satisfies the bound

|ξ| . 2‖F (x̃)‖‖∆x‖−2, (4.20)

The update vector ∆x is calculated from (4.4), and typically blows up if
the Jacobian in x̃ is approximately singular.

Proof. The first cause is explained by splitting the update vector ∆x as in
(4.12):

∆x = ∆x⊥ + ∆x‖

= ∆x⊥ +

l∑
j=1

ajφj . (4.21)
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The values for a1, . . . , al are fixed, they are given by (see (4.9))

∀j = 1, . . . , l : aj = −λ−1
j 〈F (x̃), φj〉.

When line search is applied, the actual vector used to update the guess is
given by

ξ∆x = ξ∆x⊥ + ξ∆x‖

= ξ∆x⊥ + ξ

l∑
j=1

ajφj . (4.22)

During the initial iterations of the algorithm, the Jacobian is often still well-
conditioned because the approximation x̃ lies far enough from the solution. The
amount l of approximate null vectors equals zero for these steps, and decent
convergence behaviour is expected. The values ξ that minimize the function
(4.17) should approximate 1.

After these initial iterations, the guess x̃ lies sufficiently close to the solution
for the Jacobian to become ill-conditioned. We have |aj | � 1 (∀j = 1, . . . , l)
in (4.21) and the update vector ∆x blows up. To prevent a diverging Newton

update, the value for ξ has to be chosen small, such that the ξ
∑l
j=1 ajφj term

in (4.22) is damped.
The part ∆x⊥, perpendicular to the approximate null vectors φ1, . . . , φl, is

however damped as well, though it did not blow up and actually represents a
good update in the directions perpendicular to φ1, . . . , φl.

To analyse the second cause, consider the second-order Taylor expansion
for the new residual F (x̃+ ξ∆x):

F (x̃+ ξ∆x) = F (x̃) + ξFx(x̃)∆x+
1

2
ξ2Fxx(x̃)∆x∆x+O(ξ3‖∆x‖3)

= (1− ξ)F (x̃) +
1

2
ξ2Fxx(x̃)∆x∆x+O(ξ3‖∆x‖3).

The second equality follows from (4.4). The standard Newton method (see
section 4.2) corresponds to choosing ξ = 1, for which the F (x̃) term disappears
in above expansion. Line search does not make this choice if ‖∆x‖ � 1, which
happens when the Jacobian is ill-conditioned: the F (x̃) term will not disappear
in this Taylor expansion. The second derivative term possibly blows up for the
choice ξ = 1, since its order is given by

1

2
ξ2Fxx(x)∆x∆x = O(

1

2
ξ2‖∆x‖2).

To prevent the second derivative from dominating the residual F (x̃+ ξ∆x) of
the next iteration, we should require

1

2
ξ2‖∆x‖2 . |ξ‖|F (x̃)‖. (4.23)

Note that we assumed ‖F (x̃)xx∆x∆x‖ ≈ ‖∆x‖2 for simplicity. If this approx-
imation does not hold, ‖F (x̃)xx∆x∆x‖ should be used in (4.23) and results
derived from this condition.
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4. The Newton-Krylov method near bifurcation points

By imposing (4.23) the influence of the second derivative on the new residual
is not greater than that of the first. This first derivative is used by the Newton
method to reduce the current residual F (x̃). Rewriting inequality (4.23) yields
the bound (4.20) on ξ.

The first cause mentioned in lemma 4.9 concerns the part ∆x⊥ of the up-
date vector. When line search is used, this part is possibly much smaller than
required, leading to slow convergence.

The second cause concerns a bound on the entire update. If ‖∆x‖ � 1
(which happens for ill-conditioned problems), bound (4.20) is very strict. In
this case we have ξ � 1. The residual term F (x̃) only reduces a little in each
iteration, causing slow convergence, as is seen in figure 4.6.

In the special case where F (x̃) equals bφ, with b ∈ R and φ ∈ Cn an
approximate null vector of the Jacobian such that ‖φ‖ = 1, the update vector
∆x is given by

∆x = − b
λ
φ.

Bound (4.20) becomes

|ξ| . 2
λ2

|b|
for this special case, which becomes more strict the closer λ gets to zero. If the
Jacobian of F is exactly singular in the solution we search, this happens the
further we converge.

4.4.3 The preconditioned case

Similar to the adjustments made for the standard method, the linear system

P (x̃)Fx(x̃)∆x = −P (x̃)F (x̃)

is solved with GMRES in the preconditioned case of the NLS method. The
function to minimize needs to be adjusted for the preconditioned norm, and
becomes

g : R→ R : ξ → ‖F (x̃+ ξ∆x)‖2P (x̃) (4.24)

with derivatives

g′ : R→ R : ξ → 2〈F (x̃+ ξ∆x), Fx(x̃+ ξ∆x)∆x〉P (x̃), (4.25)

g′′ : R→ R : ξ →2〈Fx(x̃+ ξ∆x)∆x, Fx(x̃+ ξ∆x)∆x〉P (x̃)

+ 2〈F (x̃+ ξ∆x), Fxx(x̃+ ξ∆x)∆x∆x〉P (x̃).
(4.26)

The value
ξ(0) = min

(
1, 2‖F (x̃)‖P (x̃)‖∆x‖−2

P (x̃)−1

)
(4.27)

is used as an initial guess for the minimization of (4.24).

The preconditioned method again typically shows a slowdown in conver-
gence when applied to an ill-conditioned problem, similar to the unprecon-
ditioned case. Splitting the update vector ∆x as in (4.11), the part ∆x⊥ is
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4.5. Splitting the update vector

possibly damped under the line search, even though the damping of this part
is unjustified.

The second cause of slow convergence we analysed is similar for the precon-
ditioned case as well. Using a second-order Taylor expansion we have

P (x̃)F (x̃+ ξ∆x) = P (x̃)F (x̃) + ξP (x̃)Fx(x̃)∆x+
1

2
ξ2P (x̃)Fxx(x̃)∆x∆x

+O(ξ3‖∆x‖3)

= (1− ξ)P (x̃)F (x̃) +
1

2
ξ2P (x̃)Fxx(x̃)∆x∆x

+O(ξ3‖∆x‖3).

To prevent dominance of the second derivative, we require

1

2
ξ2‖∆x‖2P (x̃)−1 . |ξ|‖P (x̃)Fx(x̃)‖P (x̃)−1 ,

yielding the bound
|ξ| . 2‖F (x̃)‖P (x̃)‖∆x‖−2

P (x̃)−1 . (4.28)

This is the preconditioned version of bound (4.20). For ill-conditioned problems
we have ‖∆x‖P (x̃)−1 � 1, implying |ξ| � 1. The update barely reduces the
current residual, resulting in slow convergence.

4.5 Splitting the update vector

4.5.1 Description of the method

Updating the Newton method with deflation or a line search solves the prob-
lem of diverging updates occurring, but introduces additional problems on
the convergence behaviour: Often stagnation or very slow convergence is ob-
served. To counter these problems we again split the update vector ∆x into
a part ∆x‖ consisting of approximate null vectors φ1, . . . , φl of Fx(x̃) (with
‖φ1‖ = · · · = ‖φl‖ = 1), and a part ∆x⊥ perpendicular to these vectors:

∆x = ∆x⊥ + ∆x‖

= ∆x⊥ +

l∑
j=1

ajφj , (4.29)

The use of deflation (see section 4.3) yields a good approximation for ∆x⊥.
With

K =
(
φ1 φ2 . . . φl

)
,

we again define the projection operator Q(x̃) as

Q(x̃) : Cn → Cn : y → y −K〈K,K〉−1〈K, y〉.

The ∆x⊥ part of the update vector is now calculated by solving

Q(x̃)Fx(x̃)∆x⊥ = −Q(x̃)F (x̃) (4.30)
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4. The Newton-Krylov method near bifurcation points

with (deflated) GMRES. To prevent further stagnation, we have yet to find the
update part ∆x‖ in the directions of φ1, . . . , φl. This corresponds to finding the
values for a1, . . . , al ∈ R in (4.29). Similar to applying a line search, we will
calculate these values by minimizing the function

g : Rl → R : a→

∥∥∥∥∥∥F
x̃+ ∆x⊥ +

l∑
j=1

ajφj

∥∥∥∥∥∥
2

(4.31)

with the nonlinear conjugate gradients method. Note that the update part ∆x⊥
is kept constant in this minimization. The first and second partial derivatives
of g are given by (∀i, k = 1, . . . , l)

∂g

∂ai
: Rl → R : a→ 2〈F (x(a)), Fx(x(a))φi〉, (4.32)

∂2g

∂ai∂ak
: Rl → R : a→2〈Fx(x(a))φi, Fx(x(a))φk〉

+ 2〈F (x(a)), Fxx(x(a))φiφk〉,
(4.33)

with x(a) = x̃+ ∆x⊥ +

l∑
j=1

ajφj .

The minimization is only applied to the coefficients of the null vector di-
rections, the part ∆x⊥ is not updated. The damping of ∆x⊥ was one of the
causes of slow convergence discussed in section 4.4 (see lemma 4.9), but should
not occur for the technique described in the current section. We call this new
method, where the two update vector parts are calculated separately, the split
Newton method (SN).

The SN method is described by algorithm 4.4 on page 101 in appendix
4.10. Each Newton iteration first approximates null vectors by applying an
eigensolver (algorithm 3.3, page 43). Next, a deflated linear system is solved
with GMRES (algorithm 3.4, page 44) for the first part of the update vector.
The eventual update vector is then calculated by application of the nonlinear
conjugate gradients method (algorithm 3.5, page 45) to minimize (4.48), the
preconditioned version of (4.31). The initial guess a(0) used for this minimiza-
tion is derived in section 4.5.3. After updating the guess, the next iteration is
started.

4.5.2 Analysis of convergence for ill-conditioned problems

The algorithm is applied in example 4.10, the same setting as before is used.

Example 4.10. Consider the same set-up as in example 4.3. Application of
the SN method yields the residual plot in figure 4.7. After 30 iterations, the
residual norm reaches a value of approximately 10−7. �

We again observe slow convergence after the initial iteration. Though the
∆x⊥ part should be calculated well by the SN method, we did not make ad-
justments to improve the bounds implied by second order derivatives.
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Figure 4.7: Residual plot of example 4.10. The SN method is applied to
an ill-conditioned nonlinear problem, where the Jacobian contains a three-
dimensional kernel in the searched solution. The residual norm decreases to
approximately 10−5 after 1 iteration. Further iterations show a slow decrease
in residual norm, the attainable accuracy (10−12) is not reached in an accept-
able amount of Newton steps. The slowdown in convergence is more profound
in later iterations, where the guess lies closer to the solution. After 30 iterations
the residual norm reaches a value of approximately 10−7.

Lemma 4.11. When applied to a problem with a (near) singular Jacobian in
the solution, convergence of the SN method typically slows down after some
initial iterations. This is caused by the bound

∀j = 1, . . . , l : |aj | . |λs| (4.34)

typically being satisfied by the a1, . . . , al values in the update vector (4.29).
The index s in (4.34) is chosen such that |asλs| is maximal. λ1, . . . , λl are the
eigenvalues of approximate null vectors, so we have λs ≈ 0, inducing small
sized updates.

Proof. The slowdown in convergence is modeled and analysed in a similar way
as in section 4.4. Consider the second-order Taylor expansion for the new resid-
ual:

F
(
x̃+ ∆x⊥ + ∆x‖

)
(4.35)

= F (x̃) + Fx(x̃)∆x⊥ + Fx(x̃)∆x‖ +
1

2
Fxx(x̃)∆x⊥∆x⊥

+ Fxx(x̃)∆x⊥∆x‖ +
1

2
Fxx(x̃)∆x‖∆x‖ +O(‖∆x‖3).

(4.36)
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Substitution of ∆x‖ yields

F
(
x̃+ ∆x⊥ + ∆x‖

)
(4.37)

= F (x̃) + Fx(x̃)∆x⊥ +

l∑
j=1

ajFx(x̃)φj +
1

2
Fxx(x̃)∆x⊥∆x⊥

+

l∑
j=1

ajFxx(x̃)∆x⊥φj +
1

2

l∑
i=1

l∑
j=1

aiajFxx(x̃)φiφj +O(‖∆x‖3).

(4.38)

We split the current residual F (x̃) in

F (x̃) = F⊥ + F‖ (4.39)

= F⊥ +

l∑
j=1

bjφj , (4.40)

with bj = 〈F (x̃), φj〉 (∀j = 1, . . . , l) and 〈F⊥, φj〉 = 0 (∀j = 1, . . . , l). Since
F⊥ = Q(x̃)F (x̃), (4.30) implies that the calculated part ∆x⊥ satisfies the
approximation Fx(x̃)∆x⊥ ≈ −F⊥. With λ, . . . , λl the respective eigenvalues
corresponding to the approximate null vectors φ1, . . . , φl, the Taylor expansion
yields

F
(
x̃+ ∆x⊥ + ∆x‖

)
≈

l∑
j=1

(bj + ajλj)φj +
1

2
Fxx(x̃)∆x⊥∆x⊥ +

l∑
j=1

ajFxx(x̃)∆x⊥φj

+
1

2

l∑
i=1

l∑
j=1

aiajFxx(x̃)φiφj +O(‖∆x‖3).

We need to choose the values of a1, . . . , al such that the approximate null
vector part F‖ =

∑l
j=1 bjφj of the current residual reduces. To completely

remove this term, the choice

∀j = 1, . . . , l : aj = − bj
λj

(4.41)

needs to be made. Due to the Jacobians ill-conditionedness, this choice would
imply |aj | � 1 (∀j = 1, . . . , l). This results in a blow-up of the new residual due

to the second order derivative term 1
2

∑l
i=1

∑l
j=1 aiajFxx(x̃)φiφj . There is a

trade-off between reducing the current residual and preventing such a blow-up.
To prevent dominance of the second order derivative in the new residual, we
should have

max
i,j=1,...,l

|aiaj | . max
j=1,...,l

|ajλj |. (4.42)

Under this condition the influence of the second order derivatives does not
outweigh that of the first, which we use to decrease the residual. Denoting
s ∈ {1, . . . , l} the index for which |asλs| is maximal, bound (4.34) represents a
necessary condition to satisfy (4.42).
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Lemma 4.11 shows a very strict bound. Unless ∀j = 1, . . . , l : |bj | . |λjλs|
(with b1, . . . , bl defined by (4.40)), we have to choose a1, . . . , al far from the
choice (4.41) that completely removes the current residual. Only a tiny part of
this residual will be reduced instead, resulting in slow convergence.

4.5.3 Minimization of the residual norm

We had not yet established how the initial guess a(0) for the minimization of
(4.31) is chosen. This guess should be chosen in such a way that the terms of
the Taylor expansion (4.38) of the new residual do not blow up. To this end,
we will calculate a(0) by first minimizing the function

f : Rl → R : a′ →
l∑

j=1

(bj + a′jλj)
2 +

l∑
j=1

(
a′j‖∆x⊥‖

)2
+

l∑
i=1

l∑
j=1

(a′ia
′
j)

2 (4.43)

with the nonlinear conjugate gradients method. The values b1, . . . , bl are de-
fined by (4.40). Note that we also prevent the possible blow-up of the term∑l
j=1 ajFxx(x̃)∆x⊥φj . The function f is independent of the considered prob-

lem, so its minimization should be fast.
This extra minimization requires an initial guess a′(0) as well, which should

satisfy the established condition (4.42). We do not know the index s for which
|asλs| is maximal in advance. Instead we choose s such that |bs| is maximal.
The part bsφs of the current residual needs to be reduced the most, so it makes
sense to maximize the asφs term in ∆x, which induces a change of asλsφs to
the bsφs part of the residual. We choose

a′(0)
s = − sgn

(
bs
λs

)
min

(∣∣∣∣ bsλs
∣∣∣∣ , |λs|, ∣∣∣∣ bs

‖∆x⊥‖

∣∣∣∣) ,
∀j 6= s : a

′(0)
j = − sgn

(
bj
λj

)
min

(∣∣∣∣ bjλj
∣∣∣∣ , |a′(0)

s |
)
.

(4.44)

This choice not only implies (4.42), but also prevents the blow-up of the∑l
j=1

(
a′j‖∆x⊥‖

)2
term in (4.43) by assuring that

∀j = 1, . . . , l : |aj |‖∆x⊥‖ . |bs|.

4.5.4 The preconditioned case

For the preconditioned case we again split the update vector ∆x in

∆x = ∆x⊥ + ∆x‖ (4.45)

= ∆x⊥ +

l∑
j=1

ajφj , (4.46)

with aj = 〈∆x, τj〉 (∀j = 1, . . . , l) and 〈∆x⊥, τj〉 = 0 (∀j = 1, . . . , l). The
vectors φ1, . . . , φl represent the approximate null vectors of P (x̃)Fx(x̃), with
respective eigenvalues λ1, . . . , λl. The vectors τ1, . . . , τl are defined such that
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P (x̃)τj = φj (∀j = 1, . . . , l). The part ∆x⊥ of the update vector is approxi-
mated by solving

P (x̃)Q(x̃)Fx(x̃)∆x⊥ = −P (x̃)Q(x̃)F (x̃), (4.47)

with deflated GMRES, where Q(x̃) is defined by (4.15). To approximate the
part ∆x‖ of the update vector, we minimize the function

g : Rl → R : a→

∥∥∥∥∥∥F
x̃+ ∆x⊥ +

l∑
j=1

ajφj

∥∥∥∥∥∥
2

P (x̃)

(4.48)

with the nonlinear conjugate gradients method. The first and second partial
derivatives of g are given by (∀i, k = 1, . . . , l)

∂g

∂ai
: Rl → R : a→ 2〈F (x(a)), Fx(x(a))φi〉P (x̃), (4.49)

∂2g

∂ai∂ak
: Rl → R : a→2〈Fx(x(a))φi, Fx(x(a))φk〉P (x̃)

+ 2〈F (x(a)), Fxx(x(a))φiφk〉P (x̃),

(4.50)

with x(a) = x̃+ ∆x⊥ +

l∑
j=1

ajφj .

To create an initial guess for the minimization of (4.48) we again first
minimize a different function with nonlinear conjugate gradients. This function
is given by

f : Rl → R : a′ →
l∑

j=1

(bj + a′jλj)
2 +

l∑
j=1

(
a′j‖∆x⊥‖P (x̃)−1

)2
+

l∑
i=1

l∑
j=1

(a′ia
′
j)

2

(4.51)
As an initial guess for the minimization of f , we use the values

a′(0)
s = − sgn

(
bs
λs

)
min

(∣∣∣∣ bsλs
∣∣∣∣ , |λs|, ∣∣∣∣ bs

‖∆x⊥‖P (x̃−1)

∣∣∣∣) ,
∀j 6= s : a

′(0)
j = − sgn

(
bj
λj

)
min

(∣∣∣∣ bjλj
∣∣∣∣ , |a′(0)

s |
)
.

(4.52)

The values b1, . . . , bl are defined by bj = 〈F (x̃), φj〉 (∀j = 1, . . . , l), the index s
is still chosen such that |bs| is maximal.

As in the unpreconditioned case, it is possible that the SN method converges
slowly. This is again caused by the bound imposed by preventing dominance of
the second order derivative in the new residual. Splitting the current residual
F (x̃) in

F (x̃) = F⊥ + F‖

= F⊥ +

l∑
j=1

bjτj ,
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with bj = 〈F (x̃), φj〉 (∀j = 1, . . . , l) and 〈F⊥, φj〉 = 0 (∀j = 1, . . . , l), we have
Q(x̃)F (x̃) = F⊥. A similar Taylor expansion as before yields

P (x̃)F
(
x̃+ ∆x⊥ + ∆x‖

)
≈

l∑
j=1

(bj + ajλj)φj +
1

2
P (x̃)Fxx(x̃)∆x⊥∆x⊥ +

l∑
j=1

ajP (x̃)Fxx(x̃)∆x⊥φj

+
1

2

l∑
i=1

l∑
j=1

aiajP (x̃)Fxx(x̃)φiφj +O(‖∆x‖3).

There is still a trade-off between choosing the values for a1, . . . , al such that
the F‖ =

∑l
j=1 bjφj part of the current (preconditioned) residual reduces, and

preventing dominance of the term 1
2

∑l
i=1

∑l
j=1 aiajP (x̃)Fxx(x̃)φiφj . Similar

bounds as before are derived, resulting in the necessary condition (4.34). Unless
b1, . . . , bl are sufficiently small, slow convergence is expected.

4.6 Addition of extra terms to the update vector

4.6.1 Description of the method

Lemma 4.11 illustrates slow convergence for the split Newton method (SN)
applied to ill-conditioned problems. This needs to be eliminated. To this end
we will introduce an additional part to the update vector. Consider a guess
x̃ ∈ Cn. We first split the application of the second partial derivative to the
approximate null vectors φ1, . . . , φl of Fx(x̃) into a part perpendicular to, and
a part consisting of these vectors:

∀i, j = 1, . . . , l : Fxx(x̃)φiφj = F
(ij)
⊥ + F

(ij)
‖ (4.53)

= F
(ij)
⊥ +

l∑
k=1

c
(ij)
k φk, (4.54)

for certain values c
(ij)
k ∈ R (i, j, k = 1, . . . , l). Defining the projection operator

Q(x̃) as before (see (4.13)), we have

∀i, j = 1, . . . , l : Q(x̃)Fxx(x̃)φiφj = F
(ij)
⊥ .

Note that 〈F (ij)
⊥ , φk〉 = 0 (∀i, j, k = 1, . . . , l).

We now introduce z11, z12, . . . , zll ∈ Cn as the solution of the linear equa-
tions (∀i, j = 1, . . . , l)

Q(x̃)Fx(x̃)zij = Q(x̃)Fxx(x̃)φiφj (4.55)

such that 〈zij , φk〉 = 0 (∀i, j, k = 1, . . . , l). To further adjust the SN method,
an additional part ∆xz is added to the update vector. We consider the vector

∆x = ∆x⊥ + ∆x‖ + ∆xz (4.56)

= ∆x⊥ +

l∑
j=1

ajφj +

l∑
i=1

l∑
j=1

αijzij , (4.57)
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Figure 4.8: Residual plot of example 4.12. The SNE method is applied to
an ill-conditioned nonlinear problem, where the Jacobian contains a three-
dimensional kernel in the searched solution. The residual norm converges to
approximately 10−12 after 19 iterations, which is the attainable accuracy.

with ∆x⊥ defined as before (see (4.30)). The values a1, . . . , al and α11, . . . , αll
will be calculated by minimizing the residual norm (see section 4.6.3).

In practice the update part ∆x⊥ and z11, . . . , zll vectors are calculated by
solving (4.30), respectively (4.55), with deflated GMRES. Note that zij = zji
for each i, j = 1, . . . , l.

This new method where the update vector is given by (4.57), will be called
the split Newton method with extra terms (SNE), and is described by algorithm
4.5 on page 102 in appendix 4.10. In each Newton iteration approximate null
vectors are calculated by an eigensolver (algorithm 3.3, page 43). Next, deflated
linear systems of the forms (4.30) and (4.55) are solved with GMRES (algorithm
3.4, page 44). The function (4.70) (the preconditioned version of the residual
norm) is minimized and the update vector is constructed by (4.57). The guess
is updated and the next iteration is started.

4.6.2 Analysis of convergence for ill-conditioned problems

Algorithm 4.5 is applied in example 4.12.

Example 4.12. Consider the same set-up as in example 4.3. Application of
the SNE method yields the residual plot in figure 4.8. Convergence (up to a
tolerance of 10−12) is reached after 19 Newton iterations. �

Contrary to the previous methods where we observed very slow convergence,
stagnation, or even divergence, the new method achieves convergence in 19
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iterations. The bound discussed in lemma 4.11 does not apply to the SNE
method.

Lemma 4.13. By introducing the additional part ∆xz, defined in (4.57), the
bound (4.34) discussed in lemma 4.11 is eliminated.

Proof. Application of a third order Taylor expansion to the next residual gives

F (x̃+ ∆x) = F (x̃) + Fx(x̃)∆x+
1

2
Fxx(x̃)∆x∆x+

1

6
Fxxx(x̃)∆x∆x∆x

+O(‖∆x‖4)

= F (x̃) + Fx(x̃)∆x⊥ + Fx(x̃)∆x‖ + Fx(x̃)∆xz

+
1

2
Fxx(x̃)∆x⊥∆x⊥ + Fxx(x̃)∆x⊥∆x‖

+
1

2
Fxx(x̃)∆x‖∆x‖ +R(x̃,∆x)

= F (x̃) + Fx(x̃)∆x⊥ +

l∑
j=1

ajFx(x̃)φj +

l∑
i=1

l∑
j=1

αijFx(x̃)zij

+
1

2
Fxx(x̃)∆x⊥∆x⊥ +

l∑
j=1

ajFxx(x̃)∆x⊥φj

+
1

2

l∑
i=1

l∑
j=1

aiajFxx(x̃)φiφj +R(x̃,∆x).

The remainder R(x̃,∆x) is given by

R(x̃,∆x) = Fxx(x̃)∆x⊥∆xz + Fxx(x̃)∆x‖∆xz +
1

2
Fxx(x̃)∆xz∆xz

+
1

6
Fxxx(x̃)∆x∆x∆x+O(‖∆x‖4).

Splitting F (x̃) as before (see (4.40)) and denoting λj the eigenvalue corre-
sponding to the approximate null vector φj (∀j = 1, . . . , l), (4.30) and (4.55)
imply

F (x̃+ ∆x) =

l∑
k=1

bk + akλk +
1

2

l∑
i=1

l∑
j=1

c
(ij)
k aiaj

φk +
1

2
Fxx(x̃)∆x⊥∆x⊥

+

l∑
j=1

ajFxx(x̃)∆x⊥φj +

l∑
i=1

l∑
j=1

(αij +
1

2
aiaj)F

(ij)
⊥ +R(x̃,∆x).
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Further splitting of the terms

Fxx(x̃)∆x⊥∆x⊥ = F
(00)
⊥ + F

(00)
‖

= F
(00)
⊥ +

l∑
k=1

c
(00)
k φk

(4.58)

∀j = 1, . . . , l : Fxx(x̃)∆x⊥φj = F
(0j)
⊥ + F

(0j)
‖

= F
(0j)
⊥ +

l∑
k=1

c
(0j)
k φk

(4.59)

eventually yields

F (x̃+ ∆x) =

l∑
k=1

bk + akλk +
1

2
c
(00)
k +

l∑
j=1

c
(0j)
k aj +

1

2

l∑
i=1

l∑
j=1

c
(ij)
k aiaj

φk

+
1

2
F

(00)
⊥ +

l∑
j=1

ajF
(0j)
⊥ +

l∑
i=1

l∑
j=1

(αij +
1

2
aiaj)F

(ij)
⊥ +R(x̃,∆x).

The SN method is equivalent to setting α11 = · · · = αll = 0 in (4.57), in this

case the parts 1
2aiajF

(ij)
⊥ φiφj (for i, j = 1, . . . , l) of the second order derivative

terms dominate the new residual if a1, . . . , al don’t satisfy (4.42). These are the
parts perpendicular to null vector directions. By introducing the α11, . . . , αll
values, these terms disappear from the Taylor expansion if we choose

∀i, j = 1, . . . , l : αij = −1

2
aiaj . (4.60)

The null vector parts 1
2

∑l
k=1 c

(ij)
k φk (for i, j = 1, . . . , l) of these derivatives

are incorporated in the choice for a1, . . . , al, and will be reduced as well. By
adding the part ∆xz (the terms z11, . . . , zll) to the update vector and choosing
the values for α11, . . . , αll as in (4.60), it is prevented that the second order
derivative terms in the new residual dominate. This dominance lead to bound
(4.42), which will be eliminated, or at least strongly reduced, for the new tech-
nique.

The bound of lemma 4.11 is eliminated by a specific choice for the values
α11, . . . , αll in the additional part ∆xz of the update vector. There is however
a similar bound to the values of a1, . . . , al in (4.57).

Lemma 4.14. The values a1, . . . , al, that appear in the update vector (4.57)
of the SNE method, typically satisfy the bound

∀j = 1, . . . , l : |aj | .
√
|λs|. (4.61)

The index s is chosen such that |asλs| is maximal.
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Proof. Consider the same Taylor expansion as in the proof of lemma 4.13. The
part

1

6
Fxxx(x̃)∆x‖∆x‖∆x‖ =

1

6

l∑
k=1

l∑
i=1

l∑
j=1

akaiajFxxx(x̃)φkφiφl (4.62)

of the third order derivative 1
6Fxxx(x̃)∆x∆x∆x will induce bound (4.61). To

prevent dominance of this derivative over the first order one, we need to impose

max
k,i,j=1,...,l

|akaiaj | . max
j=1,...,l

|ajλj | (4.63)

on a1, . . . , al. Denoting s ∈ {1, . . . , l} the index for which |asλs| is maximal,
(4.61) represents a necessary condition to satisfy this approximate inequality.

The condition discussed in lemma 4.14 is however a lot less strict than the
one in lemma 4.11. Convergence will not be reduced as much as bound (4.42)
did for the SN method: by adding an additional part to the update vector, we
can choose the values a1, . . . , al much closer to the optimal ones that reduce
the current residual.

Though the SNE method is more reliable, it also requires more compu-
tational work: instead of a single linear system that needs to be solved, the
SNE method requires the solution of 1 + 1

2 l(l + 1) different linear systems
(one for ∆x⊥, 1

2 l(l + 1) for the terms z11, . . . , zll using the relation zij = zji
(∀i, j = 1, . . . , l)). The minimization of the residual norm with the nonlinear
conjugate gradients method, which will be discussed in section 4.6.3, contains
l + 1

2 l(l + 1) variables (aj for j = 1, . . . , l and αij for i, j = 1, . . . , l with i ≤ j,
since αij = αji). It will also be slower than was the case in the previous meth-
ods. This work needs to be reduced before the solver can be applied in an
efficient way. A technique for this purpose will be discussed in section 4.7.

4.6.3 Minimization of the residual norm

After calculation of the vectors ∆x⊥ and z11, . . . , zll (with deflated GMRES),
the values a1, . . . , al and α11, . . . , αll of the update vector (4.57) are calculated
by minimizing

g : Rl × Rl×l → R : (a, α)→

∥∥∥∥∥∥F
x̃+ ∆x⊥ +

l∑
j=1

ajφj +

l∑
i=1

l∑
j=1

αijzij

∥∥∥∥∥∥
2

.

(4.64)

The vectors ∆x⊥, φ1, . . . , φl and z11, . . . , zll are kept constant in this mini-
mization. Note that we include α11, . . . , αll since the choice (4.60) might not
be optimal. Due to symmetry αij and αji can be treated as the same variables
for each i, j = 1, . . . , l. The minimization of g is done with the nonlinear conju-
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gate gradients method, for which the first partial derivatives (∀i, j = 1, . . . , l)

∂g

∂ai
: Rl × Rl×l → R : (a, α)→ 2〈F (x(a, α)), Fx(x(a, α))φi〉,

∂g

∂αij
: Rl × Rl×l → R : (a, α)→ 2〈F (x(a, α)), Fx(x(a, α))zij〉,

(4.65)

with x(a, α) = x̃+ ∆x⊥ +

l∑
j=1

ajφj +

l∑
i=1

l∑
j=1

αijzij ,

and second partial derivatives (∀i, j, k, q = 1, . . . , l)

∂2g

∂ai∂ak
: Rl × Rl×l → R : (a, α)→2〈Fx(x(a, α))φi, Fx(x(a, α))φk〉

+ 2〈F (x(a, α)), Fxx(x(a, α))φiφk〉,
∂2g

∂ai∂αjk
: Rl × Rl×l → R : (a, α)→2〈Fx(x(a, α))φi, Fx(x(a, α))zjk〉

+ 2〈F (x(a, α)), Fxx(x(a, α))φizjk〉,
∂2g

∂αij∂αkq
: Rl × Rl×l → R : (a, α)→2〈Fx(x(a, α))zij , Fx(x(a, α))zkq〉

+ 2〈F (x(a, α)), Fxx(x(a, α))zijzkq〉
(4.66)

are required.
The initial guess a(0) for a to use in the nonlinear conjugate gradients

method should be chosen such that the terms in the Taylor expansion of the
new residual do not blow up. The initial guess for α is then calculated by (4.60).
To calculate a(0), we again first minimize a different function, given by

f :Rl → R :

a′ →
l∑

k=1

bk + a′kλk +
1

2
c
(00)
k +

l∑
j=1

c
(0j)
k a′j +

1

2

l∑
i=1

l∑
j=1

c
(ij)
k a′ia

′
j

2

+

l∑
j=1

(
a′j‖∆x⊥‖

)2
+

l∑
k=1

l∑
i=1

l∑
j=1

(a′ka
′
ia
′
j)

2.

(4.67)

The values b1, . . . , bl and c
(ij)
k (for i, j, k = 1, . . . , l) are defined as in (4.40),

(4.54), (4.58) and (4.59). The function (4.67) not only prevents the possible
blow-up of (4.62), but also of other (second and third) order derivatives since
the following holds (∀i, j, k, q = 1, . . . , l):

ajF
(0j)
⊥ = O(aj‖∆x⊥‖), αijFxx(x̃)∆x⊥zij = O(aiaj‖∆x⊥‖),

akαijFxx(x̃)φkzij = O(akaiaj), αqkαijFxx(x̃)zqkzij = O(aqakaiaj),

where we used αij = O(aiaj) (∀i, j = 1, . . . , l) by (4.60). For parts of the third
order derivative, different from (4.62), a similar result is valid.
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To minimize (4.67) with nonlinear conjugate gradients, we need an initial
guess a′(0). We again choose the index s such that |bs| is maximal, and use

a′(0)
s = − sgn

(
bs
λs

)
min

(∣∣∣∣ bsλs
∣∣∣∣ ,√|λs|, ∣∣∣∣ bs

‖∆x⊥‖

∣∣∣∣) ,
∀j 6= s : a

′(0)
j = − sgn

(
bj
λj

)
min

(∣∣∣∣ bjλj
∣∣∣∣ , |a′(0)

s |
) (4.68)

as an initial guess to minimize (4.67). This choice satisfies bound (4.61), but
also

∀j = 1, . . . , l : |aj |‖∆x⊥‖ . |bs|,

preventing the possible blow-up of other parts in (4.67).

4.6.4 The preconditioned case

The required adjustments for preconditioning are similar as before. The update
vector is still split as in (4.57), where φ1, . . . , φl this time represent the approx-
imate null vectors of P (x̃)Fx(x̃). Denoting τ1, . . . , τl such that P (x̃)τj = φj
(∀j = 1, . . . , l), the second order derivatives are split as

Fxx(x̃)∆x∆x = F
(00)
⊥ + F

(00)
‖

= F
(00)
⊥ +

l∑
k=1

c
(00)
k τk,

∀j = 1, . . . , l : Fxx(x̃)∆xφj = F
(0j)
⊥ + F

(0j)
‖

= F
(0j)
⊥ +

l∑
k=1

c
(0j)
k τk,

∀i, j = 1, . . . , l : Fxx(x̃)φiφj = F
(ij)
⊥ + F

(ij)
‖

= F
(ij)
⊥ +

l∑
k=1

c
(ij)
k τk,

with 〈F (ij)
⊥ , φk〉 = 0 (∀i, j, k = 1, . . . , l). The values for c

(ij)
k and bk (in (4.40))

are calculated as

∀k = 1, . . . , l : bk = 〈F (x̃), φk〉,

∀k = 1, . . . , l : c
(00)
k = 〈Fxx(x̃)∆x⊥∆x⊥, φk〉,

∀j, k = 1, . . . , l : c
(0j)
k = 〈Fxx(x̃)∆x⊥φj , φk〉,

∀i, j, k = 1, . . . , l : c
(ij)
k = 〈Fxx(x̃)φiφj , φk〉.

The terms z11, . . . , zll of the additional part ∆xz of the update vector satisfy
〈zij , τk〉 = 0 (∀i, j, k = 1, . . . , l), and are calculated by solving (∀i, j = 1, . . . , l)

P (x̃)Q(x̃)Fx(x̃)zij = P (x̃)Q(x̃)Fxx(x̃)φiφj (4.69)
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with deflated GMRES, where Q(x̃) is defined as in (4.15). The ∆x⊥ part is
solved by application of deflated GMRES to (4.47).

Application of a third order Taylor expansion of the term F (x̃ + ∆x) to
P (x̃)F (x̃ + ∆x) yields analogue results as in the unpreconditioned case. The
influence of second order derivatives in this expansion is again reduced by
choosing α11, . . . , αll as in (4.60), resulting in improved convergence. In practice
a1, . . . , al and α11, . . . , αll are calculated by minimizing the function

g :Rl × Rl×l → R :

(a, α)→

∥∥∥∥∥∥F
x̃+ ∆x⊥ +

l∑
j=1

ajφj +

l∑
i=1

l∑
j=1

αijzij

∥∥∥∥∥∥
2

P (x̃)

.
(4.70)

with the nonlinear conjugate gradients method. The first partial derivatives are
given by (∀i, j = 1, . . . , l)

∂g

∂ai
: Rl × Rl×l → R : (a, α)→ 2〈F (x(a, α)), Fx(x(a, α))φi〉P (x̃),

∂g

∂αij
: Rl × Rl×l → R : (a, α)→ 2〈F (x(a, α)), Fx(x(a, α))zij〉P (x̃),

(4.71)

with x(a, α) = x̃+ ∆x⊥ +

l∑
j=1

ajφj +

l∑
i=1

l∑
j=1

αijzij ,

the second by (∀i, j, k, q = 1, . . . , l)

∂2g

∂ai∂ak
: Rl × Rl×l → R : (a, α)→2〈Fx(x(a, α))φi, Fx(x(a, α))φk〉P (x̃)

+ 2〈F (x(a, α)), Fxx(x(a, α))φiφk〉P (x̃),

∂2g

∂ai∂αjk
: Rl × Rl×l → R : (a, α)→2〈Fx(x(a, α))φi, Fx(x(a, α))zjk〉P (x̃)

+ 2〈F (x(a, α)), Fxx(x(a, α))φizjk〉P (x̃),

∂2g

∂αij∂αkq
:Rl × Rl×l → R :

(a, α)→ 2〈Fx(x(a, α))zij , Fx(x(a, α))zkq〉P (x̃)

+ 2〈F (x(a, α)), Fxx(x(a, α))zijzkq〉P (x̃).

(4.72)

To construct an initial guess for the minimization of (4.70), we first mini-
mize the function

f :Rl → R :

a′ →
l∑

k=1

bk + a′kλk +
1

2
c
(00)
k +

l∑
j=1

c
(0j)
k a′j +

1

2

l∑
i=1

l∑
j=1

c
(ij)
k a′ia

′
j

2

+

l∑
j=1

(
a′j‖∆x⊥‖P (x̃)−1

)2
+

l∑
k=1

l∑
i=1

l∑
j=1

(a′ka
′
ia
′
j)

2

(4.73)
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with nonlinear conjugate gradients. As an initial guess for this extra minimiza-
tion, we use the values

a′(0)
s = − sgn

(
bs
λs

)
min

(∣∣∣∣ bsλs
∣∣∣∣ ,√|λs|, ∣∣∣∣ bs

‖∆x⊥‖P (x̃)−1

∣∣∣∣) ,
∀j 6= s : a

′(0)
j = − sgn

(
bj
λj

)
min

(∣∣∣∣ bjλj
∣∣∣∣ , |a′(0)

s |
)
,

(4.74)

with s again the index for which |bs| is maximal. The (approximate) argu-
ments for the minimum of (4.73) are used as an initial guess for the a1, . . . , al
values that minimize (4.70). Initial guesses for α11, . . . , αll are calculated by
application of (4.60).

4.7 Reduction of the extra terms in presence of a
dominant update direction

In the previous section an alternative Newton method (SNE) was derived that
is capable of solving ill-conditioned problems. Though convergence is usually
achieved in an acceptable amount of iterations, the number of linear systems
that need to be solved grows exponentially with the amount of approximate null
vectors. This strongly increases computational work, making the SNE method
less practical. In the current section we will try to reduce the number of linear
systems.

4.7.1 Creation of a new base for the approximate kernel

Consider two consecutive guesses x̃(m) and x̃(m+1) of the SNE method, we have
(see (4.57))

x̃(m+1) = x̃(m) + ∆x(m) = x̃(m) + ∆x
(m)
⊥ + ∆x

(m)
‖ + ∆x(m)

z

= x̃(m) + ∆x
(m)
⊥ +

l∑
j=1

a
(m)
j φ

(m)
j +

l∑
i=1

l∑
j=1

α
(m)
ij z

(m)
ij . (4.75)

The vectors φ
(m)
1 , . . . , φ

(m)
l represent the approximate null vectors of Fx(x̃(m))

with ‖φ(m)
1 ‖ = · · · = ‖φ(m)

l ‖ = 1, their respective eigenvalues are denoted by

λ
(m)
1 , . . . , λ

(m)
l . The vectors ∆x

(m)
⊥ , z

(m)
11 , . . . , z

(m)
ll are perpendicular to these.

Together with the values a
(m)
1 , . . . , a

(m)
l and α

(m)
11 , . . . , α

(m)
ll , these vectors are

calculated as described in section 4.6 (see (4.30) and (4.55)).

Denote φ
(m+1)
1 , . . . , φ

(m+1)
l the approximate null vectors of Fx(x̃(m+1)) such

that ‖φ(m+1)
1 ‖ = · · · = ‖φ(m+1)

l ‖ = 1. Since x̃(m) and x̃(m+1) are close we can
choose these vectors such that

∀j = 1, . . . , l : φ
(m+1)
j ≈ φ(m)

j .

The eigenvalues corresponding to φ
(m+1)
1 , . . . , φ

(m+1)
l are denoted respectively

by λ
(m+1)
1 , . . . , λ

(m+1)
l .
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We will first create a new base φ̆
(m+1)
1 , . . . , φ̆

(m+1)
l for the space spanned by

φ
(m+1)
1 , . . . , φ

(m+1)
l . Define

φ̊ =

l∑
j=1

〈φ(m+1)
j ,∆x

(m)
‖ 〉φ

(m+1)
j ,

φ̆
(m+1)
1 = ‖φ̊‖−1φ̊,

(4.76)

with ∆x
(m)
‖ =

∑l
j=1 a

(m)
j φ

(m)
j , and choose the remaining vectors φ̆

(m+1)
2 , . . . ,

φ̆
(m+1)
l as linear combinations of φ

(m+1)
1 , . . . , φ

(m+1)
l such that

∀i, j = 1, . . . , l : 〈φ̆(m+1)
i , φ̆

(m+1)
j 〉 = δij .

Define the matrix D such that(
φ̆

(m+1)
1 φ̆

(m+1)
2 . . . φ̆

(m+1)
l

)
=
(
φ

(m+1)
1 φ

(m+1)
2 . . . φ

(m+1)
l

)
D.

(4.77)
Note that D is a unitary matrix, implying DT = D−1. The elements of D are

explicitly given by (using orthonormality of φ
(m+1)
1 , . . . , φ

(m+1)
l )

∀i, j = 1, . . . , l : Dij = 〈φ̆(m+1)
j , φ

(m+1)
i 〉

and typically satisfy |Dij | . 1 (∀i, j = 1, . . . , l).

Similar as before we define Q(x̃(m+1)) as

Q(x̃(m+1)) : Cn → Cn : y → y −K〈K,K〉−1〈K, y〉

with K =
(
φ̆

(m+1)
1 φ̆

(m+1)
2 . . . φ̆

(m+1)
l

)
,

calculate ∆x
(m+1)
⊥ by solving (4.30) and split the terms (∀i, j = 1, . . . , l)

F (x̃(m+1)) = F⊥ + F‖ = F⊥ +

l∑
k=1

bkφ̆
(m+1)
k ,

Fxx(x̃(m+1))∆x
(m+1)
⊥ ∆x

(m+1)
⊥ = F

(00)
⊥ + F

(00)
‖ = F

(00)
⊥ +

l∑
k=1

c
(00)
k φ̆

(m+1)
k ,

Fxx(x̃(m+1))∆x
(m+1)
⊥ φ̆

(m+1)
j = F

(0j)
⊥ + F

(0j)
‖ = F

(0j)
⊥ +

l∑
k=1

c
(0j)
k φ̆

(m+1)
k ,

Fxx(x̃(m+1))φ̆
(m+1)
i φ̆

(m+1)
j = F

(ij)
⊥ + F

(ij)
‖ = F

(ij)
⊥ +

l∑
k=1

c
(ij)
k φ̆

(m+1)
k

with F⊥, F
(00)
⊥ , F

(0j)
⊥ and F

(ij)
⊥ orthogonal to φ̆

(m+1)
1 , . . . , φ̆

(m+1)
l (∀i, j =

1, . . . , l).
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For a normal step of the split Newton method with extra terms (SNE), we

would need to calculate z
(m+1)
11 , . . . , z

(m+1)
ll (orthogonal to φ̆

(m+1)
1 , . . . , φ̆

(m+1)
l )

by solving (∀i, j = 1, . . . , l)

Q(x̃(m+1))Fx(x̃(m+1))z
(m+1)
ij = Q(x̃(m+1))Fxx(x̃(m+1))φ̆

(m+1)
i φ̆

(m+1)
j (4.78)

and calculate the update vector as

∆x(m+1) = ∆x
(m+1)
⊥ + ∆x

(m+1)
‖ + ∆x(m+1)

z

= ∆x
(m+1)
⊥ +

l∑
j=1

aj φ̆
(m+1)
j +

l∑
i=1

l∑
j=1

αijz
(m+1)
ij ,

with a1, . . . , al and α11, . . . , αll to be determined by minimizing the norm of
the new residual.

4.7.2 Elimination of less important terms in presence of a
dominant update direction

An update performed by the SNE method requires an additional 1
2 l(l+1) linear

systems to be solved. We will first reduce this amount to l, by eliminating less
important terms. We first make an assumption.

Assumption 4.15. The part ∆x
(m+1)
‖ of the update vector ∆x(m+1) in the

null vector directions is dominated by φ̆
(m+1)
1 , defined in (4.76). This implies

∀i = 1, . . . , l : i 6= 1⇒ |ai| � |a1| (4.79)

in the update vector.

If the approximate null vector part of the current residual F (x̃(m+1)) ap-
proximates that of the previous one F (x̃(m)), which is expected when the val-

ues a
(m)
1 , . . . , a

(m)
l used in the update from x̃(m) to x̃(m+1) do not satisfy (4.41)

(due to bounds induced by the third derivative), we expect the approximate
null vector part of the current update vector ∆x(m+1) to approximate that of
the previous one ∆x(m) as well. In this case assumption 4.15 typically holds:

the vector φ̆
(m+1)
1 was created to be similar to the approximate null vector part

of the previous iteration (see (4.76)). Note that the assumption will not hold for
each Newton iteration, this is further discussed in section 4.8. The remainder
of the derivation in the current section is based on assumption 4.15.

The parts z
(m+1)
11 , . . . , z

(m+1)
ll were introduced to the update vector to pre-

vent dominance of 2nd order partial derivatives aiajFxx(x̃(m+1))φ̆
(m+1)
i φ̆

(m+1)
j

(∀i, j = 1, . . . , l) in the Taylor expansion of the new residual. If assumption
4.15 holds, the most dominant term between these derivatives is given by

a2
1Fxx(x̃(m+1))φ̆

(m+1)
1 φ̆

(m+1)
1 . Terms of the form a1ajFxx(x̃(m+1))φ̆

(m+1)
1 φ̆

(m+1)
j

(with j = 2, . . . , l) are less dominant, but should not be dismissed. For i 6= 1

and j 6= 1, the influence of the aiajFxx(x̃(m+1))φ̆
(m+1)
i φ̆

(m+1)
j term will be

small. Reducing these terms by adding z
(m+1)
ij parts is not necessary anymore.
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We will eliminate the z
(m+1)
ij parts for i 6= 1 and j 6= 1, leading to a new update

vector given by

∆x(m+1) = ∆x
(m+1)
⊥ + ∆x

(m+1)
‖ + ∆x′(m+1)

z (4.80)

= ∆x
(m+1)
⊥ +

l∑
j=1

aj φ̆
(m+1)
j +

l∑
j=1

αjz
(m+1)
j , (4.81)

where we denoted z
(m+1)
1j as z

(m+1)
j for j = 1, . . . , l. Only l additional linear

systems of the form (4.78) need to be solved.

Lemma 4.16. Under assumption 4.15, the bound discussed in lemma 4.11 is

eliminated by the additional part ∆x
′(m+1)
z defined in (4.81).

Proof. Using the update vector defined in (4.81), the third order Taylor expan-
sion of the new residual becomes

F (x̃(m+1) + ∆x(m+1))

=

l∑
k=1

bk +
1

2
c
(00)
k +

l∑
j=1

c
(0j)
k aj +

1

2
c
(11)
k a2

1 +
l∑

j=2

c
(1j)
k a1aj

 φ̆
(m+1)
k

+

l∑
j=1

ajFx(x̃(m+1))φ̆
(m+1)
j +

1

2
F

(00)
⊥ +

l∑
j=1

ajF
(0j)
⊥ +

(
α1 +

1

2
a2

1

)
F

(11)
⊥

+ 2

l∑
j=2

(
αj +

1

2
a1aj

)
F

(1j)
⊥ +

1

2

l∑
i=2

l∑
j=2

aiajF
(ij)
⊥ +R(x̃(m+1),∆x(m+1)),

with the remainder R(x̃(m+1),∆x(m+1)) given by

R(x̃(m+1),∆x(m+1))

= Fxx(x̃(m+1))∆x
(m+1)
⊥ ∆x′(m+1)

z + Fxx(x̃(m+1))∆x
(m+1)
‖ ∆x′(m+1)

z

+
1

2
Fxx(x̃(m+1))∆x′(m+1)

z ∆x′(m+1)
z

+
1

6
Fxxx(x̃(m+1))∆x(m+1)∆x(m+1)∆x(m+1) +O(‖∆x(m+1)‖4).

Denote Ckj =
∑l
i=1Dijλ

(m+1)
i Dik for k, j = 1, . . . , l (note that Ckj = Cjk).

We have

l∑
j=1

ajFx(x̃(m+1))φ̆
(m+1)
j =

l∑
j=1

l∑
i=1

ajDijFx(x̃(m+1))φ
(m+1)
i

=

l∑
j=1

l∑
i=1

ajDijλ
(m+1)
i φ

(m+1)
i =

l∑
j=1

l∑
i=1

l∑
k=1

ajDijλ
(m+1)
i D−1

ki φ̆
(m+1)
k

=

l∑
j=1

l∑
i=1

l∑
k=1

ajDijλ
(m+1)
i Dikφ̆

(m+1)
k =

l∑
j=1

l∑
k=1

ajCkj φ̆
(m+1)
k ,
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where we used the fact that D is unitary. Substitution in the Taylor expansion
eventually yields

F (x̃(m+1) + ∆x)(m+1)

=

l∑
k=1

bk +

l∑
j=1

ajCkj +
1

2
c
(00)
k +

l∑
j=1

c
(0j)
k aj

+
1

2
c
(11)
k a2

1 +

l∑
j=2

c
(1j)
k a1aj

 φ̆
(m+1)
k

+
1

2
F

(00)
⊥ +

l∑
j=1

ajF
(0j)
⊥ +

(
α1 +

1

2
a2

1

)
F

(11)
⊥

+ 2

l∑
j=2

(
αj +

1

2
a1aj

)
F

(1j)
⊥ +

1

2

l∑
i=2

l∑
j=2

aiajF
(ij)
⊥ +R(x̃(m+1),∆x(m+1)).

(4.82)

The aiajF
(ij)
⊥ terms (for i, j = 1, . . . , l) induced the bound of lemma 4.11.

Under assumption 4.15, the influence of these terms does not need to be elim-
inated if i 6= 1 and j 6= 1. For the other indices dominance of these terms is
prevented by setting

∀j = 1, . . . , l : αj = −1

2
a1aj . (4.83)

The Taylor expansion (4.82) will also be used in section 4.7.4 to derive initial
guesses for a1, . . . , al, to use in the nonlinear conjugate gradients method.

4.7.3 Replacement of the additional update part based on
the previous Newton iteration

We already reduced the amount of additional linear systems to l, the number

of approximate null vectors. By replacing the terms z
(m+1)
1 , . . . , z

(m+1)
l in the

part ∆x
′(m+1)
z of the update vector we will reduce this amount even further.

These terms were calculated by solving linear systems (∀j = 1, . . . , l)

Q(x̃(m+1))Fx(x̃(m+1))z
(m+1)
j = Q(x̃(m+1))Fxx(x̃(m+1))φ̆

(m+1)
1 φ̆

(m+1)
j . (4.84)

Before continuing, we make a second assumption.

Assumption 4.17. The part ∆x
(m)
⊥ , perpendicular to null vectors of Fx(x̃(m)),

of the previous update vector ∆x(m) (see (4.75)) is negligible compared to the

part ∆x
(m)
‖ , consisting of these null vectors. This implies

‖∆x(m)
⊥ ‖ � max

j=1,...,l
|a(m)
j |. (4.85)
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4. The Newton-Krylov method near bifurcation points

Note that assumption 4.17 typically only holds in later Newton iterations,
when the residual is dominated by approximate null vector parts. In this case
only a small update is performed in directions perpendicular to these vectors. If
the assumption is not valid, the further derivation in the current section cannot
be made. For this case the split Newton method (without extra terms) however
yields decent updates, the part perpendicular to approximate null vectors still
decreases quadratically for this method. The slowdown in convergence happens
when the residual is dominated by approximate null vectors, for such iterations
assumption 4.17 does hold. We can always perform updates with the split
Newton method until the assumption is valid.

Lemma 4.18. Under assumptions 4.15 and 4.17, the terms z
(m+1)
1 , . . . , z

(m+1)
l

can approximately be solved from the linear systems (∀j = 1, . . . , l)

Q(x̃(m+1))Fx(x̃(m+1))z
(m+1)
j ≈ −γ−1Q(x̃(m+1))Fx(x̃(m))ρj (4.86)

with γ = ‖
∑l
j=1 a

(m)
j φ

(m)
j ‖ and ρ1, . . . , ρl defined by

∀j = 1, . . . , l : ρj = φ̆
(m+1)
j −

l∑
i=1

〈φ̆(m+1)
j , φ

(m)
i 〉φ(m)

i . (4.87)

Proof. Choose j ∈ {1, . . . , l}. Application of a finite difference method gives
the approximation

Q(x̃(m+1))Fxx(x̃(m+1))φ̆
(m+1)
1 φ̆

(m+1)
j

≈ ε−1Q(x̃(m+1))
(
Fx(x̃(m+1))φ̆

(m+1)
j − Fx(x̃(m+1) − εφ̆(m+1)

1 )φ̆
(m+1)
j

)
(4.88)

for small ε ∈ R+
0 . We will choose ε as γ = ‖

∑l
j=1 a

(m)
j φ

(m)
j ‖, the norm of

the approximate null vector part ∆x
(m)
‖ of the previous update ∆x(m). (4.88)

becomes

Q(x̃(m+1))Fxx(x̃(m+1))φ̆
(m+1)
1 φ̆

(m+1)
j

≈ γ−1Q(x̃(m+1))Fx(x̃(m+1))φ̆
(m+1)
j

− γ−1Q(x̃(m+1))Fx(x̃(m+1) − γφ̆(m+1)
1 )φ̆

(m+1)
j .

(4.89)

Since Q(x̃(m+1)) represents the projection perpendicular to eigenvectors of
Fx(x̃(m+1)), these two linear operators commute. By the definition ofQ(x̃(m+1)),

we further have Q(x̃(m+1))φ̆
(m+1)
j = 0. Application to (4.89) yields

Q(x̃(m+1))Fxx(x̃(m+1))φ̆
(m+1)
1 φ̆

(m+1)
j

≈ −γ−1Q(x̃(m+1))Fx(x̃(m+1) − γφ̆(m+1)
1 )φ̆

(m+1)
j .

By its definition, the vector φ̆
(m+1)
1 approximates the null vector part ∆x

(m)
‖

of the previous update ∆x(m). Other parts of ∆x(m) are negligible compared
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to this part under assumption 4.17, and since the order of the introduced

extra terms α
(m)
ik z

(m)
ik is approximately |a(m)

i a
(m)
k | (� |a(m)

i | since typically

|a(m)
k | � 1) for each i, k = 1, . . . , l. Using φ̆

(m+1)
1 ≈ ∆x

(m)
‖ ≈ ∆x(m), we arrive

at the approximation

Q(x̃(m+1))Fxxφ̆
(m+1)
1 φ̆

(m+1)
j ≈ −γ−1Q(x̃(m+1))Fx(x̃(m))φ̆

(m+1)
j . (4.90)

We now split the vector φ̆
(m+1)
j as

φ̆
(m+1)
j =

l∑
i=1

ζijφ
(m)
i + ρj (4.91)

with ζij = 〈φ̆(m+1)
j , φ

(m)
i 〉 (∀i = 1, . . . , l) and ρj defined by (4.87), we have

〈ρj , φ(m)
i 〉 = 0 (∀i = 1, . . . , l). Typically |ζjj | ≈ 1, |ζij | ≈ 0 for i 6= j. We have

Q(x̃(m+1))Fx(x̃(m))φ̆
(m+1)
j

=

l∑
i=1

ζijQ(x̃(m+1))Fx(x̃(m))φ
(m)
i +Q(x̃(m+1))Fx(x̃(m))ρj

=

l∑
i=1

ζijλ
(m)
i Q(x̃(m+1))φ

(m)
i +Q(x̃(m+1))Fx(x̃(m))ρj

Since λ
(m)
i ≈ 0 and Q(x̃(m+1))φ

(m)
i is perpendicular to φ̆

(m+1)
1 , . . . , φ̆

(m+1)
l for

each i = 1, . . . , l, the first term can be neglected:

Q(x̃(m+1))Fx(x̃(m))φ̆
(m+1)
j ≈ Q(x̃(m+1))Fx(x̃(m))ρj .

Substitution in (4.90) yields

Q(x̃(m+1))Fxxφ̆
(m+1)
1 φ̆

(m+1)
j ≈ −γ−1Q(x̃(m+1))Fx(x̃(m))ρj .

The statement now follows by substituting this approximation in the linear
system (4.84).

Lemma 4.18 presents alternative linear systems to solve for the vectors

z
(m+1)
1 , . . . , z

(m+1)
l . Instead of solving these systems, we will simply replace

z
(m+1)
j by −γ−1Q(x̃(m+1))ρj (∀j = 1, . . . , l). If x̃(m+1) ≈ x̃(m), we indeed have

z
(m+1)
j ≈ −γ−1Q(x̃(m+1))ρj (∀j = 1, . . . , l), since both vectors are perpendic-

ular to the approximate null vectors φ
(m+1)
1 , . . . , φ

(m+1)
l of Fx(x̃(m+1)). The

replacement of z
(m+1)
j is done for every j ∈ {1, . . . , l}. The eventual update

vector we consider becomes

∆x(m+1) = ∆x
(m+1)
⊥ + ∆x

(m+1)
‖ + ∆x(m+1)

ρ (4.92)

= ∆x
(m+1)
⊥ +

l∑
j=1

aj φ̆
(m+1)
j − γ−1

l∑
j=1

αjρ
′
j , (4.93)
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with ρ′j = Q(x̃(m+1))ρj (∀j = 1, . . . , l). To create this update vector, no ad-
ditional linear systems need to be solved. Instead the terms ρ′1, . . . , ρ

′
l need to

be calculated, this requires the approximate null vectors of Fx(x̃(m)). These
vectors were, however, already calculated to use in the previous iteration. No
additional use of the eigensolver is required either.

4.7.4 Minimization of the residual norm

The values for a1, . . . , al and α1, . . . , αl in (4.93) have yet to be determined.
Similar to previous methods, this is done by minimizing the norm of the new
residual, given by the function

g : Rl × Rl → R :

(a, α)→

∥∥∥∥∥∥F
x̃(m+1) + ∆x

(m+1)
⊥ +

l∑
j=1

aj φ̆
(m+1)
j − γ−1

l∑
j=1

αjρ
′
j

∥∥∥∥∥∥
2

,

(4.94)
with the nonlinear conjugate gradients method. The first partial derivatives of
g are given by (∀i = 1, . . . , l)

∂g

∂ai
: Rl × Rl → R : (a, α)→ 2〈F (x(a, α)), Fx(x(a, α))φ̆

(m+1)
i 〉,

∂g

∂αi
: Rl × Rl → R : (a, α)→ −2γ−1〈F (x(a, α)), Fx(x(a, α))ρ′i〉,

(4.95)

with x(a, α) = x̃(m+1) + ∆x
(m+1)
⊥ +

l∑
j=1

aj φ̆
(m+1)
j − γ−1

l∑
j=1

αjρ
′
j ,

the second partial derivatives by (∀i, k = 1, . . . , l)

∂2g

∂ai∂ak
: Rl × Rl → R : (a, α)→2〈Fx(x(a, α))φ̆

(m+1)
i , Fx(x(a, α))φ̆

(m+1)
k 〉

+ 2〈F (x(a, α)), Fxx(x(a, α))φ̆
(m+1)
i φ̆

(m+1)
k 〉,

∂2g

∂ai∂αk
: Rl × Rl → R : (a, α)→− 2γ−1〈Fx(x(a, α))φ̆

(m+1)
i , Fx(x(a, α))ρ′k〉

− 2γ−1〈F (x(a, α)), Fxx(x(a, α))φ̆
(m+1)
i ρ′k〉,

∂2g

∂αi∂αk
: Rl × Rl → R : (a, α)→2γ−2〈Fx(x(a, α))ρ′i, Fx(x(a, α))ρ′k〉

+ 2γ−2〈F (x(a, α)), Fxx(x(a, α))ρ′iρ
′
k〉.

(4.96)

Given an initial guess a(0) for a, the initial guess for α is calculated by

α
(0)
j = − 1

2a
(0)
1 a

(0)
j (∀j = 1, . . . , l). The guess a(0) is calculated by minimizing
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f : Rl → R :

a′ →
l∑

k=1

bk +

l∑
j=1

a′jCkj+
1

2
c
(00)
k +

l∑
j=1

c
(0j)
k a′j

+
1

2
c
(11)
k a′21 +

l∑
j=2

c
(1j)
k a′1a

′
j

2

+

l∑
j=1

(
a′j‖∆x

(m+1)
⊥ ‖

)2

+

l∑
i=2

l∑
j=2

(a′ia
′
j)

2 +

l∑
k=1

l∑
i=1

l∑
j=1

(a′ka
′
ia
′
j)

2.

(4.97)

The values C11, . . . , Cll that appear in the function are defined as in the proof
of lemma 4.16. The function prevents the possible blow-up of terms in the
Taylor expansion (4.82) of the new residual. Note that due to the replacement

of the z
(m+1)
1 , . . . , z

(m+1)
l terms of the update vector, this Taylor expansion is

only an approximation.
To minimize (4.97) we need an initial guess a′(0). To construct this guess,

we start from the one we used in the SNE method. With b′1, . . . , b
′
l defined

by b′j = 〈F (x̃(m+1)), φ
(m+1)
j 〉 (∀j = 1, . . . , l) and s the index such that |b′s| is

maximal, this guess was given by

a′(e)s = − sgn

(
|b′s|

λ
(m+1)
s

)
min

(∣∣∣∣ |b′s|
λ

(m+1)
s

∣∣∣∣ ,√|λ(m+1)
s |,

∣∣∣∣∣ |b′s|
‖∆x(m+1)

⊥ ‖

∣∣∣∣∣
)
,

∀j 6= s : a
′(e)
j = − sgn

(
|b′j |

λ
(m+1)
j

)
min

(∣∣∣∣∣ |b′j |λ
(m+1)
j

∣∣∣∣∣ , |a′(e)s |

)
.

To account for the base transformation of the approximate null vectors φ
(m+1)
1 ,

. . . , φ
(m+1)
l to φ̆

(m+1)
1 , . . . , φ̆

(m+1)
l , we calculate

∀j = 1, . . . , l : a
′(b)
j =

l∑
i=1

Dija
′(e)
i . (4.98)

The choice a
′(b)
1 , . . . , a

′(b)
l prevents the blow-up of most terms in (4.97), except

for the part
∑l
i=2

∑l
j=2(a′ia

′
j)

2. To prevent its blow-up, we require

max
i,j=2,...,l

|a′ia′j | . max
k=1,...,l

∣∣∣∣∣∣
l∑

j=1

a′jCkj

∣∣∣∣∣∣ . (4.99)

We define

κ̃ = min

1,
maxi=1,...,l

∣∣∣∑l
j=1 a

′(b)
j Ckj

∣∣∣
maxi,j=2,...,l |a′(b)i a

′(b)
j |

 (4.100)

and finally choose

∀j = 1, . . . , l : a
′(0)
j = κ̃a

′(b)
j (4.101)

as an initial guess for the minimization of (4.97).

89



4. The Newton-Krylov method near bifurcation points

4.7.5 The method in practice

The method derived in the current section will be called the split Newton
method with reduced terms (SNR). In each iteration information of the previous
one is required, making it impossible to use for the first iteration. In practice,
we will first perform a normal split Newton step, afterwards updates of the
form (4.93) are used.

Each Newton iteration (m + 1) requires approximate null vectors of both
the previous and current Jacobian. These are respectively reused from the pre-
vious iteration (iteration m), and calculated with an eigensolver (algorithm
3.3, page 43). A base transformation (4.76) is performed, yielding the vectors

φ̆
(m+1)
1 , . . . , φ̆

(m+1)
l . The part ∆x

(m+1)
⊥ of the update vector is again calculated

by solving (4.30) with deflated GMRES (algorithm 3.4, page 44), the ρ′1, . . . , ρ
′
l

terms of the part ∆x
(m+1)
ρ by first orthogonalizing φ̆

(m+1)
1 , . . . , φ̆

(m+1)
l to the

approximate null vectors φ
(m)
1 , . . . , φ

(m)
l of the previous iteration (see (4.91)),

and then applying Q(x̃(m+1)). The values for a1, . . . , al and α1, . . . , αl are cal-
culated by minimizing (4.102), the preconditioned version of (4.94). The initial
guess a(0) for a is created by first minimizing (4.105), the one for α by setting

α
(0)
j = − 1

2a1aj (∀j = 1, . . . , l). To minimize (4.105), the initial guess given by
(4.101) is used. The update vector is constructed by (4.93) and the guess is

updated. The algorithm ends with the calculation of ∆x
(m+1)
‖ and γ, and also

stores the approximate null vectors, to use in the next iteration. The full SNR
method is described by algorithm 4.6 on page 104 in appendix 4.10.

The algorithm is applied in example 4.19. The first iterations show a similar
behaviour in convergence as for the SNE method (see section 4.6): assumption
4.15 holds, validating the reduction of the extra terms. After these iterations
convergence however slows down, and becomes similar to that of the normal
split Newton method (see section 4.5). For these iterations assumption 4.15

does not hold, the additional part ∆x
(m+1)
ρ does not yield a significant speed-

up anymore.

Example 4.19. Consider the same set-up as in example 4.3. Application of
the SNR method yields the residual plot in figure 4.9. After 8 Newton iterations
the residual norm reaches a value of approximately 10−10. Further decrease is
however slow. �

Note that none of the iterations in the SNR method required additional
applications of eigen- or linear solvers. In each iteration eigenpairs of only a
single operator needed to be calculated, and only a single linear system had
to be solved. The computational work is approximately the same as for the
normal split Newton method.

4.7.6 The preconditioned case

Similar to previous methods, in the preconditioned case φ
(m)
1 , . . . , φ

(m)
l and

φ
(m+1)
1 , . . . , φ

(m+1)
l represent the approximate null vectors of respectively the

preconditioned Jacobians P (x̃(m))Fx(x̃(m)) and P (x̃(m+1))Fx(x̃(m+1)). The re-

spective eigenvalues of φ
(m+1)
1 , . . . , φ

(m+1)
l are denoted by λ

(m+1)
1 , . . . , λ

(m+1)
l ,
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Figure 4.9: Residual plot of example 4.19. The SNR method is applied to
an ill-conditioned nonlinear problem, where the Jacobian contains a three-
dimensional kernel in the searched solution. The residual norm converges to
approximately 10−10 after 8 iterations. Further iterations show a very slow de-
crease in residual norm, the attainable accuracy (10−12) is not reached in an
acceptable amount of Newton steps.

and we denote τ
(m)
1 , . . . , τ

(m)
l , respectively τ

(m+1)
1 , . . . , τ

(m+1)
l , such that (∀j =

1, . . . , l)

P (x̃(m))τ
(m)
j = φ

(m)
j ,

P (x̃(m+1))τ
(m+1)
j = φ

(m+1)
j .

To create a new base for the space spanned by φ
(m+1)
1 , . . . , φ

(m+1)
l , we define

φ̊ =

l∑
j=1

〈τ (m+1)
j ,∆x

(m)
‖ 〉φ

(m+1)
j , τ̊ =

l∑
j=1

〈τ (m+1)
j ,∆x

(m)
‖ 〉τ

(m+1)
j ,

φ̆
(m+1)
1 =

(√
|〈φ̊, τ̊〉|

)−1

φ̊, τ̆
(m+1)
1 =

(√
|〈φ̊, τ̊〉|

)−1

τ̊ ,

with ∆x
(m)
‖ =

∑l
j=1 a

(m)
j φ

(m)
j . The vectors τ̆

(m+1)
2 , . . . , τ̆

(m+1)
l and φ̆

(m+1)
2 , . . . ,

φ̆
(m+1)
l are chosen as linear combinations of respectively τ

(m+1)
1 , . . . , τ

(m+1)
l

and φ
(m+1)
1 , . . . , φ

(m+1)
l such that 〈τ̆ (m+1)

i , φ̆
(m+1)
j 〉 = δij (∀i, j = 1, . . . , l) and

P (x̃(m+1))τ̆
(m+1)
i = φ̆

(m+1)
i (∀i = 1, . . . , l).

As in the unpreconditioned case, the part of the update vector in approx-

imate null vector directions is dominated by φ̆
(m+1)
1 under assumption 4.15.

The matrix D is defined as before (see (4.77)), the elements of this unitary
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matrix are explicitly given by

∀i, j = 1, . . . , l : Dij = 〈φ̆(m+1)
j , τ

(m+1)
i 〉.

If P (x̃(m+1)) is self-adjoint with respect to 〈·, ·〉, D is again a unitary matrix,
implying the relation D−1 = DT .

The ∆x
(m+1)
⊥ part of the update vector is calculated by solving (4.47), with

Q(x̃(m+1)) defined by (4.15). We split the current residual and second order
partial derivatives (∀i, j = 1, . . . , l)

F (x̃(m+1)) = F⊥ + F‖ = F⊥ +

l∑
k=1

bk τ̆
(m+1)
k ,

Fxx(x̃(m+1))∆x
(m+1)
⊥ ∆x

(m+1)
⊥ = F

(00)
⊥ + F

(00)
‖ = F

(00)
⊥ +

l∑
k=1

c
(00)
k τ̆

(m+1)
k ,

Fxx(x̃(m+1))∆x
(m+1)
⊥ φ̆

(m+1)
j = F

(0j)
⊥ + F

(0j)
‖ = F

(0j)
⊥ +

l∑
k=1

c
(0j)
k τ̆

(m+1)
k ,

Fxx(x̃(m+1))φ̆
(m+1)
i φ̆

(m+1)
j = F

(ij)
⊥ + F

(ij)
‖ = F

(ij)
⊥ +

l∑
k=1

c
(ij)
k τ̆

(m+1)
k

with 〈F (ij)
⊥ , φ̆

(m+1)
k 〉 = 0 (∀i, j, k = 1, . . . , l) and 〈F⊥, φ̆(m+1)

k 〉 = 0 (∀k =

1, . . . , l). The values for b1, . . . , bl and c
(ij)
k (∀i, j, k = 1, . . . , l) are calculated as

∀k = 1, . . . , l : bk = 〈F (x̃(m+1)), φ̆
(m+1)
k 〉,

∀k = 1, . . . , l : c
(00)
k = 〈Fxx(x̃(m+1))∆x

(m+1)
⊥ ∆x

(m+1)
⊥ , φ̆

(m+1)
k 〉,

∀j, k = 1, . . . , l : c
(0j)
k = 〈Fxx(x̃(m+1))∆x

(m+1)
⊥ φ̆

(m+1)
j , φ̆

(m+1)
k 〉,

∀i, j, k = 1, . . . , l : c
(ij)
k = 〈Fxx(x̃(m+1))φ̆

(m+1)
i φ̆

(m+1)
j , φ̆

(m+1)
k 〉.

Instead of solving linear systems of the form (∀j = 1, . . . , l)

P (x̃(m+1))Q(x̃(m+1))Fx(x̃(m+1))z
(m+1)
j

= P (x̃(m+1))Q(x̃(m+1))Fxx(x̃(m+1))φ̆
(m+1)
1 φ̆

(m+1)
j ,

we will again replace the extra parts z
(m+1)
1 , . . . , z

(m+1)
l of the update vector

by introducing ρ1, . . . , ρl, defined in such a way that

∀j = 1, . . . , l : φ̆
(m+1)
j =

l∑
i=1

ζijφ
(m)
i + ρj

with ζij = 〈φ̆(m+1)
j , τ

(m)
i 〉 (∀i, j = 1, . . . , l) and 〈ρj , τ (m)

i 〉 = 0 (∀i, j = 1, . . . , l).
Similar analysis as for the unpreconditioned case shows that, under assumption

4.17, the z
(m+1)
1 , . . . , z

(m+1)
l terms can be replaced by −γ−1Q(x̃(m+1))ρj (∀j =

1, . . . , l), with γ = ‖
∑l
j=1 a

(m)
j φ

(m)
j ‖P (x̃(m))−1 .
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The update vector is constructed by (4.93), with a1, . . . , al and α1, . . . , αl
calculated by minimizing (with P̃ = P (x̃(m+1)))

g : Rl × Rl → R :

(a, α)→

∥∥∥∥∥∥F
x̃(m+1) + ∆x

(m+1)
⊥ +

l∑
j=1

aj φ̆
(m+1)
j − γ−1

l∑
j=1

αjρ
′
j

∥∥∥∥∥∥
2

P̃
(4.102)

with the nonlinear conjugate gradients method. The first partial derivatives of
g are given by (∀i = 1, . . . , l)

∂g

∂ai
:Rl × Rl → R :

(a, α)→ 2〈F (x(a, α)), Fx(x(a, α))φ̆
(m+1)
i 〉P̃ ,

∂g

∂αi
:Rl × Rl → R :

(a, α)→ −2γ−1〈F (x(a, α)), Fx(x(a, α))ρ′i〉P̃ ,

(4.103)

with x(a, α) = x̃(m+1) + ∆x
(m+1)
⊥ +

l∑
j=1

aj φ̆
(m+1)
j − γ−1

l∑
j=1

αjρ
′
j ,

the second partial derivatives by (∀i, k = 1, . . . , l)

∂2g

∂ai∂ak
:Rl × Rl → R :

(a, α)→ 2〈Fx(x(a, α))φ̆
(m+1)
i , Fx(x(a, α))φ̆

(m+1)
k 〉P̃

+ 2〈F (x(a, α)), Fxx(x(a, α))φ̆
(m+1)
i φ̆

(m+1)
k 〉P̃ ,

∂2g

∂ai∂αk
:Rl × Rl → R :

(a, α)→ − 2γ−1〈Fx(x(a, α))φ̆
(m+1)
i , Fx(x(a, α))ρ′k〉P̃

− 2γ−1〈F (x(a, α)), Fxx(x(a, α))φ̆
(m+1)
i ρ′k〉P̃ ,

∂2g

∂αi∂αk
:Rl × Rl → R :

(a, α)→ 2γ−2〈Fx(x(a, α))ρ′i, Fx(x(a, α))ρ′k〉P̃
+ 2γ−2〈F (x(a, α)), Fxx(x(a, α))ρ′iρ

′
k〉P̃ .

(4.104)

The initial guesses a(0) and α(0) for the minimization of g are constructed
similar to the unpreconditioned case, where the preconditioned alternatives for

the values of Dij , Ckj , bk and c
(ij)
k (with i, j, k = 1, . . . , l) are used. First an
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initial guess for the value of a is calculated by minimizing

f : Rl → R : a′ →
l∑

k=1

bk +

l∑
j=1

a′jCkj +
1

2
c
(00)
k +

l∑
j=1

c
(0j)
k a′j

+
1

2
c
(11)
k a′21 +

l∑
j=2

c
(1j)
k a′1a

′
j

2

+

l∑
j=1

(
a′j‖∆x

(m+1)
⊥ ‖P̃−1

)2

+

l∑
i=2

l∑
j=2

(a′ia
′
j)

2

+

l∑
k=1

l∑
i=1

l∑
j=1

(a′ka
′
ia
′
j)

2

(4.105)

with nonlinear conjugate gradients. The initial guess for α is then calculated by

α
(0)
j = − 1

2a
(0)
1 a

(0)
j (∀j = 1, . . . , l). To construct an initial guess for minimizing

f , we first calculate

a′(e)s = − sgn

(
|b′s|

λ
(m+1)
s

)
min

(∣∣∣∣ |b′s|
λ

(m+1)
s

∣∣∣∣ ,√|λ(m+1)
s |,

∣∣∣∣∣ |b′s|
‖∆x(m+1)

⊥ ‖P̃−1

∣∣∣∣∣
)
,

∀j 6= s : a
′(e)
j = − sgn

(
|b′j |

λ
(m+1)
j

)
min

(∣∣∣∣∣ |b′j |λ
(m+1)
j

∣∣∣∣∣ , |a′(e)s |

)
,

with b′j = 〈F (x̃(m+1)), φ
(m+1)
j 〉 (∀j = 1, . . . , l). The values a

′(e)
1 , . . . , a

′(e)
l would

be used as guess in the SNE method. The guess for the minimization of f is
then calculated by application of (4.98), (4.100) and (4.101).

4.8 When is reduction justified?

The split Newton method with extra terms (SNE), introduced in section 4.6,
introduces an additional part ∆xz to the update vector to prevent slow con-
vergence in ill-conditioned problems. This extra part is calculated by solving
additional linear systems. To bypass the extra amount of computational work,
we approximate this part by a different one ∆xρ in the split Newton method
with reduced terms (SNR), as discussed in section 4.7. This alternative term is
calculated by using approximate null vectors of the Jacobian from a previous
Newton iteration, and does not require additional applications of linear solvers.

This last method is, however, based on an assumption (see assumption
4.15). The update vector ∆x given by

∆x = ∆x⊥ + ∆x‖ + ∆xρ (4.106)

= ∆x⊥ +

l∑
j=1

aj φ̆j − γ−1
l∑

j=1

αjρ
′
j (4.107)

for a certain guess x̃ ∈ Cn, with ∆x⊥, φ̆1, . . . , φ̆l, γ and ρ′1, . . . , ρ
′
l calculated

as in section 4.7 (dropping the index (m + 1)), is only expected to yield a
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decent Newton update when |ai| � |a1| for each i 6= 1. The part of the update

vector that consists of approximate null vectors is dominated by φ̆1 under this
assumption.

If assumption 4.15 is valid, the SNR method is expected to yield a similar
decrease in residual as for the SNE method. If the assumption does not hold,
the decrease in residual should be similar to applying the normal split Newton
method (SN). Instead of reducing the additional part to ∆xρ, in this case an
update with the part ∆xz, calculated by the SNE method, should be executed.

4.8.1 Derivation of a reduction criterion

Assumption 4.15 is required to neglect the term 1
2

∑l
i=2

∑l
j=2 aiajFxxφ̆iφ̆j in

the Taylor expansion of the new residual. To reduce its influence, we should
assert that the values a1, . . . , al satisfy the relation

∀i, j = 2, . . . , l : |aiaj | . max
i=1,...,l

∣∣∣∣∣∣
l∑

j=1

ajCij

∣∣∣∣∣∣ (4.108)

with C11, . . . , Cll defined as in section 4.7. We will now use this relation to
derive a criterion that indicates whether assumption 4.15 holds. Let â′1, . . . , â

′
l

be the arguments for which

f : Rl → R : a′ →
l∑

k=1

bk +

l∑
j=1

a′jCkj +
1

2
c
(00)
k +

l∑
j=1

c
(0j)
k a′j

+
1

2
c
(11)
k a′21 +

l∑
j=2

c
(1j)
k a′1a

′
j

2

+

l∑
j=1

(
a′j‖∆x⊥‖

)2
+

l∑
k=1

l∑
i=1

l∑
j=1

(a′ka
′
ia
′
j)

2,

with b1, . . . , bl defined by (4.40), is minimal. This function contains the different
scalars of the Taylor expansion of the new residual, ignoring terms of the form

aiajF
(ij)
⊥ for i 6= 1, j 6= 1. To check (4.108), we calculate the value

κ = min

1,
maxi=1,...,l

∣∣∣∑l
j=1 â

′
jCkj

∣∣∣
maxi,j=2,...,l |â′iâ′j |

 . (4.109)

If κ ≈ 1, relation (4.108) is valid. The aiajF
(ij)
⊥ terms are indeed negligible for

i 6= 1, j 6= 1. For κ� 1 these terms should not be ignored. Assumption 4.15 is
not valid in this case, the reduction of the additional update vector part should
not be executed.

4.8.2 The method in practice

We will extend the SNE/SNR methods with the derived criterion, we call the
updated algorithm the split Newton method with mixed terms (SNM). In prac-

95



4. The Newton-Krylov method near bifurcation points

tice we will start each Newton iteration as if executing a SNR step, up to the

calculation of a
′(b)
1 , . . . , a

′(b)
l (used in the creation of an initial guess for the min-

imization of (4.97), see (4.98)). These values approximate the â′1, . . . , â
′
l ones

defined before. The value κ is now approximated by κ̃, calculated from (4.100),
and the criterion is checked.

If κ̃ ≈ 1, the step of the SNR method is continued, it is expected to perform
as well as a SNE step. If κ̃ � 1, the values a1, . . . , al that minimize the norm
of the new residual are typically too small for a good update to be performed.
In this case we do not continue the construction of the update vector used in
the SNR method. Instead we shift to the calculation of the z11, . . . , zll terms
to use in a step of the SNE method.

The resulting algorithm is given by algorithm 4.7 on page 106 in appendix
4.10. Note that a normal split Newton step is executed in the first iteration,
since we require information on the kernel of the Jacobian at a previous Newton
iteration for the calculation of reduced terms.

The SNM method is applied in example 4.20. 24 Newton steps are required
for convergence, which is slightly higher than when extra terms are used in
each iteration (see example 4.12). The total computational work required to
converge is however reduced: only in 13 Newton steps additional linear systems
had to be solved. In example 4.12 each of the 19 steps had this requirement. For
this example, application of the SNM method yields a converged approximation
in less time than the SNE one.

Example 4.20. Consider the same set-up as in example 4.3. Application of
the SNM method yields the residual plot in figure 4.10. Convergence (up to a
tolerance of 10−12) is reached in 24 Newton iterations. In 13 of the 24 iterations
additional linear systems had to be solved, for 10 iterations reduced terms were
used instead. The value εκ̃ = 10−2 was used as a threshold for κ̃ to choose the
sort of update. �

By adding a criterion, we combined both the robustness of the SNE method,
and the low amount of computational work of the SNR one. The resulting
algorithm is computationally more efficient than the SNE method, and retains
its ability to efficiently solve ill-conditioned problems.

4.8.3 The preconditioned case

The analysis in the current section is nearly identical for the preconditioned
case. We still calculate κ̃ and perform a SNE or SNR step depending on its
value. The single difference is the use of preconditioned versions for the values
of C11, . . . , Cll in the calculation of κ̃ (see (4.100)).

4.9 Discussion on convergence

To end the chapter we summarize the results on convergence of the derived
Newton methods, and make a note on possible further adjustments.
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Figure 4.10: Residual plot of example 4.20. The SNM method is applied to
an ill-conditioned nonlinear problem, where the Jacobian contains a three-
dimensional kernel in the searched solution. 11 Newton steps were executed
with reduced terms (illustrated by circles), 13 with extra terms (illustrated by
stars). The residual norm converges to approximately 10−12 after 24 iterations,
which is the attainable accuracy. Compared to figure 4.8 more iterations are
required to reach this value, but the total computational work is reduced.

4.9.1 Convergence of the split Newton methods

In section 4.6 we introduced an update vector of the form

∆x = ∆x⊥ + ∆x‖ + ∆xz (4.110)

= ∆x⊥ +

l∑
j=1

ajφj +

l∑
i=1

l∑
j=1

αijzij , (4.111)

with φ1, . . . , φl the null vectors of the Jacobian at the current guess x̃, z11, . . . , zll
the solutions of additional linear systems (4.55) and a1, . . . , al, α11, αll deter-
mined by minimizing the new residual norm. The part ∆xz was introduced to
counter the influence of second order derivatives of the form aiajFxx(x̃)φiφj
on the new residual (for i, j = 1, . . . , l). In section 4.5 we showed that these
derivatives imposed the condition

max
i,j=1,...,l

|aiaj | . max
j=1,...,l

|ajλj | (4.112)

on the values a1, . . . , al. λ1, . . . , λl denote the eigenvalues corresponding to the
respective approximate null vectors φ1, . . . , φl. With s ∈ {1, . . . , l} the index
for which |asλs| is maximal, this condition lead to the bound

∀j = 1, . . . , l : |aj | . |λs|. (4.113)
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Since |λj | � 1 (∀j = 1, . . . , l), this imposes |aj | � 1 (∀j = 1, . . . , l), resulting
in small updates to the residual and overall slow convergence.

By introducing the αijzij terms (for i, j = 1, . . . , l) to the update vector,
condition (4.112) was removed by choosing αij ≈ − 1

2aiaj (∀i, j = 1, . . . , l).
A different bound is then however induced by other derivatives, of the forms
akαijFxx(x̃)φkzij and akaiajFxxx(x̃)φkφiφj , which both are of order O(akaiaj)
(with i, j, k = 1, . . . , l). The new condition was given by

max
k,i,j=1,...,l

|akaiaj | . max
j=1,...,l

|ajλj | (4.114)

and lead to the bound

∀j = 1, . . . , l : |aj | .
√
|λs|. (4.115)

This new bound is not as strict as (4.113), and does not hamper convergence
as much.

4.9.2 Possible further adjustments

Though updates with (4.111) usually yield decent convergence behaviour, we
note that the analysis can be further extended. To counter the condition
(4.114), more parts can be introduced to the update vector by solving the
linear systems (∀i, j, k = 1, . . . , l)

Q(x̃)Fx(x̃)vijk = Q(x̃)Fxx(x̃)φkzij , (4.116)

Q(x̃)Fx(x̃)wijk = Q(x̃)Fxx(x̃)φiφjφk. (4.117)

The update vector would become

∆x = ∆x⊥ + ∆x‖ + ∆xz + ∆xv + ∆xw (4.118)

= ∆x⊥ +

l∑
j=1

ajφj +

l∑
i=1

l∑
j=1

αijzij +

l∑
i=1

l∑
j=1

l∑
k=1

(ηijkvijk + σijkwijk)

in this case. Condition (4.114) can be reduced by choosing ηijk = − 1
2akαij and

σijk = − 1
6aiajak (∀i, j, k = 1, . . . , l).

Though (4.114) is countered by introducing (4.118), a new condition is again
introduced by derivatives of order O(aqakaiaj) (with i, j, k, q = 1, . . . , l). This
new condition is given by

max
q,k,i,j=1,...,l

|aqakaiaj | . max
j=1,...,l

|ajλj | (4.119)

and would yield the bound

∀j = 1, . . . , l : |aj | . 3
√
|λs|. (4.120)

The difference with bound (4.115) is not as profound as the one between (4.115)
and (4.113), but a small increase in |a1|, . . . , |al| values is possible. The process
to remove (4.114) can be repeated: even further update vector parts can be
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introduced to exchange (4.119) for a slightly milder condition. By repeatedly
adding extra terms, the condition on |a1|, . . . , |al| is relaxed.

Though an extension to the split Newton method with extra terms (SNE) is
possible, it is not practical: to reduce condition (4.114) to (4.119) an additional
1
6 l(l+1)(4l+2) linear systems need to be solved: 1

2 l
2(l+1) of form (4.116) and

1
6 l(l+1)(l+2) of form (4.117). The milder condition we achieve by introducing
further extra parts does not outweigh the cost of solving the required additional
linear systems. Furthermore, the analysis done in sections 4.7 and 4.8, which
was used to reduce the amount of linear solver applications, cannot be extended
to this alternative. In our applications the split Newton method with mixed
terms (SNM) will be used.
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4. The Newton-Krylov method near bifurcation points

4.10 Appendix

The standard Newton method

Algorithm 4.1 NewtonStandard

Input mNew ∈ N, tolerance εNew ∈ R+
0 , functions F : Cn → Cn, Fx : Cn →

C(Cn), P : Cn → C(Cn), inner product 〈·, ·〉, initial guess x(0) ∈ Cn
Output Approximation x̃ for F (x) = 0

1: Define Fx : Cn → C(Cn) by (4.2) if not specified
2: Set P : Cn → C(Cn) : x→ I if not specified
3: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
4: x̃ = x(0)

5: r = F (x̃)
6: i = 0
7: while i < mNew and ‖r‖P (x̃) > εNew do
8: i← i+ 1
9: Calculate ∆x by executing GMRES (algorithm 3.4) with A = Fx(x̃),
b = −r, P = P (x̃) and given 〈·, ·〉

10: x̃← x̃+ ∆x
11: r ← F (x̃)
12: end while
13: Return x̃

The deflated Newton method

Algorithm 4.2 NewtonDeflated

Input mNew ∈ N, tolerance εNew ∈ R+
0 , functions F : Cn → Cn, Fx : Cn →

C(Cn), P : Cn → C(Cn), inner product 〈·, ·〉, initial guess x(0) ∈ Cn
Output Approximation x̃ for F (x) = 0

1: Define Fx : Cn → C(Cn) by (4.2) if not specified
2: Set P : Cn → C(Cn) : x→ I if not specified
3: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
4: x̃ = x(0)

5: r = F (x̃)
6: i = 0
7: while i < mNew and ‖r‖P (x̃) > εNew do
8: i← i+ 1
9: Initialize deflation matrix K ∈ Cn×l1 with l1 known null vectors

10: Calculate (L,W,U) by executing RitzRestart (algorithm 3.3) with A =
Fx(x̃), P = P (x̃) and given 〈·, ·〉 and K

11: U ←
(
K U

)
12: Calculate ∆x by executing GMRES (algorithm 3.4) with A = Fx(x̃),

b = −r, P = P (x̃), K = U and given 〈·, ·〉
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13: x̃← x̃+ ∆x
14: r ← F (x̃)
15: end while
16: Return x̃

The Newton method with line search (NLS)

Algorithm 4.3 NewtonLS

Input mNew ∈ N, tolerance εNew ∈ R+
0 , functions F : Cn → Cn, Fx : Cn →

C(Cn), Fxx : Cn → C(Cn × Cn), P : Cn → C(Cn), inner product 〈·, ·〉, initial
guess x(0) ∈ Cn

Output Approximation x̃ for F (x) = 0

1: Define Fx : Cn → C(Cn) by (4.2) if not specified
2: Define Fxx : Cn → C(Cn × Cn) by (4.3) if not specified
3: Set P : Cn → C(Cn) : x→ I if not specified
4: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
5: x̃ = x(0)

6: r = F (x̃)
7: i = 0
8: while i < mNew and ‖r‖P (x̃) > εNew do
9: i← i+ 1

10: Calculate ∆x by executing GMRES (algorithm 3.4) with A = Fx(x̃),
b = −r, P = P (x̃) and given 〈·, ·〉

11: Define g, g′ and g′′ as in (4.24), (4.25) and (4.26)
12: ξ(0) = min(1, 2‖r‖P (x̃)‖∆x‖−2

P (x̃)−1)

13: Calculate ξ̃ by executing NCG (algorithm 3.5) with a(0) = ξ(0) and given
g

14: x̃← x̃+ ξ̃∆x
15: r ← F (x̃)
16: end while
17: Return x̃

The split Newton method (SN)

Algorithm 4.4 NewtonSplit

Input mNew ∈ N, tolerance εNew ∈ R+
0 , functions F : Cn → Cn, Fx : Cn →

C(Cn), Fxx : Cn → C(Cn × Cn), P : Cn → C(Cn), inner product 〈·, ·〉, initial
guess x(0) ∈ Cn

Output Approximation x̃ for F (x) = 0

1: Define Fx : Cn → C(Cn) by (4.2) if not specified
2: Define Fxx : Cn → C(Cn × Cn) by (4.3) if not specified
3: Set P : Cn → C(Cn) : x→ I if not specified
4: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
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5: x̃ = x(0)

6: r = F (x̃)
7: i = 0
8: while i < mNew and ‖r‖P (x̃) > εNew do
9: i← i+ 1

10: Initialize deflation matrix K ∈ Cn×l1 with l1 known null vectors
11: Calculate (L,W,U) by executing RitzRestart (algorithm 3.3) with A =

Fx(x̃), P = P (x̃) and given 〈·, ·〉 and K
12: U ←

(
K U

)
13: W ←

(
P (x̃)K W

)
14: Calculate ∆x⊥ by executing GMRES (algorithm 3.4) with A = Fx(x̃),

b = −r, P = P (x̃), K = U and given 〈·, ·〉
15: for j = 1, . . . , l do
16: bj = 〈r,Wj〉
17: end for
18: Calculate a′(0) by formula (4.52) (with λj = Ljj)
19: Define f by (4.51) (with λj = Ljj)
20: Calculate ã(0) by executing NCG (algorithm 3.5) with g = f and a(0) =

a′(0)

21: Define g, g′ and g′′ by (4.48), (4.49) and (4.50) (with φj = Wj)
22: Calculate ã by executing NCG (algorithm 3.5) with a(0) = ã(0) and given

g
23: ∆x = ∆x⊥ +

∑l
j=1 ãjWj

24: x̃← x̃+ ∆x
25: r ← F (x̃)
26: end while
27: Return x̃

The split Newton method with extra terms (SNE)

Algorithm 4.5 NewtonExtra

Input mNew ∈ N, tolerance εNew ∈ R+
0 , functions F : Cn → Cn, Fx : Cn →

C(Cn), Fxx : Cn → C(Cn × Cn), P : Cn → C(Cn), inner product 〈·, ·〉, initial
guess x(0) ∈ Cn

Output Approximation x̃ for F (x) = 0

1: Define Fx : Cn → C(Cn) by (4.2) if not specified
2: Define Fxx : Cn → C(Cn × Cn) by (4.3) if not specified
3: Set P : Cn → C(Cn) : x→ I if not specified
4: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
5: x̃ = x(0)

6: r = F (x̃)
7: i = 0
8: while i < mNew and ‖r‖P (x̃) > εNew do
9: i← i+ 1
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10: Initialize deflation matrix K ∈ Cn×l1 with l1 known null vectors
11: Calculate (L,W,U) by executing RitzRestart (algorithm 3.3) with A =

Fx(x̃), P = P (x̃) and given 〈·, ·〉 and K
12: U ←

(
K U

)
13: W ←

(
P (x̃)K W

)
14: Calculate ∆x⊥ by executing GMRES (algorithm 3.4) with A = Fx(x̃),

b = −r, P = P (x̃), K = U and given 〈·, ·〉
15: for j = 1, . . . , l do
16: for k = 1, . . . , j do
17: vjk = Fxx(x̃)WjWk

18: Calculate zjk by executing GMRES (algorithm 3.4) with A = Fx(x̃),
b = vjk, P = P (x̃), K = U and given 〈·, ·〉

19: zkj = zjk
20: end for
21: end for
22: v00 = Fxx(x̃)∆x⊥∆x⊥
23: for k = 1, . . . , l do
24: bk = 〈r,Wk〉
25: c

(00)
k = 〈v00,Wk〉

26: v0k = Fxx(x̃)∆x⊥Wk

27: for j = 1, . . . , l do

28: c
(0k)
j = 〈v0k,Wj〉

29: for p = 1, . . . , k do

30: c
(pk)
j = 〈vpk,Wj〉

31: c
(kp)
j = c

(pk)
j

32: end for
33: end for
34: end for
35: Calculate a′(0) by formula (4.74) (with λj = Ljj)
36: Define f by (4.73) (with λj = Ljj)
37: Calculate ã(0) by executing NCG (algorithm 3.5) with g = f and a(0) =

a′(0)

38: for j = 1, . . . , l do
39: for k = 1, . . . , j do

40: α
(0)
jk = − 1

2 ã
(0)
j ã

(0)
k

41: α
(0)
kj = α

(0)
jk

42: end for
43: end for
44: Define g, g′ and g′′ by (4.70), (4.71) and (4.72) (with φj = Wj)
45: Calculate (ã, α̃) by executing NCG (algorithm 3.5) with a(0) =

(ã(0), α(0)) and given g

46: ∆x = ∆x⊥ +
∑l
j=1 ãjWj +

∑l
j=1

∑l
k=1 α̃jkzjk

47: x̃← x̃+ ∆x
48: r ← F (x̃)
49: end while
50: Return x̃
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The split Newton method with reduced terms (SNR)

Algorithm 4.6 NewtonReduced

Input mNew ∈ N, tolerance εNew ∈ R+
0 , functions F : Cn → Cn, Fx : Cn →

C(Cn), Fxx : Cn → C(Cn × Cn), P : Cn → C(Cn), inner product 〈·, ·〉, initial
guess x(0) ∈ Cn

Output Approximation x̃ for F (x) = 0

1: Define Fx : Cn → C(Cn) by (4.2) if not specified
2: Define Fxx : Cn → C(Cn × Cn) by (4.3) if not specified
3: Set P : Cn → C(Cn) : x→ I if not specified
4: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
5: x̃ = x(0)

6: r = F (x̃)
7: i = 0
8: while i < mNew and ‖r‖P (x̃) > εNew do
9: i← i+ 1

10: Initialize deflation matrix K ∈ Cn×l1 with l1 known null vectors
11: Calculate (L,W,U) by executing RitzRestart (algorithm 3.3) with A =

Fx(x̃), P = P (x̃) and given 〈·, ·〉 and K
12: U ←

(
K U

)
13: W ←

(
P (x̃)K W

)
14: Calculate ∆x⊥ by executing GMRES (algorithm 3.4) with A = Fx(x̃),

b = −r, P = P (x̃), K = U and given 〈·, ·〉
15: if i = 1 then
16: W̆ = W
17: Ŭ = U
18: for j = 1, . . . , l do
19: bj = 〈r,Wj〉
20: end for
21: Calculate a′(0) by formula (4.52) (with λj = Ljj)
22: Define f by (4.51) (with λj = Ljj)
23: Calculate ã(0) by executing NCG (algorithm 3.5) with g = f and

a(0) = a′(0)

24: Define g, g′ and g′′ by (4.48), (4.49) and (4.50) (with φj = Wj)
25: Calculate ã by executing NCG (algorithm 3.5) with a(0) = ã(0) and

given g
26: ∆x = ∆x⊥ +

∑l
j=1 ãjWj

27: else
28: W̊ =

∑l
j=1〈Uj ,∆x‖〉Wj

29: Ů =
∑l
j=1〈Uj ,∆x‖〉Uj

30: β =

√
|〈W̊ , Ů〉|

31: W̆1 = β−1W̊
32: Ŭ1 = β−1Ů
33: Create W̆2, . . . , W̆l and Ŭ2, . . . , Ŭl as linear combinations of respec-

tively W1, . . . ,Wl and U1, . . . , Ul such that 〈Ŭj , W̆k〉 = δjk and P (x̃)Ŭj =

W̆j for each j, k = 1, . . . , l
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34: for j = 1, . . . , l do
35: for k = 1, . . . , l do
36: Djk = 〈W̆k, Uj〉
37: end for
38: end for
39: C = DTLD
40: for j = 1, . . . , l do
41: ρ′j = W̆j

42: for k = 1, . . . , l do
43: ρ′j ← ρ′j − Ŵk〈ρ′j , Ûk〉
44: end for
45: for k = 1, . . . , l do
46: ρ′j ← ρ′j −Wk〈ρ′j , Uk〉
47: end for
48: end for
49: v00 = Fxx(x̃)∆x⊥∆x⊥
50: for k = 1, . . . , l do
51: bk = 〈r, W̆k〉
52: c

(00)
k = 〈v00, W̆k〉

53: v0k = Fxx(x̃)∆x⊥W̆k

54: v1k = Fxx(x̃)W̆1W̆k

55: for j = 1, . . . , l do

56: c
(0k)
j = 〈v0k, W̆j〉

57: c
(1k)
j = 〈v1k, W̆j〉

58: end for
59: end for
60: Calculate a′(0) by formula (4.101) (with λj = Ljj and φj = Wj)
61: Define f by (4.105) (with λj = Ljj)
62: Calculate ã(0) by executing NCG (algorithm 3.5) with g = f and

a(0) = a′(0)

63: for j = 1, . . . , l do

64: α
(0)
j = − 1

2 ã
(0)
1 ã

(0)
j

65: end for
66: Define g, g′ and g′′ by (4.102), (4.103) and (4.104) (with φ̆j = W̆j)
67: Calculate (ã, α̃) by executing NCG (algorithm 3.5) with a(0) =

(ã(0), α(0)) and given g

68: ∆x = ∆x⊥ +
∑l
j=1 ãjW̆j − γ−1

∑l
j=1 α̃jρ

′
j

69: end if
70: x̃← x̃+ ∆x
71: r ← F (x̃)
72: Û ← U
73: Ŵ ←W
74: ∆x‖ =

∑l
j=1 ãjW̆j

75: γ ←
√
〈
∑l
j=1 ãjW̆j ,

∑l
j=1 ãjŬj〉

76: end while
77: Return x̃
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The split Newton method with mixed terms (SNM)

Algorithm 4.7 NewtonMixed

Input mNew ∈ N, tolerances εNew, εκ̃ ∈ R+
0 , functions F : Cn → Cn,

Fx : Cn → C(Cn), Fxx : Cn → C(Cn × Cn), P : Cn → C(Cn), inner product
〈·, ·〉, initial guess x(0) ∈ Cn

Output Approximation x̃ for F (x) = 0

1: Define Fx : Cn → C(Cn) by (4.2) if not specified
2: Define Fxx : Cn → C(Cn × Cn) by (4.3) if not specified
3: Set P : Cn → C(Cn) : x→ I if not specified
4: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
5: x̃ = x(0)

6: r = F (x̃)
7: i = 0
8: while i < mNew and ‖r‖P (x̃) > εNew do
9: i← i+ 1

10: Initialize deflation matrix K ∈ Cn×l1 with l1 known null vectors
11: Calculate (L,W,U) by executing RitzRestart (algorithm 3.3) with A =

Fx(x̃), P = P (x̃) and given 〈·, ·〉 and K
12: U ←

(
K U

)
13: W ←

(
P (x̃)K W

)
14: Calculate ∆x⊥ by executing GMRES (algorithm 3.4) with A = Fx(x̃),

b = −r, P = P (x̃), K = U and given 〈·, ·〉
15: if i = 1 then
16: W̆ = W
17: Ŭ = U
18: for j = 1, . . . , l do
19: bj = 〈r,Wj〉
20: end for
21: Calculate a′(0) by formula (4.52) (with λj = Ljj)
22: Define f by (4.51) (with λj = Ljj)
23: Calculate ã(0) by executing NCG (algorithm 3.5) with g = f and

a(0) = a′(0)

24: Define g, g′ and g′′ by (4.48), (4.49) and (4.50) (with φj = Wj)
25: Calculate ã by executing NCG (algorithm 3.5) with a(0) = ã(0) and

given g
26: ∆x = ∆x⊥ +

∑l
j=1 ãjWj

27: else
28: W̊ =

∑l
j=1〈Uj ,∆x‖〉Wj

29: Ů =
∑l
j=1〈Uj ,∆x‖〉Uj

30: β =

√
|〈W̊ , Ů〉|

31: W̆1 = β−1W̊
32: Ŭ1 = β−1Ů
33: Create W̆2, . . . , W̆l and Ŭ2, . . . , Ŭl as linear combinations of respec-

tively W1, . . . ,Wl and U1, . . . , Ul such that 〈Ŭj , W̆k〉 = δjk and P (x̃)Ŭj =

W̆j for each j, k = 1, . . . , l

106



4.10. Appendix

34: for j = 1, . . . , l do
35: for k = 1, . . . , l do
36: Djk = 〈W̆k, Uj〉
37: end for
38: end for
39: C = DTLD
40: Calculate κ̃ by formula (4.100) (with λj = Ljj and φj = Wj)
41: if κ̃ > εκ̃ then
42: for j = 1, . . . , l do
43: ρ′j = W̆j

44: for k = 1, . . . , l do
45: ρ′j ← ρ′j − Ŵk〈ρ′j , Ûk〉
46: end for
47: for k = 1, . . . , l do
48: ρ′j ← ρ′j −Wk〈ρ′j , Uk〉
49: end for
50: end for
51: v00 = Fxx(x̃)∆x⊥∆x⊥
52: for k = 1, . . . , l do
53: bk = 〈r, W̆k〉
54: c

(00)
k = 〈v00, W̆k〉

55: v0k = Fxx(x̃)∆x⊥W̆k

56: v1k = Fxx(x̃)W̆1W̆k

57: for j = 1, . . . , l do

58: c
(0k)
j = 〈v0k, W̆j〉

59: c
(1k)
j = 〈v1k, W̆j〉

60: end for
61: end for
62: Calculate a′(0) by formula (4.101) (with λj = Ljj and φj = Wj)
63: Define f by (4.105) (with λj = Ljj)
64: Calculate ã(0) by executing NCG (algorithm 3.5) with g = f and

a(0) = a′(0)

65: for j = 1, . . . , l do

66: α
(0)
j = − 1

2 ã
(0)
1 ã

(0)
j

67: end for
68: Define g, g′ and g′′ by (4.102), (4.103) and (4.104) (with φ̆j = W̆j)
69: Calculate (ã, α̃) by executing NCG (algorithm 3.5) with a(0) =

(ã(0), α(0)) and given g

70: ∆x = ∆x⊥ +
∑l
j=1 ãjW̆j − γ−1

∑l
j=1 α̃jρ

′
j

71: else
72: for j = 1, . . . , l do
73: for k = 1, . . . , j do
74: vjk = Fxx(x̃)WjWk

75: Calculate zjk by executing GMRES (algorithm 3.4) with A =
Fx(x̃), b = vjk, P = P (x̃), K = U and given 〈·, ·〉
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76: zkj = zjk
77: end for
78: end for
79: v00 = Fxx(x̃)∆x⊥∆x⊥
80: for k = 1, . . . , l do
81: bk = 〈r,Wk〉
82: c

(00)
k = 〈v00,Wk〉

83: v0k = Fxx(x̃)∆x⊥Wk

84: for j = 1, . . . , l do

85: c
(0k)
j = 〈v0k,Wj〉

86: for p = 1, . . . , k do

87: c
(pk)
j = 〈vpk,Wj〉

88: c
(kp)
j = c

(pk)
j

89: end for
90: end for
91: end for
92: Calculate a′(0) by formula (4.74) (with λj = Ljj)
93: Define f by (4.73) (with λj = Ljj)
94: Calculate ã(0) by executing NCG (algorithm 3.5) with g = f and

a(0) = a′(0)

95: for j = 1, . . . , l do
96: for k = 1, . . . , j do

97: α
(0)
jk = − 1

2 ã
(0)
j ã

(0)
k

98: α
(0)
kj = α

(0)
jk

99: end for
100: end for
101: Define g, g′ and g′′ by (4.70), (4.71) and (4.72) (with φj = Wj)
102: Calculate (ã, α̃) by executing NCG (algorithm 3.5) with a(0) =

(ã(0), α(0)) and given g

103: ∆x = ∆x⊥ +
∑l
j=1 ãjWj +

∑l
j=1

∑l
k=1 α̃jkzjk

104: end if
105: end if
106: x̃← x̃+ ∆x
107: r ← F (x̃)
108: Û ← U
109: Ŵ ←W
110: ∆x‖ =

∑l
j=1 ãjW̆j

111: γ ←
√
〈
∑l
j=1 ãjW̆j ,

∑l
j=1 ãjŬj〉

112: end while
113: Return x̃
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CHAPTER 5
The Newton-Krylov method for

extended nonlinear systems

“In mathematics you don’t understand things. You just
get used to them.”

– John von Neumann –

Chapter highlights:

• We review the block elimination technique, used to solve nonlin-
ear systems extended with a single linear equation.

• We show how to combine the derived methods of chapter 4 with
block elimination, preparing them for use in a numerical contin-
uation setting.

• The results in the first part of this chapter are mainly based on
the following references: [113, 18, 50].

• A journal article about the contents of this chapter and the pre-
vious one is in preparation.

5.1 Introduction

In chapter 4 we derived several versions of the Newton-Krylov method that find
the zeros of a nonlinear function F : Cn → Cn. In multiple applications, for
example pseudo-arclength continuation (see section 6.4) or Newton step length
adaptation (see section 6.6.2), we are interested in the zeros of a nonlinear
function H : Cn × R→ Cn × R of the form

H(x, p) =

{
F (x, p)

G(x, p)
(5.1)

with F : Cn×R→ Cn a nonlinear and G : Cn×R→ R a linear function. Typ-
ically the partial Jacobian Fx of F contains desirable properties, that improve

109



5. The Newton-Krylov method for extended nonlinear systems

the convergence speed when solving linear systems with this operator specif-
ically. For example, a preconditioner might be given for Fx, or the operator
might be self-adjoint with respect to a certain inner product.

However, direct application of the Newton-Krylov method to the function
H nullifies these properties. As a consequence solving linear systems with the
Jacobian of H typically requires a much larger amount of computational work
than solving ones with Fx. The computational time required to converge is
often more than twice as long.

Instead of a direct application of the Newton-Krylov method to (5.1), we
will combine the method with block elimination [50]. Instead of solving a single
linear system with the Jacobian of H, this technique allows for a replacement
by two linear systems with the partial Jacobian Fx. The desirable properties of
Fx are not nullified and can still be exploited when solving these two systems.
The two approximate solutions are then combined to obtain one for the original
linear system. By exploiting the properties of Fx, this technique typically leads
to a reduction of total computational work.

In this chapter we will combine the refined Newtom methods of chapter 4
with a block elimination strategy. Possible ill-conditionedness of Fx near the
solution can lead to diverging convergence behaviour when approximating the
zeros of (5.1) with the standard Newton-Krylov method, even when block elimi-
nation is applied. Convergence will be improved by making similar adjustments
as before. Note that we will restrict ourselves to problems with a Hermitian
partial Jacobian Fx.

5.1.1 Preliminaries

In the remainder of the chapter we will consider a nonlinear function of the
form (5.1) and try to find approximations x̃ ∈ Cn, p̃ ∈ R of

H(x, p) = 0.

The partial derivatives Fx(x, p) : Cn → Cn and Gx(x, p) : Cn → R are
assumed to be known as linear operators for each x ∈ Cn, p ∈ R, partial
derivatives Fp(x, p) ∈ Cn and Gp(x, p) ∈ R as vectors. If not available, these
derivatives are approximated by first-order central finite difference schemes
[43]:

Fx(x, p) : Cn → Cn : v → 1

2ε
(F (x+ εv, p)− F (x− εv, p)) , (5.2)

Gx(x, p) : Cn → Cn : v → 1

2ε
(G(x+ εv, p)−G(x− εv, p)) , (5.3)

Fp(x, p) =
1

2ε
(F (x, p+ ε)− F (x, p− ε)) , (5.4)

Gp(x, p) =
1

2ε
(G(x, p+ ε)−G(x, p− ε)) , (5.5)

with ε ∈ R+
0 a small real number, typically chosen as ε = 3

√
εmach [63]. Note

that the approximations of Gx(x, p) and Gp(x, p) are exact since G is a linear
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function. As in chapter 4 we further assume Fx(x, p) to be self-adjoint. The
extension of the analysis in this chapter to non-Hermitian problems is again
straightforward.

The second partial derivatives Fxx(x, p) : Cn × Cn → Cn and Fxp(x, p) :
Cn → Cn are assumed to be known as a bilinear, respectively linear, opera-
tor. The partial derivative Fpp(x, p) ∈ Cn again as a vector. When not given,
second-order central schemes are used as approximation [43]:

Fxx(x, p) :Cn × Cn → Cn :

(v, w)→ 1

4ε2
(F (x+ εv + εw, p)− F (x+ εv − εw, p)

−F (x− εv + εw, p) + F (x− εv − εw, p)) ,

(5.6)

Fxp(x, p) : Cn → Cn : v → 1

4ε2
(F (x+ εv, p+ ε)− F (x+ εv, p− ε)

−F (x− εv, p+ ε) + F (x− εv, p− ε)) ,
(5.7)

Fpp(x, p) =
1

ε2
(F (x, p+ ε)− 2F (x, p) + F (x, p− ε)) . (5.8)

The value ε is typically chosen as ε = 4
√
εmach [63]. Note that second and higher

partial derivatives of G equal zero by the functions linearity.
The full derivatives of F will be denoted by FX(x, p), FXX(x, p), etc. The

first derivative is defined as

FX(x, p) : Cn × R→ Cn : (v, q)→ Fx(x, p)v + qFp(x, p),

the second as

FXX(x, p) : (Cn × R)× (Cn × R)→ Cn :

((v, q), (w, r))→ Fxx(x, p)vw + qFxp(x, p)w + rFxp(x, p)v + qrFpp(x, p).

Other derivatives are defined analogously.

The algorithms described in this chapter will again be given for the precon-
ditioned case, where we assume a Hermitian, positive definite preconditioner is
given for linear systems with the operator Fx(x, p). The preconditioner is again
constructed by a single function P : Cn × R → C(Cn). The unpreconditioned
case is derived by defining

P : Cn → C(Cn) : (x, p)→ I,

with I the identity operator. As for the algorithms described in chapter 4, it
is again possible to provide null vectors of Fx(x, p) that are known in advance,
which reduces computational work.

5.2 The standard method

5.2.1 Description of the method

We first describe the combination of the standard Newton-Krylov method with
block elimination, without the inclusion of any deflation or splitting techniques.
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5. The Newton-Krylov method for extended nonlinear systems

Starting from initial guesses x(0) ∈ Cn and p(0) ∈ R, each Newton iteration i
calculates update vectors ∆x and ∆p, and updates the guesses by

x(i) = x(i−1) + ∆x, (5.9)

p(i) = p(i−1) + ∆p. (5.10)

As in the case without block elimination (see section 4.2), ∆x and ∆p are
calculated from a linear system derived from the Taylor expansion of H(x, p).
For general guesses x̃ and p̃, this linear system is given by(

Fx(x̃, p̃) Fp(x̃, p̃)
Gx(x̃, p̃) Gp(x̃, p̃)

)(
∆x
∆p

)
= −

(
F (x̃, p̃)
G(x̃, p̃)

)
. (5.11)

Instead of approximating ∆x and ∆p by a direct application of a Krylov
method, we apply a block elimination technique [50]. The update vector ∆x is
written as

∆x = y(1) −∆py(2) (5.12)

with y(1), y(2) ∈ Cn to be determined. Substitution of (5.12) in (5.11) yields(
Fx(x̃, p̃)y(1) + F (x̃, p̃)

)
+ ∆p

(
−Fx(x̃, p̃)y(2) + Fp(x̃, p̃)

)
= 0, (5.13)(

Gx(x̃, p̃)y(1) +G(x̃, p̃)
)

+ ∆p
(
−Gx(x̃, p̃)y(2) +Gp(x̃, p̃)

)
= 0. (5.14)

Equation (5.13) is now solved by defining y(1) and y(2) as the solutions of the
linear systems

Fx(x̃, p̃)y(1) = −F (x̃, p̃), (5.15)

Fx(x̃, p̃)y(2) = Fp(x̃, p̃). (5.16)

Equation (5.14) is solved by calculating ∆p as

∆p =
−G(x̃, p̃)−Gx(x̃, p̃)y(1)

Gp(x̃, p̃)−Gx(x̃, p̃)y(2)
. (5.17)

Together with (5.12), this yields the solution of the linear system (5.11), used
as update vector in (5.9) and (5.10).

In practice the linear systems (5.15) and (5.16) are approximately solved
with a Krylov method. We will use GMRES (see algorithm 3.4, page 44) for
this purpose. Instead of a single, direct application of GMRES to (5.11), two
linear systems with the partial Jacobian Fx(x̃, p̃) need to be solved.

Pseudo-code for the standard Newton method with block elimination (ab-
breviated as the standard block Newton method) is given by algorithm 5.1 on
page 157 in appendix 5.10. Each Newton iteration solves (5.15) and (5.16) with
GMRES. The vectors y(1) and y(2) are then used to calculate update vectors
∆x and ∆p by (5.17) and (5.12). The guess is updated by applying (5.9) and
(5.10), and a new iteration is started.

Note that, by the linearity of G, we have G(x̃, p̃) = 0 for each guess except
possibly the initial one: By calculating the update vector ∆p by (5.17), we
assert the next guess (x̃+ ∆x, p̃+ ∆p) to be a zero of G.
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5.2.2 Analysis of convergence for ill-conditioned problems

The method is applied to examples 5.1, 5.2 and 5.3.

Example 5.1. We consider the Liouville-Bratu-Gelfand equation (see section
2.4), applied to a square domain with 900 discretization points. We will search
a zero of the function H, defined as

H(ψ, µ) =

{
F(ψ, µ)

G(ψ, µ)

with F defined by (2.7), and G to be determined. A point (ψ(0), µ(0)) is chosen
on the line between points (ψ′(1), µ′(1)) and (ψ′(2), µ′(2)), given by

ψ′(1) =


0.372
0.372

...
0.372

 , ψ′(2) =


0.403
0.403

...
0.403

 ,

µ′(1) = 0.256 and µ′(2) = 0.269. Note that both (ψ′(1), µ′(1)) and (ψ′(2), µ′(2))
are solutions of (2.7). The point (ψ(0), µ(0)) is chosen such that µ(0) = 0.3. The
pseudo-arclength condition (see (6.9)) will be used as the linear function G.

The standard block Newton algorithm is applied to find a zero of H, with
(ψ(0), µ(0)) as the initial guess. As an inner product (2.9) is used, we do not
apply a preconditioner. The residual plot of the example is given by figure 5.1.
Convergence (up to a tolerance of 10−12) is reached after 3 Newton iterations.

�

Example 5.2. We consider a similar set-up as in example 5.1, this time for
the Ginzburg-Landau equation (see section 2.5) applied to a pentagon-shaped
material with n = 10401 discretization points. The function H is created as in
example 5.1, with F given by (2.20) and G again the pseudo-arclength con-
dition. The point (ψ(0), µ(0)) is chosen on the line between points (ψ′(1), µ′(1))
and (ψ′(2), µ′(2)) such that µ(0) = 1.058, points (ψ′(1), µ′(1)) and (ψ′(2), µ′(2))
represent solutions of (2.20) for respectively µ′(1) = 1.063 and µ′(2) = 1.061
(both lying on branch B in figure 9.23, see section 9.5.3).

Application of the standard block Newton algorithm yields the residual plot
of figure 5.2. The inner product (2.21) and preconditioner (2.25) were used. As
an initial guess the point (ψ̃(0), µ(0)) was taken, with ψ̃(0) a small perturbation
of ψ(0). Though convergence (up to a tolerance of 10−12) is reached in 14
Newton iterations, the behaviour is not optimal: for multiple steps the residual
norm shows a strong increase instead of a decrease. As a consequence, it’s
possible that the solution found by the algorithm lies far from the initial guess
(ψ(0), µ(0)). In applications this is often not desirable. �

Example 5.3. We consider the same equation H, inner product and precondi-
tioner as for example 5.2. This time we choose the point (ψ(0), µ(0)) on the line
between (ψ′(1), µ′(1)), a solution of (2.20) for µ′(1) = 1.531, and (ψ′(2), µ′(2)),
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5. The Newton-Krylov method for extended nonlinear systems

Figure 5.1: Residual plot of example 5.1. The standard block Newton method is
applied to a well-conditioned nonlinear problem. The residual norm converges
to approximately 10−12 after 3 iterations, which is the attainable accuracy.
Quadratic convergence is observed in the iterations.

Figure 5.2: Residual plot of example 5.2. The standard block Newton method
is applied to an ill-conditioned nonlinear problem, where the partial Jacobian
contains a three-dimensional kernel in the searched solution. The residual norm
converges to approximately 10−12 after 14 iterations, which is the attainable
accuracy. Some of the iterations show sudden jumps that increase the residual
norm.
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Figure 5.3: Residual plot of example 5.3. The standard block Newton method
is applied to an ill-conditioned nonlinear problem, where the partial Jacobian
contains a one-dimensional kernel in the searched solution. This kernel is in-
duced by a continuous symmetry. The residual norm converges to approxi-
mately 10−12 after 8 iterations, which is the attainable accuracy. Some of the
iterations show sudden jumps that increase the residual norm. Note that these
jumps are less profound than in figure 5.2.

a solution for µ′(2) = 1.533. Both solutions lie on branch B in figure 9.23 (see
section 9.5.3). The point (ψ(0), µ(0)) is chosen such that µ(0) = 1.5348. As
an initial guess we consider (ψ̃(0), µ(0)), where ψ̃(0) again represents a small
perturbation of ψ(0).

Application of the standard block Newton algorithm yields the residual plot
of figure 5.3. Convergence (up to a tolerance of 10−12) is again reached, after 9
Newton iterations. In several steps there is a strong increase in residual norm
however. �

In example 5.1 the partial Jacobian Fx(x̃, p̃) is well-conditioned for each
Newton guess x̃, p̃, leading to the typical quadratic convergence seen in figure
5.1. For examples 5.2 and 5.3 convergence does not behave well. The operator
Fx(x̃, p̃) is ill-conditioned near the solution of H(x, p) = 0 for these problems.

Lemma 5.4. An iteration of the standard block Newton method possibly leads
to a diverging update if executed in a guess x̃, p̃ for which the partial Jacobian
Fx(x̃, p̃) is approximately singular. This is caused by a blow-up of the update
vector ∆x in the directions of the null vectors.

Proof. Similar analysis as in the proof of lemma 4.2 (see section 4.2.2) shows
that, when Fx(x̃, p̃) is ill-conditioned, the solutions y(1) and y(2) of the linear
systems (5.15) and (5.16) both contain a part that consists of approximate null
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vectors of this operator. The linear model the Newton method bases itself upon
is not valid for these vectors, typically leading to the parts being blown up. By
(5.12) the approximate null vector part of the update vector ∆x is blown up
as well, possibly resulting in a worse Newton guess.

Lemma 5.4 clarifies how the approximate singularity of Fx(x̃, p̃) causes the
deterioration of convergence seen in examples 5.2 and 5.3. Far from the solu-
tion good Newton updates are still performed, for approximations close to the
solution this is not the case and divergence is even observed in figures 5.2 and
5.3. For example 5.3 the ill-conditionedness of Fx(x̃, p̃) is due to a continuous
symmetry of F (x, p), for example 5.2 it is caused by a combination of this
continuous symmetry and a nearby bifurcation.

5.2.3 The preconditioned case

The preconditioned case is adapted in a similar way as in section 4.2.3. The
linear systems (5.15) and (5.16) are adjusted to

P (x̃, p̃)Fx(x̃, p̃)y(1) = −P (x̃, p̃)F (x̃, p̃), (5.18)

P (x̃, p̃)Fx(x̃, p̃)y(2) = P (x̃, p̃)Fp(x̃, p̃). (5.19)

Together with a small adjustment to the convergence criterium, this is the only
difference between the preconditioned and unpreconditioned cases. Approxi-
mate singularity of the partial Jacobian Fx(x̃, p̃) is still a cause for possible
diverging convergence behaviour.

5.3 The use of deflation to prevent divergence

5.3.1 Description of the method

The blow-up of the parts in y(1) and y(2) (and ∆x) consisting of approximate
null vectors, is prevented when deflation is applied to linear systems (5.15) and
(5.16). Consider a guess x̃ ∈ Cn, p̃ ∈ R. Deflation is realized by adjusting these
linear systems to [17, 18]

Q(x̃, p̃)Fx(x̃, p̃)y(1) = −Q(x̃, p̃)F (x̃, p̃), (5.20)

Q(x̃, p̃)Fx(x̃, p̃)y(2) = Q(x̃, p̃)Fp(x̃, p̃), (5.21)

with Q(x̃, p̃) the operator that projects vectors away from the approximate null
vectors φ1, . . . , φl of Fx(x̃, p̃). This operator is defined similarly as in section
4.3.1. With K the matrix whose columns are given by φ1, . . . , φl, this operator
is defined by

Q(x̃, p̃) : Cn → Cn : w → w −K〈K,K〉−1〈K,w〉. (5.22)

The update vectors ∆x and ∆p are calculated as before (see (5.12) and
(5.17)). When the linear systems (5.20) and (5.21) are used instead of (5.15)
and (5.16), the calculated vectors y(1) and y(2) will be orthogonal to φ1, . . . , φl.
By (5.12) the update vector ∆x is orthogonal to these vectors as well. This
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Figure 5.4: Residual plot of example 5.5. The deflated block Newton method
is applied to an ill-conditioned nonlinear problem, where the partial Jacobian
contains a three-dimensional kernel in the searched solution. The residual norm
converges to approximately 10−5 after 5 iterations, the attainable accuracy
for well-conditioned problems is however 10−12. After 5 iterations there is no
further significant decrease.

prevents the possible blow-up in the parts consisting of approximate null vec-
tors, which caused the unwanted convergence behaviour described by lemma
5.4.

Algorithm 5.2 (see page 157 in appendix 5.10) contains pseudo-code for the
updated Newton method, which we will call the deflated block Newton method.
It is similar to algorithm 5.1 (page 157), except for the use of deflation when
solving linear systems. In each iteration the approximate null vectors of Fx(x̃, p̃)
are calculated first by application of algorithm 3.3 (page 43). Next, the updated
linear systems (5.20) and (5.21) are solved with deflated GMRES (algorithm
3.4, page 44) for y(1) and y(2). Equations (5.17) and (5.12) eventually yield the
update vectors used to calculate the next guess.

5.3.2 Analysis of convergence for ill-conditioned problems

The method is applied in examples 5.5 and 5.6, both problems contain an
ill-conditioned Jacobian near the solution.

Example 5.5. Consider the same set-up as in example 5.2. The deflated block
Newton method is applied, yielding the residual plot of figure 5.4. Stagnation
at approximately 10−5 occurs after 5 Newton iterations. �
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Figure 5.5: Residual plot of example 5.6. The deflated block Newton method
is applied to an ill-conditioned nonlinear problem, where the partial Jacobian
contains a one-dimensional kernel in the searched solution. This kernel is in-
duced by a continuous symmetry. The residual norm converges to approxi-
mately 10−12 after 4 iterations, which is the attainable accuracy.

Example 5.6. Consider the same set-up as in example 5.3. Application of the
deflated block Newton method yields the residual plot of figure 5.5. Conver-
gence (up to a tolerance of 10−12) is reached in 4 Newton iterations. �

The residual plot that corresponds to example 5.5 (see figure 5.4) shows
stagnation of the residual norm after only a few iterations.

Lemma 5.7. The deflated block Newton method typically leads to stagnation
of residuals when applied to a problem for which the partial Jacobian Fx is
(approximately) singular in the searched solution. This is caused by the update
part of ∆x consisting of approximate null vectors being ignored.

Proof. Denote x̃, p̃ the current guess for the solution. When deflation is used,
the update vector ∆x is orthogonal to the approximate null vectors of Fx(x̃, p̃).
Stagnation occurs after the part perpendicular to these vectors has vanished:
in this case the residual F (x̃, p̃) consists entirely of approximate null vectors
and y(1) will be calculated as the zero vector. If G(x̃, p̃) = 0, this leads to no
update being performed.

If the approximate singularity of the partial Jacobian is solely caused by
null vectors induced by continuous symmetries, the method often works fine.
This is the case for example 5.6, where the method converges fast (see figure
5.5). As noted in section 4.3.2, this is a consequence of each solution being a
representative for a complete family of solutions.
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5.3.3 The preconditioned case

When a preconditioner is provided, the projection operator is adjusted to

Q(x̃, p̃) : Cn → Cn : w → w −K〈K,L〉−1〈L,w〉, (5.23)

with

K =
(
τ1 τ2 . . . τl

)
,

L =
(
φ1 φ2 . . . φl

)
,

such that P (x̃, p̃)K = L. Approximate null vectors φ1, . . . , φl of P (x̃, p̃)Fx(x̃, p̃)
are used. The linear systems (5.20) and (5.21) are adjusted to

P (x̃, p̃)Q(x̃, p̃)Fx(x̃, p̃)y(1) = −P (x̃, p̃)Q(x̃, p̃)F (x̃, p̃), (5.24)

P (x̃, p̃)Q(x̃, p̃)Fx(x̃, p̃)y(2) = P (x̃, p̃)Q(x̃, p̃)Fp(x̃, p̃). (5.25)

The preconditioned version of the algorithm still typically leads to stag-
nation when the (preconditioned) partial Jacobian P (x̃, p̃)Fx(x̃, p̃) is approxi-
mately singular in the wanted solution.

5.4 The use of line search to prevent divergence

5.4.1 Description of the method

To prevent the blow-up of the part consisting of approximate null vectors in
the update vector, without entirely removing this part (as was done in section
5.3), the standard block Newton method can again be adapted with a line
search technique [113, 67], similar to section 4.4. For guesses x̃ ∈ Cn, p̃ ∈ R,
we calculate the solutions y(1) and y(2) of the linear systems (5.15) and (5.16)
as in section 5.2. In practice these systems are solved with GMRES (without
deflation). The update vector ∆x is calculated from these by

∆x = y(1) − −G(x̃, p̃)−Gx(x̃, p̃)y(1)

Gp(x̃, p̃)−Gx(x̃, p̃)y(2)
y(2). (5.26)

Instead of immediately calculating ∆p by (5.17), the values

c0 =
−G(x̃, p̃)

Gp(x̃, p̃)
, c1 =

−Gx(x̃, p̃)∆x

Gp(x̃, p̃)

are calculated. We now consider an update of the form [113, 67]

x̃← x̃+ ξ∆x, (5.27)

p̃← p̃+ c0 + ξc1, (5.28)

where we still need to determine ξ ∈ R. By defining the update to p̃ as in
(5.28), we assert the next guess to be a zero of G. We, indeed, have for any
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ξ ∈ R, by the definition of c0 and c1:

G(x̃+ ξ∆x, p̃+ c0 + ξc1)

= G(x̃, p̃) + ξGx(x̃, p̃)∆x+ c0Gp(x̃, p̃) + ξc1Gp(x̃, p̃)

= G(x̃, p̃) + ξGx(x̃, p̃)∆x−G(x̃, p̃)− ξGx(x̃, p̃)∆x

= 0.

The update (5.27) to x̃ is similar to the one used in section 4.4. It is possible
that approximate singularity of Fx(x̃, p̃) yields a blown-up update vector ∆x.
By choosing ξ sufficiently small, this does however not lead to a worse Newton
guess.

In practice the value for ξ is calculated by application of the nonlinear
conjugate gradients (NCG) algorithm (see section 3.4) to minimize the function

g : R→ R : ξ → ‖F (x̃+ ξ∆x, p̃+ c0 + ξc1)‖2 . (5.29)

The first and second derivatives of g are derived later for the preconditioned
case, see (5.34) and (5.35) in section 5.4.3. The ones required for the mini-
mization of (5.29) are derived from these by setting P (x̃, p̃) = I, the identity
operator. As initial guess for the minimization of (5.29) the value

ξ(0) = min (1, ‖F (x̃, p̃)‖γ) ,

with γ = min(2‖∆x‖−2,|c1|−1‖∆x‖−1, 2|c1|−2, |c0|−1‖∆x‖−1, |c0|−1|c1|−1),

(5.30)

is used. This choice prevents second order derivatives from dominating the
residual of the next guess, as will be explained section 5.4.2 (see the bound
given in lemma 5.9).

Linear systems (5.15) and (5.16) remain unchanged when adapting the New-
ton method with a line search technique, no deflation is used to calculate y(1)

and y(2). The only difference with the standard method (described in section
5.2.1) is the introduction of ξ, and the manner in which the updates to x̃ and
p̃ are executed.

Note that the standard method is derived from the one with line search by
setting ξ = 1. The update vector ∆x remains unchanged, equation (5.26) is
derived from substituting (5.17) in (5.12). The update (5.27) to x̃ is equivalent
to (5.9) for ξ = 1, the same is true for the update ∆p to p̃: by the definition of
c0 and c1, (5.28) and (5.10) are equivalent for ξ = 1.

The block Newton method with line search (BNLS) is given by algorithm 5.3
on page 158 in appendix 5.10. Linear systems (5.15) and (5.16) are solved for
y(1) and y(2) by application of GMRES (algorithm 3.4, page 44), which are then
used to calculate the update vector ∆x by (5.26). The guesses are updated by
(5.27) and (5.28), where ξ is determined by applying the nonlinear conjugate
gradients method (algorithm 3.5, page 45) to (5.33), the preconditioned version
of (5.29). After updating the guesses, a new iteration is started.
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5.4. The use of line search to prevent divergence

Figure 5.6: Residual plot of example 5.8. The BNLS method is applied to
an ill-conditioned nonlinear problem, where the partial Jacobian contains a
three-dimensional kernel in the searched solution. The residual norm decreases
to approximately 10−8 after 2 iterations. Further iterations show a very slow
decrease in residual norm, the attainable accuracy (10−12) is not reached in an
acceptable amount of Newton steps.

5.4.2 Analysis of convergence for ill-conditioned problems

The algorithm is applied in example 5.8. Figure 5.6 shows that though no
diverging updates are performed, convergence is slow.

Example 5.8. Consider the same set-up as in example 5.2. Application of the
BNLS method yields the residual plot of figure 5.6. Apparent stagnation occurs
at a residual norm of approximately 10−8, after 2 Newton iterations. �

Slow convergence of the BNLS method is clarified by similar analysis as was
done for the method without block elimination (lemma 4.9 in section 4.4.2).

Lemma 5.9. After some initial iterations, convergence of the BNLS method
is typically slow when applied to an ill-conditioned problem. The slowdown of
convergence has multiple causes:

• The update part of ∆x perpendicular to the null vectors of Fx(x̃, p̃) is
damped due to the multiplication with ξ. This part does not cause any
problems and is actually approximated well, its damping might lead to
an unnecessarily small update.

• The value ξ used in updating the guesses x̃ and p̃ typically satisfies the
bound

ξ . ‖F (x̃, p̃)‖min
(
2‖∆x‖−2, |c1|−1‖∆x‖−1, 2c−2

1

)
. (5.31)
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5. The Newton-Krylov method for extended nonlinear systems

The update vector ∆x consists of vectors y(1) and y(2), calculated from
(5.15) and (5.16). These vectors typically blow up if the partial Jacobian
Fx(x̃, p̃) is approximately singular.

Proof. The proof for the first cause is entirely similar to the one presented in
lemma 4.9. For the second cause, consider the second-order Taylor expansion
of F (x̃+ ξ∆x, p̃+ c0 + ξc1), given by:

F (x̃+ ξ∆x, p̃+ c0 + ξc1)

= F (x̃, p̃) + ξFx(x̃, p̃)∆x+ (c0 + ξc1)Fp(x̃, p̃) +
1

2
ξ2Fxx(x̃, p̃)∆x∆x

+ ξ(c0 + ξc1)Fxp(x̃, p̃)∆x+
1

2
(c0 + ξc1)2Fpp(x̃, p̃) +O(‖∆x‖3)

+O((c0 + ξc1)3).

Substitution of Fx(x̃, p̃)∆x = −F (x̃, p̃)− (c0 + c1)Fp(x̃, p̃) (which follows from
the definition of ∆x) and rewriting the terms yields

F (x̃+ ξ∆x, p̃+ c0 + ξc1)

= (1− ξ)F (x̃, p̃) + (1− ξ)c0Fp(x̃, p̃) +
1

2
c20Fpp(x̃, p̃)

+ ξ (c0Fxp(x̃, p̃)∆x+ c0c1Fpp(x̃, p̃))

+ ξ2

(
1

2
Fxx(x̃, p̃)∆x∆x+ c1Fxp(x̃, p̃)∆x+

1

2
c21Fpp(x̃, p̃)

)
+O(‖∆x‖3) +O((c0 + ξc1)3).

To prevent the second partial derivatives of order proportional to ξ2 from
dominating the residual of the next iteration, the condition

ξ2 max

(
1

2
‖∆x‖2, c1‖∆x‖,

1

2
c21

)
. ξ‖F (x̃, p̃)‖ (5.32)

is required. This choice assures the dominance of the term ξFx(x̃, p̃)∆x. Rewrit-
ing the condition yields the bound (5.31) on ξ.

The first cause mentioned in lemma 5.9 concerns the part of the update
vector ∆x perpendicular to the null vectors of Fx(x̃, p̃). This part is possibly
much smaller than required when line search is applied.

The second cause concerns a bound on ξ. If ‖∆x‖ � 1 (which is typical when
Fx(x̃, p̃) becomes ill-conditioned) bound (5.31) is very strict, typically ξ � 1 is
chosen. The residual term F (x̃, p̃) of the Taylor expansion only reduces slightly,
leading to slow convergence of the method.

The choice (5.30), used in the minimization of (5.29), is based on the bound
(5.31), but also prevents the possible blow-up of the parts c0Fxp(x̃, p̃)∆x and
c0c1Fpp(x̃, p̃). Note that, by choosing the update (5.28) such that each updated
guess becomes a zero of G, we have c0 = 0 for each Newton guess except
possibly the initial one.
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5.4.3 The preconditioned case

When a preconditioner is provided, the linear systems to solve for y(1) and
y(2) again need to be adapted to (5.18) and (5.19). The update vector ∆x is
still defined by application of (5.26). Updates of the form (5.27) and (5.28) are
again considered, with ξ this time determined by minimizing the function

g : R→ R : ξ → ‖F (x̃+ ξ∆x, p̃+ c0 + ξc1)‖2P (x̃,p̃) . (5.33)

This minimization is executed by the nonlinear conjugate gradients algorithm
(see section 3.4) in practice, the derivatives of g are given by

g′ : R→ R : ξ → 2〈F (x̃+ ξ∆x), Fx(x̃+ ξ∆x)∆x〉P (x̃,p̃), (5.34)

g′′ : R→ R : ξ →2〈Fx(x̃+ ξ∆x)∆x, Fx(x̃+ ξ∆x)∆x〉P (x̃,p̃)

+ 2〈F (x̃+ ξ∆x), Fxx(x̃+ ξ∆x)∆x∆x〉P (x̃,p̃).
(5.35)

As an initial guess for the minimization of g, the value

ξ(0) = min
(
1, ‖F (x̃, p̃)‖P (x̃,p̃)γ

)
,

with γ = min(2‖∆x‖−2
P (x̃,p̃)−1 ,|c1|−1‖∆x‖−1

P (x̃,p̃)−1 , 2|c1|−2,

|c0|−1‖∆x‖−1
P (x̃,p̃)−1 , |c0|−1|c1|−1),

(5.36)

is used. The preconditioned method still converges slowly when the partial
Jacobian Fx(x̃, p̃) becomes ill-conditioned, due to similar causes as for the un-
preconditioned case.

5.5 Splitting the update vector

5.5.1 Description of the method

To counter the slow convergence of both the deflated block Newton method (see
section 5.3), and the method adapted with line search (see section 5.4), we first
combine both techniques in the current section. Consider a guess x̃ ∈ Cn, p̃ ∈ R
for which the partial Jacobian F (x̃, p̃) becomes ill-conditioned, and denote the
eigenvalues and -vectors of this operator by λ1, . . . , λl, respectively φ1, . . . , φl
(with ‖φ1‖ = · · · = ‖φl‖ = 1).

Similar to section 4.5, we will split the update vector ∆x in a part ∆x‖
consisting of the vectors φ1, . . . , φl, and a perpendicular part ∆x⊥. The update
∆p is split into two parts (denoted ∆p⊥ and ∆p‖) as well. With

K =
(
φ1 φ2 . . . φl

)
,

the projection operator Q(x̃, p̃) is again defined as

Q(x̃, p̃) : Cn → Cn : w → w −K〈K,K〉−1〈K,w〉. (5.37)

The part ∆x⊥ of ∆x perpendicular to φ1, . . . , φl will be calculated from y
(1)
⊥

and y
(2)
⊥ , defined as the solutions of the deflated linear systems

Q(x̃, p̃)Fx(x̃, p̃)y
(1)
⊥ = −Q(x̃, p̃)F (x̃, p̃), (5.38)

Q(x̃, p̃)Fx(x̃, p̃)y
(2)
⊥ = Q(x̃, p̃)Fp(x̃, p̃), (5.39)
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such that 〈y(1)
⊥ , φj〉 = 0 and 〈y(2)

⊥ , φj〉 = 0 (∀j = 1, . . . , l). With

c0 =
−G(x̃, p̃)−Gx(x̃, p̃)y

(1)
⊥

Gp(x̃, p̃)−Gx(x̃, p̃)y
(2)
⊥

, (5.40)

∀j = 1, . . . , l : cj =
−Gx(x̃, p̃)φj

Gp(x̃, p̃)−Gx(x̃, p̃)y
(2)
⊥

, (5.41)

the complete update vectors ∆x and ∆p are defined by

∆x = ∆x⊥ + ∆x‖ (5.42)

= y
(1)
⊥ − c0y

(2)
⊥ +

l∑
j=1

aj

(
φj − cjy(2)

⊥

)
, (5.43)

∆p = ∆p⊥ + ∆p‖ (5.44)

= c0 +

l∑
j=1

ajcj , (5.45)

where a1, . . . , al ∈ R have still to be determined. The Newton guesses are up-
dated by these vectors by application of (5.9) and (5.10). The values a1, . . . , al
are calculated by minimizing the function

g : Rl → R : a→

∥∥∥∥∥F
(
x̃+ y

(1)
⊥ − c0y

(2)
⊥ +

l∑
j=1

aj

(
φj − cjy(2)

⊥

)
,

p̃+ c0 +

l∑
j=1

ajcj

)∥∥∥∥∥
2

(5.46)
with the nonlinear conjugate gradients method (see section 3.4). Details on
how this minimization is executed in practice are given in section 5.5.3.

By splitting both the update vectors ∆x and ∆p as in (5.43) and (5.45),
the next guess is asserted to be a zero of the function G:

G(x̃+ ∆x, p̃+ ∆p) = G(x̃+ ∆x⊥ + ∆x‖, p̃+ ∆p⊥ + ∆p‖)

= G(x̃, p̃) +Gx(x̃, p̃)∆x⊥ +Gp(x̃, p̃)∆p⊥

+Gx(x̃, p̃)∆x‖ +Gp(x̃, p̃)∆p‖

= G(x̃, p̃) +Gx(x̃, p̃)y
(1)
⊥ + c0

(
Gp(x̃, p̃)−Gx(x̃, p̃)y

(2)
⊥

)
+

l∑
j=1

ajGx(x̃, p̃)φj +

l∑
j=1

ajcj

(
Gp(x̃, p̃)−Gx(x̃, p̃)y

(2)
⊥

)
= G(x̃, p̃) +Gx(x̃, p̃)y

(1)
⊥ −G(x̃, p̃)−Gx(x̃, p̃)y

(1)
⊥

+

l∑
j=1

aj (Gx(x̃, p̃)φj −Gx(x̃, p̃)φj)

= 0.
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5.5. Splitting the update vector

Figure 5.7: Residual plot of example 5.10. The SBN method is applied to an
ill-conditioned nonlinear problem, where the partial Jacobian contains a three-
dimensional kernel in the searched solution. The residual norm decreases to
approximately 10−8 after 3 iterations. Further iterations show a very slow de-
crease in residual norm, the attainable accuracy (10−12) is not reached in an
acceptable amount of Newton steps.

The split block Newton method (SBN) is described by algorithm 5.4 on page
159 in appendix 5.10. Each Newton step starts with the approximation of null
vectors of Fx(x̃, p̃) (by application of algorithm 3.3, see page 43), which are
used as deflation vectors for solving the linear systems (5.38) and (5.39) (by
application of algorithm 3.4, see page 44). The values c0, c1, . . . , cl are calculated
(see (5.40) and (5.41)), and the values a1, . . . , al are determined by minimizing
(5.60), the preconditioned version of (5.46). The guesses are eventually updated
by the vectors ∆x and ∆p defined by (5.43) and (5.45), before the next Newton
iteration is started.

5.5.2 Analysis of convergence for ill-conditioned problems

The method is applied in example 5.10. Slow convergence is still observed.

Example 5.10. Consider the same set-up as in example 5.2. The SBN method
is applied, this yields the residual plot of figure 5.7. The residual norm remains
at approximately 10−8 after 3 Newton iterations. �

Lemma 5.11. When applied to a problem with a (near) singular partial Jaco-
bian Fx in the solution, convergence of the SBN method typically slows down
after some initial iterations. This is caused by the bound

∀j = 1, . . . , l : |aj | . |λs| (5.47)
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5. The Newton-Krylov method for extended nonlinear systems

typically being satisfied by the a1, . . . , al values in the update vectors (5.43) and
(5.45). The index s in (5.47) is chosen such that |asλs| is maximal. λ1, . . . , λl
are the eigenvalues of approximate null vectors, so we have λs ≈ 0, inducing
small sized updates.

Proof. The proof is similar to the one of lemma 4.11 in section 4.5.2. The cause
of slow convergence will again be clarified by looking at a Taylor expansion.
We first split the current residual F (x̃, p̃) and partial derivative Fp(x̃, p̃) in

F (x̃, p̃) = F⊥ + F‖ = F⊥ +

l∑
j=1

b
(1)
j φj , (5.48)

Fp(x̃, p̃) = Fp⊥ + Fp‖ = Fp⊥ +

l∑
j=1

b
(2)
j φj , (5.49)

with b
(1)
j = 〈F (x̃, p̃), φj〉, b(2)

j = 〈Fp(x̃, p̃), φj〉, 〈F⊥, φj〉 = 0 and 〈Fp⊥, φj〉 = 0
(∀j = 1, . . . , l). A second order Taylor expansion for the new residual eventually
yields

F (x̃+ ∆x, p̃+ ∆p)

=

l∑
j=1

(
b
(1)
j + ∆p(a)b

(2)
j + ajλj

)
φj +

1

2
Fxx(x̃, p̃)y

(1)
⊥ y

(1)
⊥

+ ∆p(a)
(
Fxp(x̃, p̃)y

(1)
⊥ − Fxx(x̃, p̃)y

(1)
⊥ y

(2)
⊥

)
+

l∑
j=1

ajFxx(x̃, p̃)y
(1)
⊥ φj

+ ∆p(a)2

(
1

2
Fxx(x̃, p̃)y

(2)
⊥ y

(2)
⊥ − Fxp(x̃, p̃)y

(2)
⊥ +

1

2
Fpp(x̃, p̃)

)
+ ∆p(a)

l∑
j=1

aj

(
Fxp(x̃, p̃)φj − Fxx(x̃, p̃)y

(2)
⊥ φj

)

+
1

2

l∑
i=1

l∑
j=1

aiajFxx(x̃, p̃)φiφj +O(‖∆x‖3) +O(∆p3)

with ∆p(a) = c0 +
∑l
j=1 ajcj . To completely remove the approximate null vec-

tor part
∑l
j=1

(
b
(1)
j + ∆p(a)b

(2)
j + ajλj

)
φj of the current residual, the choice

∀j = 1, . . . , l : aj = −
b
(1)
j

λj
−
−G(x̃, p̃)−Gx(x̃, p̃)y

(1)
⊥ +

∑l
j=1

b
(1)
j

λj
Gx(x̃, p̃)φj

Gp(x̃, p̃)−Gx(x̃, p̃)y
(2)
⊥ −

∑l
j=1

b
(2)
j

λj
Gx(x̃, p̃)φj

b
(2)
j

λj

(5.50)
would need to be made. This choice is typically of order O(λ−1

j ) for each aj
(∀j = 1, . . . , l). Since |λj | � 1 (∀j = 1, . . . , l), (5.50) would however imply a

blow-up of second order derivative terms 1
2

∑l
i=1

∑l
j=1 aiajFxx(x̃, p̃)φiφj . To

prevent dominance of this term in the new residual,

max
i,j=1,...,l

|aiaj | . max
j=1,...,l

|ajλj | (5.51)
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is required, leading to the bound (5.47). This bound prevents a1, . . . , al to be
chosen near the values (5.50). The approximate null vector part of the residual
is only decreased slightly in each Newton step, resulting in slow convergence.

Contrary to the method with line search (described in section 5.4.1), the y
(1)
⊥

term of ∆x is not damped when the update vector is constructed. This term is
responsible for decreasing the part F⊥ of the residual F (x̃, p̃) perpendicular to
φ1, . . . , φl, damping it was one of the causes of slow convergence mentioned in
lemma 5.9. The residual part F⊥ decreases quadratically for the SBN method.

As shown in lemma 5.11, the second cause of slow convergence mentioned
in lemma 5.9 is, however, not resolved by splitting the update vectors by (5.43)
and (5.45). The SBN method still converges slowly, as indicated by example
5.10.

5.5.3 Minimization of the residual norm

In practice the values for a1, . . . , al are calculated by minimizing (5.46) with
the nonlinear conjugate gradients method. The required derivatives are given
for the preconditioned case in section 5.5.4 (see (5.61) and (5.62)). To create
an initial guess a(0) for the minimization, we first minimize a different function
given by

f : Rl → R : a′ →
l∑

j=1

(
(b

(1)
j + ∆p(a′)b

(2)
j + a′jλj

)2

+
(

∆p(a′)‖y(1)
⊥ ‖

)2

+
l∑

j=1

(
a′j‖y

(1)
⊥ ‖

)2

+ ∆p(a′)4 +

l∑
j=1

(
∆p(a′)a′j

)2
+

l∑
i=1

l∑
j=1

(
a′ia
′
j

)2
(5.52)

with ∆p(a′) = c0 +
∑l
j=1 a

′
jcj . The values b

(1)
1 , . . . , b

(1)
l and b

(2)
1 , . . . , b

(2)
l are

defined by respectively (5.48) and (5.49). This extra minimization is executed
with the nonlinear conjugate gradients method as well.

As an initial guess a′(0) for the minimization of f , we first calculate the
values

∀j = 1, . . . , l : a
′(r)
j = −

b
(1)
j

λj
and a

′(p)
j = −

b
(2)
j

λj
. (5.53)
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Denoting s the index for which |b(1)
s | is maximal, the values

a′(q)s = sgn(a′(r)s ) min

|a′(r)s |, |λs|,
|b(1)
s |

max
(
|c(p)|, ‖y(1)

⊥ ‖
)
 ,

∀j 6= s : a
′(q)
j = sgn(a

′(r)
j ) min

(
|a′(r)j |, |a

′(q)
s |
)
,

with c(p) =
−G(x̃, p̃)−Gx(x̃, p̃)y

(1)
⊥

Gp(x̃, p̃)−Gx(x̃, p̃)y
(2)
⊥ +

∑l
j=1 a

′(p)
j Gx(x̃, p̃)φj

, (5.54)

are calculated. Denoting

χ = min

1,
|λs|
|c(q)|

,
|λs||a′(q)s |
c(q)2

,
|b(1)
s |

|c(q)|max
(
|c(p)|, ‖y(1)

⊥ ‖
)
 , (5.55)

with c(q) =
−
∑l
j=1 a

′(q)
j Gx(x̃, p̃)φj

Gp(x̃, p̃)−Gx(x̃, p̃)y
(2)
⊥ +

∑l
j=1 a

′(p)
j Gx(x̃, p̃)φj

, (5.56)

the guess a′(0) is eventually created by

∀j = 1, . . . , l : a
′(0)
j = χa

′(q)
j + ∆p(0)a

′(p)
j , (5.57)

with ∆p(0) =
−G(x̃, p̃)−Gx(x̃, p̃)y

(1)
⊥ −

∑l
j=1 χa

′(q)
j Gx(x̃, p̃)φj

Gp(x̃, p̃)−Gx(x̃, p̃)y
(2)
⊥ +

∑l
j=1 a

′(p)
j Gx(x̃, p̃)φj

. (5.58)

The guess a′(0) is constructed in such a way that none of the separate terms of
(5.52) are blown up.

5.5.4 The preconditioned case

Changes required for the preconditioned method are similar as before. The
eigenvectors φ1, . . . , φl and corresponding -values λ1, . . . , λl of the precondi-
tioned partial Jacobian P (x̃, p̃)Fx(x̃, p̃) are considered, and vectors τ1, . . . , τl
are defined such that P (x̃, p̃)τj = φj (∀j = 1, . . . , l). The terms y

(1)
⊥ and y

(2)
⊥ ,

that appear in the update vector, are calculated by solving the preconditioned
deflated linear systems, given by (5.24) and (5.25). The projection operator
used in these systems was given by

Q(x̃, p̃) : Cn → Cn : w → w −K〈K,L〉−1〈L,w〉, (5.59)

with

K =
(
τ1 τ2 . . . τl

)
,

L =
(
φ1 φ2 . . . φl

)
,

such that P (x̃, p̃)K = L. The values c0, c1, . . . , cl are still calculated by (5.40)
and (5.41). Update vectors of the form (5.43) and (5.45) are again considered,
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where the values a1, . . . , al are calculated by minimizing

g : Rl → R : a→

∥∥∥∥∥F
(
x̃+ y

(1)
⊥ − c0y

(2)
⊥ +

l∑
j=1

aj

(
φj − cjy(2)

⊥

)
,

p̃+ c0 +

l∑
j=1

ajcj

)∥∥∥∥∥
2

P (x̃,p̃)

(5.60)

with the nonlinear conjugate gradients method. The first and second partial
derivatives of this function are given by (∀i, k = 1, . . . , l)

∂g

∂ai
: Rl → R : a→2〈F (x(a), p(a)), FX(x(a), p(a))Φi〉P (x̃,p̃) (5.61)

∂2g

∂ai∂ak
: Rl → R : a→2〈FX(x(a), p(a))Φi, FX(x(a), p(a))Φk〉P (x̃,p̃)

+ 2〈F (x(a), p(a)), FXX(x(a), p(a))ΦiΦk〉P (x̃,p̃),

(5.62)

with ∀i = 1, . . . , l : Φi =

(
φi − ciy(2)

⊥
ci

)
,

x(a) = x̃+ y
(1)
⊥ − c0y

(2)
⊥ +

l∑
j=1

aj

(
φj − cjy(2)

⊥

)

and p(a) = p̃+ c0 +

l∑
j=1

ajcj .

To create an initial guess for the minimization of g, first the function

f : Rl → R : a′ →
l∑

j=1

(
(b

(1)
j + ∆p(a′)b

(2)
j + a′jλj

)2

+
(

∆p(a′)‖y(1)
⊥ ‖P (x̃,p̃)−1

)2

+

l∑
j=1

(
a′j‖y

(1)
⊥ ‖P (x̃,p̃)−1

)2

+ ∆p(a′)4 +

l∑
j=1

(
∆p(a′)a′j

)2
+

l∑
i=1

l∑
j=1

(
a′ia
′
j

)2
,

(5.63)

with ∆p(a′) = c0 +

l∑
j=1

a′jcj ,

is minimized, with b
(1)
j = 〈F (x̃, p̃), φj〉 and b

(2)
j = 〈Fp(x̃, p̃), φj〉 (∀j = 1, . . . , l).

As an initial guess to minimize f , we use the values

∀j = 1, . . . , l : a
′(0)
j = χa

′(q)
j + ∆p(0)a

′(p)
j , (5.64)
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with ∆p(0), c(q), c(p), a
′(r)
1 , . . . , a

′(r)
l and a

′(p)
1 , . . . , a

′(p)
l defined by (5.58), (5.56),

(5.54) and (5.53), a
′(q)
1 , . . . , a

′(q)
l given by

a′(q)s = sgn(a′(r)s ) min

|a′(r)s |, |λs|,
|b(1)
s |

max
(
|c(p)|, ‖y(1)

⊥ ‖P (x̃,p̃)−1

)
 ,

∀j 6= s : a
′(q)
j = sgn(a

′(r)
j ) min

(
|a′(r)j |, |a

′(q)
s |
)
,

with s again the index for which |b(1)
s | is maximal, and χ given by

χ = min

1,
|λs|
|c(q)|

,
|λs||a′(q)s |
c(q)2

,
|b(1)
s |

|c(q)|max
(
|c(p)|, ‖y(1)

⊥ ‖P (x̃,p̃)−1

)
 .

5.6 Addition of extra terms to the update vectors

5.6.1 Description of the method

To improve the convergence of the split block Newton method (SBN), we will
again introduce additional parts to the update vectors ∆x and ∆p. With x̃, p̃ a
guess for the wanted zero of F and G, and φ1, . . . , φl approximate null vectors
of Fx(x̃, p̃) (with respective eigenvalues λ1, . . . , λl), we first split second order
partial derivative applications to φ1, . . . , φl:

∀i, j = 1, . . . , l : Fxx(x̃, p̃)φiφj = F
(ij)
⊥ + F

(ij)
‖ (5.65)

= F
(ij)
⊥ +

l∑
k=1

c
(ij)
k φk, (5.66)

with 〈F (ij)
⊥ , φk〉 = 0 (∀i, j = 1, . . . , l) and c

(ij)
k = 〈Fxx(x̃, p̃)φiφj , φk〉 (∀i, j, k =

1, . . . , l).

The vectors z11, z12, . . . , zll are introduced as the solutions of the linear
systems (∀i, j = 1, . . . , l)

Q(x̃, p̃)Fx(x̃, p̃)zij = Q(x̃, p̃)Fxx(x̃, p̃)φiφj , (5.67)

where the operator Q(x̃, p̃) is given by (5.37).With c0, c1, . . . , cl defined as be-

fore (see (5.40) and (5.41)) and c
(z)
ij given by

∀i, j = 1, . . . , l : c
(z)
ij =

−Gx(x̃, p̃)zij

Gp(x̃, p̃)−Gx(x̃, p̃)y
(2)
⊥

, (5.68)
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the update vectors ∆x and ∆p used in the new method are given by

∆x = ∆x⊥ + ∆x‖ + ∆xz (5.69)

= y
(1)
⊥ − c0y

(2)
⊥ +

l∑
j=1

aj

(
φj − cjy(2)

⊥

)

+

l∑
i=1

l∑
j=1

αij

(
zij − c(z)ij y

(2)
⊥

)
,

(5.70)

∆p = ∆p⊥ + ∆p‖ + ∆pz (5.71)

= c0 +

l∑
j=1

ajcj +

l∑
i=1

l∑
j=1

αijc
(z)
ij . (5.72)

The vectors y
(1)
⊥ and y

(2)
⊥ are defined as the solutions of respectively (5.38) and

(5.39), the values of a1, . . . , al and α11, . . . , αll will be calculated by minimizing
the residual norm (see section 5.6.3).

The method described in the current section will be called the split block
Newton method with extra terms (SBNE), pseudo-code is given by algorithm
5.5 on page 160 in appendix 5.10. Each Newton iteration starts by approxi-
mating null vectors of the partial Jacobian Fx(x̃, p̃) (using algorithm 3.3, see
page 43), followed by solving linear systems (5.38), (5.39) and (5.67) (using
algorithm 3.4, see page 44). After minimizing the function given by (5.82) (the
preconditioned version of the residual norm) with nonlinear conjugate gradi-
ents (using algorithm 3.5, see page 45), the update vectors are constructed by
(5.70) and (5.72). The guesses are updated and the next Newton iteration is
started.

Just as was the case for the method without block elimination (see section
4.6), the adjustments made in the current section require solving an additional
1
2 l(l + 1) linear systems in each Newton iteration. This amount should be re-
duced for the method to become practical. A technique for this purpose will
be discussed in section 5.7.

5.6.2 Analysis of convergence for ill-conditioned problems

The SBNE method is tested in example 5.12.

Example 5.12. Consider the same set-up as in example 5.2. Application of
the SBNE method yields the residual plot of figure 5.8. Convergence (up to a
tolerance of approximately 10−12) is achieved after 5 Newton iterations. �

Compared to previous methods, the SBNE method requires considerably
less Newton iterations to reach convergence. The bound discussed in lemma
5.11, which caused slow convergence for the SBN method, does not apply to
the SBNE one.

Lemma 5.13. By introducing the additional parts ∆xz and ∆pz, defined in
(5.70) and (5.72), the bound (5.47) discussed in lemma 5.11 is eliminated.
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5. The Newton-Krylov method for extended nonlinear systems

Figure 5.8: Residual plot of example 5.12. The SBNE method is applied to an
ill-conditioned nonlinear problem, where the partial Jacobian contains a three-
dimensional kernel in the searched solution. The residual norm converges to
approximately 10−12 after 5 iterations, which is the attainable accuracy.

Proof. We split the terms F (x̃, p̃) and Fp(x̃, p̃) as in (5.48) and (5.49). Perform-
ing a Taylor expansion on the new residual, calculated by updating the guess
x̃, p̃ with (5.70) and (5.72), eventually yields

F (x̃+ ∆x, p̃+ ∆p)

=

l∑
j=1

b(1)
j + ∆p(a, α)b

(2)
j + ajλj +

1

2

l∑
i=1

l∑
j=1

c
(ik)
j aiaj

φj

+
1

2
Fxx(x̃, p̃)y

(1)
⊥ y

(1)
⊥ + ∆p(a, α)

(
Fxp(x̃, p̃)y

(1)
⊥ − Fxx(x̃, p̃)y

(1)
⊥ y

(2)
⊥

)
+

l∑
j=1

ajFxx(x̃, p̃)y
(1)
⊥ φj +

l∑
i=1

l∑
j=1

(
αij +

1

2
aiaj

)
F

(ij)
⊥

+ ∆p(a, α)2

(
1

2
Fxx(x̃, p̃)y

(2)
⊥ y

(2)
⊥ − Fxp(x̃, p̃)y

(2)
⊥ +

1

2
Fpp(x̃, p̃)

)
+ ∆p(a, α)

l∑
j=1

aj

(
Fxp(x̃, p̃)φj − Fxx(x̃, p̃)y

(2)
⊥ φj

)
+R(x̃, p̃,∆x,∆p),
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with the remainder R(x̃, p̃,∆x,∆p) given by

R(x̃, p̃,∆x,∆p) = Fxx(x̃, p̃)y
(1)
⊥ ∆xz + Fxx(x̃, p̃)∆x‖∆xz

+ ∆p
(
Fxp(x̃, p̃)∆xz − Fxx(x̃, p̃)y

(2)
⊥ ∆xz

)
+

1

2
Fxx(x̃, p̃)∆xz∆xz +

1

6
Fxxx(x̃, p̃)∆x∆x∆x

+
1

2
Fxxp(x̃, p̃)∆x∆x∆p+

1

2
Fxpp(x̃, p̃)∆x∆p∆p

+
1

6
Fppp(x̃, p̃)∆p∆p∆p+O(‖∆x‖4) +O(∆p4),

and ∆p(a, α) = c0 +
∑l
j=1 ajcj +

∑l
i=1

∑l
j=1 αijc

(z)
ij .

The influence of the second order partial derivative terms Fxx(x̃, p̃)φiφj (for
i, j = 1, . . . , l) on the new residual, which was the cause of condition (5.51), is
strongly reduced by choosing

∀i, j = 1, . . . , l : αij ≈ −
1

2
aiaj , (5.73)

which eliminates terms 1
2aiajF

(ij)
⊥ (with ∀i, j = 1, . . . , l) from the Taylor ex-

pansion. The null vector part of the Fxx(x̃, p̃)φiφj terms are reduced as well,
by incorporating these in the choice for a1, . . . , al. By using the update vectors
(5.70) and (5.72), condition (5.51) is eliminated.

The bound of lemma 5.11 is eliminated by a specific choice for the values
α11, . . . , αll in the additional parts ∆xz and ∆pz of the update vectors. Just
as in the case without block elimination (see section 4.6.2), a similar bound to
the values of a1, . . . , al however exists.

Lemma 5.14. The values a1, . . . , al, that appear in the update vectors (5.70)
and (5.72) of the SBNE method, typically satisfy the bound

∀j = 1, . . . , l : |aj | .
√
|λs|. (5.74)

The index s is chosen such that |asλs| is maximal.

Proof. Consider the same Taylor expansion as in the proof of lemma 5.13. From
the part

1

6

l∑
k=1

l∑
i=1

l∑
j=1

Fxxx(x̃, p̃)φkφiφj

the condition
max

k,i,j=1,...,l
|akaiaj | . max

j=1,...,l
|ajλj |. (5.75)

is derived. Denoting s the index for which |asλs| is maximal, (5.74) represents
a necessary condition to satisfy this approximate inequality.

The bound discussed in lemma 5.14 is however not as strict as the one
in lemma 5.11: higher values for a1, . . . , al can be chosen, leading to a bigger
decrease of the current residual. Faster convergence is expected.
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Remark 5.15. Note that the part

∆p(a, α)2

(
1

2
Fxx(x̃, p̃)y

(2)
⊥ y

(2)
⊥ − Fxp(x̃, p̃)y

(2)
⊥ +

1

2
Fpp(x̃, p̃)

)
of the Taylor expansion in the proof of lemma 5.13 also induces a condition on
a and α, given by

∆p(a, α)2 . max
j=1,...,l

|ajλj |. (5.76)

It is possible to relax this condition by using alternative additional parts. Doing
so however also leads to a slightly stricter bound on a1, . . . , al than (5.74).
For completeness, this alternative approach is described in section 5.6.5. It will
however not be used for any of the numerical experiments performed in chapter
9.

5.6.3 Minimization of the residual norm

The values for a1, . . . , al and α11, . . . , αll in (5.70) and (5.72) had not yet been
derived. In practice these are calculated by minimizing

g :Rl × Rl×l → R :

(a, α)→

∥∥∥∥∥F
(
x̃+ y

(1)
⊥ − c0y

(2)
⊥ +

l∑
j=1

aj

(
φj − cjy(2)

⊥

)

+

l∑
i=1

l∑
j=1

αij

(
zij − c(z)ij y

(2)
⊥

)
,

p̃+ c0 +

l∑
j=1

ajcj +

l∑
i=1

l∑
j=1

αijc
(z)
ij

)∥∥∥∥∥
2

(5.77)
with the nonlinear conjugate gradients method. Partial derivatives of g are de-
rived for the preconditioned method in section 5.6.4. Given the initial guesses

for a1, . . . , al, the ones for α11, . . . , αll are calculated by α
(0)
ij = − 1

2a
(0)
i a

(0)
j

(∀i, j = 1, . . . , l). The ones for a1, . . . , al are calculated by minimizing the
function

f : Rl → R : a′ →
l∑

j=1

(b
(1)
j + ∆p(a′)b

(2)
j + a′jλj +

1

2

l∑
i=1

l∑
j=1

c
(ik)
j a′ia

′
j

2

+
(

∆p(a′)‖y(1)
⊥ ‖

)2

+

l∑
j=1

(
a′j‖y

(1)
⊥ ‖

)2

+ ∆p(a′)4

+

l∑
j=1

(
∆p(a′)a′j

)2
+

l∑
k=1

l∑
i=1

l∑
j=1

(
a′ka
′
ia
′
j

)2
,

(5.78)

with ∆p(a′) = c0 +

l∑
j=1

a′jcj −
1

2

l∑
i=1

l∑
j=1

a′ia
′
jc

(z)
ij .
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The values b
(1)
1 , . . . , b

(1)
l , b

(2)
1 , . . . , b

(2)
l and c

(ij)
k (for i, j, k = 1, . . . , l) are defined

as in (5.48), (5.49) and (5.66).
In practice f is minimized with nonlinear conjugate gradients as well, re-

quiring an initial guess itself. We again calculate the values

∀j = 1, . . . , l : a
′(r)
j = −

b
(1)
j

λj
and a

′(p)
j = −

b
(2)
j

λj
.

With s the index for which |b(1)
s | is maximal, the values

a′(q)s = sgn(a′(r)s ) min

|a′(r)s |,
√
|λs|,

|b(1)
s |

max
(
|c(p)|, ‖y(1)

⊥ ‖
)
 ,

∀j 6= s : a
′(q)
j = sgn(a

′(r)
j ) min

(
|a′(r)j |, |a

′(q)
s |
)
,

are calculated, with c(p) defined as the lowest magnitude solution of the quadratic
equation

c(p) = c0 +

l∑
j=1

cjc
(p)a

′(p)
j − 1

2

l∑
i=1

l∑
j=1

c
(z)
ij c

(p)2a
′(p)
i a

′(p)
j .

The value

χ = min

1,
|λs|
|c(q)|

,
|λs||a′(q)s |
c(q)2

,
|b(1)
s |

|c(q)|max
(
|c(p)|, ‖y(1)

⊥ ‖
)


is calculated, with c(q) defined further in the section. The eventual guess a′(0)

is constructed by

∀j = 1, . . . , l : a
′(0)
j = χa

′(q)
j + ∆p(0)a

′(p)
j , (5.79)

with ∆p(0) the lowest magnitude solution of the quadratic equation

∆p(0) = c0 +

l∑
j=1

cj

(
χa
′(q)
j + ∆p(0)a

′(p)
j

)

− 1

2

l∑
i=1

l∑
j=1

c
(z)
ij

(
χa
′(q)
i + ∆p(0)a

′(p)
i

)(
χa
′(q)
j + ∆p(0)a

′(p)
j

)
.

(5.80)

To calculate c(q), the lowest magnitude solution of (5.80) needs to be regarded
as a function of χ. The maximum of the derivative of this function over an
interval [0; 1] yields the required value for c(q).

As before, the guess a′(0) is constructed in such a way that none of the
terms of (5.78) yield a blow-up.
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5.6.4 The preconditioned case

For the preconditioned method the eigenvectors φ1, . . . , φl and -values λ1, . . . , λl
of P (x̃, p̃)Fx(x̃, p̃) are considered, and vectors τ1, . . . , τl such that P (x̃, p̃)τj = φj

(∀j = 1, . . . , l) are defined. The vectors y
(1)
⊥ and y

(2)
⊥ are still calculated as the

solutions of (5.24) and (5.25), z11, . . . , zll by solving the preconditioned deflated
linear systems (∀i, j = 1, . . . , l)

P (x̃, p̃)Q(x̃, p̃)Fx(x̃, p̃)zij = P (x̃, p̃)Q(x̃, p̃)Fxx(x̃, p̃)φiφj , (5.81)

with Q(x̃, p̃) given by (5.59). The values c0, c1, . . . , cl and c
(z)
ij (∀i, j = 1, . . . , l)

are again calculated by application of (5.40), (5.41) and (5.68), the update
vectors are defined by (5.70) and (5.72).

To calculate a1, . . . , al and α11, . . . , αll, the function

g :Rl × Rl×l → R :

(a, α)→

∥∥∥∥∥F
(
x̃+ y

(1)
⊥ − c0y

(2)
⊥ +

l∑
j=1

aj

(
φj − cjy(2)

⊥

)

+

l∑
i=1

l∑
j=1

αij

(
zij − c(z)ij y

(2)
⊥

)
,

p̃+ c0 +

l∑
j=1

ajcj +

l∑
i=1

l∑
j=1

αijc
(z)
ij

)∥∥∥∥∥
2

P (x̃,p̃)

(5.82)
is minimized with the nonlinear conjugate gradients method. The first partial
derivatives of g are given by (∀i, j = 1, . . . , l)

∂g

∂ai
:Rl × Rl×l → R :

(a, α)→ 2〈F (x(a, α), p(a, α)), FX(x(a, α), p(a, α))Φi〉P (x̃,p̃),

∂g

∂αij
:Rl × Rl×l → R :

(a, α)→ 2〈F (x(a, α), p(a, α)), FX(x(a, α), p(a, α))Zij〉P (x̃,p̃),

(5.83)

with

∀i = 1, . . . , l : Φi =

(
φi − ciy(2)

⊥
ci

)
,

∀i, j = 1, . . . , l : Zij =

(
zij − c(z)ij y

(2)
⊥

c
(z)
ij

)
,

x(a, α) = x̃+ y
(1)
⊥ − c0y

(2)
⊥ +

l∑
j=1

aj

(
φj − cjy(2)

⊥

)

+

l∑
i=1

l∑
j=1

αij

(
zij − c(z)ij y

(2)
⊥

)
,
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and p(a, α) = p̃+ c0 +

l∑
j=1

ajcj +

l∑
i=1

l∑
j=1

αijc
(z)
ij .

The second by (∀i, j, k, q = 1, . . . , l)

∂2g

∂ai∂ak
: Rl × Rl×l → R :

(a, α)→ 2〈FX(x(a, α), p(a, α))Φi, FX(x(a, α), p(a, α))Φk〉P (x̃,p̃)

+ 2〈F (x(a, α), p(a, α)), FXX(x(a, α), p(a, α))ΦiΦk〉P (x̃,p̃),

∂2g

∂ai∂αjk
: Rl × Rl×l → R :

(a, α)→ 2〈FX(x(a, α), p(a, α))Φi, FX(x(a, α), p(a, α))Zjk〉P (x̃,p̃)

+ 2〈F (x(a, α), p(a, α)), FXX(x(a, α), p(a, α))ΦiZjk〉P (x̃,p̃),

∂2g

∂αij∂αkq
: Rl × Rl×l → R :

(a, α)→ 2〈FX(x(a, α), p(a, α))Zij , FX(x(a, α), p(a, α))Zkq〉P (x̃,p̃)

+ 2〈F (x(a, α), p(a, α)), FXX(x(a, α), p(a, α))ZijZkq〉P (x̃,p̃).

(5.84)

Given an initial guess for a1, . . . , al, the ones for α11, . . . , αll are again cal-

culated by α
(0)
ij = − 1

2aiaj (∀i, j = 1, . . . , l). Defining b
(1)
j = 〈F (x̃, p̃), φj〉, b(2)

j =

〈Fp(x̃, p̃), φj〉 (∀j = 1, . . . , l) and c
(ij)
k = 〈Fxx(x̃, p̃)φiφj , φk〉 (∀i, j, k = 1, . . . , l),

initial guesses a
(0)
1 , . . . , a

(0)
l are calculated by minimizing

f : Rl → R : a′ →
l∑

j=1

(b
(1)
j + ∆p(a′)b

(2)
j + a′jλj +

1

2

l∑
i=1

l∑
j=1

c
(ik)
j a′ia

′
j

2

+
(

∆p(a′)‖y(1)
⊥ ‖P (x̃,p̃)−1

)2

+

l∑
j=1

(
a′j‖y

(1)
⊥ ‖P (x̃,p̃)−1

)2

+ ∆p(a′)4 +

l∑
j=1

(
∆p(a′)a′j

)2
+

l∑
k=1

l∑
i=1

l∑
j=1

(
a′ka
′
ia
′
j

)2
,

(5.85)

with

∆p(a′) = c0 +

l∑
j=1

ajcj −
1

2

l∑
i=1

l∑
j=1

aiajc
(z)
ij ,

with nonlinear conjugate gradients. As an initial guess for the minimization of
f , we use the values

∀j = 1, . . . , l : a
′(0)
j = χa

′(q)
j + ∆p(0)a

′(p)
j , (5.86)

with ∆p(0), c(q), c(p), a
′(r)
1 , . . . , a

′(r)
l and a

′(p)
1 , . . . , a

′(p)
l defined similar to the

unpreconditioned case. With s the index for which |b(1)
s | is maximal, the values
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a
′(q)
1 , . . . , a

′(q)
l are calculated by

a′(q)s = sgn(a′(r)s ) min

|a′(r)s |,
√
|λs|,

|b(1)
s |

max
(
|c(p)|, ‖y(1)

⊥ ‖P (x̃,p̃)−1

)
 ,

∀j 6= s : a
′(q)
j = sgn(a

′(r)
j ) min

(
|a′(r)j |, |a

′(q)
s |
)
.

The value χ is given by

χ = min

1,
|λs|
|c(q)|

,
|λs||a′(q)s |
c(q)2

,
|b(1)
s |

|c(q)|max
(
|c(p)|, ‖y(1)

⊥ ‖P (x̃,p̃)−1

)
 .

5.6.5 Alternative additional update parts

As mentioned in remark 5.15 (see section 5.6.2), alternative update parts can
be considered, that do not lead to condition (5.76). This alternative method is
derived in the current section for the unpreconditioned case. We again consider
a guess x̃, p̃ and denote φ1, . . . , φl the approximate null vectors of Fx(x̃, p̃).
With c1, . . . , cl defined as before (see (5.41)), the values

∀j = 1, . . . , l : βj =

√
〈φj − cjy(2)

⊥ , φj − cjy(2)
⊥ 〉+ c2j

−1

are calculated. Note that β−1
1 , . . . , β−1

l respectively equal the norms of the
terms Φ1, . . . ,Φl, defined by

∀j = 1, . . . , l : Φj =

(
φj − cjy(2)

⊥
cj

)
.

Instead of splitting (5.66), the second order derivatives βiβjFXX(x̃, p̃)ΦiΦj
(∀i, j = 1, . . . , l) are split:

∀i, j = 1, . . . , l : βiβjFXX(x̃, p̃)ΦiΦj = F
′(ij)
⊥ + F

′(ij)
‖ = F

′(ij)
⊥ +

l∑
k=1

c
′(ij)
k φk.

(5.87)

This time vectors z′11, . . . , z
′
ll are introduced as the solutions of (∀i, j = 1, . . . , l)

Q(x̃, p̃)Fx(x̃, p̃)z′ij = Q(x̃, p̃)FXX(x̃, p̃)ΦiΦj . (5.88)

With c
′(z)
ij (∀i, j = 1, . . . , l) defined similar to (5.68), the considered update
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vectors become

∆x = ∆x⊥ + ∆x‖ + ∆x′z (5.89)

= y
(1)
⊥ − c0y

(2)
⊥ +

l∑
j=1

ajβj

(
φj − cjy(2)

⊥

)

+

l∑
i=1

l∑
j=1

αij

(
z′ij − c

′(z)
ij y

(2)
⊥

)
,

(5.90)

∆p = ∆p⊥ + ∆p‖ + ∆p′z (5.91)

= c0 +

l∑
j=1

ajβjcj +

l∑
i=1

l∑
j=1

αijc
′(z)
ij . (5.92)

Lemma 5.16. By introducing the additional parts ∆x′z and ∆p′z, defined in
(5.90) and (5.92), the bound (5.47) discussed in lemma 5.11 is eliminated,
without introducing (5.76).

Proof. Performing a Taylor expansion on the new guess, calculated with the
alternative update vectors (5.90) and (5.92), yields

F (x̃+ ∆x, p̃+ ∆p)

=

l∑
j=1

b(1)
j + ∆p(a, α)b

(2)
j + ajβjλj +

1

2

l∑
i=1

l∑
j=1

c
′(ik)
j aiaj

φj

+
1

2
FXX(x̃, p̃)

(
y

(1)
⊥ − c0y

(2)
⊥

c0

)(
y

(1)
⊥ − c0y

(2)
⊥

c0

)

+

l∑
j=1

ajFXX(x̃, p̃)

(
y

(1)
⊥ − c0y

(2)
⊥

c0

)(
φj − cjy(2)

⊥
cj

)

+

l∑
i=1

l∑
j=1

(
αij +

1

2
aiaj

)
F
′(ij)
⊥ +R(x̃, p̃,∆x,∆p),

with ∆p(a, α) = c0 +
∑l
j=1 ajβjcj +

∑l
i=1

∑l
j=1 αijc

′(z)
ij , and the remainder

R(x̃, p̃,∆x,∆p) the sum of terms of order 3 and higher, and of order 2 applied
to z′11, . . . , z

′
ll. The condition (5.51) is eliminated by setting αij ≈ − 1

2aiaj
(∀i, j = 1, . . . , l). Condition (5.76) is not introduced.

Lemma 5.17. The values a1, . . . , al, that appear in the update vectors (5.90)
and (5.92) of the alternative SBNE method, typically satisfy the bound

∀j = 1, . . . , l : |aj | .
√
|βsλs|, (5.93)

The index s is chosen such that |asβsλs| is maximal.

Proof. Consider the same Taylor expansion as in the proof of lemma 5.16. The
term

1

6

l∑
i=1

l∑
j=1

l∑
k=1

FXXX(x̃, p̃)ΦiΦjΦk,

139



5. The Newton-Krylov method for extended nonlinear systems

which is included in the remainder R(x̃, p̃,∆x,∆p), induces the condition

max
k,i,j=1,...,l

|akaiaj | . max
j=1,...,l

|ajβjλj |. (5.94)

This condition implies the bound (5.93).

Compared to the bound on a1, . . . , al discussed in lemma 5.14 (see section
5.6.2), the one of lemma 5.17 is less predictable: it is possible for β1, . . . , βl to
become very small, this happens when |cj | � 1 (for the corresponding index
j ∈ {1, . . . , l}). The values of c1, . . . , cl depend on the considered linear function
G and cannot be damped.

Though the alternative approach does not yield bound (5.76) (discussed in
remark 5.15) on ∆p, numerical experiments (e.g. example 5.12) suggest that
the required values for ∆p in the Newton updates are typically sufficiently
small: condition (5.76) does not hamper the convergence.

Since the original SBNE method is preferable when |cj | � 1 (for a certain
j ∈ {1, . . . , l}), we will not consider the alternative approach for our numerical
experiments.

5.7 Reduction of the extra terms in presence of a
dominant update direction

The amount of additional linear systems introduced in section 5.6 will be re-
duced in a similar way as was done for the method without block elimination
in section 4.7.

5.7.1 Creation of a new base for the approximate kernel

We consider two consecutive guesses (x̃(m), p̃(m)) and (x̃(m+1), p̃(m+1)), such
that

x̃(m+1) = x̃(m) + ∆x(m) = x̃(m) + ∆x
(m)
⊥ + ∆x

(m)
‖ + ∆x(m)

z

= x̃(m) + y
(1)(m)
⊥ − c(m)

0 y
(2)(m)
⊥ +

l∑
j=1

a
(m)
j

(
φ

(m)
j − c(m)

j y
(2)(m)
⊥

)

+

l∑
i=1

l∑
j=1

α
(m)
ij

(
z

(m)
ij − c

(z)(m)
ij y

(2)(m)
⊥

)
,

(5.95)

p̃(m+1) = p̃(m) + ∆p(m) = p̃(m) + ∆p
(m)
⊥ + ∆p

(m)
‖ + ∆p(m)

z

= p̃(m) + c
(m)
0 +

l∑
j=1

a
(m)
j c

(m)
j +

l∑
i=1

l∑
j=1

α
(m)
ij c

(z)(m)
ij ,

(5.96)

with the vectors y
(1)(m)
⊥ , y

(2)(m)
⊥ , z

(m)
11 , . . . , z

(m)
ll and values c

(m)
0 , c

(m)
1 , . . . , c

(m)
l ,

c
(z)(m)
11 , . . . , c

(z)(m)
ll , a

(m)
1 , . . . , a

(m)
l and α

(m)
11 , . . . , α

(m)
ll calculated as described in

section 5.6. The vectors φ
(m)
1 , . . . , φ

(m)
l represent the approximate null vectors of
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Fx(x̃(m), p̃(m)), with respective eigenvalues λ
(m)
1 , . . . , λ

(m)
l , such that ‖φ(m)

1 ‖ =

· · · = ‖φ(m)
l ‖ = 1.

Denoting φ
(m+1)
1 , . . . , φ

(m+1)
l the approximate null vectors of the Jacobian

Fx(x̃(m+1), p̃(m+1)) (such that ‖φ(m+1)
1 ‖ = · · · = ‖φ(m+1)

l ‖ = 1 and φ
(m+1)
j ≈

φ
(m)
j for each j = 1, . . . , l) and λ

(m+1)
1 , . . . , λ

(m+1)
l the respective eigenvalues,

a new base φ̆
(m+1)
1 , . . . , φ̆

(m+1)
l for the space spanned by φ

(m+1)
1 , . . . , φ

(m+1)
l is

created, entirely similar to section 4.7.1. The vector φ̆
(m+1)
1 is defined by

φ̊ =

l∑
j=1

〈φ(m+1)
j ,∆x

(m)
‖ 〉φ

(m+1)
j ,

φ̆
(m+1)
1 = ‖φ̊‖−1φ̊,

(5.97)

with ∆x
(m)
‖ =

∑l
j=1 a

(m)
j φ

(m)
j , vectors φ̆

(m+1)
2 , . . . , φ̆

(m+1)
l are chosen as linear

combinations of φ
(m+1)
1 , . . . , φ

(m+1)
l such that 〈φ̆(m+1)

i , φ̆
(m+1)
j 〉 = δij (∀i, j =

1, . . . , l). The l × l matrix D is defined such that

∀i, j = 1, . . . , l : Dij = 〈φ̆(m+1)
j , φ

(m+1)
i 〉,

it describes the base transformation. Note that D is a unitary matrix, implying
DT = D−1.

We split the following vectors into a linear combination of φ̆
(m+1)
1 , . . . ,

φ̆
(m+1)
l and a part orthogonal to these directions:

F (x̃(m+1), p̃(m+1)) = F⊥ + F‖ = F⊥ +

l∑
k=1

b
(1)
k φ̆

(m+1)
k , (5.98)

Fp(x̃
(m+1), p̃(m+1)) = Fp⊥ + Fp‖ = Fp⊥ +

l∑
k=1

b
(2)
k φ̆

(m+1)
k , (5.99)

∀i, j = 1, . . . , l :

Fxx(x̃(m+1), p̃(m+1))φ̆
(m+1)
i φ̆

(m+1)
j = F

(ij)
⊥ + F

(ij)
‖ = F

(ij)
⊥ +

l∑
k=1

c
(ij)
k φ̆

(m+1)
k .

(5.100)

Define the vectors y
(1)(m)
⊥ and y

(2)(m)
⊥ as the solutions of respectively (5.20) and

(5.21), and z
(m+1)
11 , . . . , z

(m+1)
ll as the solutions of the linear systems (∀i, j =

1, . . . , l)

Q(x̃(m+1), p̃(m+1))Fx(x̃(m+1), p̃(m+1))z
(m+1)
ij

= Q(x̃(m+1), p̃(m+1))Fxx(x̃(m+1), p̃(m+1))φ̆
(m+1)
i φ̆

(m+1)
j ,

(5.101)

with Q(x̃(m+1), p̃(m+1)) defined by

Q(x̃(m+1), p̃(m+1)) : Cn → Cn : y → y −K〈K,K〉−1〈K, y〉

with K =
(
φ̆

(m+1)
1 φ̆

(m+1)
2 . . . φ̆

(m+1)
l

)
.
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With c
(m+1)
0 defined similar to (5.40), and c

(m+1)
1 , . . . , c

(m+1)
l , c

(z)(m+1)
11 , . . . ,

c
(z)(m+1)
ll by (∀j = 1, . . . , l)

c
(m+1)
j =

−Gx(x̃(m+1), p̃(m+1))φ̆
(m+1)
j

Gp(x̃(m+1), p̃(m+1))−Gx(x̃(m+1), p̃(m+1))y
(2)(m+1)
⊥

, (5.102)

c
(z)(m+1)
ij =

−Gx(x̃(m+1), p̃(m+1))z
(m+1)
ij

Gp(x̃(m+1), p̃(m+1))−Gx(x̃(m+1), p̃(m+1))y
(2)(m+1)
⊥

, (5.103)

the update vectors for a normal step of the split block Newton method with
extra terms (SBNE) would be given by

∆x(m+1) = ∆x
(m+1)
⊥ + ∆x

(m+1)
‖ + ∆x(m+1)

z

= y
(1)(m+1)
⊥ − c(m+1)

0 y
(2)(m+1)
⊥ +

l∑
j=1

aj

(
φ̆

(m+1)
j − c(m+1)

j y
(2)(m+1)
⊥

)

+

l∑
i=1

l∑
j=1

αij

(
z

(m+1)
ij − c(z)(m+1)

ij y
(2)(m+1)
⊥

)
,

∆p(m+1) = ∆p
(m+1)
⊥ + ∆p

(m+1)
‖ + ∆p(m+1)

z

= c
(m+1)
0 +

l∑
j=1

ajc
(m+1)
j +

l∑
i=1

l∑
j=1

αijc
(z)(m+1)
ij ,

where a1, . . . , al and α11, . . . , αll would be calculated such that the new resid-

ual norm becomes minimal. Note that the vectors z
(m+1)
11 , . . . , z

(m+1)
ll will not

appear in the eventual update vector (see section 5.7.3).

5.7.2 Elimination of less important terms in presence of a
dominant update vector

The same assumption as in section 4.7.2 is made (see assumption 4.15).

Assumption 5.18. The part ∆x
(m+1)
‖ of the update vector ∆x(m+1) in the

null vector directions is dominated by φ̆
(m+1)
1 , defined in (5.97). This implies

∀i = 1, . . . , l : i 6= 1⇒ |ai| � |a1| (5.104)

in the update vectors.

Assumption 5.18 allows us to ignore terms z
(m+1)
ij in the part ∆x

(m+1)
z for
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which both i 6= 1 and j 6= 1. A first reduction yields the update vectors

∆x(m+1) = ∆x
(m+1)
⊥ + ∆x

(m+1)
‖ + ∆x′(m+1)

z (5.105)

= y
(1)(m+1)
⊥ − c(m+1)

0 y
(2)(m+1)
⊥ +

l∑
j=1

aj

(
φ̆

(m+1)
j − c(m+1)

j y
(2)(m+1)
⊥

)

+

l∑
j=1

αj

(
z

(m+1)
j − c(z)(m+1)

j y
(2)(m+1)
⊥

)
,

(5.106)

∆p(m+1) = ∆p
(m+1)
⊥ + ∆p

(m+1)
‖ + ∆p′(m+1)

z (5.107)

= c
(m+1)
0 +

l∑
j=1

ajc
(m+1)
j +

l∑
j=1

αjc
(z)(m+1)
j , (5.108)

with z
(m+1)
1j denoted as z

(m+1)
j and c

(z)(m+1)
1j as c

(z)(m+1)
j (∀j = 1, . . . , l).

Lemma 5.19. Under assumption 5.18, the bound discussed in lemma 5.14 is

eliminated by the additional parts ∆x
′(m+1)
z and ∆p

′(m+1)
z defined in (5.106)

and (5.108).

Proof. The proof is entirely similar to the one of lemma 4.16.

5.7.3 Replacement of the additional update parts based on
the previous Newton iteration

The remaining vectors z
(m+1)
1 , . . . , z

(m+1)
l of the part ∆x

′(m+1)
z will be replaced

by considering a finite difference approximation. We make two more assump-
tions.

Assumption 5.20. The part
(

∆x
(m)
⊥ ∆p

(m)
⊥

)T
of the previous update vector

(see (5.96)) is negligible compared to the part
(

∆x
(m)
‖ ∆p

(m)
‖

)T
. This implies√

‖y(1)(m)
⊥ − c(m)

0 y
(2)(m)
⊥ ‖2 + c

(m)2
0 � max

j=1,...,l
|a(m)
j |. (5.109)

Assumption 5.21. The update ∆p(m) from p̃(m) to p̃(m+1) (see (5.96)) is

negligible compared to the part ∆x
(m)
‖ of the update vector ∆x(m). This implies

|∆p(m)| � max
j=1,...,l

|a(m)
j |. (5.110)

Both assumptions typically hold in later Newton iterations: the residual in

these steps is dominated by approximate null vectors. The term y
(1)(m)
⊥ in the

update is very small compared to
∑l
j=1 a

(m)
j φ

(m)
j . Together with the definition

of c
(m)
0 , assumption 5.20 is implied by this. Assumption 5.21 is typically valid

due to condition (5.76) (see remark 5.15).
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Lemma 5.22. Under assumptions 5.18, 5.20 and 5.21, the terms z
(m+1)
1 , . . . ,

z
(m+1)
l can approximately be solved from the linear systems (∀j = 1, . . . , l)

Q(x̃(m+1), p̃(m+1))Fx(x̃(m+1), p̃(m+1))z
(m+1)
j

≈ −γ−1Q(x̃(m+1), p̃(m+1))Fx(x̃(m), p̃(m))ρj
(5.111)

with γ = ‖
∑l
j=1 a

(m)
j φ

(m)
j ‖ and ρ1, . . . , ρl defined by

∀j = 1, . . . , l : ρj = φ̆
(m+1)
j −

l∑
i=1

〈φ̆(m+1)
j , φ

(m)
i 〉φ(m)

i . (5.112)

Proof. The proof is similar to that of lemma 4.18 in section 4.7.3. Choose
j ∈ {1, . . . , l}. A finite difference approximation gives the approximation

Q(x̃(m+1), p̃(m+1))Fxx(x̃(m+1), p̃(m+1))φ̆
(m+1)
1 φ̆

(m+1)
j

≈ −ε−1Q(x̃(m+1), p̃(m+1))Fx(x̃(m+1) − εφ̆(m+1)
1 , p̃(m+1))φ̆

(m+1)
j ,

where ε ∈ R+
0 is yet to be chosen.

Under assumptions 5.20 and 5.21, the full update vector
(
∆x(m) ∆p(m)

)T
is dominated by the part

∑l
i=1 a

(m)
i

(
φ

(m)
i 0

)T
. Note that, since α

(m)
ik ≈

− 1
2a

(m)
i a

(m)
k (∀i, k = 1, . . . , l), the vectors in the additional part ∆x

′(m)
z of the

update vector are dominated by
∑l
i=1 a

(m)
i φ

(m)
i . By the definition of φ̆

(m+1)
1

(see (5.97)), we have
∑l
i=1 a

(m)
i φ

(m)
i ≈ γφ̆

(m+1)
1 with γ = ‖

∑l
i=1 a

(m)
i φ

(m)
i ‖.

Choosing ε as γ, and using(
x̃(m+1)

p̃(m+1)

)
−
(
γφ̆

(m+1)
1

0

)
≈

(
x̃(m+1)

p̃(m+1)

)
−
(

∆x(m)

∆p(m)

)
=

(
x̃(m)

p̃(m)

)
,

the approximation

Q(x̃(m+1), p̃(m+1))Fxx(x̃(m+1), p̃(m+1))φ̆
(m+1)
1 φ̆

(m+1)
j

≈ −γ−1Q(x̃(m+1), p̃(m+1))Fx(x̃(m), p̃(m))φ̆
(m+1)
j

is derived. Splitting the vector φ̆
(m+1)
j as

φ̆
(m+1)
j =

l∑
i=1

ζijφ
(m)
i + ρj ,

with ζij = 〈φ̆(m+1)
j , φ

(m)
i 〉 (∀i = 1, . . . , l) and ρj defined by (5.112) (note that

〈ρj , φ(m)
i 〉 = 0 for each i = 1, . . . , l), similar analysis as in the proof of lemma

4.18 eventually shows

Q(x̃(m+1), p̃(m+1))Fxx(x̃(m+1), p̃(m+1))φ̆
(m+1)
1 φ̆

(m+1)
j

≈ −γ−1Q(x̃(m+1), p̃(m+1))Fx(x̃(m), p̃(m))ρj .

The statement now follows by substituting this approximation in the linear

system for z
(m+1)
j (see (5.67)).
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Lemma 5.22 presents alternative linear systems to solve for the vectors

z
(m+1)
1 , . . . , z

(m+1)
l . Instead of solving these systems, we will replace z

(m+1)
1 , . . . ,

z
(m+1)
l by −γ−1ρ′1, . . . ,−γ−1ρ′l with ρ′j = Q(x̃(m+1), p̃(m+1))ρj (∀j = 1, . . . , l).

The part ∆x
′(m+1)
z of (5.106) is now replaced by ∆x

(m+1)
ρ , consisting of

the terms ρ′1, ρ
′
2, . . . , ρ

′
l. The part ∆p

′(m+1)
z of (5.108) is replaced as well. The

eventual update vectors are given by

∆x(m+1) = ∆x
(m+1)
⊥ + ∆x

(m+1)
‖ + ∆x(m+1)

ρ (5.113)

= y
(1)(m+1)
⊥ − c(m+1)

0 y
(2)(m+1)
⊥ +

l∑
j=1

aj

(
φ̆

(m+1)
j − c(m+1)

j y
(2)(m+1)
⊥

)

− γ−1
l∑

j=1

αj

(
ρ′j − c

(ρ)
j y

(2)(m+1)
⊥

)
,

(5.114)

∆p(m+1) = ∆p
(m+1)
⊥ + ∆p

(m+1)
‖ + ∆p(m+1)

ρ (5.115)

= c
(m+1)
0 +

l∑
j=1

ajc
(m+1)
j − γ−1

l∑
j=1

αjc
(ρ)
j , (5.116)

with c
(ρ)
1 , . . . , c

(ρ)
l defined by

∀j = 1, . . . , l : c
(ρ)
j =

−Gx(x̃(m+1), p̃(m+1))ρ′j

Gp(x̃(m+1), p̃(m+1))−Gx(x̃(m+1), p̃(m+1))y
(2)(m+1)
⊥

.

(5.117)

5.7.4 Minimization of the residual norm

The values for a1, . . . , al and α1, . . . , αl in the update vectors (5.114) and
(5.116) are calculated by applying the nonlinear conjugate gradients method
to find the arguments that minimize the function

g :Rl × Rl → R :

(a, α)→

∥∥∥∥∥F
(
x̃(m+1) + y

(1)(m+1)
⊥ − c(m+1)

0 y
(2)(m+1)
⊥

+

l∑
j=1

aj

(
φ̆

(m+1)
j − c(m+1)

j y
(2)(m+1)
⊥

)

− γ−1
l∑

j=1

αj

(
ρ′j − c

(ρ)
j y

(2)(m+1)
⊥

)
,

p̃(m+1) + c
(m+1)
0 +

l∑
j=1

ajc
(m+1)
j − γ−1

l∑
j=1

αjc
(ρ)
j

)∥∥∥∥∥
2

.

(5.118)
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The required derivatives of g are given for the preconditioned case in section
5.7.6. When an initial guess a(0) is derived, the one for α(0) is calculated by

α
(0)
j = − 1

2a
(0)
1 a

(0)
j (∀j = 1, . . . , l). The guess for a(0) itself is calculated by first

minimizing

f :Rl → R :

a′ →
l∑

j=1

(
(b

(1)
j + ∆p(a′)b

(2)
j +

l∑
k=1

a′kCjk +
1

2
c
(11)
j a′21 +

l∑
k=1

c
(1k)
j a′1a

′
k

)2

+
(

∆p(a′)‖y(1)(m+1)
⊥ ‖

)2

+

l∑
j=1

(
a′j‖y

(1)(m+1)
⊥ ‖

)2

+ ∆p(a′)4

+

l∑
j=1

(
∆p(a′)a′j

)2
+

l∑
i=2

l∑
j=2

(
a′ia
′
j

)2
+

l∑
k=1

l∑
i=1

l∑
j=1

(
a′ka
′
ia
′
j

)2
,

(5.119)

with ∆p(a′) = c
(m+1)
0 +

l∑
j=1

a′jc
(m+1)
j +

1

2
γ−1

l∑
j=1

a′1a
′
jc

(ρ)
j ,

with Cjk =
∑l
i=1Dikλ

(m+1)
i Dij (∀j, k = 1, . . . , l).

The minimization of f is performed by nonlinear conjugate gradients as well,

and requires an initial guess a′(0). Denote b
′(1)
j = 〈F (x̃(m+1), p̃(m+1)), φ

(m+1)
j 〉

and b
′(2)
j = 〈Fp(x̃(m+1), p̃(m+1)), φ

(m+1)
j 〉 (∀j = 1, . . . , l). First the values

∀j = 1, . . . , l : a
′(r)
j = −

|b′(1)
j |

λ
(m+1)
j

,

∀j = 1, . . . , l : a
′(p)
j = −

|b′(2)
j |

λ
(m+1)
j

,

∀j = 1, . . . , l : a
′(t)
j =

l∑
i=1

Dija
′(p)
i

are calculated. From this, the values

a′(e)s = sgn(a′(r)s ) min

|a′(r)s |,
√
|λ(m+1)
s |, |b′(1)

s |

max
(
|c(t)|, ‖y(1)(m+1)

⊥ ‖
)
 ,

∀j 6= s : a
′(e)
j = sgn(a

′(r)
j ) min

(
|a′(r)j |, |a

′(e)
s |
)
,

are derived, with c(t) the lowest magnitude solution of the quadratic equation

c(t) = c
(m+1)
0 +

l∑
j=1

c
(m+1)
j c(t)a

′(t)
j +

1

2
γ−1

l∑
j=1

c
(ρ)
j c(t)2a

′(t)
1 a

′(t)
j .
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A base transformation is executed to gain the values a
′(b)
1 , . . . , a

′(b)
l :

∀j = 1, . . . , l : a
′(b)
j =

l∑
i=1

Dija
′(e)
i .

Defining ∆p(χ) as the lowest magnitude solution of the quadratic equation

∆p(χ) = c
(m+1)
0 +

l∑
j=1

c
(m+1)
j

(
χa
′(b)
j + ∆p(χ)a

′(t)
j

)

+
1

2
γ−1

l∑
j=1

c
(ρ)
j

(
χa
′(b)
1 + ∆p(χ)a

′(t)
1

)(
χa
′(b)
j + ∆p(χ)a

′(t)
j

)
,

the value c(q) is calculated as the maximum of the first derivative of ∆p(χ)
over an interval [0; 1]. The value χ is then calculated by

χ = min

1,
|λ(m+1)
s |
|c(q)|

,
|λ(m+1)
s ||a′(e)s |
c(q)2

,
|b′(1)
j |

|c(q)|max
(
|c(t)|, ‖y(1)(m+1)

⊥ ‖
)
 .

Defining κ̃ by

κ̃ = min

1,
maxi=1,...,l

∣∣∣∑l
j=1 a

′(b)
j Ckj

∣∣∣
χmaxj=2,...,l |a′(b)i a

′(b)
j |

 , (5.120)

with Ckj =
∑l
i=1Dijλ

(m+1)
i Dik (∀j, k = 1, . . . , l), the values a

′(q)
1 , . . . , a

′(q)
l are

defined by

∀j = 1, . . . , l : a
′(q)
j = κ̃a

′(b)
j .

The initial guess a′(0) is eventually constructed by

∀j = 1, . . . , l : a
′(0)
j = χa

′(q)
j + ∆p(0)a

′(t)
j , (5.121)

with ∆p(0) the lowest magnitude solution of the quadratic equation

∆p(0) = c
(m+1)
0 +

l∑
j=1

c
(m+1)
j

(
χa
′(q)
j + ∆p(0)a

′(t)
j

)

+
1

2
γ−1

l∑
j=1

c
(ρ)
j

(
χa
′(q)
1 + ∆p(0)a

′(t)
1

)(
χa
′(q)
j + ∆p(0)a

′(t)
j

)
.

5.7.5 The method in practice

We will call the method that uses update vectors (5.114) and (5.116) (see sec-
tion 5.7.3) the split block Newton method with reduced terms (SBNR), pseudo-
code is given by algorithm 5.6 on page 162 in appendix 5.10. In practice the first
iteration that is performed uses update vectors of the form (5.43) and (5.45),
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5. The Newton-Krylov method for extended nonlinear systems

Figure 5.9: Residual plot of example 5.23. The SBNR method is applied to
an ill-conditioned nonlinear problem, where the partial Jacobian contains a
three-dimensional kernel in the searched solution. The residual norm converges
to approximately 10−8 after 3 iterations. Further iterations show a very slow
decrease in residual norm, the attainable accuracy (10−12) is not reached in an
acceptable amount of Newton steps.

afterwards ones of the form (5.114) and (5.116) are used. These steps start by
calculating approximate null vectors of the partial Jacobian Fx(x̃(m+1), p̃(m+1))
(using algorithm 3.3, see page 43), and performs a base transformation on these

by (5.97), yielding φ̆
(m+1)
1 , . . . , φ̆

(m+1)
l . Vectors y

(1)(m+1)
⊥ and y

(2)(m+1)
⊥ are cal-

culated by solving linear systems (5.20) and (5.21) as before (using algorithm

3.4, see page 44), vectors ρ′1, . . . , ρ
′
l by orthogonalizing φ̆

(m+1)
1 , . . . , φ̆

(m+1)
l to

φ
(m)
1 , . . . , φ

(m)
l , the approximate null vectors used in the previous Newton it-

eration, and applying Q(x̃(m+1), p̃(m+1)). The update vectors are constructed
by application of (5.114) and (5.116), where a1, . . . , al and α1, . . . , αl are cal-
culated by minimizing (5.125), the preconditioned version of (5.118), with the
nonlinear conjugate gradients method (algorithm 3.5, page 45). After updating

the guesses, ∆x
(m)
‖ and γ are calculated and the approximate null vectors are

stored for use in the next Newton iteration.
The algorithm is applied in example 5.23. Similar conclusions as for the

method without block elimination are valid: convergence behaviour depends
on whether assumption 5.18 is valid (see lemma 5.19). No additional linear
systems need to be solved for the method though.

Example 5.23. Consider the same set-up as in example 5.2. Figure 5.9 shows
the residual plot after application of the SBNR method. After 3 Newton iter-
ations, the residual norm remains around a value of 10−8. �
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5.7.6 The preconditioned case

For the preconditioned case φ
(m)
1 , . . . , φ

(m)
l and φ

(m+1)
1 , . . . , φ

(m+1)
l represent

the approximate null vectors of respectively P (x̃(m), p̃(m))Fx(x̃(m), p̃(m)) and

P (x̃(m+1), p̃(m+1))Fx(x̃(m+1), p̃(m+1)). The vectors τ
(m)
1 , . . . , τ

(m)
l are defined

such that P (x̃(m), p̃(m))τ
(m)
j = φ

(m)
j (∀j = 1, . . . , l), τ

(m+1)
1 , . . . , τ

(m+1)
l such

that P (x̃(m+1), p̃(m+1))τ
(m+1)
j = φ

(m+1)
j (∀j = 1, . . . , l). The respective eigen-

values of φ
(m+1)
1 , . . . , φ

(m+1)
l are denoted by λ

(m+1)
1 , . . . , λ

(m+1)
l . To create a

new base for the space spanned by φ
(m+1)
1 , . . . , φ

(m+1)
l , we define

φ̊ =

l∑
j=1

〈τ (m+1)
j ,∆x

(m)
‖ 〉φ

(m+1)
j , τ̊ =

l∑
j=1

〈τ (m+1)
j ,∆x

(m)
‖ 〉τ

(m+1)
j ,

φ̆
(m+1)
1 =

(√
|〈φ̊, τ̊〉|

)−1

φ̊, τ̆
(m+1)
1 =

(√
|〈φ̊, τ̊〉|

)−1

τ̊ ,

with ∆x
(m)
‖ =

∑l
j=1 a

(m)
j φ

(m)
j . Vectors τ̆

(m+1)
2 , . . . , τ̆

(m+1)
l and φ̆

(m+1)
2 , . . . ,

φ̆
(m+1)
l are again chosen as linear combinations such that 〈τ̆ (m+1)

i , φ̆
(m+1)
j 〉 = δij

(∀i, j = 1, . . . , l) and P (x̃(m+1), p̃(m+1))τ̆
(m+1)
i = φ̆

(m+1)
i (∀i = 1, . . . , l). The

elements of the matrix D that describes the base transformation are this time
given by

∀i, j = 1, . . . , l : Dij = 〈φ̆(m+1)
j , τ

(m+1)
i 〉.

The following vectors are split:

F (x̃(m+1), p̃(m+1)) = F⊥ + F‖ = F⊥ +

l∑
k=1

b
(1)
k τ̆

(m+1)
k , (5.122)

Fp(x̃
(m+1), p̃(m+1)) = Fp⊥ + Fp‖ = Fp⊥ +

l∑
k=1

b
(2)
k τ̆

(m+1)
k , (5.123)

∀i, j = 1, . . . , l :

Fxx(x̃(m+1), p̃(m+1))φ̆
(m+1)
i φ̆

(m+1)
j = F

(ij)
⊥ + F

(ij)
‖ = F

(ij)
⊥ +

l∑
k=1

c
(ij)
k τ̆

(m+1)
k ,

(5.124)

and the vectors y
(1)(m+1)
⊥ and y

(2)(m+1)
⊥ are solved from the linear systems

(5.24) and (5.25). The approximate null vectors φ̆
(m+1)
1 , . . . , φ̆

(m+1)
l are split as

well, yielding

∀j = 1, . . . , l : φ̆
(m+1)
j =

l∑
i=1

ζijφ
(m)
i + ρj ,

with〈ρj , τ (m)
i 〉 = 0 (∀i, j = 1, . . . , l). Terms of the form −γ−1ρ′1, . . . ,−γ−1ρ′l

are used in the additional part ∆x
(m+1)
ρ of the update vector, with γ =

‖
∑l
j=1 a

(m)
j φ

(m)
j ‖P̃−1 , ρ′j = Q(x̃(m+1), p̃(m+1))ρj (∀j = 1, . . . , l) and the de-

flation operator Q(x̃(m+1), p̃(m+1)) defined by (5.59). Note that we use P̃ to
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denote the preconditioner P̃ = P (x̃(m+1), p̃(m+1)). With c
(m+1)
1 , . . . , c

(m+1)
l and

c
(ρ)
1 , . . . , c

(ρ)
l defined by (5.102) and (5.117), the update vectors are again con-

structed by (5.114) and (5.116).

The values a1, . . . , al and α1, . . . , αl that appear in the formulas are calcu-
lated by application of the nonlinear conjugate gradients method to the function

g :Rl × Rl → R :

(a, α)→

∥∥∥∥∥F
(
x̃(m+1) + y

(1)(m+1)
⊥ − c(m+1)

0 y
(2)(m+1)
⊥

+

l∑
j=1

aj

(
φ̆

(m+1)
j − c(m+1)

j y
(2)(m+1)
⊥

)

− γ−1
l∑

j=1

αj

(
ρ′j − c

(ρ)
j y

(2)(m+1)
⊥

)
,

p̃(m+1) + c
(m+1)
0 +

l∑
j=1

ajc
(m+1)
j − γ−1

l∑
j=1

αjc
(ρ)
j

)∥∥∥∥∥
2

P̃

.

(5.125)

The first partial derivatives of g are given by (∀i = 1, . . . , l)

∂g

∂ai
:Rl × Rl → R :

(a, α)→ 2〈F (x(a, α), p(a, α)), FX(x(a, α), p(a, α))Φi〉P̃ ,
∂g

∂αi
:Rl × Rl → R :

(a, α)→ −2γ−1〈F (x(a, α), p(a, α)), FX(x(a, α), p(a, α))Zi〉P̃ ,

(5.126)

with ∀i = 1, . . . , l : Φi =

(
φ̆

(m+1)
i − c(m+1)

i y
(2)(m+1)
⊥

c
(m+1)
i

)
,

∀i, j = 1, . . . , l : Zj =

(
ρ′j − c

(ρ)
j y

(2)(m+1)
⊥

c
(ρ)
j

)
,

x(a, α) = x̃(m+1) + y
(1)(m+1)
⊥ − c(m+1)

0 y
(2)(m+1)
⊥

+

l∑
j=1

aj

(
φ̆

(m+1)
j − c(m+1)

j y
(2)(m+1)
⊥

)

− γ−1
l∑

j=1

αj

(
ρ′j − c

(ρ)
j y

(2)(m+1)
⊥

)
,

and p(a, α) = p̃(m+1) + c
(m+1)
0 +

l∑
j=1

ajc
(m+1)
j − γ−1

l∑
j=1

αjc
(ρ)
j .
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The second ones by (∀i, k = 1, . . . , l)

∂2g

∂ai∂ak
:Rl × Rl → R :

(a, α)→2〈FX(x(a, α), p(a, α))Φi, FX(x(a, α), p(a, α))Φk〉P̃
+ 2〈F (x(a, α), p(a, α)), FXX(x(a, α), p(a, α))ΦiΦk〉P̃ ,

∂2g

∂ai∂αk
:Rl × Rl → R :

(a, α)→− 2γ−1〈FX(x(a, α), p(a, α))Φi, FX(x(a, α), p(a, α))Zk〉P̃
− 2γ−1〈F (x(a, α), p(a, α)), FXX(x(a, α), p(a, α))ΦiZk〉P̃ ,

∂2g

∂αi∂αk
:Rl × Rl → R :

(a, α)→2γ−2〈FX(x(a, α), p(a, α))Zi, FX(x(a, α), p(a, α))Zk〉P̃
+ 2γ−2〈F (x(a, α), p(a, α)), FXX(x(a, α), p(a, α))ZiZk〉P̃ .

(5.127)

Given an initial guess a(0), α(0) is still calculated by α
(0)
j = − 1

2a
(0)
1 a

(0)
j (∀j =

1, . . . , l). The guess for a is derived by first minimizing

f :Rl → R :

a′ →
l∑

j=1

(
(b

(1)
j + ∆p(a′)b

(2)
j +

l∑
k=1

a′kCjk +
1

2
c
(11)
j a′21 +

l∑
k=1

c
(1k)
j a′1a

′
k

)2

+
(

∆p(a′)‖y(1)(m+1)
⊥ ‖P̃−1

)2

+

l∑
j=1

(
a′j‖y

(1)(m+1)
⊥ ‖P̃−1

)2

+ ∆p(a′)4

+

l∑
j=1

(
∆p(a′)a′j

)2
+

l∑
i=2

l∑
j=2

(
a′ia
′
j

)2
+

l∑
k=1

l∑
i=1

l∑
j=1

(
a′ka
′
ia
′
j

)2
,

(5.128)

with ∆p(a′) = c
(m+1)
0 +

l∑
j=1

a′jc
(m+1)
j +

1

2
γ−1

l∑
j=1

a′1a
′
jc

(ρ)
j ,

with nonlinear conjugate gradients.
The creation of an initial guess a′(0) for the minimization of f is entirely sim-

ilar to the unpreconditioned case. Denoting b
′(1)
j = 〈F (x̃(m+1), p̃(m+1)), φ

(m+1)
j 〉

(∀j = 1, . . . , l), values

a′(e)s = sgn(a′(r)s ) min

|a′(r)s |,
√
|λ(m+1)
s |, |b′(1)

s |

max
(
|c(t)|, ‖y(1)(m+1)

⊥ ‖P̃−1

)
 ,

∀j 6= s : a
′(e)
j = sgn(a

′(r)
j ) min

(
|a′(r)j |, |a

′(e)
s |
)
,

are calculated, with a
′(r)
j , a

′(p)
1 , . . . , a

′(p)
l , a

′(t)
1 , . . . , a

′(t)
l and c(t) calculated as

before (using the approximate null vectors φ
(m+1)
1 , . . . , φ

(m+1)
l of the precondi-
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tioned Jacobian P (x̃(m+1), p̃(m+1))Fx(x̃(m+1), p̃(m+1))). A base transformation
is again executed:

∀j = 1, . . . , l : a
′(b)
j =

l∑
i=1

Dija
′(e)
i .

With c(q) defined as for the unpreconditioned case, χ is calculated by

χ = min

1,
|λ(m+1)
s |
|c(q)|

,
|λ(m+1)
s ||a′(e)s |
c(q)2

,
|b′(1)
s |

|c(q)|max
(
|c(t)|, ‖y(1)(m+1)

⊥ ‖P̃−1

)
 .

Defining κ̃ by (5.120), with Ckj =
∑l
i=1Dijλ

(m+1)
i Dik (∀j, k = 1, . . . , l), values

a
′(q)
1 , . . . , a

′(q)
l are again calculated by

∀j = 1, . . . , l : a
′(q)
j = κ̃a

′(b)
j .

With ∆p(0) defined as in the unpreconditioned case, the guess a′(0) is eventually
constructed by application of

∀j = 1, . . . , l : a
′(0)
j = χa

′(q)
j + ∆p(0)a

′(t)
j . (5.129)

5.8 When is reduction justified?

In section 5.6 slow convergence of the split block Newton method (SBN) is
countered by extending the update vectors by additional parts ∆xz and ∆pz
(see (5.70) and (5.72)). This lead to the split block Newton method with extra
terms (SBNE), in which additional linear systems need to be solved.

Alternative parts ∆xρ and ∆pρ (see (5.114) and (5.116)) were derived in
section 5.7, these did not require any solutions of additional linear systems. The
method that uses these alternative parts was called the split block Newton
method with reduced terms (SBNR). If assumption 5.18 is valid, an update
with this alternative method should perform as well as an update with the one
derived in section 5.6. If this is not the case, convergence should be similar to
the normal split block Newton method (see section 5.5).

5.8.1 Derivation of a reduction criterion

To validate assumption 5.18, we will check whether a1, . . . , al satisfy the rela-
tion

∀i, j = 2, . . . , l : |aiaj | . max
i=1,...,l

∣∣∣∣∣∣
l∑

j=1

ajCij

∣∣∣∣∣∣ . (5.130)

For this purpose the value

κ = min

1,
maxi=1,...,l

∣∣∣∑l
j=1 â

′
jCkj

∣∣∣
maxi,j=2,...,l |â′iâ′j |

 , (5.131)
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with â′1, . . . , â
′
l defined as the arguments that minimize

f :Rl → R :

a′ →
l∑

j=1

b(1)
j + ∆p(a′)b

(2)
j +

l∑
k=1

a′kCjk +
1

2
c
(11)
j a′21 +

l∑
j=1

c
(1k)
j a′1a

′
j

2

+
(

∆p(a′)‖y(1)
⊥ ‖

)2

+

l∑
j=1

(
a′j‖y

(1)
⊥ ‖

)2

+ ∆p(a′)4 +

l∑
j=1

(
∆p(a′)a′j

)2
+

l∑
k=1

l∑
i=1

l∑
j=1

(
a′ka
′
ia
′
j

)2
,

with ∆p(a′) = c0 +

l∑
j=1

a′jcj +
1

2
γ−1

l∑
j=1

a′1a
′
jc

(ρ)
j ,

is approximated. The values ‖y(1)
⊥ ‖, c0, c1, . . . , cl, c

(ρ)
1 , . . . , c

(ρ)
l , b

(1)
1 , . . . , b

(1)
l ,

b
(2)
1 , . . . , b

(2)
l , c

(1k)
1 , . . . , c

(1k)
l (∀k = 1, . . . , l) and γ that appear in the function

f are defined as in section 5.7 (dropping the index (m+ 1)).
If κ ≈ 1, relation (5.130) is satisfied. An update with the SBNR method

is expected to perform as well as the SBNE one. For κ � 1, assumption 5.18
should not be made. In this case update vectors of the form (5.70) and (5.72)
should be used instead of (5.114) and (5.116).

5.8.2 The method in practice

To incorporate a criterion that checks whether the reduction of the terms is
valid in practice, we start each Newton iteration as if executing the SBNR

method, up to the calculation of a
′(b)
1 , . . . , a

′(b)
l . The value κ is then approx-

imated by κ̃, calculated from (5.120). If κ̃ ≈ 1, update vectors of the form
(5.114) and (5.116) are considered. If κ̃� 1, an update with (5.70) and (5.72)
will be performed.

Pseudo-code of the resulting method, which we call the split block Newton
method with mixed terms (SBNM), is given by algorithm 5.7 on page 164 in
appendix 5.10. Note that an update without additional terms is executed in
the first iteration.

Algorithm 5.7 is applied in example 5.24. Convergence is achieved in 6
Newton steps, 4 of these were executed with reduced terms. Compared to the
SBNE method, more Newton iterations are required to reach convergence. The
computational work is however strongly reduced since the total amount of
linear systems that need to be solved, is decreased.

Example 5.24. Consider the same set-up as in example 5.2. The SBNM
method is applied, yielding the residual plot in figure 5.10. After 6 Newton
iterations the residual norm converges (up to a tolerance of 10−12). 2 of the
6 iterations were executed with extra terms, in 4 iterations reduced ones were
used instead. �
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Figure 5.10: Residual plot of example 5.24. The SBNM method is applied to an
ill-conditioned nonlinear problem, where the partial Jacobian contains a three-
dimensional kernel in the searched solution. 4 Newton steps were executed with
reduced terms (illustrated by circles), 3 with extra terms (illustrated by stars).
The residual norm converges to approximately 10−12 after 6 iterations, which
is the attainable accuracy. Compared to figure 4.8 more iterations are required
to reach this value, but the total computational work is reduced.

Similar to the method without block elimination (see section 4.8), in the
current section the robustness of the SBNE method was combined with the
low computational cost of the SBNR one. The resulting algorithm is com-
putationally efficient and still prevents slow convergence caused by possible
ill-conditionedness of the partial Jacobian Fx(x̃(m+1), p̃(m+1)).

5.8.3 The preconditioned case

The preconditioned version of the SBNM method is derived similarly to the
unpreconditioned case. The value κ̃ used to check assumption 5.18 is still cal-
culated from (5.120), this time using the preconditioned versions for the values
C11, . . . , Cll.

5.9 Discussion on convergence

Though convergence of the split block Newton method with extra (SBNE) or
mixed (SBNM) terms generally behaves well in our applications, this is not
always the case. This is the case for example 5.25, where the SBNE method
converges slowly.

Example 5.25. A similar setting as for example 5.2 is considered: the same
equation H, inner product and preconditioner are used. The point (ψ(0), µ(0))
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Figure 5.11: Residual plot of example 5.25. The SBNM method is applied to
an ill-conditioned nonlinear problem, where the partial Jacobian contains a
three-dimensional kernel in the searched solution. The residual norm converges
to approximately 10−10 after 4 iterations. Further iterations show a very slow
decrease in residual norm, the attainable accuracy (10−12) is not reached in an
acceptable amount of Newton steps. Note that the same method is applied for
the residual plot of figure 5.8, where convergence up to the value 10−12 was
observed.

is chosen on the line between (ψ′(1), µ′(1)), a solution of (2.20) for µ′(1) = 1.06,
and (ψ′(2), µ′(2)), a solution for µ′(2) = 1.059. Both solutions lie on branch B
in figure 9.23 (see section 9.5.3). We choose the point (ψ(0), µ(0)) such that
µ(0) = 1.0583.

The SBNE method is applied, as an initial guess the point (ψ̃(0), µ(0)) is
used, with ψ̃(0) a small perturbation of ψ(0). The residual plot of this problem
is given by figure 5.11. The residual norms stagnate at a value of approximately
10−10 after 4 Newton iterations. �

Considering update vectors of the form (5.70) and (5.72), slow convergence
can be clarified by the bound

∀j = 1, . . . , l : |aj | .
√
|λs| (5.132)

on the values a1, . . . , al in the update vectors (see lemma 5.14). Since λs is
the eigenvalue of an approximate null vector, the values that can be chosen
for a1, . . . , al are limited. Slow convergence occurs if decreasing the residual
requires choices of a1, . . . , al with |aj | �

√
|λs| for a certain j ∈ {1, . . . , l}.

Similar to the methods without block elimination (see section 4.9), the
analysis of introducing additional parts to the update vectors can be extended
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to replace (5.132) with a less strict bound of the form

∀j = 1, . . . , l : |aj | . 3
√
|λs|. (5.133)

This extension is however not practical and requires an additional amount of
1
6 l(l + 1)(4l + 2) linear systems to be solved (see section 4.9). The analysis done
in sections 5.7 and 5.8 would become invalid as well.

Instead of further adjusting the update vectors, we will use the SBNM
method for our applications. Convergence problems are handled within the
applications themselves. For example, the Newton step length adaptation algo-
rithm (see section 6.6.2) will adjust its guesses when the Newton method does
not reach convergence within a specified amount of iterations.
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5.10 Appendix

The standard block Newton method

Algorithm 5.1 NewtonBlockStandard

Input mNew ∈ N, tolerance εNew ∈ R+
0 , functions F : Cn × R → Cn,

G : Cn × R → R, P : Cn × R → C(Cn), partial derivatives Fx, Fp, Gx, Gp,
inner product 〈·, ·〉, initial guesses x(0) ∈ Cn, p(0) ∈ R

Output Approximations x̃, p̃ for F (x, p) = 0, G(x, p) = 0

1: Define Fx, Gx, Fp, Gp by (5.2), (5.3), (5.4) and (5.5) if not specified
2: Set P : Cn × R→ C(Cn) : (x, p)→ I if not specified
3: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
4: x̃ = x(0)

5: p̃ = p(0)

6: rF = F (x̃, p̃)
7: rG = G(x̃, p̃)
8: i = 0
9: while i < mNew and

√
‖rF ‖2P (x̃,p̃) + r2

G > εNew do

10: i← i+ 1
11: Calculate y(1) by executing GMRES (algorithm 3.4) with A = Fx(x̃, p̃),

b = −rF , P = P (x̃, p̃) and given 〈·, ·〉
12: Calculate y(2) by executing GMRES (algorithm 3.4) with A = Fx(x̃, p̃),

b = Fp(x̃, p̃), P = P (x̃, p̃) and given 〈·, ·〉
13: ∆p = −rG−Gx(x̃,p̃)y(1)

Gp(x̃,p̃)−Gx(x̃,p̃)y(2)

14: ∆x = y(1) −∆py(2)

15: x̃← x̃+ ∆x
16: p̃← p̃+ ∆p
17: rF = F (x̃, p̃)
18: rG = G(x̃, p̃)
19: end while
20: Return x̃, p̃

The deflated block Newton method

Algorithm 5.2 NewtonBlockDeflated

Input mNew ∈ N, tolerance εNew ∈ R+
0 , functions F : Cn × R → Cn,

G : Cn × R → R, P : Cn × R → C(Cn), partial derivatives Fx, Fp, Gx, Gp,
inner product 〈·, ·〉, initial guesses x(0) ∈ Cn, p(0) ∈ R

Output Approximations x̃, p̃ for F (x, p) = 0, G(x, p) = 0

1: Define Fx, Gx, Fp, Gp by (5.2), (5.3), (5.4) and (5.5) if not specified
2: Set P : Cn × R→ C(Cn) : (x, p)→ I if not specified
3: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
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4: x̃ = x(0)

5: p̃ = p(0)

6: rF = F (x̃, p̃)
7: rG = G(x̃, p̃)
8: i = 0
9: while i < mNew and

√
‖rF ‖2P (x̃,p̃) + r2

G > εNew do

10: i← i+ 1
11: Initialize deflation matrix K ∈ Cn×l1 with l1 known null vectors
12: Calculate (L,W,U) by executing RitzRestart (algorithm 3.3) with A =

Fx(x̃, p̃), P = P (x̃, p̃) and given 〈·, ·〉 and K
13: U ←

(
K U

)
14: Calculate y(1) by executing GMRES (algorithm 3.4) with A = Fx(x̃, p̃),

b = −rF , P = P (x̃, p̃), K = U and given 〈·, ·〉
15: Calculate y(2) by executing GMRES (algorithm 3.4) with A = Fx(x̃, p̃),

b = Fp(x̃, p̃), P = P (x̃, p̃), K = U and given 〈·, ·〉
16: ∆p = −rG−Gx(x̃,p̃)y(1)

Gp(x̃,p̃)−Gx(x̃,p̃)y(2)

17: ∆x = y(1) −∆py(2)

18: x̃← x̃+ ∆x
19: p̃← p̃+ ∆p
20: rF = F (x̃, p̃)
21: rG = G(x̃, p̃)
22: end while
23: Return x̃, p̃

The block Newton method with line search (BNLS)

Algorithm 5.3 NewtonBlockLS

Input mNew ∈ N, tolerance εNew ∈ R+
0 , functions F : Cn × R → Cn,

G : Cn×R→ R, P : Cn×R→ C(Cn), partial derivatives Fx, Fp, Gx, Gp, Fxx,
inner product 〈·, ·〉, initial guesses x(0) ∈ Cn, p(0) ∈ R

Output Approximations x̃, p̃ for F (x, p) = 0, G(x, p) = 0

1: Define Fx, Gx, Fp, Gp by (5.2), (5.3), (5.4) and (5.5) if not specified
2: Define Fxx by (5.6) if not specified
3: Set P : Cn × R→ C(Cn) : (x, p)→ I if not specified
4: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
5: x̃ = x(0)

6: p̃ = p(0)

7: rF = F (x̃, p̃)
8: rG = G(x̃, p̃)
9: i = 0

10: while i < mNew and
√
‖rF ‖2P (x̃,p̃) + r2

G > εNew do

11: i← i+ 1
12: Calculate y(1) by executing GMRES (algorithm 3.4) with A = Fx(x̃, p̃),

b = −rF , P = P (x̃, p̃) and given 〈·, ·〉
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13: Calculate y(2) by executing GMRES (algorithm 3.4) with A = Fx(x̃, p̃),
b = Fp(x̃, p̃), P = P (x̃, p̃) and given 〈·, ·〉

14: ∆x = y(1) − −rG−Gx(x̃,p̃)y(1)

Gp(x̃,p̃)−Gx(x̃,p̃)y(2)
y(2)

15: c0 = −rG
Gp(x̃,p̃)

16: c1 = −Gx(x̃,p̃)∆x
Gp(x̃,p̃)

17: Define g, g′ and g′′ as in (5.33), (5.34) and (5.35)

18:
γ = min(2‖∆x‖−2

P (x̃,p̃)−1 ,|c1|−1‖∆x‖−1
P (x̃,p̃)−1 , 2|c1|−2,

c0|−1‖∆x‖−1
P (x̃,p̃)−1 , |c0|−1|c1|−1)

19: ξ(0) = min
(
1, ‖rF ‖P (x̃,p̃)γ

)
20: Calculate ξ̃ by executing NCG (algorithm 3.5) with a(0) = ξ(0) and given

g
21: x̃← x̃+ ξ∆x
22: p̃← p̃+ c0 + ξc1
23: rF = F (x̃, p̃)
24: rG = G(x̃, p̃)
25: end while
26: Return x̃, p̃

The split block Newton method (SBN)

Algorithm 5.4 NewtonBlockSplit

Input mNew ∈ N, tolerance εNew ∈ R+
0 , functions F : Cn × R → Cn,

G : Cn×R→ R, P : Cn×R→ C(Cn), partial derivatives Fx, Fp, Gx, Gp, Fxx,
Fxp, Fpp, inner product 〈·, ·〉, initial guesses x(0) ∈ Cn, p(0) ∈ R

Output Approximations x̃, p̃ for F (x, p) = 0, G(x, p) = 0

1: Define Fx, Gx, Fp, Gp by (5.2), (5.3), (5.4) and (5.5) if not specified
2: Define Fxx, Fxp, Fpp by (5.6), (5.7) and (5.8) if not specified
3: Set P : Cn × R→ C(Cn) : (x, p)→ I if not specified
4: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
5: x̃ = x(0)

6: p̃ = p(0)

7: rF = F (x̃, p̃)
8: rG = G(x̃, p̃)
9: i = 0

10: while i < mNew and
√
‖rF ‖2P (x̃,p̃) + r2

G > εNew do

11: i← i+ 1
12: Initialize deflation matrix K ∈ Cn×l1 with l1 known null vectors
13: Calculate (L,W,U) by executing RitzRestart (algorithm 3.3) with A =

Fx(x̃, p̃), P = P (x̃, p̃) and given 〈·, ·〉 and K
14: U ←

(
K U

)
15: W ←

(
P (x̃, p̃)K W

)
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16: Calculate y
(1)
⊥ by executing GMRES (algorithm 3.4) with A = Fx(x̃, p̃),

b = −rF , P = P (x̃, p̃), K = U and given 〈·, ·〉
17: rp = Fp(x̃, p̃)

18: Calculate y
(2)
⊥ by executing GMRES (algorithm 3.4) with A = Fx(x̃, p̃),

b = rp, P = P (x̃, p̃), K = U and given 〈·, ·〉
19: c0 =

−rG−Gx(x̃,p̃)y
(1)
⊥

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

20: for j = 1, . . . , l do

21: b
(1)
j = 〈rF ,Wj〉

22: b
(2)
j = 〈rp,Wj〉

23: cj =
−Gx(x̃,p̃)Wj

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

24: end for
25: Calculate a′(0) by formula (5.64) (with λj = Ljj and φj = Wj)
26: Define f by (5.63) (with λj = Ljj)
27: Calculate ã(0) by executing NCG (algorithm 3.5) with g = f and a(0) =

a′(0)

28: Define g, g′ and g′′ by (5.60), (5.61) and (5.62) (with φj = Wj)
29: Calculate ã by executing NCG (algorithm 3.5) with a(0) = ã(0) and given

g
30: ∆p = c0 +

∑l
j=1 ãjcj

31: ∆x = y
(1)
⊥ −∆py

(2)
⊥ +

∑l
j=1 ãjWj

32: x̃← x̃+ ∆x
33: p̃← p̃+ ∆p
34: rF = F (x̃, p̃)
35: rG = G(x̃, p̃)
36: end while
37: Return x̃, p̃

The split block Newton method with extra terms (SBNE)

Algorithm 5.5 NewtonBlockExtra

Input mNew ∈ N, tolerance εNew ∈ R+
0 , functions F : Cn × R → Cn,

G : Cn×R→ R, P : Cn×R→ C(Cn), partial derivatives Fx, Fp, Gx, Gp, Fxx,
Fxp, Fpp, inner product 〈·, ·〉, initial guesses x(0) ∈ Cn, p(0) ∈ R

Output Approximations x̃, p̃ for F (x, p) = 0, G(x, p) = 0

1: Define Fx, Gx, Fp, Gp by (5.2), (5.3), (5.4) and (5.5) if not specified
2: Define Fxx, Fxp, Fpp by (5.6), (5.7) and (5.8) if not specified
3: Set P : Cn × R→ C(Cn) : (x, p)→ I if not specified
4: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
5: x̃ = x(0)

6: p̃ = p(0)

7: rF = F (x̃, p̃)
8: rG = G(x̃, p̃)
9: i = 0
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10: while i < mNew and
√
‖rF ‖2P (x̃,p̃) + r2

G > εNew do

11: i← i+ 1
12: Initialize deflation matrix K ∈ Cn×l1 with l1 known null vectors
13: Calculate (L,W,U) by executing RitzRestart (algorithm 3.3) with A =

Fx(x̃, p̃), P = P (x̃, p̃) and given 〈·, ·〉 and K
14: U ←

(
K U

)
15: W ←

(
P (x̃, p̃)K W

)
16: Calculate y

(1)
⊥ by executing GMRES (algorithm 3.4) with A = Fx(x̃, p̃),

b = −rF , P = P (x̃, p̃), K = U and given 〈·, ·〉
17: rp = Fp(x̃, p̃)

18: Calculate y
(2)
⊥ by executing GMRES (algorithm 3.4) with A = Fx(x̃, p̃),

b = rp, P = P (x̃, p̃), K = U and given 〈·, ·〉
19: for j = 1, . . . , l do
20: for k = 1, . . . , j do
21: vjk = Fxx(x̃, p̃)WjWk

22: Calculate zjk by executing GMRES (algorithm 3.4) with A =
Fx(x̃, p̃), b = vjk, P = P (x̃, p̃), K = U and given 〈·, ·〉

23: zkj = zjk
24: for q = 1, . . . , l do

25: c
(jk)
q = 〈vjk,Wq〉

26: c
(kj)
q = c

(jk)
q

27: end for
28: end for
29: end for

30: c0 =
−rG−Gx(x̃,p̃)y

(1)
⊥

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

31: for j = 1, . . . , l do

32: b
(1)
j = 〈rF ,Wj〉

33: b
(2)
j = 〈rp,Wj〉

34: cj =
−Gx(x̃,p̃)Wj

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

35: for k = 1, . . . , j do

36: c
(z)
jk =

−Gx(x̃,p̃)zij

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

37: c
(z)
kj = c

(z)
jk

38: end for
39: end for
40: Calculate a′(0) by formula (5.86) (with λj = Ljj and φj = Wj)
41: Define f by (5.85) (with λj = Ljj)
42: Calculate ã(0) by executing NCG (algorithm 3.5) with g = f and a(0) =

a′(0)

43: for j = 1, . . . , l do
44: for k = 1, . . . , j do

45: α
(0)
jk = − 1

2 ã
(0)
j ã

(0)
k

46: α
(0)
kj = α

(0)
jk

47: end for
48: end for
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49: Define g, g′ and g′′ by (5.82), (5.83) and (5.84) (with φj = Wj)
50: Calculate (ã, α̃) by executing NCG (algorithm 3.5) with a(0) =

(ã(0), α(0)) and given g

51: ∆p = c0 +
∑l
j=1 ãjcj +

∑l
i=1

∑l
j=1 α̃ijc

(z)
ij

52: ∆x = y
(1)
⊥ −∆py

(2)
⊥ +

∑l
j=1 ãjWj +

∑l
i=1

∑l
j=1 α̃ijzij

53: x̃← x̃+ ∆x
54: p̃← p̃+ ∆p
55: rF = F (x̃, p̃)
56: rG = G(x̃, p̃)
57: end while
58: Return x̃, p̃

The split block Newton method with reduced terms (SBNR)

Algorithm 5.6 NewtonBlockReduced

Input mNew ∈ N, tolerance εNew ∈ R+
0 , functions F : Cn × R → Cn,

G : Cn×R→ R, P : Cn×R→ C(Cn), partial derivatives Fx, Fp, Gx, Gp, Fxx,
Fxp, Fpp, inner product 〈·, ·〉, initial guesses x(0) ∈ Cn, p(0) ∈ R

Output Approximations x̃, p̃ for F (x, p) = 0, G(x, p) = 0

1: Define Fx, Gx, Fp, Gp by (5.2), (5.3), (5.4) and (5.5) if not specified
2: Define Fxx, Fxp, Fpp by (5.6), (5.7) and (5.8) if not specified
3: Set P : Cn × R→ C(Cn) : (x, p)→ I if not specified
4: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
5: x̃ = x(0)

6: p̃ = p(0)

7: rF = F (x̃, p̃)
8: rG = G(x̃, p̃)
9: i = 0

10: while i < mNew and
√
‖rF ‖2P (x̃,p̃) + r2

G > εNew do

11: i← i+ 1
12: Initialize deflation matrix K ∈ Cn×l1 with l1 known null vectors
13: Calculate (L,W,U) by executing RitzRestart (algorithm 3.3) with A =

Fx(x̃, p̃), P = P (x̃, p̃) and given 〈·, ·〉 and K
14: U ←

(
K U

)
15: W ←

(
P (x̃, p̃)K W

)
16: Calculate y

(1)
⊥ by executing GMRES (algorithm 3.4) with A = Fx(x̃, p̃),

b = −rF , P = P (x̃, p̃), K = U and given 〈·, ·〉
17: rp = Fp(x̃, p̃)

18: Calculate y
(2)
⊥ by executing GMRES (algorithm 3.4) with A = Fx(x̃, p̃),

b = rp, P = P (x̃, p̃), K = U and given 〈·, ·〉
19: if i = 1 then
20: W̆ = W
21: Ŭ = U
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22: c0 =
−rG−Gx(x̃,p̃)y

(1)
⊥

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

23: for j = 1, . . . , l do

24: b
(1)
j = 〈rF ,Wj〉

25: b
(2)
j = 〈rp,Wj〉

26: cj =
−Gx(x̃,p̃)Wj

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

27: end for
28: Calculate a′(0) by formula (5.64) (with λj = Ljj and φj = Wj)
29: Define f by (5.63) (with λj = Ljj)
30: Calculate ã(0) by executing NCG (algorithm 3.5) with g = f and

a(0) = a′(0)

31: Define g, g′ and g′′ by (5.60), (5.61) and (5.62) (with φj = Wj)
32: Calculate ã by executing NCG (algorithm 3.5) with a(0) = ã(0) and

given g
33: ∆p = c0 +

∑l
j=1 ãjcj

34: ∆x = y
(1)
⊥ −∆py

(2)
⊥ +

∑l
j=1 ãjWj

35: else
36: W̊ =

∑l
j=1〈Uj ,∆x‖〉Wj

37: Ů =
∑l
j=1〈Uj ,∆x‖〉Uj

38: β =

√
|〈W̊ , Ů〉|

39: W̆1 = β−1W̊
40: Ŭ1 = β−1Ů
41: Create W̆2, . . . , W̆l and Ŭ2, . . . , Ŭl as linear combinations of respec-

tively W1, . . . ,Wl and U1, . . . , Ul such that 〈Ŭj , W̆k〉 = δjk and P (x̃, p̃)Ŭj =

W̆j for each j, k = 1, . . . , l
42: for j = 1, . . . , l do
43: for k = 1, . . . , l do
44: Djk = 〈W̆k, Uj〉
45: end for
46: end for
47: C = DTLD
48: for j = 1, . . . , l do
49: ρ′j = W̆j

50: for k = 1, . . . , l do
51: ρ′j ← ρ′j − Ŵk〈ρ′j , Ûk〉
52: end for
53: for k = 1, . . . , l do
54: ρ′j ← ρ′j −Wk〈ρ′j , Uk〉
55: end for
56: end for

57: c0 =
−rG−Gx(x̃,p̃)y

(1)
⊥

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

58: for j = 1, . . . , l do

59: b
(1)
j = 〈rF , W̆j〉

60: b
(2)
j = 〈rp, W̆j〉
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61: cj =
−Gx(x̃,p̃)W̆j

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

62: c
(ρ)
j =

−Gx(x̃,p̃)ρ′j

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

63: vj = Fxx(x̃, p̃)W̆1W̆j

64: for k = 1, . . . , l do

65: c
(1j)
k = 〈vj , W̆k〉

66: end for
67: end for
68: Calculate a′(0) by formula (5.129) (with λj = Ljj and φj = Wj)
69: Define f by (5.128) (with λj = Ljj)
70: Calculate ã(0) by executing NCG (algorithm 3.5) with g = f and

a(0) = a′(0)

71: for j = 1, . . . , l do

72: α
(0)
j = − 1

2 ã
(0)
1 ã

(0)
j

73: end for
74: Define g, g′ and g′′ by (5.125), (5.126) and (5.127) (with φj = Wj)
75: Calculate (ã, α̃) by executing NCG (algorithm 3.5) with a(0) =

(ã(0), α(0)) and given g

76: ∆p = c0 +
∑l
j=1 ãjcj − γ−1

∑l
j=1 α̃jc

(ρ)
j

77: ∆x = y
(1)
⊥ −∆py

(2)
⊥ +

∑l
j=1 ãjW̆j − γ−1

∑l
j=1 α̃jρ

′
j

78: end if
79: x̃← x̃+ ∆x
80: p̃← p̃+ ∆p
81: rF = F (x̃, p̃)
82: rG = G(x̃, p̃)
83: Û ← U
84: Ŵ ←W
85: ∆x‖ =

∑l
j=1 ãjW̆j

86: γ ←
√
〈
∑l
j=1 ãjW̆j ,

∑l
j=1 ãjŬj〉

87: end while
88: Return x̃, p̃

The split block Newton method with mixed terms (SBNM)

Algorithm 5.7 NewtonBlockMixed

Input mNew ∈ N, tolerances εNew, εκ̃ ∈ R+
0 , functions F : Cn × R → Cn,

G : Cn×R→ R, P : Cn×R→ C(Cn), partial derivatives Fx, Fp, Gx, Gp, Fxx,
Fxp, Fpp, inner product 〈·, ·〉, initial guesses x(0) ∈ Cn, p(0) ∈ R

Output Approximations x̃, p̃ for F (x, p) = 0, G(x, p) = 0

1: Define Fx, Gx, Fp, Gp by (5.2), (5.3), (5.4) and (5.5) if not specified
2: Define Fxx, Fxp, Fpp by (5.6), (5.7) and (5.8) if not specified
3: Set P : Cn × R→ C(Cn) : (x, p)→ I if not specified
4: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
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5: x̃ = x(0)

6: p̃ = p(0)

7: rF = F (x̃, p̃)
8: rG = G(x̃, p̃)
9: i = 0

10: while i < mNew and
√
‖rF ‖2P (x̃,p̃) + r2

G > εNew do

11: i← i+ 1
12: Initialize deflation matrix K ∈ Cn×l1 with l1 known null vectors
13: Calculate (L,W,U) by executing RitzRestart (algorithm 3.3) with A =

Fx(x̃, p̃), P = P (x̃, p̃) and given 〈·, ·〉 and K
14: U ←

(
K U

)
15: W ←

(
P (x̃, p̃)K W

)
16: Calculate y

(1)
⊥ by executing GMRES (algorithm 3.4) with A = Fx(x̃, p̃),

b = −rF , P = P (x̃, p̃), K = U and given 〈·, ·〉
17: rp = Fp(x̃, p̃)

18: Calculate y
(2)
⊥ by executing GMRES (algorithm 3.4) with A = Fx(x̃, p̃),

b = rp, P = P (x̃, p̃), K = U and given 〈·, ·〉
19: if i = 1 then
20: W̆ = W
21: Ŭ = U

22: c0 =
−rG−Gx(x̃,p̃)y

(1)
⊥

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

23: for j = 1, . . . , l do

24: b
(1)
j = 〈rF ,Wj〉

25: b
(2)
j = 〈rp,Wj〉

26: cj =
−Gx(x̃,p̃)Wj

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

27: end for
28: Calculate a′(0) by formula (5.64) (with λj = Ljj and φj = Wj)
29: Define f by (5.63) (with λj = Ljj)
30: Calculate ã(0) by executing NCG (algorithm 3.5) with g = f and

a(0) = a′(0)

31: Define g, g′ and g′′ by (5.60), (5.61) and (5.62) (with φj = Wj)
32: Calculate ã by executing NCG (algorithm 3.5) with a(0) = ã(0) and

given g
33: ∆p = c0 +

∑l
j=1 ãjcj

34: ∆x = y
(1)
⊥ −∆py

(2)
⊥ +

∑l
j=1 ãjWj

35: else
36: W̊ =

∑l
j=1〈Uj ,∆x‖〉Wj

37: Ů =
∑l
j=1〈Uj ,∆x‖〉Uj

38: β =

√
|〈W̊ , Ů〉|

39: W̆1 = β−1W̊
40: Ŭ1 = β−1Ů
41: Create W̆2, . . . , W̆l and Ŭ2, . . . , Ŭl as linear combinations of respec-

tively W1, . . . ,Wl and U1, . . . , Ul such that 〈Ŭj , W̆k〉 = δjk and P (x̃, p̃)Ŭj =

W̆j for each j, k = 1, . . . , l
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42: for j = 1, . . . , l do
43: for k = 1, . . . , l do
44: Djk = 〈W̆k, Uj〉
45: end for
46: end for
47: C = DTLD
48: Calculate κ̃ by formula (5.120) (with λj = Ljj and φj = Wj)
49: if κ̃ > εκ̃ then
50: for j = 1, . . . , l do
51: ρ′j = W̆j

52: for k = 1, . . . , l do
53: ρ′j ← ρ′j − Ŵk〈ρ′j , Ûk〉
54: end for
55: for k = 1, . . . , l do
56: ρ′j ← ρ′j −Wk〈ρ′j , Uk〉
57: end for
58: end for

59: c0 =
−rG−Gx(x̃,p̃)y

(1)
⊥

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

60: for j = 1, . . . , l do

61: b
(1)
j = 〈rF , W̆j〉

62: b
(2)
j = 〈rp, W̆j〉

63: cj =
−Gx(x̃,p̃)W̆j

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

64: c
(ρ)
j =

−Gx(x̃,p̃)ρ′j

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

65: vj = Fxx(x̃, p̃)W̆1W̆j

66: for k = 1, . . . , l do

67: c
(1j)
k = 〈vj , W̆k〉

68: end for
69: end for
70: Calculate a′(0) by formula (5.129) (with λj = Ljj and φj = Wj)
71: Define f by (5.128) (with λj = Ljj)
72: Calculate ã(0) by executing NCG (algorithm 3.5) with g = f and

a(0) = a′(0)

73: for j = 1, . . . , l do

74: α
(0)
j = − 1

2 ã
(0)
1 ã

(0)
j

75: end for
76: Define g, g′ and g′′ by (5.125), (5.126) and (5.127) (with φj = Wj)
77: Calculate (ã, α̃) by executing NCG (algorithm 3.5) with a(0) =

(ã(0), α(0)) and given g

78: ∆p = c0 +
∑l
j=1 ãjcj − γ−1

∑l
j=1 α̃jc

(ρ)
j

79: ∆x = y
(1)
⊥ −∆py

(2)
⊥ +

∑l
j=1 ãjW̆j − γ−1

∑l
j=1 α̃jρ

′
j

80: else
81: for j = 1, . . . , l do
82: for k = 1, . . . , j do
83: vjk = Fxx(x̃, p̃)WjWk
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84: Calculate zjk by executing GMRES (algorithm 3.4) with A =
Fx(x̃, p̃), b = vjk, P = P (x̃, p̃), K = U and given 〈·, ·〉

85: zkj = zjk
86: for q = 1, . . . , l do

87: c
(jk)
q = 〈vjk,Wq〉

88: c
(kj)
q = c

(jk)
q

89: end for
90: end for
91: end for

92: c0 =
−rG−Gx(x̃,p̃)y

(1)
⊥

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

93: for j = 1, . . . , l do

94: b
(1)
j = 〈rF ,Wj〉

95: b
(2)
j = 〈rp,Wj〉

96: cj =
−Gx(x̃,p̃)Wj

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

97: for k = 1, . . . , j do

98: c
(z)
jk =

−Gx(x̃,p̃)zij

Gp(x̃,p̃)−Gx(x̃,p̃)y
(2)
⊥

99: c
(z)
kj = c

(z)
jk

100: end for
101: end for
102: Calculate a′(0) by formula (5.86) (with λj = Ljj and φj = Wj)
103: Define f by (5.85) (with λj = Ljj)
104: Calculate ã(0) by executing NCG (algorithm 3.5) with g = f and

a(0) = a′(0)

105: for j = 1, . . . , l do
106: for k = 1, . . . , j do

107: α
(0)
jk = − 1

2 ã
(0)
j ã

(0)
k

108: α
(0)
kj = α

(0)
jk

109: end for
110: end for
111: Define g, g′ and g′′ by (5.82), (5.83) and (5.84) (with φj = Wj)
112: Calculate (ã, α̃) by executing NCG (algorithm 3.5) with a(0) =

(ã(0), α(0)) and given g

113: ∆p = c0 +
∑l
j=1 ãjcj +

∑l
i=1

∑l
j=1 α̃ijc

(z)
ij

114: ∆x = y
(1)
⊥ −∆py

(2)
⊥ +

∑l
j=1 ãjWj +

∑l
i=1

∑l
j=1 α̃ijzij

115: end if
116: end if
117: x̃← x̃+ ∆x
118: p̃← p̃+ ∆p
119: rF = F (x̃, p̃)
120: rG = G(x̃, p̃)
121: Û ← U
122: Ŵ ←W
123: ∆x‖ =

∑l
j=1 ãjW̆j
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124: γ ←
√
〈
∑l
j=1 ãjW̆j ,

∑l
j=1 ãjŬj〉

125: end while
126: Return x̃, p̃
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CHAPTER 6
Calculation of solution curves

“I’m not crazy. My mother had me tested.”

– Sheldon Cooper –
The Big Bang Theory

Chapter highlights:

• We review the theoretical existence of solution curves, and extend
the theory for dynamical systems with (continuous) symmetry.

• We explain how a solution curve is approximated by the pseudo-
arclength continuation algorithm, and provide a technique to
counter the false reversion that might occur for systems with
continuous symmetries.

• We show how bifurcation points are detected along the curve, and
provide two strategies to approximate these points.

• We discuss how bifurcation points are used to simplify the prob-
lem of determining the physical stability of equilibria.

• The results in this chapter are mainly based on the following
references: [3, 10, 48, 62, 32, 72].

6.1 Introduction

With the Newton methods described in chapter 4, it is possible to calculate
steady states of physical systems. For given, fixed values of the physical pa-
rameters, the methods approximate the solutions of a steady state equation
F(ψ, µ)=0 (for a given F : Cn × R→ Cn, n ∈ N).

We are however not necessarily interested in the solutions of these equations
themselves, but rather how these steady states change when certain physical
parameters are perturbed. Based on the implicit function theorem, these de-
pendencies are described by continuous solution curves.
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Definition 6.1 (Solution curve). Given an interval I ⊂ R and functions
F : Cn × R→ Cn, ψ : I → Cn and µ : I → R. We call (ψ(s), µ(s)) a solu-
tion curve of F if

∀s ∈ I : F(ψ(s), µ(s)) = 0.

The solution curve is continuous if both ψ and µ are.

The effect on the steady state ψ of perturbing the physical parameter µ,
is examined by varying the value s in above definition. In practice solution
curves will be approximated by the pseudo-arclength continuation algorithm,
which provides a finite set of points (ψ(0), µ(0)), (ψ(1), µ(1)), (ψ(2), µ(2)), . . . that
belong to the curve. The block Newton methods derived in chapter 5 will form
an essential part of this algorithm.

This chapter will focus on the construction of solution curves, as well as the
calculation of bifurcation points.

Definition 6.2 (Bifurcation point). Given a function F : Cn × R → Cn :
(ψ, µ)→ F(ψ, µ). A point (ψ(b), µ(b)) ∈ Cn ×R is called a bifurcation point of
F if Fψ(ψ(b), µ(b)) contains an eigenvalue with zero real part:

∃φ ∈ Cn, λ ∈ R : Fψ(ψ(b), µ(b))φ = λφ,Re(λ) = 0.

Bifurcation points have multiple uses: they are for example essential when
considering automatic exploration techniques (see chapter 7), and also mark
transitions in physical stability of steady states.

For the applications described in chapter 2, the partial derivatives Fψ are
self-adjoint with respect to a provided inner product. As a consequence, defini-
tion 6.2 simplifies: a point (ψ(b), µ(b)) is a bifurcation point if Fψ(ψ(b), µ(b)) is
singular. As discussed in chapter 5, this property complicates the application
of Newton methods.

In this chapter we will consider a general (nonlinear) function

F : Cn × R→ Cn : (ψ, µ)→ F(ψ, µ),

with a Hermitian partial Jacobian Fψ. The pseudo-arclength continuation al-
gorithm is derived, and methods to calculate bifurcation points of F are pro-
vided. The chapter ends with one of the applications of bifurcation points: the
determination of physical stability of steady states along a solution curve.

6.2 The implicit function theorem

The implicit function theorem (IFT) guarantees the existence of solution curves
(see definition 6.1) under certain conditions.

Theorem 6.3 (Implicit function theorem [59, 62, 32]). Let F : Cn×R→ Cn :
(ψ, µ)→ F(ψ, µ) and (ψ(0), µ(0)) ∈ Cn × R satisfy:

• F(ψ(0), µ(0)) = 0.

• Fψ(ψ(0), µ(0)) is nonsingular with bounded inverse.
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• F and Fψ are locally Lipschitz continuous in Sρ((ψ
(0), µ(0))) for a certain

ρ ∈ R+
0 .

Then there exists δ ∈ R with 0 < δ ≤ ρ and an unique function ψ(i) :
Sδ(µ

(0)) → Cn that is continuous on Sδ(µ
(0)) with ψ(i)(µ(0)) = ψ(0) such

that
∀µ ∈ Sδ(µ(0)) : F(ψ(i)(µ), µ) = 0.

Proof. See Doedel [32].

The applications considered in chapter 2 satisfy the third condition of the-
orem 6.3 for any point (ψ(0), µ(0)) ∈ Cn × R. The implicit function theorem is
applicable for each (ψ(0), µ(0)) that satisfies F(ψ(0), µ(0)) = 0 and is not a bi-
furcation of the equation. Given such a point, it states that an implicit function
of the form

ψ(i) : Sδ(µ
(0))→ Cn : µ→ ψ(i)(µ) (6.1)

exists such that (ψ(i)(µ), µ) is a zero of F for each µ ∈ Sδ(µ(0)). The value δ is
chosen sufficiently small such that no bifurcation points appear in (ψ(i)(µ), µ).
Note that the IFT can be reapplied to each point (ψ(i)(µ), µ) for µ ∈ Sδ(µ(0)).
By applying the theorem multiple times, functions (6.1) are combined to create
an implicit function of the form

ψ(i) :]δ1, δ2[→ Cn : µ→ ψ(i)(µ), (6.2)

with δ1, δ2 ∈ R+
0 and ψ(i) continuous. If the domain is finite, it is contained

between two values that yield bifurcation points. The interval ]δ1, δ2[ consists
of an union of intervals of the form Sδ(µ

(0)), for certain values of δ ∈ R+
0 and

µ(0) ∈ R. If |δ1| 6=∞, |δ2| 6=∞, the points lim
µ→δ1

(ψ(i)(µ), µ) and lim
µ→δ2

(ψ(i)(µ), µ)

are bifurcations of the equation. Note that multiple functions of the form (6.2)
can exist, depending on the point (ψ(0), µ(0)) used for the construction.

Segments of solution curves (ψ(s), µ(s)) are created from these functions
by defining

ψ :]0, 1[→ Cn : s→ ψ(i)(µ(s)),

µ :]0, 1[→ R : s→ sδ2 + (1− s)δ1.
(6.3)

Theorem 6.4 analyses the continuous differentiability of these segments.

Theorem 6.4. Let F : Cn × R → Cn : (ψ, µ) → F(ψ, µ) and (ψ(0), µ(0)) ∈
Cn × R satisfy the conditions of theorem 6.4. If the partial derivative Fµ is
continuous in Sρ((ψ

(0), µ(0))), then the function ψ(i), defined by (6.1), has a
continuous derivative on Sδ(µ

(0)).

Proof. See Doedel [32].

The extra condition given in theorem 6.4 is satisfied by the considered
applications of chapter 2 as well. The implicit functions implied by the IFT
will always be continuously differentiable. As a consequence, each point on a
solution curve segment (defined by (6.3)) has got an unique tangent direction.
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Definition 6.5. Consider a curve segment of the form (6.3). The tangent
direction in a point (ψ(s), µ(s)) (for a certain s ∈]0, 1[) is defined as (ψ̇(s), µ̇(s)),
with

ψ̇ :]0, 1[→ Cn : s→ dψ(i)(µ(s))

dµ
,

µ̇ :]0, 1[→ R : s→ 1.

Every steady state of F that is not a bifurcation, belongs to a single curve
segment of the form (6.3). Bifurcation points are still excluded.

Definition 6.6 (Isolated bifurcation point). Given a function F : Cn × R →
Cn : (ψ, µ)→ F(ψ, µ) and a bifurcation point (ψ(b), µ(b)) ∈ Cn × R of F . The
point (ψ(b), µ(b)) is called isolated if there exists a ρ ∈ R+

0 such that (ψ(b), µ(b))
is the unique bifurcation point in Sρ((ψ

(b), µ(b))).

To include isolated bifurcation points, we will construct solution curves by
combining several segments. Two segments, denoted by (ψ(1)(s), µ(1)(s)) and
(ψ(2)(s), µ(2)(s)) with

ψ(1) :]0, 1[→ Cn : s→ ψ(i)(µ(1)(s)),

ψ(2) :]0, 1[→ Cn : s→ ψ(i)(µ(2)(s)),

µ(1) :]0, 1[→ R : s→ sδ
(1)
2 + (1− s)δ(1)

1 ,

µ(2) :]0, 1[→ R : s→ sδ
(2)
2 + (1− s)δ(2)

1 ,

are combined when ∃j, k ∈ {0; 1} such that

lim
s→j

(ψ(1)(s), µ(1)(s)) = lim
s→k

(ψ(2)(s), µ(2)(s)),

lim
s→j

(ψ̇(1)(s), µ̇(1)(s)) = lim
s→k

(ψ̇(2)(s), µ̇(2)(s)).

In this case the combined segment becomes (ψ(s), µ(s)), defined by

ψ :]0, 1[→ Cn : s→ lim
s′→s

ψ(i)(µ(s′)),

µ :]0, 1[→ R : s→

{
2sδ2 + (1− 2s)δ1 for s ≤ 1

2 ,

(2s− 1)δ3 + (2− 2s)δ2 for s > 1
2 ,

with δ2 ∈ {δ(1)
1 , δ

(1)
2 , δ

(2)
1 , δ

(2)
2 } the common value of the intervals [δ

(1)
1 , δ

(1)
2 ] and

[δ
(2)
1 , δ

(2)
2 ], δ1 ∈ [δ

(1)
1 , δ

(1)
2 ] and δ3 ∈ [δ

(2)
1 , δ

(2)
2 ] such that δ1 6= δ2 and δ3 6= δ2.

Note that a bifurcation point is included for the value s = 1
2 . By repeating the

same argument, solution curves of the form

ψ :]0, 1[→ Cn : s→ ψ(s),

µ :]0, 1[→ R : s→ µ(s),
(6.4)

are eventually constructed. Isolated bifurcation points of F are not ignored,
but possibly belong to multiple curves.

The pseudo-arclength continuation algorithm (see section 6.4) will allow
us to approximate a single curve of the form (6.4) by a finite set of points
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(ψ(0), µ(0)), (ψ(1), µ(1)), (ψ(2), µ(2)), . . . . The curve being approximated depends
on the starting point of the algorithm.

Note that, when required, tangent directions along a solution curve (see
definition 6.5) will be normalized before use in further algorithms. In bifurcation
points these directions were not yet defined, it is possible for such points to
contain multiple. This will be one of the topics of chapter 7.

6.3 Complications due to symmetry

In section 6.2 we described the theoretical existence and construction of solution
curves, based on the implicit function theorem. In the current section we will
analyse the effect of underlying symmetries on the conditions of the IFT.

Definition 6.7 (Group action [48]). Consider a group G. A group action ϕ of
G on Cn is a function

ϕ : G× Cn → Cn : (g, ψ)→ ϕ(g, ψ)

that satisfies

• ∀ψ ∈ Cn : ϕ(e, ψ) = ψ, with e the identity element of G,

• ∀g, h ∈ G : ϕ(gh, ψ) = ϕ(g, ϕ(h, ψ)).

We will use the notation g(ψ) = ϕ(g, ψ).

Definition 6.8 (Group invariance of a function [47, 48]). A function F :
Cn ×R→ Cn : (ψ, µ)→ F(ψ, µ) is considered invariant under the actions of a
symmetry group G if

∀g ∈ G,ψ ∈ Cn, µ ∈ R : g (F(ψ, µ)) = F(g(ψ), µ).

Example 6.9. The Ginzburg-Landau equation (described in section 2.5) ap-
plied to a square sample, subject to a perpendicular homogeneous magnetic
field, is invariant under the actions of the group S1 × D4 (see proposition
2.3). �

In functions derived from a dynamical system, group invariances are typ-
ically implied by symmetries of the underlying sample. Note that symmetry
is broken when an asymmetric set of discretization points is chosen. The dis-
cretization of the sample should always preserve its symmetry.

As a consequence of definition 6.8, each solution (ψs, µs) of F(ψ, µ) = 0 induces
other solutions (g(ψs), µs) [47, 48]:

∀g ∈ G : F(g(ψs), µs) = g (F(ψs, µs)) = 0.

We distinguish two different kinds of symmetry: continuous and discrete.
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6. Calculation of solution curves

6.3.1 Continuous symmetry

When F is invariant under the actions of a finite-dimensional Lie group G, we
have

∀ψ,∈ Cn, ρ ∈ R+
0 : ∃g ∈ G, g 6= e : g(ψ) ∈ Sρ(ψ),

with e the identity element of G. Each solution (ψs, µs) of F(ψ, µ) = 0 belongs
to a continuous family of solutions

{(g(ψs), µs)|g ∈ G}

in this case. The continuous nature of such families induces a null vector for
the partial Jacobian Fψ(ψs, µs) [15, 92].

Example 6.10. The Ginzburg-Landau equation of example 6.9 is invariant
under the actions of the S1 symmetry group. Each solution (ψs, µs) belongs
to a family of solutions of the form {(θηψs, µs)|θη ∈ S1}. The vector iψs is a
null vector of Fψ(ψs, µs), induced by this continuous symmetry (see section
2.5.5). �

As a consequence, when F contains continuous symmetry, each solution
(ψs, µs) of F(ψ, µ) = 0 is in fact a (non-isolated) bifurcation point. The stan-
dard implicit function theorem (theorem 6.3) is not applicable in this case, due
to its second condition not being satisfied [26, 91]. We can however apply an
alternative version of this theorem.

Theorem 6.11 (G-invariant implicit function theorem [26, 80]). Let F :
Cn × R → Cn : (ψ, µ) → F(ψ, µ) be invariant under the actions of a finite-
dimensional Lie group G. Let F and (ψ(0), µ(0)) ∈ Cn × R satisfy:

• F(ψ(0), µ(0)) = 0.

• The kernel of Fψ(ψ(0), µ(0)) consists of only the null vector induced by
G.

• F and Fψ are locally Lipschitz continuous in Sρ((ψ
(0), µ(0))) for a certain

ρ ∈ R+
0 .

Then there exists δ ∈ R with 0 < δ ≤ ρ and a function ψ(i) : Sδ(µ
(0)) → Cn

that is continuous on Sδ(µ
(0)) with ψ(i)(µ(0)) = ψ(0) such that

∀µ ∈ Sδ(µ(0)) : F(ψ(i)(µ), µ) = 0.

The function ψ(i) has a continuous derivative on Sδ(µ
(0)) if Fµ is continuous

in Sρ((ψ
(0), µ(0))).

Proof. See [80]

Note that ψ(i) is not unique due to the continuous symmetry. We will choose
this function such that

∀s ∈]0, 1[:

〈
dψ(i)(µ(s))

dµ
, φ(s)

〉
= 0, (6.5)
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6.3. Complications due to symmetry

with φ(s) the null vector of Fψ(ψ(i)(s), µ(s)) induced by the continuous sym-
metry.

Given a continuous family of points

{(g(ψ(0)), µ(0))|g ∈ G}

with F(ψ(0), µ(0)) = 0, theorem 6.11 allows the construction of solution curve
families of the form {(g(ψ(s)), µ(s)) | g ∈ G} for certain ψ :]0, 1[→ Cn : s →
ψ(s) and µ :]0, 1[→ R : s→ µ(s). These curves are constructed analogously to
section 6.2.

In theory every solution of F(ψ, µ) = 0 is a bifurcation point when F
is invariant under the actions of a finite-dimensional Lie group G. The bi-
furcations solely induced by the continuous symmetry are however not useful
when analysing physical stability or applying automatic exploration techniques
(these techniques would lead to a different representative of the same solution
family). For only a limited amount of the bifurcations, the null vectors of the
Jacobian Fψ(ψ, µ) are not solely induced by the continuous symmetry. These
points will be considered as the actual bifurcation points of F in the remainder
of this chapter. For these bifurcations (ψ(b), µ(b)) definition 6.2 is satisfied, with
φ different from the null vector induced by G. Note that these points do not
satisfy the second condition of 6.11. They are added to the solution curves in
an analogue manner as in section 6.2.

The tangent direction in a point (ψ(s), µ(s)) of a solution curve family is
again defined as (ψ̇(s), µ̇(s)), with

ψ̇ :]0, 1[→ Cn : s→ dψ(i)(µ(s))

dµ
,

µ̇ :]0, 1[→ R : s→ 1,

(6.6)

where ψ(i) was defined such that (6.5) holds. Note that these tangent directions
are perpendicular to ones that lead to a representative of the same solution fam-
ily.

When solution curves are approximated in practice, it is sufficient to con-
sider a single representative for each family of solutions. Instead of approxi-
mating an entire solution curve family {(g(ψ(s)), µ(s)) | g ∈ G}, we will ig-
nore perturbations in the solutions caused by the symmetry group G. A finite
set of points (ψ(0), µ(0)), (ψ(1), µ(1)), (ψ(2), µ(2)), . . . will be calculated, that ap-
proximate solutions of the form (g(0)(ψ(s(0))), µ(s(0))), (g(1)(ψ(s(1))), µ(s(1))),
(g(2)(ψ(s(2))), µ(s(2))), . . . for s(0), s(1), s(2), · · · ∈]0, 1[ and arbitrary g(0), g(1),
g(2), · · · ∈ G. When bifurcation points are approximated, it will be sufficient
to calculate a single representative as well.

6.3.2 Discrete symmetry

No adjustments need to be made to the implicit function theorem when F
is invariant under the actions of a finite group G: the discrete symmetry of
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6. Calculation of solution curves

the equation does not induce a null vector for the partial Jacobian Fψ, the
conditions of the IFT hold for general solutions of F(ψ, µ) = 0. An example of
invariance under a finite group is given by the dihedral group D4 in example
6.9.

Discrete symmetries are important when automatic exploration techniques
are considered. Given the invariances of F , the equivariant branching lemma
predicts the symmetry of solution curves that emerge at bifurcation points.
The lemma and its applications are discussed in detail in section 7.5.

Similar to invariance under continuous symmetry, we will omit calculation
of solution curves that belong to the same group orbit.

Definition 6.12 (Group orbit [47, 48]). Given a function F : Cn × R→ Cn :
(ψ, µ) → F(ψ, µ), invariant under the actions of a finite group G. The group
orbit of a solution curve (ψ(s), µ(s)) of F is defined as

{(g(ψ(s)), µ) | g ∈ G}.

For a given solution curve (ψ(s), µ(s)), each element in its group orbit is
also a solution curve of F . In practice the calculation of curves in a same orbit
is prevented by comparing outgoing tangent directions in bifurcation points. If
multiple directions lead to curves in the same orbit, only a single one is used
for further continuation.

To check whether two (approximate) directions (ψ̇(1), µ̇(1)) and (ψ̇(2), µ̇(2))
lead to curves in the same orbit, we check if the value

min
g∈G

(∥∥∥g(ψ̇(1))− ψ̇(2)
∥∥∥2
)

+
(
µ̇(1) − µ̇(2)

)2

approximates zero. Note that similar comparisons, where the group symmetry
G needs to be accounted for, are used when comparing approximated (bifur-
cation) points of F . These comparisons are used when creating a bifurcation
diagram in practice (see section 8.2).

6.4 Numerical continuation

6.4.1 Pseudo-arclength continuation

In this section the pseudo-arclength continuation algorithm [10, 61, 62] is de-
scribed. It allows the approximation of a single solution curve (ψ(s), µ(s)) of
F by a finite set of points (ψ(0), µ(0)), (ψ(1), µ(1)), (ψ(2), µ(2)), . . . .

Starting from an initial solution (ψ(0), µ(0)) of F(ψ, µ) = 0 and a (nor-
malized) tangent direction (ψ̇(0), µ̇(0)) to the wanted solution curve, the next
point (ψ(1), µ(1)) is constructed with a predictor-corrector strategy. A predic-
tion (ψ̃(1), µ̃(1)) for the next point is constructed by perturbing the given point
in the direction of the tangent:

ψ̃(1) = ψ(0) + ∆sψ̇(0),

µ̃(1) = µ(0) + ∆sµ̇(0),
(6.7)
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with ∆s ∈ R+
0 a sufficiently small step size. We will use a variable step size

in practice, more details on how to choose this value are given in section 6.7.
The predicted point (ψ̃(1), µ̃(1)) is corrected to a solution of F(ψ, µ) = 0 by
application of the (standard or deflated) block Newton-Krylov method (see
sections 5.2 and 5.3) to the nonlinear system

H
(
ψ(1), µ(1)

)
=

{
F
(
ψ(1), µ(1)

)
= 0,

G
(
ψ(1), µ(1)

)
= 0,

(6.8)

with G the pseudo-arclength condition:

G : Cn × R→ R : (ψ, µ)→ 〈ψ̇(0), ψ − ψ̃(1)〉+ µ̇(0)∗
(
µ− µ̃(1)

)
= 0. (6.9)

The partial derivatives of the linear function G are given by (∀ψ ∈ Cn, µ ∈ R)

Gψ(ψ, µ) : Cn → R : ξ → 〈ψ̇(0), ξ〉, (6.10)

Gµ(ψ, µ) = µ̇(0)∗. (6.11)

The solution of (6.8) yields a second point (ψ(1), µ(1)) of the solution curve.
The steps are repeated with (ψ(1), µ(1)) as the given point to construct a so-
lution (ψ(2), µ(2)). Further repetition eventually yields a finite set of solutions
(ψ(0), µ(0)), (ψ(1), µ(1)), (ψ(2), µ(2)), . . . .

In practice we do not calculate further tangent directions (ψ̇(j), µ̇(j)) (j > 0)
exactly. Instead they are approximated by

∀j = 1, 2, 3, . . . : ψ̇(j) = γ−1ψ̆(j), µ̇(j) = γ−1µ̆(j), (6.12)

with ψ̆(j) = ψ(j) − ψ(j−1), µ̆(j) = µ(j) − µ(j−1), γ =

√∥∥∥ψ̆(j)
∥∥∥2

+ µ̆(j)2.

The initial direction (ψ̇(0), µ̇(0)) to start the continuation should be provided.
When the method is used to construct full bifurcation diagrams, this direction
will either be calculated by one of the algorithms discussed in chapter 7, or ap-
proximated by (ψ̇(0), µ̇(0)) = (0, 1). Note that this approximation corresponds
to a parameter continuation step [10, 32].

Pseudo-code for a single step of the pseudo-arclength continuation algo-
rithm is provided by algorithm 6.2 on page 195 in appendix 6.9. A prediction
is made from the given points by application of (6.7). The solution of the non-
linear system (6.8) is then approximated by the deflated block Newton method
(see section 5.3). If the function F is invariant under a finite-dimensional Lie
group (see section 6.3.1), null vectors of the partial Jacobian Fψ (induced by
the continuous symmetry) are deflated, preventing diverging convergence be-
haviour. If Fψ does not contain any approximate null vectors, the deflated
method is equivalent to the standard one (described in section 5.2).

Algorithm 6.2 forms an important part of algorithm 6.1 (page 193), used
to construct an approximation to an entire solution curve through an initial
point (ψ(0), µ(0)). Points of the curve are constructed until a specified amount is
reached, or until certain specified conditions are satisfied. These conditions are
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often problem-dependent, examples include the last calculated point approx-
imating (ψ(0), µ(0)), or the value of the physical parameter leaving a certain
range. In practice these are provided in algorithm 6.1 as functions C1, . . . , Cl
(l ∈ N) of the form Ci : Cn × R → {True, False} (∀i = 1, . . . , l). Except for
points on the solution curve, algorithm 6.1 also approximates bifurcation points
and analyses the stability along the curve. Further details of the algorithm are
provided in subsequent sections.

6.4.2 False reversion

If the function F is invariant under the actions of a finite-dimensional Lie
group G (see section 6.3.1), a further adjustment is required when the pseudo-
arclength continuation algorithm is applied.

Consider points (ψ(j), µ(j)) ∈ Cn × R (j = 0, 1, 2, . . . ) calculated by the
algorithm and denote φ(j) the null vector of Fψ(ψ(j), µ(j)) induced by G. If

approximations (6.12) are used to calculate tangent directions (ψ̇(j), µ̇(j)), the
vectors ψ̇(j) are not necessarily perpendicular to φ(j).

Though a solution curve is still approximated, it is possible for false re-
version to occur. This happens when the physical parameter of the problem
shifts its direction (the sign of µ̇(j) changes) after a certain step j, without
an actual bifurcation point being near. This shift of the physical parameter is
entirely caused by the absence of orthogonality between ψ̇(j) and φ(j). Though
this might not happen in the first steps of the pseudo-arclength continuation
algorithm, flaws in the orthogonality between ψ̇(j) and φ(j) are typically trans-
ferred to further steps, eventually causing the false reversion problem. As a
consequence of this problem, the approximated solution curves are possibly
incomplete.

To prevent false reversion, (approximated) vectors ψ̇(j) (j = 0, 1, 2, . . . )
should always be orthogonalized to any null vectors of F(ψ(j), µ(j)) induced by
G before being used to construct a prediction by (6.7).

6.5 Detection of bifurcation points

For automatic exploration techniques to be applied (see chapter 7) or physical
stability to be analysed (see section 6.8), approximations to the bifurcation
points of F are required. In the current section, we first derive a condition that
indicates the proximity of bifurcations.

6.5.1 Detection by Ritz values

We use a method based on the analysis done in Mei [72] for indicating bi-
furcation proximity. After each pseudo-arclength continuation step j (yield-
ing a point (ψ(j), µ(j))), the lowest magnitude Ritz values of the Jacobian
Fψ(ψ(j), µ(j)) are calculated. Remember that we only consider self-adjoint Ja-
cobians in the thesis. If the point (ψ(j), µ(j)) is close to a bifurcation, one of
the Ritz values will approximate zero. Furthermore, if the eigenvalue associated
with the bifurcation changes its sign after passing this point, the same happens
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with the corresponding Ritz value. These properties give rise to the following
definition:

Definition 6.13 (Near bifurcation condition). Consider two consecutive points
(ψ(0), µ(0)) and (ψ(1), µ(1)) of a solution curve, calculated by pseudo-arclength

continuation. Let λ̃
(0)
1 , λ̃

(0)
2 , . . . , λ̃

(0)
k and λ̃

(1)
1 , λ̃

(1)
2 , . . . , λ̃

(1)
k be the k lowest mag-

nitude Ritz values of respectively Fψ(ψ(0), µ(0)) and Fψ(ψ(1), µ(1)), ignoring
values possibly induced by continuous symmetry. Assume the Ritz values are
ordered according to the same eigenvectors. A bifurcation point is close to
(ψ(1), µ(1)) if either

∃j ∈ {1, . . . , k} : |λ̃(1)
j | < ε1 for a certain threshold ε1 ∈ R+

0 , ε1 � 1,

∃j ∈ {1, . . . , k} :

{
|λ̃(1)
j | < ε2 for a certain threshold ε2 ∈ R+

0 , ε1 � ε2 � 1,

λ̃
(0)
j λ̃

(1)
j < 0.

In this case we say that the point (ψ(1), µ(1)) satisfies the near bifurcation
condition.

In practice Ritz values are calculated by algorithm 3.3 (page 43). Any Ritz
values induced by continuous symmetry invariances of F are removed by pro-
viding a deflation matrix with the corresponding approximate null vectors. It
is typically sufficient to consider a small amount of Ritz values, for example
k = 5, in definition 6.13. Pseudo-code for the near bifurcation condition is
provided by algorithm 6.3 on page 195 in appendix 6.9.

6.5.2 Detection by test functions

A different technique for the detection of bifurcation points consists of applying
a certain test function T : Cn×R→ R after each pseudo-arclength continuation
step [10, 95]. This function is constructed such that it has the property

(ψ, µ) is a bifurcation point of F ⇐⇒ T (ψ, µ) = 0.

A bifurcation point is nearby when the test function changes its sign or approx-
imates zero. A typical choice is the function T = det(Fψ(·, ·)) [10, 95]. For our
applications the determinant of the partial Jacobian Fψ is however not easily
calculated or approximated. We will not use test functions for the detection of
bifurcation points. The near bifurcation condition defined by 6.13 will be used
instead.

6.6 Approximation of bifurcation points

Points that satisfy the near bifurcation condition will be used as initial guesses
for the algorithms that calculate approximations of bifurcation points. In the
current section we will describe multiple methods to use for problems with a
Hermitian partial Jacobian.

The choice of method should be provided as input in algorithm 6.1. It
is executed after constructing the finite set of points (ψ(0), µ(0)), (ψ(1), µ(1)),
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(ψ(2), µ(2)), . . . that belong to the solution curve. Points that satisfied the near
bifurcation condition (checked during the pseudo-arclength continuation pro-
cess) are used as initial guesses.

6.6.1 Construction of an extended nonlinear system

Absence of continuous symmetry

A first method for the approximation of bifurcation points is described by
[72, 95]. An extended nonlinear system of equations is constructed, such that
only a bifurcation point solves the system. The bifurcation is then approximated
by application of the standard Newton method (see section 4.2), combined
with a block elimination technique, to this system. In absence of continuous
symmetries of F , the nonlinear system is given by [95]

H(ψ, φ, µ) =


F(ψ, µ) = 0,

Fψ(ψ, µ)φ = 0,

〈φ̂, φ〉 − 1 = 0.

(6.13)

These equations are solved for ψ, φ ∈ Cn and µ ∈ R. The part (ψ, µ) of the
solution represents the bifurcation point, φ a null vector of the partial Jacobian
Fψ(ψ, µ). The vector φ̂ ∈ Cn is a reference solution, used to prevent the trivial
choice φ = 0.

The bifurcation point is approximated by solving (6.13) by a Newton-Krylov
algorithm. For given guesses ψ̃, φ̃ and µ̃, the linear system Fψ(ψ̃, µ̃) 0 Fµ(ψ̃, µ̃)

Fψψ(ψ̃, µ̃)φ̃ Fψ(ψ̃, µ̃) Fψµ(ψ̃, µ̃)φ̃

0 〈φ̂, ·〉 0

∆ψ
∆φ
∆µ

 = −

 F(ψ̃, µ̃)

Fψ(ψ̃, µ̃)φ̃

〈φ̂, φ̃〉 − 1

 (6.14)

is solved for update vectors ∆ψ, ∆φ and ∆µ. We do not solve (6.14) by a direct
application of a Krylov method, but use a block elimination technique. First
two smaller linear systems are solved for the vectors y(1) and y(2):

Fψ(ψ̃, µ̃)y(1) = −F(ψ̃, µ̃), (6.15)

Fψ(ψ̃, µ̃)y(2) = Fµ(ψ̃, µ̃). (6.16)

Given these solutions, y(3) and y(4) are calculated by solving two more linear
systems

Fψ(ψ̃, µ̃)y(3) = −Fψ(ψ̃, µ̃)φ̃−Fψψ(ψ̃, µ̃)φ̃y(1), (6.17)

Fψ(ψ̃, µ̃)y(4) = Fψµ(ψ̃, µ̃)φ̃−Fψψ(ψ̃, µ̃)φ̃y(2). (6.18)

In practice these linear systems are solved by application of the (precondi-
tioned) GMRES algorithm (algorithm 3.4, page 44). The update vectors are
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now constructed by

∆µ =
−(〈φ̂, φ̃〉 − 1)− 〈φ̂, y(3)〉

−〈φ̂, y(4)〉
, (6.19)

∆ψ = y(1) −∆µy(2), (6.20)

∆φ = y(3) −∆µy(4). (6.21)

Algorithm 6.4 (page 196) contains pseudo-code for the bifurcation approx-
imation method described in the current section. As an initial guess for the
Newton method, a point (ψ(0), µ(0)) that satisfies the near bifurcation condition
is used. An approximate null vector of Fψ(ψ(0), µ(0)) is calculated by algorithm
3.3 (page 43) as an initial guess φ(0). This vector is also used for the reference

solution φ̂. If a (Hermitian, positive-definite) preconditioner P for the linear
systems is provided, an approximate null vector of P (ψ(0), µ(0))Fψ(ψ(0), µ(0))
should be calculated. Each Newton iteration solves the linear system (6.14) for
update vectors, used to construct the next guess.

Instead of a single GMRES application to (6.14), solutions y(1), y(2), y(3)

and y(4) to four smaller sized linear systems are approximated. These vectors
are then used to construct the solution of (6.14). Newton iterations are per-
formed until the residual norm of (6.13) is sufficiently small (below a specified
tolerance), or after a maximum amount of steps have been executed.

Algorithm 6.4 is applied to approximate a bifurcation point of the Liouville-
Bratu-Gelfand equation (see section 2.4) in example 6.14. The point is success-
fully approximated.

Example 6.14. Consider the Liouville-Bratu-Gelfand equation (described in
section 2.4), applied to a square domain with 900 discretization points. The
point (ψ(0), µ(0)), with

ψ(0) =


2.022
2.022

...
2.022


and µ(0) = 0.268 satisfies the near bifurcation condition. We apply algorithm
6.4 to search a bifurcation point of the equation F , defined by (2.7).The point
(ψ(0), µ(0)), together with an approximate null vector φ(0) of Fψ(ψ(0), µ(0))
(calculated with algorithm 3.3, see page 43), is used as an initial guess. The
inner product (2.9) is used, preconditioning is not applied.

The algorithm yields an approximate bifurcation point at µ ≈ 0.2635 after 3
Newton steps. A plot with the residual norms of the extended nonlinear system
for each iteration is given by figure 6.1. �

Note that the method described in the current section is also applied when
the partial Jacobian Fψ(ψ(b), µ(b)) contains multiple null vectors. Bifurcation
points with this property still satisfy (6.13) [109, 27]. These points typically
exist when the problem contains a discrete symmetry.
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Figure 6.1: Residual plot of example 6.14. The extended nonlinear system (6.13)
is solved by the Newton method to find a bifurcation point. The residual norm
converges to approximately 10−12 after 3 iterations, which is the attainable
accuracy.

Review of other extended nonlinear systems

Different nonlinear systems than (6.13) with similar properties can be used to
approximate bifurcation points as well. One class of systems demands the point
(ψ, µ) to be a zero of a test function T (see section 6.5) [72, 95]. The nonlinear
system is given by

H(ψ, µ) =

{
F(ψ, µ) = 0,

T (ψ, µ) = 0.
(6.22)

As stated in 6.5, the typical choice T = det(Fψ(·, ·)) is not practical for large-
scale systems. An alternative test function is given by [95]

T (ψ, µ) = eTl Fψ(ψ, µ)F (lk)
ψ (ψ, µ)−1el. (6.23)

The operator F (lk)
ψ (ψ, µ) = (I − eleTl )Fψ(ψ, µ) + ele

T
k is the partial Jacobian

Fψ(ψ, µ) where the lth row is replaced by the kth unit vector (eTk ) for certain
k, l ∈ N. To find bifurcations from (6.22) with test function (6.23), linear sys-

tems with F (lk)
ψ (ψ, µ) need to be solved.

The extended system (6.13) is easily generalized to [95]

H(ψ, φ, µ) =


F(ψ, µ) = 0,

Fψ(ψ, µ)φ = 0,

h(φ)− 1 = 0,

(6.24)

182



6.6. Approximation of bifurcation points

where the functional h is chosen such that φ = 0 is excluded from the solution
space. In (6.13) the choice

h : Cn → R : φ→ 〈φ̂, φ〉

was made, for a certain reference solution φ̂ ∈ Cn. Other functionals, that
exclude φ = 0 from the solution space, can however be chosen.

An extended system similar to (6.13) is given by [95]

H(ψ, µ, φ, η) =


F(ψ, µ) = 0,(
I − eTl el

)
Fψ(ψ, µ)φ = 0,

h(φ)− 1 = 0,

〈el,Fψ(ψ, µ)φ〉 − η = 0,

(6.25)

with h(φ) and el (for certain l ∈ N) defined as before and η ∈ R an additional
unknown. This system is larger than (6.13), requiring more computational work
to solve. A similar block elimination technique as discussed for (6.13) can be
applied, requiring 2 more linear system solves in each Newton iteration.

Another system that can be solved for bifurcation points is [75]

H(ψ, µ, φ, η) =


F(ψ, µ) + ηφ = 0,

Fψ(ψ, µ)φ = 0,

〈φ,Fµ(ψ, µ)〉 = 0,
1
2 (〈φ, φ〉 − 1) = 0,

(6.26)

with again η ∈ R an additional unknown. Just like (6.25), solving this system
with the Newton method requires more computational work than solving (6.13).

A final extended system, discussed in Mei [72], is given by

H(ψ, µ, φ, v) =


F(ψ, µ) + 〈φ,Fψ(ψ, µ)φ〉φ = 0,

Fψ(ψ, µ)φ+ 1
2 (〈φ, φ〉 − 1)φ = 0,

Fψ(ψ, µ)v + Fµ(ψ, µ) + 〈φ, v〉φ = 0,

〈φ,Fψ(ψ, µ)v + Fµ(ψ, µ)〉 = 0,

(6.27)

with v ∈ Cn a vector of additional unknowns. This system can however not be
solved with a block elimination technique since both the unknowns ψ and φ
appear in the first and second equation.

Presence of continuous symmetry

When the function F is invariant under a finite-dimensional Lie group G, each
solution of F(ψ, µ) = 0 is in fact a bifurcation point (see section 6.3.1) and
solves (6.13). The vector φ used in the solution is the null vector of Fψ(ψ, µ)

induced by the continuous symmetry, we denote this vector by φ̆(ψ, µ) (high-
lighting its dependency on ψ and µ).
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6. Calculation of solution curves

In order to calculate actual bifurcation points of F (not induced by the
continuous symmetry), an alternative nonlinear system of equations is con-
structed:

H(ψ, φ, µ) =


F(ψ, µ) = 0,

Fψ(ψ, µ)φ = 0,

〈φ̆(ψ, µ), φ〉 = 0.

(6.28)

The last condition asserts that the calculated null vector φ will differ from
φ̆(ψ, µ): the operator Fψ(ψ, µ) contains different null vectors than the one
induced by continuous symmetry.

A Newton-Krylov method is again applied to solve the nonlinear system.
Given guesses ψ̃, φ̃ and µ̃, the linear system Fψ(ψ̃, µ̃) 0 Fµ(ψ̃, µ̃)

Fψψ(ψ̃, µ̃) Fψ(ψ̃, µ̃) Fψµ(ψ̃, µ̃)φ̃

〈φ̆ψ(ψ̃, µ̃)·, φ̃〉 〈φ̆(ψ̃, µ̃), ·〉 〈φ̆µ(ψ̃, µ̃), φ̃〉

∆ψ
∆φ
∆µ

 = −

 F(ψ̃, µ̃)

Fψ(ψ̃, µ̃)φ̃

〈φ̆(ψ̃, µ̃), φ̃〉


(6.29)

is solved for update vectors. A similar block elimination technique as before is
used to solve this system: first vectors y(1), y(2), y(3) and y(4) are calculated by
solving the linear systems (6.15), (6.16), (6.17) and (6.18) with (preconditioned)
GMRES. Note that we will not use deflation when solving these systems, but
the right-hand sides are orthogonalized to any symmetry-induced approximate
null vectors before GMRES is applied. The update vector ∆µ is constructed
from y(1), y(2), y(3) and y(4) by

∆µ =
−〈φ̆(ψ̃, µ̃), φ̃〉 − 〈φ̆ψ(ψ̃, µ̃)y(1), φ̃〉 − 〈φ̆(ψ̃, µ̃), y(3)〉
〈φ̆µ(ψ̃, µ̃), φ̃〉 − 〈φ̆ψ(ψ̃, µ̃)y(2), φ̃〉 − 〈φ̆(ψ̃, µ̃), y(4)〉

, (6.30)

update vectors ∆ψ and ∆φ by application of (6.20) and (6.21). To prevent the
trivial solution φ = 0 from being calculated, the guess for φ should be normal-
ized after each Newton iteration.

Pseudo-code for the method is given by algorithm 6.5 (page 197). We again
use a point (ψ(0), µ(0)) that satisfies the near bifurcation condition, together
with an approximate null vector φ(0) of Fψ(ψ(0), µ(0)) (or, in the preconditioned
case, P (ψ(0), µ(0))Fψ(ψ(0), µ(0))), as an initial guess. The vector φ(0) should be
chosen perpendicular to any null vectors induced by continuous symmetry.

The algorithm is applied to approximate bifurcation points for two instances
of the Ginzburg-Landau equation (see section 2.5) in examples 6.15 and 6.16.

For these examples, the function φ̆ is explicitly given by (see (2.23))

φ̆ : Cn × R→ Cn : (ψ, µ)→ iψ,

with derivatives

φ̆ψ(ψ, µ) : Cn → Cn : φ→ iφ,

φ̆µ(ψ, µ) = 0.
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6.6. Approximation of bifurcation points

Figure 6.2: Residual plot of example 6.15. The extended nonlinear system (6.28)
is solved by the Newton method to find a bifurcation point. The residual norm
converges to approximately 10−12 after 9 iterations, which is the attainable
accuracy.

Example 6.15. The Ginzburg-Landau equation (see section 2.5) is considered,
applied to a square-shaped material with n = 20737 discretization points. We
use a solution ψ(0) at µ(0) = 1.573 (lying on branch A in figure 9.9 (see section
9.5.1)) as an initial guess for a bifurcation point of (2.20). This point satisfies
the near bifurcation condition.

Algorithm 6.5 is applied, again using algorithm 3.3 (page 43) to create an
initial guess φ(0) for the null vector. The inner product (2.21) is used, and the
preconditioner (2.25) is applied. After 9 iterations an approximate bifurcation
at µ ≈ 1.6468 is found (up to a tolerance of 10−6). The residual plot of the
problem is given by figure 6.2. �

Example 6.16. We again consider the Ginzburg-Landau equation, this time
applied to a pentagon-shaped material with n = 10401 discretization points.
A solution ψ(0) at µ(0) = 1.0588 (lying on branch B in figure 9.23 (see section
9.5.3)) is used as an initial guess for a bifurcation. The guess φ(0) is constructed
by application of algorithm 3.3, and the same inner product and preconditioner
as for example 6.15 are used.

Algorithm 6.5 fails to find a decent approximation of the nearby bifurcation
point within 10 Newton steps. Most of the iterations in figure 6.3, containing
a residual plot of the problem, show an increase in residual norm. �

Though for example 6.15 the residual norm converges (up to the desired
tolerance), this is not the case for example 6.16. This is caused by the approxi-
mate singularity of Fψ(ψ, µ) near the bifurcation, in a similar way as described
in section 4.2 for the standard Newton method.
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6. Calculation of solution curves

Figure 6.3: Residual plot of example 6.16. The extended nonlinear system (6.28)
is solved by the Newton method to find a bifurcation point. Most iterations
show an increase in residual norm, there is no convergence to a solution.

Note that the alternative extended nonlinear systems (6.25) and (6.26) can
be adapted in a similar way as (6.13) to (6.28) by changing one of the equations

to 〈φ̆(ψ, µ), φ〉 = 0.

6.6.2 Newton step length adaptation

An alternative method is not based on constructing extended nonlinear sys-
tems, but on normal pseudo-arclength continuation. Consider a solution curve
(ψ(s), µ(s)) of F , with (ψ(b), µ(b)) = (ψ(s(b)), µ(s(b))) a bifurcation point of the
equation (with s(b) ∈]0, 1[). If F is invariant under a continuous symmetry, the
considered bifurcation should not be induced by this.

We denote λ(s) the lowest magnitude eigenvalue of Fψ(ψ(s), µ(s)) (again
ignoring the one induced by any continuous symmetries). We have λ(s(b)) = 0,
and λ(s) 6= 0 for s ∈ Sρ(s(b)), for a certain ρ ∈ R+

0 sufficiently small. Given an
initial approximation (ψ(s(0)), µ(s(0))), with s(0) ≈ s(b), of the bifurcation, the
Newton method predicts a better approximation (ψ(s(1)), µ(s(1))) by calculat-
ing [3]

s(1) = s(0) − λ(s(0))

λ′(s(0))
. (6.31)

In practice we do not have access to the full solution curve (ψ(s), µ(s)), but
only a finite set of points (ψ(0), µ(0)), (ψ(1), µ(1)), (ψ(2), µ(2)), . . . . Consider two
consecutive points (ψ(−1), µ(−1)) and (ψ(0), µ(0)) such that (ψ(0), µ(0)) satisfies
the near bifurcation condition, and denote λ̃(−1), λ̃(0) ∈ R the lowest magni-
tude Ritz values of respectively Fψ(ψ(−1), µ(−1)) and Fψ(ψ(0), µ(0)), calculated
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by algorithm 3.3 (again ignoring the values induced by possible continuous
symmetries). We have λ̃(0) ≈ 0.

Denoting s(0) such that (ψ(s(0)), µ(s(0))) = (ψ(0), µ(0)), a first-order Taylor
expansion of (ψ(s(1)), µ(s(1))), with s(1) defined by (6.31), yields an approxi-
mation [3]

ψ̃(1) = ψ(0) + ∆sψ̇(0),

µ̃(1) = µ(0) + ∆sµ̇(0),
(6.32)

for (ψ(s(1)), µ(s(1))), with (ψ̇(0), µ̇(0)) the (normalized) tangent direction in
(ψ(0), µ(0)) and ∆s defined by

∆s = − λ(s(0))

λ′(s(0))
.

By the definition of s(0), we have λ̃(0) ≈ λ(s(0)). We will not calculate the
derivative λ′(s(0)) explicitly, but approximate it by the finite difference formula

λ′(s(0)) ≈ λ̃(0) − λ̃(−1)

γ
,

with γ the distance between points (ψ(−1), µ(−1)) and (ψ(0), µ(0)), explicitly
given by

γ =

√∥∥ψ(0) − ψ(−1)
∥∥2

+
(
µ(0) − µ(−1)

)2
.

The approximations of λ(s(0)) and λ′(s(0)) yield the choice [3]

∆s = − λ̃(0)γ

λ̃(0) − λ̃(−1)
(6.33)

in (6.32). Note the similarity between (6.32) and (6.7). Since (ψ̃(1), µ̃(1)) does
not necessarily solve F(ψ, µ) = 0, it is corrected by solving the nonlinear sys-
tem (6.8) with a block Newton-Krylov method (see chapter 5). The solution
(ψ(1), µ(1)) of this system approximates (ψ(s(1)), µ(s(1))), it should be a better
guess for the bifurcation point than the initial guess (ψ(0), µ(0)).

The process of constructing a new guess by above method is repeated, and
gives rise to the Newton step length adaptation (NSA) algorithm [3]. Eventually
an approximation (ψ(j), µ(j)) (for certain j ∈ N) that lies sufficiently close to
the bifurcation point should be obtained. To check this proximity, the value
λ(j) should be monitored throughout the algorithm: if |λ(j)| becomes sufficiently
small (compared to a specified tolerance), the algorithm is stopped. Pseudo-
code for the Newton step length adaptation method is given by algorithm 6.6
on page 198.

Note that the nonlinear systems (6.8), used to assert the next guess to
be a solution of F(ψ, µ), are typically ill-posed. If a guess (ψ(j), µ(j)) lies too
close to the bifurcation point (which is the goal of the algorithm), the partial
Jacobian Fψ(ψ(j), µ(j)) becomes ill-conditioned. This linear operator is part
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of the Jacobian of (6.8), required when applying the Newton method to solve
this nonlinear system of equations. The closer the guess lies to the bifurcation,
the worse this problem becomes. To prevent diverging convergence behaviour
when solving (6.8), the split block Newton-Krylov method with mixed terms
(SBNM) (described in section 5.8, see algorithm 5.7 on page 164) is applied.

If no convergence is achieved by this method within the amount of permitted
iterations, or if the constructed guess lies further away from the bifurcation
point (indicated by a higher lowest magnitude Ritz value), the NSA step is
reset. The value for ∆s is halved, a new guess is constructed by (6.32) and
again corrected by algorithm 5.7. This backtracking procedure is repeated until
the NSA step yields a better guess for the bifurcation, that lies on the solution
curve (the Newton method converged).

The method is executed to the three examples of section 6.6.1 in examples
6.17, 6.18 and 6.19. The bifurcation point is successfully approximated in each
example.

Example 6.17. Consider the same set-up as for example 6.14. The points
(ψ(−1), µ(−1)) and (ψ(0), µ(0)), given by

ψ(−1) =


2.022
2.022

...
2.022

 , ψ(0) =


2.056
2.056

...
2.056

 ,

µ(−1) = 0.268 and µ(0) = 0.263 are used as initial guesses for the bifurcation
point. Algorithm 6.6 is applied, the lowest magnitude of the Ritz values is
shown for each NSA step in figure 6.4. After 3 steps, an approximation of the
bifurcation is found with a Ritz value of magnitude lower than 10−14. �

Example 6.18. The same set-up as for example 6.15 is considered. As initial
guesses two solutions (ψ(−1), µ(−1)) and (ψ(0), µ(0)), with µ(−1) = 1.573 and
µ(0) = 1.564 are used (both lying on branch A in figure 9.9 (see section 9.5.1)).

We apply the NSA method to search a nearby bifurcation point, this yields
figure 6.5. An approximation with a Ritz value of magnitude lower than 10−13

is found after 4 steps. �

Example 6.19. We finally apply the NSA method to the set-up of exam-
ple 6.16. For this example, the construction and solving of an extended non-
linear system did not yield a decent approximation to the bifurcation point.
The NSA method is applied to two points (ψ(−1), µ(−1)) and (ψ(0), µ(0)), with
µ(−1) = 1.0588 and µ(0) = 1.0590 (both lying on branch B in figure 9.23 (see
section 9.5.3)).

Figure 6.6 shows the lowest magnitude of the Ritz values for each NSA step.
After 8 iterations this value approximates 10−13. Contrary to algorithm 6.5,
the NSA method finds a decent approximation to the bifurcation point. �

Compared to the methods described in section 6.6.1, the Newton step length
adaptation method appears to be more robust: the bifurcation point of example
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Figure 6.4: Lowest magnitude of the Ritz values for each NSA step of example
6.17, in which the NSA method is applied to find a bifurcation point. The
magnitude converges to approximately 10−14 after 3 iterations.

Figure 6.5: Lowest magnitude of the Ritz values for each NSA step of example
6.18, in which the NSA method is applied to find a bifurcation point. The
magnitude converges to approximately 10−13 after 4 iterations.
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Figure 6.6: Lowest magnitude of the Ritz values for each NSA step of exam-
ple 6.19, in which the NSA method is applied to find a bifurcation point. The
magnitude converges to approximately 10−13 after 8 iterations. Contrary to
application of the extended nonlinear system (6.28) (see figure 6.3), the bifur-
cation point is successfully approximated.

6.19 could not be approximated by solving an extended nonlinear system (see
example 6.16). Typically more computational time is required though, since
multiple systems of the form (6.8) have to be solved. If more than 2 Newton step
length adaptation iterations are required, solving a single extended nonlinear
system should be computationally more efficient.

6.7 Choice of the step size in pseudo-arclength
continuation

In the predictor step of the pseudo-arclength continuation algorithm (see (6.7)),
a sufficiently small step size ∆s ∈ R+

0 needs to be chosen. We had not yet es-
tablished this choice. For the first iteration of the algorithm, the step size value
should be provided as input. For subsequent iterations ∆s will be calculated
from information gathered from the construction of the previous point.

Let (ψ(j), µ(j)) (j ≥ 1) be a point calculated by pseudo-arclength continua-
tion. We want the step size ∆s, used to construct a prediction (ψ̃(j+1), µ̃(j+1))
for the next point, to be sufficiently small such that two conditions are satisfied.

As a first condition we do not want the block Newton method to require a
high amount of iterations in order to converge (up to a given tolerance). This
amount m is approximated by the number m̃ of Newton steps that was required
to calculate (ψ(j), µ(j)). If m̃ is sufficiently low, the condition should be satisfied
by choosing ∆s equal to the previously used step size. In practice, to speed up
the algorithm, it will be chosen slightly higher [36]. If m̃ surpasses a certain
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threshold, the step size is decreased [3]. In the extreme case where convergence
up to the desired tolerance was not achieved, the step size is halved. We will
also recalculate (ψ(j), µ(j)), using half of the step size, when this happens [36].

The second condition asserts that no bifurcation points are skipped during
the continuation. We want to find at least one point that satisfies the near
bifurcation condition for each bifurcation of F . For this purpose the lowest
magnitude Ritz value λ̃(j) of Fψ(ψ(j), µ(j)) (ignoring any values induced by

possible continuous symmetries) is monitored. If |λ̃(j)| is lower than a specified
threshold, the step size ∆s should be decreased accordingly.

Algorithm 6.7 (page 199) checks the two conditions established in the cur-
rent section, and uses them to update a given step size. It is used in algorithm
6.1 (page 193), before the construction of a predictor for the next point.

6.8 Physical stability

We end the chapter with an application of bifurcation points: the determination
of physical stability along a solution curve.

Definition 6.20 (Linear stability [48, 95]). We call a zero (ψ, µ) ∈ Cn × R
of a function F : Cn × R → Cn linearly stable if all of the eigenvalues λ of
Fψ(ψ, µ), ignoring the ones induced by possible continuous symmetries, have
a positive real part (Re(λ) > 0).

Linearly unstable solutions of F(ψ, µ) = 0 correspond to steady states that
do not persist under small perturbations. These states are usually not physically
realizable [48].

Note that, since we only consider problems with a Hermitian partial Ja-
cobian Fψ in the thesis, definition 6.20 simplifies: a point (ψ, µ) ∈ Cn × R is
linearly stable if all of the eigenvalues of Fψ(ψ, µ) are positive (ignoring the
ones induced by possible continuous symmetries).

To determine the stability of a single solution (ψs, µs) of F(ψ, µ) = 0
in practice, we check the k lowest magnitude Ritz values λ̃1, λ̃2, . . . , λ̃k of
Fψ(ψs, µs) (ignoring any induced by continuous symmetries). Note that these
values are also calculated to check the near bifurcation condition. If one of the
Ritz values is negative, (ψs, µs) is said to be linearly unstable.

When an approximation (ψ(0), µ(0)), (ψ(1), µ(1)), (ψ(2), µ(2)), . . . of a solu-
tion curve (ψ(s), µ(s)) is considered, we will not determine the stability of the
points (ψ(j), µ(j)) (j = 0, 1, 2, . . . ) individually. Individual calculation is prone
to mistakes due to e.g. negative Ritz values leaving the set of the k lowest
magnitude ones.

Instead, we note that points that mark transitions in linear stability are
always bifurcations of F , this is a consequence of the definition. Given the
bifurcation points of (ψ(s), µ(s)), we first divide the set of points (ψ(0), µ(0)),
(ψ(1), µ(1)),(ψ(2), µ(2)), . . . in subsets of the form (ψ(j), µ(j)),. . . ,(ψ(j+l), µ(j+l))
(for certain j, l ∈ N), chosen such that a bifurcation point is present between
each last and first point of two consecutive subsets. Linear stability remains
constant for points belonging to the same set.
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To determine the stability of points in a single subset, the percentage of
solutions that yield a negative Ritz value for Fψ is calculated. If this percentage
surpasses a certain threshold (e.g. 10%), all of the points of the subset are said
to be linearly unstable.

Algorithm 6.8 (page 200) contains pseudo-code that determines the sta-
bility of a set of points (ψ(0), µ(0)), (ψ(1), µ(1)), (ψ(2), µ(2)), . . . , calculated by
the pseudo-arclength continuation algorithm. It uses approximate bifurcation
points to split the set in subsets, and determines the stability of each such
subset by the rule described in the current section. It is used in algorithm 6.1
(page 193), where it is executed after the bifurcation points of the solution
curve have been approximated.
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6.9 Appendix

Main algorithm

Algorithm 6.1 CurveCalculation

Input mP ∈ N, initial step size ∆s ∈ R+
0 , functions F : Cn × R → Cn,

P : Cn × R → C(Cn), choice FindBif of bifurcation search algorithm, list
C = [C1, . . . , Cl] of condition functions, inner product 〈·, ·〉, initial solution
ψ(0) ∈ Cn, µ(0) ∈ R, initial direction ψ̇(0) ∈ Cn, µ̇(0) ∈ R

Output Matrices P , B and S, respectively containing points of the solution
curve, bifurcations, and stability results of F as column vectors.

1: Set P = I if not specified
2: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
3: Set C =

[ ]
an empty list if not specified

4: nP = 0
5: nD = 0
6: Create deflation matrix K ∈ Cn×l1 with l1 null vectors, induced by contin-

uous symmetry
7: Calculate (L(0),W (0), U (0)) by executing RitzRestart (algorithm 3.3) with
A = Fψ(ψ(0), µ(0)), P = P (ψ(0), µ(0)) and given 〈·, ·〉 and K

8: L(−1) = L(0)

9: W (−1) = W (0)

10: Calculate detected by executing CheckDetection (algorithm 6.3) with L =
L(−1), L′ = L(0), W = W (−1) and W ′ = W (0)

11: if detected then
12: nD ← nD + 1
13: D =

(
0
)

14: else
15: Initialize D as an empty 1× 0 matrix
16: end if
17: for j = 1, . . . ,mP do
18: Calculate (ψ(j), µ(j), ψ̇(j), µ̇(j), m̃) by executing PseudoArc (algorithm

6.2) with (ψ, µ) = (ψ(j−1), µ(j−1)), (ψ̇, µ̇) = (ψ̇(j−1), µ̇(j−1)) and given ∆s,
F , P , 〈·, ·〉 and K

19: if The Newton method in PseudoArc did not converge then
20: ∆s← 1

2∆s
21: Go back to line 18
22: end if
23: nP ← nP + 1
24: Create deflation matrix K ∈ Cn×l1 with l1 null vectors, induced by

continuous symmetry
25: Calculate (L(j),W (j), U (j)) by executing RitzRestart (algorithm 3.3)

with A = Fψ(ψ(j), µ(j)), P = P (ψ(j), µ(j)) and given 〈·, ·〉 and K
26: Calculate detected by executing CheckDetection (algorithm 6.3) with

L = L(j−1), L′ = L(j), W = W (j−1) and W ′ = W (j)
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27: if detected then
28: nD ← nD + 1
29: D =

(
D j

)
30: end if
31: Calculate ∆s by executing AdaptStep (algorithm 6.7) with m = m̃,

λ = L
(j)
11 and given ∆s

32: for Ci in C do
33: if Ci(ψ

(j), µ(j)) then
34: Break
35: end if
36: end for
37: end for

38: P =

(
ψ(0) . . . ψ(nP )

µ(0) . . . µ(nP )

)
39: nB = 0
40: for j = 1, . . . , nD do
41: p = Dj

42: new = True
43: Check if any already found bifurcation points approximate (ψ(p), µ(p)).

Set new to False if this is the case.
44: if new then
45: Set p′ = p− 1 if p > 0, p′ = p+ 1 otherwise.
46: if FindBif is the algorithm FindBifNSA then
47: Calculate (ψ̂(nB), µ̂(nB)) by executing FindBifNSA (algorithm 6.6)

with (ψ, µ) = (ψ(p′), µ(p′)), (ψ′, µ′) = (ψ(p), µ(p)) and given F , P and 〈·, ·〉
48: else
49: if The system does not contain a continuous symmetry then
50: Calculate (ψ̂(nB), µ̂(nB)) by executing FindBifExt1 (algorithm 6.4)

with ψ̃ = ψ(p), φ̃ = W
(p)
1 , µ̃ = µ(p) and given F , P and 〈·, ·〉

51: else
52: Calculate (ψ̂(nB), µ̂(nB)) by executing FindBifExt2 (algorithm 6.5)

with ψ̃ = ψ(p), φ̃ = W
(p)
1 , µ̃ = µ(p) and given F , P and 〈·, ·〉

53: end if
54: end if
55: if FindBif did not converge then
56: Delete (ψ̂(nB), µ̂(nB))
57: else
58: nB < −nB + 1
59: end if
60: end if
61: end for

62: B =

(
ψ̂(0) . . . ψ̂(nB)

µ̂(0) . . . µ̂(nB)

)
63: Initialize L as an empty keig × 0 matrix
64: for j = 1, . . . , nP do

65: L
(j)
vec =

(
L

(j)
11 L

(j)
22 . . . L

(j)
keigkeig

)T
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66: L =
(
L L

(j)
vec

)
67: end for
68: Calculate S by executing StabAnalysis (algorithm 6.8) with given P , B

and L
69: Return P , B, S

Single pseudo-arclength continuation step

Algorithm 6.2 PseudoArc

Input step size ∆s ∈ R+
0 , functions F : Cn×R→ Cn, P : Cn×R→ C(Cn),

inner product 〈·, ·〉, deflation matrix K ∈ Cn×l1 , solution (ψ, µ) ∈ Cn × R,
direction (ψ̇, µ̇) ∈ Cn × R

Output Approximations (ψ′, µ′) of F(ψ, µ) = 0, and (ψ̇′, µ̇′) of tangent
direction, number of used Newton iterations m.

1: ψ̃′ = ψ + ∆sψ̇
2: µ̃′ = µ+ ∆sµ̇
3: Define G by (6.9)
4: Define Gψ by (6.10)
5: Define Gµ by (6.11)
6: Calculate (ψ′, µ′) by executing NewtonBlockDeflated (algorithm 5.2) with
F = F , G = G, x(0) = ψ̃′, p(0) = µ̃′ and given P and 〈·, ·〉

7: Denote m the number of used Newton iterations in NewtonBlockDeflated
8: ψ̆ = ψ′ − ψ
9: µ̆ = µ′ − µ

10: Orthogonalize ψ̆ to the column vectors of K

11: γ =

√
‖ψ̆‖2 + µ̆2

12: ψ̇ = γ−1ψ̆
13: µ̇ = γ−1µ̆
14: Return ψ′, µ′, ψ̇, µ̇, m

Detection of bifurcation points

Algorithm 6.3 CheckDetection

Input Diagonal matrices with Ritz values L,L′ ∈ Rk×k, matrices with
eigenvectors W,W ′ ∈ Cn×k tolerances εdet1, εdet2 ∈ R+

0

Output Boolean detected that determines if the provided matrices indicate
the near bifurcation condition.

1: detected = False
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2: for j = 1, . . . , k do
3: if |L′jj | < εdet1 then
4: detected = True
5: Break
6: end if
7: end for
8: if not detected and L 6= L′ then
9: Orden values in L and L′ according to similar eigenvectors (using W and
W ′)

10: Denote ksim the number of similar eigenvectors
11: for j = 1, . . . , ksim do
12: if |LjjL′jj | < εdet2 then
13: detected = True
14: Break
15: end if
16: end for
17: end if
18: Return detected

Approximation of bifurcation points

By solving an extended system (no continuous symmetry)

Algorithm 6.4 FindBifExt1

Input mext ∈ N, tolerances εext1, εext2 ∈ R+
0 , functions F : Cn × R → Cn,

P : Cn×R→ C(Cn), partial derivatives Fψ, Fµ, Fψψ, Fψµ, inner product 〈·, ·〉,
initial guesses ψ̃, φ̃ ∈ Cn, µ̃ ∈ R

Output Approximations ψ̃, µ̃ for a bifurcation ponit of F .

1: Define Fψ, Fµ, Fψψ, Fψµ by (5.2), (5.4), (5.6) and (5.7) if not specified
2: Set P : Cn × R→ C(Cn) : (x, p)→ I if not specified
3: Set 〈·, ·〉 = 〈·, ·〉2 if not specified

4: φ̂ = φ̃
5: rF = F(ψ̃, µ̃)
6: rφ = Fψ(ψ̃, µ̃)φ̃

7: rref = 〈φ̂, φ̃〉 − 1
8: i = 0
9: while i < mext and

√
‖rF‖2P (x̃,p̃) + r2

ref > εext1 and ‖rφ‖P (x̃,p̃) > εext2 do

10: i← i+ 1
11: Calculate y(1) by executing GMRES (algorithm 3.4) with A = Fψ(ψ̃, µ̃),

b = −rF , P = P (ψ̃, µ̃) and given 〈·, ·〉
12: Calculate y(2) by executing GMRES (algorithm 3.4) with A = Fψ(ψ̃, µ̃),

b = Fµ, P = P (ψ̃, µ̃) and given 〈·, ·〉
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13: b1 = −rφ −Fψψ(ψ̃, µ̃)φ̃y(1)

14: Calculate y(3) by executing GMRES (algorithm 3.4) with A = Fψ(ψ̃, µ̃),

b = b1, P = P (ψ̃, µ̃) and given 〈·, ·〉
15: b2 = Fψµ(ψ̃, µ̃)φ̃−Fψψ(ψ̃, µ̃)φ̃y(2)

16: Calculate y(4) by executing GMRES (algorithm 3.4) with A = Fψ(ψ̃, µ̃),

b = b2, P = P (ψ̃, µ̃) and given 〈·, ·〉
17: Calculate ∆µ by (6.19)
18: ∆ψ = y(1) −∆µy(2)

19: ∆φ = y(3) −∆µy(4)

20: ψ̃ ← ψ̃ + ∆ψ
21: µ̃← µ̃+ ∆µ
22: φ̃← φ̃+ ∆φ
23: rF = F(ψ̃, µ̃)
24: rφ = Fψ(ψ̃, µ̃)φ̃

25: rref = 〈φ̂, φ̃〉 − 1
26: end while
27: Return ψ̃, µ̃

By solving an extended system (continuous symmetry)

Algorithm 6.5 FindBifExt2

Input mext ∈ N, tolerances εext1, εext2 ∈ R+
0 , functions F : Cn × R → Cn,

P : Cn×R→ C(Cn), partial derivatives Fψ, Fµ, Fψψ, Fψµ, inner product 〈·, ·〉,
initial guesses ψ̃, φ̃ ∈ Cn, µ̃ ∈ R

Output Approximations ψ̃, µ̃ for a bifurcation ponit of F .

1: Define Fψ, Fµ, Fψψ, Fψµ by (5.2), (5.4), (5.6) and (5.7) if not specified
2: Set P : Cn × R→ C(Cn) : (x, p)→ I if not specified
3: Set 〈·, ·〉 = 〈·, ·〉2 if not specified

4: Define the function φ̆ : Cn × R
5: rF = F(ψ̃, µ̃)
6: rφ = Fψ(ψ̃, µ̃)φ̃

7: rref = 〈φ̆(ψ̃, µ̃), φ̃〉
8: i = 0
9: while i < mext and

√
‖rF‖2P (x̃,p̃) + r2

ref > εext1 and ‖rφ‖P (x̃,p̃) > εext2 do

10: i← i+ 1
11: Orthogonalize rF to φ̆(ψ̃, µ̃)
12: Calculate y(1) by executing GMRES (algorithm 3.4) with A = Fψ(ψ̃, µ̃),

b = −rF , P = P (ψ̃, µ̃) and given 〈·, ·〉
13: b0 = Fµ
14: Orthogonalize b0 to φ̆(ψ̃, µ̃)
15: Calculate y(2) by executing GMRES (algorithm 3.4) with A = Fψ(ψ̃, µ̃),

b = b0, P = P (ψ̃, µ̃) and given 〈·, ·〉
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16: b1 = −rφ −Fψψ(ψ̃, µ̃)φ̃y(1)

17: Orthogonalize b1 to φ̆(ψ̃, µ̃)
18: Calculate y(3) by executing GMRES (algorithm 3.4) with A = Fψ(ψ̃, µ̃),

b = b1, P = P (ψ̃, µ̃) and given 〈·, ·〉
19: b2 = Fψµ(ψ̃, µ̃)φ̃−Fψψ(ψ̃, µ̃)φ̃y(2)

20: Orthogonalize b2 to φ̆(ψ̃, µ̃)
21: Calculate y(4) by executing GMRES (algorithm 3.4) with A = Fψ(ψ̃, µ̃),

b = b2, P = P (ψ̃, µ̃) and given 〈·, ·〉
22: Calculate ∆µ by (6.30)
23: ∆ψ = y(1) −∆µy(2)

24: ∆φ = y(3) −∆µy(4)

25: ψ̃ ← ψ̃ + ∆ψ
26: µ̃← µ̃+ ∆µ
27: φ̃← φ̃+ ∆φ
28: rF = F(ψ̃, µ̃)
29: rφ = Fψ(ψ̃, µ̃)φ̃

30: rref = 〈φ̆(ψ̃, µ̃), φ̃〉
31: end while
32: Return ψ̃, µ̃

Newton step length adaptation

Algorithm 6.6 FindBifNSA

Input mNSA ∈ N, maximal step size ∆s+ ∈ R+
0 , tolerance εNSA ∈ R+

0 ,
functions F : Cn×R→ Cn, P : Cn×R→ C(Cn), inner product 〈·, ·〉, solutions
(ψ, µ), (ψ′, µ′) ∈ Cn × R

Output Approximation (ψ̃, µ̃) of F(ψ, µ) = 0, number of used Newton
iterations m̃.

1: Set P = I if not specified
2: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
3: Create deflation matrix K ∈ Cn×l1 for Fψ(ψ, µ), with l1 null vectors, in-

duced by continuous symmetry
4: Calculate (L,W,U) by executing RitzRestart (algorithm 3.3) with A =
Fψ(ψ, µ), P = P (ψ, µ) and given 〈·, ·〉 and K

5: Create deflation matrix K ′ ∈ Cn×l1 for Fψ(ψ′, µ′), with l1 null vectors,
induced by continuous symmetry

6: Calculate (L′,W ′, U ′) by executing RitzRestart (algorithm 3.3) with A =
Fψ(ψ′, µ′), P = P (ψ′, µ′), K = K ′ and given 〈·, ·〉

7: j = 0
8: while j < mNSA and |L′11| < εNSA do
9: j ← j + 1

10: ψ̆ = ψ′ − ψ
11: µ̆ = µ′ − µ
12: Orthogonalize ψ̆ to the column vectors of K
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13: γ =

√
‖ψ̆‖2 + µ̆2

14: ψ̇ = γ−1ψ̆
15: µ̇ = γ−1µ̆

16: ∆s← − L′11γ
L′11−L11

17: ∆s← sgn(∆s) min(|∆s|,∆s+)
18: ψ̃ = ψ′ + ∆sψ̇
19: µ̃ = µ′ + ∆sµ̇
20: Define G by (6.9)
21: Define Gψ by (6.10)
22: Define Gµ by (6.11)
23: Calculate (ψ′, µ′) by executing NewtonBlockMixed (algorithm 5.7) with

F = F , G = G, x(0) = ψ̃, p(0) = µ̃ and given P and 〈·, ·〉
24: Create deflation matrix K ∈ Cn×l1 for Fψ(ψ′, µ′), with l1 null vectors,

induced by continuous symmetry
25: Calculate (L̃, W̃ , Ũ) by executing RitzRestart (algorithm 3.3) with A =
Fψ(ψ̃, µ̃), P = P (ψ̃, µ̃) and given 〈·, ·〉 and K

26: if NewtonBlockMixed did not converge or |L̃11| > |L′11| then
27: ∆s← 1

2∆s
28: Go back to line 18
29: end if
30: ψ ← ψ′

31: µ← µ′

32: L← L′

33: ψ′ ← ψ̃
34: µ′ ← µ̃
35: L′ ← L̃
36: end while
37: Return ψ̃, µ̃

Determination of the step size

Algorithm 6.7 AdaptStep

Input Bounds mstep ∈ N, εstep ∈ R+
0 , range ∆s−,∆s+ ∈ R+

0 for step size,
growth factors g−, g+ ∈ R+

0 for step size, current step size ∆s, m ∈ N, λ ∈ R
Output Step length ∆s to use for next pseudo-arclength step.

1: if |λ| < εstep then
2: ∆s← ∆s−

3: else
4: if m < mstep then
5: ∆s← g+∆s
6: else
7: ∆s← g−∆s
8: end if
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9: ∆s← max(∆s,∆s−)
10: ∆s← min(∆s,∆s+)
11: end if
12: Return ∆s

Analysis of stability

Algorithm 6.8 StabAnalysis

Input Tolerance εstab ∈ [0, 1], matrix P ∈ C(n+1)×nP containing points
(ψ(j), µ(j)) as its columns, matrix B ∈ C(n+1)×nB containing bifurcation

points (ψ̂(j), µ̂(j)) as its columns, matrix L ∈ Rk×nP containing Ritz values

λ̃
(j)
1 , . . . , λ̃

(j)
k as its columns

Output Row matrix S containing entries Sj = 1 if Pj represents a stable
point, Sj = 0 otherwise.

1: Initialize S as an empty 1× 0 matrix
2: I(l) =

(
1
)

3: Initialize I(r) as an empty 1× 0 matrix
4: for i = 1, . . . , nB do
5: Determine p+, p− ∈ {1, . . . , nP } with p+ = p− + 1 the two points PTp− =

(ψ(p−), µ(p−)) and PTp+ = (ψ(p+), µ(p+)) closest to the bifurcation point

BTi = (ψ̂(i), µ̂(i))
6: I(r) =

(
I(r) p−

)
7: I(l) =

(
I(l) p+

)
8: end for
9: I(r) =

(
I(r) nP

)
10: for i = 1, . . . , nB + 1 do

11: ni = I
(r)
i − I

(l)
i + 1

12: for j = I
(l)
i , . . . , I

(r)
i do

13: s
(i)
j = 1

14: for l = 1, . . . , k do

15: λ̃
(j)
l = Llj

16: if λ̃
(j)
l < 0 then

17: s
(i)
j ← 0

18: Break
19: end if
20: end for
21: end for

22: s = 1− 1
ni

∑I
(r)
i

j=I
(l)
i

s
(i)
j

23: if s < εstab then
24: Create matrix S(i) ∈ R1×m with entries 1
25: else
26: Create matrix S(i) ∈ R1×m with entries 0
27: end if
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28: S =
(
S S(i)

)
29: end for
30: Return S
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CHAPTER 7
Automatic exploration

“Gotta catch ’em all!”

– Pokémon –

Chapter highlights:

• We review several types of bifurcation points, and discuss their
role in automatic exploration.

• We analyse an algorithm presented in [73], used for the construc-
tion of tangent directions to curves that emanate from certain
bifurcation points.

• We derive a modified algorithm to use for dynamical systems with
discrete symmetries.

• We show how the equivariant branching lemma is used to reduce
computational work by incorporating prior knowledge on the sys-
tem’s symmetries.

• The results in this chapter are mainly based on the following
references: [48, 55, 62, 73, 72].

• A journal article about the contents of this chapter and chapter
9 has been submitted (see [110]).

7.1 Introduction

In chapter 6 numerical methods for the approximation of solution curves were
discussed. Given an initial solution (ψ(0), µ(0)) of a nonlinear equation F(ψ, µ) =
0 (with F : Cn × R → Cn, n ∈ N) and a direction (ψ̇(0), µ̇(0)), a finite set of
points (ψ(0), µ(0)), (ψ(1), µ(1)), (ψ(2), µ(2)), . . . is constructed by application of
the pseudo-arclength continuation algorithm. This set approximates a single
solution curve through the provided point (ψ(0), µ(0)).
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Applications like the Liouville-Bratu-Gelfand and the Ginzburg-Landau
equations (see chapter 2) do not contain a single, but multiple, interconnected,
solution curves. Typically these curves distinguish themselves in properties like
symmetry and stability of their solutions [92].

Definition 7.1 ((Connected) solution landscape). Given multiple solution
curves (ψ1(s), µ1(s)), (ψ2(s), µ2(s)), (ψ3(s), µ3(s)), . . . of a nonlinear function
F : Cn × R→ Cn. If the curves are interconnected, we call the set

{(ψi(s), µi(s)) | i = 1, 2, 3, . . . }

a (connected) solution landscape of F .

It is possible for solution landscapes to contain a lot of different curves.
Some of the examples in chapter 9 show landscapes with more than 40 curves.
Automatic exploration is essential for these applications. Given an initial solu-
tion (ψ(0), µ(0)) of F(ψ, µ) = 0, we want to derive techniques that automatically
calculate a complete connected solution landscape through (ψ(0), µ(0)). Instead
of generating a single curve by the pseudo-arclength continuation algorithm,
the goal of the current chapter is to create an algorithm that generates a set
of multiple, interconnected ones.

7.2 Requisites for automatic exploration

We again consider a general nonlinear function

F : Cn × R→ Cn : (ψ, µ)→ F(ψ, µ)

and a point (ψ(0), µ(0)) ∈ Cn × R such that F(ψ(0), µ(0)) = 0. As in previous
chapters, we restrict ourselves to nonlinear functions with a Hermitian par-
tial Jacobian Fψ. Pseudo-arclength continuation yields an approximation to a
single solution curve (ψ1(s), µ1(s)) through (ψ(0), µ(0)).

Automatic exploration of the connected solution landscape through this
point is now realized in two main steps [62, 72]. The first step consists of
identifying the points on (ψ1(s), µ1(s)) that connect to other solution curves
as well. These points will be called branch points (see definition 7.2). After the
branch points are identified, the second step constructs the tangent directions
to emerging solution curves.

These two steps are sufficient requisites for automatic exploration: the
pseudo-arclength continuation method is reapplied, using the branch points
and corresponding tangent directions along (ψ1(s), µ1(s)), in order to generate
new solution curves [62, 72]. The process of identifying branch points and con-
structing tangent directions is then repeated for these new curves, eventually
yielding a complete connected solution landscape.

The algorithm for automatic exploration itself will be further discussed in
chapter 8. In the remainder of this chapter we will focus on the two required
steps of identifying branch points and constructing tangent directions. Note
that the techniques allow for the construction of a landscape consisting of
interconnected solution curves. It is not possible to generate curves that are in
no way connected to the initial point (ψ(0), µ(0)).
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7.2.1 Identification of branch points

Denote FΨ the full Jacobian of F , this operator is defined (in a point (ψ, µ) ∈
Cn × R) as

FΨ(ψ, µ) : Cn × R→ Cn : (v, q)→ Fψ(ψ, µ)v + qFµ(ψ, µ).

We denote N̂ (FΨ(ψ, µ)) the kernel of FΨ(ψ, µ), where we exclude null vectors
induced by possible continuous symmetries of F . For the full kernel we use the
notation N (FΨ(ψ, µ)), the range of FΨ(ψ, µ) is denoted by R(FΨ(ψ, µ)).

Definition 7.2 (Branch point [72]). Consider a point (ψ, µ) ∈ Cn × R and a
nonlinear function F : Cn × R → Cn. We call (ψ, µ) a branch point of F if
F(ψ, µ) = 0 and

dim(N̂ (FΨ(ψ, µ))) ≥ 2.

The value mult(ψ, µ) = dim(N̂ (FΨ(ψ, µ)))− 1 is called the multiplicity of the
branch point.

A branch point (ψ(b), µ(b)) is a solution of the equation for which the full
Jacobian contains a multi-dimensional kernel. As a consequence, branch points
are a class of bifurcation points. As stated before, it are the points in which
multiple solution curves intersect. We distinguish two types: if the kernel is two-
dimensional (multiplicity 1), this intersection occurs for precisely two solution
curves. If its dimension is higher than 2 (multiplicity > 1), more than two
curves intersect in the same branch point. This last case typically occurs when
the problem contains a (discrete) symmetry [73]. Except for branch points, we
also consider a class of bifurcations called turning points.

Definition 7.3 (Turning point [72]). Consider a point (ψ, µ) ∈ Cn × R and
a nonlinear function F : Cn × R → Cn. We call (ψ, µ) a turning point of F if
F(ψ, µ) = 0 and

dim(N̂ (Fψ(ψ, µ))) = 1,

dim(N̂ (FΨ(ψ, µ))) = 1.

Since the Jacobian is self-adjoint for all of the applications considered in
chapter 2, these are the only two types of bifurcation points that we will con-
sider.

To identify branch points during the execution of the pseudo-arclength
continuation method, first the bifurcation points on the approximated curve
need to be calculated. This was already discussed in detail in chapter 6. For
each calculated bifurcation point (ψ(b), µ(b)) the kernel of the full Jacobian
FΨ(ψ(b), µ(b)) needs to be analysed. If this kernel is one-dimensional the bifur-
cation is a turning point, otherwise it is a branch point.

Algorithm 7.2, provided on page 231 in appendix 7.6.2, contains pseudo-
code for the analysis of the full Jacobian’s kernel of a given (bifurcation)
point (ψ(b), µ(b)). First the approximate null vectors φ1, . . . , φm (m ≤ n) of
Fψ(ψ(b), µ(b)) are calculated (by application of algorithm 3.3, see page 43),
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ignoring any induced by continuous symmetries. With m the amount of null
vectors, the dimension of N̂ (FΨ(ψ(b), µ(b))) is either m or m + 1. Next, the
algorithm checks whether a vector v(0) ∈ Cn exists such that

Fψ(ψ(b), µ(b))v(0) = −Fµ(ψ(b), µ(b)). (7.1)

Denoting φ̆1, . . . , φ̆m the null vectors of Fψ(ψ(b), µ(b))∗, the adjoint of the par-
tial Jacobian, this is checked by calculating ξ1, . . . , ξm, given by

∀j = 1, . . . ,m : ξj = 〈Fµ(ψ(b), µ(b)), φ̆j〉.

Note that we can choose φ̆i = φi (∀i = 1, . . . ,m) when Fψ(ψ(b), µ(b)) is self-
adjoint. If |ξj | is sufficiently small for each j = 1, . . . ,m, the partial derivative
Fµ(ψ(b), µ(b)) is considered to lie in the (approximate) range of Fψ(ψ(b), µ(b))
[103], and the vector v(0) exists. In this case the kernel of FΨ(ψ(b), µ(b)) is m+1-
dimensional. If |ξj | does not approximate zero for a certain j ∈ {1, . . . ,m}, the
kernel has dimension m.

Algorithm 7.2 is part of algorithm 7.1 (page 230), used to determine the
type of a given bifurcation point (ψ(b), µ(b)) and to construct its emerging
(normalized) tangent directions. More details on this algorithm are provided
throughout the chapter.

7.2.2 Analysis of tangent directions

After a branch point (ψ(b), µ(b)) has been identified, tangent directions to
emerging solution curves need to be constructed. We ignore directions that
lead to solution families induced by continuous symmetries (see section 6.3.1).
Given a curve (ψ(s), µ(s)) of F , with (ψ(s0), µ(s0)) = (ψ(b), µ(b)), the tangent
direction to (ψ(s), µ(s)) is defined by (ψ̇, µ̇), with [73]

ψ̇ = lim
s→s0

1

s
(ψ(s)− ψ(b)), (7.2)

µ̇ = lim
s→s0

1

s
(µ(s)− µ(b)). (7.3)

An important property of these directions is that they lie in the kernel of
the full Jacobian, this will be derived in section 7.3. Given approximate null
vectors (φ1, β1), . . . , (φm+1, βm+1) ∈ Cn×R of FΨ(ψ, µ) (ignoring ones induced
by continuous symmetries), this property allows us to write (ψ(s), µ(s)) as a
linear combination of these vectors:

ψ̇ =

m+1∑
j=1

αjφj , µ̇ =

m+1∑
j=1

αjβj ,

for certain α1, . . . , αm+1 ∈ R. This reduces the problem of constructing tangent
directions in Cn×R to approximating the kernel of FΨ(ψ, µ) and determining
the appropriate linear combinations [62, 72].

Finding such a combination is however far from trivial, the complexity of
this problem strongly depends on the amount of approximate null vectors.
Several cases and techniques will be discussed in further sections of the current
chapter.
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Remark 7.4. Instead of calculating the tangent directions to emerging curves,
an alternative method consists of perturbing the system in the direction of the
critical eigenvector. This technique is for example applied in [51] for the anal-
ysis of nonlinear engineering structures. Though not as robust as determining
tangent directions, the method relies entirely on the Jacobian’s kernel, which
reduces computational work compared to the algorithms that will be discussed
in the remainder of the current chapter. The method generally works fine for
branch points with multiplicity 1.

Generalization to higher multiplicity branch points is mentioned as well in
[51]. Due to the increased dimension of the Jacobian’s kernel, it is however not
possible to a priori know the required linear combination of critical eigenvectors
the system should be perturbed in. This possibly leads to solution curves, that
do emerge from the branch point, being missed.

Given the tangent directions (ψ̇(1), µ̇(1)), (ψ̇(2), µ̇(2)), (ψ̇(3), µ̇(3)), . . . to re-
spective solution curves (ψ1(s), µ1(s)), (ψ2(s), µ2(s)), (ψ3(s), µ3(s)), . . . , we
still need to decide which directions should be used to generate further curves.
We want to prevent a recalculation of the curve the branch points were cal-
culated from, neither do we want two applications of the pseudo-arclength
continuation method to yield curves that belong to the same group orbit (see
definition 6.12) when a discrete symmetry is present.

Algorithm 7.3 (page 232) removes tangent directions from a given list, it is
executed after their construction in algorithm 7.1 (page 230). First the group
orbits are analysed, this is only required if F contains a discrete symmetry. If
two directions (ψ̇(i), µ̇(i)) and (ψ̇(j), µ̇(j)) (with j > i > 0) satisfy

ψ̇(i) ≈ g(ψ̇(j)), µ̇(i) ≈ µ̇(j)

for a certain g ∈ G, the symmetry group of F , direction (ψ̇(j), µ̇(j)) is removed.
To prevent the recalculation of an already constructed curve through the

branch point, an approximation (ψ̇(0), µ̇(0)) of the direction to this curve should
be provided as input in algorithm 7.3. In practice this tangent direction is
approximated by (6.12), using two points ψ(j) and ψ(j−1) of the curve close to
the branch point. The algorithm removes the tangent direction (ψ̇(i), µ̇(i)) for
which the value

min
g∈G

(
1− |〈ψ̇(0), g(ψ̇(i))〉+ µ̇(0)∗µ̇(i)|

)
is smallest. If F does not contain a dsicrete symmetry, the group action g is
ignored in this expression.

7.2.3 Alternative exploration techniques

In order to automatically explore a connected solution landscape, we apply
the strategy that consists of identifying branch points and analysing tangent
directions to emerging curves. There are alternative approaches with the same
purpose, an overview of some of these methods is given in the current section.

In [13] the elastic shell problem is considered. Instead of calculating solu-
tion curves for this equation exactly, they are locally approximated by Padé
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approximants. Using this technique the nonlinear equation is replaced by a se-
ries of linear ones. The solutions to these systems are then used to construct
approximations to the curves. The method is however not straightforwardly
applicable to general problems, like the ones discussed in chapter 2. Further-
more, the method is only analysed for branch points with multiplicity 1 in [13],
a possible extension to higher multiplicities is not discussed.

A method that can be applied to higher multiplicity branch points is dis-
cussed in [21]. Near such a point, known solutions are deflated from the non-
linear system in order to find new ones by application of the Newton method.
The technique is applied to the Gross-Pitaevskii equation in [21]. Though only
the nonlinear equation is adapted in this method, convergence of the Newton
method is not guaranteed, possibly failing to find all of the emerging curves.
Neither is it clear how null vectors induced by continuous symmetries are per-
turbed by this deflation, or how these should be handled when solving the
underlying linear systems.

Another technique applicable to higher multiplicity branch points is dis-
cussed in [57]: in this paper the branch connecting equation associated with a
given nonlinear problem is introduced. By performing numerical continuation
on this new equation in an additional, artificial, parameter, solutions that lie at
a fixed distance of a given branch point are found. Ideally the resulting curve
passes through all of these solutions, this is however not always the case in
practice [66]. Furthermore, numerical continuation of the branch connecting
equation comes with a high additional computational cost, and might fail due
to non-convergence of the Newton method.

Given a branch point of general multiplicity in a nonlinear equation, the
generalized Lyapunov-Schmidt-Koiter technique is described in [66] to derive a
reduced polynomial system, whose solutions are used to construct initial guesses
for points on the emerging curves close to the branch point. The method is
based on a Taylor expansion. The approach in [66] does not calculate tangent
directions directly, but its derivation is similar to the one discussed in the cur-
rent chapter. The method however misses some details to use it in practice: no
robust criteria are derived to check the reduced polynomial system for isolated
solutions. Furthermore, there is no mention on how the order of the used Taylor
expansion is linked to such solutions existing in the reduced system.

Several methods for automatic exploration at branch points of multiplicity
2 and higher are suggested in [95]. One of these methods investigates possible
symmetry breaking of emerging curves, which typically occurs at these kinds of
bifurcations. Near these points the nonlinear equation is extended with a sym-
metry breaking condition, after application of the Newton method this yields
solutions with a reduced symmetry group. The symmetry breaking condition
typically demands two elements of the state that are equal at the bifurcation,
to have a fixed non-zero distance at the system’s solution. It is however not
possible to know a priori what elements to choose to find all of the different
emerging solution curves, possibly leading to curves being missed.

Other methods mentioned in [95] include establishing correctors that pro-
ceed parallel to the known branch, and a technique called unfolding (which is
also discussed in [62]). Both methods are however not robust, increasing the
possibility of curves being missed.
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7.3. Lyapunov-Schmidt reduction

Contrary to the techniques mentioned above, the automatic exploration
method based on branch points and tangent directions guarantees each emerg-
ing solution curve to be found. Note that in practice curves might still be
missed, due to a possible bad choice of internal parameters (see section 8.4).
However, the technique seems to be the most robust choice. In the remainder
of the chapter the construction of tangent directions will be discussed. We will
consider a general branch point (ψ(b), µ(b)) ∈ Cn × R of F . The evaluations of

F , Fψ, . . . in (ψ(b), µ(b)) will be denoted as F (b), F (b)
ψ , . . . .

7.3 Lyapunov-Schmidt reduction

A popular approach for analysing bifurcations is Lyapunov-Schmidt reduction
[73]: in a neighbourhood of the bifurcation (ψ(b), µ(b)), the problem is reduced
to low-dimensional systems of algebraic equations that contain all of the infor-
mation of the bifurcations behaviour. The solutions of these systems are then
used to construct the tangent directions. In Mei and Schwarzer [73] the method
is applied to general problems, leading to three equations that form the base
of a first tangent direction construction algorithm.

For generality, we will drop the assumption on self-adjointness of the partial
Jacobian Fψ in the remainder of the chapter.

7.3.1 Derivation of the base equations

A short overview of the deduction of these equations is given in the current
section, based on the analysis done in Mei and Schwarzer [73]. The following
assumptions are made:

• F (b)
ψ is a Fredholm operator of index 0 [79] and zero is a semi-simple

eigenvalue of it.

• Orthonormal bases for the kernels of F (b)
ψ and F (b)∗

ψ (the adjoint partial
Jacobian) have been determined:

N
(
F (b)
ψ

)
= span (φ1, φ2, . . . , φm′) ,

N
(
F (b)∗
ψ

)
= span

(
φ̆1, φ̆2, . . . , φ̆m′

) (7.4)

for a certain m′ ∈ N. We assume ‖φi‖ = ‖φ̆i‖ = 1 for each i = 1, . . . ,m′.
The first m ≤ m′ vectors of these bases are chosen perpendicular to the
null vectors induced by possible continuous symmetries. We have

N̂
(
F (b)
ψ

)
= span (φ1, φ2, . . . , φm) ,

N̂
(
F (b)∗
ψ

)
= span

(
φ̆1, φ̆2, . . . , φ̆m

)
.

(7.5)

For the applications described in chapter 2 the partial Jacobian F (b)
ψ is

self-adjoint, implying N
(
F (b)
ψ

)
= N

(
F (b)∗
ψ

)
for these problems.
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• We have

F (b)
µ ∈ R

(
F (b)
ψ

)
.

Note that if this assumption does not hold and m equals 1, the bifurcation
(ψ(b), µ(b)) is in fact a turning point and no tangent directions need to be
calculated.

In practice, the kernels N̂
(
F (b)
ψ

)
and N̂

(
F (b)∗
ψ

)
are approximated using

algorithm 3.3 (page 43).
A solution curve (ψ(s), µ(s)) with (ψ(s0), µ(s0)) = (ψ(b), µ(b)) is considered.

The fundamental theorem of linear algebra [103] states that the space Cn can

be decomposed into N
(
F (b)
ψ

)
and R

(
F (b)∗
ψ

)
, this implies that we can write

ψ(s) and µ(s) as

ψ(s) = ψ(b) +

m′∑
i=1

sαiφi + sw(α1, . . . , αm′ , s) with w ∈ R
(
F (b)∗
ψ

)
,

µ(s) = µ(b) + sβ(s) with β ∈ R.

Applying a Taylor expansion, this yields

ψ(s) = ψ(b) +

m′∑
i=1

sαiφi +

l∑
k=1

skwk +O(sl+1),

µ(s) = µ(b) +

l∑
k=1

skβk +O(sl+1)

(7.6)

with l ∈ N, w1, . . . , wl ∈ R
(
F (b)∗
ψ

)
and β1, . . . , βl ∈ R.

The tangent direction (ψ̇, µ̇) to the solution curve (ψ(s), µ(s)) is given by

ψ̇ = lim
s→s0

1

s

(
ψ(s)− ψ(b)

)
=

m′∑
i=1

αiφi + w1,

µ̇ = lim
s→s0

1

s

(
µ(s)− µ(b)

)
= β1.

(7.7)

We ignore directions that lead to solution families induced by continuous sym-
metries. This is done by orthogonalizing ψ̇ to any null vectors induced by
these. Such vectors were given in (7.4) by φm+1, . . . , φm′ and φ̆m+1, . . . , φ̆m′ .
As a consequence, we set αi = 0 for i > m. (7.6) becomes

ψ(s) = ψ(b) +

m∑
i=1

sαiφi +

l∑
k=1

skwk +O(sl+1),

µ(s) = µ(b) +

l∑
k=1

skβk +O(sl+1).

(7.8)
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7.3. Lyapunov-Schmidt reduction

We rewrite equation F(ψ, µ) = 0, again using a Taylor expansion.

F(ψ, µ) = F (b)
Ψ

(
ψ − ψ(b)

µ− µ(b)

)
+R(ψ − ψ(b), µ− µ(b))

=

l∑
k=1

sk
(
F (b)
ψ wk + F (b)

µ βk + rk

)
+O(sl+1),

(7.9)

with R(ψ − ψ(b), µ− µ(b)) given by

R(ψ − ψ(b), µ− µ(b)) =

∞∑
j=2

1

j!
DjΨF

(b)


m∑
i=1

sαiφi +
l∑

k=1

skwk +O(sl+1)

l∑
k=1

skβk +O(sl+1)


j

.

The term rk in (7.9) represents the coefficient of sk in R(ψ − ψ(b), µ − µ(b))
(∀k = 1, . . . , l), this vector is explicitly given by

rk =

k∑
j=2

1

j!

∑
(k1,...,kj)

∈K(k)
j

DjΨF
(b)

(
xk1
βk1

)(
xk2
βk2

)
. . .

(
xkj
βkj

)
(7.10)

with x1 =

m∑
i=1

αiφi + w1, ∀p = 2, . . . , k − 1 : xp = wp.

The set K(k)
j that appears in the equation is defined by (∀k = 1, . . . , l, j =

2, . . . , k)

K(k)
j =

{
(k1, . . . , kj) ∈ Nj |

j∑
p=1

kp = k,∀p = 1 . . . j : kp ∈ {1 . . . k − j + 1}

}
.

(7.11)

The following three equations are now derived in Mei and Schwarzer [73] (for
k = 1, . . . , l):

F (b)
ψ wk + F (b)

µ βk = −rk, (7.12)

∀j = 1, . . . ,m : 〈φj , wk〉 = 0, (7.13)

∀j = 1, . . . ,m : 〈φ̆j , rk〉 = 0. (7.14)

These equations form the base of the upcoming algorithms. Note that, since

r1 = 0, the first equation implies that (w1, β1) is a null vector of F (b)
Ψ . As

a consequence, (7.7) states that the tangent directions are constructed as a

linear combination of vectors in N̂
(
F (b)

Ψ

)
. More details on Lyapunov-Schmidt

reduction can be found in e.g. Mei and Schwarzer [73] and Mei [72].
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7.3.2 General algorithm for the construction of tangent
directions

In Mei and Schwarzer [73] a general algorithm is deduced to construct reduced
systems of equations for α1, . . . , αm, βk−1 (k = 2, 3, . . . ). Together with (7.7)
the solutions of these systems yield the tangent directions. The algorithm is
based on equations (7.12), (7.13) and (7.14), which are used to write the terms
rk and wk as polynomials in the variables α1, . . . , αm, β1, . . . , βk−1. Under the
assumptions

∀j = 1, . . . ,m : tj =
∂

∂ψ
F (b)

Ψ

(
v(0)

1

)
φj /∈ R

(
F (b)

Ψ

)
, (7.15)

∀q1, . . . , qm ∈ R :

m∑
j=1

qj〈φ̆k, ti〉 = 0 for each k ⇐⇒ q1 = · · · = qm = 0,

(7.16)

t0 = F (b)
ΨΨ

(
v(0)

1

)(
v(0)

1

)
∈ R

(
F (b)
ψ

)
, (7.17)

it is possible to write the term βk (k = 1, 2, . . . ) as a polynomial in the vari-
ables α1, . . . , αm as well. The vector v(0) is implicitly defined by w1 = β1v

(0).

Assumptions (7.15) and (7.16) imply that ker
(
F (b)∗
ψ

)
is spanned by the projec-

tions of t1, . . . , tm on this kernel. The method described in Mei and Schwarzer
[73] is given by algorithm 7.5 (rewritten to emphasize the construction of the
reduced systems).

Algorithm 7.5 (Creation of tangent directions based on Mei and Schwarzer
[73]).
Initial:
For k = 1, use the equation

F (b)
ψ w1 = −F (b)

µ β1

to write w1 ∈ R
(
F (b)∗
ψ

)
as a polynomial in β1.

Iteration:
For k = 2, 3, . . . do:
Step 1: Use the polynomial expression of wk−1 (and βk−2 if k ≥ 3) together
with (7.10) to write rk as a polynomial in α1, . . . , αm, βk−1.
Step 2: Substitute this polynomial expression in the equation

∀j = 1, . . . ,m : 〈φ̆j , rk〉 = 0.

This yields a reduced system of equations for α1, . . . , αm, βk−1.
Step 3: Check whether the system has real and isolated solutions α1(βk−1), . . . ,
αm(βk−1) for βk−1 in an open interval. Solve the system for these solutions,
each one corresponds to a tangent direction of a different solution curve by
application of (7.7).
Step 4a: If only isolated solutions exist in the reduced system, stop the algo-
rithm.
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Step 4b: If non-isolated solutions exist as well, use the system to write βk−1 as
a polynomial of α1, . . . , αm and use this result to write rk as a polynomial in
these variables as well. Substitute this expression for rk into the system

F (b)
ψ wk + F (b)

µ βk = −rk,
∀j = 1, . . . ,m : 〈φj , wk〉 = 0

and solve it to find a polynomial expression for wk in α1, . . . , αm, βk. �

The complexity of the polynomial expressions in algorithm 7.5 strongly depends

on the dimension m of N̂
(
F (b)
ψ

)
. No general exact expressions were derived in

Mei and Schwarzer [73] for the case m > 1.

7.3.3 The algebraic branching equation

If the kernel N̂ (F (b)
ψ ) is one-dimensional (m = 1), algorithm 7.5 only requires

a single iteration: the first reduced system that is constructed does not contain
non-isolated solutions [73]. In this case the algorithm is equivalent to the alge-
braic branching equation [61, 3, 10, 62, 73]. The reduced system for α1 and β1

is given by

aα2
1 + bα1β1 + cβ2

1 = 0 (7.18)

with a = 〈φ̆1,
1

2
F (b)
ψψφ1φ1〉,

b = 〈φ̆1,F (b)
ψψφ1v

(0) + F (b)
ψµφ1〉,

c = 〈φ̆1,
1

2
F (b)
ψψv

(0)v(0) + F (b)
ψµv

(0) +
1

2
F (b)
µµ 〉,

where v(0) ∈ R
(
F (b)∗
ψ

)
is solved from the equation

F (b)
ψ v(0) = −F (b)

µ . (7.19)

Equation (7.18) is solved for α1 and β1. Together with w1 = β1v
(0) the tangent

directions are constructed by application of (7.7).
Algorithm 7.4 on page 233 in appendix 7.6.2 contains pseudo-code that

constructs the two (normalized) tangent directions for the case m = 1, based
on the algebraic branching equation (7.18). The solution v(0) of the linear
system (7.19) is approximated by deflated GMRES (algorithm 3.4, page 44) in
practice.

7.4 Construction of tangent directions in presence of
discrete symmetries

For problems that exhibit discrete symmetry, branch points (ψ(b), µ(b)) arise

for which N̂ (F (b)
ψ ) is multi-dimensional [73, 72], complicating the polynomials

used in algorithm 7.5. In Mei and Schwarzer [73] no exact expressions for these
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polynomials were derived and hence only implicit reduced systems of equations
are given, which limits the use of the algorithm in its current form by numerical
software. Furthermore, it is not specified how these systems can be checked for
real and isolated solutions.

In the current section we derive exact polynomial expressions that yield
explicit systems for the case m = 2. A simple rule is used to check these for
real and isolated solutions. The derivation yields an updated algorithm used

when the dimension m of the kernel N̂ (F (b)
ψ ) equals 2 (see algorithm 7.6).

Only the casesm = 1 andm = 2 are encountered when constructing tangent
directions for the applications described in chapter 2. The cases for m ≥ 3 will
not be discussed, but we note that an algorithm for these cases can be derived
in a similar way.

7.4.1 Construction of a reduced system of equations

Set m = 2, assumptions (7.15) and (7.16) allow us to choose φ̆1 and φ̆2 such
that:

∂

∂ψ
F (b)

Ψ

(
v(0)

1

)
φ1 = q1φ̆1 + u1 with u1 ∈ R

(
F (b)
ψ

)
, q1 ∈ R0,

∂

∂ψ
F (b)

Ψ

(
v(0)

1

)
φ2 = q2φ̆1 + q3φ̆2 + u2 with u2 ∈ R

(
F (b)
ψ

)
, q2 ∈ R, q3 ∈ R0.

(7.20)

A modification of algorithm 7.5 for the case m = 2 is given by algorithm 7.6.
In this last algorithm the coefficients required to write the different polynomial
expressions are derived in order to determine explicit reduced systems of equa-
tions for α1, . . . , αm, βk−1. A detailed derivation of algorithm 7.6 is provided
in appendix 7.6.1.

Algorithm 7.6 (Creation of tangent directions for the m = 2 case).
Initial:

Step 1: Solve the equation

F (b)
ψ v(0) = −F (b)

µ , v(0) ∈ R
(
F (b)∗
ψ

)
⊂ Cn

by applying deflated GMRES (algorithm 3.4, page 44). Note that w1 (defined
in (7.8)) can be written as

w1 = β1v
(0). (7.21)

Step 2: Calculate the following terms in the space Cn:

y
(2)
0 =

1

2
F (b)
ψψφ2φ2, y

(2)
1 = F (b)

ψψφ1φ2, y
(2)
2 =

1

2
F (b)
ψψφ1φ1,

t1 = F (b)
ψψφ1v

(0) + F (b)
ψµφ1, t2 = F (b)

ψψφ2v
(0) + F (b)

ψµφ2,

t0 =
1

2
F (b)
ψψv

(0)v(0) + F (b)
ψµv

(0) +
1

2
F (b)
µµ .
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Note that r2 (defined in (7.10)) can be written as

r2 =

2∑
i=0

αi1α
2−i
2 y

(2)
i + β1α1t1 + β1α2t2 + β2

1t0. (7.22)

Step 3: Calculate the scalars

∀j = 1, 2, i = 0, 1, 2 : a
(2,j)
i = 〈φ̆j , y(2)

i 〉,

b(1) = 〈φ̆1, t1〉, b(2) = 〈φ̆2, t2〉, b(3) = 〈φ̆1, t2〉.

These values form the coefficients of the following reduced system of equations:
2∑
i=0

αi1α
2−i
2 a

(2,1)
i + β1α1b

(1) + β1α2b
(3) = 0,

2∑
i=0

αi1α
2−i
2 a

(2,2)
i + β1α2b

(2) = 0.

(7.23)

Step 4: Check whether b(2)a
(2,1)
0 = b(3)a

(2,2)
0 , a

(2,2)
2 = 0 and ∀i = 1, 2 :

b(2)a
(2,1)
i = b(1)a

(2,2)
i−1 + b(3)a

(2,2)
i .

Step 5a: If this is the case, stop the algorithm: system (7.23) only contains
isolated solutions, these correspond to the tangent directions.
Step 5b: If this is not the case, the only isolated solution of (7.23) is given by
(α1, α2, β1) = (0, 0, a) with a ∈ R. The system contains non-isolated solutions

as well. Set κ
(1)
−1 = κ

(1)
2 = 0 and calculate

∀i = 0, 1 : κ
(1)
i = −a

(2,2)
i

b(2)
,

z
(2)
0 = y

(2)
0 + κ

(1)
0 t2 + κ

(1)2

0 t0, z
(2)
1 = y

(2)
1 + κ

(1)
0 t1 + κ

(1)
1 t2 + 2κ

(1)
0 κ

(1)
1 t0,

z
(2)
2 = y

(2)
2 + κ

(1)
1 t1 + κ

(1)2

1 t0,

q
(1)
0 = κ

(1)
0 v(0) + φ2, q

(1)
1 = κ

(1)
1 v(0) + φ1.

Note that β1, r2 and x1 (defined in (7.8) and (7.10)) can respectively be written
as

β1 =

1∑
i=0

αi1α
1−i
2 κ

(1)
i , (7.24)

r2 =
2∑
i=0

αi1α
2−i
2 z

(2)
i , (7.25)

x1 =

1∑
i=0

αi1α
1−i
2 q

(1)
i . (7.26)
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Iteration:
For k = 3, 4, . . . do:
Step 1: Solve the equations

∀i = 0, . . . , k − 1 : F (b)
ψ v

(k−1)
i = −z(k−1)

i , v
(k−1)
i ∈ R

(
F (b)
ψ

)
⊂ Cn

by applying deflated GMRES (algorithm 3.4, page 44). Note that wk−1 (defined
in (7.8)) can be written as

wk−1 =

k−1∑
i=0

αi1α
k−1−i
2 v

(k−1)
i + βk−1v

(0). (7.27)

Step 2: Calculate the following terms in the space Cn:

∀i = 0, . . . , k :

y
(k)
i =

∑
(i1,i2)

∈I(i,2)1,k−1

F (b)
ΨΨ

(
q

(1)
i1

κ
(1)
i1

)(
v

(k−1)
i2

0

)

+
1

2

k−2∑
k1=2

∑
(i1,i2)

∈I(i,2)k1,k−k1

F (b)
ΨΨ

(
q

(k1)
i1

κ
(k1)
i1

)(
q

(k−k1)
i2

κ
(k−k1)
i2

)

+

k∑
j=3

1

j!

∑
(k1,...,kj)

∈K(k)
j

∑
(i1,...,ij)

∈I(i,j)k1,...,kj

DjΨF
(b)

(
q

(k1)
i1

κ
(k1)
i1

)(
q

(k2)
i2

κ
(k2)
i2

)
. . .

(
q

(kj)
ij

κ
(kj)
ij

)
.

(7.28)

The set K(k)
j (for j = 3, . . . , k) is defined by (7.11), I(i,j)

k1,...,kj
(for i = 0, . . . , k,

j = 3, . . . , k, k1, . . . , kj ∈ K(k)
j ) by

I(i,j)
k1,...,kj

=

{
(i1, . . . , ij) ∈ Nj |

j∑
p=1

ip = i,∀p = 1 . . . j : ip ∈ {0, . . . , kp}

}
.

(7.29)
Note that rk (defined in (7.10)) can be written as

rk =

k∑
i=0

αi1α
k−i
2 y

(k)
i + βk−1α1

(
t1 + 2κ

(1)
1 t0

)
+ βk−1α2

(
t2 + 2κ

(1)
0 t0

)
. (7.30)

Step 3: Calculate the scalars

∀j = 1, 2, i = 0, . . . , k : a
(k,j)
i = 〈φ̆j , y(k)

i 〉.

These values form the coefficients of the following reduced system of equations:
k∑
i=0

αi1α
k−i
2 a

(k,1)
i + βk−1α1b

(1) + βk−1α2b
(3) = 0,

k∑
i=0

αi1α
k−i
2 a

(k,2)
i + βk−1α2b

(2) = 0.

(7.31)
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Step 4: Check whether b(2)a
(k,1)
0 = b(3)a

(k,2)
0 , a

(k,2)
k = 0 and ∀i = 1, . . . , k :

b(2)a
(k,1)
i = b(1)a

(k,2)
i−1 + b(3)a

(k,2)
i .

Step 5a: If this is the case, stop the algorithm: system (7.31) only contains
isolated solutions, these correspond to the tangent directions.
Step 5b: If this is not the case, the only isolated solution of (7.31) is given
by (α1, α2, βk−1) = (0, 0, a) with a ∈ R. The system contains non-isolated

solutions as well. Set κ
(k−1)
−1 = κ

(k−1)
k = 0 and calculate

∀i = 0, . . . , k − 1 : κ
(k−1)
i = −a

(k,2)
i

b(2)
,

∀i = 0, . . . , k : z
(k)
i = y

(k)
i + κ

(k−1)
i−1

(
t1 + 2κ

(1)
1 t0

)
+ κ

(k−1)
i

(
t2 + 2κ

(1)
0 t0

)
,

∀i = 0, . . . , k − 1 : q
(k−1)
i = v

(k−1)
i + κ

(k−1)
i v(0).

Note that βk−1, rk and xk−1 (defined in (7.8) and (7.10)) can respectively be
written as

βk−1 =

k−1∑
i=0

αi1α
k−1−i
2 κ

(k−1)
i , (7.32)

rk =

k∑
i=0

αi1α
k−i
2 z

(k)
i , (7.33)

βk−1 =

k−1∑
i=0

αi1α
k−1−i
2 q

(k−1)
i . (7.34)

�

Algorithm 7.6 gives rise to reduced systems of equations of the form

f(α1, α2, βk−1) =


k∑
i=0

αi1α
k−i
2 a

(k,1)
i + βk−1α1b

(1) + βk−1α2b
(3) = 0,

k∑
i=0

αi1α
k−i
2 a

(k,2)
i + βk−1α2b

(2) = 0

(7.35)

with k ≥ 2 and known coefficients a
(k,1)
0 , . . . , a

(k,1)
k , a

(k,2)
0 , . . . , a

(k,2)
k , b(1),

b(2), b(3). The system constructed by executing the initial steps (k = 2) always
contains an isolated solution (α1, α2, β1) = (0, 0, a) (a ∈ R). Application of
(7.7) and (7.21) leads to a first tangent direction. If this system contains other
isolated solutions as well, the corresponding tangent directions are constructed
with the same formulas.

The algorithm is continued if this initial reduced system also contains non-
isolated solutions, possibly yielding further systems with a sole isolated solution
(α1, α2, βk−1) = (0, 0, a) (a ∈ R). Relation (7.24) results in β1 = 0, conse-
quently (7.7) yields the zero vector and does not actually correspond to a real
tangent direction.

Eventually the algorithm will find a system that only contains isolated
solutions. Details on how to solve such a system will be provided in section
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7.4.2. Tangent directions are constructed from these solutions by application
of (7.7), (7.21) and (7.24).

The case m = 2 typically occurs when the underlying problem exhibits
discrete symmetry, and the branch point is symmetric as well [73, 72]. The
amount of required iterations in algorithm 7.6 depends on this symmetry group.
For a branch point invariant under the actions of Cp or Dp (p ≥ 3), the reduced
system (7.35) has isolated solutions for k = p − 1, constructed after p − 2
iterations.

The system itself is also invariant under the actions of Cp, respectively Dp

in this case. Due to this invariance, most solutions of (7.35) result in tangent
directions to solution curves in the same group orbit. After the construction of
the directions, algorithm 7.3 (page 232) is however executed. As stated before,
this algorithm selects a single direction for each group orbit. For p even/odd
this results in respectively 3 or 2 different directions.

Pseudo-code for algorithm 7.6 is given by algorithm 7.7 on page 236 in
appendix 7.6.2. It is part of algorithm 7.5 (page 233), used for the construction
of (normalized) tangent directions to solution curves emerging from a given

branch point (ψ(b), µ(b)) for the case dim
(
N̂
(
Fψ(ψ(b), µ(b))

))
= 2. An efficient

method to calculate the terms (7.28) in algorithm 7.7 is given by the pseudo-
code of algorithm 7.9 (page 239). The sets (7.11) and (7.29) that appear in
(7.28) are created by algorithms 7.10 (page 240) and 7.11 (page 240).

Algorithm 7.5 was used for e.g. the results of the Ginzburg-Landau equation
applied to triangle- and star-shaped materials in sections 9.5.2 and 9.5.4. In
both examples, it yielded the required tangent directions for each branch point

(ψ(b), µ(b)) with dim
(
N̂
(
Fψ(ψ(b), µ(b))

))
= 2.

7.4.2 Solving the reduced system of equations

By applying algorithm 7.6 eventually a reduced system of equations of the form
(7.35) is constructed, for a certain k ≥ 2 and known coefficients, such that the
system only contains isolated solutions. We had not yet discussed how this
system is solved.

To find the isolated solutions we fix βk−1. This does not reduce the amount
of tangent directions eventually constructed, since these directions are deter-
mined up to normalization. Though in some cases it is possible to solve (7.35)
exactly (for e.g. k = 2 solving this equation is similar to determining the in-
tersection of two conics, for which multiple algorithms exist (see e.g. [84])), we
will approximate its solutions with a Newton algorithm (see section 4.2). This
requires the Jacobian of (7.35), given by(
∂f(α1,α2,βk−1)

∂α1

∂f(α1,α2,βk−1)
∂α2

)

=


k∑
i=1

iαi−1
1 αk−i2 a

(k,1)
i + βk−1b

(1)
k−1∑
i=0

(k − i)αi1αk−1−i
2 a

(k,1)
i + βk−1b

(3)

k∑
i=1

iαi−1
1 αk−i2 a

(k,2)
i

k−1∑
i=0

(k − i)αi1αk−1−i
2 a

(k,2)
i + βk−1b

(2)

 .

(7.36)
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In practice the solutions are found by applying the Newton algorithm for a high
amount of different initial guesses. Together with this Newton solver, algorithm
7.6 allows for the construction of the tangent directions arising from branch

points (ψ(b), µ(b)) with a kernel N̂ (F (b)
ψ ) of dimension 2.

Pseudo-code, for solving a reduced system with given coefficients, is pro-
vided by algorithm 7.8 on page 238 in appendix 7.6.2. It is executed in algorithm
7.5 (page 233) after the coefficients for the system have been constructed.

7.5 Finding tangent directions with the equivariant
branching lemma

For the considered applications of chapter 2, it is always possible to apply

algorithm 7.6 for branch points (ψ(b), µ(b)) with a kernel N̂ (F (b)
ψ ) of dimension

2. Because the amount of required iterations of the algorithm depends on the
symmetry group of the problem, it becomes less practical for problems that are
strongly symmetrical: if the branch point is invariant under the actions of Cp
or Dp for a certain p ≥ 3, p − 2 iterations (k = p − 1 in algorithm 7.6) might
be required before a reduced system that only contains isolated solutions is
obtained [73]. Before this system is found, ((p− 1)p− 2)/2 linear systems with

the partial Jacobian F (b)
ψ need to be solved. This is unwanted for p� 1.

For p ≥ 4 one can still apply the algorithm to determine an equation for β1

and w1 as a polynomial in the variables α1 and α2 (see (7.21) and (7.24)), this
requires only a single linear system to be solved. ForDp symmetric problems the
unknowns α1 and α2 can then alternatively be determined by application of the
equivariant branching lemma (EBL) [48, 55]. This lemma links the symmetry
group of the problem to predict the symmetries of solution curves that emerge
at branch points. In Schlömer [92] the EBL was used for the prediction of the
symmetry groups of emerging curves, but it was not used for the calculation
of the tangent directions themselves.

This alternative method for the construction of tangent directions (for the
case m = 2) will be described in the current section. Note that if the symmetry
group of the problem is given by Cp (for a certain p ≥ 3), the alternative
approach cannot be used.

7.5.1 Absence of continuous symmetry

We start the section by describing the equivariant branching lemma for prob-
lems derived from a partial differential equation, and then show how it is applied
in the construction of tangent directions.

Definition 7.7 (Group invariance of a point [48, 72]). A point (ψ, µ) ∈ Cn×R
is considered invariant under the actions of a symmetry group G′ if

∀g ∈ G′ : g(ψ) = ψ.

Definition 7.8 (Isotropy subgroup [47, 48]). Consider a symmetry group G
and a point (ψ, µ) ∈ Cn×R. The isotropy subgroup G′ ⊆ G of (ψ, µ) is defined
by

G′ = {g ∈ G : g(ψ) = ψ}.
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We consider a solution curve (ψ(s), µ(s)) of a function F with a branch
point (ψ(b), µ(b)). The function does not contain any continuous symmetries,
but is invariant under the actions of a compact Lie group G (see definition
6.8). The isotropy subgroup of the branch point is given by G′ ⊆ G. The
equivariant branching lemma gives necessary conditions for the existence of
symmetry-breaking curves emanating from (ψ(b), µ(b)).

Lemma 7.9 (Equivariant branching lemma for PDE’s [48]). Let G be a com-
pact Lie group, and consider a function F : Cn × R → Cn that is invariant
under the actions of G. Assume (ψ(s), µ(s)) is a solution curve of F with
(ψ(0), µ(0)) = (ψ(b), µ(b)) a branch point, and let G′ ⊆ G be its isotropy
subgroup. Denote λ(s) the eigenvalue of Fψ(ψ(s), µ(s)) associated with the
bifurcation (λ(0) = 0). Consider G′′ ⊆ G′. If

• G′ acts absolutely irreducible on N
(
Fψ(ψ(b), µ(b))

)
• The eigenvalue λ(s) crosses the origin with non-zero speed (λ′(0) 6= 0),

• G′′ is an axial subgroup: the space Fix(G′′) = {v ∈ N
(
Fψ(ψ(b), µ(b))

)
|

∀g ∈ G′′ : g(v) = v} is one-dimensional,

then there exists an unique curve of solutions emanating from (ψ(b), µ(b)) that
are precisely invariant under the actions of G′′.

Proof. Define Q = I −
∑m
i=1〈φi, ·〉φ̆i the projection from Cn onto R

(
F (b)
ψ

)
.

Using Lyapunov-Schmidt reduction [48], the curve (ψ, µ) is written as

ψ = ψ(b) + v + w(v, β) with v ∈ N
(
F (b)
ψ

)
, w ∈ R

(
F (b)∗

ψ

)
,

µ = µ(b) + β with β ∈ R,

where w(v, β) is determined uniquely as a function of v and β by solving

QF(ψ(b) + v + w, µ(b) + β) = 0.

The assumptions imply that the classic equivariant branching lemma [48, 55]
can be applied to the function

f : N
(
F (b)
ψ

)
× R→ Cn : (v, β)→ (I −Q)F(ψ(b) + v + w(v, β), µ(b) + β).

Hence there exists a unique curve (v(β), β) of solutions of f(v, β) = 0, ema-
nating from (v, β) = (0, 0), where the symmetry of the solutions is G′′. Using
G′-invariance of both F and (ψ(b), µ(b)), existence of a unique curve (ψ(s), µ(s))
emanating from (ψ(b), µ(b)) is implied, where the symmetry of (ψ(s), µ(s)) is
G′′.

For the applications described in the thesis, we only consider certain di-
hedral Lie groups: G = Dp for p ≥ 4. Let (ψ(b), µ(b)) ∈ Cn × R be a branch

point such that N (F (b)
ψ ) is two-dimensional, and let the isotropy subgroup G′
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7.5. Finding tangent directions with the equivariant branching lemma

be given by Dq (q ≤ p). Consider an axial subgroup G′′ ⊆ Dq and let the as-
sumptions of lemma 7.9 hold. The lemma predicts that a unique solution curve
with precisely G′′ as its group invariance emerges from (ψ(b), µ(b)).

Choose g ∈ G′′, such that at least one vector of φ1, φ2 and v(0) (see section
7.3) is not invariant under g. We will now use the knowledge of this symmetry to
calculate the unknowns α1 and α2 that construct the tangent direction (ψ̇, µ̇),
given by (7.7), to this curve.

Let (ψ, µ) be a point of the G′′-symmetric solution curve that emerges
from (ψ(b), µ(b)). We have g(ψ) = ψ. If (ψ, µ) is chosen sufficiently close to
(ψ(b), µ(b)), we have {

ψ ≈ ψ(b) + εψ̇,

µ ≈ µ(b) + εµ̇
(7.37)

for a certain ε ∈ R, ε � 1. The tangent direction (ψ̇, µ̇) is given by (see
(7.7),(7.21) and (7.24)){

ψ̇ = α1

(
φ1 + κ

(1)
1 v(0)

)
+ α2

(
φ2 + κ

(1)
0 v(0)

)
,

µ̇ = α1κ
(1)
1 + α2κ

(1)
0

(7.38)

with unknowns α1, α2 ∈ R. v(0), κ
(1)
0 and κ

(1)
1 are constructed by the initial

steps of algorithm 7.6. Since g(ψ) = ψ and g(ψ(b)) = ψ(b), equation (7.37)
implies g(ψ̇) = ψ̇ as well. This result is combined with a least-squares method
to yield the following formulas for α1 and α2:

α1 = −〈g(χ(1))− χ(1), g(χ(2))− χ(2)〉,
α2 = 〈g(χ(1))− χ(1), g(χ(1))− χ(1)〉,

(7.39)

with χ(1) = φ1 + κ
(1)
1 v(0), χ(2) = φ2 + κ

(1)
0 v(0).

Substitution of α1 and α2 in (7.38) gives the desired tangent direction to the
g-symmetric solution curve.

The unknowns α1 and α2 are calculated by application of the formula (7.39).
No additional linear systems or applications of derivatives of F are required,
strongly reducing the amount of computational work compared to further ex-
ecution of algorithm 7.6.

7.5.2 Presence of continuous symmetry

The presence of continuous symmetries complicates the application of the
equivariant branching lemma. We again consider a solution curve (ψ(s), µ(s))
of F , this time the function is invariant under both the actions of a finite-
dimensional Lie group H (representing the continuous symmetry) and the
group Dp, with again p ≥ 4. Let (ψ(s0), µ(s0)) = (ψ(b), µ(b)) be a branch
point, and assume the eigenvalue associated with this point crosses the origin
with non-zero speed.

Though the branch point might not be immediately invariant under an
action ϕ : G′ ×Cn → Cn of a subgroup G′ ⊆ Dp, it is possible that a different
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member of its solution family is:

∃hG′ ∈ H : ∀g ∈ G′ : g(hG′(ψ
(b))) = hG′(ψ

(b)).

In this case the branch point is invariant under an alternative action ϕ′, defined
by

ϕ′ : G′ × Cn → Cn : (g, ψ)→ ϕ′(g, ψ) = h−1
G′ (g(hG′(ψ))).

It is still possible to apply the equivariant branching lemma, granted we
can find hG′ ∈ H that transforms ψ(b) to a representative that is invariant
under the original action ϕ of G′. In practice this element is determined by
application of a least-squares method. Taking an element g ∈ G′ for which
ϕ(g, ψ(b)) 6= ψ(b), hG′ is chosen such that

hG′ = arg min
h∈H

∥∥∥g(h(ψ(b)))− h(ψ(b))
∥∥∥2

.

For several cases it is possible to derive an exact formula for hG′ , an example is
given below for the Ginzburg-Landau equation, where H = S1 represents the
phase symmetry.

Example 7.10. Consider the Ginzburg-Landau equation, described in section
2.5, applied to a general Dp-symmetric (p ≥ 4) material and magnetic field.
The function F is given by (2.20), it is invariant under the actions ϕ of S1×Dp,
defined in proposition 2.3. We denote Dp = 〈τω, σ〉, with ω = 2π/p, and S1 =
{θη | η ∈ [−π, π]} as in this proposition.

Consider a branch point (ψ(b), µ(b)) of the equation and a subgroup G′ ⊆ Dp

such that σ ∈ G′ and

∃η ∈ [−π, π] : ∀g ∈ G′ : ϕ(g, θη(ψ(b))) = θη(ψ(b)).

If ψ(b) is not invariant under the actions ϕ of G′, a G′-invariant representative
ψ′(b) is constructed by ψ′(b) = θη(ψ(b)). The value η ∈ [−π, π] that sets the
element θη is calculated by

η =
1

2
arctan

(
Re(ψ(b))TIm(σ(ψ(b)))− Im(ψ(b))TRe(σ(ψ(b)))

Re(ψ(b))TRe(σ(ψ(b))) + Im(ψ(b))TIm(σ(ψ(b)))

)
.

�

Denote (ψ′(b), µ′(b)) = (hG′(ψ
(b)), µ(b)), the representative of the branch

point invariant under the original actions ϕ. The equivariant branching lemma
is now applied as in section 7.5.1: each axial isotropy subgroup G′′ ⊆ G′ implies
a solution curve emanating from (ψ′(b), µ′(b)), with precisely G′′ as its group
invariance. We choose such a subgroup and an element g ∈ G′′ such that at
least one vector among hG′(φ1), hG′(φ2) and hG′(v

(0)) is not invariant under
g.

The tangent direction to the G′′-symmetric solution curve emerging from
(ψ′(b), µ′(b)) is given by (hG′(ψ̇), µ̇), with (see (7.7),(7.21) and (7.24)){

hG′(ψ̇) = α1

(
hG′(φ1) + κ

(1)
1 hG′(v

(0))
)

+ α2

(
hG′(φ2) + κ

(1)
0 hG′(v

(0))
)
,

µ̇ = α1κ
(1)
1 + α2κ

(1)
0 .

(7.40)
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v(0), κ
(1)
0 and κ

(1)
1 are again constructed by the initial steps of algorithm 7.6. A

least-squares formula for the remaining unknowns α1 and α2 is derived similar
as to section 7.5.1:

α1 = −〈g(χ(1))− χ(1), g(χ(2))− χ(2)〉,
α2 = 〈g(χ(1))− χ(1), g(χ(1))− χ(1)〉,

(7.41)

with χ(1) = hG′(φ1) + κ
(1)
1 hG′(v

(0)), χ(2) = hG′(φ2) + κ
(1)
0 hG′(v

(0)).

Substitution of α1 and α2 in (7.40) yields the desired tangent direction, to the
G′′-symmetric solution curve emerging from (ψ′(b), µ′(b)). The same values are
used to construct a tangent direction to a curve emanating from (ψ(b), µ(b)) by
application of (7.38).

Again no additional linear systems or applications of derivatives of F are
required when calculating α1 and α2, strongly reducing the amount of compu-
tational work.

Pseudo-code for the construction of tangent directions, based on the equiv-
ariant branching lemma, is provided by algorithm 7.6 (page 234). Given ele-
ments of axial isotropy subgroups, the algorithm constructs directions that are
invariant under these symmetries. First the initial steps of algorithm 7.6 are

executed to calculate v(0), κ
(1)
0 and κ

(1)
1 , afterwards (7.39) or (7.41) is applied

to determine α1 and α2. The directions are then constructed by application of
(7.38), and they are normalized. If required, an adjusted representative for the
branch point is determined before the calculation of α1 and α2.

Algorithm 7.6 is part of algorithm 7.1 (page 230), where it can be executed
as an alternative for algorithm 7.5 (page 233). It was used in e.g. sections 9.5.1
and 9.5.3, where results for the Ginzburg-Landau equation applied to respec-
tively a square- and pentagon-shaped material are discussed. For each branch

point (ψ(b), µ(b)) with dim
(
N̂
(
Fψ(ψ(b), µ(b))

))
= 2 it was able to construct

the required tangent directions.
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7.6 Appendices

7.6.1 Derivation of algorithm 7.6

A detailed derivation of algorithm 7.6 is provided in the current section. The
derivation requires lemma 7.11.

Lemma 7.11. Consider a system of equations with unknowns α1 and α2:{∑k
i=0 α

i
1α

k−i
2 ai + bα1 + eα2 = 0,∑k

i=0 α
i
1α

k−i
2 ci + dα2 = 0

(7.42)

with k ≥ 2, a0, . . . , ak, c0, . . . , ck, e ∈ R and b, d ∈ R0. This system contains
non-isolated solutions if and only if the relations

da0 = ec0,

ck = 0,

∀i = 1 . . . k : dai = bci−1 + eci

hold. Moreover, in this case the system has a single isolated solution, given by
(α1, α2) = (0, 0).

Proof.
Step 1: Suppose that the system of equations contains non-isolated solutions.
Since this system can be regarded as the intersection of two algebraic curves,
Cramer’s theorem [24] can be applied to show that the curves must be degen-
erate. The degeneracy implies

∃1 ≤ l ≤ k − 1, f
(m)
i (m = 0 . . . l, i = 0 . . .m), g

(m)
i (m = 0 . . . k − l, i = 0 . . .m),

h
(m)
i (m = 0 . . . k − l, i = 0 . . .m) :

k∑
i=0

aiα
i
1α

k−i
2 + bα1 + eα2 =

(
l∑

m=0

m∑
i=0

f
(m)
i αi1α

m−i
2

)(
k−l∑
m=0

m∑
i=0

g
(m)
i αi1α

m−i
2

)
,

(7.43)

k∑
i=0

ciα
i
1α

k−i
2 + dα2 =

(
l∑

m=0

m∑
i=0

f
(m)
i αi1α

m−i
2

)(
k−l∑
m=0

m∑
i=0

h
(m)
i αi1α

m−i
2

)
.

(7.44)

Comparing the coefficients of α1 and α2 in (7.43) and (7.44), it follows that

f
(0)
0 6= 0. Similar comparisons of other coefficients can be combined with an

induction argument to prove the statements

∀m = 0 . . . k − l : dg
(m)
0 = eh

(m)
0 , (7.45)

∀m = 0 . . . k − l : h(m)
m = 0, (7.46)

∀m = 1 . . . k − l, i = 1 . . .m : dg
(m)
i = bh

(m)
i−1 + eh

(m)
i . (7.47)
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Using (7.45), we get

da0 = df
(l)
0 g

(k−l)
0 = ef

(l)
0 h

(k−l)
0 = ec0.

Next, (7.46) implies that

ck = f
(l)
l h

(k−l)
k−l = 0.

For ease of notation, define

∀l + 1 ≤ i ≤ k : f
(l)
i = 0,

∀k − l + 1 ≤ i ≤ k : g
(k−l)
i = h

(k−l)
i = 0.

Since h
(k−l)
k−l = 0, we have

∀i = 1 . . . k : dg
(k−l)
i = bh

(k−l)
i−1 + eh

(k−l)
i .

Together with (7.45),(7.46) and (7.47), this implies (∀i = 1 . . . k)

dai = d

i∑
j=0

f
(l)
j g

(k−l)
i−j = b

i−1∑
j=0

f
(l)
j h

(k−l)
i−1−j + e

i∑
j=0

f
(l)
j h

(k−l)
i−j = bci−1 + eci.

Step 2: We have yet to show that

da0 = ec0, ck = 0,∀i = 1 . . . k : dai = bci−1 + eci

⇒ The system of equations (7.42) contains non-isolated solutions and a

single isolated solution given by (α1, α2) = (0, 0).

We first rewrite the equations for the algebraic curves. The one for the first
curve becomes

k∑
i=0

aiα
i
1α

k−i
2 + bα1 + eα2 = 0 ⇐⇒

(
k−1∑
i=0

ciα
i
1α

k−1−i
2 + d

)
(bα1 + eα2) = 0.

The equation for the second curve can be rewritten as

k∑
i=0

ciα
i
1α

k−i
2 + dα2 = 0 ⇐⇒

(
k−1∑
i=0

ciα
i
1α

k−1−i
2 + d

)
α2 = 0.

Solutions (α1, α2) of system (7.42) satisfy

bα1 + eα2 = 0 and α2 = 0 or

k−1∑
i=0

ciα
i
1α

k−1−i
2 + d = 0.

The equation
∑k−1
i=0 ciα

i
1α

k−1−i
2 + d = 0 again describes an algebraic curve.

The solutions that satisfy this equation hence form a continuous curve and are
non-isolated. The solution for which

bα1 + eα2 = 0 and α2 = 0

satisfies (α1, α2) = (0, 0). This solution is isolated since (α1, α2) = (0, 0) does

not belong to the curve described by
∑k−1
i=0 ciα

i
1α

k−1−i
2 +d = 0 (because d 6= 0).
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The three equations

F (b)
ψ wk + F (b)

µ βk = −rk, (7.48)

∀j = 1, 2 : 〈φj , wk〉R = 0, (7.49)

∀j = 1, 2 : 〈φ̆j , rk〉R = 0, (7.50)

with k = 1, . . . , l, are crucial for the derivation of algorithm 7.6. These equations
were derived in section 7.3.1. The terms wk and βk appear in the order l Taylor

expansion of ψ(s) and µ(s) (see (7.8)). φ1 and φ2 are null vectors of F (b)
ψ , φ̆1

and φ̆2 of F (b)∗
ψ . The terms rk are given by the formula (∀k = 1, . . . , l)

rk =

k∑
j=2

1

j!

∑
(k1,...,kj)

∈K(k)
j

DjΨF
(b)

(
xk1
βk1

)(
xk2
βk2

)
. . .

(
xkj
βkj

)
(7.51)

with x1 =

2∑
i=1

αiφi + w1 ∀p = 2, . . . , k − 1 : xp = wp.

The terms v(0), t1, t2, t0, b(1), b(2), y
(k)
i , a

(k,1)
i , a

(k,2)
i , κ

(k)
i , z

(k)
i and q

(k)
i (k =

1 . . . l, i = 0 . . . k) that appear in the derivation are defined as in algorithm 7.6.

derivation of algorithm 7.6. Initial: Together with r1 = 0, equation (7.48) im-
plies

F (b)
ψ w1 = −F (b)

µ β1.

Define v(0) as
F (b)
ψ v(0) = −F (b)

µ v(0) ∈ im
(
F (b)∗
ψ

)
,

this leads to the following expressions for w1 and x1:

w1 = β1v
(0), (7.52)

x1 = α1φ1 + α2φ2 + β1v
(0). (7.53)

Note that the condition v(0) ∈ im
(
F (b)∗
ψ

)
is necessary to satisfy (7.49). Formula

(7.51) for k = 2 yields

r2 =
1

2
D2

ΨF (b)

(
x1

β1

)(
x1

β1

)
.

Substitution of x1 and bilinearity of the Hessian lead to the expression

r2 =

2∑
i=0

αi1α
2−i
2 y

(2)
i + β1

2∑
i=1

αiti + β2
1t0, (7.54)

with y
(2)
0 , y

(2)
1 , y

(2)
2 , t1, t2 and t0 defined in algorithm 7.6. Substitution of this

expression in equation (7.50) leads to the system{∑2
i=0 α

i
1α

2−i
2 〈φ̆1, y

(2)
i 〉+ β1

∑2
i=1 αi〈φ̆1, ti〉+ β2

1〈φ̆1, t0〉 = 0,∑2
i=0 α

i
1α

2−i
2 〈φ̆2, y

(2)
i 〉+ β1

∑2
i=1 αi〈φ̆2, ti〉+ β2

1〈φ̆2, t0〉 = 0.
(7.55)
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Together with the fundamental theorem of linear algebra [103], assumptions

(7.15), (7.16) and (7.17) allow us to choose φ̆1 and φ̆2 such that

〈φ̆1, t1〉 6= 0, 〈φ̆1, t0〉 = 0,

〈φ̆2, t1〉 = 0, 〈φ̆2, t2〉 6= 0, 〈φ̆2, t0〉 = 0.

With these choices, (7.55) becomes{∑2
i=0 α

i
1α

2−i
2 a

(2,1)
i + β1α1b

(1) + β1α2b
(3) = 0,∑2

i=0 α
i
1α

2−i
2 a

(2,2)
i + β1α2b

(2) = 0,
(7.56)

where b(1), b(2), b(3), a
(2,1)
0 , a

(2,1)
1 , a

(2,1)
2 , a

(2,2)
0 , a

(2,2)
1 and a

(2,2)
2 are defined as

in algorithm 7.6. Lemma 7.11 can now be applied to check this system for non-
isolated solutions. If only isolated solutions exist, the algorithm is stopped. In
the other case, we have

b(2)a
(2,1)
0 = b(3)a

(2,2)
0 , a

(2,2)
2 = 0 ∀i = 1, 2 : b(2)a

(2,1)
i = b(1)a

(2,2)
i−1 + b(3)a

(2,2)
i

and continue by solving (7.56) for β1:

1∑
i=0

αi1α
1−i
2 a

(2,2)
i + β1b

(2) = 0 ⇐⇒ β1 =

1∑
i=0

αi1α
1−i
2 κ

(1)
i ,

with κ
(1)
0 and κ

(1)
1 defined in algorithm 7.6. Substitution of β1 in (7.54) and

(7.53) eventually leads to the following expressions for r2 and x1:

r2 =

2∑
i=0

αi1α
2−i
2 z

(2)
i , x1 =

1∑
i=0

αi1α
1−i
2 q

(1)
i ,

with z
(2)
0 , z

(2)
1 , z

(2)
2 , q

(1)
0 , q

(1)
1 defined in algorithm 7.6.

Iteration: Let k ≥ 3 and assume terms z
(k−1)
i ∈ Cn (for i = 0 . . . k − 1),

q
(j)
i ∈ Cn (for j = 1 . . . k − 2, i = 0 . . . j) and κ

(j)
i ∈ R (for j = 1 . . . k − 2, i =

0 . . . j) have been derived such that

rk−1 =

k−1∑
i=0

αi1α
k−1−i
2 z

(k−1)
i , (7.57)

∀j = 1 . . . k − 2 : xj =

j∑
i=0

αi1α
j−i
2 q

(j)
i , (7.58)

∀j = 1 . . . k − 2 : βj =

j∑
i=0

αi1α
j−i
2 κ

(j)
i . (7.59)

Equation (7.48) implies

F (b)
ψ wk−1 = −

k−1∑
i=0

αi1α
k−1−i
2 z

(k−1)
i −F (b)

µ βk−1.
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Define v
(k−1)
0 . . . v

(k−1)
k−1 as

∀i = 0 . . . k − 1 : F (b)
ψ v

(k−1)
i = −z(k−1)

i v
(k−1)
i ∈ im

(
F (b)∗
ψ

)
,

this leads to the following expression for wk−1 (= xk−1):

xk−1 = wk−1 =

k−1∑
i=0

αi1α
k−1−i
2 v

(k−1)
i + βk−1v

(0). (7.60)

Rewriting formula (7.51) after substitution of (7.58), (7.59) and (7.60), and

defining the terms y
(k)
0 ,. . . ,y

(k)
k as in algorithm 7.6, one can show that

rk =

k∑
i=0

αi1α
k−i
2 y

(k)
i + βk−1α1F (b)

ΨΨ

(
q

(1)
1

κ
(1)
1

)(
v(0)

1

)

+ βk−1α2F (b)
ΨΨ

(
q

(1)
0

κ
(1)
0

)(
v(0)

1

)
.

The coefficients of βk−1α1 and βk−1α2 can be rewritten as t1 + 2κ
(1)
1 t0 and

t2 + 2κ
(1)
0 t0. This leads to the following expression for rk:

rk =

k∑
i=0

αi1α
k−i
2 y

(k)
i + βk−1α1

(
t1 + 2κ

(1)
1 t0

)
+ βk−1α2

(
t2 + 2κ

(1)
0 t0

)
. (7.61)

Substitution of this expression in equation (7.50) leads to the system

∑k
i=0 α

i
1α

k−i
2 〈φ̆1, y

(k)
i 〉+ βk−1α1

(
〈φ̆1, t1〉+ 2κ

(1)
1 〈φ̆1, t0〉

)
+βk−1α2

(
〈φ̆1, t2〉+ 2κ

(1)
0 〈φ̆1, t0〉

)
= 0,∑k

i=0 α
i
1α

k−i
2 〈φ̆2, y

(k)
i 〉+ βk−1α1

(
〈φ̆2, t1〉+ 2κ

(1)
1 〈φ̆2, t0〉

)
+βk−1α2

(
〈φ̆2, t2〉+ 2κ

(1)
0 〈φ̆2, t0〉

)
= 0.

(7.62)
Using

b(1) = 〈φ̆1, t1〉 6= 0, b(3) = 〈φ̆1, t2〉, 〈φ̆1, t0〉 = 0,

〈φ̆2, t1〉 = 0, b(2) = 〈φ̆2, t2〉 6= 0, 〈φ̆2, t0〉 = 0,

equation (7.62) becomes{∑k
i=0 α

i
1α

k−i
2 a

(k,1)
i + βk−1α1b

(1) + βk−1α2b
(3) = 0,∑k

i=0 α
i
1α

k−i
2 a

(k,2)
i + βk−1α2b

(2) = 0,
(7.63)

where a
(k,1)
0 ,. . . , a

(k,1)
k and a

(k,2)
0 ,. . . , a

(k,2)
k are defined as in algorithm 7.6.

Lemma 7.11 can again be applied to check this system for non-isolated solu-
tions. If only isolated solutions exist, the algorithm is stopped. In the other
case, we have

b(2)a
(k,1)
0 = b(3)a

(k,2)
0 , a

(k,2)
k = 0,

∀i = 1, . . . , k : b(2)a
(k,1)
i = b(1)a

(k,2)
i−1 + b(3)a

(k,2)
i
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and continue by solving (7.63) for βk−1:

k−1∑
i=0

αi1α
k−1−i
2 a

(k,2)
i + βk−1b

(2) = 0 ⇐⇒ βk−1 =

k−1∑
i=0

αi1α
k−1−i
2 κ

(k−1)
i ,

with κ
(k−1)
0 ,. . . , κ

(k−1)
k−1 defined in algorithm 7.6. Substitution of βk−1 in (7.61)

and (7.60) eventually leads to the following expressions for rk and xk−1:

rk =

k∑
i=0

αi1α
k−i
2 z

(k)
i , xk−1 = wk−1 =

k−1∑
i=0

αi1α
k−1−i
2 q

(k−1)
i ,

with z
(k)
0 , . . . , z

(k)
k and q

(k−1)
0 ,. . . , q

(k−1)
k−1 defined in algorithm 7.6. With the

expressions for rk, xk−1 and βk−1 now available, the iteration can be continued
for k → k + 1.
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7.6.2 Pseudo-code

Main algorithm

Algorithm 7.1 BifurcationAnalysis

Input functions F : Cn × R → Cn, P : Cn × R → C(Cn), choice
ConstructDim3 of algorithm for construction in 3-dimensional kernel case,
inner product 〈·, ·〉, (approximate) branch point (ψ(b), µ(b)) ∈ Cn×R, (approx-
imate) direction of known branch t(0) ∈ Cn × R, list G = [g1, . . . , gk] of group
actions (with g1 = e the identity element) representing discrete symmetry, set
H of group actions representing continuous symmetry.

Output Type of bifurcation type ∈ {’none’, ’turning point’, ’branch point’}
and matrix T ′ containing approximate tangent directions to curves emanating
from (ψ(b), µ(b)).

1: Set P : Cn × R→ C(Cn) : (x, p)→ I if not specified
2: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
3: Set G = [e] if not specified, with group action e : Cn×R→ Cn×R : t→ t.
4: Set H = {e} if not specified, with group action e : Cn×R→ Cn×R : t→ t.
5: Calculate (dim, v(0),W, Ŭ) by executing IdentifyBranchPoint (algorithm

7.2) with given F , P , 〈·, ·〉 and (ψ(b), µ(b))
6: if dim = 0 then
7: type = ’none’
8: Set T ′ an empty n+ 1× 0 matrix
9: else if dim = 1 then

10: type = ’turning point’
11: Set T ′ an empty n+ 1× 0 matrix
12: else if dim = 2 then
13: type = ’branch point’
14: Calculate T by executing ABE (algorithm 7.4) with φ = W , φ̆ = Ŭ and

given F , 〈·, ·〉, v(0) and (ψ(b), µ(b))
15: else if dim = 3 then
16: type = ’branch point’
17: if ConstructDim3 is the algorithm LS then
18: Calculate T by executing LS (algorithm 7.5) with φ1 = W1, φ2 = W2,

φ̆1 = Ŭ1, φ̆2 = Ŭ2 and given F , P , 〈·, ·〉, v(0) and (ψ(b), µ(b))
19: else
20: Calculate T by executing EBL (algorithm 7.6) with φ1 = W1, φ2 = W2,

φ̆1 = Ŭ1, φ̆2 = Ŭ2 and given F , 〈·, ·〉, v(0), (ψ(b), µ(b)), G and H
21: end if
22: end if
23: if dim ≥ 2 then
24: Calculate T ′ by executing RemoveDirections (algorithm 7.3) with given

t(0), T and G
25: end if
26: Return type, T ′
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Branch point identification

Algorithm 7.2 IdentifyBranchPoint

Input Tolerance εortho ∈ R+
0 , functions F : Cn × R → Cn, P : Cn × R →

C(Cn), partial derivatives Fψ, Fµ, inner product 〈·, ·〉, (approximate) bifurca-
tion point (ψ(b), µ(b)) ∈ Cn × R.

Output Dimension dim ∈ N of N̂(FΨ(ψ(b), µ(b))), vector v(0) ∈ Cn, ma-
trix W and Ŭ with approximate null vectors of respectively Fψ(ψ(b), µ(b)) and
Fψ(ψ(b), µ(b))∗.

1: Define Fψ, Fµ by (5.2) and (5.4) if not specified
2: Set P : Cn × R→ C(Cn) : (x, p)→ I if not specified
3: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
4: Create deflation matrix K ∈ Cn×l1 with l1 null vectors of Fψ(ψ(b), µ(b)),

induced by continuous symmetry
5: Calculate (L,W,U) by executing RitzRestart (algorithm 3.3) with A =
Fψ(ψ(b), µ(b)), P = P (ψ(b), µ(b)) and given 〈·, ·〉 and K

6: Set dim equal to the size of matrix L
7: if Fψ(ψ(b), µ(b)) is self-adjoint with respect to 〈·, ·〉 then

8: K̆ = K
9: L̆ = L

10: W̆ = W
11: Ŭ = U
12: else
13: Create deflation matrix K̆ ∈ Cn×l1 with l1 null vectors of Fψ(ψ(b), µ(b))∗,

induced by continuous symmetry
14: Calculate (L̆, W̆ , Ŭ) by executing RitzRestart (algorithm 3.3) with A =
Fψ(ψ(b), µ(b))∗, K = K̆ and given 〈·, ·〉

15: end if
16: K̆ ←

(
K̆ Ŭ

)
17: cond = True
18: r = Fµ(ψ(b), µ(b))
19: r′ = ‖r‖−1r
20: for j = 1, . . . , l1 + dim do
21: ξj = 〈r′, K̆j〉
22: if |ξj | > εortho then
23: cond = False
24: Break
25: end if
26: end for
27: if cond then
28: dim← dim+ 1
29: Calculate v(0) by executing GMRES (algorithm 3.4) with A =
Fψ(ψ(b), µ(b)), b = −r, P = P (ψ(b), µ(b)), K = K̆ and given 〈·, ·〉

30: else
31: Set v(0) a zero n× 1 matrix
32: end if
33: Return dim, v(0), W , Ŭ
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Removal of duplicate tangent directions

Algorithm 7.3 RemoveDirections

Input Tolerance εcomp ∈ R+
0 , (approximate) tangent direction t(0) ∈ Cn,

matrix T ∈ Cn×l containing (approximate) tangent directions, list G =
[g1, . . . , gk] of group actions (with g1 = e the identity element) representing
discrete symmetry.

Output Copy T ′ of matrix T , with approximations to t(0) and conjugate
directions removed.

1: Set G = [e] if not specified, with group action e : Cn×R→ Cn×R : t→ t.
2: Define 〈·, ·〉ext : Cn × R→ R : ((ψ1, µ1), (ψ2, µ2))→ 〈ψ1, ψ2〉+ µ∗1µ2

3: Initialize T ′ an empty n+ 1× 0 matrix
4: l′ = 0
5: Initialize empty list I =

[ ]
6: for g in G do
7: for i = 1, . . . , l − 1 do
8: for j = i+ 1, . . . , l do
9: if i and j are not contained in I then

10: if 1− |〈Ti, g(Tj)〉ext| < εcomp then
11: I =

[
I j

]
12: end if
13: end if
14: end for
15: end for
16: end for
17: for j = 1, . . . , l do
18: if j is not contained in I then
19: l′ ← l′ + 1
20: T ′ =

(
T ′ Tj

)
21: end if
22: end for
23: index = 0
24: d =∞
25: for j = 1, . . . , l′ do
26: for g in G do
27: d′ = 1− |〈t(0), g(T ′j)〉ext|
28: if d′ < d then
29: index = j
30: d = d′

31: end if
32: end for
33: end for
34: Remove T ′index from T ′

35: Return T ′
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Algebraic branching equation

Algorithm 7.4 ABE

Input function F : Cn×R→ Cn, partial derivatives Fψψ, Fψµ, Fµµ, inner

product 〈·, ·〉, vectors v(0), φ, φ̆ ∈ Cn, (approximate) branch point (ψ(b), µ(b)) ∈
Cn × R.

Output Matrix T containing approximate tangent directions to curves em-
anating from (ψ(b), µ(b)).

1: Define Fψψ, Fψµ, Fµµ by (5.6), (5.7) and (5.8) if not specified
2: Set P : Cn × R→ C(Cn) : (x, p)→ I if not specified
3: Set 〈·, ·〉 = 〈·, ·〉2 if not specified

4: a = 〈φ̆, 1
2F

(b)
ψψφφ〉

5: b = 〈φ̆,F (b)
ψψφv

(0) + F (b)
ψµφ〉

6: c = 〈φ̆, 1
2F

(b)
ψψv

(0)v(0) + F (b)
ψµv

(0) + 1
2F

(b)
µµ 〉

7: α
(1)
1 = 1

2a

(
−b+

√
b2 − 4ac

)
8: α

(2)
1 = 1

2a

(
−b−

√
b2 − 4ac

)
9: ψ̇′(1) = α

(1)
1 φ+ v(0)

10: µ̇′(1) = 1

11: γ1 =
√
‖ψ̇′(1)‖2 + µ̇′(1)2

12: ψ̇(1) = γ−1
1 ψ̇′(1)

13: µ̇(1) = γ−1
1 µ̇′(1)

14: ψ̇′(2) = α
(2)
1 φ+ v(0)

15: µ̇′(2) = 1

16: γ2 =
√
‖ψ̇′(2)‖2 + µ̇′(2)2

17: ψ̇(2) = γ−1
2 ψ̇′(2)

18: µ̇(2) = γ−1
2 µ̇′(2)

19: T =

(
ψ̇(1) ψ̇(2)

µ̇(1) µ̇(2)

)
20: Return T

Lyapunov-Schmidt reduction-based tangent construction

Algorithm 7.5 LS

Input functions F : Cn × R → Cn, P : Cn × R → C(Cn), inner

product 〈·, ·〉, vectors v(0), φ1, φ2, φ̆1, φ̆2 ∈ Cn, (approximate) branch point
(ψ(b), µ(b)) ∈ Cn × R.

Output Matrix T containing approximate tangent directions to curves em-
anating from (ψ(b), µ(b)).

1: Set 〈·, ·〉 = 〈·, ·〉2 if not specified

2: Calculate (k,A(1), A(2), B, κ
(1)
0 , κ

(1)
1 ) by executing CalculateCoefficients (al-

gorithm 7.7) with given F , P , 〈·, ·〉, v(0), φ1, φ2, φ̆1, φ̆2 and (ψ(b), µ(b))
3: Calculate S by executing SolveReducedSystem (algorithm 7.8) with given
A(1), A(2) and B
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4: Initialize T an empty n+ 1× 0 matrix
5: if k = 2 then
6: for (α1, α2, β) in S do
7: µ̇′ = β
8: ψ̇′ = α1φ1 + α2φ2 + βv(0)

9: γ =
√
‖ψ̇′‖2 + µ̇′2

10: ψ̇ = γ−1ψ̇′

11: µ̇ = γ−1µ̇′

12: T ←

(
T

ψ̇

µ̇

)
13: end for
14: else
15: µ̇′ = 1
16: ψ̇′ = v(0)

17: γ =
√
‖ψ̇′‖2 + µ̇′2

18: ψ̇ = γ−1ψ̇′

19: µ̇ = γ−1µ̇′

20: T ←

(
T

ψ̇

µ̇

)
21: for (α1, α2, β) in S do

22: µ̇′ = α1κ
(1)
1 + α2κ

(1)
0

23: ψ̇′ = α1φ1 + α2φ2 + µ̇′v(0)

24: γ =
√
‖ψ̇′‖2 + µ̇′2

25: ψ̇ = γ−1ψ̇′

26: µ̇ = γ−1µ̇′

27: T ←

(
T

ψ̇

µ̇

)
28: end for
29: end if
30: Return T

Equivariant branching lemma-based tangent construction

Algorithm 7.6 EBL

Input Tolerance εcomp ∈ R+
0 , function F : Cn×R→ Cn, partial derivatives

Fψψ, Fψµ, Fµµ, inner product 〈·, ·〉, vectors v(0), φ1, φ2, φ̆1, φ̆2 ∈ Cn, (approxi-
mate) branch point (ψ(b), µ(b)) ∈ Cn ×R, list G = [g1, . . . , gk] of group actions
(with g1 = e the identity element) representing discrete symmetry, set H of
group actions representing continuous symmetry.

Output Matrix T containing approximate tangent directions to curves em-
anating from (ψ(b), µ(b)).

1: Define Fψψ, Fψµ, Fµµ by (5.6), (5.7) and (5.8) if not specified
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2: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
3: Set H = {e} if not specified, with group action e : Cn×R→ Cn×R : t→ t.

4: Redefine φ̆1 and φ̆2 such that (7.20) holds if necessary

5: y
(2)
0 = 1

2F
(b)
ψψφ2φ2

6: y
(2)
1 = F (b)

ψψφ1φ2

7: y
(2)
2 = 1

2F
(b)
ψψφ1φ1

8: t1 = F (b)
ψψφ1v

(0) + F (b)
ψµφ1

9: t2 = F (b)
ψψφ2v

(0) + F (b)
ψµφ2

10: t0 = 1
2F

(b)
ψψv

(0)v(0) + F (b)
ψµv

(0) + 1
2F

(b)
µµ

11: b(1) = 〈φ̆1, t1〉
12: b(2) = 〈φ̆2, t2〉
13: b(3) = 〈φ̆1, t2〉
14: for i = 1, 2, 3 do

15: a
(2,1)
i = 〈φ̆1, y

(2)
i 〉

16: a
(2,2)
i = 〈φ̆2, y

(2)
i 〉

17: end for
18: d = min(|b(2)a

(2,1)
0 − b(3)a

(2,2)
0 |, |a(2,2)

2 |)
19: d← min(d, |b(1)a

(2,2)
0 + b(3)a

(2,2)
1 − b(2)a

(2,1)
1 |)

20: d← min(d, |b(1)a
(2,2)
1 + b(3)a

(2,2)
0 − b(2)a

(2,1)
0 |)

21: Initialize T an empty n+ 1× 0 matrix
22: if d < εcomp then

23: A(1) =
(
a

(2,1)
0 a

(2,1)
1 a

(2,1)
2

)
24: A(2) =

(
a

(2,2)
0 a

(2,2)
1 a

(2,2)
2

)
25: B =

(
b(1) b(2) b(3)

)
26: Calculate S by executing SolveReducedSystem (algorithm 7.8) with

given A(1), A(2) and B
27: for (α1, α2, β) in S do
28: µ̇′ = β
29: ψ̇′ = α1φ1 + α2φ2 + βv(0)

30: γ =
√
‖ψ̇′‖2 + µ̇′2

31: ψ̇ = γ−1ψ̇′

32: µ̇ = γ−1µ̇′

33: T ←

(
T

ψ̇

µ̇

)
34: end for
35: else

36: κ
(1)
0 = −a

(2,2)
0

b(2)

37: κ
(1)
1 = −a

(2,2)
1

b(2)

38: if g(ψ(b)) = ψ(b) for each action g in G then
39: hG = e
40: else
41: Choose g ∈ G such that g(ψ(b)) 6= ψ(b)
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42: hG = arg minh∈H ‖g(h(ψ(b)))− h(ψ(b))‖2
43: end if
44: ψ′(b) = hG(ψ(b))

45: χ(1) = hG(φ1) + κ
(1)
1 hG(v(0))

46: χ(2) = hG(φ2) + κ
(1)
0 hG(v(0))

47: for axial subgroups G′′ ⊂ G do
48: Choose g ∈ G′′ such that g(χ(1)) 6= χ(1) or g(χ(2)) 6= χ(2)

49: α1 = −〈g(χ(1))− χ(1), g(χ(2))− χ(2)〉
50: α2 = 〈g(χ(1))− χ(1), g(χ(1))− χ(1)〉
51: ψ̇′ = α1(φ1 + κ

(1)
1 v(0)) + α2(φ2 + κ

(1)
0 v(0))

52: µ̇′ = α1κ
(1)
1 + α2κ

(1)
0

53: γ =
√
‖ψ̇′‖2 + µ̇′2

54: ψ̇ = γ−1ψ̇′

55: µ̇ = γ−1µ̇′

56: T ←

(
T

ψ̇

µ̇

)
57: end for
58: end if
59: Return T

Algorithm 7.6

Algorithm 7.7 CalculateCoefficients

Input tolerance εcomp ∈ R+
0 , functions F : Cn × R → Cn, P : Cn ×

R → C(Cn), partial derivatives Fψψ, Fψµ, Fµµ, inner product 〈·, ·〉, vectors

v(0), φ1, φ2, φ̆1, φ̆2 ∈ Cn, (approximate) branch point (ψ(b), µ(b)) ∈ Cn × R.
Output k ∈ N, matrices A(1), A(2) ∈ Rk+1 and B ∈ R3 containing

coefficients for a reduced system of equations (of the form (7.35)), values

κ
(1)
0 , κ

(1)
1 ∈ R.

1: Define Fψψ, Fψµ, Fµµ by (5.6), (5.7) and (5.8) if not specified
2: Set P : Cn × R→ C(Cn) : (x, p)→ I if not specified
3: Set 〈·, ·〉 = 〈·, ·〉2 if not specified

4: Redefine φ̆1 and φ̆2 such that (7.20) holds if necessary
5: k = 2
6: y

(2)
0 = 1

2F
(b)
ψψφ2φ2

7: y
(2)
1 = F (b)

ψψφ1φ2

8: y
(2)
2 = 1

2F
(b)
ψψφ1φ1

9: t1 = F (b)
ψψφ1v

(0) + F (b)
ψµφ1

10: t2 = F (b)
ψψφ2v

(0) + F (b)
ψµφ2

11: t0 = 1
2F

(b)
ψψv

(0)v(0) + F (b)
ψµv

(0) + 1
2F

(b)
µµ

12: b(1) = 〈φ̆1, t1〉
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13: b(2) = 〈φ̆2, t2〉
14: b(3) = 〈φ̆1, t2〉
15: for i = 1, 2, 3 do

16: a
(2,1)
i = 〈φ̆1, y

(2)
i 〉

17: a
(2,2)
i = 〈φ̆2, y

(2)
i 〉

18: end for
19: d = min(|b(2)a

(2,1)
0 − b(3)a

(2,2)
0 |, |a(2,2)

2 |)
20: d← min(d, |b(1)a

(2,2)
0 + b(3)a

(2,2)
1 − b(2)a

(2,1)
1 |)

21: d← min(d, |b(1)a
(2,2)
1 + b(3)a

(2,2)
0 − b(2)a

(2,1)
0 |)

22: if d < εcomp then
23: reduced = True
24: κ

(1)
0 =0

25: κ
(1)
1 =0

26: else
27: reduced = False
28: κ

(1)
−1 = 0

29: κ
(1)
0 = −a

(2,2)
0

b(2)

30: κ
(1)
1 = −a

(2,2)
1

b(2)

31: κ
(1)
2 = 0

32: z
(2)
0 = y

(2)
0 + κ

(1)
0 t2 + κ

(1)2

0 t0

33: z
(2)
1 = y

(2)
1 + κ

(1)
0 t1 + κ

(1)
1 t2 + 2κ

(1)
0 κ

(1)
1 t0

34: z
(2)
2 = y

(2)
2 + κ

(1)
1 t1 + κ

(1)2

1 t0

35: q
(1)
0 = κ

(1)
0 v(0) + φ2

36: q
(1)
1 = κ

(1)
1 v(0) + φ1

37: end if
38: Create deflation matrix K̆ ∈ Cn×l1 with l1 null vectors of Fψ(ψ(b), µ(b))∗,

induced by continuous symmetry
39: K̆ ←

(
K̆ φ̆1 φ̆2

)
40: while not reduced do
41: k ← k + 1
42: for i = 0, . . . , k − 1 do

43: Calculate v
(k−1)
i by executing GMRES (algorithm 3.4) with A =

Fψ(ψ(b), µ(b)), b = −z(k−1)
i , P = P (ψ(b), µ(b)), K = K̆ and given 〈·, ·〉

44: end for
45: for i = 0, . . . , k do

46: Calculate y
(k)
i by executing CalculateY (algorithm 7.9) with given F ,

i and k
47: a

(k,1)
i = 〈φ̆1, y

(k)
i 〉

48: a
(k,2)
i = 〈φ̆2, y

(k)
i 〉

49: end for
50: d = min(|b(2)a

(k,1)
0 − b(3)a

(k,2)
0 |, |a(k,2)

k |)
51: for i = 1, . . . , k do

52: d← min(d, |b(1)a
(k,2)
i−1 + b(3)a

(k,2)
i − b(2)a

(k,1)
i |)

53: end for
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54: if d < εcomp then
55: reduced = True
56: else
57: κ

(k−1)
−1 = 0

58: κ
(k−1)
k = 0

59: for i = 0, . . . , k − 1 do

60: κ
(k−1)
i = −a

(k,2)
i

b(2)

61: z
(k)
i = y

(k)
i + κ

(k−1)
i−1

(
t1 + 2κ

(1)
1 t0

)
+ κ

(k−1)
i

(
t2 + 2κ

(1)
0 t0

)
62: q

(k−1)
i = v

(k−1)
i + κ

(k−1)
i v(0)

63: end for
64: z

(k)
k = y

(k)
k + κ

(k−1)
k−1

(
t1 + 2κ

(1)
1 t0

)
+ κ

(k−1)
k

(
t2 + 2κ

(1)
0 t0

)
65: end if
66: end while
67: A(1) =

(
a

(k,1)
0 a

(k,1)
1 . . . a

(k,1)
k

)
68: A(2) =

(
a

(k,2)
0 a

(k,2)
1 . . . a

(k,2)
k

)
69: B =

(
b(1) b(2) b(3)

)
70: Return k, A(1), ,A(2), B, κ

(1)
0 , κ

(1)
1

Solve reduced system of equations

Algorithm 7.8 SolveReducedSystem

Input mrand ∈ N, tolerance εcomp ∈ R+
0 , matrices A(1), A(2) ∈ Rk+1 and

B ∈ R3 containing coefficients for the reduced system of equations.
Output List S with elements (α1, α2, β) ∈ R3 corresponding to solutions

of the reduced system (given by (7.35)).

1: for i = 0, . . . , k do

2: a
(k,1)
i = A

(1)
i

3: a
(k,2)
i = A

(2)
i

4: end for
5: b(1) = B1

6: b(2) = B2

7: b(3) = B3

8: Define f by (7.6)
9: Define f ′ by (7.36)

10: Initialize empty list S =
[ ]

11: for j = 1, . . . ,mrand do

12: Initialize random values α
(0)
1 , α

(0)
2 and β(0)

13: Calculate (α1, α2, β) by executing NewtonStandard (algorithm 4.1) with

F = f , Fx = f ′ and x(0) = (α
(0)
1 , α

(0)
2 , β(0))

14: new = True
15: for (α′1, α

′
2, β
′) in S do
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16: if |α′1 − α1| > εcomp and |α′2 − α2| > εcomp and |β′ − β| > εcomp then
17: new ← False
18: Break
19: end if
20: end for
21: if new then
22: S =

[
S (α1, α2, β)

]
23: end if
24: end for
25: Return S

Calculation of y
(k)
i terms in algorithm 7.5

Algorithm 7.9 CalculateY

Input Function F : Cn×R→ Cn, partial derivatives of F , i, k ∈ N, vectors

v
(k−1)
i′ , q

(k′)
i′ ∈ Cn and values κ

(k′)
i′ ∈ R.

Output Vector y
(k)
i ∈ Cn.

1: Define partial derivatives of F by finite difference formulas if not specified

2: y
(k)
i = F (b)

ΨΨ

(
q

(1)
0

κ
(1)
0

)(
v

(k−1)
i

0

)
+ F (b)

ΨΨ

(
q

(1)
1

κ
(1)
1

)(
v

(k−1)
i−1

0

)
3: for k1 = 2, . . . , k − 2 do
4: k2 = k − k1

5: for i1 = 0, . . . ,min(k1, i) do
6: i2 = i− i1
7: if i2 ≤ k2 and k1 ≤ k2 and (k1 6= k2 or i1 ≤ i2) then

8: ỹ = F (b)
ΨΨ

(
q

(k1)
i1

κ
(k1)
i1

)(
q

(k2)
i2

κ
(k2)
i2

)
9: if k1 = k2 and i1 = i2 then

10: y
(k)
i = y

(k)
i + 1

2 ỹ
11: else
12: y

(k)
i = y

(k)
i + ỹ

13: end if
14: end if
15: end for
16: end for
17: for j = 3, . . . , k do
18: Calculate K by executing IndicesK (algorithm 7.10) with given k and j
19: for K in K do
20: Calculate I by executing IndicesK (algorithm 7.11) with given i, j and

K
21: for I in I do
22: Set c the amount of possible permutations of the set
{(K1, I1), . . . , (Kj , Ij)}
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23: y
(k)
i = y

(k)
i + c

j!D
j
ΨF (b)

(
q

(K1)
I1

κ
(K1)
I1

)(
q

(K2)
I2

κ
(K2)
I2

)
. . .

(
q

(Kj)
Ij

κ
(Kj)
Ij

)
24: end for
25: end for
26: end for
27: Return y

(k)
i

Calculation of the set K(j)
k

Algorithm 7.10 IndicesK

Input k, j ∈ N.

Output The set K = K(j)
k .

1: Initialize empty list K =
[ ]

2: Initialize an empty index set K =
{ }

3: Set m the length of K
4: if m < j − 1 then
5: if m 6= 0 then
6: p0 = Km

7: else
8: p0 = 1
9: end if

10: for p = p0, . . . , k −
∑m
l=1Kl − j +m+ 1 do

11: K ′ = K
12: K ′ =

{
K ′ p

}
13: Execute the current algorithm starting from line 3, with K = K ′

14: end for
15: else
16: p = k −

∑m
l=1Kl

17: if Kj−1 ≤ p then
18: K =

{
K p

}
19: K =

[
K K

]
20: end if
21: end if
22: Return K

Calculation of the set I(i,j)
k1,...,kj

Algorithm 7.11 IndicesI

Input i, j ∈ N, element K = (k1, . . . , kj) of (7.11) for given j.

Output The set I = I(i,j)
k1,...,kj

.

1: Initialize empty list I =
[ ]
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2: Initialize an empty index set I =
{ }

3: Set m the length of I
4: if m < j − 1 then
5: if m 6= 0 and Km+1 = Km then
6: p0 = Im
7: else
8: p0 = 0
9: end if

10: for p = p0, . . . ,min(Km+1, i−
∑m
l=1 Il) do

11: I ′ = I
12: I ′ =

{
I ′ p

}
13: Execute the current algorithm starting from line 3, with I = I ′

14: end for
15: else
16: p = i−

∑m
l=1 Il

17: if p ≤ Kj then
18: I =

{
I p

}
19: if Kj−1 6= Kj or Ij−1 ≤ Ij then
20: I =

[
I I

]
21: end if
22: end if
23: end if
24: Return I
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CHAPTER 8
Implementation in Python

“One! Two! Five!”
– King Arthur –

Monty Python and the Holy Grail

Chapter highlights:

• We describe the last details required to incorporate automatic
exploration techniques in numerical continuation methods.

• We analyse techniques to prevent the recalculation of solution
curves.

• An implementation of the algorithm has been made as an exten-
sion to the Python package PyNCT [36].

• We discuss the structure and other details of this implementation.

8.1 Introduction

In this chapter we will discuss the last details of automatic exploration. Based
on the algorithms described in chapters 6 and 7, a method is established that
constructs a solution landscape of interconnected curves from an initial solu-
tion. An essential part of the method is the construction of a list that contains
elements with information of curves that have yet to be constructed. Recal-
culation of (conjugates of) curves will be prevented by analysing this list at
several points in the algorithm.

An implementation of the automatic exploration method has been made in
Python, as an extension of the package PyNCT [36]. Details of this implemen-
tation will be discussed in this chapter as well.

8.2 Automatic exploration in practice

In chapter 6 we discussed the approximation of solution curves and its bifurca-
tion points. Given an initial solution (ψ(0), µ(0)) and direction (ψ̇(0), µ̇(0)), a set
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of points (ψ(0), µ(0)), (ψ(1), µ(1)), (ψ(2), µ(2)), . . . is constructed by application
of the pseudo-arclength continuation method. These points belong to a curve
through (ψ(0), µ(0)) in the given direction. Pseudo-code of this method was
provided by algorithm 6.1 (page 193). This algorithm does not only apply the
pseudo-arclength continuation method, but also analyses the stability along
the curve and approximates its bifurcation points.

Chapter 7 focussed on the requisites for automatic exploration. Given a
bifurcation point (ψ(b), µ(b)) of an approximated solution curve, algorithm 7.1
(page 230), described in the chapter, analyses the type of bifurcation. In the
case that (ψ(b), µ(b)) is a branch point, the tangent directions to curves ema-
nating from this point are approximated as well. The direction to the curve the
point was found at is excluded from these approximations.

In the current section we will describe how algorithms 6.1 and 7.1 are com-
bined to generate a method for the construction of a solution landscape of
interconnected curves. Pseudo-code for the described method is provided by
algorithm 8.1 on page 252 in the appendix.

8.2.1 Construction of a connected solution landscape

Consider a general nonlinear function F : Cn×R→ Cn with Hermitian partial
Jacobian Fψ. To construct a connected solution landscape for this function,

an initial guess (ψ̃(0), µ̃(0)) of a solution for F(ψ, µ) = 0 needs to be provided.
This guess is corrected with a Newton algorithm (without block elimination)
to a first solution (ψ(0), µ(0)). Since we do not know whether this first point
is a bifurcation, the split Newton method with mixed terms (SNE), described
in section 4.8 (pseudo-code given by algorithm 4.7 on page 106), should be
used. Note that this method is equivalent to the deflated Newton algorithm
(described in section 4.3) if (ψ(0), µ(0)) is not a bifurcation.

The corrected point (ψ(0), µ(0)) is used as input in algorithm 6.1 (page 193)
to construct an approximation to a first solution curve. Though it is possible
to calculate a tangent direction in this point exactly (see e.g. Keller [61]),
we will use the direction (ψ̇(0), µ̇(0)) = (0, 1) to initialize the curve instead.
Algorithm 6.1 is executed twice: once in the direction (ψ̇(0), µ̇(0)), and once in
(−ψ̇(0),−µ̇(0)), in order to generate both sides of the curve. Bifurcation points
are approximated and stability is analysed in algorithm 6.1 as well.

The approximate bifurcation points are analysed by algorithm 7.1 (page
230): for each point the type is identified by deriving the dimension of the
Jacobian’s kernel. For branch points, tangent directions to emanating curves
are approximated. The direction to the already constructed curve is excluded
as described in section 7.2.2.

For each direction (ψ̇, µ̇) leading to a new curve, algorithm 6.1 is reap-
plied twice. As input for the initial point the corresponding branch point is
used, (ψ̇, µ̇) and (−ψ̇,−µ̇) are used as the initial directions. These applications
construct an approximation to a different curve, together with its bifurcation
points and stability. The process of analysing bifurcations and constructing
tangent directions is repeated, until no new bifurcation points are found, or
after a maximal amount mC ∈ N of curves have been approximated.
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8.2.2 Preventing recalculation of curves

In its current form, the method described in section 8.2.1 allows for single curves
to be approximated multiple times. This leads to unnecessary computational
work, and a slower overall algorithm. In the current section we address this
problem, we identify two causes.

A first possible recalculation occurs when a curve reconnects with itself, an
example is given by the circle equation (see section 9.2). To prevent algorithm
6.1 (page 193) from regenerating already calculated points of such curves, a
condition function Cstart should be provided as input, defined by

Cstart : Cn × R→ {True, False} :

(ψ(k), µ(k))→

True
k ≥ mstart and µ(k) ≈ µ(0)

and ∃g ∈ G, h ∈ H : g(ψ(k)) ≈ ψ(0),

False otherwise,

(8.1)

with given mstart ∈ N, G and H the groups that respectively describe possi-
ble discrete and continuous symmetries of F . The function Cstart is called the
start point condition. If no discrete (continuous) symmetry is present, G = [e]
(H = [e]) with e the identity group action is chosen. The start point condition
is defined such that pseudo-arclength continuation in algorithm 6.1 is stopped
when the last generated point (ψ(k), µ(k)) (for a certain k ∈ N) approximates
(ψ(0), µ(0)), and k ≥ mstart. The value mstart ∈ N is chosen such that the
condition is not immediately satisfied at the start of the curve approximation.
The current end point at the other side of the curve is used as (ψ(0), µ(0)).

The second cause of recalculation of curves is due to multiple interconnec-
tions between two branch points. An example is given by the equation that
describes the intersection of two cylinders (see section 9.3). Two (or more)
branch points are found with a tangent direction that leads to the same solu-
tion curve, which would be approximated multiple times.

To prevent this sort of recalculation, a list A is initialized in algorithm 8.1
(page 252). This list consists of elements of the form ((ψ(b), µ(b)), (ψ̇, µ̇)) with
an (approximate) branch point (ψ(b), µ(b)) ∈ Cn × R and an (approximate)
tangent direction (ψ̇, µ̇) ∈ Cn×R. Each element in the list A corresponds to a
curve that has yet to be approximated.

The list is initialized with the element ((ψ(0), µ(0)), (ψ̇(0), µ̇(0))). Whenever
algorithm 6.1 is executed, the first element of A is used as its input. After a
solution curve is approximated and its bifurcation points analysed (by algo-
rithm 7.1, page 230), algorithm 8.1 loops over the approximated branch points
and tangent directions to update the list. If such a branch point (ψ(b), µ(b))
approximates one in A, the element of A with the corresponding tangent di-
rection is removed. If no approximations to the branch point appear in the list,
elements of the form ((ψ(b), µ(b)), (ψ̇, µ̇)), with (ψ̇, µ̇) the tangent directions to
new solution curves, are added. Afterwards the element of A that lead to the
last approximated curve’s construction is removed as well.

245



8. Implementation in Python

Note that if F contains a discrete symmetry (described by the group G),
we should also look for conjugates (g(ψ(b)), µ(b)) with g ∈ G when comparing
the branch point (ψ(b), µ(b)) with the ones in A.

By keeping track of a list that indicates curves that have yet to be deter-
mined, multiple approximations of the same curve are prevented. Whenever a
curve connects with an already found branch point, the corresponding element
in the list is removed.

8.3 Structure of the implementation

Algorithm 8.1 has been implemented in Python, as an extension to the package
PyNCT (Python Numerical Continuation Toolbox) [36]. Originally this package
was developed for numerical continuation in auxine transport models [34, 35],
a biology problem. It did not contain algorithms for the automatic exploration
of connected solution landscapes.

The main files of the extended implementation are ’SolutionDiagram.py’,
’Continuer.py’ and ’Point.py’. A solution landscape is represented by the ’So-
lutionDiagram’ class in ’SolutionDiagram.py’. Curves are represented by the
’Continuer’ class in ’Continuer.py’. Approximated curves are contained in the
solution landscape object as attributes.

A single solution point of the considered equation is represented by the
’Point’ class in ’Point.py’. Each solution curve object contains multiple point
objects in its attributes. Bifurcation points of a curve are added as an attribute
as well. These points are represented by a subclass ’BifurcationPoint’ of ’Point’,
described in the file ’BifurcationPoint.py’.

Numerical methods for approximating eigenpairs, solving linear and non-
linear systems, approximating tangent directions, . . . , as described in chapters
3, 4, 5 and 7, are implemented in the files of the ’solvers’ module. Required
solvers are created as objects at the start of a connected solution landscape’s
construction, and are called when necessary. A solver for the analysis of sta-
bility (described in chapter 6) is part of the ’solvers’ module as well. Note
that, since they are used in multiple stages of the algorithms, approximated
eigenpairs are stored as an attribute to point objects. Instead of recalculation,
eigenpairs are recycled when possible.

To construct a connected solution landscape for an equation F , the non-
linear system needs to be described by a module. The ’demo superconductors’
module contains the description of the Ginzburg-Landau equation (see section
2.5) for example.

Each such module should at least contain the files ’system.py’, ’doContinu-
ation.py’ and ’parameters.json’. The file ’system.py’ contains a ’system’ class,
used to construct an object with information of the function F , its derivatives
and properties (e.g. the inner product to use, possible preconditioning, possible
self-adjointness of the partial Jacobian Fψ,. . . ). The file ’doContinuation.py’
contains a function ’doContinuation’, when executed this function constructs
the connected solution landscape of F . Files of the form ’parameters.json’ con-
tain information on the internal parameters (see section 8.4 for an overview)
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that should be used, and has to be provided as input for the function ’doCon-
tinuation’. An initial guess (ψ(0), µ(0)) is constructed in the ’doContinuation’
function itself.

Other files that should be provided in the nonlinear system modules are
’Save.py’ (used to save the constructed landscape to a h5 file), ’buildSolution-
Diagram.py’ (used to construct a landscape from a h5 file given as input) and
’plottools.py’. This last file is used to generate (interactive) plots of the solution
landscape, either provided as input as a landscape object, or as a h5 file.

Whenever a new nonlinear system is studied, a new module should be cre-
ated for the construction of its solution landscape. Templates for this purpose
are provided by the ’demo template’ module. The files ’SolutionDiagram.py’,
’Continuer.py’, ’Point.py’, ’BifurcationPoint.py’ and module ’solvers’ contain
general code, independent of the considered nonlinear system.

8.4 Overview of internal parameters

Multiple numerical methods (e.g. GMRES, Newton-Krylov,. . . ) are used when
constructing a connected solution landscape by the PyNCT implementation.
Each of these methods rely on several internal parameters, which are often
problem-dependent. An overview of parameters that need to be provided is
given in table 8.1

Table 8.1: Overview of internal parameters that need to be provided in PyNCT
when constructing a connected solution landscape

mC ∈ N Maximal amount of curves approximated for the con-
nected solution landscape (by algorithm 8.1, page 252).

mP ∈ N Maximal amount of points approximated for a single
solution curve (by algorithm 6.1, page 193).

mstart ∈ N boundary on amount of points before the start point
condition (provided as input by algorithm 8.1 in algo-
rithm 6.1) should be checked.

εdet1 ∈ R+
0 Tolerance used when checking the first condition of the

near bifurcation condition (by algorithm 6.3, page 195).

εdet2 ∈ R+
0 Tolerance used when checking the second condition of

the near bifurcation condition (by algorithm 6.3, page
195).

∆s− ∈ R+
0 Minimal step length to use when constructing a solution

curve (by algorithm 6.1, page 193).

∆s+ ∈ R+
0 Maximal step length to use when constructing a solu-

tion curve (by algorithm 6.1, page 193) or executing
NSA (algorithm 6.6, page 198).
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mstep ∈ N Threshold in algorithm 6.7 (page 199) to check if the
step length should be decreased, due to slow conver-
gence of the Newton method.

εstep ∈ R+
0 Threshold in algorithm 6.7 (page 199) to check if the

step length should be set to minimal, due to a bifurca-
tion possibly being near.

g− ∈]0, 1] Factor the step length is decreased with, when the New-
ton method converges slowly.

g+ ∈ R (≥ 1) Factor the step length is increased with, when the New-
ton method does not converge slowly.

εstab ∈ [0, 1] Threshold in algorithm 6.8 (page 200) for allowed per-
centage of unstable points in a stable approximate sub-
curve.

εortho ∈ R+
0 Tolerance used to check orthogonality between two vec-

tors. Used in algorithm 7.2 (page 231).

mrand ∈ N Amount of initial guesses used when solving a small
nonlinear system of equations with the Newton algo-
rithm. Used in algorithm 7.8 (page 238).

mNSA ∈ N Maximal amount of NSA steps allowed in algorithm 6.6
(page 198).

mbif ∈ N Maximal amount of Newton steps allowed in each NSA
step.

εNSA ∈ R+
0 Tolerance used for convergence in algorithm 6.6 (page

198).

εbif ∈ R+
0 Tolerance used for the Newton method in each NSA

step.

εκ̃ ∈ R+
0 Threshold used to choose sort of step in split (block)

Newton method with mixed terms.

mext ∈ N Maximal amount of Newton steps allowed in algorithms
6.4 (page 196) and 6.5 (page 197).

εext1 ∈ R+
0 Tolerance used in algorithms 6.4 (page 196) and 6.5

(page 197), to check whether the guess is a point of
the solution curve and satisfies the extra established
condition.

εext2 ∈ R+
0 Tolerance used in algorithms 6.4 (page 196) and 6.5

(page 197), to check whether the guess contains an ap-
proximate null vector.
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mNew ∈ N Maximal amount of Newton steps allowed when exe-
cuting a pseudo-arclength continuation step (algorithm
6.2, page 195).

εNew ∈ R+
0 Tolerance used in the Newton method (when executed

for a pseudo-arclength continuation step).

mlin ∈ N Maximal amount of Arnoldi steps allowed in GMRES
(algorithm 3.4, page 44).

εlin ∈ R+
0 Tolerance used in GMRES.

εeig1 ∈ R+
0 Tolerance used to check convergence of a Ritz pair (in

algorithm 3.3, page 43).

εeig2 ∈ R+
0 Tolerance used to decide whether the magnitude of a

converged Ritz value is sufficiently low to be accepted.
Used for Ritz pairs in CheckDetection, AdaptStep and
StabAnalysis (algorithms 6.3 on page 195, 6.7 on page
199 and 6.8 on page 200).

εdefl ∈ R+
0 Tolerance used to decide whether the magnitude of a

converged Ritz value is sufficiently low to be accepted.
Used for Ritz pairs in split Newton methods, tangent
direction constructions and for deflation.

keig ∈ N Maximal amount of Ritz pairs to calculate. Used for
Ritz pairs in CheckDetection, AdaptStep and Stab-
Analysis (algorithms 6.3 on page 195, 6.7 on page 199
and 6.8 on page 200).

kdefl ∈ N Maximal amount of Ritz pairs to calculate. Used for
Ritz pairs in split Newton methods, tangent direction
constructions and for deflation.

neig ∈ N Maximal amount of allowed restarts in algorithm 3.3
(page 43) for each Ritz pair.

meig ∈ N Maximal amount of Arnoldi steps allowed in each
restart of algorithm 3.3 (page 43).

mNCG1 ∈ N Maximal amount of allowed Newton iterations for line
search part of NCG (algorithm 3.5, page 45).

εNCG1 ∈ N Tolerance for line search part of NCG.

mNCG2 ∈ N Maximal amount of allowed NCG steps.

εNCG2 ∈ N Tolerance for searched minimum in NCG.

mCN ∈ N Amount of calculated time steps in algorithm 3.6 (page
47).
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∆t ∈ R+
0 Size of time steps used in algorithm 3.6 (page 47).

εcomp1 ∈ R+
0 Tolerance used when comparing an approximate bifur-

cation point with a point that satisfies the near bifur-
cation condition.

εcomp2 ∈ R+
0 Tolerance used when comparing two general points.

Used in the start point condition.

εcomp3 ∈ R+
0 Tolerance used when comparing two approximate bi-

furcation points.

εcomp4 ∈ R+
0 Tolerance used when comparing two tangent directions.

εcomp5 ∈ R+
0 Tolerance used when comparing coefficients of a small

nonlinear system.

εcomp6 ∈ R+
0 Tolerance used when comparing solutions of a small

nonlinear system.

Though problem-dependent, these parameters are often related. For exam-
ple, the tolerance εdefl should be chosen lower than εdet1, but higher than
εNSA.

The internal parameters should be chosen with care when PyNCT is used. A
bad choice possibly leads to the failure of generating all curves of the problem’s
connected solution landscape. Note that the optimal choice for some of the
parameters might differ depending on the curve being generated. Optimally
the internal parameters should be retuned accordingly whenever a new curve
is approximated (this might require some trial and error). Partial landscapes
can be saved in PyNCT, and reloaded after the used ’parameters.json’ file is
updated (see section 8.3).

8.5 Notes on parallelization

The current Python implementation of algorithm 8.1 (page 252) cannot be run
in parallel. Multiple parts can however be parallelized. Except for distribution
of the memory over multiple nodes, which speeds up algorithms like GMRES
and the calculation of Ritz pairs, multiple tasks can be performed in parallel
as well.

A first such task occurs when a Newton method is combined with block
elimination. In this case each Newton step requires the solution of two linear
systems (e.g. (5.20) and (5.21) for the deflated block Newton method). These
two systems are independent, and can be solved in parallel. Solving linear sys-
tems is typically computationally the most expensive part of the Newton algo-
rithms. For the standard and deflated block Newton methods, parallelization
would reduce the computational cost to almost the same level as the methods
without block elimination.

Another task that can be performed in parallel are the two applications of
pseudo-arclength continuation that occur at the start of a curve approxima-
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tion in algorithm 8.1. Given an initial point (ψ(0), µ(0)) and direction (ψ̇, µ̇),
the curve through this point in the given direction is approximated by two
applications of algorithm 6.1 (page 193): once in the direction (ψ̇, µ̇), and once
in (−ψ̇,−µ̇), such that both sides of the curve are approximated. These two
applications can be performed in parallel, the start point condition (8.1) should
be adjusted appropriately.

In its current form, algorithm 6.1 first approximates a curve, bifurcation
points are searched afterwards. Points that satisfy the near bifurcation condi-
tion are used as initial guesses for this purpose. These two tasks can be par-
allelized as well: when a point that satisfies the near bifurcation condition is
found, a numerical method to find the corresponding bifurcation should imme-
diately be started, simultaneous with the further approximation of the solution
curve. When such a bifurcation is found, it should also be immediately anal-
ysed by algorithm 7.1 (page 230), and an appropriate element should be added
to the list A, that contains input to use for curves yet to be approximated.

A final parallelization of tasks can be implemented using the list A itself:
as soon as an element is added to this list, the corresponding curve can be ap-
proximated in parallel with other tasks. This way multiple curves are approx-
imated simultaneously, greatly improving the speed of the connected solution
landscape’s construction. To prevent multiple curves from being generated, the
end points (in two directions) of all approximate curves should be constantly
compared (which can be done in parallel as well): if two end points approx-
imate each other, the corresponding curves should be combined. Note that
the comparison of end points should account for possible presence of discrete
symmetry.
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8.6 Appendix

Automatic exploration of a connected solution landscape

Algorithm 8.1 ConstructLandscape

Input mC ,mstart ∈ N, functions F : Cn × R → Cn, P : Cn × R → C(Cn),
list C = [C1, . . . , Cl] of condition functions, inner product 〈·, ·〉, initial guess
(ψ̃(0), µ̃(0)) ∈ Cn × R, list G = [g1, . . . , gk] of group actions (with g1 = e the
identity element) representing discrete symmetry, set H of group actions rep-
resenting continuous symmetry.

Output List L that represents the connected solution landscape of F
through the point (ψ(0), µ(0)), a solution near (ψ̃(0), µ̃(0)). Each element
(P,B, S) of L corresponds to a different curve with points P , bifurcations B
and stability results S as column vectors.

1: Set P : Cn × R→ C(Cn) : (x, p)→ I if not specified
2: Set 〈·, ·〉 = 〈·, ·〉2 if not specified
3: Set G = [e] if not specified, with group action e : Cn×R→ Cn×R : t→ t.
4: Set H = {e} if not specified, with group action e : Cn×R→ Cn×R : t→ t.

5: Set C =
[ ]

an empty list if not specified

6: µ(0) = µ̃(0)

7: Calculate ψ(0) by executing NewtonMixed (algorithm 4.7) with F =
F(·, µ(0)), x(0) = ψ̃(0), P = P (·, µ(0)) and given 〈·, ·〉

8: A =
[
((ψ(0), µ(0)), (0, 1))

]
9: Initialize empty list L =

[ ]
10: m = 0
11: while m < mC and A is not empty do
12: m← m+ 1
13: Choose ((ψ, µ), (ψ̇, µ̇)) the first element of A
14: Define Cstart by (8.1) with (ψ′(0), µ′(0)) = (ψ, µ) and given mstart

15: C ′ =
[
C Cstart

]
16: Calculate (P,B, S) by executing CurveCalculation (algorithm 6.1) with

C = C ′, ψ(0) = ψ, µ(0) = µ, ψ̇(0) = ψ̇, µ̇(0) = µ̇ and given F , P and 〈·, ·〉
17: if the condition Cstart is not satisfied then
18: Set (ψ(e), µ(e)) the last column of P
19: Define Cstart by (8.1) with (ψ′(0), µ′(0)) = (ψ(e), µ(e)) and given mstart

20: C ′ =
[
C Cstart

]
21: Calculate (P ′, B′, S′) by executing CurveCalculation (algorithm 6.1)

with C = C ′, ψ(0) = ψ, µ(0) = µ, ψ̇(0) = −ψ̇, µ̇(0) = −µ̇ and given F , P
and 〈·, ·〉

22: Revert the columns of P ′, B′ and S′

23: P ←
(
P ′ P

)
24: B ←

(
B′ B

)
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25: S ←
(
S′ S

)
26: L =

[
L (P,B, S)

]
27: end if
28: Set k the amount of bifurcation points in B
29: for j = 1, . . . , k do
30: Set (ψ(b), µ(b)) the kth column of B
31: Define G′ ⊆ G the isotropy subgroup of ψ(b)

32: Set (ψ(1), µ(1)) and (ψ(2), µ(2)) the points (as columns of P ) closest to
(ψ(b), µ(b))

33: ψ̇ = ψ(2) − ψ(1)

34: µ̇ = µ(2) − µ(1)

35: γ =
√
‖ψ̇‖2 + µ̇2

36: ψ̇ ← γ−1ψ̇
37: µ̇← γ−1µ̇
38: Calculate (type, T ) by executing BifurcationAnalysis (algorithm 7.1)

with t(0) = (ψ̇, µ̇) G = G′ and given F , P , 〈·, ·〉, (ψ(b), µ(b)) and H
39: if type = ’branch point’ then
40: Set l the amount of tangent directions in T
41: for i = 1, . . . , l do
42: Set (ψ̇, µ̇) the lth column of T
43: new = True
44: for ((ψ′(b), µ′(b)), (ψ̇′, µ̇′)) in A do
45: if µ(b) ≈ µ′(b) and µ̇ ≈ ±µ̇′ and ∃h ∈ H, g ∈ G such that

g(ψ(b)) ≈ h(ψ′(b)) and g(ψ̇) ≈ h(ψ̇′) then
46: new ← False
47: Remove the element ((ψ′(b), µ′(b)), (ψ̇′, µ̇′)) from A
48: Break
49: end if
50: end for
51: if new then

52: A =
[
A ((ψ(b), µ(b)), (ψ̇, µ̇))

]
53: end if
54: end for
55: end if
56: end for
57: end while
58: Return L
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CHAPTER 9
Numerical results

“Since the mathematicians have invaded the theory of
relativity, I do not understand it myself anymore.”

– Albert Einstein –

Chapter highlights:

• We provide and discuss connected solution landscapes for the
dynamical systems and examples of chapter 2.

• These landscapes were generated by the techniques derived
throughout the thesis (by application of the Python package
PyNCT), indicating their effectiveness.

• A journal article about the contents of this chapter and chapter
7 has been submitted (see [110]).

9.1 Introduction

Connected solution landscapes for the dynamical systems and other examples
of chapter 2 will be discussed in this chapter. The landscapes were generated by
application of the Python package PyNCT, which is based on the algorithms
derived in chapters 6, 7 and 8. By applying the established techniques, we were
able to generate connected solution landscapes with multiple (e.g. 40+) curves.
Modules for the discussed problems have been added as examples in PyNCT.

9.2 Equation of a circle

The first example is described in section 2.2. The function F , given by (2.2), de-
scribes the equation of a circle. Though it lacks physical relevance, the example
is used to test the implementation.

Application of algorithm 8.1 (page 252), in practice performed by the pack-
age PyNCT, yields the connected solution landscape of figure 9.1. The values
ψ̃(0) = 1, µ(0) = 0 were used to initialize the method. Note the gap in the circle
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Figure 9.1: Connected solution landscape for the circle equation. Blue dots
indicate bifurcation points.

around this point, this is a consequence of the start point condition (see (8.1))
that is satisfied near the end of the calculated curve. For the approximation of
bifurcation points, the Newton step length adaptation method (algorithm 6.6,
page 198) was performed.

Figure 9.1 shows a single solution curve (ψ(s), µ(s)), with bifurcation points
at (ψ, µ) = (0,−1) and (ψ, µ) = (0, 1). Both bifurcations are turning points.
The solution curve satisfies

ψ(s) = ±
√

1− µ(s),

indicating that the implementation of the pseudo-arclength continuation algo-
rithm in PyNCT works correctly.

Note that, though dense linear algebra is easily applied for this example, we
used numerical methods based on sparse linear algebra (algorithms 3.3, page
43 (RitzRestart), algorithm 3.4, page 44 (GMRES), . . . ). This was done for
the purpose of testing the implementation of these methods.

9.3 Intersection of two cylinders

A second example is described in section 2.3, where a function F that represents
the intersection of two cylinders is given (see (2.4)). We again apply the PyNCT
package to generate the connected solution landscape of this function, this
yields figure 9.2. The values

(ψ̃(0), µ̃(0)) =

((
1 1

)T
, 0

)
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Figure 9.2: Connected solution landscape for the intersection of two cylinders.
Blue dots indicate bifurcation points.

were used as guess for the initial point of the landscape, the Newton step length
adaptation method (algorithm 6.6, page 198) was executed for the approxima-
tion of bifurcation points.

The solution landscape consists of two curves, and indeed represents the
intersection of two cylinders (see figure 2.1). Two bifurcation points were ap-
proximated, given by the values

(ψ, µ) =

((
0 0

)T
, 1

)
, (ψ, µ) =

((
0 0

)T
,−1

)
.

Both bifurcations are branch points.
Similar to the circle equation (discussed in section 9.2), the solution land-

scape lacks physical relevance, but indicates that the implementation in PyNCT
works correctly. Note that we again used methods based on sparse linear alge-
bra for testing purposes, though the equation allows for dense linear algebra
to be applied.

9.4 The Liouville-Bratu-Gelfand equation

Connected solution landscapes for the Liouville-Bratu-Gelfand equation will be
discussed in the current section. Though the solutions are physically relevant,
we will not discuss them in detail. The goal of using PyNCT on this equation
is to test the application of the code to a nonlinear problem derived from a
dynamical system.

The required function F for the algorithms is described by (2.7) in section
2.4. We make a distinction between the equation applied to a line segment
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Figure 9.3: Connected solution landscape for the Liouville-Bratu-Gelfand equa-
tion on a line segment [−0.5, 0.5]. Solid (dashed) lines represent stable (unsta-
ble) solutions. Blue dots indicate bifurcation points. Representative solutions
for the curves are given in figure 9.4.

(Ω = [−0.5, 0.5]) and to a square domain (Ω = [−0.5, 0.5]2). For both cases the
package PyNCT is applied to an initial guess

(ψ̃(0), µ̃(0)) = (0, 0.01).

The preconditioner defined by (2.10) is used, and inner products (2.8) and
(2.9) are respectively applied for the line segment and the square domain case.
Algorithm 6.4 (solving an extended nonlinear system, see page 196) is used for
the approximation of bifurcation points. The condition C, given by

C : Cn × R→ {True, False} : (ψ(k), µ(k))→

{
True µ(k) < 0.01,

False otherwise,
(9.1)

is used as an additional condition to stop the pseudo-arclength continuation
method, it is applied after each step to the last generated point (ψ(k), µ(k)) (for
a certain k ∈ N) of the curve.

9.4.1 Applied to a line segment

We first apply the PyNCT package to the equation defined on the domain
Ω = [−0.5, 0.5], this represents a line segment. We use n = 100 discretization
points. The generated solution landscape is given by figure 9.3.

With the current settings, 3 solution curves are constructed. Representative
solutions for each of the curves are given in figure 9.4. Except for the two branch
points (at approxiate values µ ≈ 0.27 and µ ≈ 0.03) that connect these curves,
the algorithm finds a turning point at µ ≈ 0.37 for curve A.
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Figure 9.4: Representative solutions for the different curves of figure 9.3

9.4.2 Applied to a square domain

The branch points of the examples considered in the previous sections of
this chapter never induced a partial Jacobian with kernel dimension greater
than 1. The construction of their connected solution landscape did not re-
quire algorithms 7.5 (page 233) or 7.6 (page 234), which were derived for the
2-dimensional kernel case.

Contrary to these examples, the Liouville-Bratu-Gelfand equation applied
to a square domain Ω = [−0.5, 0.5]2 does contain a discrete symmetry that
induces branch points that require this case. The function F is invariant under
the actions of D4 for this problem. We apply the PyNCT package on the
problem, using a discretization of n = 900 points.

Both branch points that induce Jacobians with a 1- and 2-dimensional ker-
nel are encountered during the application. For the 1-dimensional case the re-
quired tangent directions are constructed by application of algorithm 7.4 (page
233). The construction of these directions for the 2-dimensional case is handled
by algorithm 7.5. Application of PyNCT yields the connected solution land-
scape provided by figure 9.5. Several close-ups of this landscape are provided
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Figure 9.5: Connected solution landscape for the Liouville-Bratu-Gelfand equa-
tion on a square domain [−0.5, 0.5]2. Solid (dashed) lines represent stable (un-
stable) solutions. Blue dots indicate bifurcation points. Representative solu-
tions for the curves are given in figure 9.7.

by figure 9.6. Note that solution curves E and F are not distinguishable on the
figures, due to the solutions belonging to these curves having exactly the same
norm ‖ψ‖ for each value of µ. This is also the case for curves Q and R, and U
and V.

A total of 22 curves are constructed, representative solutions are given in
figure 9.7. The curves are connected through 14 different branch points. To-
gether with the 13 turning points, a total of 27 bifurcations were discovered.

Note that the connected solution landscape of figure 9.5 is actually not
complete: more solution curves start emanating from the ones shown in the
figure for values of µ smaller than 0.01. Due to the extra condition (9.1), we
omitted the generation of these curves.

9.5 The Ginzburg-Landau equation

This section contains the connected solution landscapes for the Ginzburg-
Landau equation (described in section 2.5), applied to multiple shapes of ma-
terials. We will only consider small-scale (mesoscopic) shapes, which are for
example of interest when building nanoscale fluxonics devices to use in e.g.
SQUIDs [65], RSFQ processors [41] and supercomputers [33, 54, 76]. The ma-
terials used in these devices are typically shaped as a triangle, square or disc.
The methods discussed in previous chapters however allow for general shapes
to be considered, which is indicated by some of the examples.

We restrict ourselves to extreme type-II superconductors, for which the
Ginzburg-Landau equation decouples (see section 2.5.2). The materials are sub-
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(a) Close-up for 0.01 . µ . 0.05, 2.9 . ‖ψ‖ . 6.7

(b) Close-up for 0.01 . µ . 0.013, 4.4 . ‖ψ‖ . 6.5

Figure 9.6: Several close-ups of the connected solution landscape of figure 9.5.
Representative solutions for the curves are given in figure 9.7.
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Figure 9.7: Representative solutions for the different curves of figures 9.5 and
9.6

ject to a homogeneous magnetic field, the dependence of the state on this fields
strength (µ) is investigated. The PyNCT package is applied to the function
F , given by (2.20). The equation is presented in its dimensionless form. The
magnetic vector potential A0 for µ = 1, which is required to evaluate the dis-
crete kinetic operator K(h) that appears in (2.20), will be described for each
example (see section 2.5.2 for details on A0).

Note that solution landscapes will be plotted in terms of the expression

E(ψ) = −|Ω|−1

∫
Ω

|ψ|4dΩ, (9.2)

which is the part of the Gibbs energy (2.11) that depends on the order param-
eter ψ (see Schlömer [92] for more details).

Except for the irregular shaped material, the point

(ψ̃(0), µ̃(0)) = (1, 0)

will be used as the starting value. This point represents the homogeneous so-
lution in absence of a magnetic field. The preconditioner given by (2.25) and
inner product (2.21) are applied.
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Most of the discussed shapes contain a discrete symmetry, described by
either the cyclic or dihedral group. This induces an invariance on F under the
actions of the corresponding symmetry group, as described by proposition 2.3.
The function F is invariant under the actions of the continuous group S1 as
well, independent of the material’s shape. The PyNCT package is able to deal
with any complications caused by these symmetries (as discussed in previous
chapters).

Extra conditions C1 and C2, defined by

C1 : Cn × R→ {True, False} : (ψ(k), µ(k))→

{
True µ(k) < 0,

False otherwise,
(9.3)

C2 : Cn × R→ {True, False} : (ψ(k), µ(k))→

{
True E(ψ(k)) ≈ 0,

False otherwise,
(9.4)

are used in the application of PyNCT for all shapes except the irregular one.
Condition C1 asserts a positive magnetic field strength, condition C2 stops
pseudo-arclength continuation when the Gibbs energy part E(ψ), corresponding
to the state ψ, approaches zero. In this case the curve connects to the trivial
solution branch that consists of points (ψ, µ) = (0, a) for a ∈ R. The conditions
are applied after each pseudo-arclength continuation step, to the last generated
point (ψ(k), µ(k)) (for a certain k ∈ N) of the curve.

9.5.1 Square-shaped material

The first material we consider is shaped as a square, the appropriate symmetry
group for the equation is the group D4 × S1. We use n = 20737 discretization
points. The size of the edges is denoted by d, scaled in units of the coherence
length ξ (see section 2.5). We apply PyNCT for two different sizes. In both
cases algorithm 6.5 (page 197) was used for approximating bifurcation points.
Algorithm 7.6 (page 234) was used to construct tangent directions for branch
points that induce a Jacobian with kernel dimension 2 (ignoring null vectors
induced by the S1 symmetry).

Side length d = 3

The connected solution landscape for a square with side length 3 was discussed
in Schlömer [92]. We recreate the result by applying PyNCT, yielding figure
9.9. The magnetic vector potential A0 used in the discrete Ginzburg-Landau
equation (2.20) is given by figure 9.8.

Two bifurcation points were found during the continuation, at µ ≈ 1.64 and
µ ≈ 1.17. Both bifurcations are branch points that induce a Jacobian with a 2-
dimensional kernel, application of algorithm 7.6 yielded the tangent directions
to the emerging curves. The generated landscape in figure 9.9 shows 4 different
solution curves, denoted as A, B, C and D. Representative solutions for these
curves are given in figure 9.10.

The solution (ψ, µ) = (1, 0), which was used as a starting point for PyNCT,
is part of solution curve A. Solutions for this curve are invariant under the
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Figure 9.8: Magnetic vector potential A0 (given as a vector field) used in (2.20)
for the construction of the connected solution landscape in figure 9.9. Vectors
are scaled by 25%.

Figure 9.9: Recreated from Schlömer [92]. Connected solution landscape for the
extreme type-II Ginzburg-Landau equation applied to a square-shaped material
with side length 3. The material is subject to a homogeneous magnetic field
with varying strength µ, the corresponding magnetic vector potential for µ = 1
is described by figure 9.8. E represents the part (9.2) of the Gibbs energy.
Solid (dashed) lines represent stable (unstable) solutions. Blue dots indicate
bifurcation points. Representative solutions for the curves are given in figure
9.10.
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9.5. The Ginzburg-Landau equation

Figure 9.10: Recreated from Schlömer [92]. Representative solutions for the
different curves of figure 9.9.

actions of the entire group D4. For values of µ between 0 and approximately
1.64 (the value for the first bifurcation), curve A is stable. For non-zero field
strength, the solutions consist of zones of low supercurrent density near the
edges of the domain. At µ ≈ 1.64 branch A destabilizes. Further increase of µ
along this curve shows how the branch connects to the trivial solution curve
ψ = 0, µ ∈ R. This happens at µ ≈ 1.84.

Except for curve A, the solutions of curve D are also invariant under all
actions of D4. Its solutions show a single vortex in the centre of the material.
It is stable for values of µ between approximately 1.17 (the value for the sec-
ond bifurcation) and 2.30. When the fields strength is increased along solution
branch D, four vortices start to appear near the edges of the domain. The curve
connects to the trivial solution branch ψ = 0, µ ∈ R at µ ≈ 0.13 and µ ≈ 2.30.

Curves A and D are connected through curves B and C. Starting from the
bifurcation of branch A at µ ≈ 1.64 and decreasing the field strength, curve B
shows how a single vortex forms at one of the corners and moves towards the
centre of the material, reaching this destination at the bifurcation µ ≈ 1.17.
Branch C shows the same behaviour, with the vortex appearing from one of
the edges.

Side length d = 5.5

The connected solution landscape for a square-shaped material with edges sized
d = 3 only contained 4 different solution curves. We now consider the same
shape, this time with a side length d = 5.5. The magnetic vector potential
A0 is given by figure 9.11. This problem was also treated in Schlömer [92],
where a solution landscape with 13 different solution branches was constructed.
Application of the PyNCT package yields the same landscape, with an extra
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Figure 9.11: Magnetic vector potential A0 (given as a vector field) used in
(2.20) for the construction of the connected solution landscape in figure 9.12.
Vectors are scaled by 25%.

30 branches, resulting in a total of 43 solution curves. The four main branches
(with full D4 symmetry) are shown in figure 9.12. Several close-ups of the
landscape containing other solution curves are given in figure 9.14. A schematic
representation of the diagram can be found in figure 9.13. Finally, representative
solutions for each curve are given in figure 9.15.

A total of 60 branch points were discovered during the continuation, their
values are given in table 9.1. Several of these only contained a 1-dimensional
kernel for which application of algorithm 7.4 (page 233) yielded the (single) new
tangent direction. Other branch points corresponded to a kernel with dimension
2. For these points the tangent directions were constructed by application of
algorithm 7.6 (based on the equivariant branching lemma, see page 234).

Note that except for the four main branches (A, D, F and M), solution
curve B contains a stable part as well: it is stable for magnetic field strength
values between approximately 0.6308 and 0.646098, for solutions that consist
of two vortices very close to the center, on the horizontal or vertical axis. Curve
B is the only non-main branch to contain a stable part, the stability of this
region has been verified by the Crank-Nicolson time step method (algorithm
3.6 on page 47).

9.5.2 Triangular material

The second material is shaped as a regular triangle, the edge size is denoted by
d. n = 9409 discretization points are used. The equation F is D3×S1 invariant
for this problem. We again consider two different sizes, for both cases we applied
algorithm 6.5 (page 197) for the approximation of bifurcation points.
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9.5. The Ginzburg-Landau equation

(a) Complete view

(b) Close-up for 1.1 . µ . 2.1, −0.1 . E(ψ) ≤ 0

Figure 9.12: Main solution curves of the landscape for the extreme type-
II Ginzburg-Landau equation applied to a square-shaped material with side
length 5.5. The material is subject to a homogeneous magnetic field with vary-
ing strength µ, the corresponding magnetic vector potential for µ = 1 is de-
scribed by figure 9.11. E represents the part (9.2) of the Gibbs energy. Solid
(dashed) lines represent stable (unstable) solutions. Blue dots indicate bifur-
cation points. Representative solutions for the curves are given in figure 9.15.
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Figure 9.13: Schematic representation of the connected solution landscape (in-
cluding branch points) for the extreme type-II Ginzburg-Landau equation ap-
plied to a square-shaped material with edge 5.5. The material is subject to a
homogeneous magnetic field with varying strength µ, the corresponding mag-
netic vector potential for µ = 1 is described by figure 9.11. Solid (dashed) lines
represent stable (unstable) solutions. Representative solutions for each curve
are given in figure 9.7, the µ values for the branch points are given in table 9.1.

Side length d = 4

The size of the edges of the first triangular material equals d = 4. The magnetic
vector potential A0 is given by figure 9.16. The connected solution landscape,
constructed by application of the PyNCT package, is given by figure 9.17.
Representative solutions for each curve are given by figure 9.18.

The PyNCT package found 4 bifurcation points during the continuation: 2
turning points and 2 branch points. Both branch points induced a partial Jaco-
bian with kernel dimension 2. Application of algorithm 7.5 (page 233) yielded
the tangent directions to the curves emerging from these points. Note that
only the initial steps of this algorithm had to be executed: a reduced system of
equations is found for k = 2 in algorithm 7.6.

As for the square-shaped material with side length d = 3, we find two
solution curves with full D3 symmetry. These are labelled A and C in figure
9.17. Curve A contains the starting point (ψ, µ) = (1, 0). Increasing the strength
of the applied magnetic field from this solution, three zones of low supercurrent
density form near the sides of the material. It connects to the trivial solution
branch ψ = 0, µ ∈ R at µ ≈ 2.33. The solution curve is stable for values of µ
between 0 and approximately 2.202, the value for the first branch point.

The solutions of curve C contain a single vortex in the centre of the triangle.
Increasing the magnetic field strength along this curve, three zones of low
supercurrent density form near the edges. The curve is unstable for values
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9.5. The Ginzburg-Landau equation

(a) Curves B, C, G, N, b, d, q and r

(b) Curves E, H, J, K, Q, S and Z

Figure 9.14: Several close-ups of the connected solution landscape of figure 9.12,
including connective solution curves. Representative solutions for the curves are
given in figure 9.15.
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(c) Curves K, L, T, U, V, W, X, Y, e, f, j and y

(d) Curves I, O, R and i

Figure 9.14: Several close-ups of the connected solution landscape of figure 9.12
(cont.).
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9.5. The Ginzburg-Landau equation

(e) Curves k, m, n and p

(f) Curve g

Figure 9.14: Several close-ups of the connected solution landscape of figure 9.12
(cont.).
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(g) Curve h

(h) Curves I, K, O, P, X, a, j and t

Figure 9.14: Several close-ups of the connected solution landscape of figure 9.12
(cont.).
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9.5. The Ginzburg-Landau equation

Figure 9.15: Representative solutions for the different curves of figures 9.12,
9.13 and 9.14

Figure 9.16: Magnetic vector potential A0 (given as a vector field) used in
(2.20) for the construction of the connected solution landscape in figure 9.17.
Vectors are scaled by 25%.
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Table 9.1: Approximate values of the applied magnetic fields strength (µ) for
the branch points displayed in figure 9.13.

Id. µ value Id. µ value Id. µ value Id. µ value

1 0.6989 16 1.51736 31 1.02539 46 1.34396

2 0.7319 17 1.6149 32 1.4412 47 1.3655

3 1.13777 18 1.655 33 0.58275 48 1.425396

4 1.1423 19 0.09241 34 0.551370 49 1.9115

5 1.7176 20 0.54002 35 0.80322 50 1.425179

6 1.7437 21 0.646098 36 1.0406 51 1.7430

7 1.7959 22 0.61367 37 1.3712 52 1.7063

8 0.12905 23 1.281974 38 1.41573 53 1.75378

9 0.2591 24 1.27688 39 0.5566 54 0.7922136

10 0.34209 25 1.42875 40 0.8639 55 1.10976

11 0.7594 26 1.7453 41 0.6980 56 0.761674

12 0.8029 27 1.7055 42 0.6308 57 1.312923

13 0.8635 28 1.5824 43 1.13779 58 1.517199

14 0.875147 29 0.25285 44 1.02538 59 1.557099

15 1.5048 30 1.0240 45 1.28195 60 1.67462

µ . 1.835, the value for the second branch point. It is stable between values
µ ≈ 1.835 and µ ≈ 2.75. At this last value, and the value µ ≈ 0.27, the curve
connects to the trivial solution branch ψ = 0, µ ∈ R.

Curves A and C are connected by a single curve B. To describe this curve,
we start from the branch point of curve A at µ ≈ 2.202. Decreasing µ, a vortex
moves from one side of the triangle to the opposite corner. It reaches the centre
of the material at µ ≈ 1.835, where curves B and C connect in a branch point.
Further decreasing µ along curve B, the vortex continues moving towards the
opposite corner of the edge it appeared at. A turning point is encountered for
µ ≈ 1.825. The movement towards the corner is continued when we increase
µ from this value, encountering a second turning point at µ ≈ 2.204. A final
decrease from this point shows how curve B reaches its own starting point, the
bifurcation at µ ≈ 2.202.
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9.5. The Ginzburg-Landau equation

Figure 9.17: Connected solution landscape for the extreme type-II Ginzburg-
Landau equation applied to a triangular material with side length 4. The ma-
terial is subject to a homogeneous magnetic field with varying strength µ, the
corresponding magnetic vector potential for µ = 1 is described by figure 9.16. E
represents the part (9.2) of the Gibbs energy. Solid (dashed) lines represent sta-
ble (unstable) solutions. Blue dots indicate bifurcation points. Representative
solutions for the curves are given in figure 9.18.

Figure 9.18: Representative solutions for the different curves of figure 9.17.

Side length d = 6

A second connected solution landscape was constructed for the triangular ma-
terial, this time with edges sized d = 6. The magnetic vector potential A0 is
given by figure 9.19. The landscape is given by figure 9.20, representative so-
lutions by figure 9.21. A detailed description of the different solution curves is
given in Wouters [110].

A total of 7 solution curves and 16 bifurcation points were found during
the continuation: 7 turning points and 9 branch points. For all of these branch
points, the corresponding Jacobian contained a kernel with dimension n = 2.
The initial steps of algorithm 7.5 were again sufficient for the construction of
tangent directions.
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9. Numerical results

Figure 9.19: Magnetic vector potential A0 (given as a vector field) used in
(2.20) for the construction of the connected solution landscape in figure 9.20.
Vectors are scaled by 25%.

Figure 9.20: Connected solution landscape for the extreme type-II Ginzburg-
Landau equation applied to a triangular material with side length 6. The ma-
terial is subject to a homogeneous magnetic field with varying strength µ, the
corresponding magnetic vector potential for µ = 1 is described by figure 9.19. E
represents the part (9.2) of the Gibbs energy. Solid (dashed) lines represent sta-
ble (unstable) solutions. Blue dots indicate bifurcation points. Representative
solutions for the curves are given in figure 9.21.
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9.5. The Ginzburg-Landau equation

Figure 9.21: Representative solutions for the different curves of figure 9.20.

Figure 9.22: Magnetic vector potential A0 (given as a vector field) used in
(2.20) for the construction of the connected solution landscape in figure 9.23.
Vectors are scaled by 25%.

9.5.3 Pentagon-shaped material

The final regular shape we consider is that of a pentagon, inducing a D5 ×
S1 invariance of the equation. We use n = 10401 discretization points, and
again consider two different sizes of edge length (denoted by d). Contrary to
the square-shaped and triangular materials, the split block Newton method
(SBN, algorithm 5.4 on page 159) was used for pseudo-arclength continuation,
instead of the standard method. Bifurcation points were approximated by a
different algorithm as well, we used the Newton step length adaptation method
(algorithm 6.6 on page 198) for this purpose. Tangent directions for branch
points with kernel dimension 2 were constructed by application of algorithm
7.6 (page 234).

Side length d = 2.35

A pentagon with size length d = 2.35 is considered first. The magnetic vector
potential A0 is given by figure 9.22. The connected solution landscape and
representative solutions for each curve are given by figures 9.23 and 9.24.
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Figure 9.23: Connected solution landscape for the extreme type-II Ginzburg-
Landau equation applied to a pentagon-shaped material with side length 2.35.
The material is subject to a homogeneous magnetic field with varying strength
µ, the corresponding magnetic vector potential for µ = 1 is described by figure
9.22. E represents the part (9.2) of the Gibbs energy. Solid (dashed) lines rep-
resent stable (unstable) solutions. Blue dots indicate bifurcation points. Rep-
resentative solutions for the curves are given in figure 9.24.

Figure 9.24: Representative solutions for the different curves of figure 9.23.

Three different solution curves were generated by the PyNCT package. So-
lutions of branches A and C are D5-invariant, curve B connects these two
branches through the branch points at µ ≈ 1.54 and µ ≈ 1.06. Both branch
points induce a Jacobian with a 2-dimensional kernel. Solutions of curve A are
stable for values of magnetic field strength up to µ ≈ 1.54. For curve C this is
the case for values between µ ≈ 1.06 and µ ≈ 2.19.

Side length d = 3.13

Next we consider a material shaped as a pentagon with side length d = 3.13.
The magnetic vector potential A0 is given by figure 9.25. Application of PyNCT
yields the connected solution landscape and representative solutions given by
respectively figures 9.26 and 9.28. Two close-ups of figure 9.26 are given in
figure 9.27.
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9.5. The Ginzburg-Landau equation

Figure 9.25: Magnetic vector potential A0 (given as a vector field) used in
(2.20) for the construction of the connected solution landscape in figure 9.26.
Vectors are scaled by 25%.

Figure 9.26: Connected solution landscape for the extreme type-II Ginzburg-
Landau equation applied to a pentagon-shaped material with side length 3.13.
The material is subject to a homogeneous magnetic field with varying strength
µ, the corresponding magnetic vector potential for µ = 1 is described by figure
9.25. E represents the part (9.2) of the Gibbs energy. Solid (dashed) lines rep-
resent stable (unstable) solutions. Blue dots indicate bifurcation points. Rep-
resentative solutions for the curves are given in figure 9.28.
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(a) Close-up for 0.9 . µ . 1.9, −0.13 . E(ψ) . 0

(b) Close-up for 1.314 . µ . 1.323, −0.00145 . E(ψ) . −0.001

Figure 9.27: Several close-ups of the connected solution landscape of figure 9.26.
Representative solutions for the curves are given in figure 9.28.
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9.5. The Ginzburg-Landau equation

Figure 9.28: Representative solutions for the different curves of figures 9.26 and
9.27.

For this problem the PyNCT package generated a total of 10 solution curves
and 14 bifurcations (2 turning and 12 branch points). The partial Jacobians
that correspond to these branch points always contained a 2-dimensional kernel.

9.5.4 Star-shaped material

The next material is shaped as a four-pointed star. It only exhibits rotational
symmetry, inducing an invariance of C4 × S1 on the equation. The domain is
chosen such that it fits into a square with edge 6: the distance between the
center and outer corners is given by

√
10, the one between the center and in-

ner corners by
√

2. The size of the short and long edges of the star itself are
respectively given by 2 and 2

√
2. The magnetic vector potential A0 is given

by figure 9.29. The connected solution landscape, and representative solutions,
associated with this material are given by figures 9.30 and 9.31. Several close-
ups of the landscape are given in figure 9.32.

19 solution curves were generated by the PyNCT package, interconnected
through a total of 20 branch points. These points were approximated by appli-
cation of algorithm 6.5 (page 197). Some of these corresponded to a Jacobian
with a 1-dimensional kernel, for which algorithm 7.4 (page 233) was applied
to construct tangent directions. Other branch points did correspond to a Ja-
cobian with a 2-dimensional kernel, for these points algorithm 7.5 (page 233)
was applied.
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Figure 9.29: Magnetic vector potential A0 (given as a vector field) used in
(2.20) for the construction of the connected solution landscape in figure 9.30.
Vectors are scaled by 25%.

Figure 9.30: Connected solution landscape for the extreme type-II Ginzburg-
Landau equation applied to a C4-symmetric, star-shaped material (as described
in section 9.5.4). The material is subject to a homogeneous magnetic field with
varying strength µ, the corresponding magnetic vector potential for µ = 1
is described by figure 9.29. E represents the part (9.2) of the Gibbs energy.
Solid (dashed) lines represent stable (unstable) solutions. Blue dots indicate
bifurcation points. Representative solutions for the curves are given in figure
9.32.
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(a) Close-up around curves N and O

(b) Close-up around curve O

Figure 9.31: Several close-ups of the connected solution landscape of figure 9.30.
Representative solutions for the curves are given in figure 9.32.
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(c) Close-up around curves L and M

(d) Close-up around curves F and G

Figure 9.31: Several close-ups of the connected solution landscape of figure 9.30
(cont.).
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9.5. The Ginzburg-Landau equation

(e) Close-up around curves D and I

(f) Close-up around curves P and Q

Figure 9.31: Several close-ups of the connected solution landscape of figure 9.30
(cont.).
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(g) Close-up around curves R and S

Figure 9.31: Several close-ups of the connected solution landscape of figure 9.30
(cont.).

Figure 9.32: Representative solutions for the different curves of figures 9.30 and
9.31.
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Figure 9.33: Magnetic vector potential A0 (given as a vector field) used in
(2.20) for the construction of the connected solution landscape in figure 9.34.
Vectors are scaled by 25%.

Note that it was not possible to apply algorithm 7.6 (based on the equivari-
ant branching lemma, see page 234) to construct tangent directions for these
points, since the material only exhibits rotational symmetry. Except for the 20
branch points, two turning points were also found, both belonging to curve I.

Four of the 19 generated curves (A, H, J and K) consist of solutions that
are invariant under the actions of the entire group C4. A detailed analysis of
figure 9.30 is given in Wouters [110].

9.5.5 Material with an irregular shape

We finally consider a material with an irregular shape, not containing any
symmetry. The shape is constructed by considering a two-dimensional grid
and connecting the dots at (−2.25,−1), (−2,−1.75), (1.5,−1.5), (2.25,−0.25),
(0.75, 1.75) and (−1, 1.5) (scaled in units of the coherence length ξ). The mag-
netic vector potential A0 is given by figure 9.33.

The Ginzburg-Landau equation is only invariant under the actions of S1 for
this problem. Bifurcation points are approximated by the Newton step length
adaptation method (algoirthm 6.6 on page 198). Due to the absence of discrete
symmetries, only branch points that induce a Jacobian with a 1-dimensional
kernel appear in the connected solution landscape. It is sufficient to apply
algorithm 7.4 (page 233) for the construction of tangent directions.

Contrary to the previous shapes, we use the point

(ψ̃(0), µ̃(0)) = (0, 0)

as a starting value for the PyNCT package. This point is part of the trivial
solution curve ψ = 0, µ ∈ R. Computation of this curve was omitted in the
previous examples by including the condition (9.4). We do not use conditions
(9.3) and (9.4), instead

C3 : Cn × R→ {True, False} : (ψ(k), µ(k))→

{
True µ(k) < 0 or µ(k) > 3,

False otherwise,

(9.5)
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Figure 9.34: Connected solution landscape for the extreme type-II Ginzburg-
Landau equation applied to an irregular material (as described in section 9.5.5).
The material is subject to a homogeneous magnetic field with varying strength
µ, the corresponding magnetic vector potential for µ = 1 is described by figure
9.33. E represents the part (9.2) of the Gibbs energy. Solid (dashed) lines rep-
resent stable (unstable) solutions. Blue dots indicate bifurcation points. Rep-
resentative solutions for the curves are given in figure 9.36.

is used as an extra stopping criterion for pseudo-arclength continuation, it is
applied after each step to the last generated point (ψ(k), µ(k)) (for a certain
k ∈ N) of the curve. This condition prevents the magnetic field strength from
leaving the range [0, 3].

Application of the PyNCT package to the problem yields the connected
solution landscape in figure 9.34. Several close-ups of the landscape are provided
by figure 9.35. Representative solutions for each of the generated curves are
given in figure 9.36.

The generated solution landscape consists of 4 different curves, including
the one (curve A) containing trivial solutions of the form ψ = 0, µ ∈ R.
The other branches are connected to curve A, there are no other connections
between them. A total of 4 branch points (all belonging to curve A) and 6
turning points were approximated.
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9.5. The Ginzburg-Landau equation

(a) Close-up for 0.88 . µ . 1.5, −0.23 . E(ψ) . −0.05

(b) Close-up for 1.2 . µ . 2.23, −0.012 . E(ψ) ≤ 0

Figure 9.35: Several close-ups of the connected solution landscape of figure 9.34.
Representative solutions for the curves are given in figure 9.36.
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(c) Close-up for 2.046 . µ . 2.058, −0.00272 . E(ψ) . −0.00237

Figure 9.35: Several close-ups of the connected solution landscape of figure 9.34
(cont.).

Figure 9.36: Representative solutions for the different curves of figures 9.34 and
9.35.
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CHAPTER 10
Conclusions & outlook

“Just because something works doesn’t mean it can’t be
improved.”

– Shuri –
Black Panther

10.1 Conclusions

An essential element in the study of dynamical systems is to derive its equilib-
ria: states of the system that remain constant over time. These equilibria often
depend in an intricate way on physical parameters like the temperature or the
strength of an applied magnetic field. Instead of solely deriving the equilibria
of a given dynamical system, the thesis focussed on the problem of analysing
the dependency of these steady states to the systems parameters. Mathemati-
cally this analysis is performed by constructing a connected solution landscape
(bifurcation diagram) for the considered dynamical system.

The aim of the thesis was to analyse and develop robust numerical methods
that generate a complete solution landscape of interconnected curves for dy-
namical systems described by a partial differential equation, where we limited
ourselves to systems for which the equilibrium equation contains a Hermitian
partial Jacobian.

Applying numerical continuation to a problem derived from a partial differ-
ential equation typically results in large, sparse, systems of equations that need
to be analysed. Methods based on dense linear algebra are not practicable for
this purpose, due to unacceptable computational and memory requirements. To
analyse the systems, it is essential to use techniques from sparse linear algebra,
like Krylov methods.

All of the numerical methods discussed in this thesis are applicable to such
large systems. Either they are based on dense linear algebra, but are only
applied to a reduced system of equations (e.g. the nonlinear conjugate gradients
algorithm, see section 3.4), or they are based on sparse linear algebra (e.g.
the split Newton method with mixed terms, see section 4.8). New numerical
methods, developed in the thesis, that are based on sparse linear algebra never
use the matrix or tensor form of operators. Instead only the matrix-vector
(or tensor-vectors) product is required, exploiting the sparsity structure of the
problems.
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10. Conclusions & outlook

Automatic exploration techniques are an essential part of the numerical
continuation algorithm. Given an initial (guess of a) solution, the goal is to
generate the complete interconnected solution landscape, instead of just a single
curve. Automatic exploration is realized by two steps. First, the bifurcation
points of the dynamical system need to be identified during the approximation
of its curves. However, the singularity of the Jacobian in these points typically
gives rise to issues in the numerical algorithms that have this purpose.

Two different strategies for approximating bifurcations were discussed in
the thesis. The first strategy consists of constructing an extended nonlinear
system, which is then solved by the Newton method. Though algorithms based
on this approach relatively yield fast results, it is unpredictable whether the
method will converge due to the Jacobian’s singularity.

A more robust strategy is given by the Newton step length adaptation algo-
rithm. This method is based on the pseudo-arclength continuation algorithm,
using approximate eigenvalues of the system’s Jacobian to choose the used step
length in each iteration. A crucial challenge for this method is implied by the
singularity of the system’s Jacobian at the searched bifurcation point. Due to
this singularity, divergence is typically observed when solving the nonlinear
systems of the pseudo-arclength continuation method by the standard Newton
algorithm.

For this purpose a new class of Newton methods was derived in the thesis.
One of these methods (the split block Newton method with mixed terms, de-
scribed in section 5.8) is able to approximately solve the required systems in an
efficient manner, even near and in points where the Jacobian is singular. The
derived algorithms are entirely based on sparse linear algebra. They are appli-
cable to large-scale systems, like the ones considered in the thesis. Compared
to other methods with the same purpose, like the accelerated inexact Newton
[42] and tensor method [4], our algorithm attains an improved accuracy.

The second step of automatic exploration is to construct for each bifurca-
tion point, identified in the first step, the tangent directions of solution curves
emerging from these points. If no symmetries are present in the underlying dy-
namical system, this problem is easily solved by applying the algebraic branch-
ing equation. For systems with symmetries typically bifurcations arise for which
application of this equation is not sufficient.

We discussed two different strategies for constructing tangent directions,
when the underlying system contains a two-dimensional (e.g. dihedral) symme-
try. The first strategy is based on a Lyapunov-Schmidt reduction. Starting from
an algorithm for the construction of tangent directions in Mei and Schwarzer
[73], we derived an adjusted method to use for large-scale systems. Though
effective, this adjusted algorithm requires multiple solves of a linear problem,
linked to the underlying symmetry of the dynamical system.

We also proposed a second strategy, where prior knowledge on these un-
derlying symmetries is exploited to omit solving additional linear problems.
This alternative strategy strongly reduces the amount of computational work,
but is not applicable to certain dynamical systems, depending on the kind of
symmetry considered. Both strategies successfully construct tangent directions
for the two-dimensional symmetry case.
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10.2. Outlook

As explained in the thesis, the two discussed steps (approximating bifurca-
tion points and constructing tangent directions) are sufficient requisites for the
execution of automatic exploration in the construction of connected solution
landscapes. The results in chapter 9 emphasize the effectiveness of the derived
algorithms.

An implementation of an algorithm that constructs a connected solution
landscape for a dynamical system, given a single initial point, has been made
in the Python package PyNCT. The package approximates both stable and
unstable equilibria. Though not physically feasible, unstable equilibria contain
important information on transitions between stable states of the system. This
was indicated by example 1.1 in the introduction. Solution landscapes are help-
ful for the derivation of this information as well, as was explicated by example
1.2.

Contrary to other tools, the PyNCT package is entirely based on sparse
linear algebra, allowing large-scale systems like the Ginzburg-Landau equations
to be considered. Furthermore, prior knowledge on symmetries of the system
can be provided. This knowledge is used to reduce computational work in
some of the algorithms. As indicated by the results in chapter 9, automatic
exploration techniques contained in the package make it possible to generate
connected solution landscapes with a high amount (40+) of different curves.
Users of PyNCT only need to provide a single state of the dynamical system,
a connected solution landscape is then generated from this point. Further user
interference is minimal, only consisting of the optional retuning of internal
parameters (see section 8.4).

10.2 Outlook

Though we believe to have succeeded in the goal of deriving the necessary nu-
merical tools, used to generate connected solution landscapes for large-scale
dynamical systems, a lot of new questions and problems arose during our re-
search. We give a brief sketch of possible future work, based on the results
derived in this thesis.

• In chapters 4 and 5 we derived a new class of Newton-Krylov methods,
applicable for nonlinear systems that contain an ill-conditioned Jacobian
near the searched solution. Though numerical experiments were executed
to show the efficiency of the methods, a theoretical analysis on when to
expect convergence should still be performed.

• This new class of Newton-Krylov methods was especially derived to use
for the approximation of bifurcation points. For this purpose the com-
bination of the methods with block elimination was discussed in detail
(see chapter 5). Nonlinear systems with an ill-conditioned Jacobian how-
ever occur in other situations as well. Examples include conservation
laws in stiff systems of ordinary differential equations and unconstrained
minimization problems arising from data fitting [94]. Application of the
derived Newton methods to these problems might be an interesting topic
for future research.
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• The current implementation of PyNCT is focussed on robustness. Though
based on sparse linear algebra and hence applicable to large-scale systems,
many of the algorithms could be replaced by computationally more ef-
ficient counterparts. For example, solutions of linear problems with a
self-adjoint operator could be approximated by the MINRES algorithm
[77] instead of GMRES. MINRES requires less computations, and a lower
memory storage cost. GMRES is on the other hand more robust.

• Other adjustments that should be made to the version of PyNCT concern
parallelization. We already discussed this subject in section 8.5. A par-
allel implementation would be crucial when even larger-scale problems
are considered, appearing for example in three-dimensional simulations
of superconductors and other dynamical systems. Though the methods
derived in the thesis are still valid for these kinds of problems, a parallel
version of the code will be required to maintain a tolerable computational
time. Some work on this problem is currently being done by linking the
PyNCT package with PHIST [104], a Pipelined Hybrid-parallel Iterative
Solver Toolkit.

• Currently a lot of different internal parameters (see section 8.4) need to
be provided to generate a connected solution landscape, and optimally
these should be retuned whenever a new curve is approximated. Further
work is required to determine these in a robust manner. Although, for
the examples presented in chapter 9, the desired tolerances were always
achieved, they require a new tuning when applied to other dynamical
systems. In the current version of PyNCT, this is required for different
samples in the same dynamical system as well, depending on the sample’s
discretization level. Robust internal parameters, that work automatically
for various discretizations, would be helpful in the future. The parameters
provided by users of PyNCT should not be dependent on the discretiza-
tion level of the underlying problem.

• Though the current version of PyNCT is able to generate connected solu-
tion landscapes, it does not contain any bifurcation tracking algorithms.
These algorithms are used to determine how the location of a bifurcation
is perturbed when a second physical parameter changes, and form an
essential part of other numerical continuation software like AUTO [31],
MatCont [30] and LOCA [90].

• The dynamical systems in the thesis were restricted to ones where the
equilibrium equation contains a Hermitian Jacobian operator. Though a
lot of mathematical models have this property, future work could be done
to extend PyNCT for more general systems. More complicated bifurca-
tion points, like the Hopf bifurcation [72, 95], need to be analysed for
this extention. This requires further numerical techniques, like time step
methods and algorithms that identify periodic orbits.

• Only materials with a two-dimensional shape were considered for the dy-
namical systems of chapter 2. The extension towards three-dimensional
ones provides an interesting topic of future research. We expect that the

294



10.2. Outlook

provided methods for detection and approximation of bifurcation points
are still straightforward applicable. However, the construction of the tan-
gent directions to emerging solution branches will require further efforts
when the material contains a three-dimensional symmetry (e.g. a cube).
For such materials we expect bifurcations to arise in which the Jacobian
contains a three-dimensional kernel, rendering algorithm 7.6 useless.

We believe the analysis in sections 7.3 and 7.4 can be extended to yield
an algorithm that successfully constructs the tangent directions for this
case. Due to the increased amount of (approximate) null vectors, a sim-
ilar algorithm to 7.6 is expected to require even more linear systems
to be solved, and the form of the term (7.28) is expected to become
more complex as well. We however believe that the method based on the
equivariant branching lemma (see section 7.5), which strongly reduced
the computational work of algorithm 7.6, can be extended as well.

• Finally, the methods presented in the thesis could be applied to more
complicated superconducting systems. Some work has already been done
to apply PyNCT to superconducting islands and to the multicomponent
Ginzburg-Landau equations. Initial results for these applications are ex-
pected to be derived in the near future.
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