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Abstract

In this note, we prove that all compact Hausdorff topological spaces are exponential object
categoryUAP of uniform approach spaces and contractions as introduced in R. Lowen, App
Spaces: the Missing Link in the Topology-Uniformity-Metric Triad, Oxford University Press, 1
As a consequence, we show thatUAP admits at least as many monoidal closed structures as the
infinite cardinals. We also prove that under the assumption that no measurable cardinals exi
exists a proper conglomerate of these monoidal closed structures onUAP.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction and preliminaries

The topological categoryAP of approach spaces and contractions was introduced b
first author as a resolution of some problems arising in (categorical) topology, main
non-canonical metrizability of arbitrary products of metric spaces. These approach
form a common supercategory of both topological and metric spaces, where prod
arbitrary (set-indexed) families of metric spaces now possess a canonical produ
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concordant with the product of the underlying metric topologies. In this paper we will
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mainly be concerned with the full subcategoryUAP of AP, which is the epireflective
hull of pMET∞ in AP. We only note thatUAP is initially closed inAP, whence also
a topological construct. For any information and notations concerning approach
and its wide range of applications to other fields of general topology or functional ana
we refer to [6]. BecauseAP containsTOP in the nicest possible way (both reflective
and coreflectively), it also inherits some deficiencies of the latter with respect to alg
properties like Cartesian closedness. AlsoUAP fails to be Cartesian closed. It is we
known that all compact Hausdorff spaces are exponentiable inTOP, i.e., their associate
product functors admit a right adjoint. In a first part of the paper, we will show that
also are exponentiable inUAP and we will give a nice internal characterization of t
corresponding natural function space structure building this right adjoint. On the
hand, it was proved in [4], that non-symmetric monoidal closed structures can be
very efficiently to adapt a category for algebraic purposes while extracting the max
of good exponential behaviour it has. We refer to the standard literature on categor
any information on monoidal closed structures.

2. Main results

As proved in [5,7] the constructPSAP is the quasitopos hull of bothAP andUAP,
whence surely Cartesian closed (we refer to [5] for further information, definitions
notations). If forY,Z ∈ |PSAP|, the convergence approach limitλc on PSAP(Y,Z) is
defined by

λc(Ψ )(f ) := inf
{
α � 0 | ∀F ∈ F( Y ): λZ

(
Ψ (F)

) ◦ f � λY (F) ∨ α
}

for all f ∈ PSAP(Y,Z) andΨ ∈ F(PSAP(Y,Z)) (where for a setX, F(X) stands for the
set of all filters onX), thenλc is aPSAP-limit (throughout the paper,· always denotes th
underlying set andR+ (respectivelyR+

0 ) denotes the set of positive real numbers includ
(respectively excluding) 0). To simplify notations, put

[Y,Z]c := (
PSAP(Y,Z),λc

)
.

Let us also recall the following, which is a special case of Theorem 3.3 from [8], sin
was shown in [7] thatUAP is finally dense inPSAP:

Theorem 2.1 (Schwarz [8]).For everyY ∈ |UAP| the following assertions are equivalen:

(1) Y is exponential inUAP,
(2) ∀Z ∈ |UAP|: [Y,Z]c ∈ |UAP|.

It is our aim to show the following claim:Every compact Hausdorff topological spac
viewed as a uniform approach object, is exponential inUAP.

In the sequelComp (respectivelyComp2) denotes the category of all compa
(respectively compact Hausdorff) topological spaces and continuous maps, som
viewed as a full subcategory ofAP (respectivelyUAP). Fix Y ∈ |Comp2| andZ ∈ |UAP|.
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We denote the corresponding convergence structure onY by qY . First we note that
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UAP(Y,Z) in fact consists of all continuous functions fromY to the topologica
coreflection ofZ, which is completely regular. We now have to verify that the pseu
approach limit λc is in fact a uniform approach limit. Letf ∈ UAP(Y,Z),Ψ ∈
F(UAP(Y,Z)). Then (note that, because Hausdorffness implies uniqueness of limit
can use a notation likeyF for the unique limit point of a convergent filterF )

λc(Ψ )(f ) = inf
{
α ∈ [0,∞] | ∀F ∈ F( Y ): λZ

(
Ψ (F)

) ◦ f � α ∨ θlimqY
F

}

= sup
(F ,yF )∈qY

λZ

(
Ψ (F)

)(
f (yF )

)

= sup
y∈Y

λZ

(
Ψ

(
NY (y)

))(
f (y)

)
.

(Here, for any subsetA of a given setX the functionθA :X → [0,∞] is defined by
θA(x) := 0 if x ∈ A andθA(x) := ∞ if x /∈ A.)

From this formula, it is immediately clear thatλc inherits the (PRAL) property fromZ.
It remains to verify (AL) forλc , and thatλc can be generated by∞p-metrics.

Instead of doing this directly, we will try to find an alternative description for
convenient exponential approach structure onUAP(Y,Z), which then has to be identic
to λc . We writeGs

Z for the symmetric gauge ofZ as introduced in [6], i.e.,Gs
Z is the largest

setD of ∞p-metrics onZ such that

∀x ∈ Z, ∀A ⊂ Z: δZ(x,A) = sup
d∈D

inf
a∈A

d(x, a).

For everyd ∈ Gs
Z ,

d̃ : UAP(Y,Z) × UAP(Y,Z) → [0,∞]: (f, g) �→ sup
y∈Y

d
(
f (y), g(y)

)

is an∞p-metric onUAP(Y,Z), and it is clear that
{
d̃ | d ∈ Gs

Z

}

is a symmetric gauge basis for a uniform approach structureλuc, which we call the structur
of uniform convergence on the function spaceUAP(Y,Z), where

λuc(Ψ )(f ) = sup
d∈Gs

Z

inf
F∈Ψ

sup
g∈F

d̃(f, g)

for all f ∈ UAP(Y,Z), Ψ ∈ F(UAP(Y,Z)). We also use the subscript ‘uc’ for the oth
equivalent representations of the same uniform approach structure, like the distan
To abbreviate notations, we put

ZY := (
UAP(Y,Z),λuc

)
.

In order to have some more flexibility to work, let us also introduce a numer
counterpart to another important topology in the context of exponentiability: the com
open topology. For allB ⊂ Z (note that it follows from the definition below that it mak
no difference, taking allB ∈ 2Z or only all B ∈ 2Z that are closed with respect to th
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topological bicoreflectionTZ of Z) and allK ⊂ Y that are compact with respect toTY , we
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need to look at functionals of the following form:

UAP(Y,Z) → [0,∞]: f �→ inf
{
ε � 0 | f (K) ∩B(ε) �= ∅}

.

Note that this infimum in fact is a minimum and that for eachf ∈ UAP(Y,Z) it equals
inff (K) δZ(·,B). This motivates for allK ⊂ Y TY -compact andρ ∈RZ ,

Γ (K,ρ) : UAP(Y,Z) → [0,∞]: f �→ inf
f (K)

ρ.

If Y ∈ |Comp2| andZ ∈ |UAP|, then

Rcr :=
({

Γ (K,ρ) + α | α ∈ [0,∞], ρ ∈RZ,K ⊂ Y TY -compact
}∧)∨

is a regular function frame onUAP(Y,Z). We callRcr the compact-regular structure. No
that at the moment we only know that

(
UAP(Y,Z),Rcr

) ∈ |AP|!
Now takeX,Z ∈ |UAP| andY ∈ |Comp2|. We write

evY,Z : UAP(Y,Z) × Y → Z: (h, y) �→ h(y)

and iff :X × Y → Z, its transpose is given by

f̂ :X → ZY : x �→ f (x, ·).
Fory ∈ Y , we write evy := evY,Z(·, y).

Lemma 2.2. LetY ∈ |Comp2|. TakeZ ∈ |UAP|. Then the structure of uniform convergen
is coarser than the compact-regular structure.

Proof. We denote the regular function frame representing the structure of un
convergence byRuc. By construction, it is now clear thatRuc = ∧

d∈Gs
Z
Rd̃ (the infimum

is taken in the fibre in the sense of [1]). So it suffices to show∀d ∈ Gs
Z : Rcr � Rd̃ . To

do so, fixd ∈ Gs
Z andH ⊂ UAP(Y,Z). It now suffices to prove thatγ := δd̃(·,H) ∈ Rcr .

So pickf ∈ UAP(Y,Z). We are sure thathcr(γ )(f ) � γ (f ) so the converse remains
be shown. Ifγ (f ) = 0 we are done, so assume thatγ (f ) > 0. We treat the case whe
γ (f ) < ∞. (The case whereγ (f ) = ∞ is treated in an analogous way.) Fixα ∈ R+

0 with

γ (f ) > α.

We are done if we show that

hcr(γ )(f ) � α.

Therefore, pickε ∈ R+
0 arbitrary such that

α + 2ε < γ (f ).

By definition, we have that

H ∩ B
d̃
(f,α + 2ε) = ∅.
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For all y ∈ Y , we now can find a compactTY -neighbourhoodNy of y for whichf (Ny) ⊂

e

n

Bd(f (y), ε). By compactness ofY , there existy1, . . . , yn ∈ Y such thatY = ⋃n
j=1Nyj .

BecauseRZ = ∧
e∈Gs

Z
Re , it is obvious, thatρj := δd(·,Z \ Bd(f (yj ),α)) ∈ RZ for

1 � j � n, whenceψ := ∧n
j=1Γ (Nyj , ρj ) ∈ Rcr. It is also immediately clear from th

metric triangle inequality thatψ(f ) � α + 2ε. To see this, fixj ∈ {1, . . . , n} and assume
thatΓ (Nyj , ρj )(f ) < α+2ε. Then there existsy ∈ Nyj with ρj (f (y)) � α+2ε, so we can
pick z ∈ Z with d(f (y), z) < α + 2ε andd(f (yj ), z) � α , which leads to a contradictio
becaused(f (yj ), f (y)) < ε. We are now finished if we prove thatγ + 2ε � ψ . Suppose
on the contrary that

ψ(g) > γ (g) + 2ε

for someg ∈ UAP(Y,Z). This now means that

∀j ∈ {1, . . . , n}: inf
y∈Nyj

δd
(
g(y),Z \ Bd

(
f (yj ),α

))
> γ (g) + 2ε

and some computation then would result inγ (g) � γ (g) + 2ε, a contradiction.
We have now shown thathcr(γ )(f ) � α and this completes the proof.✷

Proposition 2.3. LetX,Z ∈ |UAP| andY ∈ |Comp2|. Then

evY,Z ∈ UAP
(
ZY × Y,Z

)
.

Proof. First note that

evY,Z ∈ UAP
(
ZY × Y,Z

) ⇐⇒ idUAP(Y,Z) ∈ PSAP
(
ZY , [Y,Z]c

)
.

Fix f ∈ UAP(Y,Z), Ψ a filter on UAP(Y,Z). Assume thatλc(Ψ )(f ) ∈ R+. (If it is
+∞ a similar reasoning does the trick.) Fixε ∈ R+

0 . Take y ∈ Y with λc(Ψ )(f ) �
ε + λZ(Ψ (NY (y))(f (y)). For everyd ∈ GZ , there existsNd ∈ NY (y) such thatf (Nd) ⊂
Bd(f (y), ε). We then have that

λc(Ψ )(f ) � ε + sup
d∈Gs

Z

inf
F∈Ψ

sup
g∈F

sup
t∈Nd

(
d
(
f (y), f (t)

) + d
(
f (t), g(t)

))

� 2ε + sup
d∈Gs

Z

inf
F∈Ψ

sup
g∈F

d̃(f, g) = λuc(Ψ )(f ) + 2ε. ✷

Lemma 2.4. TakeX ∈ |AP|, Y ∈ |Comp| and denote

prX :X × Y → X: (x, y) �→ x.

Then

∀ρ ∈RX×Y : prX(ρ) ∈RX

where for everyx ∈ X , prX(ρ)(x) := infy∈Y ρ(x, y).

Proof. It is equivalent to show thathX(prX(ρ)) = prX(ρ) or equivalently, thathX(prX(ρ))

� prX(ρ). So fix x ∈ X and assume thatα ∈ R+ with prX(ρ)(x) > α. Then obviously,
∀y ∈ Y : ρ(x, y) > α, so for ally ∈ Y , there existϕy ∈AX(x) andVy ∈NY (y) with

inf
(s,t)∈X×Y

(
ρ(s, t) + ϕy(s) ∨ θVy (t)

)
> α.
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By compactness ofY , we can findy1, . . . , yn ∈ Y for which Y = ⋃n
j=1 Vyj . Now
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ϕ := ∨n
j=1ϕyj ∈ AX(x) and obviouslyρ(s, t) + ϕ(s) > α for all s ∈ X, t ∈ Y , whence

prX(ρ)(s) + ϕ(s) � α, yieldinghX(prX(ρ))(x) � α. ✷
Lemma 2.5. LetX,Z ∈ |UAP| andY ∈ |Comp2|. Then

∀f ∈ UAP(X × Y,Z): f̂ ∈ UAP
(
X,ZY

)
.

Proof. TakeK ⊂ Y compact,ρ ∈RZ ; it suffices to show thatΓ (K,ρ)◦ f̂ ∈RX . Because
f is a contraction, we know thatρ ◦f ∈RX×Y so applying the previous lemma yields th
Γ (K,ρ) ◦ f̂ (·) = inf{·}×K ρ ◦ f ∈RX . This proves that

f̂ :X → (
UAP(Y,Z),Rcr

)

is a contraction and since we have proved in 2.2 thatλuc is coarser thanRcr, we are
done. ✷

Summarizing the previous, we obtain

Theorem 2.6. All compact Hausdorff topological objects are exponential inUAP, and for
all Y ∈ |Comp2|,Z ∈ |UAP|, [Y,Z]c = ZY .

Since we have shown there are “enough” exponential objects inUAP, we can now use
a standard technique from Greve [4] to derive something about the number of mo
closed (or MC) structures that the categoryUAP admits. For more information on relate
results about the categoryTOP, we refer to [2–4].

Theorem 2.7. There exists at least a proper class of non-naturally isomorphic M
structures onUAP, namely as many as there are infinite cardinals.

Proof. For every infinite cardinalα, let Cα := {Y ∈ |Comp2| | Card( Y ) � α}, which is
finitely productive (inTOP or UAP). Use the construction which is given in [4] to yie
a monoidal closed structure(−✷α−,Hα(−,−)) on UAP such that− × Y = −✷αY for
all Y ∈ Cα . Let us recall the definition of the inner hom functorHα(−,−) from [4]
(the explicit description of the tensorproduct−✷α− will not be needed here): for ver
X,Z ∈ |UAP|, Hα(X,Z) is taken to consist of the underlying setUAP(Y,Z), equipped
with the initial UAP-structure for the source

(
UAP(f, g) : UAP(Y,Z) → AB

)
A∈|UAP|,B∈Cα,f∈UAP(B,Y ),g∈UAP(Z,A)

,

where for allA ∈ |UAP|, B ∈ Cα , f ∈ UAP(B,Y ) andg ∈ UAP(Z,A)

UAP(f, g) : UAP(Y,Z) → UAP(B,A): h �→ g ◦ h ◦ f

is the usual hom-functor.
Now take α < β and let Yβ be a compact Hausdorff space of cardinalityβ . Let

R stand for the real line with the Euclidean metricdE . We are done if we show tha
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Hβ(Yβ,R) �= Hα(Yβ,R). Clearly Hβ(Yβ,R) is finer thanHα(Yβ,R). We have to prove

w

gy.
t

are
it is not coarser, or equivalently, that

idUAP(Yβ,R) :Hα(Yβ,R) → Hβ(Yβ,R)

is not a contraction, or again equivalently, that there existS ∈ Cβ , T ∈ |UAP|, f ∈
UAP(S,Yβ) andg ∈ UAP(R, T ) such that

UAP(f, g) :Hα(Yβ,R) → T S : h �→ g ◦ h ◦ f

is non-contractive. We intend to prove that

idUAP(Yβ,R) :Hα(Yβ,R) → RYβ

is not a contraction. By definition of the MC-structure(−✷α−,Hα(−,−)), the source(
UAP(f, g) :Hα(Yβ,R) → AB

)
A∈|UAP|,B∈Cα,f∈UAP(B,Yβ),g∈UAP(R,A)

is UAP-initial. If for all A ∈ |UAP|, B ∈ Cα, f ∈ UAP(B,Yβ), g ∈ UAP(R,A) and
d ∈ Gs

A, we put

ρf,g,d := d̃ ◦ (
UAP(f, g) × UAP(f, g)

)

then {
ρf,g,d | A ∈ |UAP|, B ∈ Cα, f ∈ UAP(B,Yβ), g ∈ UAP(R,A), d ∈ Gs

A

}

is a symmetric gauge basis forHα(Yβ,R).
We claim that the topology of the topological coreflection ofRYβ is finer than the

compact-open topology onUAP(Yβ,R). To see that this is true, takeK ⊂ Yβ TYβ -compact,
O ∈ TdE and fix

f ∈ {
g ∈ UAP(Yβ,R) | g(K) ⊆ O

} =: 〈K,O〉.
By compactness ofYβ , there existsε > 0 such that

inf
y∈K

inf
z∈R\O

∣∣f (y)− z
∣∣ > ε

and it is now easy to verify thatBd̃E
(f, ε

2) ⊂ 〈K,O〉.
We therefore have that〈

Yβ, ]−1,1[ 〉 := {
g ∈ UAP(Yβ,R) | g(Yβ) ⊂]−1,1[}

is open in the topology of the topological coreflection ofRYβ , so we are done if we sho
that it is not open in the topology of the topological coreflection ofHα(Yβ,R). Suppose on
the contrary that〈Yβ, ]−1,1[ 〉 would be open with respect to the last mentioned topolo
Sincek0 :Yβ → R: y �→ 0 belongs to〈Yβ, ]−1,1[ 〉, this would imply that there exis
ε > 0, A ∈ |UAP|, B ∈ Cα, f ∈ UAP(B,Yβ), g ∈ UAP(R,A) andd ∈ Gs

A such that

k0 ∈ Bρf,g,d (k0, ε) ⊂ 〈
Yβ, ]−1,1[ 〉.

Now f (B ) is a compact, whence closed, subset ofYβ of cardinality at mostα, so we
can pick a pointy ∈ Yβ \ f (B ). Because compact Hausdorff topological spaces
completely regular there exists a continuous mapϕ :Yβ → R (soϕ ∈ UAP(Yβ,R)) such
that ϕ(f (B )) = {0} and ϕ(y) = 2. Then obviouslyϕ ∈ Bρf,g,d (k0, ε) \ 〈Yβ, ]−1,1[ 〉,
which is a contradiction. ✷
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Lemma 2.8. For everyY ∈ |Comp2| infinite,RY = [Y,R]c �= [Y,R]p , (whereR stands for

n of
as in

nder
t with

truct

can

f the

th a

20 (3)

ces, in

bjects,

niv.
the real line with the Euclidean metric and[Y,R]p denotesUAP(Y,R) equipped with the
UAP-product structure).

Proof. This is shown using [4, 2.2], since the topology of the topological coreflectio
RY = [Y,R]c is finer than the compact-open topology (this is shown in the same way
the proof of 2.7) and since concrete coreflectors preserve initiality.✷

Let us recall a theorem from [10], which will enable us to strengthen our result u
the set-theoretical condition that no measurable cardinals exist (which is consisten
ZFC).

Theorem 2.9 (Trnková [10]).If there exist no measurable cardinals, then one can cons
a rigid proper class of compact Hausdorff spaces.

Note that because of the fullness of the embedding ofTOP in AP everyTOP-rigid class
is AP-rigid.

Theorem 2.10. Under the assumption that no measurable cardinals exist, one
construct a proper conglomerate(i.e., one which is not codable by a class) of not naturally
isomorphic MC-structures onUAP.

Proof. TakeM to be a rigid proper class of infinite compact Hausdorff spaces. Take

∅ �= D � E ⊂ M.

We now apply the construction form [4] (see 2.7 for a recollection of the definition o
inner hom functor) toD× (respectivelyE×), being the saturation ofD (respectivelyE)
with respect to finite products, yielding MC structures(−✷D−,HD(−,−)) (respectively
(−✷E−,HE(−,−)) on UAP for which −✷DD = − × D for all D ∈ D (respectively
−✷EE = − × E for all E ∈ E). Now take E ∈ E \ D. We are done if we show
that HD(E,R) �= HE(E,R). This is obtained using the previous lemma together wi
completely analogous proof as the one in the pre-approach case given in [9].✷
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