

DEPARTMENT OF ENGINEERING MANAGEMENT

Generalized local branching heuristics

and the capacitated ring tree problem

Alessandro Hill & Stefan Voß

UNIVERSITY OF ANTWERP
Faculty of Applied Economics

City Campus

Prinsstraat 13, B.226

B-2000 Antwerp

Tel. +32 (0)3 265 40 32

Fax +32 (0)3 265 47 99

www.uantwerpen.be

http://www.uantwerpen.be/

FACULTY OF APPLIED ECONOMICS

DEPARTMENT OF ENGINEERING MANAGEMENT

Generalized local branching heuristics
and the capacitated ring tree problem

Alessandro Hill & Stefan Voß

RESEARCH PAPER 2014-020

SEPTEMBER 2014

University of Antwerp, City Campus, Prinsstraat 13, B-2000 Antwerp, Belgium

Research Administration – room B.226

phone: (32) 3 265 40 32

fax: (32) 3 265 47 99

e-mail: joeri.nys@uantwerpen.be

The research papers from the Faculty of Applied Economics

are also available at www.repec.org

(Research Papers in Economics - RePEc)

D/2014/1169/020

mailto:joeri.nys@uantwerpen.be
http://www.repec.org/

Generalized local branching heuristics and the
capacitated ring tree problem

Alessandro Hill1? and Stefan Voß2

1 ANT/OR - Operations Research Group
Department of Engineering Management

University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium
alessandro.hill@uantwerpen.be

2 Institute of Information Systems (IWI)
University of Hamburg, Von-Melle-Park 5, 20146 Hamburg, Germany

stefan.voss@uni-hamburg.de

Abstract. In this paper we present a heuristic framework that is based
on mathematical programming to solve network design problems. Our
techniques combine local branching with locally exact refinements. In
an iterative strategy an existing solution is refined by solving restricted
mixed integer programs (MIPs) to optimality. These are obtained from
the master problem MIP by (1) fixing a subset of binary variables and
(2) limiting the number of variable flips among the unfixed variables. We
introduce generalized local branching cuts which enforce (1) and (2).
Using these concepts we develop an efficient algorithm for the capac-
itated ring tree problem (CRTP), a recent network design model for
reliable capacitated networks that combines cycle and tree structures.
Our implementation operates on top of an efficient branch & cut algo-
rithm for the CRTP. The sets of refinement variables are deduced from
single and multi-ball CRTP-tailored network node clusters. We provide
computational results using a set of literature instances. We show that
the approach is capable of improving existing best results for the CRTP
when integrated into a multi-start local search heuristic, but is also effi-
cient when used independently.

Keywords: capacitated ring tree problem, local branching, mathemat-
ical programming, local search, network design, matheuristic

1 Motivation and contribution

Network design applications in telecommunications and transportation environ-
ments typically involve a large number of decision variables in suitable optimiza-
tion models. Although exact algorithms are usually not applicable when it comes
to medium size instances they have proven useful in heuristic frameworks, also
referred to as matheuristics [14]. This class of heuristics combines mathematical
programming concepts and classical (meta-)heuristic paradigms.

? This research was partially supported by the Interuniversity Attraction Poles (IAP)
Programme initiated by the Belgian Science Policy Office (COMEX project)

1

Over the last few years, integer programming based refinement algorithms have
been successfully applied to complex network optimization problems (e.g. [6, 1,
3, 9]) as well as other classes of challenging combinatorial optimization prob-
lems [14, 12]. These methods typically incorporate an exact mathematical pro-
gramming based approach that is applied to a local improvement model for an
existing solution. They get more effective with increasing complexity of the un-
derlying problem structure [1, 9]. Due to the limited computational efficiency of
the exact method that is used to carry out the refinements, the mentioned tech-
niques are in fact only effective locally on small-sized substructures. Commonly,
random or multi-start based perturbation mechanisms are used to (partially)
overcome local optimality.
In this work we suggest a different approach that aims at increasing the number
of decisions considered for local refinement by bounding the scale of modification
in terms of binary variable flips in return. The latter idea, known as local branch-
ing, has been introduced as a polishing procedure in general MIPs [5]. Several
highly efficient heuristics for various combinatorial optimization problems suc-
cessfully incorporated this concept (e.g. [15, 13, 16]). In our generic approach
we iteratively build refinement models by adding new generalized local branching
cuts to the master program and solve this extended MIP to optimality. Herewith,
we are able to arbitrarily increase the local area that is considered for refinement
by adequately limiting the allowed variable flips in return.
In this paper we show that the sketched ideas can be turned into an effective
algorithm for capacitated network design. We devise an efficient heuristic for
the recent capacitated ring tree problem (CRTP) [10]. The CRTP combines ring
based models as the classic traveling salesman problem with tree based models
such as the Steiner tree problem under capacity constraints. Heuristics and exact
algorithms for the CRTP are discussed in [10, 8, 11]. Even though the CRTP
can be broadly applied as it generalizes several prominent network design prob-
lems, our techniques can be transferred to related models with reasonable effort.
More generally, we suggest that our main ideas can be transferred to a variety
of discrete or even continuous optimization problems. The main contributions of
this work are

• the development of a generic framework for heuristic network design based
on a generalized local branching, combining local branching and integer pro-
gramming based refinement techniques, and

• the design of an efficient heuristic algorithm for the CRTP incorporating
these concepts which is able to find new best solutions for literature in-
stances.

The following Section 2 contains a formal description of the CRTP along with the
integer programming formulation used in our algorithm. After the presentation of
the generic local branching based refinement technique in Section 3 we develop a
heuristic algorithm for the CRTP in Section 4. In Section 5 we give the improved
results for literature instances, that are obtained by our method, and close the
paper with conclusions in Section 6.

2

2 The capacitated ring tree problem

The capacitated ring tree problem (CRTP) was introduced in [10]. It generalizes
several problems including the capacitated minimum spanning tree problem as
well as the vehicle routing problem with symmetric travel costs and homoge-
neous customer demands. The base topology is the ring tree defined as a graph
consisting of a cycle C and node disjoint trees T1, ..., Tk, each of them intersect-
ing with C in exactly one node. By allowing C to be a cycle of order one the
ring tree graph class contains both, pure trees and cycle graphs. To simplify our
description we say that a ring tree star of order h is a graph obtained by the
union of ring trees Q1, ...,Qh that intersect in a center node d such that d is a
leaf in Qi if Qi is a tree and a cycle node of degree 2 otherwise, ∀ i ∈ {1, ..., h}.
Figure 1 depicts ring tree star graphs.

Fig. 1: Ring tree stars.

A ring tree star N centered in d is a solution for the CRTP if it contains given
customer nodes U = U1 ∪̇U2 and a subset of given Steiner nodes W such that

• each customer node in U2 is on a cycle in N ,
• the order of N is at most m, and
• each tree T ∈ N \ d contains at most q customers.

Let ce be the cost for the installation of an edge e in a ring tree star. Then the
CRTP asks for a solution that minimizes the sum of the edge costs of the ring
tree star.
The CRTP is NP-hard since as it generalizes the classic traveling salesman prob-
lem. We say that nodes in U2, also called type 2 nodes, correspond to customers
of type 2 whereas nodes in U1 are of type 1. Sub-cycles in N are also called rings.
By requiring the type 2 nodes to be part of such rings we provide additional re-
liability to the corresponding customers by the installation of two node-disjoint
paths to the center. There are exactly two (node) disjoint paths from such a node
to d. This double-connectivity is optional for the remaining type 1 nodes, and
the Steiner nodes in W are not even required to be nodes in N unless beneficial
regarding the overall network cost. A solution for the CRTP is illustrated by
Figure 2. We denote the set of all available nodes U ∪W ∪ {d} as V and the set

3

of potential edges {e ⊂ V : |e| = 2} as E. Moreover, we refer to the set of nodes
of a graph G by V [G] and to its edges by E[G].

Fig. 2: An optimal solution for instance Q-13 (q = 10, m = 3, |U1| = 13, |U2| =
12) implementing three ring trees.

The following non-compact integer programming formulation (F) was devel-
oped in [10]. It is based on a directed Steiner tree problem formulation with
additionally enforcing rings by network flows. We observe that removing one
center-incident edge in each ring turns a ring tree star into a tree. This tree can
be transformed into a directed tree by rooting it in the center d and replacing
the edges by arcs such that each leaf node can be reached from d via a directed
path. A directed cycle can be formed in the directed network by the insertion of
an arc to d. To ensure that each type 2 customer is on such a directed cycle we
send out a single commodity flow (SCF) from d to these nodes that are forced
to return to d for each ring. Such a directed network induces a solution for the
CRTP obtained by replacing arcs by edges. We denote the set of potential arcs
in V as A and a binary arc variable xa is used to indicate whether arc a will be
installed. The SCF on an arc is modeled by a continuous arc flow variable fa.
Arcs leaving (entering) node i are denoted by δ+(i) (δ−(i)).

(F) min
∑

e∈E[G]

ceye (1)

s. t.
∑

a∈δ−(S)

xa ≥
|U(S)|
q

∀ S ⊂ V \ d, (2)∑
a∈δ−(i)

xa = 1 ∀ i ∈ U, (3)∑
a∈δ−(i)

xa ≤ 1 ∀ i ∈W, (4)∑
a∈δ−(d)

xa ≤ m, (5)

4

xij + xji = yij ∀ {i, j} ∈ E, (6)∑
a∈δ−(i)

fa =
∑

a∈δ+(i)

fa. ∀ i ∈ V, (7)∑
a∈δ−(i)

fa = 1, ∀ i ∈ U2, (8)

0 ≤ fa ≤ xa ∀ (i, j) ∈ A, (9)

xa ∈ {0, 1} ∀ a ∈ A, (10)

ye ∈ {0, 1} ∀ e ∈ E. (11)

Assignment constraints (3) ensure an in-degree equal to one for each customer,
whereas the capacity constraints (4) limit the inbound arcs to one for each
Steiner node. The capacitated connectivity constraints (2) bound the number of
customers per ring tree to q. These exponentially many constraints are sepa-
rated dynamically during the branch & bound procedure presented in [10]. We
model an underlying SCF ring structure (in)equalities (7), (8) and (9). Since we
consider directed ring tree stars, inequality (5) is sufficient to limit the number
of ring trees to m. To obtain a simple undirected solution network and identify
its edges we implement the variable linking equalities (6). For a more detailed
discussion of this formulation we refer to [10].

3 Generalized local branching

In this section we describe our generic framework. The specific application of our
techniques to the CRTP follows in Section 4. Since we mainly use integer pro-
gramming techniques we give descriptions using terminology and models from
mathematical programming, more specifically a branch & bound framework. We
assume that we have an integer programming formulation at hand in which the
network structure is encoded by binary edge variables. We note that the pre-
sented techniques can be adapted to different integer programming approaches
and, moreover, to related network design problems. We consider a generic integer
linear program (ILP)

(P) min cT y, Ay ≤ b, y ∈ {0, 1}|E|, (12)

with ye being the variable indicating whether the edge e is installed in the
solution network. The constraints in (12) describe the integer feasible solutions
as a subset of the fractional solutions contained in the polyhedron Ω ⊆ R|E|
induced by their convex hull. A cut for (P) is either an equality or an inequality
that describes a non-trivial subset of Ω. Clearly, we can replace a plane in R|E| by
the intersection of two half spaces, and therefore an equality by two inequalities in
the integer linear program, but allow both for the sake of a simplified description.
Moreover, we assume that we have a feasible reference solution ỹ for (P) at hand
which represents a solution network Nỹ. We reformulate the concepts of local
branching and integer programming based refinements in Sections 3.1 and 3.2
before combining them in Section 3.3.

5

3.1 Local branching

Local branching was introduced by Fischetti and Lodi in [5] as a polishing heuris-
tic for general purpose MIP solver. It is applied whenever an integer feasible
solution ỹ is found in the branch & bound algorithm that replaces the current
incumbent. To carry out the local search a restricted MIP is solved that is ob-
tained by adding a local branching cut to the master problem. For k ∈ N0 such
an inequality ∑

e∈E:ỹe=1

(1− ye) +
∑

e∈E:ỹe=0

ye ≤ k (13)

defines a k-opt neighborhood N(ỹ, k) of ỹ. It contains each feasible solution y
for P within Hamming distance ∆(ỹ, y) = |{e ∈ E : ỹe 6= ye}| ≤ k from ỹ.
Figure 3 illustrates N(ỹ, k) in a branching scheme. This technique found its way
into commercial solvers such as CPLEX. Inverse local branching cuts can be ob-
tained by reversing the sense of (13) but turned out to be less effective in practice.
A related concept in the heuristic literature is limited discrepancy search (LDS) [7],
in which the decision tree is also traversed respecting a bound on the deviation
from a reference solution. In contrast to local branching, LDS does not necessar-
ily take place in an exact mathematical programming environment and is rather
constraint satisfaction oriented in its original version.

3.2 Refinement techniques

The exploration of neighborhoods of ỹ by exact methods is likewise the key
ingredient for refinement techniques. In contrast to the local branching idea in
Section 3.1 it focuses on a subset of decision variables and there is no bound on
∆(ỹ, y) for a neighboring solution y. In terms of mathematical programming this
idea can be translated to variable fixing. However, variable fixing techniques in
generic mathematical programming frameworks use information from solutions
of the linear relaxed problem to deduce integer feasible solutions ([4, 2]). Fur-
thermore, structural knowledge about the underlying optimization problem is
usually exploited in problem specific branch & bound algorithms. For the net-
work Nỹ we can fix the current state of edges F ⊆ E by adding the following
variable fixing cuts to the integer program.

ye =

{
0 if e /∈ E[Nỹ]
1 if e ∈ E[Nỹ]

, ∀ e ∈ F (14)

This defines the neighborhood N(ỹ, F) containing all the feasible solutions in
which a variable ye that corresponds to an edge e ∈ F is forced to 0 if e is not
installed in N and to 1 otherwise. The remaining edge variables (for edges in
F) are free to take any constraint-feasible value. Figure 3 depicts solutions in
N(ỹ, F).

6

Fig. 3: A solution ỹ of P in a branch & bound tree (left), four solutions (right)
in N(ỹ, 2) and two solutions (center) in N(ỹ, F) with F = {e0, e3, ..., en}.

3.3 Combining local branching and refinements

In this section we generalize the concepts of local branching and integer pro-
gramming based refinements to obtain the generic concept of generalized local
branching (GLB). To develop the latter we first observe that the refinement tech-
niques described above can be formulated as local branching on a 2-partition of
the edge set: the fixed edges and the flexible ones. Again, let F be the set of
edges that should be fixed to their current values in ỹ and F contains the re-
maining edges that are considered for refinement. Then we can achieve this by
the addition of two partial local branching cuts. The first one defines the triv-
ial neighborhood N(ỹF , 0) restricted to the subnetwork induced by the edges

in F . The second one corresponds to all the feasible solutions N(ỹF ,∞). More
generally, we define generalized local branching cuts as the system of inequalities∑

e∈Fi:ỹe=1

(1− ye) +
∑

e∈Fi:ỹe=0

ye ≤ ki, ∀ i ∈ {1, ..., p}, (15)

for an edge partition F = (F1, ..., Fp) of E and Hamming boundsK = (k1, ..., kp) ∈
Np0. For each edge set Fi ∈ F we limit the number of variable flips among the
corresponding edge variables by a constant ki. If ki = 0 we fix this part of
the current solution Nỹ and ki = ∞ means the partial solution refinement. We
denote the corresponding neighborhood by N(ỹ,F ,K). Likewise, we may param-
eterize such a neighborhood by a solution network N : N(N ,F ,K). We refer to
(P) extended by the GLB cuts (15) as the generalized local branching problem
(GLBP) corresponding to this neighborhood. Note that this concept is related
to the concept of defining corridors within the corridor method [17]. However,
the latter attempts to increase the set of decisions that is considered for refine-
ment depending on the optimization method at hand, whereas our approach is

7

designed to work on arbitrary subnetworks, in presence of the Hamming bounds
though.
So far we did not address strategies to set up a suitable F and K. In Section 4
we focus on the CRTP and present a practical implementation of these concepts.
The described GLB cuts can then also be integrated in an exact algorithm as
it was originally suggested for local branching in [5]. As common for exact al-
gorithms, the branch & cut method for the CRTP used in the next section
incorporates a similar polishing, based on local search. However, we focus on
the pure improvement heuristic in this work which is embeddable in arbitrary
algorithms.

4 A GLB algorithm for the CRTP

We first describe some preliminaries to better understand existing ideas from
previous work on the CRTP to allow their interpretation in the context of GLB
techniques. In this respect we propose single and multi-ball node clustering tech-
niques that will serve to build effective GLB cuts in Section 4.1. The CRTP
tailored GLB techniques are presented in Section 4.2. We explain characteristics
of the underlying exact mathematical programming approach to be taken into
account, such as cut management, in 4.3. This section is closed by the overall
strategy in Section 4.4.

4.1 Single and multi-ball clusters

In local search algorithms the exploration of multiple suitable diverse neighbor-
hoods is known to be effective, as shown for the CRTP in [8]. To exploit the
strengths of our GLB cuts we will limit ourselves to simple but effective ball
type neighborhoods in this work. In a simplified version, these were already suc-
cessfully applied in integer programming refinement techniques in [9]. We use
the following node clustering strategies to generate structured edge partitions in
Section 4.2.

Single-ball For a cluster center node v ∈ V [N] we define a single ball cluster
as follows. Let B(v, r) ⊂ V [N] be the set containing the r − 1 closest nodes to
v for 0 < r < |V [N]| using c as distance function as illustrated in Figure 4.

Multi-ball By starting from multiple nodes in Z = {v1, ..., vh} we can gen-
eralize the two single-ball constructions to obtain h-ball clusters BS(Z, r) and
B(Z, r).

8

Fig. 4: A single-ball cluster B(v, 5) (left) and a 2-ball cluster BN ({u, v, w, x}, 7)
(right).

For the overall effectiveness of the GLBPs in Section 4.2 the selection of the
single and multi-ball cluster centers is crucial. To build GLBPs that locally
optimize the current solution N efficiently, we build single-ball node clusters for
well distributed cluster centers. Starting with a center node of highest cumulative
distance to the remaining nodes, we iteratively choose the next cluster center
by adding the most remote node with respect to the previously selected ones.
Then we build a cluster B(v, r) for each hereby obtained node v and suitable
r. Regarding the multi-ball centers we follow a different idea to facilitate multi-
ring-tree node exchange. Z initially contains nodes of minimal distance that are
in distinct ring trees of N . Additionally, we use the fact that the ring tree star
center d plays a special role as ring tree connector. Thus, for each single or multi-
ball clustering strategy, we also consider a variant that includes the singleton
cluster containing d.

4.2 Generalized local branching cuts for the CRTP

We now use the idea of GLB cuts from Section 3.3 to construct GLBPs based
on the single and multi-ball clusters described in Section 4.1. For a set of cluster
nodes B ⊆ V [N] let IE [B] be the set of edges in E that are incident to a node in
B. We determine a suitable Hamming bound k for a GLB cut as follows. Assume
that we know an estimate for the computing machine dependent performance
of our exact method. More precisely, that we can solve the GLBP induced by
B efficiently if we set the number of allowed variable flips to Γ (B,P) for the
CRTP P. In the following we assume that a reasonable bound can computed
that is solely dependent on the cardinality of B and IE [B], respectively. In other
words, we presume that increasing the complexity of the GLBP by enlarging
the set of cluster nodes B, and therewith the set of flexible variables IE [B],
can be compensated by the reduction of the number of allowed variable flips
k. Moreover, we assume a linear dependency between k and |B| for P, which
turned out to be suitable for our approach. In practice, Γ can be determined
by a calibration mechanism in which, for a fixed B, k is incrementally increased
until a corresponding GLBP cannot be solved within an reasonable time limit.

9

However, Γ is sensitive to the hardness of the instance, the capacity bounds m
and q, the customer type ratio |U1|/|U | and the Steiner node portion |W |/|V |.
Then we add GLB cuts (15) for the derived edge partition

FB = (IE [B], IE [B])

and Hamming bounds

K =

(⌈
Γ

|B|

⌉
, 0

)
.

Using this setup the limit for the number of edge variable flips among the unfixed
variables decreases when the number of nodes in the cluster increases, and vice
versa. In Figure 5 we illustrate two GLB cuts using a cylindrical representation
of the GLBP solution spaces in terms of k and |B|.

Fig. 5: Cylindrical illustration of two different single-ball GLB cuts with |B1| =
34, |B2| = 6 and k1 = Γ (B1,P), k2 = Γ (B2,P), each of them inducing a GLBP
for the solution N .

We say a GLB scheme of order m is a set of pairs {(r1, k1), ..., (rm, km)} such
that GLBPs arising from B with |B| = r and Hamming bound r can be solved
efficiently for 1 < i < m.

4.3 The underlying branch & cut method

We use the branch & cut method presented in [10] as underlying mathematical
programming based algorithm. When running the method including the GLB
cuts some formulation-specific characteristics need to be considered. As typical
for branch & cut algorithms the cut management plays an important role for the
efficiency and stability of the method. Model cuts as well as valid cuts added at

10

the root node are indispensable to obtain an improved lower bound. Comput-
ing them can be time consuming though. To avoid the generation of such root
cuts that can be found for the original problem in each GLBP we pre-compute
these in an initialization phase and add them to each model. Unfortunately, the
solver-internal cuts cannot be accessed and have to by added dynamically.
The current solution network will be provided to the branch & cut method each
time it is called for a GLBP. The branch & cut internal polishing procedures will
be used to accelerate the solution process but may return solutions that violate
the GLB cuts. Nonetheless, we update the current solution network in this case
since such solutions are feasible for the original problem.
Assuming a metric edge cost function c, and therefore c satisfying the trian-
gle inequality, the mathematical formulation for the CRTP does not need con-
straints enforcing a single path from each ring node to the depot (see ring closure
through flow). However, these restrictions are necessary when performing GLB
refinements. The partial fixing of a ring structure in general forces the creation
of chords as shown in Figure 6.

Fig. 6: Infeasible structure due to missing constraints.

4.4 Overall strategy

In this section we present the overall algorithm 1. Basically, we refine an initial
solution N according to the GLB parameters provided by a GLB scheme sorted
by increasing cluster size r. For a cluster size r and a Hamming bound k the pro-
cedure refine locally optimizes N using the ball clustering strategies presented
in 4.1 until no improvement can be found. Improvements are immediately incor-
porated in N . The function findClusterCenters returns a set of nodes used for
the construction of single-ball clusters and an initial set for multi-ball clusters
is constructed by findMultiBallClusterSet. The GLB cuts for a node set B are
generated by CutsGLB . We denote the addition of a set of constraints R to the

11

mixed integer program F for a CRTP P by F(P)⊕R.

Input CRTP P , solution N , cluster node limit r, Hamming bound k;
repeat

cold ← c(N);
Z ← findClusterCenters(N , P);
foreach v ∈ Z do

B1 = B(v, r);
F1 ← F(P)⊕ CutsGLB(B1, k, P);
N ← solve(F1);

end
Z ← findMultiBallCenterSet(N , P);
B2 ← B(Z, r);
F2 ← F(P)⊕ CutsGLB(B2, k, P);
N ← solve(F2);

until c(N) = cold;
return N ;

Procedure refine

Input CRTP P , performance function Γ ;
N ← generateStartSolution(P);
H ← generateSortedSchemeGLB(Γ, P);
while |H| > 0 do

(r, k)← pop(H);
N ← refine(N ,r,k,P);

end
Algorithm 1: The GLB heuristic for the CRTP.

5 Computational Results

In this section we present computational results for a set of 225 instances based
on the instances suggested for the CRTP in [10]. These contain up to 101 nodes
and were deduced from TSPlib based instances for the capacitated ring star
problem. For 102 instances no optimal solutions are known. To solve the GLBPs
we use the branch & cut algorithm developed in [9]. Since this exact approach
incorporates the heuristic techniques to construct start solutions and for solu-
tion polishing used in [8] we apply our GLB refinements on these initial ring tree
stars as well.
The algorithm was implemented in C++ using the CPLEX 12.6 branch & cut
framework. Computations were done on an Intel i7-3667U 2.00 GHz processor
unit. In our experiments we set the number of different cluster sizes to ρ = 6. We
use a variable step size for the single-ball cluster size depending on a minimal
cluster size rmin = 10 and rmax = min(40, |N |), respectively. The maximal num-
ber of variable flips is kmax = 2∗rmin and kmin = 4. This yields step sizes rstep =
b(rmax − rmin)/ρc and kstep = b(kmax − kmin)/ρc. Thereby, the GLB scheme is
H = [(rmin+0rstep, kmax−0kstep), ..., (rmin+ρrstep, kmax−ρkstep)]. The number
of single-ball clusters constructed in an iteration for (r, k) is b2.5|V [N]|/rc.

12

Table 1 shows the objective values obtained by our method. Column µ contains
the rate of type 1 customers |U1|/|U | for the corresponding instance. The ob-
tained network costs are given in column c(N). Column θ contains the relative
improvement in % with respect to the cost α obtained by the heuristic in [8]:
(α− c(N))/α. The relative reduction of the optimality gap ub− lb, computed by
the branch & cut algorithm in [10], can be found in column γ: (ub−c(N))/(ub−lb)
(∗ if the start solution is optimal and blank if c(N) > ub).
We improve 61% of the solutions found by the heuristic in [8]. On average we
achieved an improvement of 1.3% for the unsolved problems. We improve 32% of
the best known results that were obtained by the branch & cut algorithm in [10],
reducing the optimality gap by 29% on average. The GLB approach found 69%
more optimal solutions than the heuristic in [8]. However, we were not able to
compete with the exact method in a few cases, indicated by a blank field in col-
umn ∆ in Table 1. Instances that can be solved to optimality by the local search
heuristic are indicated by ∗. The number of GLBPs that were solved (Ω) and the
number of actual refinements (#) did not exceed 110 and 8, respectively. In our
experiments we also tested our techniques in a pure refinement strategy without
using local branching (i.e. H = [(rmin, kmax)]). Even though this resulted in
improved results, we were about 60% less effective. The run times were about
800 seconds on average but never exceeded 25 minutes when setting a GLBP
time limit of 90 seconds. We assume that the fact that in many cases we found
improving solutions of relatively small lower cost is an indication of the hardness
of the instances, mostly due to the tight capacity bounds q and m.
Grafiken: improvements/nodes/runtime per |B|/k; (avg) rel. time when found
best solution.

6 Conclusions

We presented a novel heuristic framework to solve a class of network design
problems. A key ingredient is GLB, a concept that generalizes the idea of lo-
cal branching and local refinement techniques based on integer programming.
GLB refinement problems are created by the addition of GLB cuts to an ILP
formulation of the overall problem. These are iteratively solved while increasing
the number of involved decision variables and at the same time decreasing the
number of variable flips. Hereby, we control the complexity of these subproblems
and are able to solve them to optimality.
Using this concept we designed a heuristic for the CRTP based on an exact
branch & cut algorithm. This approach turned out to be powerful since we were
able to obtain new best solutions for literature instances. We could be improved
solutions obtained from a multi-start multi-exchange local search algorithm sig-
nificantly, yielding results superior to the exact algorithm in many cases.
Furthermore, the proposed approach represents a promising strategy when no
improving solution can be found by other algorithms at hand (in our case the
local search heuristic and the exact algorithm). As typical for exact refinement
methods, the ability to incrementally enlarge the refinement neighborhoods re-
sults in an adjustable algorithm runtime that correlates with the solution quality.

13

Table 1: Results for TSPlib-based instances with various type 1 customer relia-
bility rates.
P |V | µ c(N) θ γ Ω #

1 26 1 157 ∗ 0 15 0
0.75 210 0 2.3 30 1
0.5 227 ∗ 0 15 0
0.25 236 ∗ 0 15 0

0 242 ∗ 0 15 0
2 26 1 163 0 0.6 30 1

0.75 207 ∗ 0 15 0
0.5 240 ∗ 0 15 0
0.25 249 ∗ 0 15 0

0 251 ∗ 0 15 0
3 26 1 170 0 1.7 30 1

0.75 242 0 0.8 30 1
0.5 251 ∗ 0 15 0
0.25 279 ∗ 0 15 0

0 279 ∗ 0 15 0
4 26 1 207 ∗ 0 15 0

0.75 256 ∗ 0 15 0
0.5 274 ∗ 0 15 0
0.25 292 ∗ 0 15 0

0 303 0.7 30 2
5 26 1 217 0 1.4 30 2

0.75 285 ∗ 0 15 0
0.5 313 0 1.6 30 2
0.25 334 ∗ 0 15 0

0 339 ∗ 0 15 0
6 26 1 227 0 1.7 30 1

0.75 278 ∗ 0 15 0
0.5 336 ∗ 0 15 0
0.25 361 ∗ 0 15 0

0 375 ∗ 0 15 0
7 26 1 245 0 1.2 30 1

0.75 294 ∗ 0 15 0
0.5 313 ∗ 0 15 0
0.25 327 ∗ 0 15 0

0 328 ∗ 0 15 0
8 26 1 252 0 5.6 30 3

0.75 314 0.3 30 2
0.5 345 ∗ 0 15 0
0.25 357 ∗ 0 15 0

0 362 ∗ 0 15 0
9 26 1 254 0 3.1 30 2

0.75 319 0 0.9 30 1
0.5 371 0.3 30 3
0.25 378 0 0.3 30 1

0 396 0 0.3 30 1
10 51 1 156 ∗ 0 30 0

0.75 196 0 30 0
0.5 215 ∗ 0 30 0
0.25 222 ∗ 0 30 0

0 242 ∗ 0 30 0
11 51 1 163 0 30 0

0.75 209 ∗ 0 30 0
0.5 230 ∗ 0 30 0
0.25 238 ∗ 0 30 0

0 251 ∗ 0 30 0
12 51 1 170 0 1.2 60 1

0.75 203 ∗ 0 30 0
0.5 251 ∗ 0 30 0
0.25 278 ∗ 0 30 0

0 279 ∗ 0 30 0
13 51 1 245 0 1.2 60 1

0.75 304 0.3 60 2
0.5 312 ∗ 0 30 0
0.25 322 ∗ 0 30 0

0 328 ∗ 0 30 0
14 51 1 252 0 5.6 60 2

0.75 304 0 5.3 60 4
0.5 352 ∗ 0 30 0
0.25 357 ∗ 0 30 0

0 362 ∗ 0 30 0
15 51 1 254 0 3.1 60 2

0.75 335 0 1.2 60 2
0.5 370 0 0.5 60 1
0.25 384 20 0.8 60 1

0 396 0.3 60 1

P |V | µ c(N) θ γ Ω #

16 51 1 304 ∗ 0 30 0
0.75 361 56.3 3.7 60 3
0.5 371 41.3 1.9 60 2
0.25 380 0 30 0

0 380 0 0.3 60 1
17 51 1 309 0 30 0

0.75 363 0 1.6 60 2
0.5 398 6.6 0.3 60 1
0.25 404 0 0 30 0

0 412 1.4 60 2
18 51 1 314 ∗ 0 30 0

0.75 400 23.8 2 60 2
0.5 423 26.5 1.9 60 1
0.25 433 15.4 0.7 60 1

0 446 0 1.3 60 1
19 51 1 376 0 0.3 60 1

0.75 431 1.1 60 2
0.5 444 10 0.7 60 2
0.25 454 0 30 0

0 463 2.1 60 2
20 51 1 384 0 0.5 60 1

0.75 458 0 0 60 5
0.5 491 4.5 0.4 60 3
0.25 498 12.9 0.8 60 1

0 503 1.9 60 4
21 51 1 391 0.3 60 1

0.75 484 16 3.4 60 8
0.5 512 29.3 2.7 60 2
0.25 525 0 0 30 0

0 532 1.7 60 4
22 76 1 214 ∗ 0 40 0

0.75 272 ∗ 0 40 0
0.5 306 39.4 3.8 80 2
0.25 318 0 0 40 0

0 331 ∗ 0.3 40 0
23 76 1 235 0 40 0

0.75 306 45.5 1.9 80 3
0.5 336 ∗ 0 40 0
0.25 366 29.2 0.8 80 2

0 390 0 40 0
24 76 1 259 ∗ 0 40 0

0.75 325 ∗ 0 40 0
0.5 377 18.1 0.5 80 1
0.25 397 ∗ 0 40 0

0 448 0 0.7 80 1
25 76 1 320 ∗ 0 40 0

0.75 379 41.5 2.8 80 2
0.5 394 26.9 2 80 2
0.25 403 0 0 40 0

0 409 0 1 80 1
26 76 1 326 0 3 80 2

0.75 401 5 0.2 80 1
0.5 449 13.5 1.3 80 2
0.25 460 0 0 40 0

0 458 0 0 40 0
27 76 1 342 0.3 80 1

0.75 439 18 1.6 80 2
0.5 473 0 0 40 0
0.25 483 25.8 2.8 80 2

0 488 63 3.6 80 6
28 76 1 386 2.3 80 2

0.75 452 28.7 2.2 80 2
0.5 469 20.6 1.7 80 2
0.25 465 0 1.5 80 1

0 479 3.2 80 2
29 76 1 393 2.2 80 1

0.75 480 16.9 1.6 80 2
0.5 510 18.5 1.9 80 1
0.25 523 22.7 1.7 80 4

0 527 37.6 2.9 80 3
30 76 1 399 0 3.6 80 3

0.75 523 15.7 1.9 80 2
0.5 538 26.1 2.9 80 4
0.25 552 13.1 1.1 80 2

0 554 28.3 1.2 80 2

P |V | µ c(N) θ γ Ω #

31 76 1 474 0.8 80 1
0.75 546 14.2 0.9 80 1
0.5 563 3.6 0.2 80 1
0.25 573 0 80 1

0 581 0.5 80 2
32 76 1 482 0 2.4 80 2

0.75 559 33.2 2.4 80 5
0.5 590 36.6 3.6 80 4
0.25 613 15.6 0.8 80 4

0 623 12.9 0.5 80 3
33 76 1 488 0 1.4 80 2

0.75 606 24 2.7 80 6
0.5 619 10.5 0.6 80 2
0.25 656 0 0 80 6

0 659 45.2 2.2 80 4
34 101 1 281 0.4 110 1

0.75 316 3.4 110 5
0.5 353 0 0 55 0
0.25 363 0 0 55 0

0 366 ∗ 0 55 0
35 101 1 293 0 55 0

0.75 367 0 0 55 0
0.5 405 0 0 55 0
0.25 416 0 0 55 0

0 418 43.2 1.6 110 2
36 101 1 299 ∗ 0 55 0

0.75 393 0 0 55 0
0.5 403 0 0 55 0
0.25 429 0 0 55 0

0 452 0 0 55 0
37 101 1 411 ∗ 0 55 0

0.75 488 11.5 0.8 110 2
0.5 499 0 0 55 0
0.25 501 10.2 0.4 110 1

0 506 13.5 3.3 110 3
38 101 1 420 0 55 0

0.75 476 20.3 0.8 110 3
0.5 509 24 1.5 110 1
0.25 531 0 0 55 0

0 537 0 0 55 0
39 101 1 432 2.5 110 5

0.75 504 4.1 0.2 110 4
0.5 516 34.1 2.1 110 2
0.25 553 26.6 2 110 2

0 568 28.7 1 110 2
40 101 1 516 0 55 0

0.75 584 25.5 1.7 110 4
0.5 589 13.5 0.5 110 1
0.25 604 32.8 1.3 110 4

0 607 2.4 110 4
41 101 1 518 0.2 110 1

0.75 590 13.7 0.8 110 1
0.5 607 0 0 55 0
0.25 619 0 0 55 0

0 633 40 1.4 110 3
42 101 1 526 0.6 110 1

0.75 628 36.2 3.8 110 6
0.5 642 6.4 0.5 110 1
0.25 663 14.6 1 110 3

0 670 47.7 2.8 110 5
43 101 1 555 ∗ 0 55 0

0.75 639 32 2 110 3
0.5 647 30.3 2 110 6
0.25 652 0.6 110 1

0 670 1.9 110 4
44 101 1 564 0 0.7 110 1

0.75 657 15.4 0.9 110 2
0.5 684 13.1 0.9 110 4
0.25 690 0.1 110 3

0 700 0 0 110 3
45 101 1 572 0.7 110 2

0.75 683 18.2 1.7 110 7
0.5 708 20.9 1.3 110 5
0.25 716 34.1 1.9 110 4

0 726 49.4 2.3 110 5

14

Using the presented solutions as a starting point for an exact algorithm (e.g.[10])
could significantly accelerate the solution process and improve the obtained
bounds. The techniques could be integrated into an exact method to effectively
polish feasible solutions that are found along the search. Furthermore, we suggest
to transfer our techniques to related optimization models in network design.

15

Bibliography

[1] C. Archetti, L. Bertazzi, A. Hertz, and M. G. Speranza. A hybrid heuristic for an
inventory routing problem. INFORMS Journal on Computing, 24:101–116, 2012.

[2] T. Berthold. RENS. Mathematical Programming Computation, 6(1):33–54, 2014.
[3] S. Cafieri, P. Hansen, and L. Liberti. Improving heuristics for network modularity

maximization using an exact algorithm. Discrete Applied Mathematics, 163(1):65
– 72, 2014.

[4] E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced neighbor-
hoods to improve MIP solutions. Mathematical Programming A, 102(1):71–90,
2005.

[5] M. Fischetti and A. Lodi. Local branching. Mathematical Programming B, 98(1-
3):23–47, 2003.

[6] R. De Franceschi, M. Fischetti, and P. Toth. A new ILP-based refinement heuristic
for vehicle routing problems. Mathematical Programming B, 105(2-3):471–499,
2006.

[7] W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In C. S. Mel-
lish, editor, Proceedings of the 14th International Joint Conference on Artificial
Intelligence, IJCAI 1995, volume 1, pages 607–615. Morgan Kaufmann, 1995.

[8] A. Hill. Multi-exchange neighborhoods for the capacitated ring tree problem.
Research paper, Department of Engineering Management, University of Antwerp,
(to appear in LNCS), 2014.

[9] A. Hill and S. Voß. An equi-model matheuristic for the multi-depot ring star
problem. Research paper, Department of Engineering Management, University of
Antwerp, 2014.

[10] A. Hill and S. Voß. Optimal capacitated ring trees. Research paper, Department
of Engineering Management, University of Antwerp, 2014.

[11] E. A. Hoshino and A. Hill. A column generation approach for the capacitated ring
tree problem. Manuscript, 2014.

[12] E. Lalla-Ruiz and S. Voß. POPMUSIC as a matheuristic for the berth allocation
problem. Working Paper, University of Hamburg, 2013.

[13] P. Legato and R. Trunfio. A local branching-based algorithm for the quay crane
scheduling problem under unidirectional schedules. 4OR, 12(2):123–156, 2014.

[14] V. Maniezzo, T. Stützle, and S. Voß, editors. Matheuristics - Hybridizing Meta-
heuristics and Mathematical Programming, volume 10 of Annals of Information
Systems. Springer, 2010.

[15] I. Rodŕıguez-Mart́ın and J. J. Salazar. A local branching heuristic for the capac-
itated fixed-charge network design problem. Computers & Operations Research,
37(3):575 – 581, 2010. Hybrid Metaheuristics.

[16] P. Smet, T. Wauters, M. Mihaylov, and G. V. Berghe. The shift minimisation
personnel task scheduling problem: A new hybrid approach and computational
insights. Omega, 46:64 – 73, 2014.

[17] M. Sniedovich and S. Voß. The corridor method: a dynamic programming inspired
metaheuristic. Control and Cybernetics, 35(3):551–578, 2006.

[18] E. Taillard and S. Voß. POPMUSIC - partial optimization metaheuristic under
special intensification conditions. In C.C. Ribeiro and P. Hansen, editors, Essays
and Surveys in Metaheuristics, pages 613–629. Kluwer, Boston, 2002.

[19] S. Voß. Steiner tree problems in telecommunications. In M. G. C. Resende and
P. M. Pardalos, editors, Handbook of Optimization in Telecommunications, pages
459–492. Springer US, 2006.

	Generalized local branching heuristics and the capacitated ring tree problem

