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Dutch preface

De invoering van lage emissiezones in en rondom grote steden, de kilometerheffing
voor vrachtwagens op autosnelwegen en de stijgende energieprijzen zetten de
bedrijven onder druk om hun transportactiviteiten steeds efficiënter te organiseren.
Daarnaast zorgt het stijgende aandeel van e-commerce, waarbij goederen vaak
rechtstreeks bij de klanten thuis geleverd worden, ervoor dat het distributienetwerk
fijnmaziger is dan ooit.

De gezamenlijke organisatie van transportactiviteiten wordt gezien als een interes-
sante denkpiste voor het verhogen van de logistieke efficiëntie. In tegenstelling tot
traditionele (ad-hoc) bundeling, gaat het bij zulke horizontale samenwerkingsverban-
den om lange-termijncontracten tussen verschillende bedrijven, actief op hetzelfde
niveau in de supply chain, waarbij de actieve synchronisatie van de goederenstromen
tot de creatie van nieuwe synergieën leidt.

Voor het optimaal organiseren van hun transportactiviteiten maken bedrijven ge-
bruik van logistieke planningsalgoritmes, veelal ingebed in gespecialiseerde soft-
warepakketten. De bestaande algoritmes werden ontwikkeld vanuit de impliciete
veronderstelling dat het transport gepland en uitgevoerd wordt door één enkel
bedrijf. Dit maakt zulke algoritmes minder geschikt voor het ondersteunen van
beslissingen binnen horizontale logistieke samenwerkingsverbanden. Deze docto-
raatsthesis heeft tot doel de eerste stappen te zetten in de ontwikkeling van logistieke
optimalisatiemodellen en -algoritmes, waarbij meerdere partijen gezamenlijk hun
logistieke activiteiten organiseren. De focus ligt op (1) het integreren van allocatie-
modellen voor het verdelen van bijvoorbeeld kosten, opbrengsten of middelen onder
de betrokken partijen, en (2) het ontwikkelen van optimalisatiemodellen waarin
de doelstellingen van zowel de coalitie als de individuale partijen in beschouwing
kunnen worden genomen. Beide aspecten worden hieronder verder uitgelicht.

Aangezien alle bedrijven, actief binnen een horizontaal samenwerkingsverband,
individuele entiteiten blijven, dienen de kosten en opbrengsten van de gezamenlijke



logistieke planning opnieuw herverdeeld te worden. De bestaande allocatiemodellen
die hiervoor gebruikt worden variëren van eenvoudige vuistregels tot complexe
verdeelsleutels uit de cooperatieve speltheorie en kunnen significant van elkaar
verschillen. Dit wordt in deze thesis zowel empirisch als door middel van een
theoretische simulatie aangetoond. In tegenstelling tot deze bestaande benaderingen,
waarbij veelal gefocust wordt op de fairness van iedere methode, wordt in dit werk
gebruik gemaakt van incentives om de verschillende allocatiemodellen van elkaar te
onderscheiden. Op deze manier kunnen individuele bedrijven aangespoord worden
zich flexibel te gedragen ten opzichte van hun samenwerkingspartners. Immers, hoe
meer een bedrijf bereid is zich aan te passen aan wat optimaal is voor de coalitie,
hoe meer synergie er door de samenwerking gerealiseerd kan worden. Omwille
van deze wisselwerking, kan het kostenallocatieprobleem niet afzonderlijk van het
logistieke planningsprobleem beschouwd worden.

In hoofdstuk 4 wordt het verband tussen winstverdelingsmechanismen en incentives
empirisch bestudeerd. Er wordt een onderscheid gemaakt tussen het verdelen van
de winst op dagelijkse basis en periodische winstdeling (bijvoorbeeld wekelijks of
maandelijks). Er wordt zowel een rigide als flexibele planning beschouwd. Het
verband tussen de performantie van de coalitie (in termen van synergiecreatie),
flexibiliteit van de individuele partners en de impact op de kostenverdeling wordt
verder theoretisch onderzocht in hoofdstuk 5.

In bestaande logistieke optimalisatiemodellen wordt steeds verondersteld dat de be-
drijven, die de krachten bundelen in een horizontaal samenwerkingsverband, enkel
één of meerdere gemeenschappelijke objectieven nastreven. Met andere woorden,
de individuele belangen van de partijen worden niet rechtstreeks in beschouwing
genomen. Deze beperking wordt losgelaten in dit werkstuk en de aanzet wordt
gegeven tot de ontwikkeling van logistieke optimalisatiemodellen waarbij objectieven
op meerdere niveaus gedefinieerd kunnen worden. Naast het coalitieniveau, worden
hier ook de belangen (objectieven) van de verschillende individuele partners meege-
nomen. Immers, een oplossing die niet door alle partijen als ‘optimaal’ beschouwd
wordt, draagt niet bij tot de langetermijn stabiliteit van de coalitie.

De integratie van zogenaamde partnerobjectieven in logistieke optimalisatiemodellen
is het onderwerp van de hoofdstukken uit deel iii van deze thesis. Drie alternatieve
benaderingen worden geı̈ntroduceerd: model met coalitie-efficiëntie (hoofdstuk 6),
model met partnerefficiëntie (hoofdstuk 6) en een gecombineerd model (hoofdstuk
8). In het eerste model definiëren de coalitiepartners een set objectieven op het
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niveau van de groep en wordt het logistiek optimalisatiemodel op coalitieniveau
opgelost. Op basis van vooraf gedefinieerde verdeelsleutels, wordt de waarde van
deze oplossing op de individuele objectieven van iedere partner bepaald, waarna de
oplossing geëvalueerd wordt door alle individuele coalitiepartners. Het model met
partnerefficiëntie maakt geen gebruik van overkoepelende objectieven op coalitieni-
veau, maar beschouwt de individuele objectieven van alle partners rechtstreeks in de
optimisalisatieprocedure. Een gecombineerd model wordt tenslotte gedefinieerd in
hoofdstuk 8. In deze benadering worden beide voorgaande modellen gecombineerd
en sequentieel opgelost. Op basis van simulatie-experimenten wordt aangetoond dat
individuele bedrijven in vele gevallen hun eigen situatie kunnen verbeteren door af
te wijken van de optimale oplossing op coalitieniveau. Deze resultaten benadrukken
het belang van de verdeelsleutels en de kennis over de sensitiviteit van een oplossing
en mogelijke alternatieven.

Daarnaast levert deze thesis ook een grote bijdrage aan de literatuur rond geclusterde
routeplanningsproblemen. Deze recente uitbreiding op het klassiek routeplannings-
probleem waarbij klanten tot vooraf gedefinieerde clusters behoren, wordt uitgebreid
besproken in hoofdstuk 7. Dergelijke problemen komen bijvoorbeeld voor in de fijn-
distributie van online verkoop, waarbij kleine pakketjes bij een groot aantal klanten
thuis beleverd dienen te worden. Omwille van de grootte van dergelijke routeplan-
ningsproblemen, wordt in de praktijk vaak gewerkt met ‘zones’. In deze thesis wordt
een performant algoritme voor het oplossen van dergelijke optimalisatieproblemen
voorgesteld, en wordt een nieuwe variant van het probleem gedefinieerd.
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background, motivation and research goals

1.1 The logistics landscape, facts and figures

In 2014, the transport and storage services sector (third-party logistics) accounted
for about e633 billion in Gross Value Added at basic price in the EU-28, which
is equivalent to 5.1% of total GVA. Total goods transport activities in the EU-28

amounted to 3524 billion tkm in 2014, from which road transport accounted for 49%.
The transportation sector was responsible for around 25% of all green house gas
emissions, of which more than 72% is caused by road transportation. (European
Commission 2016)

The popularity of the road as main transportation mode can be explained by the
increasing pressure for fast (just in time) delivery of small batches, its flexibility
and the availability of a dense road network (Vannieuwenhuyse, Gelders, and
Pintelon 2003). However, some well known negative externalities caused by road
transportation are the increasing congestion and pollution, e.g., green house gas
emissions, noise,. . . (Verhoef 1994). Furthermore, despite its popularity, the usage
of trucks still lacks efficiency and sustainability. In 2014 more than one fifth of all
trips was performed by empty vehicles (Eurostat 2015). Other studies show that
the average fill rate of a truck is below 50% (Boer et al. 2009; Knörr 2008). These
numbers clearly show potential for improvement.

1.2 Call for sustainability and supply chain integration

Mainly driven by the continuous innovations in the information and telecommunica-
tion industry, the speed at which the world evolves is increasing dramatically. With
every product or service only a couple of clicks away, companies are challenged
to rethink their supply chain capabilities to accommodate the transition from an
industrial to an information technology driven society (Lyon 2013). Raw materi-
als, including fossil fuels, become more scarce and the debate on the relationship
between green house gas emissions and climate change is growing. Companies
experience an increased pressure towards a more sustainable (often referred to as
“green”) supply chain management (Srivastava 2007).

Over the last decades, the transportation sector has put an enormous effort into
improving the efficiency of its operations. Consider for example the ongoing strive
for more fuel-efficient engines or the introduction of the foldable container (reducing
both the number of empty movements and the storage cost). Also, the advances in
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1.2 call for sustainability and supply chain integration

information technology resulted in satellite applications for emergency handling,
traffic alerts, road safety and incident prevention (Fremont et al. 2012).

Globalisation, together with the fact that traditional barriers between industries are
breaking down, has forced supply chain networks to become more efficient and
increase the responsiveness to fast changing technologies and customer demands.
To maximise the added value for the end customer, companies should be aware
that they no longer compete solely as autonomous entities, but rather as supply
chains (Lambert and Cooper 2000). This more integrated view on the supply chain
requires companies to interact with other entities. The academic literature usually
distinguishes among two main directions of integration (or collaboration): vertical
and horizontal.

1.2.1 Vertical collaboration

To increase the overall performance of the supply chain, it requires the different
entities up- and downstream to synchronise their operations by sharing information.
Such a scheme, where collaboration occurs between companies that operate at
different levels of the supply chain is referred to as vertical collaboration. (Amer and
Eltawil 2014)

Vendor Managed Inventory (VMI) and Cooperative Planning, Forecasting and Re-
plenishment (CPFR) are well known examples of vertical collaboration. In a VMI

partnership, the vendor monitors the buyers’ inventory levels, taking the responsi-
bility to make periodic resupply decisions (Waller, Johnson, and Davis 1999). CPFR

relies on the retail level demand forecast, which is used to synchronise replenishment
and production plans throughout the entire supply chain (Attaran and Attaran 2007;
Fliedner 2003).

1.2.2 Horizontal collaboration

Horizontal collaboration refers to a collaboration between two or more unrelated
or competing companies active at the same level of the supply chain (European
Commission 2011). By sharing available knowledge, resources, manufacturing
capacities or warehouse space, companies are able to create synergies which they
could not exploit when working alone (Soosay, Hyland, and Ferrer 2008). In Dyer
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and Singh (1998) this is referred to as relational rent. Horizontal collaboration can
be a means to share risk, save costs, increase investments, pool know-how, enhance
product quality and variety, and launch innovation faster (European Commission
2011).

Compared to vertical collaboration, the academic literature on horizontal collabora-
tion is rather scarce and it remains less common in practice. However, it is considered
a viable way to increase the efficiency and sustainability of the transportation sector
by both researchers and practitioners (vanovermeire 2014).

1.2.3 Lateral collaboration

A collaboration that combines the capabilities of both the vertical and the horizontal
dimension is referred to as lateral collaboration. The synchronisation of multiple
shippers and carriers in an effective transportation network can be considered an
example of lateral collaboration (Simatupang and Sridharan 2002).

1.3 Opportunities for collaborative logistics optimisation

Transportation planning problems, most notably vehicle routing problems, have re-
ceived much attention from the Operations Research community. Many state of the
art algorithms have contributed considerably in reducing the number of kilometres
driven unnecessarily by transportation companies (Braekers, Ramaekers, and Van
Nieuwenhuyse 2015). Traditionally, this logistics optimisation is done for one single
transportation company. In part due to ever more powerful optimisation algorithms,
however, the potential for individual efficiency improvements have diminished and
only relatively small gains remain obtainable. Researchers and practitioners therefore
have increasingly searched for optimisation opportunities outside of the realm of
individual optimisation. One of the more promising research avenues in the joint or
collaborative optimisation of transportation companies’ operational activities (Cruijssen,
Dullaert, and Fleuren 2007).

The overall aim of collaborative logistics optimisation is to find and exploit synergies
between multiple companies such that a more efficient global transportation planning
can be obtained. We assume that these companies (shippers or carriers) are the
decision-making entities for what concerns logistics planning. The economies of scale,

4



1.4 contribution of the thesis

realized through bundling of goods, might lead to a reduction in the operational
cost per load unit. Furthermore, it might facilitate companies to make the shift
towards other (more sustainable) transportation modes. Other potential benefits
are an increase in the transport frequency or the enlargement of the service area.
(Jourquin, Beuthe, and Demilie 1999; Kreutzberger 2008)

The principles of bundling exist already for decades as many companies outsource
their logistics to a logistics service provider that takes care of the consolidation.
This is however done based on ad-hoc or reactive bundling of orders that happen
to have the same delivery date and destination, and can fit together in one truck
(Vanovermeire et al. 2014). In this thesis we consider horizontal logistics cooperation,
which involves companies on the same level of the supply chain jointly organizing
their transport. As it requires the commitment of each participating company to
organize their transport in such way that bundling opportunities are maximized
and pro-actively looked for, it can be considered a more integrated approach and a
win-win situation can be obtained. (vanovermeire 2014)

1.4 Contribution of the thesis

In this thesis, logistics planning problems are studied within the context of horizontal
logistics cooperation. Compared to (traditional) stand-alone logistics optimisation,
the operational planning tends to be considerably more complex for a horizontal
logistics cooperation. Partly, this is due to the size of the optimisation problem,
which is obviously much larger in a horizontal cooperation. Partly this is due to
the multi-partner optimisation context, usually neglected in the literature. We aim
at providing both the research community and the interested practitioners with
a solid framework for defining, handling and solving collaborative optimisation
problems.

Although, in general, an operational perspective is adopted, our findings and
developed models are likely to also affect decision-making at tactical level. For
example, the selection / definition of a cost (or profit) allocation mechanism occurs
typically at tactical level, and will highly impact the outcome of the daily operations
for each individual partner in the coalition. In part ii, this interdependency between
tactical (partner behaviour and the cost allocation mechanism) and operational level
(the routing solution) is studied elaborately. Also in part iii of the thesis, it is shown
that these tactical allocation rules largely determine the acceptance of an operational
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plan by the individual partners. Our models and algorithms can also be used to
support decision making at strategic levels through the simulation and comparison
of alternative coalition configurations and different supply chain network topologies.
These issues are, however, not explicitly addressed throughout this work.

More precisely, the contribution of the research to the field of horizontal logistics
cooperation is twofold:

1. Study the role of the cost allocation (or gain sharing) mechanism as an incentive
for partners to behave and perform in a way that benefits the group as a whole.

2. The integration of individual partner interests into the global optimisation
procedure at the coalition level.

Because of the more operational perspective of the thesis, it is assumed that the coali-
tion is formed upfront and all partners are willing to participate in the collaboration.
It is explicitly not questioned how this coalition is formed or whether it would be
better to disband the cooperation. Furthermore, we consider all organizational, legal
or IT-related issues to be addressed beforehand.

In part i, we introduce the reader to the basic concepts and definitions of horizontal
logistics cooperation (chapter 2) and cost allocation / gain sharing (chapter 3). As
horizontal logistics cooperation is a recently emerging topic on the academic research
agenda, the existing literature is rather new and exploratory. We provide the reader
with an overview on the current state of the art and introduce the terminology
adopted in this thesis. The chapter on cost allocation and gain sharing includes an
introduction to cooperative game theory after which we elaborate on the existing
allocation mechanisms referred to in this thesis: the Shapley value, the Nucleolus, the
Equal Profit Method, the Alternative Cost Avoided Method and the volume-based
allocation. Furthermore, we will elaborate on the property of individual rationality
and propose an algorithm to transform any allocation result to its closest individual
rational alternative.

In the second part of this thesis we study how cost allocation or gain sharing mecha-
nisms might provide incentives to the individual collaborating partners. Chapter 4
studies the link between gain sharing and incentives empirically by performing
a simulation study on data obtained from a collaboration of three fresh produce
traders at a Belgian fruit and vegetables auction. A distinction is made between
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allocating the gains on a daily basis (e.g. for each individual transport) or on a
periodic basis (e.g. weekly or monthly), and a rigid planning is compared to a
more flexible scenario in which a transport can be postponed by one day if that
leads to a more profitable logistics planning. The interdependency between the
logistics planning and the allocation of costs and benefits is extended further by
including also the individual partner behaviour in chapter 5. We demonstrate that
the efficiency of the global operational plan is highly dependent on the strategic
behaviour of the individual partners. This partner behaviour is defined by the height
of a compensation cost for not serving some of its customers. By choosing the
right cost allocation mechanism, the coalition can implicitly formulate incentives
for the partners to behave in a beneficial way. These dependencies are shown and
tested by applying them to a collaborative variant of the Selective Vehicle Routing
Problem (SVRP).

Although the coalition as a whole should perform as efficient as possible to fully
exploit all synergies from the cooperation, all collaborating partners remain indepen-
dent entities that tend to favour the solution that is best according to their individual
objectives. Part iii of this thesis bundles all chapters related to the inclusion of
individual partner objectives in the logistics optimisation model. chapter 6 intro-
duces the difference between coalition objectives and individual partner objectives.
When multiple partners, each of which having one or more individual objectives,
jointly perform their operational planning, two options arise. A first option is
that the coalition first defines a set of global coalition objectives, encompassing all
objectives of all partners, then finds a solution or a set of non-dominated (Pareto
efficient) solutions for these global objectives, and then divides the objectives (costs)
back to the individual partners. We call this approach the coalition efficiency model.
The second option is to consider all individual partner objectives and find a set
of non-dominated solutions for each individual partner, without first aggregating
them into coalition objectives. We call this approach the partner efficiency model. The
merits and drawbacks of both approaches are investigated by applying them to a
collaborative variant of the well-known Travelling Salesman Problem with soft time
windows (TSPSTW).

Chapter 7 introduces the reader to the Clustered Vehicle Routing Problem (CLUVRP).
In this vehicle routing variant, customers are grouped in predefined clusters. An
additional constraint imposes that all customers belonging to the same cluster are to
be visited sequentially by the same vehicle. The CLUVRP finds it application in, e.g.,
routing for courier companies where the distribution zone is divided in predefined

7



background, motivation and research goals

zones. A fast two-level heuristic solution approach is developed and compared to
the state-of-the-art algorithms. In contrast to all other chapters in this dissertation,
chapter 7 does not consider any form of horizontal cooperation. However, the
developed algorithm is required to tackle the CLUVRP as a subproblem in chapter 8,
in which we present an integrated solution framework for solving multi-partner
logistics problems. The framework combines the coalition efficiency model and
partner efficiency model from chapter 6 by sequentially solving two optimisation
problems: the Coalition Level Optimisation Problem (CLOP) and the Partner level
Optimisation Problem (PLOP).

Finally, our conclusions are summarised and discussed in chapter 9.
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Horizontal cooperation in logistics

11th century. Northern Germany. To protect themselves from pirates and to reinforce their market

position, merchants involved in long-distance oversea trade start to form associations. Through pooling

of their volumes on a shared ship, the operational costs decrease and they are able to buy and sell at

larger quantities. Furthermore, they are able to engage more easily in negotiations with the rules who

were in control of the ports and towns they travelled to. In the following centuries this network will

expand as the councils of the merchants’ home towns take control of what is still known today as the

Hanseatic League or Hansas. (Fink 2012)



horizontal cooperation in logistics

Driven by the high energy prices and in the light of the growing debate on sus-
tainability, the transportation sector has taken multiple initiatives to improve the
efficiency of its operations. Furthermore, the growing e-business and e-commerce
increases the pressure to shorter lead times and the (just-in-time) delivery of small
batches. Despite al the effort, large optimisation opportunities still exist today as
explained in chapter 1.

A recent trend in logistics is the formation of a so-called horizontal logistics cooperation
(HLC). This form of collaboration can be defined as a long-term agreement between
companies with similar or complementary transportation needs that aim to exploit
synergies by means of active bundling and synchronisation (Vanovermeire et al.
2014). Through better joint use of the available resources, the total logistics cost is
likely to decrease while maintaining (or even improving) the service level.

2.1 Proof of concept

In the aviation industry, horizontal collaboration among airlines is a common practice.
Through collaboration, airline alliances such as Skyteam and Star Alliance are
able to offer an extensive worldwide network (Cruijssen, Dullaert, and Fleuren
2007). In road transportation, the idea of horizontal cooperation emerged only
recently. It was 1993 when eight competitive sweet producers from The Netherlands
initiated a collaboration named Zoetwaren Distributie Nederland. A decrease in
total transportation cost was achieved by consolidating the shipments and thereby
reducing the number of truckloads, which at his turn also had a positive effect of
the unloading and handling costs (Cruijssen, Dullaert, and Fleuren 2007). Since then,
multiple successful implementations of HLC have been described in the literature.

Bahrami (2002) reports on the collaboration between Henkel and Scharzkopf, two
German producers that were able to reduce their total distribution cost by 9.8%
trough HLC.

The joint distribution of frozen goods from Douwe Egberts, Unipro and Master-
foods in The Netherlands has resulted in a 30.8% reduction in distance travelled.
Furthermore, through optimised bundling, the load factors were increased to over
95% and the number of trucks required dropped by 50%. (Cruijssen et al. 2007)
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With more than 60% of their delivery addresses in common, Kimberly-Clark and
Unilever HPC were able to increase the number of delivery days per week by
57% while decreasing the total number of drops by 31% when considering a joint
distribution. (Verweij 2009)

To meet the required full truckloads demanded by French retailers when delivering
goods to their warehouses, Mars, United Biscuits, Saupiquet and Wrigley installed
a cooperative VMI system. Furthermore, collaborative deliveries are now dispatched
from a shared warehouse. (Guinouet, Jordans, and Cruijssen 2012)

Two pharmaceutical companies, UCB and Baxter, jointly organise their shipments to
Romania. Through HLC, higher load factors combined with the possibility to switch
to rail have resulted in a 30% to 50% reduction in green house gas emissions and
double-digit cost savings. (vanovermeire 2014)

The web-accessible tool T-scale is presented in Hajdul and Nowak (2014). With
this application, the authors aim at facilitating and standardising the information
exchange between multiple companies for purposes of joint organisation of deliveries.
A pilot with ten producers resulted in a 15% cost saving.

Instead of exploiting only the similarity between multiple transportation requests,
in some case studies the complementarity of the goods contribute to the success of
the cooperation. By combining lightweight and heavyweight products the available
vehicle capacity can be filled more efficiently, resulting in high load factors according
to both volume and weight limits. Jordans (2011) describes a pilot in which the
lightweight products of Philips and the heavyweight products of Hunter Douglas
are transported in a shared truck towards England. Similarly, the co-loading from
Czech Republic to Germany of plastic beads bags from JSP and heavy metal automo-
tive break disks from Hammerwerk results in double-digit savings in CO2 emissions
(Verstrepen and Hooft 2011). Also Procter & Gamble bundles its heavy pallets with
the lightweight products from Tupperware between Belgium and Greece (Macharis
et al. 2014).

Besides reporting on the outcome of real implementations, some authors apply
simulation techniques to investigate the potential of HLC. These simulations are
either based on theoretical test instances — we refer to the work of Cruijssen et al.
(2007) and Palhazi Cuervo, Vanovermeire, and Sörensen (2016) — or use available
real world data for quantifying the potential of HLC.
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Boerema and Groothedde (2001) analysed the shipments of different FMCG manu-
facturers in The Netherlands (Albert Heijn, Laurus, Schuitema and Aldi). Through
collaboration and the use of inland barges, a 22% reduction in transportation cost is
expected.

In Hageback and Segerstedt (2004), the advantages of co-distribution from 20 sup-
pliers to a sparsely populated area in Sweden are expected to equal a 33% cost
reduction. Also in Sweden, a potential cooperation in the forestry sector is studied
by Frisk et al. (2010).

Gonzalez-Feliu and Grau (2012) consider the possibility of consolidating the out-
bound shipments of seven automotive companies in Romania. The active bundling
and a shift to rail could reduce the cost and CO2 emissions by 15% and 40% respec-
tively. In that same paper, a corridor that bundles the transportation flows of six
companies between Spain and Germany will also decrease cost by 14% and CO2

emissions with 17%.

This non-exhaustive list of case studies and simulations clearly shows the true
potential of horizontal cooperation in the logistics sector. Through active bundling
and the synchronisation of transports of several companies, the number of trucks on
the road can be reduced and their fill rate can be increased. By using the available
capacities more efficiently, significant savings in cost and CO2 emissions can be
realised while maintaining or even improving the service level.

Multiple initiatives aim at bringing together the peer groups from the industry and
catalysing the debate on related topics. The European CO3-project1 unites more than
fifty important industrial companies. This project is co-financed by the Directorate-
General for Research and Innovation of the European Commission (Cruijssen et al.
2014). Also the European Technology Platform ALICE2, an industry-led stakeholder
forum that develops short to long-term research and innovation agendas focuses
strongly on the potential of horizontal cooperation in logistics. This project will
support, assist and advise the European Commission into the implementation of
the Horizon 2020 program in the area of logistics. According to the ALICE vision
and mission, the goal is to move towards a physical internet in which products and
goods are moved around the globe like digital information is doing today through
the internet (ALICE 2016).

1 www.co3-project.eu
2 www.etp-logistics.eu
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2.2 Terminology

HLC is a rather new research domain. Although more and more academic papers ap-
pear in this field, the available literature is still limited and scarce. As there does not
exist a common vocabulary on horizontal cooperation yet, the applied terminology
might differ slightly between papers or press articles. To avoid misinterpretation,
we therefore introduce the vocabulary used throughout this thesis in the current
section.

An individual company joining an HLC is referred to as a partner. In this thesis we
adopt a general view in which it is not necessary to specify at which level of the
supply chain the collaboration takes place. This partner can therefore be a shipper
(company that wants his good to be transported), a carrier (provides transportation
services), a manufacturing plant with its own transportation department, or any
other type of company. We only assume that the partner is the main decision maker
when it comes to the optimisation of the transport operations.

Multiple partners are said to form a coalition of collaborating partners (referred to as a
coalition). A coalition that includes all collaborating partners in the cooperation is
called the grand coalition, denoted by N . A subset of these partners is denoted as a
subcoalition S ⊆ N . The number of partners in S can range from 0 up to |N |.

For each partner, the individual transportation cost without cooperation is referred
to as the stand-alone cost. The main motivation for companies to collaborate is the fact
that the total transportation cost of the coalition (the coalition cost) is lower than the
sum of all stand-alone costs of the individual partners. The difference between these
costs is called the coalition gain. Either the total cost of the coalition or the coalition
gain is to be divided among all collaborating partners. By not doing this in a ‘fair’
way, the coalition is likely to fall apart in the long term. This issue is investigated
elaborately in chapter 3.

A frequently used term in the field of horizontal logistics cooperation is flexibility.
In this dissertation, flexibility is defined as the degree to which companies are willing
to adapt themselves to accommodate a more efficient logistics planning for the coalition as a
whole. Flexibility therefore implies that a partner allows a shift in decision-making by
giving more degrees of freedom to the coalition when looking for an optimal logistics
planning. Examples of flexibility include changing (or postponing) a delivery date,
accepting a time window violation and not prioritising its own customers.
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2.3 Current research agenda

Horizontal cooperation is a rather recent research topic in the field of operations
research and logistics optimisation. Although the available literature is still limited,
the topic is gaining momentum and receives increasing interest from both researchers
and practitioners. This section summarises the current research agenda and state of
the art on HLC for each level of decision making: strategic, tactical and operational.

The aim of this section is not to provide a detailed literature review but to give the
interested reader a general overview of existing research directions in horizontal
cooperation. For a more elaborate overview of the literature, we refer to Amer and
Eltawil (2015) and Verdonck et al. (2013).

2.3.1 Strategic level

Setting up a HLC requires a long-term commitment from all companies involved.
The success of the collaboration is largely determined by the formation and design
of the supply chain network and the selection of the right partner(s) is crucial (Amer
and Eltawil 2015). The main research questions at strategic level are:

1. How to find the best partner(s) to cooperate with?
In the academic literature this is referred to as the strategic fit (Naesens, Gelders,
and Pintelon 2009).
Related references: Bahinipati, Kanda, and Deshmukh (2009), Feng, Fan, and Ma
(2010), Kayikci and Stix (2014), and Naesens, Gelders, and Pintelon (2009)

2. What is the intensity of the collaboration?
To what extent are the partners sharing information and integrating their
decision making process? Based on the level of integration multiple types of
horizontal cooperation are defined in Cruijssen, Dullaert, and Fleuren (2007).
These types range from mutually recognised partners that, to a limited extent,
coordinate their activities and planning, to participants that integrate their
operations to a significant level where each company regards the other(s) as an
extension of itself.
Related references: Audy et al. (2012) and Daudi, Hauge, and Thoben (2016)
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3. Which supply chain network design is considered appropriate?
What is the most optimal supply chain configuration for the coalition of
partners such that the required transportation requests can be executed in an
efficient way. The opening of shared warehouses, consolidation centres or other
facilities and total network optimisation are the main issues in the research
field.
Related references: Ballot and Fontane (2010), Groothedde, Ruijgrok, and Tavasszy
(2005), Liu, Zhou, and Zhang (2010), Pan, Ballot, and Fontane (2013), and Pan et al.
(2014)

2.3.2 Tactical level

The decisions made at the tactical level typically consider a medium-long term
planning horizon. We assume the coalition to be formed and aim at providing a
framework that can support the daily (operational) decision-making processes.

1. How to select an appropriate cost allocation (or gain sharing) mechanism?
The costs generated by the coalition of collaborating partners and the profits
obtained as a result of the cooperation should be allocated back to the individ-
ual partners. As this issue will play a major role in this thesis, it is introduced
elaborately in chapter 3.

2. What are the medium-long term KPIs?
The success of the cooperation is likely to be evaluated based on its performance
on a set of predefined KPIs. The selection of these criteria is directly linked
to the main targets and goals of the collaboration in the medium-long term.
Part iii of this thesis is devoted entirely to the inclusion of objectives at both the
level of the coalition and the level of the individual partners in the operational
optimisation procedures.

2.3.3 Operational level

At the operational level, collaborating companies allocate inventory/production
capacity to order and schedule truckload movements of multiple shippers (Amer
and Eltawil 2015). Two main approaches can be distinguished: order sharing and
capacity sharing (Verdonck et al. 2013).
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1. How to optimally re-allocate orders (transportation requests) to collaborat-
ing partners?
The majority of all contributions to operational optimisation in HLC consider
a joint route planning approach, in which customer orders from all participat-
ing carriers are combined and collected in a central pool and efficient route
schemes are set up for all requests simultaneously using appropriate vehicle
routing techniques. Such a centralised approach, in which all partners reveal
their transportation requests to the others, is also adopted in this disserta-
tion. Alternatively, also decentralised approaches are gaining ground, as they
require partners to reveal only a subset of their orders. These decentralised
approaches include for example auction-based systems (Dai and Chen 2011) in
which partners can bid on orders or transportation requests pooled by the
other coalition members. In this case, the operational planning is performed by
each partner individually for which traditional, non-collaborative techniques
can be used.
Related references: Cruijssen et al. (2007), Hernández and Peeta (2011), Li, Chen, and
Prins (2016), Verdonck et al. (2013), and Wang and Kopfer (2014)

2. How can available capacities be exchanged among different partners?
Instead of exchanging transportation requests, companies can decide to share
resources (vehicles, warehouses, . . . ) to split large capital investments or risks.
Related references: Yu, Benjaafar, and Gerchak (2015)

3. How to construct an optimal logistics planning for the group of collaborat-
ing companies
The allocation of customers to vehicle routes, and determining an optimal
customer sequence for each vehicle is the main focus of the vast literature on
the vehicle routing problem. However, the question is whether and how these
approaches, developed for solving non-collaborative problems, can be used to
tackle logistics optimisation problems in the context of horizontal cooperation.
This is the main focus of part iii of this thesis.

As the main focus of part iii of this thesis is on the operational optimisation of a HLC,
a more elaborate literature review can be found at the beginning of chapter 6.

Furthermore, it is likely that decision made at a certain level will impact the decision-
making process at the other levels. Some researchers focus on the interactions
between different levels of decision making. For example, Cruijssen et al. (2007) and
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Palhazi Cuervo, Vanovermeire, and Sörensen (2016) study the impact of operational
characteristics on partner selection. Especially in part ii of this thesis, we will focus
on the interaction between the tactical and operational level.
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3.1 The need for cost allocation (or gain sharing)

In a classic, non-collaborative scenario it is straightforward that each company is
responsible for all costs related to its own logistics activities. In general, optimisation
methods are therefore designed to minimise the total cost or distance driven by
the vehicles. Contrary to this approach, in a cooperative environment multiple
companies are jointly optimising their logistics activities. As a result, the costs and
profits generated are shared by all member of the coalition. To properly divide
these costs or profits among the collaborating partners, a gain sharing (or cost
allocation) method to be selected. A large part of the literature on HLC is therefore
devoted to profit (or cost) allocation methods. We refer to Guajardo and Rönnqvist
(2016), Kimms and Kozeletskyi (2016b), and Lozano et al. (2013). Next to finding
the right partners, ensuring a fair allocation of the costs and benefits to all partners
is considered one of the main challenges in the context of horizontal cooperation
(Cruijssen, Cools, and Dullaert 2007).

When costs and gains are generated as a result of a cooperation between different
partners, it is not trivial to determine which partner has a right to which fraction
of these gains and which partner should pay what part of the coalition cost. In
the current literature, the focus lies on the concept of fairness by questioning which
allocation is fair for every partner in the coalition. Different definitions of the
fairness criteria have resulted in a large set of cost allocation methods going from
straightforward rules of thumb to more complicated concepts described in the game
theory literature. Rather than dividing the coalition cost between the partners, the
coalition can also agree to share the total gain. In this case, a gain sharing method
— also called profit allocation methods — is used. Although all cost allocation methods
can also be used to allocate the profit, the result for each partner is generally not
the same, and the decision to allocate the coalition gain or the coalition cost should
be taken with caution. In the remaining part of this chapter, we will focus on cost
allocation.

3.2 The principles of cooperative game theory

Cooperative game theory is the field of research that studies the strategic interactions
between multiple agents (referred to as players). The essence of cooperative games is
that players are supposed to be rational and able to design and implement strategies
leading to a Pareto improvement as compared to the outcome of the purely non-
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cooperative version of the same game (Lambertini 2011). In other words, cooperative
game theory is about how to create benefits for the group, rather than focusing solely
on your personal profit, and how to divide/share these benefits among all players
(Shubik 1984).

In the context of horizontal cooperation, the engagement of a group of collaborating
partners (the grand coalition) to exchange transportation requests and jointly opti-
mise their logistics activities can be seen as the cooperative game. For this grand
coalition or any possible subcoalition S, the cost of the joint planning c(S) is usually
represented by the total transportation cost. The aim is then to divide the total
transportation cost among the individual partners. In what follows, let Ψ be the
set of all possible outcomes ψ of the cooperative game and ψi the cost allocated to
partner i.

3.2.1 The characteristic function

Besides the set of players, a cooperative game consists of a characteristic function. This
function, denoted by c, associates a number c(S) with every subset S ⊆ N , which can
be interpreted as the cost incured when the members of S cooperate with each other.
In sum, a cooperative game is a pair (N , c), where N is a finite set representing the
grand coalition and c is a function mapping subsets of N to numbers (Brandenburger
2007).

3.2.2 The core

A central concept in cooperative game theory is the core. The core of the game is the
set of all stable cost allocation results. This implies that for all cost allocation results
in the core, there is no subset S such that its players would get a better outcome by
deviating from the grand coalition (Guajardo and Rönnqvist 2016). The core can be
represented as follows:

core = {Ψ|
∑
i∈N

ψi = c(N),
∑
i∈S

ψi ≤ c(S) ∀S ∈ N} (3.1)
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3.3 Methods for cost allocation

From the numerous cost allocation methods available in the literature, we selected
the most important and commonly used ones. The Shapley value and Nucleolus are
both based on the fundamentals of cooperative game theory, whereas the Equal profit
method, the Alternative Cost Avoided Method and the Volume-based allocation
can be considered more intuitive rules of thumb.

3.3.1 The Shapley value

Consider the formation of the grand coalition to be a sequential process, where the
partners enter one by one (Tijs and Driessen 1986). Each time a new partner joins its
predecessors, the total coalition cost is likely to increase. By repeating this for any
possible permutation of the order of entering and averaging the obtained marginal
profits in a uniform manner, the Shapley value cost allocation method is obtained. This
method is based on the Shapley value, introduced by Nobel Prize winner Shapley
(1953).

Because the Shapley value takes into account the marginal effect of a partner on all
(sub)coalitions it is said to be based entirely on a partner’s cooperative productivity. The
portion of the cost assigned to partner i is given by the following formula:

ψi =
∑

S⊆N\i

|S |!(|N | − |S | − 1)!
|N |!

(c(S ∪ i) − c(S)) (3.2)

Using the Shapley value as an allocation method is increasingly popular, in part
because it has been put forward by the European CO3-project. Nevertheless, the CO3-
consortium also acknowledges the need to select a gain or cost allocation mechanism
on a case-by-case basis (Biermasz 2012).

Its drawback, however, is the need of information. The calculation of the Shapley
value requires at least an estimation of the total cost or benefit of every possible
subcoalition. In other words, the full characteristic function of the game should be
known. As there is no information available on the decision making and partner
behaviour in all unformed coalitions, this might turn out very challenging or even
impossible in practice.
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3.3.2 The nucleolus

The Nucleolus, as defined by Schmeidler (1969), is an allocation mechanism based on
the idea of minimizing the maximum ‘unhappiness’ of each individual partner. In this
context, unhappiness is measured by the excess of the proposed allocation, defined
as:

e(ψ, S) =
∑
i∈S

ψi − c(S) (3.3)

The excess can be interpreted as the gain that the partners in a subcoalition S would
obtain if they withdraw from the grand coalition N . It can thus be seen as an
incentive for these partners to leave the grand coalition. By minimising this incentive,
the stability of the grand coalition can be maximised.

To evaluate different allocations based on the excess, a sequence of linear programs
(LPs) should be solved. For increasing coalition sizes, these LPs increase in com-
plexity and computation time, making the interpretation and applicability of the
Nucleolus in industry almost impossible. Nevertheless, a unique and stable solution
is guaranteed in the centre of the core.

3.3.3 The equal profit method

A more intuitive way of dividing the coalition cost among all collaborating partners
is presented by Frisk et al. (2010). Based on the idea of obtaining relative savings as
equal as possible for the partners, he proposed the Equal Profit Method (EPM). The
calculations can be done by solving a straightforward linear program that minimises
the largest relative savings difference between any pair of partners. By doing so, a
stable solution is guaranteed. Therefore, the EPM can only be calculated if the core is
non-empty.

It can be argued that it might seem fair to offer the same relative savings to every
partner in the coalition. However, the profit allocated to each partner strongly
depends on its stand-alone cost. As a result, companies with a higher stand-alone
cost (which might be due to operational inefficiencies) will receive a larger absolute
part of the coalition gain when the method is used for gain sharing.
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3.3.4 The alternative cost avoided method

A sub-category of allocation methods is based on the principle of first dividing the
total coalition gain in a separable and a non-separable part (Tijs and Driessen 1986).

As discussed by Tijs and Driessen (1986), a sub-group of allocation methods is based
on the principle of first dividing the total coalition cost in a separable (mi) and a non-
separable part (c(N) −

∑
j mj). The first part, linked to one specific partner, is defined

as the marginal cost when that partner enters the coalition consisting of all other partners
(Vanovermeire, Vercruysse, and Sörensen 2014). The remaining, non-separable, part
can then be divided in various ways. Based on the individual contributions of each
partner, the alternative cost avoided method (ACAM) defines a set of weights that can be
used to divide of the non-separable costs. These weights are based on the differences
between the stand-alone cost and the marginal cost of a partner. The part of the total
coalition cost allocated to partner i, is thus:

ψi = mi + (c(N) −
∑
j

mj)
c(i) −mi∑
j (c( j) −mj)

(3.4)

3.3.5 Volume-based allocation

In practice, companies mostly stick to the more straightforward allocation methods
that can be easily interpreted and offer a certain transparency (Frisk et al. 2010). For
these proportional allocation methods the total coalition costs is divided by calculating
a weight for each partner. When a volume-based allocation is used these weights are
based on the volume, e.g. the number of pallets, the total weight, . . . , shipped by
that partner with respect to the total coalition volume.

wi =
volumei∑
i volumei

(3.5)

3.4 Properties of cost allocation

In order to evaluate an allocation mechanism, the field of cooperative game theory
provides a number of properties that are considered important (Tijs and Driessen
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1986) in order to guarantee fairness of the results. We summarise the most important
ones.

First of all, the allocation needs to be efficient, which means that exactly the entire
cost (or profit) should be divided among the partners.

The property of individual rationality ensures that the situation of a partner does not
worsen by joining the coalition. In other words, when applying a profit allocation
method, each partner should be assigned a positive profit. If this property is not
realized, the global coalition will tend to break up, as the affected partner will
have an incentive to leave. If the allocation method ensures individual rationality
for every sub-coalition, the result is said to be stable. So, when choosing a stable
allocation method, none of the partners can improve their situation by leaving the
grand coalition to form a sub-coalition. The solution set of all possible stable cost (or
profit) allocations is represented by the core.

The additivity property ensures that the allocation cannot be influenced by making
larger coalitions in advance. The cost, allocated to company i and j, should therefore
be equal to the cost a company would have to pay that represents i + j.

The dummy player property states that a partner that neither helps nor harms any
(sub)coalition is allocated a zero-profit or a cost equal to its stand-alone cost.

Lastly, symmetry means that partners that are identical (generate the same cost in
each coalition), should be allocated the same cost.

Multiple allocation methods have been proposed and developed that each possess a
subset of the most desired properties. A single method that has all properties does
not (yet) exist. Table 3.1 shows the properties of each of the cost allocation methods
described in this section.

3.5 Individual rationality

3.5.1 The limits of flexibility

By applying a weighted cost allocation method like the Alternative Cost Avoided
Method (ACAM) or volume-based method, a cost is assigned to a partner ranging
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Table 3.1: Properties of the different allocation mechanisms.

Shapley Nucleolus ACAM EPM Volume

Efficiency X X X X X

Individual rationality X X X - -
Stability - X - - -
Additivity X - - - -
Dummy player property X X - - -
Symmetry X X X X -

from zero — where the partner does not pay anything — up to the total coalition
cost. This may in some cases result in an allocation that is not individually rational,
i.e., in which one or more partners are assigned a larger cost than their stand-alone
cost. Such allocations will generally result in infeasible solutions, as the affected
partners will not accept to be charged a larger cost than their stand-alone cost, and
will consequently leave the coalition.

Let Ψ be the set of all possible cost allocations. We further define ΨIR ⊆ Ψ as the
subset of all individually rational cost allocations. The existence and size of the
subset of individually rational allocations depend on the partners’ stand-alone cost.
In other words, the region of individual rationality of a cost allocation is bounded
by the stand-alone costs.

For a two-partner coalition, the concept of individual rationality is visualised in
fig. 3.1. The range of possible allocations is represented by segment αδ. However,
only solutions between β and γ, calculated based on the partners’ stand-alone
costs, possess the property of individual rationality. In order to ensure that the
collaboration remains beneficial for all partners, only solutions within the set of
individually rational allocations should be considered.

Depending on the stand-alone cost of partner 1, the incentive for partner 2 to behave
in a more flexible way is bounded. The fact that partner 1 is not willing to pay a cost
that is larger than its own stand-alone cost, and that the total coalition cost needs
to be paid by the two partners, determines the minimum cost that partner 2 needs
to pay. The maximum flexibility of this partner is therefore limited. Consider to
following example. As partner 2 behaves more flexible, the cost allocation result is
expected to shift towards γ, as we would like to encourage the flexible behaviour.
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Figure 3.1: Visualisation of the bounded individual rationality for a two-partner
coalition.

However, from the moment this corner point is reached, an additional increase in
flexibility will no longer result in a cost reduction for partner 2 as this would lead to
a violation of the individual rationality constraint.

Clearly, these arguments are symmetrical and we can therefore state that the incentive
towards flexibility is bounded by the stand-alone costs of the coalition partners. This
result also acknowledges the importance of partner choice when setting up a new
collaboration.

3.5.2 Towards an individually rational cost allocation

By using a weighted allocation mechanism, the total coalition cost might be allocated
in a way that is not individually rational. In this section, we therefore develop an
algorithm that transforms an allocation that is not individually rational into one that
is, while remaining as close as possible to the original allocation. For a cost allocation
ψ < ΨIR, a transformation is proposed towards a new cost allocation ψR ∈ ΨIR in
such a way that the distance between ψ and ψR is minimised. We therefore define
the distance between two allocations, ψ and ψR, as the sum over all partners of the
squared differences. As these sum should be minimised, allocation ψR can be found
as follows:
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ψR = arg min
ψR ∈Ψ

( N∑
i=1

(ψi − ψ
R
i )

2

)
(3.6)

Subject to

ψR ∈ ΨIR (3.7)

In order to transform any cost allocation into an individually rational one, we
propose the following algorithm. The algorithm makes use of the cost excess ei ,
defined as the difference between the currently allocated cost and the stand-alone
cost of partner i.

ei = ψi − c(i) (3.8)

If this excess is positive, the allocated cost exceeds the stand-alone cost and the
solution is not individual rational for partner i. As a result, partner i will not be
willing to participate in the coalition.

The proposed algorithm is based on an iterative search where the largest positive
excess is reduced until it equals the stand-alone cost of the corresponding partner
and, as a consequence, individual rationality is reached for that partner. The excess
cost that is to be paid, is divided equally among the remaining partners. As no
extra cost can be allocated to partner i, this partner is removed from the list. This
procedure is repeated until the complete solution has reached individual rationality.
In this way, a partner will never be charged a cost that is larger than its own stand-
alone cost while preserving the initial incentives of the chosen allocation mechanism
as much as possible.

The procedure assumes that the total coalition cost is lower than the sum of stand-
alone costs of all partners involved. In other words, we assume the property
of superadditivity. If this condition is not met, it will be impossible to obtain an
individual rational solution. Even with all partners paying a cost equal to their
stand-alone cost, a part of the total coalition cost will remain unpaid.
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Algorithm 1 Pseudocode for transforming a cost allocation result towards individual
rationality while preserving the original incentives as much as possible

1: |N | = number of partners in the grand coalition
2: c(i) = stand-alone cost of partner i
3: ψi = current cost allocated to partner i
4: ei = cost excess of partner i given the current allocation
5: i, p = partner indices

Require:
∑

i c(i) ≥
∑

i ψi
6: while |N | > 0 do
7: ei = maxk∈{1,..., |N | } ek
8: if ei ≤ 0 then
9: stable solution found, end algorithm

10: else
11: ψi ← c(i)
12: for p , i do
13: ψp ← ψp +

ei
|N |−1

14: end for
15: remove partner i
16: |N | ← |N | − 1

17: end if
18: end while

Although the obtained allocation is now individually rational, it does not guarantee
the property of stability for the coalition. A coalition is considered stable if none
of the partners can improve their situation by forming a sub-coalition. In order to
test this, all possible sub-coalitions and their corresponding costs have to be known.
However, in real life situations, these costs are generally not known and may be hard
to simulate.

Furthermore, although the procedure outlined here finds the individually rational
cost allocation closest to the original allocation, the distance between both allocations
may be significant. Due to the feedback loop this might lead to a change in strategic
positioning that is no longer beneficial for the group as the conversion towards
individual rationality can flatten the importance of the initial incentives. As a result,
the fact that the coalition divides its costs in a way that is individually rational
may not be sufficient to ensure that all partners are comfortable in the created
collaborative environment. This has to be evaluated again by every single company
in a case-by-case approach.

The proposed transformation is illustrated by a simple example (see also table 3.2).
Assume a 4-partner coalition with given stand-alone costs c(i) and a resulting cost
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allocation ψi . As the sum of all stand-alone costs (1400) is larger than the sum of
the total coalition cost (

∑
i ψi = 1300) an individual rational allocation can be found

for this coalition. In a first iteration the cost excess ei is calculated for every partner
as the difference between ψi and c(i). The largest excess can be found by partner C,
and appears to be positive, indicating that the current allocation is not yet individual
rational. The cost allocated to partner C is set equal to its stand-alone cost, and
the excess of 90 is divided equally among the other partners. As a maximum cost
is now allocated to partner C, it is no longer taken into account. Again the cost
excess is calculated for every partner, showing still a problem concerning individual
rationality for partner A (40). The cost allocated to this partner is therefore set equal
to its stand-alone cost, and the excess is again divided among all other partners that
are still in the list. By calculating the cost excess one last time, it can be seen that
they are all negative and an individual rational cost allocation is obtained.

Table 3.2: Illustrating example of the transformation algorithm.

partner A partner B partner C partner D

c(i) 200 350 500 350

ψi 210 290 590 210

ei 10 -60 90 -140

ψ ′i 240 320 500 240

ei 40 -30 // -110

ψ ′′i 200 340 500 260

ei // -10 // -90
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Gain sharing and incentives, an empirical approach

Abstract:

More and more companies start to notice the potential of setting up a logistics cooperation. They

realize however that this idea is also a source of new challenges and impediments. We will focus on

the challenge of dividing the total coalition gain among all partners. In this chapter, we show that

significant differences exist between allocation methods and we examine the impact of defining gain

sharing on a short term (daily) or a long term (monthly) basis. Too often, the selection of an appropriate

allocation mechanism is considered as an independent decision with fairness as the single criterion.

The companies involved, however, should realize what the impact of a certain allocation method might

be, when applied in the broader context of horizontal cooperation. A selection of well known allocation

methods and concepts is introduced and applied to a real life case study of fresh produce traders, jointly

organising their transportation from the auction to a joint transport platform.
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4.1 Introduction and literature review

When gains are generated as a result of cooperation between different partners,
it is not trivial to determine which partner has a right to which fraction of these
gains. In the current literature, the focus lies on the formulation of the concept
of fairness by questioning which allocation is fair for every partner in the coalition.
Different definitions of the fairness criteria have resulted in a large set of gain sharing
methods — also called profit allocation methods — going from straightforward rules of
thumb to more complicated concepts described in the game theory literature. Rather
than dividing the coalition gain between the partners, the coalition can also agree
to share the total cost. In this case, a cost allocation method is used. Although all
cost allocation methods can also be used to allocate the profit, the result for each
partner is generally not the same, and the decision to allocate the coalition gain or
the coalition cost should be taken with caution. We refer to chapter 3 for a more
elaborate introduction on gain sharing and cost allocation.

In this chapter, a new approach is introduced that can help a coalition in choosing the
appropriate allocation mechanism. In stead of focusing on fairness, which remains
rather subjective, we argue that gain sharing should be evaluated within the broader
idea of horizontal cooperation. As for every gain sharing method certain partner
characteristics are favoured, the coalition as a whole implicitly imposes the incentive
to the partners to score well on these characteristics. Some coalitions will wish to
encourage the partners to take a flexible stance with respect to their delivery terms
(e.g. wide time windows, orders that can be delivered on different days), whereas
others will prefer partners to ship as much as possible.

This approach is studied on real life data, provided by a coalition of produce
traders (see section 4.2). All gain sharing methods introduced in chapter 3 are
compared: the Shapley value, the Nucleolus, the Equal Profit Method (EPM) and
the Alternative Cost Avoided Method (ACAM). The results of these allocation
methods are compared to each other, and to the Volume-based method, that is
currently used in this particular horizontal cooperation.

4.2 Case study: Cooperation among fresh produce traders

Fresh fruit and vegetables are typically traded at an auction from which they are
transported to the customers in temperature-controlled trucks. Fresh produce is
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highly perishable and an efficient supply chain is of crucial importance to maintain
customer service levels.

In 2012, three traders at a Belgian fruit and vegetables auction launched, under
the supervision of a neutral third party, a joint shuttle service between the auction
and the traders’ common transport platform, about 250km to the east. This shuttle
service was outsourced to a specialized Logistics Service Provider (LSP).

A twofold, positive effect could be observed. First, the shuttle service guaranteed
the traders that their goods, even the ones bought last-minute, can be transported in
an appropriate way. A reliable truck, departing no later than 11.00am from the quay
at the auction, provided the necessary temperature controlled (8◦C) transportation.
Furthermore, by combining the orders of the three traders and thereby increasing
the transported volume, better prices could be negotiated from the LSP.

A yielding pace list was negotiated that determined the transportation price as a
function of the total shipped order size (i.e., the number of pallets). The regressive
character of this instrument was meant to stimulate the traders to increase their
order quantities. Since the total cost of the shuttle truck is calculated based on the
consolidated volume, the traders are pushed to avoid small shipments by buying
extra products at the auction or by moving their delivery to the next day, if feasible.

From their side, the auction authorities encourage this horizontal cooperation project
in two ways. First, priority is given to the shuttle service by assigning a specific
quay to it. Secondly, the auction also acts as a neutral party by keeping track of the
consolidation gains (i.e., the profit obtained by switching from individual transport
to the shuttle service). Periodically, these gains are divided among the traders, using
the Volume method, i.e., proportional to the number of traded pallets.

In this chapter, we scrutinize the way in which the consolidation gains are divided by
the agreement between the traders. Next to the current way of working, we examine
the properties and results of the gain sharing methods discussed in section 3.3. All
calculations are executed by using a spreadsheet (MS Excel 2010 in Windows 7). We
find that different gain sharing mechanisms give largely different results, and also
result in different incentives for the partners in the coalition. For these reasons, we
conclude that it is important to select an adequate gain sharing mechanism.
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4.3 Simulation results

The shipped volumes of the coalition were observed during a period of eight
weeks. The cost of every (sub)coalition is calculated based on the pace list (fig. 4.1),
negotiated with the logistics service provider1. In case of multiple trucks on one day
an optimal load distribution with minimal total costs is assumed. A full truck load
consists of 33 pallets.

Figure 4.1: The relative pace list for the traders’ shuttle truck.
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The parties involved agreed on a volume-based gain sharing method, because of
simplicity and transparency reasons. The traders receive a part of the coalition gain
according to their individual volumes, calculated by the number of pallets, which
gives them the incentive to place larger orders. The profits, held by the auction
authorities as a neutral party, are periodically divided among the traders. The
logistics service provider is paid according to the consolidated volumes. During the
considered period of eight weeks, the total coalition gain reached more than e2000,
which corresponds to a global cost reduction of 16%.

In this section, the characteristics of the different partners are introduced (sec-
tion 4.3.1) and the need for a gain sharing method that produces a stable allocation is
discussed (section 4.3.2). The difference between gain sharing on a day-to-day basis
or on an aggregated (e.g. weekly) basis is shown in section 4.3.3. Finally, section 4.3.4
handles the difference between the original rigid scenario and a flexible scenario

1 The pace list is anonymised by normalising it between 0 and 1
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where partners accept that small orders are stored at the auction and delivered the
next morning in order to avoid the higher price per pallet for small order sizes.

4.3.1 Characteristics of the partners

The shuttle truck service is shared by three partners (A, B and C). The first partner
(A) transports high volumes (61% of the total volume of the coalition) and nearly
every day. Therefore, this partners requires a Full Truckloads (FTLs) on a regular
basis. As no bundling is possible with these shipments, FTLs are not beneficial for
the total coalition.

Partner B also makes use of the shuttle truck on a very regular basis, but with lower
average order sizes. In the stand-alone scenario, this will result in a higher cost per
pallet. By combining the orders with other partners, significant synergies can be
expected. Because orders of partner B are less-than-truckload, they can be combined
more easily with other less-than-truckload orders.

Lastly, the third partner (C) also places small orders that can be combined easily with
other partners. However, the degree of participation is rather low for this partner
(only 9% of the total volume, and 30% of the movements) reducing again his impact
on the synergy of the total coalition.

4.3.2 Stability

When setting up a new coalition, the potential partners need to take into account
the stability of the grand coalition. If a subcoalition exists that is in any way more
beneficial for one collaborating partner, than the long–term stability of the grand
coalition can no longer be guaranteed. Stability is ensured in two ways.

Firstly, the gain of a subcoalition may never exceed the total coalition gain. If
this is the case, a better performing subcoalition could be formed by leaving out
some partners. This is known as the problem of strong subcoalitions (Vanovermeire,
Vercruysse, and Sörensen 2014). For the shuttle truck case, studied in this chapter,
it can be seen in table 4.1 that the total cost of a (sub)coalition is always smaller
than the summed stand-alone costs of the partners involved. Additionally it is clear
that by forming the grand coalition (A-B-C) the highest gains are obtained. Despite
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the stability of the aggregate data, it remains possible that on a daily basis non-
stable collaborations existed. In the sample studied in this chapter, one observation
involved a strong subcoalition. On this day, a cooperation with only two partners
would generate a higher profit, compared to the current situation that includes all
three partners. This possible short-term instability does not necessary endanger the
long-term stability of the total coalition and is rather rare and temporary. However,
it causes an infeasible solution for the equal profit allocation method for this one
day.

Table 4.1: Aggregated total cost of the (sub)coalitions for the shuttle truck case study.
Subcoalitions A B C A–B B–C A–C A–B–C

Original
cost e6142 e4844 e1646 e9847 e5733 e7441 e10564

profit e1138 e757 e347 e2068

Flexible
cost e6096 e4680 e1475 e9548 e5400 e7038 e10110

profit e1229 e756 e534 e2142

Secondly, the allocation mechanisms need to ensure that the costs paid by the
different partners in the grand coalition are always lower than the corresponding
stand-alone costs. In section 3.4 this idea was introduced as the property of individual
rationality. If this property is not fulfilled, a partner may not want to collaborate and
the grand coalition may split up.

In table 3.1 in section 3.4 it can be seen that only one of the five allocation methods
proposed in this chapter, the Nucleolus, guarantees a stable solution. Even the
less restrictive property of individual rationality is not guaranteed in some of the
methods. However, it might be useful to remark that, although it is not guaranteed
mathematically, all results obtained for this case study are individual rational — no
partner is allocated a negative profit — and stable — except for one day, as described
above.

4.3.3 Aggregation of profit allocation

Depending on the allocation method, a different division of the profits is realized
when the allocation takes place on a daily basis or on aggregate level (e.g. weekly or
monthly). These differences between the allocation methods are demonstrated in
table 4.2a.

40



4.3 simulation results

For the Shapley value, the Nucleolus and ACAM, similar results are reported in the
rigid planning method on a daily basis. This is due to the fact that most of the time
only two partners use the shuttle truck on the same day. In a coalition with only
two partners, these three allocation methods split the profit in two equal parts. The
volume-based allocation and the equal profit method however differ, allocating less
to the smaller partners, B and C, in favour of partner A.

Significant differences are found comparing daily allocation with respect to aggre-
gated allocation. At the aggregate level, the gains are divided among the three
partners based on their total contribution during the period. Due to the aggregation,
the multiple two–party cooperations that are observed will be summed and the
Shapley Value, Nucleolus and ACAM no longer divide the gains equally among the
partners. Here, the Nucleolus tends to allocate more to partner A, due to his higher
stand-alone cost and the property of finding a solution in the centre of the core.

It can be argued that a daily allocation gives a better approximation of the real costs
and profits per partner. Aggregating costs flattens the real costs of single transports,
which is thus taken less into account when calculating the profit allocation. The
differences between daily and aggregated allocation can be up to 46%.

Exceptionally, the Shapley value, because of the property of additivity that this
method possesses and the fact that it is fully based on efficiency of the transportation,
is insensitive to the level of aggregation.

4.3.4 Flexibility to support the coalition

The price that is to be paid by the traders for the transport depends on the shipped
volume according to a negotiated pace list, which makes smaller shipments rather
costly. To avoid high transportation costs, the coalition has agreed to strive towards
shipments of at least ten pallets. If this threshold is not reached the traders are
motivated to buy extra products or to delay the delivery by one day if possible.

In our simulations, two alternative scenarios are considered. In the rigid scenario (see
table 4.3a) all orders are shipped on the day they are placed, which is the current
situation. The flexible scenario (see table 4.3b) assumes that small order sizes (less
than 10 pallets) can be stored at the auction for one day and combined in the next
day truck if this yields a smaller total cost.
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Table 4.2: Allocation of coalition gain by the different methods. For the aggregated
allocation we assume that the cost allocation was only done at the end of
the eight-week sample.

(a) rigid planning (total profit = e2068)

Daily allocation Aggregated allocation

A B C A B C

Volume e1034 e673 e361 e1264 e611 e193

Shapley e684 e891 e494 e684 e890 e494

Nucleolus e684 e976 e409 e846 e757 e464

ACAM e685 e893 e495 e684 e898 e485

EPM e866 e792 e411 e1005 e793 e269

(b) flexible planning (total profit = e2142)

Daily allocation Aggregated allocation

A B C A B C

Volume e1097 e692 e353 e1309 e632 e200

Shapley e756 e868 e520 e756 e867 e519

Nucleolus e731 e953 e459 e930 e756 e457

ACAM e734 e851 e559 e741 e876 e498

EPM e909 e746 e387 e1050 e810 e255

Table 4.3: One-week sample of shipped volumes per partner and for the grand
coalition.

(a) rigid scenario

A B C Grand coalition (A+B+C)
volume volume volume volume coalition cost

day 1 3 × 33 10 3 × 33 + 10 e1212.70

day 2 5 4 9 e219

day 3 13 22 33 + 2 e410

day 4

day 5 11 10 10 31 e320.54

aggregated 123 47 14 184 e2159.24

(b) flexible scenario

A B C Grand coalition (A+B+C)
volume volume volume volume coalition cost

day 1 3 × 33 10 3 × 33 + 10 e1212.7
day 2

day 3 13 22 + 5 4 33 + 11 e557.37

day 4

day 5 11 10 10 31 e320.54

aggregated 123 47 14 184 e2090.61

42



4.3 simulation results

In reality, during the eight weeks of observation, postponement of the transport
occurred only once. Therefore, it is simulated that orders of less than ten pallets
are automatically moved to the next day, increasing the possibilities of combining
orders. table 4.3b contains an example of this practice. As the small volume that
is to be shipped on day 2 is relatively expensive, the flexible scenario imposes that
these pallets stay at the auction for one more day and are shipped the next morning.
Although the total cost of the coalition is lower when flexibility is enforced, the
coalition gain might decrease. This is due the fact that the stand-alone cost of
the partners also decreases when flexibility is enforced. Nevertheless, because of
the lower total coalition cost, the flexible approach will still be beneficial for the
coalition.

According to table 4.1, a flexible approach to the entire eight-week data set, increases
the coalition gain with e74 (e2142 – e2068). An additional decrease in total coalition
cost of around 4.3% can be witnessed by imposing the flexible strategy in stead of
the original scenario. This implies that on 12.5% of the reported days, the orders of
that day remain at the auction.

The allocated profits for the flexible scenario are shown in table 4.2b. Depending
on the chosen allocation mechanism, this flexible strategy turns out to be not that
profitable for every partner in the shuttle truck case study. Most of the time, the
flexible strategy is less beneficial for partner B.

As the order sizes of B are rather small, a flexible behaviour of B will in the place
result in an improved stand-alone position. For partners A and C, this flexibility will
affect their stand-alone position less. For partner A, this is due to the fact that its
volumes are already large most of the times, so they are shipped anyway. Partner
C is not shipping regularly, so leaving its orders at the auction will not lead to any
improvement as the probability that this partner will ship again the next day is low.
We can therefore state that for partners A and C, only benefits are created when
the cooperation is set up. This positive effect on the coalition is captured by the
Shapley Value, Nucleolus and ACAM. For the Volume and the Equal profit method,
the shipping day is not important and the gains are allocated pro rata. The drop in
allocated gain for partner C for the EPM in the different scenario is only due to the
on day of strong subcoalitions, for which no EPM can be calculated, as explained in
section 4.3.2.
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4.4 A different allocation method, a different incentive

Every gain sharing method takes as an input a limited number of parameters and
partner characteristics to obtain the final profit that is allocated to every partner. In
the previous chapter it could be seen that the Shapley value method is based only
on costs, where the volume-based method does only take the shipped volume into
account. Similar to the Shapley value, the ACAM is also based on costs but it does not
include all possible subcoalitions. This can also be said for the Nucleolus, but from a
completely different perspective. The EPM is not based on absolute costs or profits,
but divides the gains based on their relative differences. We can therefore state that
by choosing a gain sharing method, a certain incentive is given to the partners in the
coalition. Because if they are able to improve on the characteristics that are taken
into account by the allocation method, a higher gain is allocated to this partner. This
idea is summarised in table 4.4.

If the volume-based allocation is chosen, the partners shipping the highest volumes
are favoured although their shipments might not be that efficient for the coalition.
This method therefore gives an incentive to grow. The ACAM produces similar results
compared to the Shapley value. This last one puts a lot of stress on efficiency by
taking into account the marginal cost of the different partners in every (sub)coalition.
Here, the efficiency of a single partner (e.g. the partner is participating a lot and
the order sizes leave enough room for combining with others) is rewarded. The
Nucleolus refers to long term stability because a solution in the centre of the core is
guaranteed. Therefore, no partner feels the incentive to abandon the grand coalition.
By stabilizing as much as possible the situation as it is, it will give no incentive to
the partners to adapt their behaviour. We therefore state that the Nucleolus gives an
incentive of stability to the partners. In contrast to the Shapley Value and the ACAM,
the Nucleolus is less steadfast when gains are divided periodically. In both the rigid
and the flexible scenario, we observe a significant divergence on the aggregate level
where the method is less sensitive for day to day efficiency of the transport. Lastly,
the EPM can only be calculated if the coalition is stable. Although we find that for
this case study the coalition remains stable in the long run, the stability can not be
guaranteed every single day. It can also be seen that, because of the fact the EPM

uses relative savings, partners with a high total stand-alone cost, that are therefore
inefficient, are favoured at the expense of the efficient ones. It can be argued that
this might result in an unfair allocation if the partners differ significantly.
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Table 4.4: The incentives of different gain sharing methods.

Allocation method Partner characteristics Incentive

Shapley value stand-alone cost partner efficiency
cost of all subcoalitions

Nucleolus stand-alone cost stability
cost of all subcoalitions

Equal profit method stand-alone cost stand-alone inefficiency

Alternative cost avoided method stand-alone cost coalition efficiency
cost of subcoalitions with |N | − 1 partners

volume-based allocation volume ship large volumes

4.5 Conclusions and future research

In this chapter, the effect of the selected gain sharing method in a horizontal cooper-
ation is examined by using an empirical approach. For the simulation, we selected
five well known allocation methods and applied them on real life data, obtained
from a coalition of fresh produce traders. By joining forces, the partners were able to
reduce the total transportation cost by 16%.

Firstly, we can conclude that significant differences might exist if the gain sharing is
done on a short or a long term basis. This is due to the fact that in the long term
the efficiency of individual transportations average out and the results are based on
the average performance of the coalition. We recommend an allocation of the gains
on the short term, as here the efficiency of the individual transportations is used,
resulting in a more adequate approximation of the real costs. One exception here is
the Shapley Value, that is not influenced by the problem of aggregation.

In stead of focussing on the concept of fairness, the coalition should be aware of the
impact of an allocation method on the more global idea of horizontal cooperation.
As every allocation method is based on certain partner and coalition characteristics,
incentives are given when selecting a certain mechanism. It can be seen that a
Volume-based allocation favours the growth of the partners, without questioning
flexibility of the partners or efficiency of the transport. The Shapley value and ACAM

on the other hand strive toward efficiency by means of marginal costs. In order to
achieve stability, the parties can choose for the Nucleolus as it assures a solution in
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the centre of the core. However, no direct link to operational parameters or partner
characteristics can be found. Therefore, the results might be hard to interpret. Finally,
the fairness of the EPM can be questioned in heterogeneous cooperations.

This study also confirms that a more flexible attitude of the collaborating parties
results in higher possible profits for the entire group. Still, it remains important to
weigh the extra profits against the engagement of being flexible.

This specific cooperation between fresh produce traders is perceived as a success
story for both the traders and the LSP. Due to bundling the traders were able to
reduce transportation costs significantly. The LSP on the other hand can use his
vehicle capacity more efficiently.

The current literature on horizontal cooperation is rather scarce and remains on the
surface. For further research, we believe that it might be useful to study in more detail
the interactive relationship between the partners behaviour, the operational solution
at the level of the coalition and the gain sharing (or cost allocation) mechanism.
The Venlo traders case study shows clearly that a flexible behaviour of the partners
— allow a shift of one day in the transportation date — can result in a positive cost
effect for the coalition. This flexible behaviour should therefore be encouraged by
giving the right specific incentives by means of a well-chosen gain sharing or cost
allocation mechanism.
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5

Partner behaviour, operational optimisation and cost

allocation

Abstract:

This chapter investigates the effect on the cost allocation of a partner’s strategic behaviour and the

properties of its customer locations (distance to the depot, degree of clustering). Furthermore, we

investigate the effect of the cost allocation method used by the coalition.

We consider a selective vehicle routing problem, in which customers belonging to different partners

in a logistics coalition are served in a single logistics operation with multiple vehicles. Each partner

determines a non-delivery penalty (given by the compensation for non-delivery (CND)) for each of

its customers, and a central algorithm creates an operational plan, including the decision on which

customers to serve and in which trip. The total transportation cost of the coalition is then divided back

to the partners through a cost allocation mechanism.

The well-known Shapley value cost allocation method is compared to our novel, problem-specific method:

the CND-weighted cost allocation method. We prove that an adequate cost allocation method can provide

an incentive for each partner to behave in a way that benefits the coalition. Further, we develop a

transformation that is able to transform any cost allocation into an individually rational one without

losing this incentive.
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5.1 Introduction and literature review

In recent years horizontal collaboration has become increasingly popular in the road
transportation industry. The basic idea underlying this innovative business model
is that distribution companies can significantly increase the efficiency of their op-
erations by joining forces and becoming partners in a horizontal logistics coalition.
Especially by solving a collaborative vehicle routing problem, i.e., a vehicle routing prob-
lem in which customers that would normally be served by different transportation
companies are assigned to shared vehicle routes, less kilometers can be driven with
trucks that have a higher average fill rate (European Commission 2011; Initiative and
Capgemini 2008).

On the other hand, the added complexity of this novel way of working does not come
without its challenges. One of the most important issues that needs to be tackled
is that of cost allocation (also called gain sharing, depending on the perspective). A
coalition incurs a single global coalition cost, which must be paid by the individual
partners. The coalition must therefore install a method to allocate the total coalition
cost to the partners. If a partner perceives its allocated share of the coalition cost to
be too large, it might leave the coalition. Notwithstanding its importance, the cost
allocation problem has been widely ignored in the literature on collaborative vehicle
routing.

In this chapter, we argue that solving a collaborative vehicle routing problem requires
a more problem-specific approach, that explicitly takes into account the interaction
between the vehicle routing problem and the cost allocation method. In Vanovermeire
and Sörensen (2014a), an approach is developed that explicitly integrates the cost
allocation method into the operational planning method, resulting in an optimization
problem that looks for the least-cost solution under the constraints that each partner
should be adequately rewarded for the changed delivery dates of its customers. Such
an approach, however, considerably complicates the optimization problem and is
therefore not a viable approach in all situations.

The Shapley value (Shapley 1953), the Nucleolus (Leng and Parlar 2005; Schmeidler
1969), the Equal Profit Method (Frisk et al. 2010) and the volume-based allocation
are some of the most well-known allocation methods. Some use a game theoretical
approach (e.g., the Shapley value and the Nucleolus), others are based on simpler
rules of thumb (e.g., the volume-based allocation and the Equal Profit Method).
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As every allocation mechanism is based on a number of partner-specific charac-
teristics (e.g., shipped volume, stand-alone cost, flexibility), choosing an allocation
method results in an implicit selection of the desired partner behaviour. As an
example, the volume-based allocation method allocates the profit of the coalition
based on each partner’s shipped volume and therefore implicitly stimulates partners
to ship larger volumes. Stated differently, by agreeing on a certain cost allocation
method, the partners implicitly or explicitly formulate a number of performance
indicators they deem important for the coalition. Partners that behave well according
to these predefined characteristics will be favoured by the cost allocation mechanism.
This mechanism should therefore be used as an incentive for the partners to behave
in favour of the coalition (Defryn, Vanovermeire, and Sörensen 2015). Dudek and
Stadtler (2005) state that, by giving the right incentives, a solution can be obtained,
that is optimal for the total coalition instead of a solution that is locally optimal for
only one or a subset of partners.

There is widespread agreement in the literature that no single cost allocation method
works best in all situations. In order to be able to include problem-specific elements
into the allocation procedure, many authors therefore acknowledge the need for a
case-specific approach (Barbarino et al. 2010; Defryn, Vanovermeire, and Sörensen
2015; Tijs and Driessen 1986; Vanovermeire, Vercruysse, and Sörensen 2014). The
current literature, however, neglects the impact of the behaviour of an individual
partner on the performance of the coalition. To guide this behaviour in a desirable
direction, the coalition should give the right incentives to the partners, which, as
mentioned, can be achieved by the appropriate cost allocation mechanism.

In this chapter, we emphasize the interaction between these different elements —
strategic partner behaviour, operational planning, and cost allocation — when
operating in a collaborative environment. We focus on a relatively simple (yet
realistic) collaborative variant of a well-known vehicle routing problem, the selective
vehicle routing problem. This problem is formally described in section 5.2. In section 5.3
it is shown how this problem can be used in a collaborative environment. Here
we focus on the issue of incorporating individual partner behaviour and a cost
allocation method. By means of simulation, the properties and characteristics of
the selective vehicle routing problem in a collaborative environment are analysed in
section 5.4. Finally, section 5.5 summarises the main results and gives pointers for
future research.
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5.2 The selective vehicle routing problem

5.2.1 Problem definition and mathematical formulation

In the problem discussed in this chapter, both the number of vehicles and the
maximum distance each vehicle can travel, are limited. As a result, only a subset of
customers can generally be served. The underlying operational problem is therefore
a SVRP. In the vehicle routing literature, problems in which not all customers need
to be visited, but a “reward” is gained for each customer visit are usually called
orienteering problems, see e.g., Archetti, Hertz, and Speranza (2007) and Bouly, Dang,
and Moukrim (2010).

A formal description of the SVRP tackled in this chapter is the following. We
consider a set of c customers ci , i = {1, . . . , c}, with given coordinates in an euclidean
distribution area, and a fixed fleet of vehicles, denoted as K . The cost to travel
between customers i and j is represented by the distance di j . Each vehicle can travel
a predefined maximum distance D. Furthermore, a depot is given. Each vehicle
starts and ends its distribution tour at this depot.

In the SVRP both the number of vehicles and the maximum distance travelled by
each vehicle are limiting resources that may prevent all customers from being visited.
A CND is therefore determined for each customer. CNDi is the cost that is to be
paid when customer i is not served, and may represent, e.g., a penalty paid to
this customer in the form of a discount. We will elaborate on this concept in
section 5.3.1.

The aim of the SVRP is to determine a feasible subset of customers to be served, as
well as the sequence in which these customers are visited by each vehicle in such
a way that the total distribution cost is minimised. This cost includes both the total
travel cost and the total CND value of all unvisited customers. The SVRP therefore
implicitly assumes — without loss of generality — that travel distances and the CND

are expressed in the same units.

Formally we can define the SVRP as a mixed-integer programming problem. We use
the subtour elimination constraints as defined by Vansteenwegen, Souffriau, and
Van Oudheusden (2011). In this representation the position of customer i in the path
of vehicle k is given by Uik . Other decision variables are the following:
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xi jk =

{
1 if a visit to customer i is followed by a visit to customer j in the tour of vehicle k

0 otherwise

yi =

{
1 if customer i is served in the solution
0 otherwise

min

[
c∑
i=0

c∑
j=0

∑
∀k∈K

di j xi jk +
c∑
i=1

(1 − yi)CNDi

]
(5.1)

Subject to
c∑
i=1

ximk =

c∑
j=1

xmjk ∀m = 1 . . . c,∀k ∈ K (5.2)

v∑
k=1

c∑
i=1

xi jk = yj ∀ j = 1 . . . c (5.3)

c∑
i=1

x0ik =

c∑
j=1

xj0k = 1 ∀k ∈ K (5.4)

c∑
i=0

c∑
j=0

di j xi jk ≤ D ∀k ∈ K (5.5)

Uik −Ujk ≤ (c − 1)(1 − xi jk) ∀i, j = 1 . . . c,∀k ∈ K (5.6)

1 ≤ Uik ≤ c ∀i = 1 . . . c,∀k ∈ K (5.7)

xi jk , yi ∈ {0, 1} (5.8)

Equation (5.2) ensures the connectivity of the path of a single vehicle, while eq. (5.3)
guarantee that every customer is visited at most once in the solution. Equation (5.4)
ensure that all vehicles start and end their trip at the depot (vertex 0). The maximal
allowed vehicle distance is ensured by eq. (5.5). Equation (5.6) and eq. (5.7) take care
of the subtour elimination.

5.2.2 A simple metaheuristic for the selective vehicle routing problem

Several algorithms have been proposed in the literature to tackle selective vehicle
routing problems or team orienteering problems. The most important contributions
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are summarised in table 5.1. Because none of these algorithms is publicly available,
we develop in this chapter a straightforward randomized, multi-start variable neigh-
bourhood search algorithm. Although we are confident that the solutions found
by our algorithm are of high quality, the aim of this chapter is not to develop a
state-of-the-art algorithm that can compete with the best ones in the literature. The
algorithm is visualised in fig. 5.1. In table 5.2 the algorithm’s parameter settings,
which were determined in a limited pilot study, are presented.

LocalSearch

Two-Opt

Remove&Add

SwapBetween

SwapWithin

Add

IfImprovement

GetSolution

NearestNeighbour

CheckFullRestart

Figure 5.1: Visualisation of the randomized, multi-start variable neighbourhood
metaheuristic, used to solve the selective vehicle routing problem.

First a randomized nearest-neighbour heuristic is used to construct an initial solution
— where nearest is defined as a minimal (distance/CND)-ratio. In this way the solution
is constructed by visiting customers that are close to the current position of the
vehicle or cause high compensation for non-delivery costs if not visited. Due to
this definition, the heuristic automatically ranks customers with zero CND after all
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Table 5.1: An overview of the most important contributions to the selective vehicle
routing (team orienteering) problem literature from a metaheuristic point
of view.

Reference Algorithm

Tang and Miller-Hooks (2005) Tabu search

Archetti, Hertz, and Speranza (2007) Tabu search with penalty strategy
Tabu search with feasible strategy
Fast variable neighbourhood search
Slow variable neighbourhood search

Ke, Archetti, and Feng (2008) Sequential ant colony optimisation
Deterministic concurrent ant colony optimisation
Random concurrent ant colony optimisation
Simultaneous ant colony optimisation

Vansteenwegen et al. (2009) Guided local search

Souffriau et al. (2010) Path relinking

Bouly, Dang, and Moukrim (2010) Memetic algorithm

Labadie et al. (2012) Granular variable neighbourhood search

other customers. Obviously, it is not economically meaningful to set a negative CND.
Similar to a Greedy Randomized Adaptive Search Procedure (GRASP) algorithm,
the constructive algorithm randomly selects one of the nBest customers at each
iteration. This allows it to generate different solutions, which is necessary because of
the multi-start nature of the algorithm.

In a second phase the obtained heuristic solution is improved by means of local
search, using the different neighbourhoods listed in table 5.3. These neighbourhoods
are firmly established in the vehicle routing literature, and are explored sequentially
in the order mentioned here. A first-improvement strategy is used, and every
improvement encountered is accepted. If none of the neighbourhoods contains a
better solution, the current solution is saved as a local optimum.

Table 5.2: Parameters of the randomized, multi-start variable neighbourhood meta-
heuristic and their values after tuning.

Parameter Definition Tuning

NbBest Number of best possible next customers that are taken into account for the
constructive nearest-neighbour heuristic

4

FullRestart Number of times the full algorithm (construction + local search) is restarted 2000
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Table 5.3: The different neighbourhoods explored during the randomized, multi-start
variable neighbourhood search.

Neighbourhood Definition

Add Add a customer to the solution if the cost of serving is not larger than the CND
and a vehicle is able to fulfil the order without surpassing the allowed distance
(denoted as MaxDist).

SwapWithin Swap the position of two customers in a single trip.
SwapBetween Swap the position of two customers, belonging to different vehicles.
Remove&Add Remove a customer from the solution and add a new customer if this lowers the

total coalition cost.
Two-Opt Remove two edges and replace them by two new edges to close the tour, decreasing

the total distance, within a single vehicle.

The algorithm is initiated multiple times (FullRestart times). The larger the value
of this parameter, the larger the possibility to improve the current solution but this
comes at the expense of larger calculation times. The solution reported is the best
solution found during all iterations of the main loop.

5.3 The SVRP in a collaborative environment

In this section the SVRP is introduced in a collaborative environment in which several
companies form a coalition with the aim of serving the customers of all partners
in one single logistics operation. By combining their customer bases and sharing
their trucks, the individual vehicle routing problems of the partners disappear and a
vehicle routing problem arises at the level of the coalition. Increased opportunities
for optimisation appear because customers of different companies can be visited by
the same truck, which might result in a lower total logistics cost.

Consider for example the case in which multiple providers of heating oil join forces
and decide on a joint distribution scheme. By allowing that a customer is served
by any of the participating providers, it is likely that more efficient routes can
be constructed and, as a result, more customers can be visited in one single day.
Customers that ran out of stock should receive a higher priority (especially during
cold winter days). Furthermore, these priorities might change over time.

In the rest of this chapter, we consider a grand coalition N , in which |N | partners
p = {1, . . . , |N |} join forces. The set of k vehicles is shared and for every customer
cpi in the grand coalition the partner is indicated by an extra index p. A graphical
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representation of the selective vehicle routing problem in a collaborative environment
can be found in fig. 5.2.
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Figure 5.2: The selective vehicle routing problem in a collaborative environment with
two collaborating partners (white and gray) and two available trucks.

5.3.1 Interpretation of the compensation for non-delivery

A property of the SVRP is that the decision whether to serve a certain customer in the
operational plan is not only based on its position in the distribution area but also on
its urgency for delivery. This urgency is represented by the compensation for non-delivery
cost (CND), a value that can be determined by each partner individually for each of
its customers. The CND of customer i (denoted as CNDi) can be interpreted as a fee
that is to be paid if customer i is not served in the solution. It is awarded in order to
compensate for the consequences of the postponement of the corresponding order.

In a more concrete example, it can be assumed that partners give a cost reduction
to their customers if they are not served on the agreed delivery date. The exact
discount can be defined by the partner individually and can be interpreted as the
CND. Customers that are promised a larger discount, and therefore have a larger
compensation for non-delivery cost, are more likely to be part of the optimal solution.
The CND values can therefore be used by a partner to prioritize the delivery of certain
customers at the expense of the other partners. Also, the CND for a certain customer
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should not be a static value, but it can change over time. In this way, a customer that
is not served in the current solution can be given a higher priority (and therefore a
higher probability to be taken into account) during the next day/period.

5.3.2 Compensation for non-delivery strategies

Since every partner in the coalition is free to set the CND for each of its customers,
and since the CND values have a direct impact on the total cost of the operational
solution, the way in which each partner determines its CND values will have a direct
impact on the total coalition cost.

On the one hand, each partner will have an incentive to set the CND values for its
customers to very high values, to ensure that as many of its customers as possible
are included in the solution. However, if all partners set very high CND values,
the total coalition cost is likely to increase significantly as some — now more
expensive — customers will remain unserved. An incentive for partners to keep
their CND values low, should therefore be installed. This incentive can be provided
by the cost allocation mechanism: partners that consistently set high CND values for
their customers should be penalized by being assigned a relatively large share of
the total coalition cost. On the other hand, if a partner sets the CND values to very
low values (lower than the marginal cost of adding that customer to a route), the
customers will remain unvisited as paying the compensation cost will then lead to
the lowest total cost. As a result, we encourage the partners to set the CND values
close to the marginal cost of serving the customer.

The ‘collaborative’ selective vehicle routing problem distinguishes itself from the
(non-collaborative) SVRP in that the former requires a second issue to be tackled
besides solving the routing problem: the allocation of the global coalition cost. The
mechanism used to determine each partner’s share in this coalition cost is called the
cost allocation method.

When operating in a collaborative environment, the cost allocation method is there-
fore interwoven with the vehicle routing solution process. We propose a general
approach that, besides solving the traditional (non-collaborative) vehicle routing
problem, also takes into account the CND strategy of the individual partners by
incorporating a cost allocation mechanism. This approach is visualised in fig. 5.3.
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This framework will now be used to analyse the selective vehicle routing problem in
a collaborative environment.

Partner’s strategy Operational planning Cost allocation

Feedback

Figure 5.3: The proposed collaborative vehicle routing approach. In a first stage,
individual partners decide on their strategy. In a second stage, the VRP is
solved. Next, the coalition cost is allocated to the different partners. This
allocation will provide feedback to the partners, who may adapt their
strategy accordingly.

At the start of the collaboration, each individual partner determines its strategic
position, i.e., the CND values for its customers (partner’s strategy). Based on the
provided compensations, the selective vehicle routing problem is solved at the level
of the coalition (operational planning) and a total distribution cost is obtained. This
cost is to be allocated to the individual partners (cost allocation). The allocation
is done by a predefined cost allocation method, and preferably both the obtained
operational plan (routes) and the partners’ individual strategy should be taken
into account. It can be expected that to a certain extent, the different companies
in the coalition remain competitors and each partner will therefore evaluate the
collaboration in terms of personal gains. The cost allocation mechanism should
therefore be chosen in such a way that partners are rewarded if their decisions with
respect to the CND values of their customers benefit the coalition.

As the partners’ individual CND strategy, and therefore also the operational solution,
highly depends on the resulting cost allocation, a feedback loop is included. It is
expected that partners that are assigned a large share of the coalition cost as a result
of exorbitant CND values will adjust their behaviour to avoid incurring such large
costs in the future. As this relation is represented with a dotted line, we will not
focus on this dynamic character of the problem in this chapter.

The agreement on this long-term joint planning of the distribution activities is aimed
at raising the number of served customers using the coalition’s limited resources,
while reducing costs. The creation of a strategic coalition, however, does not imply
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that a partner will give up personal objectives nor the lever to guide the global
solution into a direction that is desirable from its individual point of view. The
degree to which organisations allow a shift in decision-making towards the benefit of
the coalition will determine the boundaries of the potential benefits of the coalition
(Langley 2000). In the literature, this is referred to as the flexibility of a partner
(Vanovermeire and Sörensen 2014b). If the flexibility of one of the partners is limited
with respect to the operational routing, the opportunities concerning synergy and
total efficiency are likely to reduce. In the SVRP, flexible partners are those that set
relatively low CND values.

5.3.3 Cost allocation methods for the svrp in a collaborative environment

As explained in section 5.3.2, the performance of the coalition depends to a large
extent on the partners behaviour and flexibility. To ensure that partners behave and
adopt a CND strategy in favour of the coalition, the right incentives should be given
by the cost allocation mechanism. We therefore argue that a decision made at the
operational (routing) level should affect the cost allocation result and vice versa. This
dependency is generally omitted in the existing literature. Furthermore, by ignoring
the cost allocation mechanism, it will be impossible for a partner to determine its
personal benefits when forming or joining a coalition.

5.3.3.1 Allocation methods and incentives

There is widespread agreement on the fact that no single cost allocation mechanism
produces a fair cost allocation in all situations. No method can therefore be consid-
ered as a global best practice, applicable in every scenario. In Defryn, Vanovermeire,
and Sörensen (2015), we argue that a cost (or profit) allocation method should be
selected by the coalition, based on the incentives that it gives to the individual part-
ners. These should be in line with the coalition’s vision on success. In this way, the
allocation will force its partners to behave in a way that is perceived desirable for
the coalition. The volume-based profit allocation for example, will allocate larger profits
to the partners that transport the largest volumes. It is not questioned whether
this approach is fair, but the clear incentive towards the partners to increase their
volumes is undeniable as transporting larger volumes will result in a larger share of
the coalition gain.
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Although a coalition is free in formulating its preferred incentives, it can be recom-
mended that these incentives should motivate the partners to adopt a flexible attitude
with respect to the routing problem. By behaving in a flexible way, partners give a
large degree of freedom to the coalition, resulting in a more efficient global routing
solution.

In the collaborative SVRP discussed in this chapter, the leverage given to the partners is
the CND strategy. If all CND values are set equally for all customers, no differentiation
exists among the different customers. No detours are to be made in order to include
more expensive customers in the solution, and the number of customers served in
the solution is maximised — customers are only selected based on their locations —
while minimising the total distribution cost. By imposing relatively high CND values
to certain customers, the probability of taking these customers into the final routing
solution will increase. In this way, a partner is given control on the optimal choice
of the routing solution. However, this might be at the expense of global efficiency
— less customers can be served with the same resources — and might raise the total
coalition cost.

If the CND value of a customer is lower than its minimal marginal transportation
cost (distance), it is never profitable to take this customer into the final solution. The
minimal marginal transportation cost is defined as the minimal detour that is to be
made to include this customer in any existing tour.

In this chapter we investigate the behaviour of two different cost allocation mech-
anisms for the selective vehicle routing problem in a collaborative environment.
First we take a look at the well-known Shapley value cost allocation method, as it is
commonly seen as a possible best practice by the industry. Next, these results will
be compared with an alternative allocation rule, developed specifically for the SVRP,
taking into account both the CND and customer locations.

5.3.3.2 Shapley value allocation method

The Shapley value cost allocation method allocates the coalition cost among to
coalition partners, based on each partner’s cooperative productivity. For a more
elaborate introduction to the Shapley value, we refer to section 3.3.1
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The Shapley value satisfies certain axioms that are generally regarded to be impor-
tant properties a cost allocation mechanism should posses. These include symmetry,
dummy player property, efficiency and additivity (Nagarajan and Sošić 2008). Further-
more, the Shapley value cost allocation provides a result that is individually rational
for a superadditive game (Moulin 1988).

As the Shapley value is based on the partners’ marginal contribution in every possible
subcoalition, it is able to properly capture the financial impact of a single partner on
the coalition. Its drawback, however, is the need of information. The calculation of
the Shapley value requires at least an estimation of the total cost of every possible
subcoalition. This might turn out very challenging or even impossible in practice
as no information is available on the decision making and partner behaviour in the
unformed coalitions can not be observed directly. It can only be simulated. In this
chapter, the simulation is done by the metaheuristic approach described above as
the operational planning is calculated for every possible subcoalition in order to determine
the total cost of these subcoalitions.

Furthermore, in a two-partner coalition, the Shapley value possesses the property
of dividing the total coalition gain equally among the collaborating partners, with-
out taking into account the partners’ stand-alone efficiency and flexible behaviour
towards the coalition. In a two-partner coalition, it therefore loses any lever to stimu-
late flexibility. A solution for this problem, however, was proposed by Vanovermeire
and Sörensen (2014b).

5.3.3.3 CND-weighted allocation method

Notwithstanding the popularity of the Shapley value, its generality might prevent it
from providing the desirable incentives to its partners. Even if the Shapley value
does support the right incentives, this relation might not be that straightforward for
the supply chain manager. Therefore, based on the idea of separable and non-separable
costs (Tijs and Driessen 1986), a cost allocation method is constructed in this chapter
that is explicitly based on the partners’ CND policy and their customer locations. The
CND-weighted cost allocation is constructed as follows.

The separable part of the total coalition cost, i.e., linked to one specific customer (cpi )
in the tour, consists of the marginal cost mi of adding this customer to the solution.

60



5.3 the svrp in a collaborative environment

For every customer that is served in the final routing solution, the separable cost can
be calculated as the difference in total distance if this customer is taken into account
or left out of the final tour, without re-optimising the solution.

mi = di−1,i + di,i+1 − di−1,i+1 (5.9)

The remaining part of the coalition cost is called the non-separable cost and can
be divided in various ways (Cruijssen 2012). In order to align the allocation with
the incentives towards flexibility, the non-separable cost will be allocated based
on weights, defined by the total CND of the customers of each partner in the final
routing solution. The cost allocated to partner p can therefore be written as follows,
where C(N) is the total coalition cost, Mp equals the sum of the marginal costs
of the customers belonging to partner p and CNDp,sol represents the sum of all
compensations for non-delivery of all customers of partner p that are served in the
solution.

ψp = Mp +
CNDp,sol∑
p CNDp,sol

(
C(N) −

∑
p

Mp

)
(5.10)

As the CND-weighted cost allocation is completely based on the specific SVRP param-
eters, the behaviour of the different partners in the coalition can be linked directly
to the allocation results. Furthermore, we can state that for the calculation of the
CND-weighted cost allocation only the result of the grand coalition is taken into
account. Contrary to the Shapley value, the CND-weighted method is not affected
by stand-alone efficiency or costs and the performance of subcoalitions. We will
show in our simulation results that this will result in a situation where partners with
equal flexibility towards the routing solution will pay the same cost for the same service.
The CND-weighted method does, however, not guarantee individual rationality. To
overcome this problem, practitioners might consider our transformation algorithm,
introduced in section 3.5.
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5.4 Computational experiments

In this section, we study the behaviour of the selective vehicle routing problem in
different collaborative scenarios, focusing on the impact of a partner’s characteristics
and strategy on both the operational solution and the cost allocated to this partner.
First, the impact of different CND strategies is investigated. Secondly, we study the
effect of different customer location patterns, measuring the influence of the average
distance to the depot and the amount of clustering on the final solution.

The simulation is based on a set of generated instances that are available from the
authors upon request. All instances are generated on a square grid of width 100,
with a central depot located at coordinate (50, 50). Without loss of generality, we
assume a three-partner coalition where every partner has 15 customers and brings
one single truck into the coalition. Therefore, the number of available vehicles equals
the coalition size for every subcoalition. The maximum distance these trucks can
travel is limited to 142. All distances are Euclidean.

A fixed CND of 20 is assumed for all customers of partners 2 and 3. For partner 1

different scenarios are considered where the CND for all customers ranges from 4

up to 100. The instances are solved using the metaheuristic approach, described in
section 5.2.2, and costs are allocated by both the Shapley value cost allocation and
the CND-weighted cost allocation.

The algorithm is coded in C++ (MS Visual Studio) and executed on an Intel (R)
Core(TM) i5-3320M @ 2.60GHz with 8GB of RAM under a windows operating
system. The results were obtained by running the algorithm and the cost allocation
method on a set of 30 different test instances. All reported values are averaged over
this set.

5.4.1 Impact of the compensation for non-delivery value

As discussed in section 5.3.1 the CND value is used by the partners in the coalition as
a way to assign priority to their customers. Therefore, the CND has a direct impact
on the optimal routing solution, i.e., the solution with the minimal total distribution
cost for the coalition. If all partners assign similar CND values to their customers,
no differentiation exists between the partners and the inclusion of customers will
be only based on their geographical location in the distribution area. On the other
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hand, a non-flexible attitude (high CND values) of one of the partners will generally
result in a routing solution that is less efficient. In this section, we investigate the
sensitivity of the vehicle routing solution to the CND values by means of simulation.
For the purpose of these experiments, all customer locations were chosen according
to a uniform random distribution.

Figure 5.4 is a visual representation of the number of customers served in the
final solution. As no differences in CND strategy exist between partners 2 and 3,
both partners are treated equally by the routing algorithm, and they both have
approximately the same number of customers in the final solution. If partner 1 also
imposes a CND of 20, customers of all three partners appear with equal frequency in
the solution.
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Figure 5.4: Number of customers served in the final solution.

When the CND value of partner 1 increases for all its customers, not serving them
becomes more expensive for the coalition so the algorithm will generate a solution
in which more of this partner’s customers are visited, at the expense of the other
partners’ customers, that are now served less frequently. Additionally, the inflexible
strategy of partner 1 will result in an increased total coalition cost (see fig. 5.5). The
coalition as a whole is now functioning in a less efficient way, and partner 1 should
be discouraged from setting high CND values by the cost allocation mechanism.

When the CND values of partner 1 are much lower than those of the other partners, a
drop in the total number of customers served in the final solution can be witnessed.
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The reason for this is twofold. First, the decreased CND values of partner 1 render
it less expensive to leave this partner’s customers unserved. As a result, also the
total coalition cost decreases because a low CND is to be paid for the non-served
customers of partner 1. Second, a customer will only be visited if its CND cost is
higher than its marginal (distance-based) cost in the trip. For very low CND values it
will therefore be less costly to pay the compensation fee than to drive the additional
distance to keep the customer in the route.

The resulting cost allocations are shown in fig. 5.5. When no differences exist between
the partners (all have a CND of 20), both allocation mechanisms divide the costs
equally. Also, when partner 1 behaves in a less flexible way than the other partners,
this results in a larger total coalition cost (represented by the black line), and both
the Shapley value and the CND-weighted cost allocation consequently assign a larger
share of the cost to this partner. Where the allocated cost increases linearly by
applying the Shapley method, the CND-weighted cost allocation tends to follow more
the underlying number of customers that are served for every partner. We can
conclude that the Shapley value punishes the inflexible behaviour directly, whereas
the CND-weighted approach punishes the inflexible behaviour through its effects on
the grand coalition and the number of customers served for every partner.
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Figure 5.5: Cost allocated to the partners by both cost allocation mechanisms for
varying CND levels of partner 1.

64



5.4 computational experiments

0 20 40 60 80 100

0

10

20

30

40

CND value for partner 1

C
u
m
u
la
ti
ve

av
er
ag

e
n
u
m
b
er

o
f
cu
st
o
m
er
s

Partner 1

Partner 2

Partner 3

Figure 5.6: Number of customers served in the final solution.

5.4.2 Varying average distance between customers and depot

The algorithm for the routing problem preferably serves customers that (i) have large
CND values, and (ii) increase the total distance of the solution as little as possible.
For this reason, customers that are located close to the depot will tend to be served
with a larger probability than customers located far away. In this section we study
the impact of the location of a partner’s customer within the distribution area and
the interdependency with the CND strategy.

In our simulation, a square area of size 50 around the depot is defined. The customers
of partners 2 and 3, all having a CND equal to 20, lie inside this smaller area and,
therefore, closer to the depot. The customers of partner 1, again with a variable CND,
are all located outside this smaller area, and are therefore located further away from
the depot.

It can be expected that customers located closer to the depot are more likely to be
served in the final routing solution. Due to a reduction in travel distance between
these customers and the depot, one vehicle will be able to serve more customers
without violating the maximum vehicle distance. If all customers, including those
of partner 1, have a CND of 20, customers of partners 2 and 3 will have a larger
probability of being served, which can also be seen in fig. 5.6.
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The vehicles are preferably used to serve the customers that are located close to the
depot. In order to include the customers of partner 1, which are located further
away, a detour is to be made. For very low CND values, including these customers is
not profitable as the cost of not serving them is lower than the detour to be made.
In order to make the longer trips towards partner 1’s customers more attractive
for the coalition, this partner needs to impose larger CND values. However, this
behaviour will render the solution both more expensive and less efficient. For this
reason, we expect the inflexibility of partner 1 to be punished by the cost allocation
mechanism.

The results of both the Shapley value and CND-weighted cost allocation are visualised
in fig. 5.7. We can see that in both methods, the inflexible behaviour of partner
1 is punished by an increase in allocated cost. A very high cost, up to almost
100% of the total coalition cost, is allocated to partner 1 by applying the Shapley
value method. This can be explained as follows. As the customers of partner 1

are located far away, the stand-alone cost of this partner will be significantly larger.
Furthermore, adding partner 1 to any subcoalition will reduce the efficiency and
raise total cost significantly. For a further increase in CND, a negative allocated
cost will be obtained for partners 2 and 3, stating that they will receive money
for joining the coalition while partner 1 pays more than the total coalition cost.
Notwithstanding this (potentially undesirable) behaviour, the Shapley value cost
allocation does remain individually rational, i.e., each partner is allocated a lower
cost than its stand-alone cost.

As the CND-weighted cost allocation method is only based on the cost that the
partners induce in the final routing solution, the cost allocated to partner 1 tends
to be small for the scenarios where less customers of this partner are served in the
routing solution. This is the case for scenarios where partner 1 is behaving in a
flexible way (low CND). Even if partner 1 behaves in a very inflexible way, still many
customers of partner 2 and 3 remain served because of their attractive position close
to the depot. This is captured more directly by the CND-weighted method. Here
again we conclude that the CND-weighted cost allocation remains closely bound to
the underlying operational solution.

Contrary to the Shapley value cost allocation, the CND-weighted method does not
guarantee individual rationality. As the outcome of this method is only based on the
final routing solution, it does not take into account the stand-alone costs. The cost
allocated to a partner is largely defined based on the number of customers served
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Figure 5.7: Cost allocated to the partners by both cost allocation mechanisms for
varying CND levels of partner 1.

in the routing solution of the coalition, weighted according to the corresponding
CND. In this case, the customers of partners 2 and 3 are located close to the depot.
Notwithstanding the maximum vehicle distance that is imposed, these partners
can already serve a majority of their customers in the stand-alone scenario. As
a result, only very little (and sometimes zero) customers (with their CND) remain
unserved, and the stand-alone costs of partners 2 and 3 are very low. Due to this,
the costs allocated to partners 2 and 3 can easily exceed their stand-alone costs and
the property of individual rationality is not guaranteed. We look into this in more
detail in section 3.5.2.

5.4.3 Customer clustering

In the third simulation scenario, we look at the effect of geographical clustering of
customers. If the customers belonging to each partner are located in close proximity
to one another and no (or limited) geographical overlap exists between the customer
clusters of the different partners, no significant collaboration synergy can be expected.
If a coalition should be formed between such incompatible partners, we expect its
coalition cost to be not much less than the sum of the stand-alone costs.

A set of test instances was generated in which all customers belonging to one partner
are located in the same part of the distribution area. In this way, customers of partner
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1 are located in the North-West, those of partner 2 in the North-East and finally those
belonging to partner 3 in the South. Customers of partner 3 are generated to be on
average closer to the depot than the ones of the other companies.

Based on the characteristics of the test instances, the distance between the depot
and the customer clusters, and between the different clusters is high, compared to
the distance between the customers within one cluster. As a consequence it will be
very expensive to combine customers of different clusters into one vehicle. As the
customers of partner 3 are located on average closer to the depot, this single vehicle
can be used to serve more customers compared to the other partners, as seen in
fig. 5.8.
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Figure 5.8: Number of customers served in the final solution.

As the customers of partner 1 will become more and more expensive for increasing
values of this partner’s CND, the detour of visiting two different clusters with one
vehicle might become more attractive in order to avoid the larger compensation
costs that should be paid if the customers remain unvisited. However, this action
renders the solution less efficient (less customers can be visited), and we expect this
inflexible behaviour to be punished again by the chosen cost allocation mechanism.
As customers of partner 2 are located further away compared to those of partner 3,
the cluster of partner 2 has a lower probability to be visited by a vehicle. This can be
seen in fig. 5.8.
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The resulting cost allocation is shown in fig. 5.9. At first sight it can be seen again that
partner 1 was charged a larger relative part of the total coalition cost for increasing
values of its CND. This scenario, however, reveals another difference in approach for
both cost allocation mechanisms studied in this chapter.

When comparing the relative cost allocated to partners 2 and 3, the Shapley value
cost allocation charges a larger cost to partner 2 (fig. 5.9a), while this partner is
favoured in the CND-weighted cost allocation mechanism (fig. 5.9b). This can be
explained as follows. As customers of partner 3 are located on average closer to
the depot, these customers can be served with higher efficiency. Therefore the
stand-alone cost of partner 3 will be lower compared to that of partner 2. Moreover,
this high efficiency will be present in every subcoalition. As the Shapley value takes
this into account, a lower cost is allocated to partner 3 although a larger number of
customers of this partner are served in the final solution. In the CND-weighted cost
allocation however, costs are allocated based on the impact of every partner on the
final routing solution. Because no differentiation exists in the CND of customers of
partners 2 and 3, both partners are treated equally. As more customers of partner 3

are taken into the final routing solution, this partner should pay a larger share of the
total cost.
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Figure 5.9: Cost allocated to the partners by both cost allocation mechanisms for
varying CND levels of partner 1.
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5.5 Conclusions and future research

In this chapter we took a closer look at how a selective vehicle routing problem
can be used in a collaborative environment. Besides the vehicle routing problem
itself, the collaborative environments force the coalition to consider the problem of
strategic positioning, as well as the allocation of the coalition cost.

In order to solve the selective vehicle routing problem, a randomized, multi-start
variable neighbourhood metaheuristic was developed. Concerning the cost alloca-
tion, we discussed two different approaches: the Shapley value cost allocation, a
widespread game-theoretical approach, and a new CND-weighted cost allocation
mechanism that could be linked directly to the problem definition of the SVRP.

The solutions of the routing and cost allocation problems are both dependent on a
third aspect, the strategic behaviour of the partners with respect to the collaboration.
This behaviour was captured by the compensation for non-delivery (CND), the cost
that is to be paid if a customer is not selected for delivery in the routing solution.
We demonstrated that the strategic behaviour of the partners has a large influence
on the efficiency of the routing solution. By choosing a cost allocation mechanism,
the coalition implicitly formulates incentives that it perceives important. These
incentives should stimulate the partners to behave in a flexible way towards the
coalition in order to assure maximum efficiency of the logistical planning. Partners
that tend to pull the solution away from its optimal working point, by behaving in
an inflexible way, should also accept the consequences in terms of a larger allocated
cost. This strong relationship between partners’ behaviour, routing solution and cost
allocation is often omitted in the literature, resulting in an incomplete view of the
collaborative vehicle routing problem. By means of simulation, these dependencies
were shown and tested on different sets of instances.

In a first simulation, the effect of the partners’ CND strategy on the final routing
solution and cost allocation was investigated. A partner that imposes relatively
larger compensations for non-delivery increases the probability that its customers
are taken into the final routing solution. However, this non-flexible attitude will
raise total coalition cost while serving less customers and should therefore punished
in the cost allocation. The Shapley value and CND-weighted cost allocation behave
similarly in this collaborative environment. The CND-weighted method tends to
follow more the number of customers visited for every partner.
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If the customers of one partner are more favorably located than those of the others,
this pattern will also be found in the solution. The other partners can compensate by
setting higher CND values, in which case an inferior routing solution will be chosen
where a detour is made in order to visit the more expensive customers. In this
simulation the severity of the Shapley value with respect to the non-flexible partners
becomes visible to the extent that relative cost allocations above 100% and below
0% are possible. As this might not be the preferred scenario, the Shapley value still
assures an individually rational solution, which is not guaranteed when using the
CND-weighted allocation method.

The same conclusion can be drawn from the third simulation, where customers of
different partners were clustered in different geographical regions. As this reduces
the ability to combine customers of different partners into one trip, the trucks will
choose a direction towards the area(s) where more expensive customers are located.
Only when relatively high CND values are charged in one area does the solution
change to visit this region. This is however at the expense of a larger total coalition
cost. Here, the fundamental differences between the two cost allocation methods
become clearly visible. While the Shapley value is based on the partners productivity
in every possible subcoalition, the CND-weighted cost allocation is only based on the
final solution of the coalition. It is up to the collaborating partners to evaluate which
approach they perceive as fair.

In this chapter, we focused on the selective vehicle routing problem and introduced a
basic framework (solution approach) that can be used to analyse the vehicle routing
problem in a collaborative environment. The study is currently limited to the static
approach, in which the problem is solved only once. Although we identified the
feedback loop, it is not taken explicitly into account. A dynamic (multi-period)
approach, where partners might adopt their strategy and behaviour in every period,
can be valuable future research.

Furthermore, we plan to study other variants of the vehicle routing problem in
a collaborative environment. A different vehicle routing problem will require
an alternative definition of partner behaviour and therefore also of the idea of
flexibility. We will also examine the behaviour of what we define as multi-objective
collaborative vehicle routing problems. Here, the partners have different and possibly
conflicting objectives with respect to an optimal routing solution (e.g., total distance,
time window violation,. . . ) which should be combined into a single (cooperative)
optimization problem.

71





Part III

T H E I N C L U S I O N O F I N D I V I D U A L PA RT N E R
O B J E C T I V E S I N L O G I S T I C S O P T I M I S AT I O N

M O D E L S





6
Models for multi-objective optimisation

Abstract:

This chapter considers a horizontal logistics cooperation in which multiple companies (called partners)

jointly solve a (collaborative) vehicle routing problem. To capture the individual partner interests in the

logistics optimisation model, we allow each individual partner to set its own set of objectives. In such

a situation, the question arises whether only these individual partner objectives should be considered

during the optimisation of the collaborative optimisation problem (the partner efficiency model), or

whether a set of coalition objectives should be defined first (the coalition efficiency model). This chapter

investigates the merits and drawbacks of both approaches by applying them to a collaborative variant of

the well-known travelling salesman problem with soft time windows.

Our results confirm that, even in a situation in which each partner has multiple objectives, joining

a horizontal logistics coalition is beneficial for all partners. We further conclude that the coalition

efficiency model is able to find good quality solutions with less calculation time, but lacks robustness.

The partner efficiency model, on the other hand, is able to provide the decision maker with a better

Pareto front approximation, at the expense of a higher complexity.
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6.1 Introduction

The current research on horizontal logistics cooperation is focused mainly on assess-
ing the costs and benefits, and the allocation of these benefits among the individual
collaborating partners. It is striking that only a limited number of papers address
operational planning problems in horizontal logistics cooperation (see Verdonck
et al. (2013) for an overview). Also, when quantifying the cost saving of such lo-
gistics collaborations, existing models do not take into account to which partner
a transportation request originally belonged. It is even not acknowledged that all
transportation requests actually belong to multiple companies. Therefore, no distinc-
tion is made between the objective of the coalition of collaborating companies and
the objective of each individual company. Although the coalition as a whole should
perform as efficiently as possible to exploit the synergies from the collaboration, all
collaborating partners remain independent entities that tend to favour a solution
that is best according to their own objectives.

With this chapter, we are the first to argue the objectives of both levels should
be taken into account. In section 6.2, the current state of the art in operational
optimisation within horizontal logistics cooperation is summarised. In section 6.3
our problem is defined and the two levels of decision making (the level of the
coalition versus the individual partner level) are introduced and in section 6.4 the
multi-objective travelling salesman problem with soft time windows is introduced.
We propose two solution approaches for tackling multi-objective optimisation in a
horizontal logistics cooperation in this chapter. Both methods, the coalition efficiency
model and the partner efficiency model, are described in section 6.5 and section 6.6
respectively. In section 6.7 we will provide the interested reader more insight in
our implementation of the Shapley value cost allocation method after which we
present our computational results in section 6.8. Finally, we conclude this chapter
with section 6.9.

6.2 Literature review

In the literature on the operational aspects of horizontal logistics optimisation, two
main approaches are distinguished: order sharing and capacity sharing (Verdonck
et al. 2013). In the first approach, each collaborating partner can decide to share
(a selection of) its customer orders with the group. These pooled orders are then
reallocated to the available vehicle trips. When the optimisation is done by solving
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one large-scale vehicle routing problem from the point of view of a centralised
decision maker, this is referred to as joint route planning (Cruijssen et al. 2007).
Another commonly used technique to reallocate customer orders is an auction-based
mechanism, in which partners can bid on the pooled orders. See for example the
framework provided by Dai and Chen (2011). In a second approach, companies can
decide to share their vehicle capacities. In this way the capital investment associated
with these vehicles can be split among multiple partners (Verdonck et al. 2013). This
approach is, however, less common in the literature.

Because the current chapter wants to study decision making of the coalition and its
constituting partners, this section will examine the structure of existing optimisation
models in both approaches to horizontal logistics collaboration. Usually, the benefits
of horizontal logistics cooperation are quantified by comparing the logistics planning
with and without collaboration. To obtain the collaborative solution, a logistics
optimisation problem is to be defined and solved for the group of collaborating
partners. Using the Web of Science1, 59 journal publications on the topic of ‘horizon-
tal cooperation’ (or ‘horizontal collaboration’) and ‘logistics’ are retrieved. Careful
screening on the title and the abstract yielded a subset of 20 papers for further study.
To ensure that the literature search was exhaustive, we also performed an additional
manual search using the same keywords, resulting in a final set of 24 publications.

All studied papers are listed in table 6.1. Each reference is categorised by the
objective function used in the logistics optimisation model and the way in which the
individual partner interests are handled by the authors. For the objective functions,
four main approaches can be distinguished among of which the minimisation
of the distance-based routing cost (min. dist.) and the minimisation of the total
logistics cost (min. TC) are the most common. Typically, this total logistics cost
consists of the distance-based cost added with additional factors such as a time-
based cost (Adenso-Dı́az, Lozano, and Moreno 2014; Dahl and Derigs 2011; Lozano
et al. 2013), penalties for empty trips or non-delivery (Adenso-Dı́az, Lozano, and
Moreno 2014; Defryn, Sörensen, and Cornelissens 2016; Hezarkhani, Slikker, and
Van Woensel 2016; Lozano et al. 2013), additional linking costs when combining
multiple transportation requests (Adenso-Dı́az et al. 2014) or costs related to the use
of DCs and warehouses (Verdonck et al. 2016; Wang and Kopfer 2015). Vanovermeire
et al. (2014) adopt an alternative approach in which the cost of a trip between two
locations is calculated by means of a pace list, and depends therefore on the load of
the vehicle. The optimisation model therefore requires the solution of a bin packing

1 December, 2016
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problem in which the number of required vehicles is minimised (min. veh.). Instead
of minimising the transportation cost, some authors aim at maximising the total
profit (max. prof.) of the coalition (Berger and Bierwirth 2010; Li, Rong, and Feng
2015; Yang et al. 2015). Requiring that all transportation requests are executed, this
approach is equivalent to the minimisation of the logistics costs.

Models that focus only on the global performance of the group, ignore the effect of
the operational decisions on the goals of the individual partners. As the collaborating
partners remain independent entities, it is likely to assume that they will (also)
evaluate the performance of the coalition in terms of personal gains. In all selected
contributions, a (single) objective function is defined at the level of the coalition. The
interests of the individual partners in the coalition are either included as a constraint
in the logistics optimisation model (constr.), considered through a compensation
mechanism (comp.), handled as a post-processing step after solving the model (post),
or not addressed at all (not). A solution framework that adds individual partner
interest as a model constraint is proposed in Vanovermeire and Sörensen (2014a).
By including a cost allocation mechanism, it is ensured that an individual partner is
rewarded for allowing a shift in delivery date so the coalition can achieve a better
solution. The inclusion of a compensation mechanism is typically considered in
auction-based models when partners can bid on individual transportation requests.
A transfer price is then taken into account together with each order exchange. In
most chapters that take the individual partner interests into account, a cost allocation
method is added to the solution procedure as an independent post-processing step.

Surprisingly, in none of the studied chapters, the individual partner interests are
considered in the objective function of the logistics optimisation model. It can
however be expected that not all objectives are shared among the collaborating
partners or receive the same weight. It is possible for example that respecting time
windows is more important for one partner, while the other partners prefer only the
lowest cost. Also, a partner might prefer a solution in which the cost allocated to
him is minimised above a solution with the lowest total cost for the coalition as a
whole. We refer to Bailey, Unnikrishnan, and Lin (2011), for a logistics optimisation
model for a group of companies in which the benefits for only one partner of interest
are maximised.

The research is also closely related to the challenges faced by the neutral trustee in
the collaboration. The neutral trustee is a third party that coordinates the cooper-
ation is such a way that all partners are satisfied, and guarantees that no sensitive
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information is disclosed among the different (and possibly competing) companies
in the collaboration. Bringing potential partners around the table, one of the main
challenges of the neutral trustee is to unite and look after the interests of each
individual partner. The models presented in this and the following chapters can be
useful tools to support the related decisions.

6.3 Problem statement

In all existing approaches, the logistics optimisation problem is defined at the level of
the coalition, with only one global objective. In this case, the collaborative problem
definition is obtained by combining all transportation requests of the individual
partners into one large optimisation problem for which one or more global objective
functions, which we will refer to as coalition objectives, are defined. As a consequence,
the multi-partner context and individual partner characteristics are ignored and it
is assumed that all partners agree on one set of global objectives. Although it is
reasonable that partners in a horizontal coalition have a common goal and vision
on when a cooperation is successful, it should not be ignored that each individual
partner remains an independent entity that will evaluate the performance of the
coalition mainly in terms of personal gains.

By aggregating the transportation requests of all individual partners and deciding on
a global set of (coalition) objectives, the logistics planning can be optimised using any
existing, non-collaborative optimisation technique. Importantly, however, coalition
objectives are virtual objectives in the sense that these objectives have been artificially
defined to solve the collaborative routing problem. For none of the partners, the
coalition objectives themselves are important, but a solution will only be accepted or
rejected by a partner based on the objectives of that individual partner (which we
call partner objectives).

To allow for the evaluation of all partner objectives, an allocation rule is to be defined
to redistribute the obtained results at the coalition level to all individual partners.
For example, if the coalition objective is to minimize total time window violation,
each individual partner can easily derive the time window violation at its own
customers from the overall solution. Other types of coalition objectives, most notably
the total cost, time or total distance travelled cannot be trivially distributed among
the partners and require an allocation mechanism. Several cost allocation mechanisms
have been proposed in the literature, some simple (e.g., allocate the cost proportional
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to the amount of goods transported for each partner), other more complicated and
grounded in game theory. As argued in Defryn, Sörensen, and Cornelissens (2016)
and Defryn, Vanovermeire, and Sörensen (2015) the cost allocation mechanism can
provide an incentive to the partners to favour the coalition’s objectives as it can be
used as a leverage to increase the flexibility of the partners. A partner is considered
flexible if he is willing to (partially) sacrifice his own objectives in favour of the
coalition.

An important question arises whether this allocation rule and the evaluation of
the individual partner objectives should be executed after the best solution for the
coalition has been found, or during the search. In Vanovermeire and Sörensen (2014a),
it has been demonstrated that the best solution found using the coalition objective is
not always equal to the best solution found using the partner objectives, i.e., when for
example the cost is divided during the search. In other words, when the optimisation
process takes the individual partner objectives into account while looking for a good
solution, the final result is generally better for all partners, at the expense of larger
computing times. Vanovermeire and Sörensen (2014a) only considered the situation
in which all partners have the same single objective, to minimize their total cost. This
chapter proposes an extension to the analysis in Vanovermeire and Sörensen (2014a)
for situations in which each partner may have multiple conflicting objectives.

When multiple partners, each of which have multiple objectives, jointly perform
their operational planning, two options arise. A first option is that the coalition
first defines a set of global coalition objectives, encompassing all objectives of all
partners, then finds a solution or a set of non-dominated solutions for these global
objectives, and then divides the objectives (costs) back to the individual partners.
We call this approach the coalition efficiency model. The second option is to consider
all individual partner objectives and find a set of non-dominated solutions for each
individual partner, without first aggregating them into coalition objectives. We call
this approach the partner efficiency model.

The main research question of this chapter is to find the benefits and drawbacks of
either models, and find out which one performs best. Both methods are described in
more detail by applying them to the travelling salesman problem with soft time windows
(TSPSTW). This problem has the advantage of being well-known, and has been chosen
mainly for illustrative purposes. Both models, however, are generic and applicable
to any collaborative planning problem.
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Figure 6.1: Difference between the coalition efficiency model and the partner effi-
ciency model. The bold box indicates where the optimisation problem is
solved.

The following Sections of this chapter are organized as follows. In section 6.4,
we describe the TSPSTW and its collaborative variant, the Collaborative Travelling
Salesman Problem with soft time windows (COLTSPSTW). The coalition efficiency
model and the partner efficiency model, are introduced in section 6.5 and section 6.6
respectively. In section 6.7 we will elaborate on the way the Shapley value cost
allocation method is implemented in our algorithms. Afterwards, the coalition
efficiency model and partner efficiency model are tested on a set of collaborative
TSPSTW instances. The results of these experiments can be found in section 6.8.
Finally, section 6.9 summarises the main conclusions.

6.4 Case: the multi-objective travelling salesman problem with soft time win-
dows

In this section, we first explain the specific variant of the TSPSTW used in this chapter,
and then extend it to a collaborative scenario, resulting in a problem that we call the
COLTSPSTW. This problem will be used as an explanatory example throughout the
following sections of the chapter.
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time windows

6.4.1 Stand-alone scenario: The travelling salesman problem with soft time windows

In our TSPSTW variant, each partner operates from its own central depot, from which
goods are delivered to a set of clients in a single tour. Client orders are assumed
to be small (e.g., parcel delivery), so the vehicle’s capacity will not constrain the
operational planning. However, for each individual client a time window, during
which the goods should be delivered, is predefined. The underlying operational
problem for every partner can be modelled as a travelling salesman problem with
soft time windows (TSPSTW).

We are given a complete directed graph with a set of vertices representing the depot
and all clients to be served, and a set of arcs connecting these vertices. Furthermore,
a service time and a time window are defined for every vertex, including the depot.
The service time models the time the driver is expected to spend at the client’s
location for loading, unloading, or providing a certain service. The time window
is defined by the client’s ready time and due time. Arriving at the client’s location
before its ready time is allowed, although the vehicle has to wait until the start of
the time window before the service can start. Arriving too late, or not being able to
finish the service before the due time, results in a time window violation. The goal is
to construct a Hamiltonian cycle, a path that starts and ends at the partner’s depot
and in which every customer is visited exactly once.

The problem has two objectives:

1. The minimisation of the total distance travelled.

2. The minimisation of the summed time window violations over all the partner’s
clients.

Both objectives are conflicting, in that a smaller total time window violation can be
achieved at the expense of a larger distance travelled and vice versa.

The idea of soft time window can be linked directly to the concept of flexibility
(Vanovermeire and Sörensen 2014b). If the time windows are very strict, the degree
of freedom in the planning is limited. This will result in a longer total distance
travelled in order to make sure that all clients are visited on time. The more a
company is able and willing to extend the time windows or allow a certain time
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window violation, the more freedom it creates to reduce the total travelled distance
by changing the positions of the clients in the trip.

In this chapter, we adopt a multi-objective approach for solving the TSPSTW and no
a-priori decision is made on the relative importance of both objectives. Instead of
constructing one single (optimal) solution, the aim is to generate many solutions
that are Pareto-optimal with respect to both objectives. We leave it to the decision
maker to select the most preferred solution from this set, based on other criteria.
This decision is however out of the scope of this thesis.

6.4.2 Collaborative scenario: The collaborative travelling salesman problem with soft time
windows

Instead of one company optimising its logistics activities individually, a horizontal
logistics cooperation is considered here. A two-partner example is visualised in
fig. 6.2. Here, the partner’s depots are denoted by the squares, while the circles repre-
sent the customers. For visualisation purposes, only the total distance minimisation
objective is considered. As stated in the previous section, the logistics planning for
each individual partner is modelled as a TSPSTW. From the moment that geographic
similarity (the degree of overlapping geographic coverage between the co-operating
partners) exists, it is likely that synergies can be exploited by allowing certain
customers to be served by another partner’s vehicle (Raue and Wallenburg 2013).
The collaborative problem that appears at the level of the coalition is a multi-depot
multi-travelling salesman problem with time windows. This problem is closely related to
the multi-depot vehicle routing problem (we refer to Montoya-Torres et al. (2015) for
an extensive literature review). However, no customer demands are considered and
no capacity restrictions are provided for the vehicles in our problem formulation.
In what follows, we will therefore refer to our problem as the collaborative travelling
salesman problem with soft time windows (COLTSPSTW).

The main question is which objective(s) to use when solving the COLTSPSTW. A first
approach assumes that all partners agree on a common goal and are able to define a
set of global coalition objectives. Based on the stand-alone scenario and the similarity
between the individual partners, we suggest the following two coalition objectives:

1. The minimisation of the total distance travelled by all coalition partners.
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time windows

Figure 6.2: The collaborative travelling salesman problem with soft time windows
for a two-partner (black and grey) horizontal cooperation.

2. The minimisation of the summed time window violations over all clients of all
partners in the coalition.

As a result, we consider the coalition to be a single entity and the fact that clients
belong to different companies has no importance any more. We say that we optimise
towards coalition efficiency, i.e., make the coalition as a whole as efficient as possible.
This idea forms the basis for the coalition efficiency model, described in section 6.5.

A second approach acknowledges that all partners remain independent companies
that have individual objectives. Every solution constructed for the coalition is then
evaluated by each individual partner with respect to their own objectives. For the
COLTSPSTW, we can assume that each partner has the following objectives:

1. The minimisation of the summed time window violations of its own clients.

2. The minimisation of its own allocated share of the total logistics cost

A solution that is acceptable for one partner (i.e., it is in the Pareto set for this
partner’s objectives) may not be so for the other partners. A good solution for the
coalition should therefore be a compromise with respect to all individual partner
objectives, and should be in the Pareto sets of all partners in the coalition. In this
case, we talk about optimisation with respect to partner efficiency. We will elaborate
on this idea in section 6.6.

85



models for multi-objective optimisation

6.5 Coalition efficiency model

A solution is considered coalition efficient if it is in the Pareto set of non-dominated
solutions with respect to the coalition objectives. Based on this idea and the collab-
orative vehicle routing approach proposed by Defryn, Sörensen, and Cornelissens
(2016), the coalition efficiency model is defined as a four-step approach.

• step 1: Aggregate and redefine the logistics problem at the level of the coalition.

• step 2: Construct an efficient solution set for the coalition as a whole.

• step 3: Project the solutions obtained during step 2 on the individual partner
objectives using predefined allocation rules.

• step 4: Evaluate the Pareto efficiency of each solution according to each of the
partner objectives. Only solutions that are marked as efficient by every partner
are kept in the final solution set of the collaborative problem.

In the following sections, we will elaborate more on each step of the coalition
efficiency model by applying it to the COLTSPSTW.

6.5.1 Step 1: Aggregation

The goal of this first step is to redefine the logistics problem at the level of the
coalition. All transportation requests, networks and available resources of the
individual partners are aggregated into one optimisation problem. To determine
the objective function of the coalition, it is assumed that all collaborating partners
agree on a single set of coalition objectives. In this way, the multi-partner logistics
problem is transformed into a traditional, non-collaborative problem. Similar to the
stand-alone scenario of each partner, the coalition objectives for the COLTSPSTW are
considered to be (i) the minimisation of the total distance travelled by all vehicles
(total coalition cost), and (ii) the minimisation of the total time window violation
over all customers.

In our definition of the COLTSPSTW, the partners are homogeneous, i.e., they have the
same set of objectives. This is, however, not a requirement of the coalition efficiency
model. In general, any combination of partners can be considered, as long as a
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common set of objectives can be negotiated (which will become more difficult, of
course, as the individual partner objectives diverge).

6.5.2 Step 2: Optimisation at the coalition level

In this phase, the aggregated model defined in step 1 is solved by using any available
(non-collaborative) logistics optimisation technique. As two coalition objectives are
identified for the COLTSPSTW, a multi-objective optimisation method is required that
will return a Pareto set. We suggest a multi-directional local search metaheuristic,
based on the idea of Tricoire (2012), which is introduced in more detail in what
follows.

6.5.2.1 Metaheuristic overview

A visualisation of the solution procedure is visualised in fig. 6.3. First, an initial
solution set is constructed by the algorithm. Three different construction strategies
are used in order to diversify the solutions in the initial set: nearest neighbour, sorted
by ready time and sorted by due time (see table 6.2). Afterwards, each solution is
improved with respect to each objective function by means of local search. In other
words, a local search is performed for every solution–objective combination.

Table 6.2: Construction strategies.
Strategy Definition

nearest neighbour Start from an unused depot and iteratively add the closest unvisited
customer to the trip. An equal number of customers is added to each trip.

sorted by ready time Add all customers from a single partner to a trip and sort them according
to their ready time.

sorted by due time Add all customers from a single partner to a trip and sort them according
to their due time.

The improved solution S′ can either dominate S or both solutions can be Pareto-
efficient. After having improved all initial solutions, the dominated solutions are
discarded and the search continues with all non-dominated solutions. In this way,
we also allow the size of the Pareto frontier to increase/decrease. The search is
ended by the stopping criterion, predefined as the maximum allowed calculation
time. Then, the current Pareto frontier is returned by the algorithm.
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Figure 6.3: Visualisation of the developed heuristic to solve the collaborative travel-
ling salesman problem with soft time windows at the coalition level.
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6.5.2.2 Neighbourhood structures

To improve the current solution S, the multi-directional local search metaheuristic
uses five different neighbourhoods. We refer to table 6.3 for a complete overview
and a definition of all neighbourhoods. Depending on the current objective (columns
TW and Dist), different neighbourhoods are available from which one is selected at
random during every iteration. A first improvement search strategy is used.

Table 6.3: List of different neighbourhoods, embedded in the multi-directional VNS.
Neighbourhood TW Dist Definition

Relocate-violation X Remove the customer with the largest time window violation
from the solution and insert it before the customer with the
largest waiting time.

Relocate-waiting X Remove the customer where the vehicle has to wait the
longest time from the solution and insert it after the customer
for which the due time is closest to the ready time of the
customer to be inserted.

Relocate-marg-dist X Remove the customer with the highest marginal distance
from the solution and insert it at the position where it causes
a minimal insertion cost.

Swap2 X X Swap the position of two customers in the solution.
Two-opt X Remove two edges and replace them by two new edges to

close the tour.

6.5.2.3 Expansion

At the end of every iteration, an expansion operator is called. As the current solution
set represent the best pareto frontier approximation found so far, we expect that
high quality solutions can be found in the close neighbourhood of the solutions in
this set. By including for every solution an extra random neighbour from its swap2
neighbourhood (see table 6.3), the number of solutions in the set is doubled. In
this way, more opportunities for further improvement are created and additional
diversification is added to the set.

6.5.3 Step 3: Projection on the individual partner objectives

Although all solutions returned by step 2 are coalition-efficient (the coalition as a
whole is not able to further improve without worsening the value of at least one
coalition objective), this does not imply that all obtained solutions are also efficient
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for each partner. To evaluate the Pareto-efficiency of the solutions on the partner
objectives, the coalition objectives need to be redistributed to the partners.

For the time window violations this is straightforward. In order to obtain the total
time window violation assigned to a partner, the violations over all customers of
this partner are summed. In order to know which part of the total coalition cost
should be allocated to the individual partners, a cost allocation method is necessary.
All experimental results discussed in section 6.8 are obtained by applying the Shapley
value cost allocation method (Shapley 1953), as it is put forward as best practice in
horizontal logistics cooperations due to its desirable properties (Biermasz 2012). We
also refer to section 3.3.1 for a more elaborate introduction. For more details on
the implementation of the Shapley value method in the experiments, we refer to
section 6.7.

6.5.4 Step 4: Evaluation

When projecting the obtained results on the individual partner objectives (step 3),
we expect a negative correlation between the allocated cost and the corresponding
time window violation for each partner. In other words, for solutions in which the
partners have to tolerate a large time window violation (we say that the partner has
to behave in a flexible way), we expect a lower cost to be allocated to this partner.
This is explained by the fact that less strict time windows give rise to more efficient
solutions in terms of distance (cost). On the other hand, if a partner is more rigid
(and prefers solutions with smaller time window violations), we expect him to pay a
higher part of the corresponding total coalition cost. This trend can also be seen in
fig. 6.4, in which every point represents an efficient solution for the coalition.

Figure 6.4 shows clearly that not all solutions are on the Pareto front for the individ-
ual partner objectives (denoted by the black dots). All dominated solutions (grey)
are unlikely to be accepted by the partner and are therefore disregarded. This is
repeated for every partner. The solutions that is accepted by all the partner is also
considered a good solution for the coalition. It is however not guaranteed that this
set is non-empty.
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Figure 6.4: The allocated cost in function of the corresponding time window violation
for one single partner in the coalition. All solutions on the Pareto frontier
of the coalition are visualised by the dots. The solutions that are efficient
for partner i are highlighted in black.
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6.6 Partner efficiency model

The coalition efficiency method, discussed above, has some drawbacks. First of
all, it requires the coalition to be able to define a global set of objectives at the
coalition level. As the interests of the partners might differ significantly, this can be
challenging. Furthermore, it is not guaranteed that all solutions that are efficient
for all individual partners (and therefore acceptable solutions for the coalition)
belong to the Pareto set of non-dominated solutions at the coalition level. In other
words, a solution might be efficient for all collaborating partners, and not for the
coalition. These solutions are not found by the model and algorithm discussed
above. Conversely, there is no guarantee that a solution that is efficient with respect
to the coalition objectives is on each of the individual Pareto fronts. In some cases,
the intersection of the solutions projected onto the Pareto fronts for the individual
partners might even be empty.

To overcome these issues, we propose an alternative approach that integrates the
individual partner objectives directly into the optimisation procedure: the partner
efficiency model. In the following sections, the method is presented and applied to the
COLTSPSTW example.

6.6.1 Objective functions

For each partner, the two partner objectives (defined in section 6.4.2) are included
directly into the objective function. As the cost of a solution is determined by a cost
allocation method, this method should be integrated in the objective function of the
solution procedure for the operational planning itself.

Solutions will only be retained when they are efficient for every partner. However, it
is likely that solutions with a lower total distance (cost) or time window violation
are beneficial for at least one (in best-case: most) of the partners. Therefore, these
objectives are also added to the model. Although only the individual partner
objectives are used to evaluate the current solutions, these additional objectives
might guide the search towards the more interesting parts of the solution space. In
this way, we try to reduce calculation time by avoiding the exploration of solutions
that are far from optimal.
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To summarise, four different types of objective functions can be identified in our
model formulation (see also table 6.4): the minimisation of the time window viola-
tions for partner i (TWi), the minimisation of the cost allocated to partner i (Costi), the
minimisation of the total time window violation (TW) and the minimisation of the
total distance driven (Dist). Compared to the coalition efficiency model, the number
of objectives in the partner efficiency model will be high. This high dimensionality
is expected to increase the complexity of the model significantly.

6.6.2 Metaheuristic solution approach

Similar to the coalition efficiency model, a multi-directional local search metaheuristic
is used to tackle the multi-objective COLTSPSTW. To allow as much as possible a fair
comparison of the two approaches, an attempt was made to maximize the similarity
between both metaheuristics. Although the basic structure of the algorithm remains
unaltered, a different approach is required at some points during the search. We will
highlight these differences in the following sections.

6.6.2.1 Neighbourhood structures

Our metaheuristic makes use of six local search neighbourhoods to handle the four
different types of objective functions in the model. Some of these neighbourhoods are
constructed for one specific objective (e.g., the relocate-violation neighbourhood
focuses on time window violation minimisation) while others are more general ( e.g.,
swap2 and relocate). For a complete overview, we refer to table 6.4.

6.6.2.2 Solution evaluation

To evaluate a candidate neighbour solution with respect to the individual partner
objectives, the projection on the individual partner objectives of the time window
violations and the total cost should be calculated. This means that n two-dimensional
Pareto fronts (such as the graph shown in fig. 6.4) should be maintained during the
search for an n-partner coalition.
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Table 6.4: List of different neighbourhoods, embedded in the multi-directional VNS.
Neighbourhood TWi Costi TW Dist Definition

Relocate-violation X X Remove the customer with the largest time
window violation from the solution, and in-
sert it before the customer with the largest
waiting time.

Relocate-waiting X X Remove the customer where the vehicle has
to wait the longest time from the solution,
and insert it after the customer for which
the due time is closest to the ready time of
the customer to be inserted.

Relocate-marg-dist X Remove the customer with the highest
marginal distance from the solution, and
insert it at the position where it causes a
minimal insertion cost.

Relocate X X Remove one customer from the solution, and
insert it again in the solution at the position
where it improves the current objective the
most.

Swap2 X X X X Swap the position of two customers in the
solution.

Two-opt X X Remove two edges and replace them by two
new edges to close the tour.

While running the optimisation procedure, we make use of a weak domination rule.
This rule states that every solution that is part of the current Pareto frontier of at
least one partner, is kept in the solution set. In this way we allow the algorithm to
improve the solution further for the other partners during the following iterations.

A strong domination rule is used in two situations: when (i) the stopping criterion is
reached and if (ii) the total number of solutions in the pool reaches a predefined
threshold value. As in each iteration, the algorithm searches all solutions–objective
combinations, this last rule should prevent the algorithm from taking all available
calculation time for executing a limited number of iterations. The strong domination
rule disregards all solutions that are not in the intersection of all individual Pareto
frontiers and, consequently, only solution that are efficient for all partners in the
coalition are kept.
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6.7 Algorithmic implementation of the Shapley value

6.7.1 Definition

In both model described in this chapter, a cost allocation method is assumed to
be selected by the collaborating partners to properly divide the total coalition cost.
In our computational experiments, we chose the Shapley value cost allocation method
based based on the Shapley value as defined by Shapley (1953).

The result of this game theoretical approach is determined by playing a cooperative
game (N , C), where N represents the coalition with n collaborating players (partners),
and C the characteristic function (Zolezzi and Rudnick 2002). This characteristic
function is defined by the cost of all possible subcoalitions S, with S ⊂ N . The cost
allocated to partner i, denoted by xi , is now defined according to the following
formula.

ψi =
∑

S⊆N\i

|S |!(|N | − |S | − 1)!
|N |!

(c(S ∪ i) − c(S))

We also refer to section 3.3.1 of this dissertation.

6.7.2 Algorithmic implementation

The characteristic function requires the total coalition cost for every subcoalition
S ⊆ N to be known. However, the solution set for a subcoalition is represented by a
Pareto front in which each solution has a different total cost. Therefore, obtaining
the cost for a subcoalition is not straightforward. To allow a fair comparison of the
cost of two solutions from different subcoalitions, we introduce the idea of constant
flexibility. This idea assumes that the attitude of a partner towards flexible behaviour
is independent of the coalition configuration.

Consider the following example for a two-partner coalition. The collaborative
solution for which we want to allocate the total cost induces a time window violation
of 200 and 500 for the partners respectively. To calculate the Shapley value, the stand-
alone cost of each partner should be known. As the stand-alone scenario of each
individual partner is represented by a Pareto front, the cost from the stand-alone
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Table 6.5: Binary-to-integer conversion of all subcoalitions for a three-partner coali-
tion.

integer binary integer binary

1 0 0 1 5 1 0 1

2 0 1 0 6 1 1 0

3 0 1 1 7 1 1 1

4 1 0 0

solution that corresponds to a time window violation of 200 is taken for partner 1.
A similar approach is used to determine the stand-alone cost of partner 2. In this
way, it is assured that the difference in cost for the two solutions are based solely on
the difference in coalition configuration as the values on the time window violation
objective are equal.

To include the Shapley value in the partner efficiency model, an integer–to–binary
conversion is used. Each subcoalition is labelled by an integer ranging from 1 up to
2
n − 1, for an n-partner cooperation. The composition of a subcoalition (stating if a

partner is a member of this subcoalition or not) is obtained by the corresponding
binary representation. For a three-partner coalition, the different subcoalitions
are simulated in the order shown in table 6.5. In this way it is ensured that all
(sub)coalitions can rely on the results of their subcoalitions.

6.8 Computational experiments

Both methods and their underlying algorithmic solution approaches, previously
discussed in this chapter, are implemented in C++ (MS visual studio) and tested on
existing benchmark instances, found in the TSPSTW literature. All computational
results are obtained using an Intel(R) Core(TM) i7-4790 @ 3.60GHz and 16GB of
RAM (Linux operating system with wine interface).

6.8.1 Benchmark instances

For the experiments, we used the benchmark instances provided by Dumas et al.
(1995) as the input for all the stand-alone scenarios, i.e., for every partner in the
coalition, another benchmark instance is selected. A coalition of multiple partners
is therefore represented by a combination of multiple existing benchmark instances. In
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order to prevent the aggregated instances from becoming too large to solve them
in a reasonable amount of time, we limit the experiments to the small instances
with 20 client nodes. The aggregated three-partner instances therefore contain 60

customer nodes and eight objectives from which two at the coalition level and two
for each individual partner. Four different coalitions are simulated, based on the
combination of instances shown in table 6.6. The instance are named as follows:
n[number-of-customers]w[time-window-width].[id-number].txt.

Table 6.6: Construction of the benchmark instances.

Coalition id Partner A Partner B Partner C

C1 n20w20.001.txt n20w20.002.txt n20w20.003.txt
C2 n20w40.001.txt n20w40.002.txt n20w40.003.txt
C3 n20w60.001.txt n20w60.002.txt n20w60.003.txt
C4 n20w80.001.txt n20w80.002.txt n20w80.003.txt

6.8.2 Stopping criterion

To allow a fair comparison between the two methods and the results obtained for
subcoalitions of different sizes, we will use a predefined number of iterations as the
stopping criterion. In each iteration, we try to improve every solution in the current
Pareto set with respect to every objective function in the model. In other words, a
new iteration is initiated every time the expansion operator is called. The required
calculation time will therefore vary significantly according to the model complexity
and the instance size. In what follows, the maximal number of iterations is set to
100.

6.8.3 Simulation results

The set of three-partner coalitions is solved by applying both the coalition efficiency
model and the partner efficiency model. All obtained results are visualised in
figs. 6.5 to 6.8 and summarised in table 6.7. In all figures, the stand-alone scenario is
obtained by solving the (non-collaborative) travelling salesman problem with soft
time windows for each individual partner separately (see also section 6.4.1). The
main conclusions are discussed in this section.
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Figure 6.5: Solutions for the C1 instance.

First, we can conclude that engaging in a horizontal cooperation is profitable for
all partners in the simulated coalitions. All solutions returned by both the coalition
efficiency model and the partner efficiency model dominate the stand-alone solutions.
This means that a reduction in both total cost and time window violation is realised
for all partners through horizontal cooperation.

Furthermore, in table 6.7, the number of coalition efficient solutions found in step
2 of the coalition efficiency model is given in column ‘#CE-sol’. From this set, the
number of solutions on the efficient Pareto front of all partners is given in column
‘#sol’. It can be concluded that a feasible solution is found for three out of four
simulated coalitions. For coalition C4, none of the coalition-efficient solutions was
non-dominated with respect to all individual partner objectives. Compared to the
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(b) Partner B
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(c) Partner C

Figure 6.6: Solutions for the C2 instance.
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(a) Partner A
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(b) Partner B
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Figure 6.7: Solutions for the C3 instance.
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Figure 6.8: Solutions for the C4 instance.
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partner efficiency model, only a limited number of solutions is returned by the
coalition efficiency model.

Table 6.7: Overview of all simulation results for 100 iterations.
Coalition efficiency model Partner efficiency model

Calculation time (s) Results Calculation time (s) Results
1 partner 2 partners 3 partners #CE-sol #sol 1 partner 2 partners 3 partners #sol

C1 1.09 6.40 25.02 92 1 2.71 185.71 1777.86 2

C2 1.04 7.52 29.22 97 1 3.04 190.30 990.43 7

C3 0.95 7.38 29.72 56 3 2.90 172.81 1761.75 3

C4 0.96 7.37 25.64 95 0 3.06 202.66 2288.37 6

average 1.01 7.17 27.40 2.93 187.87 1704.60

This might be due to the fact that the model’s main objective is the efficiency of
the coalition. Solutions are therefore only constructed according to the objectives
defined at the coalition level. It is after the optimisation, in steps 3 and 4, that
the obtained solutions are evaluated by the individual partners and removed if
not efficient. It should be acknowledged that finding a good intersection for all
individual partners’ objectives during the evaluation phase is a matter of luck, as
these individual objectives are not taken into account while constructing the solution
set at the coalition level. Therefore, there might exist a large discrepancy between the
direction in which the optimisation is executed (coalition objectives), and the way
the final solutions are evaluated (individual partner objectives). Furthermore, the
Shapley value cost allocation mechanism relies on the solution set found for every
possible subcoalition of the coalition, which therefore has to be simulated as well. A
small change in one of these subcoalition Pareto frontiers might result in a different
evaluation of the current solutions at the coalition level.

The partner efficiency model tends to provide a better approximation of the under-
lying Pareto frontiers. The reason is twofold. First, by not limiting the search to
only solutions that are Pareto-efficient at the coalition level, additional solutions are
found in the partner efficiency model that will never be considered by the coalition
efficiency model. Second, the optimisation problem is solved directly at the indi-
vidual partner level, without introducing the aggregation step towards the coalition
level. As a result, the evaluation potential solutions is in line with the optimisa-
tion procedure itself. The partner efficiency model is therefore able to provide the
decision maker with a more complete view on the trade off between the different
individual partners’ objectives. This strength is also its biggest drawback as due
to the growing number of objectives, the computational complexity of the model
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increases significantly, resulting in larger calculation times. The average calculation
time for all subcoalitions of different sizes are also shown in table 6.7.

6.9 Conclusions and future research

The recent trend of horizontal cooperation in logistics receives increasing attention as
it can yield some major advantages. Because of a more efficient operational planning,
transportation companies are able to reduce the total logistics cost, while maintaining
high service levels. From an operational perspective, however, horizontal cooperation
requires existing models to be revised in order to comply with a multi-partner
collaborative environment. This chapter can be considered as a first, exploratory step
towards more integrated methods for operational optimisation in a multi-partner
context.

In this chapter, we introduced the concepts of coalition efficiency and partner efficiency
to acknowledge a difference in priorities and goals between all collaborating partners,
and between the group and the individual players. We have used these definitions
to construct two new solution approaches for solving a multi-objective collaborative
transportation problem: the coalition efficiency model and the partner efficiency model.
Both models aim at providing the decision makers with a solution set by focusing
not only on the performance of the group but also on the individual objectives of
each partner.

To ensure that the total coalition cost is divided properly among all collaborating
partners, both models aim at integrating a cost allocation mechanism into the
optimisation procedure. In the coalition efficiency model, this is done sequentially
after an aggregated logistics plan is constructed for the coalition as a whole. The
partner efficiency model on the other hand, combines the operational planning and
the cost allocation method into one optimisation problem. Although this integration
might guide the search into a more desirable direction during the optimisation phase,
it will increase the complexity of the model exponentially.

The coalition efficiency model is able to generate good quality solutions in relatively
short calculation times. However, due to the fact that the optimisation is executed
at coalition level where as afterwards solutions are evaluated on the partner level
objectives, only a very limited number of solutions is returned by the algorithm. The
fact that an efficient solution at the coalition level is also efficient at individual partner
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level can be considered a matter of “luck”. The partner efficiency model, on the other
hand, provides the decision maker with a more complete Pareto front approximation,
allowing a better understanding of the underlying trade-offs between the different
objectives of the individual partners. Because of this reason, we prefer the partner
efficiency model as all individual partner objectives are included explicitly in the
optimisation procedure. This is, however, at the expense of very high calculation
times, compared to the coalition efficiency model.

As both models possess advantageous properties, a promising opportunity for
further study would be the integration of both ideas. The aim of that integrated
model should be finding a balance between the objectives at coalition and partner
level. The integration of both models is considered in chapter 8.

Furthermore, we aim to integrate different cost allocation methods into the suggested
models and study the impact of these methods on the obtained solution set (the
form of the obtained Pareto frontier). Also, the integration of more qualitative
techniques for the evaluation and comparison of multi-objective solution spaces (e.g.,
the hypervolume, measures of spacing and spread,. . . ) might improve the overall
quality of the solution implementation for both models.
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7

The Clustered vehicle routing problem

Abstract:

In this chapter, we present an improved two-level heuristic to solve the Clustered Vehicle Routing

Problem (CLUVRP). The CLUVRP is a generalization of the classical (Capacitated Vehicle Routing

Problem (CVRP)) in which customers are grouped into predefined clusters, and all customers in a

cluster must be served consecutively by the same vehicle. This chapter contributes to the literature in

the following ways: (i) new upper bounds are presented for multiple benchmark instances, (ii) good

heuristic solutions are provided in much smaller computing times than existing approaches, (iii) the

CLUVRP is reduced to its cluster level without assuming Euclidean coordinates or distances, and (iv) a

new variant of the CLUVRP, the CLUVRP with weak cluster constraints, is introduced. In this variant,

clusters are allocated to vehicles in their entirety, but all corresponding customers can be visited by the

vehicle in any order.

The proposed heuristic solves the CLUVRP by combining two variable neighbourhood search algorithms,

that explore the solution space at the cluster level and the individual customer level respectively. The

algorithm is tested on different benchmark instances from the literature with up to 484 nodes, obtaining

high quality solutions while requiring only a limited calculation time.



the clustered vehicle routing problem

7.1 Research context and literature review

Introduced by Dantzig and Ramser (1959), the vehicle routing problem (VRP) is one
of the best known and most widely studied problems in the Operations Research
community. Many variants of the VRP have been proposed and solved during the last
decades. In this chapter, we focus on the clustered vehicle routing problem (CLUVRP), a
variant of the capacitated vehicle routing problem (CVRP) in which all customers are
partitioned into predefined clusters. In the strict version of the CLUVRP, all customers
belonging to the same cluster should be visited by the same vehicle consecutively
in the same path. In other words, when a customer is visited by a vehicle, all other
customers belonging to the same cluster should be visited first before the vehicle
can either return to the depot or move to a client that belongs to another cluster.
We refer to this problem as the clustered vehicle routing problem with strong cluster
constraints. In section 7.6, we will define a new variant of the problem with weak
cluster constraints.

The idea of customer clustering was introduced by Chisman (1975) when defining the
clustered travelling salesman problem (Clustered Travelling Salesman Problem (CLUTSP)).
The objective of this problem is to construct a Hamiltonian path with minimum
distance, visiting all customers exactly once. Customers, however, are assigned
to a set of predefined clusters and an extra constraint imposes that all customers
belonging to the same cluster should be served consecutively. The main algorithmic
contributions regarding the CLUTSP consist of a tabu search heuristic (Laporte, Potvin,
and Quilleret 1997), genetic algorithms (Ding, Cheng, and He 2007; Potvin and
Guertin 1996) and a path relinking approach including GRASP (Mestria, Ochi, and
Lima Martins 2013). In addition to a number of vehicle routing applications, the
CLUTSP can also be applied in many other fields, such as manufacturing (machine
scheduling, plate cutting, optimisation of resource usage in a production process), IT
(disk fragmentation, optimisation of computer program structure) and microscopy
(cytology) (Laporte and Palekar 2002).

The CLUVRP was introduced by Sevaux and Sörensen (2008) in order to model the
parcel delivery activities of courier companies. A common practice in this industry
is to sort all outbound parcels into bins, where each bin corresponds to a specific,
predefined part of the distribution area, called a zone. The first step in solving the
distribution planning problem of a courier company is to assign these bins (zones)
to the vehicles available. A multi-objective approach for this problem is presented by
Janssens et al. (2015). Afterwards, an optimal cluster and customer sequence should
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be determined for every vehicle. Other examples involving customer clustering can
be found in situations where it is desirable that certain customers are served by the
same vehicle. This might be due to the fact that some customers demand a similar
service, request a specific repairman skill, or if the customer-driver relationship is
perceived important by one of the parties.

In Pop, Kara, and Marc (2012), an exact method for solving the CLUVRP is developed
as an extension of the Generalized Vehicle Routing Problem (Generalised Vehicle
Routing Problem (GVRP)). The GVRP is closely related to the CLUVRP, as both problems
share the concept of customer clustering. Contrary to the CLUVRP, the GVRP requires
that only one customer is visited in every cluster (Ghiani and Improta 2000). A
new compact and effective integer programming formulation and exact solution
approach is proposed in Battarra, Erdoğan, and Vigo (2014).

To solve the CLUVRP heuristically, Barthélemy et al. (2010) introduce a transformation
of the CLUVRP into the CVRP. This is done by adding a large distance M to all
inter-cluster edges in the distance matrix. As a result, routes are obtained in which
all customers of a single cluster are served before leaving the cluster, because of the
high penalty costs. In Barthélemy et al. (2010) this big M approach is further combined
with a simulated annealing heuristic.

A hybrid algorithm that does not make use of the big M transformation is proposed
in Marc et al. (2015), but this algorithm uses precomputed cluster centres and is
therefore only able to solve Euclidean instances. Furthermore, no calculation times
are mentioned.

Two alternative metaheuristic solution approaches are proposed by Vidal et al. (2015).
The first one is an adaptation of the Iterated Local Search (ILS) algorithm developed
by Subramanian (2012) for the CVRP. In order to avoid the evaluation of many
infeasible moves, due to the additional cluster constraints, the neighbourhoods are
redefined. Secondly, Vidal et al. (2015) use their Unified Hybrid Genetic Search
(UHGS) approach to solve the CLUVRP. Since this method is designed to solve the
non-clustered VRP, the pre-computation of all intra cluster Hamiltonian paths is
required. The authors report high quality solutions for both methods. This solution
quality, however, comes at the expense of very high calculation times.

Defryn and Sörensen (2015c) propose a decomposition of the problem in two op-
timisation levels: a high-level routing problem at the cluster level and a low-level
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routing problem at the individual customer level. Expósito-Izquierdo, Rossi, and
Sevaux (2016) acknowledge the two-level optimisation strategy and propose a solu-
tion algorithm that combines the Record-to-record algorithm (Li, Golden, and Wasil
2007) at the cluster level with the Lin-Kernighan heuristic (Lin and Kernighan 1973)
to determine the intra-cluster routes.

The current chapter contributes to the existing literature in the following ways. First,
we are able to report improved results on most of the instances provided by Expósito-
Izquierdo, Rossi, and Sevaux (2016). Secondly, even though good algorithms exist
for solving the CLUVRP , most notably the ones proposed by Vidal et al. (2015),
a gap remains for an approach that allows to calculate good solutions in a short
amount of computing time. The heuristic procedure proposed in this chapter is able to
generate good quality feasible solutions very fast. Such an algorithm is necessary
in situations where large calculation times are not available or impractical, such as
in the daily planning process of couriers or other transportation companies. It is
additionally useful in applications for which the CLUVRP is solved many times as a
subproblem. For example, the problem of defining the optimal customer clusters
in the distribution area will rely on the CLUVRP solution as an evaluation criterion.
In this case, a fast evaluation is preferred over the fact that the optimal solution
is guaranteed. A third contribution is that, compared to Defryn and Sörensen
(2015c) and Expósito-Izquierdo, Rossi, and Sevaux (2016), we generalise the two-level
framework to also handle non-Euclidean instances. Finally, a new CLUVRP variant,
i.e., the CLUVRP with weak cluster constraints is introduced in this chapter. For some
applications, the use of clusters might be beneficial to some extent (e.g., the sorting
of the packages and the allocation of zones to vehicles for courier companies, as
described above), but could be relaxed when it comes to optimising the route of a
single vehicle. In other words, the CLUVRP with weak cluster constraints still enforces
that all customers belonging to the same cluster are visited by the same vehicle, but
relaxes the constraint that they should be visited consecutively. The customers in the
clusters assigned to a vehicle therefore can be visited in any order. To the best of our
knowledge, this problem has not yet been described in the literature.

The structure of the chapter is as follows. In section 7.2, the CLUVRP is formally de-
scribed, after which a detailed analysis of the developed metaheuristic is performed
in section 7.3. Our algorithm is tuned and tested on multiple instances of different
sizes in sections 7.4 and 7.5. The CLUVRP with weak cluster constraints is introduced
and compared to the original strong cluster constraint variant in section 7.6. Finally,
the main conclusions are summarised in section 7.7.
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7.2 Problem definition

In the CLUVRP with strong cluster constraints, we are given a complete undirected
graph G = (V , E), where V is a set of vertices including one depot (denoted as V0)
and multiple customer nodes. A distance di j , is associated with each edge (i, j) ∈ E

connecting two nodes. We consider K to be a set of homogeneous vehicles with a
maximum capacity Q each. All vehicles start and end their trip at the depot. For each
customer i the demand is denoted by qi . Furthermore, a set of clusters is denoted by
R. Cluster r0 ∈ R only contains one node, the depot. All other clusters contain at least
one customer. The set of customers in a cluster is denoted as Cr = {i ∈ V\V0 : ri = r},
∀r ∈ R.

Following Expósito-Izquierdo, Rossi, and Sevaux (2016), the CLUVRP can be defined
by the mathematical model described below. Consider Z to be any proper subset of
V . Then, let δ+(Z) be the set of edges (i, j) ∈ Z ×V\Z (i.e., the edges connecting all
vertices in Z with the vertices not in Z , referred to as outgoing edges) and δ−(Z) the
set of edges (i, j) ∈ V\Z × Z (i.e., the edges connecting all vertices outside of Z with
all vertices in Z , referred to as incoming edges).

xi jk =

{
1 vehicle k travels from node i to node j
0 otherwise

yik =

{
1 customer i is served by vehicle k
0 otherwise
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min
∑
(i,j)∈E

∑
k∈K

di j xi jk (7.1)

Subject to ∑
k∈K

yik = 1 ∀i ∈ V\V0

(7.2)∑
k∈K

y0k = |K | (7.3)∑
j∈V\V0

xi jk =
∑

j∈V\V0

xjik = yik ∀k ∈ K ,∀i ∈ V

(7.4)∑
i∈V

qiyik ≤ Q ∀k ∈ K

(7.5)∑
i∈S

∑
j<S

xi jk ≤ yhk ∀Z ⊆ V\V0,∀h ∈ Z ,∀k ∈ K

(7.6)∑
(i,j)∈δ+(Cr )

∑
k∈K

xi jk =
∑

(i,j)∈δ−(Cr )

∑
k∈K

xi jk = 1 ∀r ∈ R

(7.7)

xi jk ∈ {0, 1} ∀(i, j) ∈ E ,∀k ∈ K
(7.8)

yi ∈ {0, 1} ∀i ∈ V ,∀k ∈ K
(7.9)

In the model formulation above, the objective function (eq. (7.1)) minimises the
total distance travelled by all vehicles. Equation (7.2) ensure that each customer
is visited exactly once. Equation (7.3) state that all vehicles should visit the depot.
Equation (7.4) guarantee that the same vehicle that arrives at a customer also leaves
from that customer. Equation (7.5) make sure that vehicle capacities are respected.
The subtour elimination constraints are represented by eq. (7.6). Equation (7.7)
establish that each cluster is visited exactly once by one vehicle (e.i., there is exactly
one incoming and one outgoing edge for the cluster r).
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The CLUVRP is visualised in fig. 7.1. On the left hand side, the final solution of the
CLUVRP with strong cluster constraints is shown at the individual customer level. The
corresponding solution at the cluster level is included at the right hand side. This
high level representation will be used during the algorithm to reduce the complexity
of the problem by exploiting its clustered substructure.
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(a) A CLUVRP solution at the customer level
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D

E

F
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(b) A CLUVRP solution at the cluster level

Figure 7.1: The CLUVRP with strong cluster constraints.

As demonstrated by Lenstra and Kan (1981), the CVRP is NP-hard. Since any CVRP

can be reduced to a CLUVRP with one customer in each cluster and the complexity of
this reduction is linear with respect to the number of customers, the CLUVRP is also
NP-hard (Barthélemy 2012).

7.3 A metaheuristic approach for the CLUVRP

We propose a metaheuristic approach that explores the solution space at two different
levels: the cluster level and the customer level. At both levels, a Variable Neighbour-
hood Search (VNS) algorithm is used to find a local optimum. VNS, introduced by
Mladenović and Hansen (1997) has proven to be a successful framework for solving
combinatorial optimisation problems, especially vehicle routing problems (Hansen
and Mladenović 2014). First, the problem is solved at the cluster level. Afterwards,
this result is used as an input for the customer level VNS. During the diversification
phase, the algorithm moves back from the customer to the cluster level. The outline
of our heuristic is shown in algorithm 2. In the following sections, we take a closer
look at the different operators and their implementation.
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Algorithm 2 Pseudocode of the two-level metaheuristic approach for solving the
CLUVRP.

1: nIterationsNoImprovement ← 0;
2: goToNodeV NS ← false; stoppingCriterion← false;
3: best solution found: S∗i ;
4: objective value of best solution found: f (S∗i ) ← ∞ ;
5: Step 0: Precomputation
6: calculate-inter-cluster-distances();
7: Step 1: Constructive phase
8: Sc ← allocate-clusters-to-vehicle();
9: Step 2: Intensification phase

10: do
11: S′c ← perform-VNS-at-cluster-level(Sc);
12: do
13: Si ← convert-from-cluster-to-customer-level(S′c);
14: S′i ← perform-VNS-at-customer-level(Si);
15: if f (S′i ) < f (S∗i ) then
16: S∗i ← S′i ;
17: f (S∗i ) ← f (S′i );
18: nIterationsNoImprovement ← 0;
19: else
20: nIterationsNoImprovement ← nIterationsNoImprovement + 1;
21: if nIterationsNoImprovement = maxIterationsNoImprovement then
22: stoppingCriterion← true;
23: break;
24: end if
25: end if
26: Step 3: Diversification phase
27: Sc ← perturb(S′c);
28: repair(Sc);
29: r ← get-random-number[0,1]();
30: if r < cluV NSProb then
31: goToNodeV NS ← false;
32: else
33: goToNodeV NS ← true;
34: end if
35: while goToNodeV NS = true;
36: while stoppingCriterion = false;
37: return S∗i ;
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7.3.1 Precomputation

During precomputation all inter cluster distances are quantified. As described earlier,
only the distance dN (i, j) between individual nodes i and j is given. These distances
are not necessarily symmetrical or Euclidean. To solve the CLUVRP at the cluster
level (i.e., to determine the assignment of clusters to vehicles and the sequencing
of the clusters per vehicle), the inter cluster distance matrix should be defined. For
this purpose we use the shortest edge between two clusters as an approximation for
the inter-cluster distance as this will be the preferred edge to go from one cluster to
another in the low-level routing solution.

7.3.2 Constructive phase

The main goal of the constructive phase is to generate a feasible initial solution
at the cluster level. This means that for every cluster, the individual customers are
disregarded and the cluster as a whole is allocated to an available vehicle. Even
though the travel times between the clusters are taken into account during the
constructive process, constructing a feasible allocation of clusters to vehicles is the
priority in this phase. Therefore, instead of using a VRP algorithm, a bin packing
approach is preferred here. This design choice is justified as follows.

First, contrary to a standard VRP formulation, the number of vehicles is given and
should not be optimised any further, as all vehicles must be used anyway. As
a result, the exact number of trips is known in advance. Furthermore, it can be
argued that the inter cluster Hausdorff distances are only an approximation of the
distances between two clusters, as the real distance depends on both the cluster and
customer sequence in the trip. Finally, the instances (especially the smaller ones) are
constructed in such a way that only very little to no spare capacity is available. For
these reasons, a problem specific bin packing approach is more suitable here.

If we disregard the travel of the vehicles between clusters, the allocation of clusters
with their given demand to a set of vehicle can be modelled as a one-dimensional
bin packing problem with given number of bins. A set of items (clusters) with a given
weight (total demand) are to be packed into a set of bins (vehicles) with a predefined
maximal load (vehicle capacity Q).
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The one-dimensional bin packing problem is shown to be strongly NP-complete
(Garey and Johnson 1978). Because we are not interested in the optimal bin packing
solution, but a solution for the CLUVRP, we prefer a fast algorithm that provides us
with a feasible result. The first-fit decreasing and the best-fit decreasing algorithms
are most commonly applied in the literature. In this chapter, the best-fit decreasing
strategy is adopted.

The traditional best-fit bin packing algorithm places each item (cluster), in succession,
into the fullest bin (vehicle) in which it fits (Fleszar and Hindi 2002). For a simple
bin packing problem this is satisfactory, but when solving the CLUVRP, it is important
that efficient routes can be constructed afterwards with the clusters that have been
allocated to the same vehicle. For every cluster, sorted in decreasing order according
to demand, we therefore look at the latest cluster that was added to all the bins
(vehicles). We then prefer the vehicle for which this latest cluster is located the
closest to the current cluster to add. In this way, the algorithm is more likely to
combine different clusters that are located in the same part of the distribution area
into one vehicle. Once a vehicle has departed from the depot in a certain direction
(certain clusters are assigned to that vehicle), we force that other clusters in that
same direction are also allocated to this vehicle.

Due to the deterministic character of this constructive heuristic, the same initial
solution will be generated during every run of the algorithm. In order to prevent
this from happening, an alternative strategy, which involves some randomness, is
defined. With a predefined probability randConstructProb, the current cluster
is not allocated to the closest vehicle, but from all feasible vehicles (vehicles with
enough spare capacity) one vehicle is selected at random.

7.3.3 Redistribution algorithm

As for each instance the number of vehicles is given, the heuristic constructive
procedure used to allocate clusters to vehicles might reach a point where no vehicle
has enough capacity left to store the next cluster. In order to cope with these
situations, a specific redistribution operator, that tries to re-optimize the current
capacity distribution, is built into the solution algorithm.

The clusterSwap operator is illustrated in fig. 7.2. Two vehicles are considered with
a capacity of 50 items each and eight clusters with a demand of 19, 14, 14, 12, 11, 11, 10
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and 7 items should be allocated to one of the vehicles. As shown, adding the last
cluster to any of the vehicles will result in an infeasible solution. This issue is solved
by swapping the vehicles assigned to the clusters with a demand of 14 and 10, which
will result in a 100% utilisation of vehicle 2. As a results, enough spare capacity
becomes available in vehicle 1 to hold the cluster with a demand of 7.

vehicle 1 19 14 12 5

vehicle 2 14 11 11 10 4

7?

Figure 7.2: Visualisation of the clusterSwap operator.

7.3.4 Intensification phase

From the moment that a feasible solution is constructed, the algorithm starts the
intensification phase in which the initial solution is improved until a local optimum
is reached. This is done in three steps.

First, the initial solution is improved at its cluster level by means of a VNS. A locally
optimal cluster sequence is obtained for every vehicle. Afterwards, this cluster level
solution is translated to the individual customer level by a conversion operator. The
obtained result is then used as the input for a second VNS at the individual customer
level.

7.3.4.1 Intensification at the cluster level

The first part of the intensification phase is executed at the level of the clusters
and uses the inter cluster distance matrix, constructed during precomputation. By
ignoring all individual customer nodes, the problem size and complexity are reduced.
The obtained high level routing problem is solved by a VNS with the objective of
finding an optimal cluster sequence for every vehicle. The search is based on seven
local search operators that are commonly used in vehicle routing. Both intra and inter
vehicle neighbourhoods are explored. The intra vehicle operators try to minimize the
total distance of a single trip. The inter vehicle operators combine at least two trips
while trying to improve the global cost (total distance) of the solution by moving one
or exchanging a set of clusters between different vehicles. All local search operators
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are shown in table 7.1 and have complexity O(n2). We use the first improvement
strategy, as every beneficial move encountered is executed by the algorithm.

Table 7.1: List of all intra and inter vehicle local search operators, implemented in
the VNS at the cluster level.

Intra vehicle operators

Operator Definition

Swap Swap the position of two clusters in a single trip.
Relocate Remove one cluster and insert it at a different position in the trip.
Two-Opt Remove two edges and replace them by two new edges to close the tour.
Or-Opt Remove N consecutive clusters and insert them at a different position in the trip. (with

N = {2, 3, 4})

Inter vehicle operators

Operator Definition

Swap Swap the vehicle of two clusters.
Relocate Remove one cluster and insert it in another trip.
Or-Opt Remove N consecutive clusters and insert them in another trip. (with N = {2, 3, 4})

The order in which the neighbourhoods are checked by the algorithm is changed
randomly each time the VNS is called. When no improvement can be found in the
current neighbourhood, the algorithm moves to the next neighbourhood. Every time
an improvement is found, the algorithm returns to the first neighbourhood. This is
repeated until none of the neighbourhoods is able to improve the current solution
any further, and a local optimum is reached at the cluster level.

7.3.4.2 Conversion operator

The best cluster sequence for every vehicle obtained during the intensification phase
at the cluster level is converted into a solution at the customer level before sending it
to the customer level intensification phase. This is done by the conversion operator.

For each cluster, an intra cluster Travelling Salesman Problem (TSP) was constructed
heuristically during pre-processing. The order in which the nodes appear in this TSP

is maintained by the conversion operator. The starting node is chosen as the node
closest to the current position of the vehicle. In other words, when entering a new
cluster, the customer that is closest to the vehicles’ current position (either the last
customer visited in the previous cluster of the depot) is visited first. Starting from
this customer, the node sequence equals the intra cluster TSP constructed during
pre-processing.
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With a probability given by the parameter randConversionProb, all nodes of the
current clusters are added randomly to the solution. In this way, we introduce some
diversification in the conversion operator and a larger part of the solution space is
searched.

The solution obtained after applying the conversion operator is considered the initial
solution at the customer level.

7.3.4.3 Intensification at the customer level

The initial solution at the customer level constructed by the conversion operator,
is improved further during a second intensification phase in which all individual
customer nodes are taken into account. Similar to the VNS discussed insection 7.3.4.1,
a set of neighbourhoods is explored in the search for a local optimal solution.

The cluster constraints, however, impose that all customers belonging to the same
cluster should remain visited consecutively in the same path. This restricts the
number of feasible moves to be checked by the local search operators.

Two main groups of neighbourhoods can be distinguished: the intra cluster and
the inter cluster neighbourhoods. The first group is responsible for improving the
Hamiltonian path within a certain cluster. The optimality of these intra cluster routes
is also dependent on the cluster sequence, as this might affect the optimal edge
to enter or leave the cluster. Secondly, the inter cluster neighbourhoods operate
on the cluster order as obtained by the VNS at the cluster level. As no customer
information was taken into account at the cluster level, a modified cluster sequence
might be beneficial. The inter cluster operators can be both intra or inter vehicle,
as the performed moves can involve a single vehicle (e.g., two entire clusters swap
within the same vehicle), or multiple vehicles (e.g., two entire clusters belonging
to different vehicles are swapped). The neighbourhoods used by the VNS at the
customer level are described in table 7.2.

Similar to the first VNS, the applied neighbourhoods are checked sequentially. When
an improvement is found, the algorithm restarts by exploring the first neighbour-
hood. It continues until none of the neighbourhoods is able to improve the solution
any further and a local optimum is reached. Again, the order in which the neigh-
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Table 7.2: The different VNS neighbourhoods at the customer level.
Intra cluster operators

Operator Definition

Swap Swap the position of two customers within the same cluster in a single trip.
Relocate Remove one customer and insert it at a different position within the same cluster.
Two-Opt Remove two edges and replace them by two new edges to close the tour.
Or-Opt Remove N consecutive customers and insert them at a different position within the same

cluster in the trip. (with N = {2, 3, 4})

Inter cluster operators (intra vehicle)

Operator Definition

Swap Swap the position of two clusters within the same trip.
Relocate Remove all customers of a single cluster and insert them sequentially at a different

position in the same trip.

Inter cluster operators (inter vehicle)

Operator Definition

Swap Swap the vehicle of two clusters.
Relocate Remove all customers of a single cluster and insert them sequentially in another trip.

bourhoods are checked by the algorithm is changed randomly by each call of the
VNS.

7.3.5 Diversification phase

After having evaluated the new solution obtained at the customer level, the algorithm
executes its diversification strategy to continue the search and explore another part
of the solution space. This diversification operator consists of a perturbation operator,
that destroys parts of the solution, followed by a repair operator.

As all customer nodes that belong to the same cluster should remain grouped
together, the removal of one customer node by the perturbation operator would
in the end result in the removal of the complete cluster this customer belongs to.
Therefore, the perturbation operator is applied immediately to the current solution at
the cluster level. A random part of the solution, denoted by the parameter pertRate,
is destroyed and the removed clusters are stacked in a separate list.

Afterwards, all removed clusters are reallocated to random vehicles by the repair
operator while making sure that the vehicle capacity constraints are not violated.
If no feasible vehicle can be found for a certain cluster, the redistribution operator
(described in section 7.3.3) is called by the algorithm.
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When a new solution is obtained, the algorithm can resume its search at two
different points. Either the new solution at the cluster level is improved first by
the intensification phase at the cluster level, or the algorithm calls the conversion
operator immediately after the diversification phase. The probability to call the VNS

at the cluster level after the diversification operator is denoted by the parameter
cluVNSprob.

7.4 Parameter tuning and stopping criterion

7.4.1 Parameter tuning

The algorithm is controlled by four parameters, summarised in table 7.3. In order to
fully test the impact of these parameter values on the solution quality, a full factorial
statistical experiment is executed. The tuning is done on a selection of large-size
instances as provided by Battarra, Erdoğan, and Vigo (2014). See section 7.5 for a
more elaborate presentation of the instances. The results of this tuning procedure
are visualised in fig. 7.3, for each individual parameter. The obtained best parameter
settings are shown in the last column of table 7.3. The optimal value for the
randConstructProb parameter is zero, stating that allocating each cluster to a close-
by vehicle outperforms a randomized approach. For the cluVNSprob parameter, the
optimal value equals 1, meaning that after the diversification phase the best strategy
is again to first optimise the solution at the cluster level. All results in this chapter
are obtained using these optimal parameter values.

Table 7.3: Results of parameter tuning on a small subset of the large-size instances.
Parameter Definition Tested Values # Best

randConstructProb Probability that a cluster is allocated to a
random instead of the closest feasible vehi-
cle during construction.

0,0.1,. . . ,0.5 6 0

randConversionProb Probability that an intra cluster route is in-
serted randomly instead of using the near-
est neighbour approach.

0,0.1,. . . ,1 11 0.4

pertRate Percentage of the solution that is randomly
destroyed by the perturbation operator.

0,0.1,. . . ,0.5 6 0.1

cluVNSprob Probability that, after the diversification
phase, the new solution is improved first
at the cluster level before going to the con-
version operator.

0.2,0.3. . . ,1 9 1
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Figure 7.3: Solution quality, measured by the average optimality gap and the average
calculation time, for different parameter settings.
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Figure 7.4: Relationship between the number of iterations without improvement
(stopping criterion) and the average optimality gap for the tuning instance
set.

7.4.2 Stopping criterion

The search procedure continues until a stopping criterion is reached. Our algorithm
uses a predefined number of iterations without improvement. It can be expected that the
solution quality will increase for a larger number of allowed iterations. This result is
shown in fig. 7.4. This graph is constructed by using the optimal parameter settings,
defined above, while varying the maximum number of iterations without improve-
ment. As expected, we find an almost linear relationship between the calculation
time and the number of iterations without improvement. A large improvement of the
solution quality is realised during the first seconds of execution. As the optimality
gap decreases, more calculation time is required to further improve the current
solution. To preserve a good balance between computation time and solution quality,
the stopping criterion is set to 5000 iterations without improvement.

7.5 Computational experiments

The metaheuristic is coded in C++ (MS visual studio) and tested extensively on
benchmark instances of different sizes and with varying degree of clustering. All
computational results are obtained using an Intel(R) Core(TM) i7-4790 @ 3.60GHz
with 16GB of RAM (Linux operating system with wine interface). Because the
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algorithm uses randomness during the optimisation process, the instances are
solved multiple times (20 runs per instance). Both the average and best results are
reported per instance. For a complete overview of all obtained solutions, we refer to
chapter 10.

7.5.1 Results on the gvrpθ3 instances

The algorithm is tested on a set of 79 small and medium sized test instances, denoted
as gvrpθ3, provided by Battarra, Erdoğan, and Vigo (2014), as discussed in their
paper on exact algorithms for the Clustered Vehicle Routing Problem. These GVRP instances
are adaptations of existing CVRP instances from Bektas, Erdoğan, and Røpke (2011).
The transformation is achieved by creating clusters of customers using a seed-based
algorithm and by replacing the number of required vehicles by the solution (number
of bins) of the bin packing problem for each instance. See Battarra, Erdoğan, and
Vigo (2014) for a more elaborate explanation on the design of the instances. The
resulting number of clusters reach 88, while the average number of customers per
cluster is three.

The obtained results for the gvrpθ3 instances are summarised in table 7.4. By using
their branch-and-cut method, Battarra, Erdoğan, and Vigo (2014) are able to solve 77

out of 79 instances exactly within reasonable time limits. It should be mentioned
that for these methods the preprocessing times, which lie between 3 and 8 seconds,
are not included in the calculation times. This preprocessing step consists of the
calculation of all possible Hamiltonian paths inside each cluster. Afterwards, while
running the branch-and-cut approach, these results are used to define the optimal
inter cluster connections at the customer level for a given sequence of clusters. Our
VNS algorithm is able to solve 71 instances to optimality, while significantly reducing
calculation times. For the other instances, we are able to provide a high quality
solution that lies on average 0.04% from optimality. For the instance G-n262-k25-C88-
V9 which could not be solved using the exact approach, a heuristic solution with
an objective value of 3310 is obtained in a very short calculation time. For instance
M-n200-k16-C67-V6 we improve the upper bound to 909.
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Table 7.4: Results for the gvrpθ3 instances. Comparison between the branch-and-cut
and price (bcp), branch-and-cut (bc) (Battarra, Erdoğan, and Vigo 2014)
and the two-level VNS proposed in this chapter.

BCP BC VNS (20 runs)
Opt. Avg. t(s) Opt. Avg. t(s) Opt. Avg. t(s) Avg. best GAP Avg. GAP

A 31 - 79 cust. 27/27 42.52 27/27 4.84 24/27 0.05 0.07% 0.07%
B 30 - 77 cust. 23/23 7.69 23/23 4.99 21/23 0.04 0.03% 0.04%
P 15 - 100 cust. 24/24 0.48 24/24 3.77 23/24 0.06 0.00% 0.02%
M+G 100 - 261 cust. 2/5 157.25 3/5 25.44 3/5 5.98 0.04% 0.18%

total 76/79 77/79 71/79

average 26.87 5.86 0.43 0.03% 0.04%

7.5.2 Results on the adapted Golden instances proposed in Expósito-Izquierdo, Rossi, and
Sevaux (2016)

In this section, we test our algorithm on the CLUVRP benchmark instance sets pro-
posed by Expósito-Izquierdo, Rossi, and Sevaux (2016). The instances are adaptations
of the instances introduced by Golden et al. (1998) for the CVRP. Each set is charac-
terised by a parameter ρ, representing the filling range of a vehicle. When ρ = 100%,
each vehicle can serve at most one cluster, whereas a lower filling percentage in-
dicates that a higher number of clusters can be combined in one vehicle trip. Five
different instance sets are built by setting ρ ∈ {10, 25, 50, 75, 100}%.

The two-level solution approach from Expósito-Izquierdo, Rossi, and Sevaux (2016) is
compared to the two-level VNS introduced in this chapter. Although both algorithms
are based on a breakdown of the CLUVRP in two distinct routing problems, some
important differences can be identified. First, Expósito-Izquierdo, Rossi, and Sevaux
(2016) define the high-level routing problem by replacing all clusters by their virtual
center by using the center of mass concept. Their approach is therefore limited to
Euclidean instances. Secondly, the algorithm by Expósito-Izquierdo, Rossi, and
Sevaux (2016) is mainly focused on optimising the solution at the cluster level in
which the individual customer sequence is only considered in the Lin-Kernighan
heuristic. Our two-level VNS, however, also includes a strong intensification of the
low-level routing problem by means of a separate VNS procedure. The results below
indicate that it is beneficial to devote additional attention to the solution at the
customer level.

The results of both approaches are summarised in tables 7.5 to 7.9. To allow for a fair
comparison, a maximum calculation time of 60s is considered for both algorithms.
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It can be seen that if ρ ∈ {10, 25, 50}%, almost all instances can be improved by
our two-level VNS algorithm compared to the results of Expósito-Izquierdo, Rossi,
and Sevaux (2016). The reduction in total cost can be up to 6.10% (instance 4, with
ρ = 10%). For the instance sets with a higher filling rate (ρ ∈ {75, 100}) it turns out to
be harder to improve the current best solution. This might be due to the fact that the
lower the number of clusters inside a vehicle, the more the CLUVRP converges to the
more traditional CVRP. Therefore we lose the advantage of exploiting the clustered
structure of the problem in our algorithm. However, the gaps remain far below 1%
compared to Expósito-Izquierdo, Rossi, and Sevaux (2016) for all instances, ensuring
that a high quality and competitive solution is found.

Table 7.5: Results for the adapted problem instances by Golden et al. (1998) with
ρ = 10%. Comparison between the two-level approach from Expósito-
Izquierdo, Rossi, and Sevaux (2016) (column [A]) and the two-level VNS
proposed in this chapter.

index n+1 Q best known [A] two-level VNS gap

1 240 550 5759.25 5801.67 5759.25 -0.73%
2 320 700 9247.92 9649.67 9247.92 -4.16%
3 400 900 12904.60 13249.22 12904.60 -2.60%
4 480 1000 17810.40 18966.92 17810.40 -6.10%
5 200 900 8960.31 9479.74 8960.31 -5.48%

6 280 900 10976.50 11601.77 10976.50 -5.39%
7 360 900 12485.80 13243.13 12485.80 -5.72%
8 440 900 13331.20 13756.51 13331.20 -3.09%
9 255 1000 710.64 717.16 710.64 -0.91%

10 323 1000 908.89 914.73 908.89 -0.64%

11 399 1000 1139.51 1146.57 1139.51 -0.62%
12 483 1000 1384.29 1386.48 1384.29 -0.16%
13 252 1000 1030.42 1047.57 1030.42 -1.64%
14 320 1000 1324.96 1340.16 1324.96 -1.13%
15 396 1000 1668.39 1700.28 1668.39 -1.88%

16 480 1000 2053.47 2097.47 2053.47 -2.10%
17 240 200 840.53 867.03 840.53 -3.06%
18 300 200 1097.51 1104.86 1097.51 -0.67%
19 360 200 1522.83 1522.83 1545.53 1.49%
20 420 200 2019.55 2019.55 2042.90 1.16%

#best solutions 2 18

7.5.3 Results on the adapted Golden instances proposed in Vidal et al. (2015)

Finally, we test our algorithm on yet another adaptation of the Golden et al. (1998)
instance set, proposed by Battarra, Erdoğan, and Vigo (2014). We refer to table 7.10

for an overview of the obtained results. Our two-level VNS is compared to the solution
procedure of Expósito-Izquierdo, Rossi, and Sevaux (2016), described above, and the
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Table 7.6: Results for the adapted problem instances by Golden et al. (1998) with
ρ = 25%. Comparison between the two-level approach from Expósito-
Izquierdo, Rossi, and Sevaux (2016) (column [A]) and the two-level VNS
proposed in this chapter.

index n+1 Q best known [A] two-level VNS gap

1 240 550 6051.04 6135.26 6051.04 -1.37%
2 320 700 9725.90 10005.59 9725.90 -2.80%
3 400 900 13692.60 14083.28 13692.60 -2.77%
4 480 1000 16977.90 17359.95 16977.90 -2.20%
5 200 900 9340.70 9701.89 9340.70 -3.72%

6 280 900 10840.70 11261.49 10840.70 -3.74%
7 360 900 12348.10 12720.79 12348.10 -2.93%
8 440 900 14100.80 14307.64 14100.80 -1.45%
9 255 1000 717.63 723.49 717.63 -0.81%

10 323 1000 908.26 915.09 908.26 -0.75%

11 399 1000 1131.84 1140.36 1131.84 -0.75%
12 483 1000 1387.67 1395.67 1387.67 -0.57%
13 252 1000 1034.30 1054.64 1034.30 -1.93%
14 320 1000 1317.05 1341.39 1317.05 -1.81%
15 396 1000 1667.08 1697.88 1667.08 -1.81%

16 480 1000 2048.08 2105.01 2048.08 -2.70%
17 240 200 795.33 808.24 795.33 -1.60%
18 300 200 1122.73 1138.45 1122.73 -1.38%
19 360 200 1538.20 1549.89 1538.20 -0.75%
20 420 200 2036.19 2036.19 2038.27 0.10%

#best solutions 1 19

125



the clustered vehicle routing problem

Table 7.7: Results for the adapted problem instances by Golden et al. (1998) with
ρ = 50%. Comparison between the two-level approach from Expósito-
Izquierdo, Rossi, and Sevaux (2016) (column [A]) and the two-level VNS
proposed in this chapter.

index n+1 Q best known [A] two-level VNS gap

1 240 550 6551.04 6719.17 6551.04 -2.50%
2 320 700 9787.09 9904.40 9787.09 -1.18%
3 400 900 13287.00 13303.31 13287.00 -0.12%
4 480 1000 17569.90 17935.58 17569.90 -2.04%
5 200 900 8597.31 8790.44 8597.31 -2.20%

6 280 900 10550.80 10714.34 10550.80 -1.53%
7 360 900 12673.70 12862.90 12673.70 -1.47%
8 440 900 13766.30 13924.79 13766.30 -1.14%
9 255 1000 698.04 703.07 698.04 -0.72%

10 323 1000 890.87 898.19 890.87 -0.81%

11 399 1000 1107.88 1112.35 1107.88 -0.40%
12 483 1000 1317.47 1319.98 1317.47 -0.19%
13 252 1000 1053.47 1080.84 1053.47 -2.53%
14 320 1000 1342.70 1363.99 1342.70 -1.56%
15 396 1000 1657.22 1685.61 1657.22 -1.68%

16 480 1000 2003.10 2030.60 2003.10 -1.35%
17 240 200 881.66 910.73 881.66 -3.19%
18 300 200 1200.98 1217.71 1200.98 -1.37%
19 360 200 1612.33 1631.21 1612.33 -1.16%
20 420 200 2278.64 2325.47 2278.64 -2.01%

#best solutions 0 20
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Table 7.8: Results for the adapted problem instances by Golden et al. (1998) with
ρ = 75%. Comparison between the two-level approach from Expósito-
Izquierdo, Rossi, and Sevaux (2016) (columns [A]) and the two-level VNS
proposed in this chapter.

index n+1 Q best known [A] two-level VNS gap

1 240 550 6736.15 6736.15 6736.15 0.00%
2 320 700 10204.30 10204.30 10223.20 0.19%
3 400 900 13575.70 13575.70 13635.20 0.44%
4 480 1000 17077.59 17077.59 17194.20 0.68%
5 200 900 8664.94 8664.94 8666.59 0.02%

6 280 900 11452.01 11452.01 11520.30 0.60%
7 360 900 12901.41 12901.41 12950.00 0.38%
8 440 900 13926.40 13943.65 13926.40 -0.12%
9 255 1000 773.39 773.39 773.39 0.00%

10 323 1000 1000.51 1000.51 1001.28 0.08%

11 399 1000 1223.66 1223.66 1226.91 0.27%
12 483 1000 1475.68 1475.68 1478.86 0.22%
13 252 1000 1183.12 1183.12 1183.12 0.00%
14 320 1000 1520.55 1523.44 1520.55 -0.19%
15 396 1000 1825.29 1829.32 1825.29 -0.22%

16 480 1000 2265.54 2265.54 2265.77 0.01%
17 240 200 1001.02 1001.02 1001.02 0.00%
18 300 200 1392.15 1396.27 1392.15 -0.29%
19 360 200 1951.77 1977.40 1951.77 -1.30%
20 420 200 2540.22 2540.22 2540.39 0.01%

#best solutions 14 9
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Table 7.9: Results for the adapted problem instances by Golden et al. (1998) with
ρ = 100%. Comparison between the two-level approach from Expósito-
Izquierdo, Rossi, and Sevaux (2016) (column [A]) and the two-level VNS
proposed in this chapter.

index n+1 Q best known [A] two-level VNS gap

1 240 550 6293.04 6293.04 6297.05 0.06%
2 320 700 9879.59 9879.59 9917.68 0.39%
3 400 900 12361.09 12361.09 12422.10 0.49%
4 480 1000 16130.39 16130.39 16276.70 0.91%
5 200 900 8394.11 8394.11 8399.31 0.06%

6 280 900 10777.33 10777.33 10802.70 0.24%
7 360 900 11346.11 11346.11 11411.60 0.58%
8 440 900 13188.94 13188.94 13251.30 0.47%
9 255 1000 705.19 705.19 705.19 0.00%

10 323 1000 837.52 837.52 838.55 0.12%

11 399 1000 1054.13 1054.13 1056.71 0.24%
12 483 1000 1297.31 1297.31 1300.02 0.21%
13 252 1000 996.36 996.36 996.36 0.00%
14 320 1000 1223.09 1223.09 1223.41 0.03%
15 396 1000 1531.29 1531.29 1532.82 0.10%

16 480 1000 1874.69 1874.69 1875.04 0.02%
17 240 200 844.27 844.27 844.27 0.00%
18 300 200 1212.97 1212.97 1213.13 0.01%
19 360 200 1667.45 1667.45 1667.51 0.00%
20 420 200 2128.60 2128.60 2128.77 0.01%

#best solutions 20 3
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7.6 the clustered vehicle routing problem with weak cluster

constraints

uhgsp algorithm from Vidal et al. (2015). The uhgs algorithm aims at combining the
diversification strength of a genetic algorithm with the improvement capabilities of
local search and has proven to return high quality solutions that are very close to
optimality. The algorithm relies, however, on the exact solution of all intra cluster
Hamiltonian paths, precomputed by means of Concorde (Applegate et al. 2006). This
causes the required calculation time to increase up to even above the exact solution
approach of Battarra, Erdoğan, and Vigo (2014). Although in terms of solution
quality the uhgsp method tends to outperform all existing approaches, the high
calculation times can be considered an important drawback for some applications.

To allow for the comparison with the results reported by Expósito-Izquierdo, Rossi,
and Sevaux (2016), we dedicate a maximum calculation time of 10 seconds to our
two-level VNS. On average, this corresponds to a 98% reduction in calculation time
compared to Vidal et al. (2015). The two-level VNS is able to find the optimal solution
for only 8 out of 220 instances. An optimality gap of around 1% is obtained on
average, which is equivalent to a reduction of the optimality gap by 63% compared
to Expósito-Izquierdo, Rossi, and Sevaux (2016).

7.6 The clustered vehicle routing problem with weak cluster constraints

7.6.1 Motivation

As described above, the CLUVRP with strong cluster constraints requires that all
customers that belong to the same cluster should be served consecutively by the
same vehicle. This requirement can be relaxed in some real life applications. In
parcel delivery, e.g., the customers are often clustered in zones (clusters) in order
to facilitate the sorting process. These zones are assigned to the available vehicles,
obtaining a tactical plan in which each vehicle is allowed to serve multiple zones
during one trip. (Janssens et al. 2015) However, from the moment that the vehicle
leaves the depots there is no need to visit the individual customers according to
their original zone. It might be profitable for the driver to leave a current zone, serve
customers belonging to another zone and return to the initial zone afterwards. This
can depend on the layout of the instance and the individual customer locations, but
also on real time traffic information or additional constraints such as time windows.
This gives rise to another variant of the CLUVRP, which we define as the CLUVRP with
weak cluster constraints. Similar to the CLUVRP with strong cluster constraints, we
impose that clusters are assigned to vehicles and therefore that all customers that
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Table 7.10: Comparison between the uhgsp algorithm from Vidal et al. (2015)
(columns [A]), the two-level approach from Expósito-Izquierdo, Rossi,
and Sevaux (2016) (columns [B]) and the two-level VNS proposed in this
chapter over the problem instances proposed by Battarra, Erdoğan, and
Vigo (2014).

n+1
[A] [B] two-level VNS

gap t(s) gap t(s) gap t(s) gap reduction

200 0.00% 2866.56 4.61% 10.0 0.07% 10.0 -98.56%
241 0.00% 174.90 2.39% 10.0 0.44% 10.0 -81.66%
252 0.01% 164.69 0.50% 10.0 0.53% 10.0 5.97%
255 0.02% 135.45 3.69% 10.0 1.33% 10.0 -63.93%

280 0.00% 3848.31 2.94% 10.0 0.71% 10.0 -76.00%
300 0.00% 191.26 1.04% 10.0 0.93% 10.0 -11.05%
320 0.02% 198.09 1.26% 10.0 0.85% 10.0 -32.75%
323 0.08% 175.74 4.94% 10.0 0.93% 10.0 -81.22%

360 0.00% 1248.29 2.87% 10.0 1.02% 10.0 -64.52%
396 0.05% 279.15 1.54% 10.0 1.37% 10.0 -10.89%
399 0.06% 198.00 4.96% 10.0 2.15% 10.0 -56.58%
400 0.01% 1384.18 2.56% 10.0 1.26% 10.0 -50.61%

420 0.00% 351.74 2.60% 10.0 1.11% 10.0 -57.22%
440 0.02% 1017.64 3.67% 10.0 1.32% 10.0 -64.02%
480 0.01% 1427.23 3.42% 10.0 1.49% 10.0 -56.38%
483 0.07% 389.16 4.93% 10.0 2.23% 10.0 -54.75%

Average 0.02% 878.15 3.00% 10.0 1.11% 10.0 -62.99%
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constraints

belong to a certain cluster are all served by the same vehicle. However, we allow a
vehicle to leave and re-enter a cluster multiple times during its trip.

7.6.2 Mathematical model

The mathematical model, introduced in section 7.2 is adapted below to comply with
the weak cluster constraints. Equations (7.7) are relaxed and replace by eqs. (7.16) as
each cluster can now be visited multiple times. Furthermore, an additional set of
equations is added to the model to ensure that all customers that belong to the same
cluster are visited by the same vehicle (see eqs. (7.17)).

min
∑
(i,j)∈E

∑
k∈K

di j xi jk (7.10)

Subject to ∑
k∈K

yik = 1 ∀i ∈ V\V0 (7.11)∑
k∈K

y0k = |K | (7.12)∑
j∈V\V0

xi jk =
∑

j∈V\V0

xjik = yik ∀k ∈ K ,∀i ∈ V (7.13)∑
i∈V

qiyik ≤ Q ∀k ∈ K (7.14)∑
i∈S

∑
j<S

xi jk ≤ yhk ∀Z ⊆ V\V0,∀h ∈ Z ,∀k ∈ K (7.15)∑
(i,j)∈δ+(Cr )

xi jk =
∑

(i,j)∈δ−(Cr )

xi jk ≥ 1 ∀r ∈ R (7.16)

yik = yjk ∀i, j ∈ Cr ,∀k ∈ K (7.17)

xi jk ∈ {0, 1} ∀(i, j) ∈ E ,∀k ∈ K (7.18)

yi ∈ {0, 1} ∀i ∈ V ,∀k ∈ K (7.19)
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7.6.3 Computational experiments

Our two-level VNS approach is slightly altered to solve the CLUVRP with weak cluster
constraints. More specifically, the intra cluster neighbourhoods of the VNS at the
customer level are expanded to inter cluster operators, allowing the customers to be
moved to any position in the trip.

Again, the gvrpθ3 and Golden instances as proposed by Battarra, Erdoğan, and
Vigo (2014) are solved. Table 7.11 bundles the differences in total distance between
the CLUVRP with strong and weak cluster constraints. These relative differences are
obtained by comparing the results of our algorithm for weak cluster constraints to
the results discussed in section 7.5.

As in this section the problem becomes less constrained, the objective value, defined
as the total distance travelled by all vehicles, is lower for all instance classes compared
to the CLUVRP with hard cluster constraints. The reduction in objective value lies
between 4 and 7% on average for the Golden instances, but can go up to more
than 12% for some of the instances. As the choice between strong and weak cluster
constraints might result in significant differences in total cost, this decision should
be taken with care in real life scenarios.

7.7 Conclusions and future research

In this chapter, a fast two-level VNS heuristic was presented to solve the Clustered
Vehicle Routing Problem. This metaheuristic solution approach solves the CLUVRP

without assuming Euclidean distances or converting the problem to a CVRP by
using a big-M approach. By integrating a cluster level and a customer level local
search phase, the specific clustered structure of the problem was exploited to reduce
complexity, and high quality solutions could be obtained in very short calculation
times.

Our algorithm was tested on benchmark instances from the literature with different
sizes and diverse complexities. Many of the small and medium-sized problems were
solved to optimality in very short computing times. Even if the optimal solution
was not found, an average optimality gap of 0.03% was obtained. For the large-size
instances, which are adaptations of the Golden benchmark instances as proposed by
Battarra, Erdoğan, and Vigo (2014) and Expósito-Izquierdo, Rossi, and Sevaux (2016),
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Table 7.11: Results for the gvrpθ3 and Golden instances as proposed by Battarra,
Erdoğan, and Vigo (2014) with weak cluster constraints. Reported values
are the averaged over all instances in the set, compared to the obtained
results with strong cluster constraints.

gvrpθ3 Golden instances

instance set t(s) Avg. best difference Avg. difference n+1 t(s) Avg. best difference Avg. difference

A 0.28 -2.66 % -2.52 % 200 10.00 -8.97 % -8.09 %
B 0.06 -1.18 % -1.18 % 241 10.00 -5.69 % -4.92 %
P 0.52 -4.64 % -4.58 % 252 10.00 -3.62 % -3.04 %
M+G 13.46 -3.19 % -2.73 % 255 10.00 -5.02 % -3.88 %

280 10.00 -6.57 % -5.56 %
300 10.00 -3.81 % -3.09 %
320 10.00 -3.46 % -2.88 %
323 10.00 -6.10 % -4.98 %

360 10.00 -5.23 % -4.48 %
396 10.00 -3.13 % -2.41 %
399 10.00 -4.67 % -3.48 %
400 10.00 -3.81 % -3.20 %

420 10.00 -3.49 % -2.71 %
440 10.00 -4.25 % -3.37 %
480 10.00 -3.87 % -3.15 %
483 10.00 -2.96 % -1.63 %

average 1.12 -2.86 % -2.80 % -4.65 % -3.82 %
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only a limited number of optimal solutions were found. However, with an average
optimality gap around 1% high quality and competitive solutions were obtained by
our two-level VNS approach in very small computation times. We therefore believe
that our solution approach has potential for integration in solution approaches
that rely on the CLUVRP as a subproblem as this might require the method to be
executed multiple times. For example, a courier company that wants to determine
the boundaries of its zones (cluster) in the distribution area might want to solve the
CLUVRP for every possible configuration to select the best option. In this context,
a fast method is preferred while the remaining optimality gap is a minor issue.
By allowing larger calculation times, the optimality gap is likely to reduce further.
However, we leave this trade-off to the decision maker.

Furthermore, we have introduced a new type of CLUVRP in this chapter. Next to
the traditional CLUVRP with strong cluster constraints, in which it is not allowed to
leave a cluster before having served all customers within it, we have proposed a
CLUVRP variant with weak cluster constraints. Here, all customers belonging to the
same cluster should be served by the same vehicle but customers in the different
clusters assigned to a vehicle can be visited in any order. Our simulation experiments
show that the total distance travelled might decrease by 4.65% on average for the
large-size instances when going from strong to weak cluster constraints. For some
instances, a cost reduction of more than 10% could be obtained. These values put
an estimate on the profit of allowing the approach with weak cluster constraints
as opposed to strong cluster constraints, e.g., in the context of the operations of a
courier company.

Although all algorithms are tested and compared on multiple sets of benchmark
instances, a gap remains between the size of these instances and the complexity of
the logistics problems faced by the industry today. For further research, we therefore
acknowledge the need for additional very large-size instances that are able to better
represent the daily planning problems faced by, e.g., parcel delivery and courier
companies.
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8
Integrated framework

Abstract:

In this chapter a general solution framework is presented for optimising decisions in a horizontal

logistics cooperation. The framework distinguishes between the objective of the group and the objectives

of the individual partners in the coalition. Although the importance of the individual partner interests

is often acknowledged in the literature, the proposed solution framework is the first to include these

objectives directly into the objective function of the optimisation model. The solution framework is

applied to a collaborative variant of the clustered vehicle routing problem, for which we also create a set

of benchmark instances.

We find that by only considering a global coalition objective the obtained solution is often suboptimal

for some partners in the coalition. Providing a set of high quality alternative solutions that are Pareto-

efficient with respect to the partner objectives, gives additional insight in the sensitivity of a solution,

which can support the decision making process. Our computational results therefore acknowledge the

importance of including the individual partner objectives into the optimisation procedure.
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8.1 Problem statement: The clustered vehicle routing problem

The Clustered Vehicle Routing Problem (CLUVRP) is a generalization of the classical
Capacitated Vehicle Routing Problem (CVRP) in which customers are grouped into
predefined clusters. The problem is more constrained compared to the CVRP, as in the
CLUVRP all customers that belong to the same cluster should be served consecutively
by the same vehicle.

Introduced by Sevaux and Sörensen (2008), the CLUVRP can be used to model the
parcel delivery activities of courier companies, such as FedEx or UPS. For such large
courier companies, shipping millions of packages a day, it is not unusual to execute
several thousand stops from a depot using hundreds of vehicles. The use of zones
(or clusters) is acknowledged by many authors as a way to reduce the problem size
and to avoid the need for detailed customer information during the planning phase.
(Janssens et al. 2015; Lin, Yan, and Lai 2013; Mourgaya and Vanderbeck 2007; Zolezzi
and Rudnick 2002)

For the mathematical model formulation of the CLUVRP, we refer to chapter 7. In
what follows, the solution space bounded by the eqs. (7.2) to eqs. (7.9) is denoted
as ζ . A solution vector x is said to be a feasible solution for the above-mentioned
CLUVRP if x ∈ ζ .

8.1.1 The collaborative environment

A

B C

D

E

F

G

H

(a) Stand-alone scenario

A

B C

D

E

F

G

H

(b) Cooperative scenario with cluster ex-
change

Figure 8.1: The collaborative result for the clustered vehicle routing problem.
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8.1 problem statement: the clustered vehicle routing problem

We consider a grand coalition N , representing a horizontal cooperation between n

courier companies p ∈ N . Let S be any subcoalition of N , such that S ⊆ N . In contrast
to the stand-alone scenario in which all companies are only responsible for serving
their own customer clusters, we allow for the transfer of clusters from one partner
to another partner in the coalition. In this way, we encourage that each cluster is
served by the partner that can fulfil the corresponding transportation requests in
the most efficient way. This is visualised in fig. 8.1. Here, a two-partner coalition is
represented. Both companies operate from the central depot depicted by the square.
The first partner, represented in black, needs to deliver goods to customers located
in four clusters (A, B, C and D) using two vehicles. The two resulting vehicle trips,
obtained by solving the CLUVRP for this partner, are visualised by the black edges.
A similar approach can be used to calculate the optimal operational plan for the
second (gray) partner in which clusters E, F, G and H are served. Even though
both companies have fully optimised their own logistics operations internally, it is
likely that a more efficient operational plan can be constructed when considering
horizontal cooperation. A collaborative logistics model is to be solved, taking all
transportation requests of both partners into account. The following objectives are
identified.

8.1.2 Coalition objective

In the non-collaborative definition of the CLUVRP, presented in section 7.2, the
minimisation of the total distance driven by all vehicles is the main (and only)
objective. By extrapolating this to the coalition, we assume that all partners agree on
the common objective to reduce the total distance-based cost of the whole coalition
as much as possible. This objective is referred to as the coalition objective Fc(x) and
is calculated as the sum of the distance-based cost of the CLUVRP solution obtained
for every partner.

Fc(x) =
∑
p∈N

( ∑
(i,j)∈E

∑
k∈K

di j xi jk
)
p
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8.1.3 Partner objectives

With or without horizontal cooperation, the aim of each individual company will
remain to deliver its customers in the most cost effective way. We therefore argue
that a company is likely to prefer the solution that costs him the least. The fraction
of the total coalition cost that should be paid by an individual partner is determined
by the applied cost allocation mechanism and denoted as ψp. Given a predefined
cost allocation method, for each partner, the partner objective is defined as the
minimisation of the cost to be paid by that partner. As a result, we obtain a multi-
objective optimisation model with dimensionality equal to the number of partners
(n).

∀p ∈ N : Fp(x) = ψp

8.2 Integrated solution approach

In the current section, the integrated solution approach for tackling collaborative
logistics optimisation problems is presented. We first introduce a general framework,
after which it is further specified for the CLUVRP.

8.2.1 General framework

We consider a horizontal logistics cooperation of n partners optimising their oper-
ational planning. The main motivation for the group to invest in this long-term
relationship is given by a common goal on which all partners agree, i.e., the coalition
objective. The following model shows the (generalised) optimisation model at the
coalition level,

Fc(x∗) = min (Fc(x))

Subject to

x ∈ ζ
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in which Fc(x) is defined as the coalition objective and a solution vector x ∈ ζ is
to be determined such that the coalition objective is minimised. We will refer to
this problem as the Coalition Level Optimisation Problem (CLOP). The definition of the
solution space ζ will depend on the logistics problem studied. Let x∗ be the best-
known solution vector and Fc(x∗) the corresponding value of the objective function.
In the cooperative logistics context described before, x∗ can be interpreted as the
best possible solution for the coalition as a whole considering only the coalition
objective.

Now, each collaborating company is given the opportunity to express which char-
acteristics of the solution x it deems important. This gives rise to another set of
objective functions, i.e., the partner objectives. These objectives, denoted as Fi(x),
with i = {1, . . . , k}, should assure that all partners evaluate the proposed solutions
as beneficial and therefore do not have the intention to leave the coalition. Each
partner is free to impose either none, a single, or multiple additional objectives to
the optimisation procedure.

Let d(a, b) be a distance measure between two solutions a, b ∈ ζ , and let ε , be a
parameter that states the acceptable deviation from the optimal coalition solution.
Now, define the acceptable region of x∗ as follows:

R(x∗) = {x |d(x, x∗) ≤ ε} (8.1)

The neighbourhood of x∗ comprises all solution vectors x ∈ ζ that are within a
distance ε from x∗ with respect to the coalition objective value. In this chapter we
will consider the distance between solutions a, b ∈ ζ to be equal to their difference in
coalition objective value.

d(a, b) = |Fc(a) − Fc(b)| (8.2)

We now define the Partner Level Optimisation Problem (PLOP) as a multi-objective
optimisation problem that includes all partner objectives as follows:
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min
x∈ζ
(F1(x), . . . , Fk(x))

Subject to

x ∈ R(x∗)

The result of this multi-objective optimisation model is a Pareto set of non-dominated
solutions with respect to the individual partner objectives. Furthermore, we assure
that all reported solutions remain close to the optimal solution at the coalition level.
In this way, the size of the solution space is reduced by focusing only on the most
promising solutions that ensure a certain level of efficiency for the coalition as a
whole. This approach also allows controlling the size of the solution set provided to
the decision maker by varying the size of the acceptable region.

As a conclusion, the general solution framework requires two optimisation problems
to be solved. First, in the Coalition Level Optimisation Problem (CLOP), the routing
problem is defined and solved at the level of the coalition, considering only the
coalition objective. Second, the multi-objective Partner Level Optimisation Problem
(PLOP), containing all individual partner objectives, is to be solved. In the follow-
ing sections, both problems are studied in more detail by applying them to the
collaborative CLUVRP example.

8.2.2 cluvrp coalition level optimisation problem (clop)

As stated in section 8.1.2, the coalition as a whole considers the minimisation of the
total logistics cost as its only objective. This total coalition cost is calculated as the
sum of the routing costs incurred by each individual partner in the final solution.
The aim of the CLOP is therefore to determine a set of routes for each partner, in
such a way that the total cost of all these routes is minimised. As we require that
all vehicles are used, the number of routes allocated to each partner should equal
the number of vehicles each partner has available. Kp is the set of vehicles for
partner p, so the set of available vehicles at coalition level Kc =

⋃
p∈N Kp , under the

assumption that
⋂

p∈N Kp = ∅. Similarly, the aggregated set of all customers that
should be visited by all partners in the coalition is represented by Vc =

⋃
p∈N V p in

which V p is the set of vertices that belong to partner p. Without loss of generality, it
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is assumed that all partners operate from the same depot (V0) and no customers are
shared. This means that each customer is linked to only one of the partners.

The goal of the CLOP is to construct |Kc | vehicle routes, in such a way that all
transportation requests of all partners in the coalition are executed and the total
logistics cost is minimised. From the perspective of the coalition as a whole, this
aggregated problem equals the classic CLUVRP, and can therefore be solved by any
(non-collaborative) solution technique available in the literature. In this chapter, we
will make use of the two-level solution approach proposed in Defryn and Sörensen
(2017a) as the algorithm has been proven to provide good solutions in very short
calculation times.

The result of this phase is a single solution for the CLUVRP defined at the coalition
level. This solution is considered the best possible outcome for the coalition as a whole as
it is optimised with respect to the coalition objective.

8.2.3 cluvrp partner level optimisation problem (plop)

The PLOP can be considered a multi-objective variant of the aggregated logistics
optimisation problem defined in section 8.2.2. The goal is to fulfil all transportation
requests from all partners in the coalition in such a way that all individual partner
objectives are optimised. Due to the multi-objective character of the problem, the
optimal solution set is no longer a singleton, but a Pareto set of non-dominated
solutions.

The solution space for the CLUVRP variant studied in this chapter is visualised in
fig. 8.2. For illustrative purposes we limit ourselves to a two-partner coalition,
however our conclusions can easily be extended to instances with more than two
partners. The costs allocated to partner 1 and 2 are denoted on the horizontal and
vertical axis respectively. The result of the stand-alone scenario is denoted by the
point sa, and point ce is the optimal result obtained by solving the CLOP. The Pareto
front is represented by the solid line. Because we defined the coalition objective as
the minimisation of the total cost, ce is an element of the Pareto set. This is explained
by the fact that the total cost equals the sum of all costs allocated to the individual
partner (in our case Fc(ce) = ψ1 + ψ2). Therefore, no solution exists that has a lower
value for both ψ1 and ψ2.

141



integrated framework

ψ1

ψ2

Fc (ce) + ε

Fc (ce) + ε

sa

ce

Figure 8.2: Visual representation of the acceptable region R(ce) of the coalition-
efficient solution in a two-partner coalition for our CLUVRP example.

8.2.3.1 Optimisation through cluster exchange

To ensure that all customers belonging to the same cluster remain grouped in the
same vehicle, we state that only complete clusters can be exchanged between partners.
Therefore, each solution for the collaborative variant of the CLUVRP differs in the way
the clusters are allocated to the individual partners. An allocation of clusters to the
partners is referred to as a cluster configuration. If Ω is the set of all possible cluster
configurations, then the aim of the PLOP is to find these routing solutions resulting
from cluster configurations ω ∈ Ω for which the individual partner objectives are
Pareto-efficient.

To reduce the search on irrelevant parts of the solution space, and to provide the
decision makers with a set of solutions that score well on both the coalition objective
and the individual partner objectives, we focus only on the solutions that stay within
a predefined distance ε from the coalition-efficient solution ce and therefore belong
to its acceptable region R(ce), as defined in eq. (8.1) and visualised by the grey zone
in fig. 8.2. R(ce) contains all solutions for the coalition with a total logistics cost
smaller than Fc(x)+ ε . Instead of constructing the whole Pareto frontier, the problem
is now reduced to finding the set of non-dominated solutions that belong to R(ce).
This means that for the CLUVRP the problem is reduced to approximating only the
part of the Pareto frontier that forms the border of R(ce). As we expect very similar
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configurations to result into a comparable total coalition cost, we propose a local
search based approach to explore alternative cluster configurations.

8.2.3.2 Search strategy

To approximate the part of the Pareto frontier that belongs to R(ce), we make use
of an iterative procedure. At each iteration, all cluster configurations in the current
Pareto optimal solutions are explored with respect to the neighbourhoods defined in
table 8.1.

Table 8.1: Definition of the local search neighbourhoods used for exchanging the
clusters.

Neighbourhood Definition

Swap2 Swap the partner of two clusters.
Relocate Change the partner of one of the clusters.

By changing the subset of clusters to be visited by each partner, the routing solution
should be re-optimised by solving a CLUVRP for every (affected) partner. As this is
done for every cluster configuration that can be reached from all solutions currently
in the Pareto frontier with a given move type, a set of alternative but very similar
routing solutions is generated (the difference in cluster configurations is only one
move and the operators are not very disruptive). Because of this similarity, we also
expect the total cost of these new solutions to be relatively close to the total cost of
the initial Pareto-efficient solution, so it is likely that these new solutions belong
to R(ce). The pseudocode of the proposed optimisation algorithm is presented in
algorithm 3.

8.3 Computational experiments

8.3.1 Benchmark instances

In the literature, no benchmark instances are available for a multi-partner CLUVRP

as this problem has never been studied before. We therefore adapt the GVRPθ3

(set A) instances provided by Battarra, Erdoğan, and Vigo (2014) to comply with
the multi-partner environment by including the following additional specifications.
Coalitions with up to four partners are considered (n ∈ {2, 3, 4}). It is ensured that
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Algorithm 3 Pseudocode for the local search based algorithm to tackle the PLOP.

1: NBH = set of available neighbourhoods;
2: k = 1;
3: paretoSet = {ce};
4: alternativeSet = ∅;
5: do
6: for all x ∈ paretoSet do
7: alternativeSet ← generateClusterConfigurations(k);
8: for all x ′ ∈ alternativeSet do
9: re-optimiseRouting(x ′);

10: if x ′ ∈ R(x) then
11: allocateCosts(x ′);
12: checkDominance(x ′, paretoSet);
13: updateParetoSet(x ′, paretoSet);
14: end if
15: end for
16: end for
17: if paretoSet has changed then
18: k ← 1;
19: else
20: k ← k + 1;
21: end if
22: while k ≤ |NBH |;
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the grand coalition size is at most equal to the total number of available vehicles
(|Kc |) so each partner has at least one vehicle. Furthermore, each cluster is allocated
to only one partner. This is done in a random way to avoid that all clusters that
belong to the same partner are geographically grouped in the same part of the
distribution area. However, the feasibility of the stand-alone scenario is guaranteed
by making sure that for each partner enough vehicles are available to serve at least
its own clusters. The instances are available upon request.

8.3.2 Cost allocation method

To divide the cost of a shared vehicle trip among all partners involved, a volume-
based allocation rule is applied. This method divides the total coalition cost propor-
tional to the demand of each partner in the current vehicle trip. For each vehicle trip
k ∈ Kc , the total cost allocated to partner p is calculated according to eq. (8.3).

ψp =

∑
i∈V p qiyik∑
i∈V c qiyik

∑
(i,j)∈E

di j xi jk (8.3)

The volume-based allocation rule is selected because it is straightforward and often
used in real-life cases. In this way we could also reduce the complexity of the
allocation mechanism and focus more on the multi-objective logistics optimisation
itself. Choosing another cost allocation mechanism is likely to significantly alter the
numerical allocation results (Defryn, Vanovermeire, and Sörensen 2015). However,
we do not expect this to affect the general conclusions drawn in this chapter.

8.3.3 Simulation results

The integrated solution framework is coded in C++ (MS visual studio) and tested
on the generated benchmark instances for different values of ε , expressed as a
percentage α of Fc(ce) with α ∈ {0.01, 0.05, 0.10}. All computational results are
obtained using an Intel(R) Core(TM) i7-4790 @ 3.60GHz with 16GB of RAM (Linux
operating system with wine interface). All results for α = 0.05 are presented in
tables 8.2 to 8.3. For a detailed overview of all other scenarios we refer the reader to
chapter 11.
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Table 8.2: Detailed results for the two-partner colgvrpθ3 instances with α = 0.05.

instance grand coalition partner 1 partner 2 Pareto set

n k C V p
total cost max. profit profit

size
sa ce profit ce min max ce min max

32 5 11 2 2 634 522 18% 15% 15% 15% 22% 22% 22% 1

33 5 11 2 2 578 472 18% 19% 15% 19% 17% 14% 20% 3

33 6 11 2 2 676 562 17% 24% 16% 27% 6% -10% 16% 4 7

34 5 12 2 2 651 547 16% 25% 23% 25% 5% 5% 7% 2

36 5 12 2 2 746 589 21% 26% 26% 26% 15% 15% 15% 1

37 5 13 2 2 677 569 16% 17% 17% 18% 15% 8% 15% 2

37 6 13 2 2 733 615 16% 21% 21% 23% 10% 6% 10% 3

38 5 13 2 2 692 507 27% 37% 37% 37% 13% 13% 13% 1

39 5 13 2 2 751 618 18% 33% 33% 35% -1% -2% -1% 3

39 6 13 2 2 765 613 20% 33% 33% 33% 0% -5% 0% 2

44 6 15 2 2 811 729 10% -1% -2% 3% 19% 18% 23% 3 7

45 6 15 3 2 776 712 8% 14% 2% 16% -2% -9% 8% 8 7

45 7 15 3 2 818 664 19% 13% 13% 13% 29% 29% 29% 1

46 7 16 3 2 801 664 17% 18% 16% 24% 15% 1% 17% 11 7

48 7 16 3 2 836 683 18% 15% 15% 19% 23% 16% 23% 4

53 7 18 3 2 817 651 20% 17% 16% 21% 24% 16% 24% 5

54 7 18 3 2 873 724 17% 15% 6% 16% 20% 13% 30% 8 7

55 9 19 3 2 795 653 18% 14% 11% 14% 25% 25% 25% 2

60 9 20 3 2 904 795 12% 8% 4% 8% 19% 21% 22% 2

61 9 21 4 2 832 682 18% 26% 15% 26% 11% 11% 14% 6

62 8 21 3 2 910 778 15% 12% 12% 12% 20% 9% 20% 4

63 9 21 3 2 1029 865 16% 10% 2% 9% 26% 25% 29% 4 7

63 10 21 4 2 994 801 19% 29% 29% 29% 10% 10% 10% 1

64 9 22 3 2 906 776 14% 18% 10% 18% 8% 8% 14% 7

65 9 22 3 2 839 749 11% 6% 8% 8% 18% 22% 22% 1 7

69 9 23 3 2 931 839 10% 1% -7% 10% 23% 8% 32% 17 7

80 10 27 4 2 1197 974 19% 36% 26% 38% -1% -8% 6% 17 7
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8.3 computational experiments
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integrated framework

For the grand coalition, the summed stand-alone cost of all partners is given in
column sa and the total cost of the best solution at the coalition level is listed in
column ce. Our results confirm that setting up a horizontal logistics cooperation
is beneficial as double-digit profits are obtained for almost all instances. For the
two-partner instances, the average coalition profit is around 16.5%. For the three-
and four-partner instances these potential profits increase to around 26% and 34.5%
respectively. This increase is explained by the fact that larger coalitions can create
more opportunities for optimisation. For every partner p the relative profit is
calculated by comparing its stand-alone cost c(sap) with the allocated cost ψp

according to eq. (8.4).

profit(%) =
c(p) − ψp

c(p)
(8.4)

The profit realised by each partner when choosing the coalition-efficient solution
is denoted in its column ce. The columns min and max give the range in which
the relative profit of the partner varies over all Pareto-efficient solutions. It can
be seen that for instances with a Pareto-size of 1, the coalition-efficient solution
ce is the most profitable option for all partners, as there is no alternative solution
available. In all other scenarios, at least one partner is able to improve its situation by
selecting another solution from the Pareto set. For instances n39-k6-C13-V2-p2 and
n62-k8-C21-V3-p2 in table 8.2, the differences in the values of the partner objectives
over all Pareto-efficient solutions are smaller than 1% for each individual partner.
In such situation, the partners will likely be indifferent with respect to all Pareto-
efficient solutions. These additional insights in the sensitivity of a solution, gained by
providing a set of high quality alternative solutions instead of only ce, can support
the decision making process.

For all instances marked with a 7, the coalition-efficient solution is even suboptimal
for all partners in the coalition. This means that from the list of alternative solutions,
each partner will prefer a solution that is different from ce (i.e., the solution scores
better on the individual partner objective). However, the preferred solution differs
among the partners. The higher the value of α, the larger the neighbourhood
R(ce) and the higher the probability that all partners can improve their individual
situation by diverging from the coalition-efficient solution. Furthermore, we notice
that although all solutions guarantee that the global efficiency of the coalition is high
(only solutions in the neighbourhood R(ce) are considered), individual differences
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8.4 conclusions and future research

for the partners can be significant. For example in instance n33-k6-C11-V2-p2, the
relative profit margin for partner 2 ranges from -10% up to 16%. These results
acknowledge the importance of including individual partner preferences into the
optimisation procedure.

The effect of parameter α on the constructed Pareto frontier is visualised in fig. 8.3.
In this figure, the average profit obtained by choosing the coalition efficient solution
is compared by respectively the best and the worst average profit for an individual
partner over all instances. When α equals zero, the acceptable region R(ce) contains
only ce. For increasing values of α, the results for each individual partner start to
diverge significantly. We also observe that the difference in individual profit tends to
be more sensitive in the negative direction. This was expected as all solutions have
a total coalition cost that is higher than the cost of solution ce. Our results show
that a small change in the solution, with relatively limited impact on the coalition
objective, might have a significant impact on the objective function of the partners in
the coalition. A change in total coalition cost of maximum 5% (α = 0.05) results in a
solution set in which the cost allocated to an individual partner differs by 5.87% on
average. For a three- and four-partner coalition, these individual differences increase
to 12.46% and 9.25% respectively.

For some instances we found negative profits for one of the partners. This is due to
the fact that the volume-based allocation method does not guarantee the property of
individual rationality (see also section 3.5).

8.4 Conclusions and future research

Existing research on horizontal logistics cooperation has mainly focused on assessing
costs and benefits, and their allocation to individual collaborating partners. This
chapter is the first to propose a modelling framework and solution method to
explicitly take both the coalition and individual partner objectives into account. To
focus ideas, a horizontal logistics cooperation is considered in which up to four
companies jointly optimise their logistics operations. The collaboration is modelled
as a clustered vehicle routing problem, in which customers belonging to a predefined
cluster are served consecutively by the same vehicle. Besides a global objective at the
coalition level, we allowed each individual partner to express additional (personal)
objectives. We presented a general integrated solution framework that takes both
the objective of the coalition and the individual partner interests into account. The

149



integrated framework

0 0.01 0.05 0.1
10

15

20

25

30

35

40

45

50

α

av
g.

pa
rt

ne
r

pr
ofi

t
(%

)

ce

best
worst

(a) two-partner instances

0 0.01 0.05 0.1
10

15

20

25

30

35

40

45

50

α

av
g.

pa
rt

ne
r

pr
ofi

t
(%

)

ce

best
worst

(b) three-partner instances
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(c) four-partner instances

Figure 8.3: Average partner profit for all solutions in the Pareto set.
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8.4 conclusions and future research

framework combines both levels of objective by sequentially solving two optimisation
problems: the Coalition Level Optimisation Problem (CLOP) and the Partner level
Optimisation Problem (PLOP). Through the definition of the neighbourhood R(ce) it
is guaranteed that only solutions are returned by the PLOP that score also high in the
CLOP.

Based on computational experiments on benchmark instances from the literature, we
observe that even if horizontal cooperation is beneficial for the coalition, we showed
that a slightly inferior solution for the group as a whole might result into (much)
better solutions for one or more partners in the coalition. These results show the
importance of selecting an appropriate cost allocation mechanism and the value of α.
Also, opposed to existing literature on logistics cooperation we therefore recommend
giving decision makers a set of alternative solutions. The insight into the sensitivity
of both the coalition objectives and the individual partner objectives can result in a
higher long-term stability and success of the collaboration.

However, including partner objectives increases the complexity of the logistics
optimisation problem. We believe that this offers interesting avenues for further
research.
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9

General conclusions

The introduction of low emission zones near large cities, kilometre-based toll charges
for trucks on the European highways, growing success of e-commerce, increasing
pressure for fast (just in time) deliveries of small batches, increasing fuel prices,
ongoing debates on environmental issues, globalisation, . . . . These are only a few ex-
amples of today’s challenges in supply chain management and they force companies
to rethink their operations in order to remain competitive. As shown in chapter 1, our
current logistics system, and more specifically road transportation of goods, lacks
efficiency and shows room for improvement. horizontal logistics cooperation (HLC)
is considered a viable way to increase the efficiency of transportation activities, as
it can result in a lower total cost while even increasing the customer service level
(number of drops, . . . ). Through active synchronisation of transportation flows,
additional bundling opportunities might appear and companies are able to exploit
economies of scale.

9.1 Contributions to the research community

Horizontal cooperation in logistics has received increased attention from the research
community, especially over the last ten years. The existing contributions, however,
are still scarce and scattered, and no solid frameworks or approaches for analysing
and solving logistics optimisation problems in the context of horizontal cooperation
exist. The research is mainly focused on (i) proving the potential of HLC by means of
simulation experiments or the reporting on actual case studies, and (ii) the definition



general conclusions

and selection of an appropriate allocation rules for dividing the total coalition cost
(or profit) among the collaborating partners.

This dissertation is the first attempt towards the definition of a general framework
for tackling logistics planning problems that involve multiple partners. Whereas
existing contributions generally consider traditional (non-collaborative) logistics
optimisation techniques to tackle collaborative problems, the first multi-partner
optimisation techniques are developed in this thesis. More specifically, we focused on
two main aspects: (i) the inclusion of allocation rules (part ii of this thesis) and (ii) a
multi-objective approach with multiple levels of decision making (part iii). To the
best of our knowledge, such a view on collaborative logistics problems has never
been considered before.

The interaction between the operational and tactical level of decision making is
studied empirically (chapter 4) and theoretically (chapter 5). The main takeaway
of these chapters was that the inclusion of appropriate allocation rules to divide
workload, costs, benefits or resources among the collaborating partners is required
in a multi-partner context. These allocation rules can be included in the optimisation
procedure or added as a post-processing step. Although often the case in current
research, not taking such allocation rules into account at all should be discouraged.

The search for an appropriate allocation method is currently often solely based on
fairness criteria. We showed, however, that these allocation rules are able to provide
incentives to the individual partners. As these incentives might differ significantly
for different methods, we argue that they should also be considered when deciding
on an allocation rule. In other words, a good method should ensure that if a partner
is willing to do something that is considered beneficial by the coalition, this action is
rewarded by the allocation rule.

In part iii, we developed three solution models for tackling collaborative logistics
problems with multiple levels of objectives: the coalition efficiency model, the partner
efficiency model and an integrated model. These models differ in the level at which
the optimisation procedure takes place. The coalition efficiency model was defined as
a four-step procedure in which the logistics problem is first solved by taking only the
coalition objective(s) into account. From the moment that a solution set is obtained
for the coalition, the individual partner objectives are used solely to differentiate
among these solutions and select only the subset of solutions that are not dominated
according to the individual partner objectives (if such solutions exist). This is in
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contrast to the partner efficiency model, which gives full priority to the individual
partner objectives. The resulting solution set returned by the partner efficiency model
therefore guarantees Pareto efficiency with respect to all partner objectives without
assuring that the coalition as a whole is performing efficiently. Finally, the integrated
model combines the coalition efficiency model and the partner efficiency mode and
is defined in a general way so it can be used for solving any collaborative vehicle
routing problem. It consists of two subproblems, the Coalition Level Optimisation
Problem (CLOP) and the Partner level Optimisation Problem (PLOP), which are solved
sequentially. Both subproblems are linked through the definition of the acceptable
region R(ce), in which ce is the optimal solution of the CLOP.

With this thesis, we hope to have initiated a discussion on the requisites of collabo-
rative logistics optimisation models. The models and frameworks proposed in this
dissertation can be considered a first (important) step. The following opportunities
for further research are identified. First, by considering both coalition objectives
and partner objectives, all collaborative models are multi-objective. The inclusion of
qualitative evaluation techniques to compare the solution space of multiple models
and algorithms (e.g., the hypervolume, measure of spacing and spread,. . . ) will
help to score the quality of existing and new solutions approaches. Furthermore,
by evaluating these metrics also during the optimisation procedure, the algorithmic
performance can be tweaked. Second, we encourage the research community to
focus especially on the interdependency between decision making at strategical,
tactical and operational level. More specifically, further research should address
how a decision of one partners (strategical, tactical or operational) influences the
performance of the coalition and the position of this partner in the coalition. Finally,
in all developed models no a-priori decision is made on the importance of the
different objective functions in the model. As a result, not a single optimal solution
but a set of Pareto-optimal solutions is obtained. The decision on which solution to
prefer from this set will be based on a multi-criteria analysis, based on the partners’
preferences. This decision was however out of the scope of this thesis and left for
future research.

9.2 Recommendations to the industry

As supply chain cooperation is above all a people business, the success of each
initiative is highly dependent on the persons around the table. This makes it highly
difficult to define global best practices, and the need for a case-by-case approach
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is often acknowledged. However, based on the research results presented in this
dissertation, we were able to formulate the following recommendations.

We showed that the efficiency of the collaborative operational plan is highly de-
pendent on the commitment of each individual partner. More specifically, their
willingness to disregard their own priorities and objectives and the degree to which
each company allows a shift in decision-making towards the benefit of the coalition
largely determines the possible synergy obtained by the coalition. We identified the
cost allocation mechanism as a suitable tool to provide the necessary incentives to
the individual partners to alter their behaviour and adopts a more flexible attitude.
As we showed that significant differences exist between different allocation methods,
this decision should be taken with caution on a case-based approach.

One of the results of this thesis is also that the most optimal solution for the
coalition is often not the best result for the individual partners. When engaging
in a cooperation, companies should therefore be aware of the impact of decisions
at the coalition level (allocation rules, operational decisions, . . . ) on their personal
objectives. Furthermore, although individual partner objectives might be the same
for different partners (e.g. minimisation of the total logistics cost), each partner might
prefer other operational decisions to achieve his personal goal. Again, this impact is
largely determined by the negotiated allocation rules to project the realisations of
the group to the individual partners.

To conclude we can state that the success of a cooperation is largely determined
by the people around the table and trust among the coalition members. From the
moment that the coalition should take a decision about two alternative solutions
(multiple possible allocation rules, a change in the operational plan,. . . ), it is likely
that a benefit for one partner results in a loss for the other. Finding the right balance
depends not only on mathematical properties of fairness, but also on negotiation,
compromises, and other intangible assets that are difficult (or even impossible) to
capture in formulas and equations. Therefore, I recommend companies to choose
for straightforward, easy and predictable methods and rules rather than complex
cooperative game theoretical concepts to support their decision-making process.
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10
Detailed results for the CLUVRP

Abstract:

This chapter contains the detailed results from the simulation experiments conducted in chapter 7 of

this thesis.



detailed results for the cluvrp

Table 10.1: Detailed results for the gvrpθ3 instances A, B.
Strong cluster constraint Weak cluster constraints

instance GAP(%) CPU(s) GAP(%)
set n k c v opt. Best Avg. best Avg. Avg. Avg. Best Avg.

A 32 5 11 2 522 522 0.00% 0.00% 0.00 -1.34% -1.34%
A 33 5 11 2 472 472 0.00% 0.00% 0.00 -2.33% -2.33%
A 33 6 11 2 562 562 0.00% 0.00% 0.00 -1.42% -1.42%
A 34 5 12 2 547 547 0.00% 0.00% 0.00 -1.65% -1.65%
A 36 5 12 2 588 589 0.17% 0.17% 0.00 -7.81% -7.81%
A 37 5 13 2 569 569 0.00% 0.00% 0.00 -2.46% -2.46%
A 37 6 13 2 615 615 0.00% 0.00% 0.02 -1.63% -1.56%
A 38 5 13 2 507 507 0.00% 0.00% 0.00 0.00% 0.00%
A 39 5 13 2 610 610 0.00% 0.00% 0.02 -3.61% -3.41%
A 39 6 13 2 613 613 0.00% 0.00% 0.00 -1.63% -1.63%
A 44 6 15 2 714 714 0.00% 0.00% 0.04 -3.22% -3.22%
A 45 6 15 3 712 712 0.00% 0.00% 0.00 -8.43% -8.43%
A 45 7 15 3 664 664 0.00% 0.00% 0.00 -0.45% -0.45%
A 46 7 16 3 664 664 0.00% 0.00% 0.00 -3.31% -3.31%
A 48 7 16 3 683 683 0.00% 0.00% 0.00 -0.44% -0.44%
A 53 7 18 3 651 651 0.00% 0.00% 0.00 -3.69% -3.69%
A 54 7 18 3 724 724 0.00% 0.00% 0.01 -3.45% -3.45%
A 55 9 19 3 653 653 0.00% 0.00% 0.00 -1.23% -1.23%
A 60 9 20 3 787 795 1.02% 1.02% 0.02 -4.15% -4.04%
A 61 9 21 4 682 682 0.00% 0.00% 0.00 -1.61% -1.11%
A 62 8 21 3 778 778 0.00% 0.00% 0.01 -0.90% -0.90%
A 63 10 21 4 801 801 0.00% 0.00% 0.02 -2.75% -2.65%
A 63 9 21 3 865 865 0.00% 0.00% 0.45 -3.24% -3.21%
A 64 9 22 3 773 773 0.00% 0.00% 0.09 -0.78% -0.78%
A 65 9 22 3 725 725 0.00% 0.01% 0.15 -4.41% -4.41%
A 69 9 23 3 814 819 0.61% 0.66% 0.38 -3.05% -2.37%
A 80 10 27 4 972 972 0.00% 0.10% 0.27 -2.88% -2.78%

B 31 5 11 2 375 375 0.00% 0.00% 0.00 0.00% 0.00%
B 34 5 12 2 416 416 0.00% 0.00% 0.00 -0.24% -0.24%
B 35 5 12 2 562 562 0.00% 0.16% 0.03 -0.89% -0.89%
B 38 6 13 2 431 431 0.00% 0.00% 0.06 -0.93% -0.93%
B 39 5 13 2 321 321 0.00% 0.00% 0.00 -1.25% -1.25%
B 41 6 14 2 476 476 0.00% 0.00% 0.00 -1.47% -1.47%
B 43 6 15 2 415 415 0.00% 0.00% 0.00 -2.41% -2.41%
B 44 7 15 3 447 447 0.00% 0.00% 0.00 -0.89% -0.89%
B 45 5 15 2 506 508 0.40% 0.41% 0.02 -3.74% -3.74%
B 45 6 15 2 391 391 0.00% 0.00% 0.02 -1.28% -1.28%
B 50 7 17 3 467 467 0.00% 0.00% 0.00 -0.64% -0.64%
B 50 8 17 3 666 666 0.00% 0.00% 0.02 -0.75% -0.75%
B 51 7 17 3 585 585 0.00% 0.00% 0.00 -1.20% -1.20%
B 52 7 18 3 427 427 0.00% 0.00% 0.00 0.00% 0.00%
B 56 7 19 3 433 434 0.23% 0.23% 0.01 -3.23% -3.23%
B 57 7 19 3 634 634 0.00% 0.00% 0.01 -1.89% -1.89%
B 57 9 19 3 753 753 0.00% 0.00% 0.01 -0.93% -0.93%
B 63 10 21 3 685 685 0.00% 0.00% 0.06 0.00% 0.00%
B 64 9 22 4 526 526 0.00% 0.00% 0.00 -0.38% -0.38%
B 66 9 22 3 687 687 0.00% 0.00% 0.26 -0.58% -0.58%
B 67 10 23 4 626 626 0.00% 0.00% 0.04 -1.12% -1.12%
B 68 9 23 3 588 588 0.00% 0.03% 0.29 -1.02% -1.02%
B 78 10 26 4 721 721 0.00% 0.00% 0.02 -2.36% -2.36%
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Table 10.2: Detailed results for the gvrpθ3 instances G, M, P.
Strong cluster constraint Weak cluster constraints

instance GAP(%) CPU(s) GAP(%)
set n k c v opt. Best Avg. best Avg. Avg. Avg. Best Avg.

G 262 25 88 9 - 3310 15.95 -3.44% -2.71%

M 101 10 34 4 607 607 0.00% 0.00% 0.03 -1.48% -1.48%
M 121 7 41 3 691 691 0.00% 0.35% 4.25 -1.45% -0.94%
M 151 12 51 4 804 805 0.12% 0.19% 3.20 -5.71% -5.11%
M 200 16 67 6 914 (UB) 909 -0.55% -0.34% 6.45 -3.85% -3.40%

P 101 4 34 2 679 679 0.00% 0.00% 0.20 -4.42% -4.32%
P 16 8 6 4 253 253 0.00% 0.00% 0.00 -0.79% -0.79%
P 19 2 7 1 186 186 0.00% 0.00% 0.00 -8.60% -8.60%
P 20 2 7 1 200 200 0.00% 0.00% 0.00 -11.50% -11.50%
P 21 2 7 1 190 190 0.00% 0.00% 0.00 -5.79% -5.79%
P 22 2 8 1 202 202 0.00% 0.00% 0.00 -9.41% -9.41%
P 22 8 8 4 365 365 0.00% 0.00% 0.00 0.00% 0.00%
P 23 8 8 3 279 279 0.00% 0.00% 0.00 -3.23% -3.23%
P 40 5 14 2 396 396 0.00% 0.00% 0.00 -3.79% -3.79%
P 45 5 15 2 440 440 0.00% 0.00% 0.00 -4.09% -4.09%
P 50 10 17 4 491 491 0.00% 0.00% 0.02 -4.07% -4.07%
P 50 7 17 3 447 447 0.00% 0.00% 0.02 -3.80% -3.80%
P 50 8 17 3 460 460 0.00% 0.00% 0.01 -4.13% -4.13%
P 51 10 17 4 537 537 0.00% 0.02% 0.03 -8.19% -8.19%
P 55 10 19 4 500 500 0.00% 0.00% 0.03 -3.80% -3.75%
P 55 15 19 6 595 595 0.00% 0.00% 0.01 -3.87% -3.87%
P 55 7 19 3 462 462 0.00% 0.00% 0.00 -1.30% -1.30%
P 55 8 19 3 471 471 0.00% 0.00% 0.02 -3.18% -3.18%
P 60 10 20 4 552 552 0.00% 0.03% 0.19 -3.08% -2.96%
P 60 15 20 5 611 611 0.00% 0.18% 0.29 -3.27% -3.27%
P 65 10 22 4 619 619 0.00% 0.00% 0.01 -5.98% -5.98%
P 70 10 24 4 643 644 0.16% 0.16% 0.01 -6.52% -6.12%
P 76 4 26 2 581 581 0.00% 0.00% 0.41 -4.13% -3.81%
P 76 5 26 2 581 581 0.00% 0.00% 0.31 -4.30% -4.00%
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Table 10.3: Detailed results for the Golden instances 1 – 5, as provided by Battarra,
Erdoğan, and Vigo (2014).

Strong cluster constraint Weak cluster constraints

instance GAP(%) CPU(s) GAP(%)
set n N opt. Best Avg. best Avg. Avg. Best Avg.

Golden-1 241 17 4831 4862 0.64% 1.19% 5.33 -3.39% -2.38%
Golden-1 241 18 4847 4864 0.35% 0.98% 4.68 -2.80% -1.97%
Golden-1 241 19 4872 4889 0.35% 1.24% 4.05 -2.92% -2.41%
Golden-1 241 21 4889 4914 0.51% 1.13% 5.65 -2.81% -2.43%
Golden-1 241 22 4908 4950 0.86% 1.20% 4.07 -4.36% -3.21%
Golden-1 241 25 4899 4917 0.37% 0.80% 3.72 -3.72% -3.21%
Golden-1 241 27 4934 4952 0.36% 0.67% 4.14 -4.81% -3.70%
Golden-1 241 31 5050 5053 0.06% 0.19% 5.21 -5.68% -4.99%
Golden-1 241 35 5102 5116 0.27% 0.54% 4.75 -7.74% -6.81%
Golden-1 241 41 5097 5113 0.31% 0.74% 4.85 -7.88% -6.76%
Golden-1 241 49 5000 5039 0.78% 1.35% 4.24 -7.32% -5.43%

Golden-2 321 22 7716 7785 0.89% 1.24% 6.19 -2.84% -2.43%
Golden-2 321 23 7693 7768 0.97% 1.36% 5.29 -2.79% -2.43%
Golden-2 321 25 7668 7728 0.78% 1.15% 5.79 -3.35% -2.44%
Golden-2 321 27 7638 7705 0.88% 1.23% 4.50 -2.92% -2.39%
Golden-2 321 30 7617 7689 0.95% 1.51% 5.51 -2.65% -2.26%
Golden-2 321 33 7640 7705 0.85% 1.24% 4.84 -3.04% -2.70%
Golden-2 321 36 7643 7699 0.73% 1.14% 3.62 -3.27% -2.79%
Golden-2 321 41 7738 7781 0.56% 1.16% 5.08 -4.25% -3.46%
Golden-2 321 46 7861 7926 0.83% 1.30% 4.43 -5.41% -4.86%
Golden-2 321 54 7920 7989 0.87% 1.28% 3.84 -6.28% -5.62%
Golden-2 321 65 7892 7997 1.33% 1.71% 5.45 -6.50% -5.67%

Golden-3 401 27 10540 10662 1.16% 1.80% 4.81 -2.56% -2.17%
Golden-3 401 29 10504 10627 1.17% 1.50% 5.33 -3.72% -2.92%
Golden-3 401 31 10486 10616 1.24% 1.48% 4.68 -3.23% -2.79%
Golden-3 401 34 10465 10602 1.31% 1.64% 5.18 -2.92% -2.60%
Golden-3 401 37 10482 10605 1.17% 1.66% 4.25 -3.30% -2.75%
Golden-3 401 41 10501 10606 1.00% 1.51% 4.87 -3.12% -2.70%
Golden-3 401 45 10485 10649 1.56% 1.78% 4.56 -3.73% -2.98%
Golden-3 401 51 10583 10722 1.31% 2.00% 4.46 -4.01% -3.43%
Golden-3 401 58 10776 10905 1.20% 1.71% 4.75 -5.09% -4.48%
Golden-3 401 67 10797 10953 1.44% 1.79% 4.51 -6.06% -4.96%
Golden-3 401 81 10614 10756 1.34% 1.91% 4.96 -4.14% -3.44%

Golden-4 481 33 13598 13805 1.52% 1.99% 5.07 -4.97% -3.95%
Golden-4 481 35 13643 13795 1.11% 1.89% 4.35 -4.28% -3.71%
Golden-4 481 37 13520 13722 1.49% 1.83% 5.32 -4.59% -3.80%
Golden-4 481 41 13460 13618 1.17% 1.91% 5.09 -4.46% -3.52%
Golden-4 481 44 13568 13756 1.39% 1.70% 5.25 -4.66% -3.97%
Golden-4 481 49 13758 13968 1.53% 2.10% 4.93 -5.98% -5.19%
Golden-4 481 54 13760 13985 1.64% 2.27% 5.62 -6.16% -5.02%
Golden-4 481 61 13791 14045 1.84% 2.25% 5.51 -6.09% -4.98%
Golden-4 481 69 13966 14143 1.27% 2.00% 4.31 -6.00% -5.35%
Golden-4 481 81 13975 14167 1.37% 2.13% 5.32 -6.58% -5.75%
Golden-4 481 97 13775 13973 1.44% 2.22% 3.50 -4.46% -3.96%

Golden-5 201 14 7622 7652 0.39% 0.74% 4.62 -7.08% -6.39%
Golden-5 201 15 7424 7429 0.07% 0.67% 4.52 -8.49% -7.55%
Golden-5 201 16 7491 7491 0.00% 0.30% 4.89 -8.92% -8.00%
Golden-5 201 17 7434 7434 0.00% 0.44% 4.81 -7.61% -7.04%
Golden-5 201 19 7576 7576 0.00% 0.08% 4.14 -7.23% -6.69%
Golden-5 201 21 7596 7596 0.00% 0.03% 4.59 -9.00% -8.39%
Golden-5 201 23 7643 7643 0.00% 0.24% 2.38 -11.33% -10.18%
Golden-5 201 26 7560 7566 0.08% 0.21% 3.66 -11.12% -10.20%
Golden-5 201 29 7410 7410 0.00% 0.04% 4.91 -8.99% -8.11%
Golden-5 201 34 7429 7433 0.05% 0.17% 5.28 -9.66% -8.32%
Golden-5 201 41 7241 7251 0.14% 0.25% 5.39 -9.20% -8.11%
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Table 10.4: Detailed results for the Golden instances 6 – 10, as provided by Battarra,
Erdoğan, and Vigo (2014).

Strong cluster constraint Weak cluster constraints

instance GAP(%) CPU(s) GAP(%)
set n N opt. Best Avg. best Avg. Avg. Best Avg.

Golden-6 281 19 8624 8685 0.71% 0.94% 4.72 -5.62% -4.91%
Golden-6 281 21 8628 8661 0.38% 0.73% 5.04 -5.83% -4.38%
Golden-6 281 22 8646 8715 0.80% 1.26% 6.02 -5.96% -4.67%
Golden-6 281 24 8853 8905 0.59% 1.04% 3.59 -5.44% -4.63%
Golden-6 281 26 8910 8978 0.76% 1.31% 4.16 -6.32% -5.52%
Golden-6 281 29 8936 9025 1.00% 1.46% 4.69 -6.98% -6.08%
Golden-6 281 32 8891 8974 0.93% 1.44% 3.93 -7.62% -5.90%
Golden-6 281 36 8969 9011 0.47% 0.82% 4.89 -6.97% -6.36%
Golden-6 281 41 9028 9067 0.43% 0.80% 5.37 -7.30% -6.42%
Golden-6 281 47 8923 8996 0.82% 1.37% 2.99 -7.19% -6.10%
Golden-6 281 57 9028 9107 0.88% 1.32% 5.36 -7.09% -6.23%

Golden-7 361 25 9904 10021 1.18% 1.68% 4.32 -4.42% -3.72%
Golden-7 361 26 9888 10023 1.37% 1.76% 5.61 -4.42% -3.71%
Golden-7 361 28 9917 10056 1.40% 1.84% 5.39 -4.72% -4.02%
Golden-7 361 31 10021 10131 1.10% 1.53% 4.67 -3.99% -3.58%
Golden-7 361 33 10029 10161 1.32% 1.57% 5.07 -4.68% -4.02%
Golden-7 361 37 10131 10176 0.44% 1.14% 4.67 -4.93% -3.75%
Golden-7 361 41 10052 10119 0.67% 1.27% 4.94 -4.50% -3.61%
Golden-7 361 46 10080 10197 1.16% 1.77% 5.75 -5.44% -4.24%
Golden-7 361 52 10095 10201 1.05% 1.61% 4.40 -4.97% -4.10%
Golden-7 361 61 10096 10189 0.92% 1.74% 5.74 -4.67% -4.18%
Golden-7 361 73 10014 10095 0.81% 1.52% 4.70 -4.88% -3.57%

Golden-8 441 30 10866 11002 1.25% 1.58% 4.86 -3.19% -2.45%
Golden-8 441 32 10831 10943 1.03% 1.73% 5.82 -2.77% -2.07%
Golden-8 441 34 10847 10963 1.07% 1.68% 5.33 -2.56% -2.04%
Golden-8 441 37 10859 11010 1.39% 1.95% 5.06 -3.18% -2.59%
Golden-8 441 41 10934 11088 1.41% 1.79% 5.94 -3.57% -3.02%
Golden-8 441 45 10960 11103 1.30% 1.60% 4.48 -3.93% -3.00%
Golden-8 441 49 11042 11177 1.22% 1.61% 4.81 -3.98% -3.34%
Golden-8 441 56 11194 11350 1.39% 1.86% 4.86 -5.50% -4.48%
Golden-8 441 63 11252 11412 1.42% 1.76% 4.64 -5.83% -4.51%
Golden-8 441 74 11321 11462 1.25% 2.09% 4.50 -6.17% -4.84%
Golden-8 441 89 11209 11409 1.78% 2.45% 5.08 -6.09% -4.74%

Golden-9 256 18 300 304 1.33% 1.77% 4.62 -5.26% -4.18%
Golden-9 256 19 299 304 1.67% 1.96% 3.67 -5.59% -3.98%
Golden-9 256 20 296 298 0.68% 1.59% 3.09 -3.69% -2.67%
Golden-9 256 22 290 295 1.72% 2.45% 3.98 -3.39% -2.85%
Golden-9 256 24 290 295 1.72% 2.48% 3.84 -3.73% -2.78%
Golden-9 256 26 288 293 1.74% 2.20% 5.29 -3.41% -2.92%
Golden-9 256 29 292 297 1.71% 2.40% 3.21 -5.39% -4.09%
Golden-9 256 32 297 300 1.01% 1.58% 4.38 -6.67% -5.02%
Golden-9 256 37 294 296 0.68% 1.55% 3.31 -5.41% -3.89%
Golden-9 256 43 295 300 1.69% 2.36% 2.97 -6.33% -5.27%
Golden-9 256 52 296 298 0.68% 2.50% 4.30 -6.38% -5.05%

Golden-10 324 22 367 369 0.54% 1.20% 2.41 -3.25% -1.88%
Golden-10 324 24 361 361 0.00% 0.43% 5.03 -1.94% -0.83%
Golden-10 324 25 359 360 0.28% 0.88% 3.75 -1.11% -0.58%
Golden-10 324 27 361 363 0.55% 1.65% 3.53 -1.65% -1.17%
Golden-10 324 30 367 371 1.09% 1.58% 4.31 -3.77% -2.87%
Golden-10 324 33 373 378 1.34% 2.25% 2.51 -5.82% -4.80%
Golden-10 324 36 385 391 1.56% 2.04% 4.22 -8.70% -7.43%
Golden-10 324 41 400 403 0.75% 1.44% 4.72 -9.93% -9.09%
Golden-10 324 47 398 402 1.01% 1.58% 4.65 -10.45% -9.38%
Golden-10 324 54 393 397 1.02% 1.95% 3.92 -10.08% -8.66%
Golden-10 324 65 387 395 2.07% 2.70% 3.64 -10.38% -8.09%
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Table 10.5: Detailed results for the Golden instances 11 – 15, as provided by Battarra,
Erdoğan, and Vigo (2014).

Strong cluster constraint Weak cluster constraints

instance GAP(%) CPU(s) GAP(%)
set n N opt. Best Avg. best Avg. Avg. Best Avg.

Golden-11 400 27 457 464 1.53% 1.76% 3.58 -3.66% -2.73%
Golden-11 400 29 455 463 1.76% 2.38% 3.58 -3.46% -2.71%
Golden-11 400 31 455 464 1.98% 2.59% 5.29 -3.66% -2.66%
Golden-11 400 34 455 462 1.54% 2.21% 4.23 -4.55% -3.19%
Golden-11 400 37 459 469 2.18% 2.68% 4.65 -5.33% -4.08%
Golden-11 400 40 461 467 1.30% 2.25% 3.87 -4.93% -3.88%
Golden-11 400 45 462 470 1.73% 2.54% 4.69 -5.96% -4.66%
Golden-11 400 50 458 467 1.97% 2.90% 4.81 -5.35% -3.74%
Golden-11 400 58 456 468 2.63% 3.30% 4.64 -4.91% -3.84%
Golden-11 400 67 454 469 3.30% 4.13% 4.20 -4.90% -3.57%
Golden-11 400 80 451 468 3.77% 4.71% 3.87 -4.70% -3.26%

Golden-12 484 33 535 545 1.87% 2.50% 4.38 -2.94% -1.59%
Golden-12 484 35 537 547 1.86% 2.50% 3.40 -2.93% -1.86%
Golden-12 484 38 535 547 2.24% 3.39% 4.15 -2.93% -1.37%
Golden-12 484 41 537 550 2.42% 3.66% 3.67 -3.27% -1.87%
Golden-12 484 44 535 552 3.18% 4.02% 4.11 -3.99% -2.23%
Golden-12 484 49 533 550 3.19% 3.96% 4.01 -2.00% -1.09%
Golden-12 484 54 535 551 2.99% 3.83% 4.74 -2.54% -1.11%
Golden-12 484 61 538 552 2.60% 3.67% 4.16 -2.36% -1.24%
Golden-12 484 70 546 552 1.10% 1.83% 3.76 -2.54% -1.19%
Golden-12 484 81 546 557 2.01% 2.79% 4.52 -3.23% -1.71%
Golden-12 484 97 560 566 1.07% 2.07% 3.98 -3.89% -2.71%

Golden-13 253 17 552 553 0.18% 0.57% 4.43 -2.71% -1.98%
Golden-13 253 19 549 552 0.55% 0.77% 4.79 -3.99% -3.28%
Golden-13 253 20 548 549 0.18% 0.60% 4.84 -3.28% -2.98%
Golden-13 253 22 548 549 0.18% 0.74% 2.80 -3.46% -2.86%
Golden-13 253 23 548 551 0.55% 0.78% 3.73 -3.99% -3.42%
Golden-13 253 26 542 544 0.37% 0.62% 3.69 -2.76% -2.30%
Golden-13 253 29 540 543 0.56% 0.77% 3.64 -2.58% -2.00%
Golden-13 253 32 543 545 0.37% 0.69% 4.75 -2.94% -2.19%
Golden-13 253 37 545 550 0.92% 1.21% 3.84 -3.45% -2.84%
Golden-13 253 43 553 559 1.08% 1.52% 3.24 -4.83% -4.43%
Golden-13 253 51 560 565 0.89% 1.44% 3.90 -5.84% -5.13%

Golden-14 321 22 692 698 0.87% 1.23% 4.23 -2.72% -2.25%
Golden-14 321 23 688 692 0.58% 1.02% 4.27 -2.46% -2.08%
Golden-14 321 25 678 683 0.74% 1.07% 3.87 -2.05% -1.46%
Golden-14 321 27 676 683 1.04% 1.45% 4.35 -1.90% -1.62%
Golden-14 321 30 678 684 0.88% 1.47% 3.94 -2.05% -1.62%
Golden-14 321 33 682 687 0.73% 1.20% 3.68 -2.18% -1.94%
Golden-14 321 36 687 689 0.29% 1.16% 3.35 -3.05% -2.26%
Golden-14 321 41 690 695 0.72% 1.17% 5.46 -3.88% -2.93%
Golden-14 321 46 694 699 0.72% 1.44% 3.99 -3.29% -2.72%
Golden-14 321 54 699 706 1.00% 1.58% 3.83 -4.53% -3.46%
Golden-14 321 65 703 713 1.42% 1.74% 3.55 -4.77% -4.03%

Golden-15 397 27 842 850 0.95% 1.53% 5.14 -2.94% -2.01%
Golden-15 397 29 843 854 1.30% 1.64% 5.01 -3.40% -2.51%
Golden-15 397 31 837 846 1.08% 1.62% 4.64 -2.36% -1.59%
Golden-15 397 34 838 851 1.55% 2.05% 3.95 -2.94% -2.30%
Golden-15 397 37 845 858 1.54% 1.99% 4.09 -3.73% -3.01%
Golden-15 397 40 849 859 1.18% 1.60% 2.90 -3.38% -2.81%
Golden-15 397 45 853 864 1.29% 1.50% 4.39 -3.47% -2.80%
Golden-15 397 50 851 863 1.41% 1.77% 3.04 -2.78% -2.47%
Golden-15 397 57 850 859 1.06% 1.84% 3.98 -2.44% -1.82%
Golden-15 397 67 855 870 1.75% 2.26% 3.74 -3.45% -2.55%
Golden-15 397 80 857 874 1.98% 2.51% 3.32 -3.55% -2.64%
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Table 10.6: Detailed results for the Golden instances 16 – 20, as provided by Battarra,
Erdoğan, and Vigo (2014).

Strong cluster constraint Weak cluster constraints

instance GAP(%) CPU(s) GAP(%)
set n N opt. Best Avg. best Avg. Avg. Best Avg.

Golden-16 481 35 1028 1038 0.97% 1.31% 4.24 -2.60% -1.89%
Golden-16 481 37 1028 1037 0.88% 1.21% 3.66 -2.89% -1.96%
Golden-16 481 41 1032 1039 0.68% 1.31% 4.43 -2.50% -1.74%
Golden-16 481 44 1028 1042 1.36% 1.71% 4.53 -2.30% -1.77%
Golden-16 481 49 1031 1044 1.26% 1.66% 5.56 -2.87% -2.20%
Golden-16 481 54 1022 1038 1.57% 1.91% 4.39 -2.50% -2.13%
Golden-16 481 61 1013 1035 2.17% 2.58% 3.85 -2.22% -1.74%
Golden-16 481 69 1012 1035 2.27% 2.60% 3.86 -2.03% -1.65%
Golden-16 481 81 1018 1043 2.46% 3.06% 2.93 -2.49% -1.62%
Golden-16 481 97 1018 1048 2.95% 3.47% 3.16 -2.48% -1.72%

Golden-17 241 17 418 421 0.72% 1.16% 3.44 -7.13% -6.48%
Golden-17 241 18 419 421 0.48% 0.95% 2.77 -6.89% -6.41%
Golden-17 241 19 422 424 0.47% 0.78% 5.01 -7.55% -7.09%
Golden-17 241 21 425 427 0.47% 0.91% 3.68 -8.67% -7.85%
Golden-17 241 22 424 426 0.47% 0.91% 4.59 -8.22% -7.69%
Golden-17 241 25 418 421 0.72% 1.04% 3.70 -7.84% -7.54%
Golden-17 241 27 414 416 0.48% 0.79% 2.29 -7.21% -6.36%
Golden-17 241 31 421 422 0.24% 0.61% 2.33 -5.45% -4.62%
Golden-17 241 35 417 418 0.24% 0.49% 3.34 -4.55% -4.04%
Golden-17 241 41 412 412 0.00% 0.39% 4.96 -3.40% -2.71%
Golden-17 241 49 414 416 0.48% 0.79% 3.45 -4.81% -4.07%

Golden-18 301 21 592 599 1.18% 1.60% 4.13 -4.34% -3.06%
Golden-18 301 22 594 602 1.35% 1.61% 4.89 -3.99% -3.47%
Golden-18 301 24 592 601 1.52% 1.73% 5.09 -4.49% -3.23%
Golden-18 301 26 590 595 0.85% 1.54% 3.41 -3.19% -2.31%
Golden-18 301 28 577 582 0.87% 1.33% 4.42 -2.23% -1.65%
Golden-18 301 31 578 583 0.87% 1.18% 4.09 -2.92% -2.04%
Golden-18 301 34 582 585 0.52% 1.05% 4.38 -2.91% -2.56%
Golden-18 301 38 586 592 1.02% 1.48% 2.32 -3.89% -3.45%
Golden-18 301 43 594 599 0.84% 1.33% 4.50 -4.34% -3.80%
Golden-18 301 51 601 605 0.67% 1.18% 3.29 -4.96% -4.45%
Golden-18 301 61 599 602 0.50% 1.17% 3.73 -4.65% -4.01%

Golden-19 361 25 925 936 1.19% 1.55% 5.06 -3.85% -3.16%
Golden-19 361 26 924 935 1.19% 1.63% 4.84 -3.21% -2.84%
Golden-19 361 28 808 818 1.24% 1.63% 4.36 -6.60% -5.79%
Golden-19 361 31 811 822 1.36% 1.61% 4.41 -7.30% -6.65%
Golden-19 361 33 797 806 1.13% 1.66% 4.96 -6.58% -6.18%
Golden-19 361 37 799 809 1.25% 1.55% 4.51 -6.30% -5.77%
Golden-19 361 41 789 796 0.89% 1.27% 4.03 -5.40% -4.79%
Golden-19 361 46 788 794 0.76% 1.08% 3.13 -5.29% -4.38%
Golden-19 361 52 800 807 0.88% 1.30% 3.43 -6.57% -5.59%
Golden-19 361 61 807 812 0.62% 1.13% 3.09 -6.03% -5.40%
Golden-19 361 73 810 814 0.49% 1.33% 3.00 -6.27% -5.52%

Golden-20 421 29 1220 1231 0.90% 1.32% 4.78 -1.79% -1.49%
Golden-20 421 31 1232 1239 0.57% 1.14% 4.30 -1.53% -1.12%
Golden-20 421 33 1208 1219 0.91% 1.30% 4.37 -1.39% -1.00%
Golden-20 421 36 1059 1073 1.32% 1.76% 5.44 -3.73% -2.71%
Golden-20 421 39 1052 1063 1.05% 1.39% 5.13 -3.57% -3.07%
Golden-20 421 43 1052 1062 0.95% 1.46% 3.37 -4.24% -3.23%
Golden-20 421 47 1053 1065 1.14% 1.55% 3.90 -3.94% -3.27%
Golden-20 421 53 1058 1071 1.23% 1.94% 3.41 -4.58% -3.79%
Golden-20 421 61 1058 1072 1.32% 1.95% 3.82 -4.76% -3.61%
Golden-20 421 71 1059 1076 1.61% 2.01% 2.80 -4.74% -3.81%
Golden-20 421 85 1049 1062 1.24% 1.98% 4.38 -4.14% -2.74%
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This chapter contains the detailed results from the simulation experiments conducted in chapter 8 of

this thesis.



detailed results for the collaborative cluvrp

Table 11.1: Detailed results for the two-partner colgvrpθ3 instances with α = 0.01.
instance grand coalition partner 1 partner 2 Pareto set

n k C V p total cost max. profit profit sizesa ce profit ce min max ce min max

32 5 11 2 2 634 522 18% 15% 15% 15% 22% 22% 22% 1

33 5 11 2 2 578 472 18% 19% 19% 20% 17% 14% 17% 2

33 6 11 2 2 676 562 17% 24% 24% 24% 6% 6% 6% 1

34 5 12 2 2 651 547 16% 25% 23% 25% 5% 5% 7% 2

36 5 12 2 2 746 589 21% 26% 26% 26% 15% 15% 15% 1

37 5 13 2 2 677 569 16% 17% 17% 17% 15% 15% 15% 1

37 6 13 2 2 733 615 16% 21% 21% 21% 10% 10% 10% 2

38 5 13 2 2 692 507 27% 37% 37% 37% 13% 13% 13% 1

39 5 13 2 2 751 618 18% 33% 33% 35% -1% -2% -1% 3

39 6 13 2 2 765 613 20% 33% 33% 33% 0% 0% 0% 1

44 6 15 2 2 811 733 10% 6% 6% 6% 12% 12% 12% 1

45 6 15 3 2 776 712 8% 14% 13% 14% -2% -2% -1% 2

45 7 15 3 2 818 664 19% 13% 13% 14% 29% 24% 29% 2

46 7 16 3 2 801 664 17% 18% 18% 19% 15% 13% 15% 2

48 7 16 3 2 836 683 18% 15% 15% 19% 23% 16% 23% 3

53 7 18 3 2 817 651 20% 17% 17% 17% 24% 24% 24% 1

54 7 18 3 2 873 724 17% 15% 15% 16% 20% 19% 20% 2

55 9 19 3 2 795 653 18% 14% 14% 14% 25% 25% 25% 1

60 9 20 3 2 904 795 12% 8% 8% 8% 19% 18% 21% 2

61 9 21 4 2 832 682 18% 26% 25% 26% 11% 11% 11% 3

62 8 21 3 2 910 778 15% 12% 12% 12% 20% 17% 20% 3

63 9 21 3 2 1058 906 14% 10% 10% 10% 23% 23% 23% 1

63 10 21 4 2 994 801 19% 29% 29% 29% 10% 9% 10% 2

64 9 22 3 2 906 776 14% 18% 18% 18% 8% 8% 8% 1

65 9 22 3 2 864 739 14% 12% 12% 12% 18% 18% 18% 1

69 9 23 3 2 931 838 10% 2% -4% 8% 22% 14% 32% 17 7
80 10 27 4 2 1197 977 18% 34% 34% 34% 1% 1% 1% 1
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Table 11.3: Detailed results for the two-partner colgvrpθ3 instances with α = 0.1.
instance grand coalition partner 1 partner 2 Pareto set

n k C V p total cost max. profit profit sizesa ce profit ce min max ce min max

32 5 11 2 2 634 522 18% 15% 15% 15% 22% 22% 22% 1

33 5 11 2 2 578 472 18% 19% 5% 20% 17% 14% 22% 5 7
33 6 11 2 2 676 562 17% 24% 16% 27% 6% -10% 16% 5 7
34 5 12 2 2 651 547 16% 25% 23% 25% 5% 5% 7% 2

36 5 12 2 2 746 589 21% 26% 26% 26% 15% 15% 15% 1

37 5 13 2 2 677 569 16% 17% 17% 18% 15% 2% 15% 3

37 6 13 2 2 733 615 16% 21% 21% 23% 10% 6% 10% 3

38 5 13 2 2 692 507 27% 37% 22% 37% 13% 13% 16% 4

39 5 13 2 2 751 618 18% 33% 13% 35% -1% -2% 7% 9 7
39 6 13 2 2 765 613 20% 33% 33% 33% 0% -5% 0% 2

44 6 15 2 2 811 729 10% -1% -1% -1% 19% 19% 19% 1

45 6 15 3 2 776 712 8% 14% -8% 16% -2% -9% 12% 10 7
45 7 15 3 2 818 664 19% 13% 13% 16% 29% 7% 29% 4

46 7 16 3 2 801 664 17% 18% 16% 22% 15% 6% 16% 7 7
48 7 16 3 2 836 683 18% 15% 15% 19% 23% 9% 23% 4

53 7 18 3 2 817 651 20% 17% 7% 21% 24% 16% 25% 9 7
54 7 18 3 2 873 724 17% 15% -4% 16% 20% 13% 30% 19 7
55 9 19 3 2 795 653 18% 14% 11% 14% 25% 25% 25% 2

60 9 20 3 2 904 795 12% 8% -5% 8% 19% 18% 22% 11

61 9 21 4 2 832 682 18% 26% 15% 26% 11% 11% 14% 6

62 8 21 3 2 910 778 15% 12% 8% 13% 20% 11% 20% 6

63 9 21 3 2 1029 865 16% 10% 0% 13% 26% 2% 29% 12 7
63 10 21 4 2 994 801 19% 29% 10% 29% 10% 1% 13% 5

64 9 22 3 2 906 776 14% 18% 3% 18% 8% 8% 15% 9

65 9 22 3 2 839 749 11% 6% 8% 8% 18% 22% 22% 1 7
69 9 23 3 2 931 839 10% 1% -5% 12% 23% 9% 31% 17 7
80 10 27 4 2 1197 976 18% 35% 16% 38% 0% -7% 9% 28 7
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of the Metaheuristics Community-Université de Bretagne Sud, France (cit. on p. 107).
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Montoya-Torres, Jairo R, Julián López Franco, Santiago Nieto Isaza, Heriberto Feliz-
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Notation

General

symbol meaning

N grand coalition
|N | or n number of partners in the grand coalition
S subcoalition (S ⊆ N)

Cost allocation and gain sharing

symbol meaning

Ψ set of all possible cost allocations
ΨIR set of all individual rational cost allocations (ΨIR ⊆ Ψ)
ψ cost allocation result
ψi cost allocated to partner i

v(S) worth of subcoalition S
c(S) cost of subcoalition S
c(i) stand-alone cost of partner i

mi marginal cost of partner i
ei cost excess of cost allocation for partner i
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The selective vehicle routing problem

symbol meaning

K set of vehicles
D fixed maximum vehicle distance

c number of customers
cpi customer i, belonging to partner p
di j travel cost between customers i and j
uik position of vertex i in the route of vehicle k
cndi compensation for non-delivery of customer i∑

p cndp,sol total cnd of the customers of partner p in the solution
mi marginal cost of adding customer i in the current solution
Mp sum of the marginal costs for every customer of partner p in the

current solution

The clustered vehicle routing problem

symbol meaning

V set of vertices
E set of edges
R set of clusters
Cr set of customers in cluster r
K set of homogeneous vehicles
Q vehicle capacity

di j distance associated with edge (i, j) ∈ E
qi demand of customer i
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Integrated solution framework

symbol meaning

ζ solution space
x solution vector
N(x) the neighbourhood of solution vector x

Kc set of vehicle at the coalition level
Vc set of customers at the coalition level
Kp set of vehicles of partner p
V p set of customers of partner p

Fc(x) coalition objective
Fi(x) partner objective

d(a, b) distance between solution vectors a and b
ε allowed distance between two solution vectors

sa stand-alone solution
ce coalition efficient solution

Ω set of all cluster configurations
ω cluster configuration
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Acronyms

ACAM Alternative Cost Avoided Method

CLOP Coalition Level Optimisation Problem

CLUTSP Clustered Travelling Salesman Problem

CLUVRP Clustered Vehicle Routing Problem

CND compensation for non-delivery

CPFR Cooperative Planning, Forecasting and Replenishment

CVRP Capacitated Vehicle Routing Problem

EPM Equal Profit Method

FTL Full Truckload

GRASP Greedy Randomized Adaptive Search Procedure

GVRP Generalised Vehicle Routing Problem

HLC horizontal logistics cooperation

LSP Logistics Service Provider

PLOP Partner level Optimisation Problem

SVRP Selective Vehicle Routing Problem



bibliography

TSP Travelling Salesman Problem

TSPSTW Travelling Salesman Problem with soft time windows

COLTSPSTW Collaborative Travelling Salesman Problem with soft time windows

VMI Vendor Managed Inventory

VNS Variable Neighbourhood Search

VRP Vehicle Routing Problem
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Christof Defryn and Kenneth Sörensen (2017b). “Models for multi-
objective optimisation in a horizontal logistic cooperation.” In: in
review

International peer-reviewed journals

2017 Christof Defryn and Kenneth Sörensen (2017a). “A fast two-level
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2015 Christof Defryn, Kenneth Sörensen, and Trijntje Cornelissens (2015).
The selective vehicle routing problem in a collaborative environment. Tech.
rep. University of Antwerp

2015 Christof Defryn and Kenneth Sörensen (2015d). A two-level Vari-
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2013 Christof Defryn and Kenneth Sörensen (2013). “The collaborative
team orienteering problem (poster).” In: VRP2013: European spring
school on vehicle routing. Angers, France

2013 Christof Defryn, Christine Vanovermeire, and Kenneth Sörensen
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