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Abstract
This paper describes the design of sinuous antenna reflector feeds using blended rational inter-
polation. The blended rational interpolation method is developed to interpolate a sparse set
of high-fidelity (HF) data while following the trends of a denser set of low-fidelity (LF) data.
The HF data are obtained by full-wave computational electromagnetics simulations of the input
impedance of a pyramidal sinuous antenna above a ground plane, while the LF data are obtained,
at a significantly reduced computational cost, through simulations of a truncated version of the
same antenna. Comparisons with other interpolation schemes, both for HF as well as for multi-
fidelity data sets, are presented. It is shown that the blended rational interpolation scheme
presented herein yields improved accuracy in most cases. A design example is also presented
where a global model of themaximum input reflection coefficient over frequency is built over the
design space, and thus used to identify the region of acceptable performance. Comparisonswith a
validation set of HF data resulted in similar results, with the blended rational interpolationmodel
requiring significantly shorter computer simulation time.
KEYWORDS:
sinuous antenna, broadband antenna, reflector feed, radio astronomy antennas, rational interpo-
lation, multi-fidelity modelling

1 INTRODUCTION
Very wide bandwidth and low loss feed antennas for reflector systems
have recently found application in modern radio telescopes such as
the Allen telescope array 1 and the Square Kilometre Array (SKA) 2. A
popular class of feed antennas for such systems employs log-periodic
geometries to achieve (quasi) frequency independent performance,
while using inclined metallic surfaces over ground planes 3,4 to provide
a uni-directional beamwith a stable phase center. These antennas relax
the classical constraint of a self-complementary geometry — which is
known to provide a near constant input impedance and bi-directional
radiation pattern 5 — in order to achieve the uni-directional radiation
characteristics without the use of absorbing cavities (which result in a
3 dB loss). Recently, a sinuous type antenna was demonstrated 6 to be
a possible candidate as feed for the SKA reflector system 7. However,
due to the inherent wide bandwidth andmulti-scale properties of these
types of antennas, the simulation time with full-wave computational

electromagnetic (CEM) tools is often prohibitively slow for design and
analysis tasks requiring a large amount of evaluations of the structure
for a variety of frequencies and geometric parameters. In order to for-
mally optimise a design of such a structure, one requires a significantly
fastermodel of the responsesof interest than that providedby full-wave
CEM simulations.
In this paper we present a modelling strategy tailored specifically to

the design of non-self-complementary log-periodic antennas. The idea
relies on the availability of a faster low-fidelity (LF) model of the actual
high-fidelity (HF) simulation model. Given the log-periodic nature of
the antenna geometry, it is expected that the performance will be rela-
tively smooth in the centre of the band, while degradation of both the
impedance as well as radiation pattern performance is expected near
the band edges due to mainly the truncation of the periodic structure.
An LF model can thus be constructed to mimic the performance of the
actual HF model only near the band edges — the regions where perfor-
mance degradation is expected. Practically, this means that instead of
simulating the full bandwidth CEMmodel, a narrower bandwidthmodel
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with the same geometric parameters, and truncated to have the same
lower or upper operating frequency limit, can be simulated instead. It
is expected that the performance around the band edges of the LF and
HF models should be similar, and also exhibit similar variations due to
geometric changes.
The LF models constructed in this manner will still require a signif-

icant time to simulate, and will exhibit some differences from the HF
models. We therefore employ a new multi-fidelity rational interpola-
tion scheme to be able to smoothly and accurately model the input
impedance of the antenna on a parameter space of interest. The ratio-
nal model is constructed such that it interpolates whatever HF data is
available, while following the trends of the LF data which are, by con-
struction, more finely sampled than the HF data. To this end we start
with a classical barycentric rational function description, which allows
for well-defined constraints on the weights to allow a pole-free inter-
polation function. This model is extended to approximate the LF data in
a least squares sense, while still interpolating all the HF data. The sim-
ple Lagrange form of the rational function leads to weight constraints
which, in many cases, are too restrictive to allow the interpolant to
follow the LF trends between the interpolating HF data points. We
therefore suggest here a new blended rational interpolation strategy,
which employs Bernstein polynomials as local approximations of the LF
data, in order to remove the responsibility of following the LF trend
behaviour from the weights. Local models are blended together glob-
ally by B-spline functions, the supports of which are restricted to the
region of the local models. In this way, we are able to define a barycen-
tric rational interpolation function with only a positive value constraint
on the weights to ensure pole-free behaviour. The basic idea was first
described in a recent conference paper 8, where only one-dimensional
real output data were considered. Here, we expand themodel to handle
complex output data as well as higher dimensional input spaces.
The paper is organised to first describe the antenna problem at hand

in terms of the antenna geometry as well as the performance metrics
of interest. Thereafter the newblended rational interpolation scheme is
described and illustrated using an example sinuous antenna. Then, the
accuracy of the interpolationmodel is tested for awide variety of exam-
ples against a range of other HF and multi-fidelity modelling schemes,
where it is found that the method suggested here provides the most
accurate models in most cases. Finally a design example is presented to
show the utility of themethod for a practical antenna design problem.

2 ANTENNADESCRIPTION
The antenna problem of interest here involves a conductor backed
pyramidal sinuous antenna used as a reflector antenna feed. Specific
performance metrics of interest, as well as a geometrical description
of the antenna system, is provided in this section. Furthermore, a dis-
cussion on the slow simulation time — and the subsequent difficulty in
designing the antenna — is provided, along with a description and justi-
fication of a faster, but inevitably less accurate, LF antenna model. This

model is then used in the rest of the paper to estimate the actual (or HF)
reflection responseof theantennaoverwide frequencyandgeometrical
parameter ranges.

2.1 Performancemetrics
Thedesign application presentedhere is a feed antenna for the reflector
system of the SKA radio telescope 7. Design of reflector feed anten-
nas typically involves finding an antenna geometry that results in a
primary radiation pattern which illuminates the reflector so as to max-
imise the gain G of the system, while simultaneously controlling the
energy spilling past the reflector system which results in radiometric
noise entering the system and a subsequent increase in noise temper-
ature T . In addition, the antenna impedance should be matched to the
driving source or load. Designing an antenna to operate optimally over
a wide frequency bandwidth thus requires a large number of goal func-
tion evaluations (CEMsimulations) to adequately explore the frequency
variations and design space. We therefore seek fast and accurate mod-
els of the design goals tomake this problem tractable.
The radiation pattern response shouldmaximise the so-called receiv-

ing sensitivity (proportional to G/T used in communication system
antennas), which is the ratio of effective aperture area and the total sys-
tem noiseAe/Tsys. The calculation of this performance metric has been
discussed by many workers, where comprehensive treatments can be
found in 9,10,11. Some recent papers 12,13 present accelerated methods
for the calculation of the system temperature, and the methods dis-
cussed therein will be used in this work for all the receiving sensitivity
calculations.
At the same time, the reflection coefficient magnitude response

should, as usual, be below some specified value. Rational function
interpolation models of input impedance as a function of frequency
are widely used because of their physical relevance to circuit models
and electromagnetic wave phenomena 14. By extension, rational func-
tions may also be well suited to interpolate variations over geometrical
parameters of antenna structures since, numerically, they can capture
steep variations in the response, and physically, antenna geometry vari-
ations often relate to frequency variations through the electrical size
variations of the structure (e.g. the length of a thin wire dipole).

2.2 Antenna geometry
Fig. 1 shows the geometry of the specific sinuous antenna considered
here, which was previously presented in 15,6,8, and repeated here for
clarity. The geometry is parametrised with the angles θ, α, and δ, the
growth rate τ = dn/dn+1, as well as the height above the ground
plane h. The operating bandwidth of the antenna is controlled by the
truncations at d1 = λh/8(δ + α) and dN = 1.2λl/4(δ + α) , where
N is the total number of log-periodic cells, and λh and λl indicate the
wavelength corresponding to themaximumand theminimumoperating
frequencies respectively. The ground plane size is selected equal to the
maximum projected diameter of the antenna, and the dual polarisation
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FIGURE 1 Geometry and design parameters of the sinuous antenna,
showing a side projection in the left panel, and a top projection of one of
the four petals in the right panel.

simulation edge port detail is shown in Fig. 2 . During the design phase
a differential edge port is preferred for the simulations to simplify the
geometry, and details on the design of a balancedwire feed can be found
in 15, where comparisons between simulations and measurements are
also provided.

FIGURE 2 Dual polarisation differential simulation feed detail. Ground
plane not shown for clarity.

In previous work 15,6, the antenna was designed by evaluating a rel-
atively coarse grid of frequencies and design parameters, and simply
selecting the best available version from this limited set. The reason is
due to the prohibitively slow simulation times required for wide band
versions of this antenna — in the order of several hours for 3 : 1 band-
width, and several days for 6 : 1 bandwidth on a typical workstation.
This is due to the inherentwideband andmulti-scale nature of the struc-
ture, which requires a large number of discretisation unknowns in the
simulation. To speed up the design process, a lower fidelity (coarse)
model was suggested in 8, which is significantly faster to simulate, but
still captures the important variations in the antenna performance
— although at an inevitably reduced accuracy. The following section
describes development of the LFmodel, and provides some information
on simulation times and accuracy.

2.3 Fast low-fidelity antennamodel
Consider the sinuous antenna, designed to operate over the
[350, 1050]MHz bandwidth, with parameters τ = 0.7825, α = 22.5◦,
δ = 13.5◦, θ = 53◦ and h = 5mm. Two LFmodels are also constructed
with the same geometrical parameters, but with operating bandwidths

of 2 : 1 in [350, 700] MHz and [525, 1050] MHz, termed the low band
and the high band models respectively. The input reflection coefficient
responses of all three models are shown in Fig. 3 . As with all (quasi)

FIGURE 3 Comparison between the HF and LFmodel reflection coeffi-
cients. The blue line is the low band LFmodel, the red line the high band
LFmodel, and the black line theHFmodel. Dashed lines indicate ignored
edge effect regions in the coarsemodel frequency bands.

frequency independent antennas, the performance degrades near the
band edges due to truncation effects, while in the middle of the oper-
ating band a logarithmic periodic response is observed. By simulating
narrower bandwidth antennas as LF models, one can estimate the band
edge performance of the actual HF antenna — which is exactly the
region where the performance is degraded and therefore where the
design goal is actually specified. Notice in Fig. 3 how the LF responses
closely resemble the HF response in the region of their respective band
edges, ie. the low frequencies for the low band LF model and the high
frequencies for the high bandmodel. The dashed lines indicate the edge
effects of the LF models which are ignored, since they do not represent
anything relating to the HF model. In all our LF models the antennas
are designed to operate over a 2 : 1 bandwidth (with the same design
parameters as the HF model), but only simulated over the lower or
upper half of the operating bandwidth for the low band and high band
models respectively.
An illustration of the FEKO 16 simulation models is shown in Fig. 4 ,

where the typical mesh is overlayed onto the physical structure. For this

FIGURE 4 Comparison of the simulation meshes of the HFmodel (left),
the low band LFmodel (centre) and the high band LFmodel (right).
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example the mesh sizes and simulation times are reported in Table 1 ,
where a 5 times speedup is noticed for this modest bandwidth example.

TABLE 1 Comparison of HF and LFmodel simulationmetrics.

HF LF low band LF high band
Operating band (MHz) [350, 1050] [350, 525] [787.5, 1050]

Mesh Cells 3746 2909 3544

Frequency samples 36 16 11

CPU time (hours) 3.12 0.345 0.376

In this case, the speedup is duemostly to the lower number of frequency
samples required in the simulation, but, as the HF design bandwidth
increases, this speedup factor increases exponentially since the LFmod-
els remains the same, while the number of mesh cells in the HF models
scales as bandwidth squared.
Unfortunately, even though a significant speed up is observed for the

LF models, the simulation times are still slow when a large number of
designsmust be investigated. Also, andmore importantly, the responses
of the LF and HF models are not identical, and may in fact show sig-
nificant differences. A strategy is therefore sought to both correct and
approximate the LF data, so that a fast and accurate model may be
obtained for computationally expensive tasks such as design optimisa-
tion and sensitivity studies. The following sectiondescribes the required
modelling strategy.

3 RATIONAL INTERPOLATION SCHEME
The development presented here follows that presented in 8. For clar-
ity, and for the sake of notation, someof the basic concepts are repeated
here. Emphasis is placed on the extensions to the previously presented
method, namely interpolation of complex data over multi-dimensional
parameter spaces. To facilitate the explanation of the mathematical
development, an example data set is generated from a sinuous antenna,
with parameters τ = 0.7825, α = 22.5◦, δ = 13.5◦, θ = 53◦ and
h = 5mm. The low band LF model is used for this illustrative example
which uses 5HF interpolation data points, 36 LF data points, and 351HF
validation data points equally spaced in [350, 525]MHz.

3.1 Barycentric rational interpolation
Given complex data fi = f(xi) at distinct real points xi ∈ [a, b], i =

0, . . . , n, a rational function rn,w0,...,wn (x) interpolating f(x) at the

points xi, may be constructed in the barycentric form
rn,w0,...,wn (x) =

∑n
i=0 wifi`i(x)∑n
i=0 wi`i(x)

=

∑n
i=0 wifi/(x− xi)∑n
i=0 wi/(x− xi)

,

with `i(x) =
∏n

j=0,j 6=i(x−xj) = `(x)/(x−xi) and `(x) =
∏n

j=0(x−
xj). The denominator is fixed by the location of the xi and the numer-
ator guarantees the interpolation property rn,w0,...,wn (xi) = fi, i =

0, . . . , n, which holds for whatever wi. The number of interpolation
conditions is thus n+ 1.
A necessary condition for rn,w0,...,wn (x) to be polefree on the

real axis, is wiwi+1 < 0 17. For instance, it can be proven that the
choice wi = (−1)i guarantees a barycentric rational interpolant
rn,w0,...,wn (x) free of real poles. As a consequence no interpolation
points can be unattainable 18, meaning that the model effectively inter-
polates every interpolation point.
A sufficient condition for weights wi = (−1)iωi, with ωi > 0 and

a < x0 < . . . < xn < b, to guarantee a denominator free of poles on
the real line 19, is given by

ωj−1

b− xj−1
<

ωj

b− xj
, j = 1, . . . , n

ωj

xj − a
>

ωj+1

xj+1 − a
, j = 0, . . . , n− 1.

(1)

The interpolation model resulting from this strategy, where only the
HFdata are considered, is shown inFig. 5 . It is clear that the interpolant
does not follow the validation data very closely away from the sampled
data.

FIGURE 5 Barycentric rational interpolation of the input impedance as
a function of frequency using only the HF data with n+ 1 = 5.

Since we also have (more densely sampled and equidistant between
consecutive HF points) data available from the LF model, we may use
these to inform our selection ofwi such that the interpolant follows the
trendof the LF data inbetween the (sparse)HFdata pointswhich are still
interpolated. We denote them + 1 LF data points by xLi and the n +
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1 HF points by xHi . We also denote the values given at the points xHi
by fHi and those given at xLi by fLi . Note that fHi at xHi can also be
interpreted as a LF value at the same sample point. We incorporate the
information provided by the LF data by solving a multi-fidelity form of
the barycentric rational interpolation problem given by

rn,w0,...,wn (x) =

∑n
i=0 wif

H
i /(x− xHi )∑n

i=0 wi/(x− xHi )
(2)

where thewi satisfying (1) are given by

arg min
w0,...,wn

m∑
j=0

∣∣∣fLj − rn,w0,...,wn (xLj )
∣∣∣2 (3)

with | · | denoting themodulus of a complex value.
Condition (3) is a nonlinear optimisation problem, which can be lin-

earised as

arg min
w0,...,wn

m∑
j=0

∣∣∣∣∣fLj
n∑

i=0

wi/(x
L
j − xHi )−

n∑
i=0

wif
H
i /(xLj − xHi )

∣∣∣∣∣
2

.

(4)

A similar approach, that however did not guarantee a polefree model,
was presented in 20. Although the formulas (2)-(3) or (2)-(4) express
precisely what we expect from the computed rational model, the con-
straints (1) often restrict the search space for the least squares prob-
lems so much that the w0, . . . , wn resulting from the optimisation
problem do not deliver a really good model. This is illustrated in Fig. 6 ,
where one can notice the interpolant failing to follow the LF data trends
away from the HF interpolation points. So in practice, the method
does not meet our expectations. This has encouraged us to look for an
improvement.

FIGURE 6 Barycentric rational interpolation of the input impedance as
a function of frequency using the HF and LF data with n + 1 = 5 and
m+ 1 = 36.

3.2 Blended rational interpolation ofmulti-fidelity
data
Westick to the concept of the barycentric formwhichwewant polefree,
but preferably with a more relaxed condition than (1) on the weights
in the expression. Therefore we turn our attention to blended models.
Already the Lagrange form of a polynomial pn(x) of degree n, interpo-
lating data fi at points xi for i = 0, . . . , n,

pn(x) =

n∑
i=0

wifi`i(x), wi = 1/

n∏
j=0,j 6=i

(xi − xj),

can be considered as a simple blended model: the local interpolants fi
at xi are blended together into a global interpolant by the blending
functions `i(x) which by the choice of appropriate weights evaluate to
1 at the xi. We explain how this idea can be applied to our problem
statement.
Let the xHi be indexed such that xH0 < . . . < xHn and let the xLi

in the interval [xHi , x
H
i+1] be denoted by xLi,0 < . . . < xLi,mi

with
xLi,0 = xHi , x

L
i,mi

= xHi+1 and∑n−1
i=0 (mi − 1) = m + 1. Then we

can first construct local models pi(x) exhibiting the trend indicated by
the LF data in the interval [xHi , xHi+1]. By doing this we do not put the
whole responsibility for the trend behaviour in the weights wi. For the
local models pi(x)we use a Bézier curve, as the LF data are collected at
equidistant points in the interval [xHi , xHi+1]:

pi(x) =

mi∑
j=0

fLijβij(z), (5)

fLij = f
(
xLi,j

)
, z =

x− xHi
xHi+1 − xHi

,

βij(z) =
(mi

j

)
zj(1− z)mi−j .

The local polynomialmodel pi(x)definedon the interval [xHi , xHi+1], has
the property that it interpolates in xLi,0 = xHi and xLi,mi

= xHi+1 and
that it follows the trend given by the so-called control points xLi,1 <

. . . < xLi,mi−1 inbetween.
Afterwards these local models are then blended together by suit-

able blending functions, such as quadratic or cubic B-splines Bi,d(x)

where the degree d = 2 or 3. For d = 2 it is defined by the knots
(xLi−1,mi−1−1, x

H
i , x

H
i+1, x

L
i+1,1). Here xLi−1,mi−1−1 and xLi+1,1 are

respectively the LF points preceding xHi and following xHi+1. For d = 3

we add the knot (xHi + xHi+1)/2 in the middle. To define the B-spline
when i = 0 or i = n − 1, we add a virtual point outside the inter-
val [xH0 , xHn ] at approximately the same distance as the one between
the LF points. With these knots, we know that Bi,d(x) has support
[xLi−1,mi−1−1, x

L
i+1,1]. Fig. 7 illustrates the local models and blending

functions, and how they relate to the LF andHF data.
This leads us to the rational expression, now having a piecewise

polynomial numerator and denominator, of the form
Rn,w0,...,wn−1 (x) =

∑n−1
i=0 wipi(x)Bi,d(x)∑n−1

i=0 wiBi,d(x)
. (6)

With d = 2 the function Rn,w0,...,wn−1 (x) is continuously differ-
entiable. With d = 3 it is twice continuously differentiable. Because
xHi −xLi−1,mi−1−1 < xHi −xHi−1 andxLi+1,1−xHi+1 < xHi+2−xHi+1, use
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FIGURE 7 Local models pi (top panel) and blending functionsBi,2 (bot-
tompanel) used in theblended rational interpolation scheme. Small dots
indicate the LF data and large dots the HF data — both sets taken from
themiddle two intervals of the top panel of Fig. 6 . The blue curves rep-
resent the functions relating to the interval between the first two HF
data points, and black curves those relating to the interval between the
last twoHF data points. Solid lines indicate the localmodels on their rel-
evant domains, while dashed lines indicate the extensions of the local
models outside the relevant intervals.

of the LF points as knots restricts the influence of pi(x) almost solely
to the interval [xHi , xHi+1], as can be seen in Fig. 7 . The latter is impor-
tant when HF points are spread far apart. Since the functions Bi,d(x)

are positive, it is sufficient to impose that
wi > 0, i = 0, . . . , n− 1 (7)

tomakeRn,w0,...,wn−1 (x) polefree on the real axis. Because pi(xHi ) =

fi, pi(x
H
i+1) = fi+1, i = 0, . . . , n − 1 we know that the model

Rn,w0,...,wn−1 (x) also interpolates in every HF point xHi :

Rn,w0,...,wn−1 (xH0 ) =
w0p0(xH0 )B0,d(xH0 )

w0B0,d(xH0 )
= fH0 ,

Rn,w0,...,wn−1 (xHi ) =

∑i
k=i−1 wkpk(xHi )Bk,d(xHi )∑i

k=i−1 wkBk,d(xHi )
= fHi ,

0 < i < n,

Rn,w0,...,wn−1 (xHn ) =
wn−1pn−1(xHn )Bn−1,d(xHn )

wn−1Bn−1,d(xHn )
= fHn .

The weights in (6), restricted to (7), are taken to be the solution of the
least squares problem

arg min
w0,...,wn−1

n−1∑
i=0

mi∑
j=0

∣∣∣fLi,j −Rn,w0,...,wn−1 (xLi,j)
∣∣∣2 (8)

or

arg min
w0,...,wn−1

n−1∑
i=0

mi∑
j=0

∣∣∣∣∣fLij
n−1∑
k=0

wkBk,d(xLi,j)−

n−1∑
k=0

wkpk(xLi,j)Bk,d(xLi,j)

∣∣∣∣∣
2

.

(9)

The sums for j running from 0 tomi are actually sums for j from 1 to
mi − 1 as in the endpoints of each interval the function interpolates.
The model (6) with (7)-(5) and (8) or (9) gives significantly improved

results, as illustrated in Fig. 8 , where the interpolant more closely
follows the LF data trends between the HF interpolation points.

FIGURE 8 Blended rational interpolation of the input impedance as a
function of frequency using the HF and LF data with n + 1 = 5 and
m+ 1 = 36.

3.3 Extension tomulti-dimensional parameter
spaces
In this sectionwe explain how to generalise ourmodel to the casewhere
the MF points are not real points anymore but real vectors inRD (D >

1). For the sake of notation and without loss of generality, we restrict
ourselves toD = 2 in the description.
Consider complex HF data fHij at a grid of distinct real vectors

(xHi , y
H
j ) ∈ [a1, b1]× [a2, b2],

i = 0, . . . , n1, j = 0, . . . , n2

(10)

with xH0 < . . . < xHn1
, yH0 < . . . < yHn2

and complex LF data
fL
(i,ki),(j,lj)

at a grid of distinct real vectors

(xLi,ki
, yLj,lj ) ∈ [a1, b1]× [a2, b2],

i = 0, . . . , n1 − 1, ki = 0, . . . ,mi,1,

j = 0, . . . , n2 − 1, lj = 0, . . . ,mj,2

(11)

with xLi,0 < . . . < xLi,mi,1
equidistant in [xLi,0, x

L
i,mi,1

], xLi,0 =

xHi , x
L
i,mi,1

= xHi+1, i = 0, . . . , n1 − 1 and similarly for the y-values.
We want to find a model, similar to the one in the previous section,
which interpolates the HF data and follows the trend of the LF data.
To do this, we need to find multi-dimensional local models pij(x) and
multi-dimensional blending functions.
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For the local models, we can use amultivariate form of the Bernstein

polynomials 21:

pij(x, y) =

mi,1∑
k=0

mj,2∑
l=0

fL(i,k),(j,l)β(i,k),(j,l)(u, v)

(u, v) =

(
x− xHi

xHi+1 − xHi
,

y − yHj
yHj+1 − yHj

)
,

β(i,k),(j,l)(u, v) = βik(u) · βjl(v).

The local model pij(x, y) interpolates in the HF points from
{xHi , xHi+1} × {yHj , yHj+1} and follows the trend given by the LF points
in the rectangle with the HF points as corner points.
For the blending functions, we can simply use the tensor product of

B-splines. Let for d = 2 or 3,
Bi,j,d(x, y) := Bi,d(x) ·Bj,d(y),

with support [xLi−1,mi−1,1−1, x
L
i+1,1] × [yLj−1,mj−1,2−1, y

L
j+1,1],

where our notation is entirely analogous to the one introduced in the
previous section.
Now we can easily write down the two-dimensional rational expres-

sion interpolating every HF data point:

Rn,w(x, y) =

∑n1−1
i=0

∑n2−1
j=0 wijpij(x, y)Bi,j,d(x, y)∑n1−1

i=0

∑n2−1
j=0 wijBi,j,d(x, y)

with w = (wij)ij , i = 0, . . . , n1 − 1, j = 0, . . . , n2 − 1. It is again
sufficient to impose

wij > 0, i = 0, . . . , n1 − 1, j = 0, . . . , n2 − 1 (12)
to make Rn,w(x, y) polefree in R2. The weights wij , restricted to (12),
are given by

arg min
w

n1−1∑
i=0

n2−1∑
j=0

mi,1∑
k=0

mj,2∑
l=0

∣∣∣fL(i,k),(j,l) −Rn,w

(
xLi,k, y

L
j,l

)∣∣∣2 (13)

or the linearised
arg min

w

n1−1∑
i=0

n2−1∑
i=0

mi,1∑
k=0

mj,2∑
l=0

∣∣∣fL(i,k),(j,l)Dn,w

(
xLi,k, y

L
j,l

)
−

Nn,w

(
xLi,k, y

L
j,l

)∣∣∣2 ,

(14)

where we put

Dn,w(x, y) =

n1−1∑
i=0

n2−1∑
j=0

wijBi,j,d(x, y)

and
Nn,w(x, y) =

n1−1∑
i=0

n2−1∑
j=0

wijpij(x, y)Bi,j,d(x, y).

An example of this blendedmulti-dimensional rational model is given
in Fig. 9 . Here we use the same antenna as described previously for
the frequency variations, but we also vary the geometric parameter
θ ∈ [47◦, 59◦]. In this case we select the HF and LF data on 5 × 3 and
36 × 13 grids respectively, while the HF validation data is calculated on
a 3 × 2 grid in between the training samples. The interpolant closely
follows the HF validation data. The accuracy of the blended rational
model described here will be evaluated for a range of sinuous antenna
examples in the following section.

FIGURE 9 Blended rational interpolation of the imaginary part of the
input impedance using theHF and LF 2-D data. HF data are indicated by
large dots, LF data by small dots, validation data by open circles, and the
resulting rational interpolant by the surface.

4 APPLICATION EXAMPLES
This section evaluates the accuracy and demonstrates the utility of the
suggested modelling scheme. First, a collection of the pyramidal sinu-
ous antennas are simulated using various parameter ranges and sample
densities, and the accuracy of the blended rational interpolation is com-
pared to several othermodelling schemes. Thereafter, a design example
is presented to illustrate how the suggested method can be used to
accelerate the design of an antenna in a realistic multi-objective design
context.

4.1 Modelling accuracy
To quantify the accuracy of the blended rational interpolation scheme
presented here, we consider a range of 2-D sinuous antenna exam-
ples with bandwidths and simulation models as in Table 1 . Along
with frequency, the geometric parameters are varied along four one-
dimensional slices through the centre of the hypercube defined by τ ∈
[0.75, 0.9], δ/α ∈ [0.4, 0.8], δ + α ∈ [28◦, 44◦], and θ ∈ [47◦, 59◦]. The
number of LF data points along each dimension is fixed at 31, 41, 17, 13,
and 89 along frequency, τ , δ/α, δ+α, and θ, respectively. The number of
HF data is varied on the LF grid to illustrate the effects of using coarser
grids of HF data. In order to quantify the modelling errors, a validation
set (full HF antenna simulation) is calculated everywhere on the LF data
points, and only points not included in the HF data set are retained for
error calculations.
As comparison, estimation of the input impedance is also performed

using a variety of other interpolation methods. These include three
methods operating only on the available HF data, namely spline, Krig-
ing, and barycentric rational interpolation (see Sec. 3.1). In addition,
co-Kriging was evaluated as a multi-fidelity interpolation method. For
the Kriging and co-Kriging, the implementation in the ooDACE toolbox
was usedwith default settings 22.
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For all the examples the error metrics are the Average Euclidean
Error (AEE), 23

AEE(y, ỹ) =
1

M

M∑
i=1

|yi − ỹi| , (15)
and themaximum errors (MAX),

MAX(y, ỹ) = max |yi − ỹi| i = 1, . . . ,M, (16)
with yi the verification and ỹi the predicted response values.
The resulting error plots are shown in Fig. 10 . In general it can be

FIGURE 10 Comparisons of the modelling errors for a variety of mod-
elling schemes and geometries as a function of the total number of
HF data points. The average error is shown in the top panel and the
maximum error in the bottom panel. Different modelling schemes are
indicated by different colours.

seen that the blended rational interpolation scheme suggested here
performs better than the other modelling schemes — especially when
the number of HF data is reduced. The mean values of the errors in
Fig. 10 are summarised in Table 2 .

4.2 Design example
As a design example, a pyramidal sinuous antenna geometry is sought
which operates over the [350, 1050] MHz bandwidth, with an input
reflection coefficient smaller than−10 dB, andmaximum receiving sen-
sitivity when feeding the offset Gregorian reflector system used by the

TABLE 2 Mean values of all the errors in Fig. 10 .

Data AEE MAX
Blended Rational Interpolant HF/LF 14.2 157

co-Kriging HF/LF 17.8 164

Kriging HF 26.3 241

Barycentric Rational Interpolant HF 22.7 199

Spline HF 20.8 216

SKA 7. Design parameters are limited to x = [τ, δ/α], with δ + α = 36◦

and θ = 53◦.
A blended rational interpolation model of the input impedance is

built over the full 3-D design space (including frequency) using a [22 ×
22 × 5] grid of HF data points, and grids of [41 × 41 × 36] and [41 ×
41 × 53] points for the low band and high band LF models respectively
(grids ordered as [τ, δ/α, frequency]). As previously, the low band and
high band frequency ranges are [350, 525]MHz and [787.5, 1050]MHz
respectively. Using thismodel, theworst case (maximum) absolute value
of the input reflection coefficient is calculated across the geometric
input space and plotted in Fig. 11 . To test the result, a verification set

FIGURE 11 Worst case reflection coefficient over the geometrical
design space. The surface shows the rational interpolant and the dots
indicate a verification set.

was calculated using a grid of [41×41×176]HFmodels. The interpolant
is seen to follow the verification data relatively well. The region where
the reflection coefficient specification (< −10 dB) is met is plotted in
Fig. 12 , where a good agreement between the rational interpolation
model and the verification data is observed.
The receiving sensitivity is modelled as described in 13, and an objec-

tive function is defined which returns the average receiving sensitivity
in the band [650, 1050]MHz (in order to reduce the influence of the high
galactic noise in the lower end of the band 7 — see Fig. 14 ). A simple
grid search is used to maximise the objective function over the region
constrained by the acceptable reflection coefficient performance, and
the optimal geometry is found to be τ = 0.874 and δ/α = 0.63. This
antenna was simulated and the results are shown in Figs. 13 and 14 .
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FIGURE 12 Regions where the worst case reflection coefficient is
within the specification (< −10dB) shown in light grey,with the rational
interpolation model in the left panel and the verification set in the right
panel.

FIGURE 13 Reflection coefficient of the optimal design into a 237 Ω

reference impedance.

FIGURE 14 Receiving sensitivity of the optimal design.

The final reflection coefficient is well below the−10 dB level across the
band, while the average receiving sensitivity in the band above 650MHz
is 3.71m2/K. Note how the sensitivity drops off steeply below 650MHz
due to the increasing sky temperature caused by galactic radiation.

5 CONCLUSION
This paper presents a strategy to efficiently model the input impedance
of a sinuous antenna for use as a reflector antenna feed. The method
relies on the availability of both HF and LF data describing the input
impedance of the antenna. LF data is obtained at a significantly reduced
computational cost, when compared to the HF data, by CEM simula-
tions of truncated versions of the antenna. Since the antenna is geo-
metrically approximately log-periodic in nature, the truncated versions
provide a good estimate of the performance at the operating frequency
band edges, but are much faster to simulate due to the narrower fre-
quencybandwidth, aswell as reduced electrical size. In order to improve
the accuracy of the LF data described above, a rational interpolation
scheme is presented which interpolates a sparse set of HF data (the
full antenna simulations), while following the trends of a denser set
of LF data (the truncated antenna simulations). Several shortcomings
of traditional barycentric rational interpolation formulations, including
multi-fidelity ones, are addressedherein. Thesemainly relate to relaxing
constraints on the interpolation weights to allow pole-free interpolants
which still have the flexibility to follow the LF trendswhile interpolating
the HF data with no unattainable points.
Themethodwas applied on a variety of sinuous antennas to evaluate

and compare the accuracy with a range of other interpolation meth-
ods, with results showing improved accuracy in most of the examples
considered. A design examplewas also demonstrated, where an optimal
design in terms of receiving sensitivity for a given reflection coefficient
constraint was delivered using a significantly reduced set of HF models
when compared to direct methods.
Future work on the rational interpolationmethodmay include refor-

mulating it to allow for scattered data sets, since the current formula-
tion relies on regular grids of datawhich suffer from the curse of dimen-
sionality for high dimensional models. Using scattered data sets also
allows for sequential and adaptive sampling, which inmany cases signif-
icantly reduces the number of samples required for an accurate inter-
polant through focussing on regions of rapid variation. Furthermore, the
multi-fidelity modelling strategy using truncated sinuous antennas may
also be applied to other log-periodic antenna structures — especially
structures where the self-complementary constraint is relaxed to allow
for uni-directional radiation patterns.
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