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Let k be a field. A projective Schur Algebra over k is a finite-dimensional
k-central simple algebra which is a homomorphic image of a twisted group algebra
k*G with G a finite group and a € H*(G, k*). The main result of this paper is that
every projective Schur division algebra is an abelian crossed product (K/k, f), where
K is a radical extension of k. T 1994 Academic Press, Inc.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let £ be any field. A finite-dimensional k-central simple algebra B is
called a Schur algebra if it is the homomorphic image of a group algebra kG
for some finite group G. The classes in the Brauer group Br(k) containing
Schur algebras form a subgroup S(k) of Br(k) called the Schur group
of kK [Y]. The Schur group has been generalized by Lorenz and Opolka
[LO] by replacing group algebras kG by twisted group algebras k*G where
xe HX(G, k*), k* = the multiplicative group of k, and k*G is the k-algebra
with basis {u, | 0 € G} and multiplication rule given by

uﬂ u‘t = a(o-’ T)“UT’
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Opystaeyen and the University of Antwerp for their hospitality.
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where a(o, 1) e a. Thus a projective Schur algebra over k is a finite-dimen-
sional k-central simple algebra B which is a homomorphic image of a
twisted group algebra k%G for some finite group G and some a € H*(G, k*).
(If char k =0 then a k-central simple algebra B is a homomorphic image of
a twisted group algebra £*G if and only if B is a direct summand of £*G).

The classes in Br(k) containing projective Schur algebras form a
subgroup PS(k), known as the projective Schur group of k. Lorenz and
Opolka [LO] proved that PS(k)= Br(k) if k is a number field and it has
been observed by Van Opystaecyen [NVO] that the Merkuriev—Suslin
Theorem [M] implies that if & is a field containing the n'® roots of unity,
then PS, (k)= Br,(k), where the subscript n denotes the subgroup of
elements of order dividing #. It has been asked [NVO] if PS(k) = Br(k) for
all fields.

In this paper we will not deal with PS(k), but with the structure of
projective Schur division algebras, that is, division algebras that are
projective Schur algebras. The analogous question for Schur aigebras was
answered by Amitsur [A], in the process of determining the finite
subgroups of division algebras, since the subalgebra of a division algebra
D generated over k by a finite subgroup of D* is a Schur division algebra.
A noncommutative Schur division algebra D is always a symbol algebra
(a, ), (see below), where k(a'™) is a cyclotomic extension of &, and w is
a root of unity. More generally, a Schur algebra B is always similar to a
cyclotomic algebra, see [Y], 1e, a crossed product (K/k,a) with
axe H*(G(K/k), K*), where K=k({) is a cyclotomic extension of k, and «
contains a cocycle a(o, T) with values in a finite group W of roots of unity
in K. Any cyclotomic algebra B = (K/k, x) is a Schur algebra in a natural
way since the group E defined by the group extension «

1> W—E-G(Klk)— 1|

is a finite subgroup of B spanning B over &, so B is a homomorphic image
of the group ring kE. Similarly there is a natural way of constructing a
projective Schur algebra. First note that a k-central simple algebra B is a
projective Schur algebra if and only if there is a multiplicative subgroup I
of B containing k* such that I'/k* is finite, and I spans B over k as a
k-vector space, 1.€., B=k(I"). Indeed, the group I is the group extension

l»k*>T5G-1

defined by o if B is a homomorphic image of k*G, and conversely, if
B=k(I') then B is a homomorphic image of &*G, where G =I'/k* and «
corresponds to the group extension

l=>k*>T'5G— 1.
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Thus, to construct a projective Schur algebra over k, start with any finite
radical Galois extension K/k. K/k is a radical extension if and only if
K=k(A) where A4 is a subgroup of K* such that A/k* is a torsion group.
Thus, if K/k is a finite radical extension, then A4/k* is finite. If K/k is also
Galois, then we may assume 4 is G-invariant, G = G(K/k). Now, take any
ae H*G, A) and its image o' € H*(G, K*). The crossed product (K/k, «)
contains the group /" defined as the group extension of A and G determined
by a:

l>A4->T-G—- 1.

Since K=k(I"), I'/k* is finite and (K/k, «') is central simple, (K/k, o) is a
projective Schur algebra. We will call such an algebra a radical algebra.

The simplest example of such an algebra is a symbol algebra (a, b),. If
k contains a primitive n'® root of unity {, and a, bek* then (a, b), is
generated over k by u, v satisfying u" =a, v" = b, vu = {uv. We see (q, b), is
a projective Schur algebra by taking 4 = (u) and I"'= {w, v). Similarly, a
tensor product of symbols is a projective Schur algebra, which proves the
observation quoted above, that PS, (k)= Br,(k) when k contains the n'™
roots of unity, since Br,(k) is generated by symbols, by Merkuriev—-Suslin.

On the other hand, not every cyclic algebra is a projective Schur algebra,
as we will see later. Let us now state the main result of this paper. A radical
algebra (k(A)/k,o') is called an abelian radical algebra if k(A)/k is an
abelian extension.

THEOREM 1. Let k be any field, D a projective Schur division algebra
with center k. Then D is an abelian radical algebra over k. In particular D
is an (abelian) crossed product (K/k, «').

Before turning to the proofs, we make two remarks which are relevant
to the structure theory of projective Schur algebras and projective Schur
groups.

Remark 1. Let M, (D) denote the r x r matrix ring over a division ring
D. Then M,(D) may be a projective Schur algebra without D being one.

Remark 2. Let D be a k-division algebra of degree n=p{' ... p&, P,
prime, i=1,..,s, D=D,®, --- ®, D, where D, is a k-division algebra of
degree p,, i=1,.,s [R, p.256]. Then D may be a projective Schur
algebra without all the D, being so.

To prove these two remarks, we first show that Remark 2 implies
Remark 1.

Suppose M, (D) projective Schur implies D projective Schur. We show
then that if D=D,® --- ® D, is a projective Schur k-division algebra of

481:163:3-15
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degree n=pS ---p%, with degree D;=p%, 1<i<s, then all the D, are
projective Schur as well. In the Brauer group of k, [D1=[D,]---[D,]
where exp[D,;]=p%, d,<e,. It follows that each [D,] is a power of [D].
If D is a projective Schur algebra, then [ D] e PS(k), and therefore [D;] e
PS(k) too. This implies that M, (D;} is a projective Schur algebra for
some r, hence D, is a projective Schur algebra.

To prove Remark 2, we will give an example of a cyclic projective Schur
division algebra D with primary decomposition D~ D, ® --- ® D, and not
all the D; are projective Schur. To this end, we consider the very special
case of projective Schur division algebras of prime degree p. The following
proposition is really a special case of Theorem 1, but we will give a
separate and more elementary proof of it here.

PROPOSITION 1. Let D be a projective Schur division algebra of prime
degree p over k. Then either D is a cyclic algebra (k({)/k, a, a) with { a root
of unity, or D is a symbol algebra (a, b), where k contains the p'® roots of
unity.

Proof. let D=k(I'), ' < D*, I'/k* finite. Let xe I'\k, such that the
order of x mod k* is a prime ¢. Setting a = x¥ the polynomial X7 —a is
either irreducible over k or has a root in k (see [VAW], p. 180]). If XY —a
has a root b in k, then the other roots are of the form (b, with { a primitive
g™ root of unity. Thus k(x)=k({) is a cyclotomic extension of k. Suppose
now that for all x e I" of prime order modulo k*, X¥—a is irreducible over
k, where g =order of x modulo k*. Then since [k(x):k]=g, g=p, so
I'/k* is a finite p-group. Let z e I'\k* be central and of order p modulo k*.
Since z is not central in I (Z(I')c Z(D)=k) we have for some xe T,
(x 'zx)=a=({z)" =z ={"a. Thus { =1 so { is a primitive p' root of
unity, Clearly D =k(z, x) so x”e Z(D)=k. Thus D is a symbol algebra
(a.5),. 1

Note. The proposition shows that the only way for a division algebra
of prime degree p to be a projective Schur algebra is in one of two obvious
ways. Not every cyclic algebra of prime degree p is of this type. For
example, let K be any cyclic extension of prime degree p # 2 of Q. Then, the
extension K/Q is neither cyclotomic nor Kummer. On the other hand, it is
known that every cyclic extension of @ can be embedded as a maximal
subfield of a Q-division algebra D [Sch], which, by Proposition 1, is not
a projective Schur algebra if [K: Q) =p.

Consider now the following example. Let ¢ be a prime such that ¢— 1
is divisible by some odd prime p but not by p?, eg, g=7, p=3. Let L be
the field of ¢™ roots of unity. Let D be a Q-division algebra containing
L as a maximal subfield. Then D is a projective Schur algebra. Now
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D=D,®D; with D,, D; of exponent (=index) 2,3, respectively. By
Proposition 1, D; is not a projective Schur algebra. This proves Remark 2
and hence Remark 1.

2. Proo¥ OF THEOREM |

Remark 3. A finite abelian subgroup A of the multiplicative group of a
k-division algebra D is necessarily cyclic, since it is contained in the field
k(A).

LEMMA 1. Let D be a projective Schur division algebra over k, I' a
spanning group over k, with I'/k* finite. Then

(a) The commutator subgroup [’ of I is finite,

(b) Let A be a finite abelian normal subgroup of I. Then I
centralizes A.

(c) If A is a maximal abelian subgroup of I'' and is also a normal
subgroup of I', then I'' = A is abelian.

Proof. Part (a) follows from the fact that the center Z(I") of I" is of
finite index in I, by [Sc, p. 443]. To prove (b), observe that 4 is cyclic, so
Aut(A) is abelian. It follows that " acts on 4 through an abelian quotient,
so I’ acts trivially on A. Part (c) follows from (b) by taking an element
xel"\A (if I'"# A) and observing that {x, A) is abelian. }]

MAIN LEMMA. Let D be a projective Schur division algebra over its
center k. Then there is a spanning group I" of D over k, I'/k* finite, such that
either:

(a) [ is cyclic; or

(b) I contains a normal subgroup H isomorphic to the quaternion
group Qg of order 8.

Proof. 1f char k=p>0, then F,(I"’) is a finite division algebra, hence a
field, so I’ is (finite) abelian hence cyclic. We may therefore assume
char £ =0. We now apply Amitsur’s classification [A, p.382] of finite
multiplicative subgroups of division algebras to enumerate the possibilities
for I

Case 1. I is a metacyclic group G, , generated by X, Y with relations
X"=1, Y'=X', YXY '=X" where n is the order of r modm (ie,
I//{X> acts faithfully on (X)) I'" =G, , = (X*>, (Z(I") = {X*D, where



800 ALJADEFF AND SONN

s=(r—1,m)=m/t. In addition the integers n, m, s, t satisfy one of two
possibilities ;

(1.1) n, s, are odd and (n, 1)=(s, 1) =1

(1.2) n=2n', s=2¢, m=2"w', a=2, where n',s,m are
odd; (n, t) = (s, t) =2, r= — 1 mod(2”).

Assume (1.1). The subgroups Z(/')={X') and "= <{X*) are charac-
teristic in ["'; therefore, since (s, ¢) = 1, the cyclic subgroup ¢X) generated
by X is also characteristic in /" hence normal in I By Lemmal, I’
centralizes (X », hence I’ is abelian and therefore cyclic. Assume now
(1.2). By a similar argument, the cyclic subgroup generated by (X?> is
contained in Z(/'). Since =0 (mod2), Z(F )= (X') =<{X?>. Finally,
using r|m and r=—1 (mod 2*) we conclude t=2, s=m/2=(r—1,m),
n=2. This shows that the group /" in this case is generated by elements
X and Y with the relations X™"=1, Y?=X% YXY '=X'", r=—1
{mod 2%), n=1=2, m=2°m', 22, m = odd, ord(/"")=2m. Now for p+#2
the p-Sylow subgroups in {X) are also p-Sylow subgroups in /', They are
characteristic in {X) so normal and therefore also characteristic in /.
This shows that the subgroup {(X*') of order m’ is characteristic in /".
Consider the central extension

Lo (XY T > T(XYY - 1.

Since ged(ord({X* >), ord(£'/{X*>))= 1, the extension splits, so there is
a subgroup H in [’ isomorphic to I"’/{ X% ). Clearly H is of order 2**!
and characteristic in /. We claim that H is isomorphic to Qg, the
quaternion group of order 8. Indeed, it is generated by elements X = x and
Y=pwithx¥=1,x=p% pxy '=x"" Thus, y=xpx 2=x(xpx ' )x '=
x*y, ie, x*=1. This completes the proof of the main lemma for the case
I'=¢

Case 2. ['=A,, the binary tetrahedral group of order 24.
Case 3. I'xS,, the binary octahedral group of order 48.

Both groups contain characteristic subgroups isomorphic to Qg (quater-
nions of order 8).

Case 4. I'' = A;, the binary icosahedral group of order 120. We have
an exact sequence

I {+1} s As—> A1

A contains the binary tetrahedral group A, as a subgroup of index 5. Now
Aut(4s)=3S; (see, e.g, [HB, p.391]). Since A, is contained in a double
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cover S5 of S (there are two in fact; see [So]), we have Ss < Aut(As).
Since every automorphism of A5 induces an automorphism of A5 we have
Aut(As) = Aut(A4;) ~ S;.

Claim. The conjugates of A, in A form a characteristic class of
conjugate subgroups in As, ie., the set of conjugates of A, in As is
invariant under Aut A;. This is equivalent to the assertion that the
conjugates of 4, in 45 are a characteristic class in 45;. The number of
conjugates of A, in S5 is [S5: Ny (A4,)]=[S5:5,]=3, proving the claim
since Ss=Aut 4;.

We may now apply the Frattini argument [Ro, p. 1947} to obtain
I'= Nr(/‘ia)/? 5-

Now consider the subalgebra Q(I’). Clearly it is a division algebra and
using [A, Lemma 147, we have

QI ~U,®q @(\/g), U, =rational quaternions.

Thus Z(Q(I™)) = Q(./5).

Case 4.1. \/ge k. Then, extending the scalars to k, we get
k(I'') = quaternions over k. Now the normalizer N,(A,) contains A4, so it
also contains Q. Since k(Qjg) 1s a quaternion algebra over k contained in
k(I"), we have k(Qg)=k(I""). It follows that k(1)< k(N (A,)) and since
I'=N(A,) I’ we have k(I")=k(N(A,)). We replace I" by I'g=N,(A,).

Since Q; is characteristic in 4, it is normal in I, as desired.

Case 4.2. \/§¢k. Then the center of k(7') is k(ﬁ). The group I acts
on k(I'’) so it acts on k(\/g). It fixes only elements of k so it sends /5 to
~\/§ (\/g is not in the center of k(I"). Let I'= <\/§h, I'> c D*. Then I/k*
is finite. The quaternion group Qg is contained in 4,, which is contained
in I”'. The algebra k(I"') is the quaternion algebra over k(\/g). Also the
algebra k(\/g)(Qg) is a quaternion algebra over k(\/g) and is contained
in  k(I'"). Therefore k(/5)(Qs)=k(I'"). Since N (A;)cNr(d,)
and both 4, (so Q) and \/3 normalize A, we see that k(I"') = k(Nr(Ay)).
Write Io=Np(4,). We have k(DN =k(NAA)")Sk(Np(A)I')<S
k(Np(A)) K(TYS k(NF(A))=k(Iy). Thus k(5y=k(I,). Now Qg is
characteristic in A, so normal in I,. So, if we replace I" by I',, we get the
main lemma for this case, and this in fact completes the proof of the main
lemma.

We now consider the two situations of the main lemma. In the first,
we prove that the conclusion of Theorem 1 holds, and in the second, D
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decomposes into a tensor product of a projective Schur division algebra
and a quaternion algebra, which yields a proof of Theorem 1 by induction.

PROPOSITION A. Let D=k(I") be a projective Schur k-division algebra. If
I is abelian (ie., cyclic) then Theorem 1 is true. D is an abelian radical
algebra.

Proof. Let A be a maximal abelian subgroup of /7, containing /. Let
K=k(A). Since A>T, it is normal in /" and so I acts on K=k(A4). Let
P be the kernel of this action. By maximality of 4 we have P =A. Write
G =T/A. Finally, by a dimension argument we show that the field exten-
sion K/k is Galois and that K is a maximal subfield of D. Let [ D : k] =n>
Then [K:k]=m<n and |G| =s<m (since G < Aut(K/k)). Recall that I
spans D over k so any section of G into { spans D over K (as a vector
space). Then

n?*=dim, D =dim, K -dim D <m-5s<n

Therefore, m = s =n and K is a maximal subfield in D, Galois over k. This
completes the proof. |}

PrOPOSITION B. Let D be a projective Schur division algebra over k,
D=k(I'), I' a spanning group < D*, I'/k* finite. Suppose I contains a
normal subgroup H isomorphic to the quaternion group Q, of order 8. Then
D=D ®, D, with D, = the ordinary quaternion algebra over k, and D, is
a projective Schur division algebra.

Proof. First note that the subalgebra D, =k(H) of D is isomorphic to
the ordinary quaternions over &, since D, is a noncommutative division
algebra and the center of H must be { +1} < k. The action of /" on H by
conjugation induces a homomorphism

- Aut(H)=S,.
Let S, denote the binary octahedral group. We have an exact sequence
l=>{+1l=>8,->S,>1

There is a known embedding of S, into the multiplicative group of the
ordinary quaternions Hg 3, over @(\/5 ) extending the embedding of the
binary tetrahedral group A, into Hgy [V, p. 17]. We have Ay~ Eyc Hg
where

Ey={=+1, +i, +j, +k, (+1+it+j+k)2}
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and
Si=Eg=Fy,u {( +a+ ,B)/ﬁ: {a, B} = 2-element subsets of {1, 1, j, k} }
Consider the subgroup ¥ of H§ generated by E,, and
S= { t+at B {x B} <2-element subsets of {1, j, k}}

Then N is a subgroup of H¥ containing E,, with N(ﬁ>=E48<\/§>.
Now Nk*/k* is finite. Indeed, [Nk* 1 k* ] =[N: Nnk*|<[N:Nn{2>]=
[N:<2>]1=[NV2) 1 (V20T =[Ea{/2) : {/2)1 = | Ess| =48 since
Exn{(J/2>=1{1}. Since the action of E,; on H maps E, onto
Aut{H)=S,, the action of N on H maps N onto Aut(H)=S, too. We
claim /" normalizes N. Indeed, since Nck(H) and N> H it is clear that
Cpe(H)=Cp.(N) where C,. denotes the centralizer in D*. Let yel.
There exists ve N such that yv~'e C,.(H). Hence y = (yv ~')v normalizes
N, proving the claim. Now set ['=[IN. Then [/k* is finite since
|[7k*| = |FNJk*| < | T/k*||Nk*/k*| < 0. The group { contains I" so that
k(I')=D. Consider now the action of I on H. The induced
homomorphism I~ — Aut(H) ~ S, is onto since /"> N. Let I', be its kernel.
Given e[, there is ve N such that yv ~'e . Hence "= I, N. It follows
that

D =k(F)= k(o) k(N)=k(F,) k(H).

Now k(") and k(H) centralize each other, so k(1)) = Cp(k(H)), wbich we
denote by D,. Since D=D,®, D, =D, ®, k(I;) we have D,=k(I,) and
the proof is complete. [

By successive applications of Proposition B with the observation that the
tensor product of radical algebras is again a radical algebra, we have
reduced the proof of Theorem 1 to Proposition A, hence Theorem 1 is
proved. (In fact, at most one application of Proposition B is reguired.)

Another consequence of Propositions A and B is that we can choose I
with abelian commutator. We record this in

COROLLARY 1. Let D be a projective Schur division algebra. Then there
exists a spanning group I (finite modulo k*) such that I'' is abelian.

Proof. This is clear if we remember that Qg ={ +1} is abelian. |}

Another immediate consequence of Propositions A and B is:

COROLLARY 2. Let D be a projective Schur division algebra with

center k. Let I" be a spanning group, finite modulo k*. If dim, D = odd, then
I'' is abelian (therefore cyclic).
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Proof. Clearly in this case D contains no subalgebra isomorphic to the
quaternion algebra over k. |

Remark 4. If chark=p#0 and index D =p™ then the radical extension
K/k in Theorem 1 is a cyclotomic extension.

The proof of Remark 4 follows from the following

PropPOSITION C. Let k be a field of characteristic p#0 and let K=k(A)
be a radical Galois extension of degree p” > 1. Then K is a cyclotomic
extension of k.

Proof. We first prove the following special case: |4/k*| = a prime q.
Let 2e A\k, so a?=aeck*. Suppose the polynomial X9 — ¢ is irreducible
over k. Then [k(x):k]=gq, so q=p, k(x)/k is inseparable, a contradic-
tion. Then by [VAW, p. 180], X% —~a has a root bek, so a/b={_is a g™
root of unity and k(o) =k({), which proves the proposition in this special
case.

We now prove the proposition in the general case by induction on m. If
m=1, then take any ae A\k of prime order mod k£*. Then k(x)#k, so
k(a)=k(A) and we are in the special case above. Now assume m »1, and
again take any a € A\k of prime order mod k*. Then [k(x):4k]>1 and by
the special case, k(x)/k is cyclotomic. Since [k(A4):k(2)]=p" <p™, we
have by induction k(A)/k(a) is cyclotomic. It follows that k(A)k is
cyclotomic.

Note added in proof. During the research on this paper, the first author had a wseful
discussion with M. Shirvani, who has since informed the author that he has obtained some
partial results along the lines of the present paper.

REFERENCES

[A] S. AMITSUR, Finite subgroups of division rings, Trans. Amer. Math. Soc. 80 (1955),
361-386.

[HB] B. HuppERT AND N. BLACKBURN, “Finite Groups, 111,” Springer, New York,
1982.

[LO] F. Lorenz anp H. OpoLkA, Einfache Algebren und projektive Darstellungen iiber
Zahlkorpern, Math. Z. 162 {1978), 175-182.

[M] A.S. MErkURIEV, K, of fields and the Brauer group, in “Proceedings Boulder Conf.
on K-theory, 1983.”

[R] I. REINER, “Maximal Orders,” Academic Press, Orlando, FL, 1975,

[Rol J. RotMmaN, “An Introduction to the Theory of Groups,” Allyn & Bacon, New York,
1984.

[Sch] M. SCHACHER, Subfields of division rings, 1, J. Algebra 9 {1968), 451-477.

[Sc] L. Scott, “Group Theory,” Prentice-Hall, New Jersey, 1964.

[So] 1. Sonn, Double covers of S5 and Frobenius groups as Galois groups over number
fields, J. Algebra 114 (1988}, 401-410.



PROJECTIVE SCHUR DIVISION ALGEBRAS 805

{VdW] B. L. VAN DER WAERDEN, “Algebra,” Vol. I, Ungar, New York, 1970.

[V] M.-F. VIGNERAS, Arithmétique des Algebres de Quaternions, in “Lecture Notes in
Mathematics,” Vol. 800, Springer-Verlag, New York/Berlin, 1980.

[NVO] P. NeLis aNp F. VaN OvsTAEYEN, The projective Schur subgroup of the Brauer
group and root groups of finite groups, J. Algebra 137 (1991), 501-518.

Y] T. YaMaDpa, The Schur subgroup of the Brauer group, in “Lecture Notes in
Mathematics,” Vol. 397, Springer-Verlag, New York/Berlin, 1970.



