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Abstract

In this note, we prove that all compact Hausdorff topological spaces are exponential objects in the
categoryUAP of uniform approach spaces and contractions as introduced in R. Lowen, Approach
Spaces: the Missing Link in the Topology-Uniformity-Metric Triad, Oxford University Press, 1997.

As a consequence, we show thB§P admits at least as many monoidal closed structures as there are
infinite cardinals. We also prove that under the assumption that no measurable cardinals exist, there
exists a proper conglomerate of these monoidal closed structutg&en
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1. Introduction and preliminaries

The topological categorP of approach spaces and contractions was introduced by the
first author as a resolution of some problems arising in (categorical) topology, mainly the
non-canonical metrizability of arbitrary products of metric spaces. These approach spaces
form a common supercategory of both topological and metric spaces, where products of
arbitrary (set-indexed) families of metric spaces now possess a canonical product still
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concordant with the product of the underlying metric topologies. In this paper we will
mainly be concerned with the full subcategddpP of AP, which is the epireflective

hull of pMET® in AP. We only note thatUAP is initially closed inAP, whence also

a topological construct. For any information and notations concerning approach theory
and its wide range of applications to other fields of general topology or functional analysis,
we refer to [6]. Becaus@&P containsTOP in the nicest possible way (both reflectively
and coreflectively), it also inherits some deficiencies of the latter with respect to algebraic
properties like Cartesian closedness. Al4AP fails to be Cartesian closed. It is well
known that all compact Hausdorff spaces are exponentiall®©iR, i.e., their associated
product functors admit a right adjoint. In a first part of the paper, we will show that they
also are exponentiable IDAP and we will give a nice internal characterization of the
corresponding natural function space structure building this right adjoint. On the other
hand, it was proved in [4], that non-symmetric monoidal closed structures can be used
very efficiently to adapt a category for algebraic purposes while extracting the maximum
of good exponential behaviour it has. We refer to the standard literature on categories for
any information on monoidal closed structures.

2. Main results

As proved in [5,7] the construdSAP is the quasitopos hull of botAP and UAP,
whence surely Cartesian closed (we refer to [5] for further information, definitions and
notations). If forY, Z € |PSAPJ, the convergence approach limif on PSAP(Y, Z) is
defined by

re(W)(f)=infla >0|VF e F(Y): 1z(¥(F)) o f <Ay (F) Val

forall f € PSAP(Y, Z) and¥ € F(PSAP(Y, Z)) (where for a seX, F(X) stands for the
set of all filters onX), theni. is aPSAP-limit (throughout the paper,always denotes the
underlying set an®&* (respectivelng) denotes the set of positive real numbers including
(respectively excluding) 0). To simplify notations, put

[Y, Z]. := (PSAP(Y, Z), ).

Let us also recall the following, which is a special case of Theorem 3.3 from [8], since it
was shown in [7] thaUAP is finally dense irPSAP:

Theorem 2.1 (Schwarz [8]) For everyY € |UAP] the following assertions are equivalent

(1) Y is exponential inJAP,
(2) YZ € JUAPJ: [Y, Z]. € |UAP|.

It is our aim to show the following clainEvery compact Hausdorff topological space,
viewed as a uniform approach object, is exponentidJAxP.

In the sequelComp (respectivelyComp,) denotes the category of all compact
(respectively compact Hausdorff) topological spaces and continuous maps, sometimes
viewed as a full subcategory 8P (respectivelyJAP). Fix Y € |Comp,| andZ € [UAP.
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We denote the corresponding convergence structurg diy gy. First we note that
UAP(Y, Z) in fact consists of all continuous functions from to the topological
coreflection ofZ, which is completely regular. We now have to verify that the pseudo-
approach limiti. is in fact a uniform approach limit. Letf € UAP(Y,Z),¥ €
F(UAP(Y, Z)). Then (note that, because Hausdorffness implies uniqueness of limits, we
can use a notation liker for the unique limit point of a convergent filter)

Ae(W)(f) =infla €[0,00] [VF € F(Y): Az(¥(F)) o f <aV bim,, F}

= sup Az(¥F) ()
(F.yFr)eqy

= suprz (¥ (Ny ) (£ ).
yey
(Here, for any subsefi of a given setX the functioné,: X — [0, oco] is defined by
O0a(x):=0if x e Aandf(x):=oc0if x ¢ A.)

From this formula, it is immediately clear thiat inherits the (PRAL) property fronz.
It remains to verify (AL) fori., and that.. can be generated by p-metrics.

Instead of doing this directly, we will try to find an alternative description for the
convenient exponential approach structured®P(Y, Z), which then has to be identical
to 1. We writeG?, for the symmetric gauge of as introduced in [6], i.e&?, is the largest
setD of cop-metrics onZ such that

VxeZ, VACZ: §z(x,A) = supinf d(x, a).
deDA€A

For everyd € G5,,

d: UAP(Y, Z) x UAP(Y, Z) — [0, 00]: (f, g) — su)E)d(f(y), g(y))
yey

is anoop-metric onUAP(Y, Z), and it is clear that
{d1degy}

is a symmetric gauge basis for a uniform approach struairevhich we call the structure
of uniform convergence on the function spaé&P(Y, Z), where

huc(W)(f) = sup inf supd(f, g)
deG, F €Y geF
for all f € UAP(Y, Z), ¥ € F(UAP(Y, Z)). We also use the subscript ‘uc’ for the other
equivalent representations of the same uniform approach structure, like the distance etc..
To abbreviate notations, we put

Z" == (UAP(Y, 2), huc)-

In order to have some more flexibility to work, let us also introduce a numerified
counterpart to another important topology in the context of exponentiability: the compact-
open topology. For alB  Z (note that it follows from the definition below that it makes
no difference, taking alB € 2< or only all B € 2 that are closed with respect to the
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topological bicoreflectio; of Z) and allK C Y that are compact with respectTp, we
need to look at functionals of the following form:

UAP(Y, Z) — [0, 00 f > inf{e =01 f(K) N B® #@}.

Note that this infimum in fact is a minimum and that for eatle UAP(Y, Z) it equals
inf ¢ k) 8z (-, B). This motivates for alk C Y 7y-compactang € Rz,

I'(K, p):UAP(Y,Z) — [0,00]: f+> fiPII)p.

If Y € |Comp,| andZ < |UAP|, then
Reri=(|I'(K, p) +a |a e[0,00], pe Rz, K C Y Ty-compac}”)V

is a regular function frame ddAP(Y, Z). We callR¢ the compact-regular structure. Note
that at the moment we only know that

(UAP(Y, Z), Rer) € IAP]!
Now takeX, Z € |UAP| andY € |Comp,|. We write
evyz:UAP(Y,Z) x Y — Z: (h,y) — h(y)
andif f: X x ¥ — Z, its transpose is given by
f:§—>;¥: x> f(x,-).
Fory e Y, we write ey, :=evy, z(-, y).

Lemma2.2.LetY € |Comp,|. TakeZ < [UAP|. Then the structure of uniform convergence
is coarser than the compact-regular structure.

Proof. We denote the regular function frame representing the structure of uniform
convergence bfRc. By construction, it is now clear th& ¢ = /\deg% R; (the infimum

is taken in the fibre in the sense of [1]). So it suffices to sialne G5, : Rer < Rj; . To

do so, fixd € G5, and’H C UAP(Y, Z). It now suffices to prove that :=3;(-, H) € R,

So pick f € UAP(Y, Z). We are sure thaic(y)(f) < y(f) so the converse remains to
be shown. Ify (f) = 0 we are done, so assume thatf) > 0. We treat the case where
y(f) < o0o. (The case wherg(f) = oo is treated in an analogous way.) Fixe ]Rar with

y(f) > a.

We are done if we show that
hee()(f) 2 a.

Therefore, picke € ]Rar arbitrary such that
a+2e <y(f).

By definition, we have that

HOB;(f,a+28) =0
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Forally € Y, we now can find a compa@y -neighbourhooav, of y for which f(~,) C
Bys(f(y),e). By compactness of, there existys, ..., y, € Y such thatt = U’}:l Ny,
BecauseRz = /\eeg% Re, it is obvious, thatp; := 84(-, Z \ Bs(f(y;),®)) € Rz for
1< j <n,whencey := /\’}zll“(Nyj,,oj) € Rer- It is also immediately clear from the
metric triangle inequality that () > « + 2¢. To see this, fixj € {1, ..., n} and assume
thatl"(Ny,, pj)(f) < a+2¢. Thenthere existg € N, with p; (f(y)) < «+2¢, SO we can
pickz € Z with d(f(y),2) <a + 2¢ andd(f(y;),z) = o , which leads to a contradiction
becausel(f(y;), f(y)) < e. We are now finished if we prove that+ 2¢ > 1. Suppose
on the contrary that

V(g) >y(g +2
for someg € UAP(Y, Z). This now means that

Vjie{l,....n} )g}lvf Ba(2(), Z\ Ba(f (), @) > v (g) + 2

and some computation then would resulyitg) > y (g) + 2¢, a contradiction.
We have now shown that(y)(f) > « and this completes the proofo

Proposition 2.3. Let X, Z € |UAP| andY € |Comp,|. Then
evy,z € UAP(ZY x Y, Z).

Proof. First note that
ew,z € UAP(Z" x Y, Z) < iduap(r.z) € PSAP(Z".[Y, Z1.).

Fix f € UAP(Y, Z), ¥ a filter on UAP(Y, Z). Assume that\.(¥)(f) € R*. (If it is
400 a similar reasoning does the trick.) Fixe Rg. Takey € Y with A.(¥)(f) <
e+ Az(WWNY))(f (). For everyd € Gz, there existsV,; € Ny (y) such thatf (Ny) C
By (f(y), €). We then have that

re(W)(f) <e+ sup inf supsup(d(f(y), f()+d(f(),g®))

deG, €V gecFreN,
< 2e+ sup inf supd(f, g) =iuwc(¥)(f)+2¢. O
degG;, Few geF

Lemma 2.4. TakeX € |AP|, Y € |Comp| and denote

pry: X xY — X: (x,y) — x.
Then

Vo e Rxxy: Pry(p) e Rx
where for every € X, pry(p)(x) :=infycy p(x, y).
Proof. Itis equivalentto show thatiyx (pry (p)) = pry (p) or equivalently, thak x (pry (o))

> pry(p). So fix x € X and assume that € Rt with pry(p)(x) > «. Then obviously,
VyeY: p(x,y)>a,soforally € Y, there exisp, € Ax(x) andVy € Ny (y) with

L AN CCDRROMUR 1) > .
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By compactness ot’, we can findys,...,y, € Y for which ¥ = U?:l Vy;. Now
Q= \/7=lgoyj € Ax (x) and obviouslyp(s,t) + ¢(s) > « for all s € X, t € Y, whence
pry(p)(s) +¢(s) > a, yieldinghx (pry (0))(x) > a. O

Lemma25. LetX, Z € |[UAP| andY € |Comp,|. Then
VfeUAPX x Y, Z): f eUAP(X,Z").

Proof. TakeK C Y compactp € Rz; it suffices to show thaf (K, p) o f € Rx.Because
[/ is acontraction, we know thato f € Rxxy so0 applying the previous lemma yields that
I'(K,p)o f(:)=infiyxk p o f € Rx. This proves that

f:X — (UAP(Y, Z), Rer)

is a contraction and since we have proved in 2.2 thatis coarser thariR¢, we are
done. O

Summarizing the previous, we obtain

Theorem 2.6. All compact Hausdorff topological objects are exponentidliP, and for
all Y € |Comp,|, Z € |UAP|, [V, Z]. = Z".

Since we have shown there are “enough” exponential objediié\id, we can now use
a standard technique from Greve [4] to derive something about the number of monoidal
closed (or MC) structures that the categbiP admits. For more information on related
results about the categoiyOP, we refer to [2—-4].

Theorem 2.7. There exists at least a proper class of non-naturally isomorphic MC-
structures orlJAP, namely as many as there are infinite cardinals.

Proof. For every infinite cardinak, let C, := {Y € |Comp,| | Card Y ) < «}, which is
finitely productive (inTOP or UAP). Use the construction which is given in [4] to yield
a monoidal closed structurte-0,—, Hy(—, —)) on UAP such that— x Y = —0O,Y for
all Y € C,. Let us recall the definition of the inner hom functé, (—, —) from [4]
(the explicit description of the tensorprodueti,— will not be needed here): for very
X, Z € |UAP|, Hy(X, Z) is taken to consist of the underlying d8AP(Y, Z), equipped
with the initial UAP-structure for the source

: B
(UAP(f’ g):UAP(Y,Z) — A )Ae|UAP|,BeCa,erAP(B,Y),geUAP(Z,A)’

where for allA € |[UAP|, B € C,, f € UAP(B,Y) andg € UAP(Z, A)
UAP(f, g2):UAP(Y, Z) — UAP(B,A): h+>goho f

is the usual hom-functor.
Now takea < f and letYs be a compact Hausdorff space of cardinalfty Let
R stand for the real line with the Euclidean metrig. We are done if we show that
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Hg(Yg,R) # Hy(Yg, R). Clearly Hg(Yg, R) is finer thanH, (Yg, R). We have to prove
it is not coarser, or equivalently, that

iduap(ys.®) | Ha(Yg, R) > Hg(Yg, R)
is not a contraction, or again equivalently, that there efist Cg, T € |[UAP|, f €
UAP(S, Yg) andg € UAP(R, T) such that

UAP(f, g): Hy(Yg,R) = T5: h>goho f
is non-contractive. We intend to prove that

iduap(v,.R) - Ha(Yg, R) — R'#
is not a contraction. By definition of the MC-structureo, —, Hy,(—, —)), the source

(UAP(f, g): Hy (Y, R) — AB)Ae|UAP|,BeCu,erAP(B,Y,g),geUAP(R,A)
is UAP-initial. If for all A € [UAP|, B € Cq, f € UAP(B,Yp), ¢ € UAP(R, A) and
d € G, we put

pfed=do (UAP(f, g) x UAP(f, g))
then

{pre.a| A€|UAP|, BeCy, feUAP(B,Yp), g € UAPR, A), d € G}

is a symmetric gauge basis faf, (Yg, R).

We claim that the topology of the topological coreflection®} is finer than the
compact-open topology dWAP(Y, R). To see that this is true, talké C Yy 7y,-compact,
O € 1y, and fix T

fe{ge UAP(Ys,R) | g(K) S O} =: (K, O).
By compactness dfg, there existg > 0 such that

inf inf -
ot ntolr =2 >
and itis now easy to verify thatz. (f, 5) C (K, O).
We therefore have that
(Yp. 1-1.1[):= {g € UAP(Y5. R) | g(¥p) C]—1. 1}

is open in the topology of the topological coreflectiorfd#, so we are done if we show
that it is not open in the topology of the topological coreflectioffpt Y, R). Suppose on
the contrary tha{Ys, 1—-1, 1[ ) would be open with respect to the last mentioned topology.
Sinceko:Yg — R: y — 0 belongs to(Yg, 1-1, 1), this would imply that there exist
e>0,A€|UAP|, BeC,, f € UAP(B, @, g € UAP(R, A) andd € G, such that

ko € By, ,(ko, &) C (Yp, 1-1,1[ ).
Now f(B) is a compact, whence closed, subsetrpfof cardinality at mostr, so we
can pick a pointy € Yg \ f(B). Because compact Hausdorff topological spaces are
completely regular there exists a continuous maps — R (so¢ € UAP(Yg, R)) such
that (f(B)) = {0} and ¢(y) = 2. Then obviouslyy € B,,, ,(ko, ) \ (Yp, 1-1,1[),
which is a contradiction. O
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Lemma 2.8. For everyY € |Comp,| infinite, RY = [Y, R]. #[Y, R],, (whereR stands for
the real line with the Euclidean metric and, R], denotedJAP(Y, R) equipped with the
UAP-product structurg

Proof. This is shown using [4, 2.2], since the topology of the topological coreflection of
RY =[Y, R]. is finer than the compact-open topology (this is shown in the same way as in
the proof of 2.7) and since concrete coreflectors preserve initiality.

Let us recall a theorem from [10], which will enable us to strengthen our result under
the set-theoretical condition that no measurable cardinals exist (which is consistent with
ZFC).

Theorem 2.9 (Trnkova [10]).If there exist no measurable cardinals, then one can construct
a rigid proper class of compact Hausdorff spaces.

Note that because of the fullness of the embedding@® in AP everyT OP-rigid class
is AP-rigid.

Theorem 2.10. Under the assumption that no measurable cardinals exist, one can
construct a proper conglomerafee., one which is not codable by a clasé not naturally
isomorphic MC-structures odAP.

Proof. TakeM to be a rigid proper class of infinite compact Hausdorff spaces. Take
##+DCECM.

We now apply the construction form [4] (see 2.7 for a recollection of the definition of the
inner hom functor) td>* (respectivelyE*), being the saturation dD (respectivelyE)

with respect to finite products, yielding MC structutestp—, Hp(—, —)) (respectively
(—=Dg—, He(—, —)) on UAP for which —OpD = — x D for all D € D (respectively
—0OgE = — x E for all E € E). Now take E € E \ D. We are done if we show
that Hp(E,R) # He(E,R). This is obtained using the previous lemma together with a
completely analogous proof as the one in the pre-approach case given imj9].
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