
Temporal Dynamics in Online
Recommender Systems

Robin Verachtert

Supervisor prof. dr. B. Goethals

Thesis submitted in fulfilment of the requirements for the degree of doctor of science: computer science
Faculty of Science | Antwerpen, 24/04/2023

Faculty of Science

Temporal Dynamics in Online
Recommender Systems

Thesis submitted in fulfilment of the requirements for the degree of
doctor of science: computer science

at the University of Antwerp

Robin Verachtert

Antwerpen, 24/04/2023
Supervisor

prof. dr. B. Goethals

Jury
Chairman
prof. dr. F. Geerts, University of Antwerp, Belgium

Supervisor
prof. dr. B. Goethals, University of Antwerp, Belgium

Members
prof. dr. K. Laukens, University of Antwerp, Belgium
prof. dr. T. Calders, University of Antwerp, Belgium
dr. K. Verstrepen, Froomle, Belgium
prof. dr. K. Verbert, KU Leuven, Belgium
prof. dr. C. Vens, KU Leuven, Belgium

Contact
Robin Verachtert
University of Antwerp
Faculty of Science
Adrem
Groenenborgerlaan 171, 2020 Antwerpen, België
M: robin.verachtert@uantwerpen.be

© 24/04/2023 Robin Verachtert
All rights reserved.

Dutch title:

Tijdsaspecten in Online
Recommender Systemen

Acknowledgements

i

ii

This thesis is the result of four years of work. Four years, during which I have had
the fortune to have been helped and supported by fantastic people. Without their help,
motivation and friendship, I would not have been able to finish this work.

A crucial factor in keeping motivation and creativity has been to have good recreational
activities. To all my friends at KSC OLVE, in particular, my teammates from "De Vier",
and to Los Sportos, thank you for creating many fun afternoons and evenings, the perfect
moments to relax and recharge before work. To everyone that went walking, climbing
and running with me in the past years, thanks for keeping me active and healthy.

Doing my research supported by a Baekeland grant, I had the pleasure of working with
colleagues from both Froomle and the Adrem Research Group. To my colleagues from
the ADREM research group, thank you for discussing research topics, papers, results,
accepted papers, rejected papers and many more. I am grateful to Froomle for the
opportunity, I would most likely not have pursued a doctorate, were it not for the unique
circumstances of being able to do it in such a practical environment. Thanks to everyone
who has helped me build research capabilities into our product, and supported me with
experiments. Thanks as well for all of the random donut calls, coffee moments and lunch
discussions. Good colleagues make life so much nicer, and a simple chat makes the day
better. Thanks to Koen and Bart for presenting the opportunity to do a PhD at Froomle.

Papers are rarely written alone, and my work is no exception, none of it would have been
possible without the help of my co-authors for the various papers. Lien, Jeroen, Olivier,
Len, Andres, Kim and Bart, thank you for making the work better, making me a better
writer and helping me find the proper knowledge to write my publications. Thank you,
Bart, for your help and time as my promotor. While we may not always have agreed,
our discussions usually lead to a deeper knowledge and better final results. I really
appreciate your help in making this possible.

The best work is not done in isolation, and I was fortunate enough to have Lien as a team
member on the research team at Froomle. Thanks, Lien for being a fantastic colleague and
friend, for the endless discussions about research, the many papers we wrote together,
and the countless experiments we designed together. Thank you for helping me become
a better version of myself, and believing that I could succeed at the doctorate before I did
myself.

Last, but certainly not least, thank you, Mom, Dad and Gil for putting up with me for the
past four years, and helping me when I was stressed or annoyed. Often it was the simple
things, like making delicious food, or a happy good morning, that helped me through a
hard day. Your support has meant the world to me and kept me going when I was tired,
or fed up with striving for a deadline.

Robin, Antwerpen, 2023

Contents

1 Introduction 3

1.1 The Recommendation Problem . 3

1.2 Recommendations in Production . 5

1.3 Evaluation . 5

1.3.1 Online Evaluation . 6

1.3.2 Offline Evaluation . 7

1.4 Contributions . 7

2 Experimentation Framework 11

2.1 Introduction . 12

2.2 Datasets . 12

2.3 Preprocessing . 13

2.4 Scenarios . 16

2.4.1 Weak Generalization . 17

2.4.2 Last Item . 19

2.4.3 Timed . 21

2.4.4 Timed Last Item . 23

2.4.5 Strong Generalization . 23

2.4.6 Strong Generalization Timed . 26

2.4.7 Strong Generalization Timed Last Item 26

2.5 Algorithms . 29

2.6 Postprocessing . 32

2.7 Metrics . 32

iii

iv CONTENTS

2.8 Pipelines . 34

2.9 Aligning experiments with production tasks 36

2.10 Conclusion . 37

3 Scheduling on a Budget:
Avoiding Stale Recommendations with Timely Updates 39

3.1 Introduction . 40

3.2 Related Work . 42

3.3 Methodology . 43

3.3.1 Measuring Model Staleness . 44

3.3.2 Estimating Information Gain . 45

3.3.3 Scheduling Model Updates . 46

3.4 Experimental Results . 47

3.4.1 Datasets . 47

3.4.2 Recommendation Algorithms . 48

3.4.3 Model Staleness . 49

3.4.4 Comparing Scheduling Methods . 53

3.4.5 Online Experiments . 57

3.5 Conclusions . 59

4 Are We Forgetting Something? Correctly Evaluate a Recommender System
With an Optimal Training Window 61

4.1 Introduction . 62

4.2 Related Work . 63

4.3 Methodology . 64

4.3.1 Recommendation Scenario . 64

4.3.2 Datasets . 64

4.3.3 Algorithms . 65

4.3.4 Evaluation Metric(s) . 66

4.3.5 Parameter Optimisation . 66

CONTENTS v

4.4 Results . 67

4.4.1 RQ1: “How does the optimisation of 𝛿𝑖𝑛 impact the individual
performance of an algorithm?" . 67

4.4.2 RQ2: "Does the optimisation of 𝛿𝑖𝑛 change the relative performance
between the algorithms?" . 68

4.4.3 RQ3: How does the choice of 𝛿𝑖𝑛 impact secondary metrics such as
run time and coverage? . 69

4.4.4 Online Tests . 70

4.5 Conclusion . 71

5 A Unified Framework for Time-Aware Item-Based Neighbourhood Recommen-
dation Methods 73

5.1 Introduction . 74

5.2 Related Work . 75

5.3 Methodology . 77

5.3.1 Decay Functions . 77

5.3.2 Similarity Functions . 78

5.4 Experiments . 79

5.4.1 Datasets . 79

5.4.2 Algorithms . 80

5.4.3 Evaluation metric(s) . 80

5.4.4 Evaluation Scenarios . 80

5.4.5 Parameter Optimisation . 81

5.5 Results . 81

5.5.1 Run Time . 81

5.5.2 Leave-last-one-out scenario . 83

5.5.3 Timed split scenario . 85

5.6 Conclusion . 87

6 The Impact of a Popularity Punishing Parameter on ItemKNN Recommendation
Performance 89

6.1 Introduction . 90

vi CONTENTS

6.2 Related Work . 91

6.3 Experimental Setup . 91

6.3.1 Algorithm . 91

6.3.2 Metrics . 92

6.3.3 Datasets . 92

6.3.4 Offline experiments . 92

6.3.5 Online Experiments . 93

6.4 Experiments . 93

6.4.1 RQ1: How Does the Hyperparameter 𝛼 Impact the Equality of
Exposure? . 93

6.4.2 RQ2: How Does the Hyperparameter 𝛼 Impact Accurracy and CTR
Results? . 94

6.4.3 RQ3: Do the Offline and Online Results Agree? 94

6.5 Conclusion . 95

7 Conclusions and Future Work 97

7.1 Conclusions . 97

7.2 Future Work . 98

Publications

• Robin Verachtert, Lien Michiels and Bart Goethals. Are We Forgetting Something?
Correctly Evaluate a Recommender System With an Optimal Training Window.
In Proceedings of the Perspectives on the Evaluation of Recommender Systems Workshop,
2022.

• Lien Michiels, Robin Verachtert, Kim Falk and Bart Goethals. Abstract: Should
Algorithm Evaluation Extend to Testing? We Think So... In Proceedings of the
Perspectives on the Evaluation of Recommender Systems Workshop, 2022.1

• Lien Michiels, Robin Verachtert, and Bart Goethals. RecPack: An(other) Experi-
mentation Toolkit for Top-N Recommendation using Implicit Feedback Data. In
Proceedings of the 16th ACM Conference on Recommender Systems (RecSys ’22), 2022.

• Len Feremans, Robin Verachtert and Bart Goethals. A Neighbourhood-based
Location- and Time-aware Recommender System. In Workshop on Online Recom-
mender Systems and User Modeling (ORSUM), 2022. 1

• Robin Verachtert, Lien Michiels, Jeroen Craps and Bart Goethals. The Impact of
a Popularity Punishing Hyperparameter on ItemKNN Recommendation Perfor-
mance. In Proceedings of the 45th European Conference on Information Retrieval (ECIR
’23), 2023.

• Robin Verachtert, Olivier Jeunen and Bart Goethals. Scheduling on a Budget:
Avoiding Stale Recommendations with Timely Updates. In Machine Learning with
Applications, Volume 11, 2023.

• Lien Michiels, Robin Verachtert, Andres Ferraro, Kim Falk and Bart Goethals. A
Framework and Toolkit for Testing the Correctness of Recommendation Algorithms.
In Special Issue on Perspectives on Recommender Systems Evaluation in ACM Transactions
on Recommender Systems (TORS), 2023. 1

1This paper is not used in this thesis.

1

2 CONTENTS

Chapter 111
Introduction

Recommender systems have become a central component in our daily use of the Internet.
Most websites host so much content, that without high-quality recommender and search
engines, we would struggle to find the needle of relevant content in this haystack.

Tech giants like Facebook, Netflix, and Spotify, have popularized the concepts of per-
sonalised recommendations, by proposing new connections, “Recommended for you”
lists or personalised playlists. We also find these giants as a driving force in academic
research [11, 28, 88, 94, 100, 112, 117], as they have a strong incentive to improve their
recommender systems. What distinguishes them further from most other companies
that want to use recommender systems is the amount of resources and data they have
available. For most companies operating at a smaller scale, many of the most advanced
methods are too costly to train, and the margin they have over simpler methods is too
small to use them.

Therefore, there is a need in recommender system research to also find methods that
serve these small- or medium-sized companies [101, 120].

Inspired by the real-world experience encountered as a researcher at Froomle, this thesis
addresses problems with a direct application to production settings. Further, we highly
value the ability to serve high-quality recommendations to real users, without requiring
high computational costs.

1.1 The Recommendation Problem

At its core, a recommender system is a function 𝜙(𝑥) → 𝑅, which takes a vector 𝑥 and
generates a set of relevant items 𝑅. 𝑥 Can take many forms, depending on the application,
for example, a binary history vector, a user feature vector, or a list of most recently visited
items. Finding the right function 𝜙 is where most of the challenges lie with this problem.
Usually, machine learning is used to learn the “best" function given stored data, although
manual rule-based approaches still see use as well.

Typically recommendation approaches are categorised into ‘Collaborative Filtering’,
‘Content Based’ and ‘Hybrid’ approaches. ‘Content Based’ approaches use the meta-
data available about the items (topics, tags, images, ...) and metadata available about

3

4 CHAPTER 1. INTRODUCTION

users (age, country, ...) to construct the function 𝜙. ‘Collaborative Filtering’ only uses
the interactions or ratings of users, and tries to build prediction models that use the
similarity patterns in this data. Examples include item- and user-based neighbourhood
methods, matrix factorisation, and neural network approaches. ‘Hybrid’ approaches
combine content-based and collaborative methods, to get improved recommendation
performance.

In our work, we focus on the “Collaborative Filtering” problem. This choice comes from
real-world experience at Froomle, where we find that curating metadata is a challenge,
usually requiring additional engineering work as each company maintains its own meta-
data structure. User-item interactions, on the other hand, are much easier to standardise,
which allows the same solution to be reused with minimal effort. Examples of interac-
tions include a user visiting a page, the user clicking on a recommendation, and the user
purchasing an item.

In collaborative filtering, there are usually two types of data that may be available.
‘Explicit Feedback’ is collected by requesting the users to rate an item, usually in the
form of a rating given to an item. The challenge in getting this data is that the users need
to explicitly take action to provide the ratings. Implicit feedback, on the other hand, can
be logged while the users use the website as usual. This ‘Implicit Feedback’, is all the
information we can collect about a user by analysing the actions they take while on a
website, what pages they visit, what they buy, what they consider but do not buy, etc.
This second data is usually more abundant, and less intrusive to the user to collect [96].

We will thus focus on ‘Implicit Feedback’ in our work, if we want to personalise the expe-
riences for as many users as possible, ‘Implicit Feedback’ will give us more information
about them than ‘Explicit Feedback’ can.

In the implicit feedback setting, the dataset usually consists of a list of triples: 𝒟 =

{(𝑢, 𝑖, 𝑡)|𝑢 ∈ 𝑈, 𝑖 ∈ 𝑖 , 𝑡 ∈ N+}. Where 𝑈 is the set of users, 𝐼 the set of items, and 𝑡 is a
timestamp.

For more efficient computation this dataset can also be represented in various ways
depending on the type of algorithm.

The most common representation is to represent the data as a binary matrix𝑿 , where each
row indicates a user and each column indicates an item. When a user 𝑢 has interacted
with an item 𝑖, then 𝑿𝑢,𝑖 = 1.

In works that utilise the timestamp of when a user interacted with an item, we construct
a similar matrix 𝑻 with the last timestamp of interaction for each (𝑢, 𝑖) pair.

Other methods rely on sequential information and/or model repeated consumption. For
these, the dataset is sorted per user, such that we have a list of interactions per user sorted
by timestamp, ascending

1.2. RECOMMENDATIONS IN PRODUCTION 5

1.2 Recommendations in Production

When going from theory to practice, the recommender system increases in complexity.
Theoretical research usually focuses on algorithms, and metrics, the two components to
finding 𝜙. In production settings, these two are smaller components in a large recom-
mender system, that also needs to handle data collection, real-time data fetching, timely
serving of recommendations and more. So when we consider recommendations in a
production setting, we don’t just need to find a model 𝜙 that optimises a metric, we also
need good operational quality of the model. Of particular interest to this work are:

• Training time: in many cases, we need to keep the models up to date by retraining
them. When models take too long to train, they can be outdated by the time they
are trained, or the cost for training them can be too high to be profitable

• Response time: users do not want to wait seconds before they see their recom-
mendations, this means that our recommender system needs a way to respond,
typically below 50ms [71].

• Model size: Large models require large amounts of resources to serve recommen-
dations, and so can become prohibitively expensive.

These constraints inspire our choice to focus on simple algorithms relying on Nearest
Neighbours or efficient exact solutions, rather than deep learning techniques.

Production settings also differ from the traditional recommendation problem presented
above, in that the data is much more dynamic than the static representation 𝒟 used
in most research. New data is collected constantly as users interact with the website
and thus also the recommendations. This need to handle change in the data inspired
Chapters 3, 4 and 5, all dealing with dynamic datasets and presenting different ways in
which to allow recommendation algorithms to exploit these dynamics.

Finally, production settings also imply collaboration with business stakeholders, who
might want to see specific behaviour, such that the algorithms need to be adapted to
meet their business needs. One of the important business needs that we investigate in
this work is to activate as much of the available catalog as possible. Recommendation
algorithms have a tendency to recommend mostly popular articles [2], this can lead to
starvation of the other items, and fairness concerns in many use cases. We investigate
this thoroughly in Chapter 6 and keep it in mind when evaluating algorithms in all of
our experiments.

1.3 Evaluation

Recommender systems are a complex and challenging area of research, because of the
different problems we use them for. Recommending items a user might be interested
in after reading an article, is a very different problem from helping them discover new
interests, which is also very different from looking for recommendations that maximise
revenue on a retail website. Each separate problem will most likely require a different

6 CHAPTER 1. INTRODUCTION

function 𝜙 to perform optimally. So finding the right 𝜙 is not just a “do it once” problem,
it is a fundamental problem in recommender systems research as well as application.
Finding 𝜙 is usually done through the evaluation of many candidate functions, some
that have proven value before in the same or similar fields, and others that are newly
developed.

Correct evaluation is therefore an important factor in finding the right model to use for
the problem at hand. Evaluation usually happens in three ways, online tests, user studies
and offline tests [139]. In our work, we only focus on offline and online tests, due to the
methods and data at our disposal.

1.3.1 Online Evaluation

Arguably the best way to evaluate the performance of an algorithm is to perform a
controlled trial with real users that interact with the recommendations.

The most common approach to this is to use an A/B-test, which exposes a small part of
the users to the algorithm or system to be tested, and the large remainder of users are
served by a control system that was in place before, or which consists of a simple solution
if no solution was in place before. Only once this AB test is successful, does the new
algorithm or system get pushed to all users.

To evaluate performance online, different metrics are available, depending on the goal
of the business deploying the recommender system. A commonly used metric is Click-
Through-Rate (CTR), which measures the percentage of recommendation opportunities
that also lead to a click. This metric has been criticised for potentially leading to short-
term optimisation, rather than long-term impact, and other metrics such as session length,
number of returning users or number of subscription conversions have been suggested
to better measure business impact. In this thesis, we evaluate our A/B-tests using CTR.
We choose this metric as it can be easily measured for a single list of recommendations,
meaning we don’t need to take into account other confounding factors (such as different
tests, or interface changes elsewhere during the experiment). The only difference between
the control and treatment groups is which items are recommended.

Online evaluations give us an insight into the real performance of the algorithm, but they
also have several important limitations and costs.

• Online tests are expensive. Before an algorithm can be exposed to real users, it needs
to be implemented in such a way that it meets all non-functional requirements.
These include low response times, observability should an error occur, stability,
robustness to bad data, and more. The engineering cost to get an algorithm to this
point is prohibitively expensive to do for every idea we would like to test.

• The new algorithm or system can negatively impact business metrics and values
when it performs poorly. Worse, this can extend beyond the test duration when
users leave the system due to a bad experience.

• Online tests are also very narrow. Usually, the new test is performed in just a few
spots on a website, and so the context for which we have results is also narrow.

1.4. CONTRIBUTIONS 7

This prevents us from making generalizations about performance in other use cases,
without running multiple online trials.

• Online experiments are only available to the few researchers that have access to a
platform that serves recommendations to an audience.

These limitations naturally create an opportunity and necessity for offline experiments,
as a vetting process. Only the most promising approaches, that fulfil all functional and
non-functional requirements should be tested online.

1.3.2 Offline Evaluation

In offline evaluation, the experiments are based on a fixed dataset, usually a snapshot
of a website’s traffic. Multiple algorithms are evaluated on a selection of metrics, and
traditionally the metrics are then compared to find if a new algorithm outperforms a
selection of state-of-the-art algorithms.

Different types of offline evaluation exist, depending on the type of algorithm evaluated,
and the type of data available.

• Off-policy evaluation aims to estimate the performance of hypothetical policies using
data generated by a deployed policy [111].

• Simulators are abstractions of online tests, in which users are modelled as a stochastic
click process [9, 109]. These allow the simulation of interactive environments,
without needing to expose the users to the recommendations. The approaches are
limited by the quality and accuracy of the simulator.

• Train-Test-Validation split based evaluation, follows approaches known in classification
and information retrieval, where the dataset is split into training, validation and
test datasets, and models are evaluated on how well they find the items in the test
(or validation set) [47, 139].

In this work, we focus on the train-test-validation split evaluation, and in Chapter 2, we
present an open-source framework for experimentation RecPack, which we have built
to support correct and efficient offline evaluation both in industry, and academia. In
this chapter, we also provide an overview of the offline evaluation methodology used
throughout this thesis, and some suggestions for best practices in experimental design.

1.4 Contributions

• In Chapter 2 we present the recommendation package RecPack. This package con-
tains all the building blocks to make experiments reproducible as well as several
implemented algorithms and base classes to enable fast experimentation for re-
searchers. This package was presented in a demo paper at the Recsys ’22: Lien

8 CHAPTER 1. INTRODUCTION

Michiels, Robin Verachtert, and Bart Goethals. RecPack: An(other) Experimen-
tation Toolkit for Top-N Recommendation using Implicit Feedback Data. In Pro-
ceedings of the 16th ACM Conference on Recommender Systems (RecSys ’22), 2022. In
addition to presenting the package, we also give some suggestions for how to
evaluate recommendations based on our experiments.

• In Chapter 3 we present and compare four different methods to schedule a model
update. We show that model updates are an important measure to counteract con-
cept drift and maintain high-quality recommendations. We find that scheduling
techniques that look at information gathered since the last update perform better
than traditional time-based schedules. Through several online trials, we also con-
firm that we can use them in online scenarios to improve the recommendations by
keeping models better up to date. This work was published in the Journal "Machine
Learning with Applications": Robin Verachtert, Olivier Jeunen and Bart Goethals.
Scheduling on a Budget: Avoiding Stale Recommendations with Timely Updates.
In Machine Learning with Applications, Volume 11, 2023.

• In Chapter 4 we investigate how we can improve baseline models, by training them
on less data. A common assumption is that more data will lead to better models.
However, we notice that for baseline models, it is often important to train them only
on the relevant part of the training data, which is strongly related to the target data.
In traditional evaluations, popularity is computed on the whole dataset, and then
used as a baseline. Popularity changes through time though, and so computing it
only on the interactions of the last hour before the prediction period, makes it a
much harder to beat baseline. Similar patterns can be observed for ItemKNN and
other common baseline methods. This work was presented and published in the
"Perspectives on Recommendation Workshop": Robin Verachtert, Lien Michiels and
Bart Goethals. Are We Forgetting Something? Correctly Evaluate a Recommender
System With an Optimal Training Window. In Proceedings of the Perspectives on the
Evaluation of Recommender Systems Workshop, 2022.

• Chapter 5 continues the work started in Chapter 4, and looks at how the older data
can still be useful to the models, thus improving on the naive data removal method.
We provide an overview of the existing work on Time-Aware ItemKNN models
and provide a framework that presents new combinations of options hitherto not
presented in the literature. These new combinations manage to outperform most
baselines that were trained on optimised training windows. This shows that the old
data is not irrelevant, but needs to be used correctly. This work is under submission
at the "Transactions on Recommender Systems" journal.

• In Chapter 6 we investigate a phenomenon we noticed in several of our experi-
ments for previous chapters. In many of these we noticed that algorithms favour-
ing popular items, such as popularity, or ItemKNN using conditional probability
were scoring higher than expected on offline metrics, and these results were not
reflected in online experiments. In a series of experiments we investigated how
punishing popular items in recommendations has an impact on both the fairness of
exposure, as well as the recommendation quality. We found that there is a trade-off
between the fairness of exposure and the quality of the recommendations and that
the offline results did show more bias towards algorithms recommending more
popular items compared to the real user interactions. This work was presented at
ECIR ’23: Robin Verachtert, Lien Michiels, Jeroen Craps and Bart Goethals. The

1.4. CONTRIBUTIONS 9

Impact of a Popularity Punishing Hyperparameter on ItemKNN Recommendation
Performance. In Proceedings of the 45th European Conference on Information Retrieval
(ECIR ’23), 2023.

10 CHAPTER 1. INTRODUCTION

Chapter 222
Experimentation Framework

In order to standardise the evaluation of algorithms in our experiments, we have designed a python
package RecPack, focused on implicit feedback recommender systems. This package is designed
to be easy to use thanks to an interface similar to the popular scikit-learn python package,
and extendible, by making our experiments modular. Each module in the package is linked to a
part of an experimental pipeline. In this chapter, we present each of the modules in detail and
describe which choices we made in the experiments of this thesis. These choices were inspired by
our experiments at Froomle, and our efforts to align them to our online use cases. 1

Figure 2.1: Top-N Recommendation Pipeline: First, a dataset is preprocessed and trans-
formed into a user-item interaction matrix. Next, this matrix is split into a training,
validation and test dataset. These datasets are then used to first train algorithms and
later make recommendations. Finally recommendations are postprocessed, after which
performance metrics are computed.

1Chapter based on “RecPack: An(other) Experimentation Toolkit for Top-N Recommendation using Implicit
Feedback Data”. Lien Michiels, Robin Verachtert and Bart Goethals. In Proceedings of the 16th ACM Conference
on Recommender Systems [91].

11

12 CHAPTER 2. EXPERIMENTATION FRAMEWORK

2.1 Introduction

Offline experimentation is an important step in evaluating recommender systems. For
many researchers, it is the only tool they have available to evaluate new algorithms they
or others have developed, as they do not have access to online platforms. Even for those
that do have access to an online platform, the business may not be happy to expose any
new algorithm or system to their users. Besides the potential for poor recommendations,
there is also the engineering cost to be considered, as it is much harder to put code into
production than it is to write something that works for you on a curated dataset.

This indicates the need for efficient and correct evaluation of recommender systems in
offline experiments. In recent years, other Python packages for top-N recommendation
have been released [e.g. 7, 123, 142]. However, these focus more on the purpose of
‘benchmarking’, i.e., quick and accurate comparisons of state-of-the-art recommenda-
tion algorithms. Consequently, they provide access through the use of a configuration
language or command-line interface. RecPack on the other hand wishes to support re-
searchers with the development of their own algorithms through repeated refinement,
experimentation and bug-fixing in e.g., a Notebook environment.

Furthermore, most of the algorithms implemented in RecPack allow induction of recom-
mendations for new users (unseen during training) as well as more accurate recommen-
dations by using new data, that was not yet available at training time. Most of the other
packages on the other hand require a user to be known during training time, and can
only transduce recommendations based on the training data.

As shown in Figure 2.1, RecPack is made up of seven main components, which all
contribute to the final result of the experiment. We will introduce each of the components,
showcase the use of the package through the pipeline, and end with suggestions for
setting up offline experiments to mimic online use cases.

2.2 Datasets

In offline experiments, we assume to have access to a static dataset 𝒟, which con-
tains interactions of users with items. These can be publicly available datasets, such as
MovieLens[50] or Adressa[46], or exports from industry partners. When setting up our
experiments, we require that the dataset contains timestamp information for each of the
events. Any production setting will have access to this information, and most recom-
mender systems will actively use it. As we will explain in Section 2.4, these timestamps
will allow us to mimic a more realistic evaluation, even if the algorithms might not use
them.

Choosing the right dataset for an experiment is an important first step to getting accurate
and usable results. When dealing with production settings at Froomle, we are fortunate
to have access to the datasets of the websites for which we aim to improve personalisa-
tion. Choosing the right publicly available dataset then, is usually a search limited by
availability. Constraints on type of data and the availability of timestamps narrow the
amount of available datasets. Thankfully, recent years have seen more public datasets

2.3. PREPROCESSING 13

published, allowing us to present our research on these datasets as well as our private
datasets.

RecPack implements classes for many of these publicly available datasets, and also makes
it easy to extend the functionality to load a private dataset. When loading a dataset, by
default we apply common preprocessing patterns, which will be further discussed in the
next section.

In Table 2.1 we present the public datasets used in this work, and their statistics, both
before and after their default preprocessing.

2.3 Preprocessing

Most often the raw dataset is not yet ready for use in experiments. Many users may have
only few interactions, some items are visited only a handful of times, or the dataset still
contains bot users that are interacting with every item on the website. These factors will
influence the evaluation, and make it less accurate. We would like the dataset to suit the
task we evaluate, namely “How well does the algorithm personalise recommendations”.
Evaluating that on users with too few interactions, will skew results towards methods
with mostlty popularity bias, as that is the best bet in absence of information. Similarly,
items with few visits are only relevant, if you evaluate a cold-start approach, but in most
other cases, they will only slow down training, and potentially introduce incoherrent
noise into the data. It is therefore common practice to process the raw data into a specific
subset of the data, that is more suited for use in experiments evaluating personalised
recommendation algorithms [4, 35, 123].

Another type of preprocesing is used to construct an implicit feedback dataset from an
explicit dataset. This is necessary as some of the most popular datasets used in rec-
ommendation research are explicit feedback datasets (e.g. MovieLens [50] and Amazon
review [93] datasets). It is common practice to either use each rating as an implicit
feedback, or to keep only those interactions with a rating above 4 as the positive implicit
feedback [67, 80].

RecPack provides the following preprocessing filters that are frequently applied in pro-
cessing a dataset:

Deduplicate Removes interactions between users and items such that every (user, item)
pair occurs at most once. Keeps the last interaction if timestamps are available.

MinRating(r) Removes all ratings from the dataset below the specified threshold (r).
This filter is used to translate an explicit feedback dataset into an implicit feedback dataset
by dropping interactions that have a rating below a threshold (typically 3-stars or 4-stars),
leaving us with only a subset of interactions for items the user rated highly.

14 CHAPTER 2. EXPERIMENTATION FRAMEWORK

MinItemsPerUser(c) Removes all interactions from users that have too few interactions
(less than c). Since we are using the dataset for evaluating personalisation, users with
too few interactions are not representative of our target audience, and so using them will
skew results.

MinUsersPerItem(c) Removes all interactions with items that have too few interactions
(less than c). Not all items are visited equally, and some are only visited a handful of
times in a dataset with millions of interactions. Because many algorithms have their
complexity and performance scale with the number of items, it makes sense to remove
these extremely unpopular items. Further, production environments may have similar
filters in place, to avoid recommending potentially bad recommendations to users. Only
in specific discovery modes, such as cold start scenarios will they allow rarely visited
items to be shown.

MaxItemsPerUser(c) Removes users that have interacted with too many items (more
than c). These users usually are bots visiting most of the catalogue. These are obviously
not the target audience for personalisation, and their behaviour can work detrimental to
models and evaluation because they visit disproportionate amounts of items compared
to regular users.

NMostRecent(n) Selects only events on the n most recently visited items. Sometimes
datasets contain so many items, that algorithms require too much memory, or run time is
too high to allow quick experimentation and development of algorithms. In these cases
it is better to initially work on a smaller subset of the dataset, by reducing the amount of
items used in the experiment.

NMostPopular(n) Selects only interactions with the n most popular items, this is an-
other way of drastically shrinking the dataset for quick iteration purposes.

2.3. PREPROCESSING 15

Dataset Duration Processed |𝑈 | |𝐼 | |𝒟| 𝜌 (%)
Adressa [46] 7 days No 640 503 20 428 3 101 991 0.02

Yes 228 462 2 790 2 532 729 0.40
Amazon Games [93] 6 928 days No 55 223 17 408 497 577 0.05

Yes 42 480 14 817 385 543 0.06
Amazon Toys &
Games [93]

6 939 days No 208 180 78 772 1 828 971 0.01

Yes 172 606 69 716 1 531 360 0.01
CosmeticsShop [69] 152 days No 1 597 754 53 854 9 657 821 0.01

Yes 483 080 27 019 7 877 677 0.06
Globo.com [31] 44 days No 322 897 46 033 2 988 181 0.02

Yes 218 228 9 759 2 722 355 0.12
MovieLens1M [50] 1 040 days No 6 040 3 706 1 000 209 4.47

Yes 6 038 3 125 574 385 3.04
MovieLens25M [50] 9 082 days No 162 541 59 047 25 000 095 0.26

Yes 162 342 19 937 12 416 034 0.38
Yoochoose [17] 182 days No 9 249 729 52 739 33 003 944 0.01

Yes 9 244 493 37 964 32 972 850 0.01

Table 2.1: Public datasets used in this work and their stats computed both before and
after applying the preprocessing filters. 𝜌 is the density of the dataset.

16 CHAPTER 2. EXPERIMENTATION FRAMEWORK

2.4 Scenarios

Once the dataset is preprocessed, the next step is to construct training, validation and test
datasets. We call this split, a “scenario”. Different scenarios create different problems
and thus different evaluation results.

Each scenario constructs the following six sub-datasets.

• Validation training data (𝒟𝑣_𝑡𝑟𝑎𝑖𝑛): The dataset on which models are trained during
hyperparameter optimisation.

• Validation input data (𝒟𝑣_𝑖𝑛): The interaction history of users that will be used
during the prediction (for hyper parameter optimisation). For some scenarios this
is identical to 𝒟𝑣_𝑡𝑟𝑎𝑖𝑛 .

• Validation output data (𝒟𝑣_𝑜𝑢𝑡): The targets to predict for each user. It can be one
item per user or many, depending on the scenario used.

• Full training data (𝒟𝑡𝑟𝑎𝑖𝑛): The dataset on which models are trained before final
evaluation (with optimised hyperparameters).

• Test input data (𝒟𝑖𝑛): The interaction history of users that will be used during
prediction.

• Test output data (𝒟𝑜𝑢𝑡): The targets to predict for each user. Can be one item per
user, or many.

When splitting data, we always make sure that each user with an interaction in 𝒟𝑖𝑛 also
has at least one interaction in 𝒟𝑜𝑢𝑡 , and vice versa. This way we make sure that all active
users (users with an interaction in 𝒟𝑖𝑛) have a target item, and we don’t have target items
that need to be predicted without previous interaction. Investigating non-personalised
recommendations is not the goal of these scenarios.

Further, the design of our scenarios makes sure that the validation and testing settings
are as closely aligned as possible, by making sure they work on similar amounts of data.

In RecPack, we have implemented a selection of 7 scenarios that perform different splits
of the dataset into these sub-datasets. These are categorized in Table 2.2, according to
three properties: “Do they perform a hard timed split?”, “Do they perform a sequence
aware evaluation?” and “Do they avoid overlap between users used for training and
evaluation?”.

The StrongGeneralization scenarios provide an extra difficulty to the algorithms, by
completely separating users used for training and evaluation. For algorithms that rely on
building user features or embeddings during training, these scenarios are not suitable,
because history of users to predict for, will only become available at prediction time.

In the following, we will describe each of the seven implemented scenarios in detail, and
link them to real world use-cases with which they align.

2.4. SCENARIOS 17

Sequence Aware
No Yes

Ti
m

ed
Sp

lit No WeakGeneralization LastItem
StrongGeneralization

Yes Timed TimedLastItem
StrongGeneralizationTimed StrongGeneralizationTimedLastItem

Table 2.2: Categorisation of scenarios according to their properties. Strong generalization
scenarios, which do not reuse users for training, validation and testing, are highlighted in
gray. A scenario could be designed that fills the gap of a non-timed, strong-generalization,
last-item scenario. However, we have not found any papers using this method, and it
would suffer from similar leakage issues as the LastItem scenario. Therefore, we choose
to not implement it in RecPack.

2.4.1 Weak Generalization

In this scenario, the data is split per user by performing two splits of 𝒟, based on a single
parameter 𝑓𝑖𝑛 defining the fraction of data per user that is split into a subset “in” and the
remainder in “out”.

The first split’s “in” dataset is used as both 𝒟𝑡𝑟𝑎𝑖𝑛 and 𝒟𝑖𝑛 , the “out” dataset is used as
𝒟𝑜𝑢𝑡 . The second split further divides the 𝒟𝑡𝑟𝑎𝑖𝑛 dataset using the same 𝑓𝑖𝑛 ratio as the
first for validation purposes. Now the “in” part is used for 𝒟𝑣_𝑡𝑟𝑎𝑖𝑛 and 𝒟𝑣_𝑖𝑛 , while the
“out” part is used for 𝒟𝑣_𝑜𝑢𝑡 .

When dividing a user’s history into the “in” dataset, we round up, this can cause some
users to have no items in the “out” side of the split, which removes them from evaluation
datasets, but not from training.

An example of splitting a dataset using the WeakGeneralization scenario is given in
Figure 2.2.

18 CHAPTER 2. EXPERIMENTATION FRAMEWORK

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(a) Full training dataset (b) Validation Training dataset

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(c) Validation input dataset. (d) Validation target dataset.

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(e) Test input dataset. (f) Test target dataset.

Figure 2.2: Resulting training, validation and testing matrices for the
WeakGeneralization scenario, with 𝑓𝑖𝑛 = 1

2 . Columns are timestamps, rows are user
histories, each non-empty entry is an item.

2.4. SCENARIOS 19

2.4.2 Last Item

Users consume items in sequential order and sequence-based recommendations seek to
exploit this sequential nature of the data to provide better recommendations [13, 67, 84].
In order to evaluate these algorithms, the scenario needs to be designed in such a way
that the sequential nature of interactions is maintained, and represented in the prediction
task. When splitting the data, each user’s last interaction 𝒟 𝑙

𝑢 is used as test target
(𝒟𝑜𝑢𝑡 = {𝒟 𝑙

𝑢 ∀𝑢 ∈ 𝑈}) and the second to last 𝒟 𝑙𝑙
𝑢 is used as validation target (𝒟𝑣_𝑜𝑢𝑡 =

{𝒟 𝑙𝑙
𝑢 ∀𝑢 ∈ 𝑈}).

Training data is made up of all events before the target event: 𝒟𝑡𝑟𝑎𝑖𝑛 = 𝒟 \ 𝒟𝑜𝑢𝑡 and
𝒟𝑣_𝑡𝑟𝑎𝑖𝑛 = 𝒟𝑡𝑟𝑎𝑖𝑛 \ 𝒟𝑣_𝑜𝑢𝑡 .

In some situations, it is beneficial to not use all the historic events from a user to predict
the target item, but instead use only a subset. Thus, we allow the reduction of the
input data for prediction, to the 𝑛 most recent interactions. In traditional sequential
recommendation evaluation, 𝑛 is set to infinity, and so all events used for training are
also used for prediction. In production settings, it is often opportune to set this parameter
to 1, only using the last seen item to personalise recommendations. While this throws
away most of the knowledge about the user’s interests, it captures the current interest,
and drastically reduces response times, which is an important factor when deploying an
algorithm in production.

An example of the scenario applied to a sample dataset can be found in Figure 2.3.

Ji et al. [65] have criticised this scenario for leaking future information into training data.
This leakage comes from the fact that training data is created per user, such that a user
with most of their interactions on one of the last days of the dataset, will contribute
interactions to the training data from those days, while the trained model, will also be
evaluated on its ability to predict items for users that were active weeks before those
interactions. This causes future knowledge to be encoded into the model, something that
in production will never be available. Despite this, we support the LastItem scenario,
as it is still commonly used in research [105, 27, 68, 77]. We do recommend considering
using the TimedLastItem variant over this one though.

20 CHAPTER 2. EXPERIMENTATION FRAMEWORK

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(a) Full training dataset (b) Validation Training dataset

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(c) Validation input dataset. (d) Validation target dataset.

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(e) Test input dataset. (f) Test target dataset.

Figure 2.3: Resulting training, validation and testing matrices for the LastItem scenario,
with 𝑛 = 1. Columns are timestamps, rows are user histories, each non-empty entry is
an item.

2.4. SCENARIOS 21

2.4.3 Timed

In production settings, models are trained on data available up to the moment of training.
They are also only used to predict user behaviour until a new model is trained.

We mimic this online behaviour in this scenario. The scenario is parameterised by two
timestamps: 𝑇, and 𝑇𝑣𝑎𝑙 (< 𝑇), and two time windows: 𝛿𝑖𝑛 and 𝛿𝑜𝑢𝑡 . First the data is
split on timestamp 𝑇, data before 𝑇 is used for training and as test input, data after 𝑇 as
test targets. Then 𝛿𝑜𝑢𝑡 limits the test targets to only events within that many seconds of
𝑇 and 𝛿𝑖𝑛 limits both training and test input data to only recent interactions. To create
validation data, the same procedure is used, only now surrounding 𝑇𝑣𝑎𝑙 .

Formally:

• 𝒟𝑡𝑟𝑎𝑖𝑛 = {(𝑢, 𝑖, 𝑡) ∈ 𝒟 | 𝑡 >= 𝑇 − 𝛿𝑖𝑛 ∧ 𝑡 < 𝑇}

• 𝒟𝑖𝑛 = {(𝑢, 𝑖, 𝑡) ∈ 𝒟 | 𝑡 >= 𝑇 − 𝛿𝑖𝑛 ∧ 𝑡 < 𝑇}

• 𝒟𝑜𝑢𝑡 = {(𝑢, 𝑖, 𝑡) ∈ 𝒟 | 𝑡 >= 𝑇 ∧ 𝑡 < 𝑇 + 𝛿𝑜𝑢𝑡}

• 𝒟𝑣_𝑡𝑟𝑎𝑖𝑛 = {(𝑢, 𝑖, 𝑡) ∈ 𝒟 | 𝑡 >= 𝑇𝑣𝑎𝑙 − 𝛿𝑖𝑛 ∧ 𝑡 < 𝑇𝑣𝑎𝑙}

• 𝒟𝑣_𝑖𝑛 = {(𝑢, 𝑖, 𝑡) ∈ 𝒟 | 𝑡 >= 𝑇𝑣𝑎𝑙 − 𝛿𝑖𝑛 ∧ 𝑡 < 𝑇𝑣𝑎𝑙}

• 𝒟𝑣_𝑜𝑢𝑡 = {(𝑢, 𝑖, 𝑡) ∈ 𝒟 | 𝑡 >= 𝑇𝑣𝑎𝑙 ∧ 𝑡 < 𝑇𝑣𝑎𝑙 + 𝛿𝑜𝑢𝑡 ∧ 𝑡 < 𝑇}

The single time-based split has been used in multiple works to evaluate recommendation
algorithms taking into account the dynamic nature of data [24, 98, 127]. Most commonly
in these works, 𝛿𝑖𝑛 and 𝛿𝑜𝑢𝑡 are set to infinity, thus using all data.

Inspired by sliding-window evaluation [61] and retraining in production, we make use of
𝛿𝑜𝑢𝑡 to limit the target data. A model usually does not have to predict events more than a
few hours or days into the future. The importance of 𝛿𝑖𝑛 , is further discussed in Chapter
4, where we analyse why forgetting some events actually helps improve recommendation
quality.

22 CHAPTER 2. EXPERIMENTATION FRAMEWORK

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(a) Full training dataset (b) Validation Training dataset

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(c) Validation input dataset. (d) Validation target dataset.

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(e) Test input dataset. (f) Test target dataset.

Figure 2.4: Resulting training, validation and testing matrices for the Timed scenario,
with𝑇 = 6,𝑇𝑣𝑎𝑙 = 4 and 𝛿𝑖𝑛 = 𝛿𝑜𝑢𝑡 = ∞. Columns are timestamps, rows are user histories,
each non-empty entry is an item.

2.4. SCENARIOS 23

2.4.4 Timed Last Item

In Section 2.4.2, we presented the LastItem scenario, which suffered from leakage as
shown by Ji et al. [65].

In this scenario, we address the problem of leaking information from the future, while
still maintaining a sequential evaluation.

We follow the temporal divisions as introduced in the Timed scenario before. Only data
before a timestamp 𝑇 is used for training. 𝒟𝑡𝑟𝑎𝑖𝑛 = {(𝑢, 𝑖, 𝑡) ∈ 𝒟 | 𝑡 < 𝑇 ∧ 𝑡 >= 𝑇 − 𝛿𝑖𝑛}.
To create the test dataset we extract only users that have at least 1 event in the interval
[𝑇, 𝑇+ 𝛿𝑜𝑢𝑡[and use all but their last interaction (also those before 𝑇) as history to predict
this last interaction, as in the LastItem scenario.

To tune hyperparameters, we introduce a second cut-off timestamp𝑇𝑣𝑎𝑙 < 𝑇, such that our
training dataset during hyperparameter optimisation are the events {(𝑢, 𝑖, 𝑡) ∈ 𝒟 | 𝑡 >=
𝑇𝑣𝑎𝑙 − 𝛿𝑖𝑛 ∧ 𝑡 < 𝑇𝑣𝑎𝑙}. To obtain the validation targets, we extract users that have an
interaction in the interval [𝑇𝑣𝑎𝑙 ,min(𝑇, 𝑇𝑣𝑎𝑙 + 𝛿𝑜𝑢𝑡)[and, analogous to the test dataset,
use all prior interactions to predict these users’ final interaction. Further, the parameter
𝑛 defines how much of the prior interactions will be used as history for the user when
requesting recommendations, analogous to the LastItem scenario.

An example of splitting a dataset can be found in Figure 2.5

2.4.5 Strong Generalization

In all of the previous scenarios, interactions from the same user were used for training,
validation and testing. One consideration to make, is that we would like our algorithms
to generalize the knowledge they learn.

One way to evaluate this, is to make sure that users are never used in more than one task.
If an event from a user is used for training, none of that user’s events should be used for
evaluation. This is commonly referred to as a “Strong Generalization” split.

Thus in this scenario, the scenario first divides the set of users 𝑈 into two disjunct
subsets𝑈𝑡𝑟𝑎𝑖𝑛 ,𝑈𝑡𝑒𝑠𝑡 and then further splits𝑈𝑡𝑟𝑎𝑖𝑛 to get validation training (𝑈𝑣_𝑡𝑟𝑎𝑖𝑛) and
evaluation users (𝑈𝑣𝑎𝑙). We construct these user sets by randomly assigning each user
to one of the groups according to the parameter 𝑓𝑡𝑟𝑎𝑖𝑛 , the fraction of users to use for
training. Thus, |𝑈𝑡𝑟𝑎𝑖𝑛 | = 𝑓𝑡𝑟𝑎𝑖𝑛 × |𝑈 | and |𝑈𝑡𝑒𝑠𝑡 | = (1 − 𝑓𝑡𝑟𝑎𝑖𝑛) × |𝑈 |, and for validation
data, |𝑈𝑣_𝑡𝑟𝑎𝑖𝑛 | = 𝑓𝑡𝑟𝑎𝑖𝑛 × |𝑈𝑡𝑟𝑎𝑖𝑛 | and |𝑈𝑣𝑎𝑙 | = (1 − 𝑓𝑡𝑟𝑎𝑖𝑛) × |𝑈𝑡𝑟𝑎𝑖𝑛 |.

The training datasets 𝒟𝑡𝑟𝑎𝑖𝑛 and 𝒟𝑣_𝑡𝑟𝑎𝑖𝑛 contain all events of their respective user
sets. The evaluation users’ data is split similarly to the WeakGeneralization scenario,
𝑓𝑖𝑛interactions are used as input data, while the remainder is used as target data.

Because users are not shared between training and evaluation, some algorithms are in-
compatible with this scenario. Factorization methods such as SVD [49] and BPRMF [107]
learn a user embedding during training and use it instead of the interaction history to
generate predictions. When users do not overlap between training and evaluation, they
will predict randomly, or give no recommendations.

24 CHAPTER 2. EXPERIMENTATION FRAMEWORK

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(a) Full training dataset (b) Validation Training dataset

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(c) Validation input dataset. (d) Validation target dataset.

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(e) Test input dataset. (f) Test target dataset.

Figure 2.5: Resulting training, validation and testing matrices for the TimedLastItem
scenario, with 𝑇 = 6, 𝑇𝑣𝑎𝑙 = 4, 𝛿𝑖𝑛 = 𝛿𝑜𝑢𝑡 = ∞ and 𝑛 = 1 Columns are timestamps, rows
are user histories, each non-empty entry is an item.

2.4. SCENARIOS 25

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(a) Full training dataset (b) Validation Training dataset

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(c) Validation input dataset. (d) Validation target dataset.

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(e) Test input dataset. (f) Test target dataset.

Figure 2.6: Resulting training, validation and testing matrices for the
StrongGeneralization scenario, with 𝑓𝑡𝑟𝑎𝑖𝑛 = 2

3 and 𝑓𝑖𝑛 = 1
2 . Columns are timestamps,

rows are user histories, each non-empty entry is an item.

26 CHAPTER 2. EXPERIMENTATION FRAMEWORK

2.4.6 Strong Generalization Timed

This adaption of the StrongGeneralization scenario follows the same ideology: “never
share users between training and evaluation”, and also incorporates the temporal aspect
of recommendation.

Users are still split into distinct sets as in StrongGeneralization. For the training dataset
though, we now only use the interactions before a timestamp 𝑇 (and within 𝛿𝑖𝑛 seconds
of 𝑇): 𝒟𝑡𝑟𝑎𝑖𝑛 = {(𝑢, 𝑖, 𝑡) ∈ 𝒟 | 𝑢 ∈ 𝑈𝑡𝑟𝑎𝑖𝑛 ∧ 𝑡 < 𝑇 ∧ 𝑡 >= 𝑇 − 𝛿𝑖𝑛}.
Similarly, for the validation training data, we use a second timestamp 𝑇𝑣𝑎𝑙 (𝑇𝑣𝑎𝑙 < 𝑡):
𝒟𝑣_𝑡𝑟𝑎𝑖𝑛 = {(𝑢, 𝑖, 𝑡) ∈ 𝒟 | 𝑢 ∈ 𝑈𝑣_𝑡𝑟𝑎𝑖𝑛 ∧ 𝑡 < 𝑇𝑣𝑎𝑙 ∧ 𝑡 >= 𝑇𝑣𝑎𝑙 − 𝛿𝑖𝑛}.

For the evaluation datasets we also apply a timed split with timestamps 𝑡 and 𝑡𝑣𝑎𝑙 , rather
than the random split used before:

• 𝒟𝑖𝑛 = {(𝑢, 𝑖, 𝑡) ∈ 𝒟 | 𝑢 ∈ 𝑈𝑡𝑒𝑠𝑡 ∧ 𝑡 < 𝑇 ∧ 𝑡 >= 𝑇 − 𝛿𝑖𝑛}

• 𝒟𝑜𝑢𝑡 = {(𝑢, 𝑖, 𝑡) ∈ 𝒟 | 𝑢 ∈ 𝑈𝑡𝑒𝑠𝑡 ∧ 𝑡 >= 𝑇 ∧ 𝑡 < 𝑇 + 𝛿𝑜𝑢𝑡}

• 𝒟𝑣_𝑖𝑛 = {(𝑢, 𝑖, 𝑡) ∈ 𝒟 | 𝑢 𝑖𝑛𝑈𝑣𝑎𝑙 ∧ 𝑡 < 𝑇𝑣𝑎𝑙 ∧ 𝑡 >= 𝑇𝑣𝑎𝑙 − 𝛿𝑖𝑛}

• 𝒟𝑣_𝑜𝑢𝑡 = {(𝑢, 𝑖, 𝑡) ∈ 𝒟 | 𝑢 ∈ 𝑈𝑣𝑎𝑙 ∧ 𝑡 >= 𝑇𝑣𝑎𝑙 ∧ 𝑡 < 𝑇𝑣𝑎𝑙 + 𝛿𝑜𝑢𝑡}

An example of this scenario can be found in Figure 2.7.

2.4.7 Strong Generalization Timed Last Item

In analogy to theStrongGeneralizationTimed scenario, this is the variant of theTimedLastItem
scenario, with users not shared between training, validation and test sub-datasets.

Again, users are split into distinct sets as in StrongGeneralization. Following the
Timed scenario, the training dataset is limited to interactions before a timestamp 𝑇 (and
within 𝛿𝑖𝑛 seconds of 𝑡): 𝒟𝑡𝑟𝑎𝑖𝑛 = {(𝑢, 𝑖, 𝑡) ∈ 𝒟 | 𝑢 ∈ 𝑈𝑡𝑟𝑎𝑖𝑛 ∧ 𝑡 < 𝑇 ∧ 𝑡 >= 𝑇 − 𝛿𝑖𝑛}.
For the validation training data, we also use a second timestamp 𝑇𝑣𝑎𝑙 < 𝑇, such that
𝒟𝑣_𝑡𝑟𝑎𝑖𝑛 = {(𝑢, 𝑖, 𝑡) ∈ 𝒟 | 𝑢 ∈ 𝑈𝑣_𝑡𝑟𝑎𝑖𝑛 ∧ 𝑡 < 𝑇𝑣𝑎𝑙 ∧ 𝑡 >= 𝑇𝑣𝑎𝑙 − 𝛿𝑖𝑛}.

For the evaluation datasets, we follow the LastItem scenarios, and split the last item as
target, and use the 𝑛 most recent items as input.

An example of the scenario is worked out in Figure 2.8

2.4. SCENARIOS 27

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(a) Full training dataset (b) Validation Training dataset

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(c) Validation input dataset. (d) Validation target dataset.

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(e) Test input dataset. (f) Test target dataset.

Figure 2.7: Resulting training, validation and testing matrices for the
StrongGeneralizationTimed scenario, with𝑇 = 6𝑇𝑣𝑎𝑙 = 4 and 𝛿𝑖𝑛 = 𝛿𝑜𝑢𝑡 = ∞. Columns
are timestamps, rows are user histories, each non-empty entry is an item.

28 CHAPTER 2. EXPERIMENTATION FRAMEWORK

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(a) Full training dataset (b) Validation Training dataset

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(c) Validation input dataset. (d) Validation target dataset.

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

𝑡 1 2 3 4 5 6 7
𝑢1 1 2 3
𝑢2 3 4 5 2
𝑢3 5 3 2 1 4
𝑢4 1 3
𝑢5 5 2 1 4
𝑢6 3 2 1

(e) Test input dataset. (f) Test target dataset.

Figure 2.8: Resulting training, validation and testing matrices for the
StrongGeneralizationTimedLastItem scenario, with 𝑇 = 6, 𝑇𝑣𝑎𝑙 = 4, 𝛿𝑖𝑛 = 𝛿𝑜𝑢𝑡 = ∞
and 𝑛 = 1. Columns are timestamps, rows are user histories, each non-empty entry is an
item.

2.5. ALGORITHMS 29

2.5 Algorithms

The algorithm is the main variable we want to evaluate when performing offline evalu-
ations. Many algorithms have been proposed, each solving a recommendation problem
in their own way.

RecPack provides a rich selection of state-of-the-art algorithms, covering some of the
most popular recommendation paradigms: Item-to-item similarity [32, 44, 95, 128], fac-
torization [4, 54, 107], auto-encoders [80, 116, 121], session-based [42, 53] and time-aware
recommendation algorithms [81].

Before discussing the algorithms used in this thesis in more detail, we list all algorithms
currently implemented in RecPack.

• Popularity

• Random

• SLIM [95]

• ItemKNN [32]

• TARSItemKNNLiu [81]

• NMFItemToItem [39]

• SVDItemToItem [49]

• Prod2Vec [44]

• Prod2VecClustered [44]

• KUNN [128]

• NMF [39]

• SVD [49]

• WeightedMatrixFactorization [54]

• BPRMF [107]

• RecVAE [116]

• MultVAE [80]

• EASER [121]

• GRU4Rec [53]

• STAN [42]

30 CHAPTER 2. EXPERIMENTATION FRAMEWORK

Popularity Recommends items based on how frequently they have been interacted
with in the training dataset. While this is not a personalised algorithm, it is often good
baseline.

Item-kNN One of the most well-known and frequently used baseline algorithms for
neighbourhood-based collaborative filtering [32, 113]. The model consists of a single ma-
trix multiplication with the item-item similarity matrix 𝑺 ∈ R|𝐼 |×|𝐼 | : 𝜙(𝑿) = 𝑿𝑺. Where,
𝑺𝑖 , 𝑗 holds the similarity between items 𝑖 and 𝑗. The similarity metric to use is considered
a hyperparameter. In this thesis we use either cosine similarity or the conditional prob-
ability inspired similarity defined in Deshpande and Karypis [32]. Recent work on news
recommendation highlights the remarkable competitiveness of simple neighbourhood-
based methods compared to more complex alternatives [85, 92].

EASER Auto encoder, without dimensionality reduction. The model was proposed as
an extension of the well-known SLIM method [95, 121]. In EASER, the item-item matrix
𝑺 is learned through a least-squares optimisation problem that allows for a closed-form
solution and optimises the auto-encoder problem |𝑿𝑺 − 𝑿 |2. This closed-form solution
makes the model more efficient to compute than iteratively optimised alternatives like
Neural Networks, whilst yielding highly competitive results. As the optimisation re-
quires inverting the Gramian item-item matrix, EASER becomes more costly to compute
as the size of the item catalogue grows.

GRU4Rec The first deep learning model for recommendations to utilise a GRU com-
ponent to model sequential patterns in a session or user’s history [134]. The model was
inspired by text analysis methods and aims to capture relations between words that fre-
quently appear together in a particular order. In our experiments, we use the Bayesian
Personalised Ranking (BPR) loss to optimise the model, rather than using cross-entropy
loss. BPR is more suited for our evaluations, because it solves a ranking problem and
does not approach the problem as a binary classification task. In addition this loss is also
more efficient to compute, so training times are lower.

Sequential Rules (SR) Generates sequential association rules between items. The
model recommends items related to the last item a user has seen: 𝜙(𝑿) = 𝑿 𝑙𝑺. Where 𝑿 𝑙

is the binary last visit matrix, 𝑿 𝑙
𝑢,𝑖

= 1 only if 𝑖 is the last item visited by user 𝑢. The asym-
metric similarity 𝑺𝑖 , 𝑗 between items 𝑖 and 𝑗, is computed as

∑
𝑢∈𝑈

I(𝑢,𝑖, 𝑗)
gap(𝑢,𝑖, 𝑗) . Where I(𝑢, 𝑖, 𝑗)

is an indicator function, that returns 1 only if user 𝑢 has seen item 𝑗 after item 𝑖, and gap
returns the number of steps required to go from 𝑖 to 𝑗. A hyperparameter max_steps,
specifies how big this gap can maximally be before a co-occurrence is ignored. Ludewig
et al. [86] found that despite the simplicity of the algorithm, it performed competitively
in sequential recommendation tasks.

2.5. ALGORITHMS 31

Item-KNN with time-decay While the traditional Item-KNN algorithm assumes a bi-
nary implicit feedback, this group of variants weight the implicit feedback, by decaying
the value depending on how long ago each interaction occured. Older interactions get
lower values to indicate less relevance to the model. This non-binary matrix is then used
to compute the similarity matrix 𝑺 using various similarity functions. Cosine similar-
ity, Pearson-correlation and Conditional Probability Inspired similarities are supported.
Methods that apply this ideas have been proposed by different author [33, 81, 83, 126, 135].
Each of them proposing different combinations of similarity functions and decay func-
tions. In Chapter 5 we present a review of the literature, and generalise the different
methods into a framework.

Item-KNN with time between events decayed This group of methods defines spe-
cialised similarity computations between items, given timestamps are available for oc-
curring events [135, 51]. Rather than decaying each event’s score individually, and then
computing a traditional similarity between two vectors, these methods incorporate the
temporal dynamics into the similarity computation. The core idea is that interactions
occurring closely together in time, are more indicative of a relationship between two
items, compared to interactions that occurred further apart. Intuitively, when a user
visits items A and B within the hour, and then visits C the next day, items A and B are
more related than A and C or B and C. In Chapter 5 we review the literature, and fit these
methods into a holistic Time-aware Item-KNN framework.

MultVAE Neural Network proposed by Liang et al. [80], which uses Variational Auto-
Encoders (VAEs) for Collaborative Filtering.
VAEs approach the recommendation problem as a reconstruction problem, and learn a
function 𝜙 such that 𝜙(𝑋) ≈ 𝑋. In this case the function is a Neural Network, which uses
a bottleneck layer to force the function to generalise. The parameters of the function are
optimised using Gradient Descent with a combination of the Binary Cross Entropy loss
and Kullback–Leibler Divergence as loss function.

BPR-MF Factorizes the implicit feedback matrix 𝑋 into two lower rank matrices 𝑊 ∈
R|𝑈 |×𝑘 and 𝐻 ∈ R|𝐼 |×𝑘 such that 𝑊𝐻𝑇 ≈ 𝑋, where 𝑘 is a hyperparameter. Instead of
minimising the reconstruction loss (| |𝑊𝐻𝑇 − 𝑋 | |2) as done in traditional matrix factor-
ization, this method instead optimises a Bayesian Personalised Ranking (BPR) loss [107].
This loss takes into account that zeros in the original matrix are not explicit zeros, and so
it is more important for the reconstructed matrix to score seen items (known positives)
higher than unseen items (unknown zeros), than it is for the model to predict exactly 1
or 0 for the seen and unseen items respectively .

32 CHAPTER 2. EXPERIMENTATION FRAMEWORK

2.6 Postprocessing

Real world recommender systems often apply postprocessing, in the form of business
rules, to the predictions made by the recommendation algorithm. In an e-commerce
context, for example, it is customary to exclude sensitive or age-restricted items. In a
news context, the recommendations could be limited to articles published during the last
day.

In RecPackwe implemented two commonly used filters, as well as provide a baseclass to
allow users to define any postprocessing step they would like.

SelectItems Allows only recommendations from a specific subset of the catalog. This
can be useful to select recent items, in scenarios where recency is important, or items
from a specific category in case of recommendations in a very specific context.

ExcludeItems Removes items that we don’t want to recommend. Typical examples
include sensitive or age-restricted items in a retail context or click-bait news in a serious
newsletter.

2.7 Metrics

Of course, the ultimate goal of a recommendation experiment is to evaluate the perfor-
mance of a recommendation algorithm. RecPack comes with a selection of the most
commonly used metrics in Top-K ranking [4, 108].

We purposefully designed RecPack’s metrics to allow for a fine-grained analysis of the
performance of algorithms, as well as giving a more traditional single-value metric. To
achieve this, the metrics store detailed information (such as hits per user), which can be
used to aggregate over subgroups of the user base instead of over the entire user base.
This can be used to analyse the metrics depending on the activity level of the user, or
some additional user features if available [97, 118].

In Table 2.3 we present the list of metrics implemented in RecPack and highlight how
much detail they store.

Choosing the right metric is an important consideration when setting up an experiment.
Often metrics will have contradicting results. For example, the most accurate algorithm,
might not be the one covering most of the catalogue, or the algorithm with the highest
recall is most likely not the best ranker, and so might have a worse NDCG or MRR value.

It is often an art to find the metric that aligns the best with the online business metrics
(CTR, fairness, revenue, ...). For each of our experiments, we made specific choices for
metrics, depending on the needs of Froomle’s customers. Most often, we chose to use
NDCG as a quality metric since we found it to align the best when CTR is the optimisation
target. Many of the real world use-cases present items in a vertical list, which means
we value good recommendations on higher positions more. We also use Recall, as

2.7. METRICS 33

Metric Global User User-Item
CoverageK ✓
PercentileRankingK ✓
DCGK ✓
NDCGK ✓
RecallK ✓
CalibratedRecallK ✓
PrecisionK ✓
ReciprocalRankK ✓
HitK ✓
DiscountedGainK ✓

Table 2.3: The list of metrics implemented in RecPack, and how detailed the results can
be inspected. Global metrics only store a single value for each evaluation. User metrics
store intermediate results per user, a single value is obtained by averaging these across
all users. Finally, the user-item based metrics store a value per user-item pair in the top-k
recommendations (hit or no hit, or a discounted value based on the rank of the hit), the
overall value is obtained by aggregating all of these scores.

sometimes lists are presented horizontally, or the position bias is unknown for a new use
case. Further, coverage of the item catalogue is an important fairness metric, to convince
business stakeholders that they can benefit from using personalisation. We discuss in
more detail each of these metrics used in this thesis.

Normalised Discounted Cumulative Gain (NDCG) Ranking metric, computed on a
ranked top-k list, that gives lower values to hits lower down in the ranking of recommen-
dations.

To compute, we need to compute Discounted Cumulative Gain (DCG) and the ideal DCG
(iDCG). Given a ranked list of 𝑘 recommendations (𝑟𝑢) for a user, and a target matrix 𝑌,
where 𝑌𝑢,𝑖 = 1 if the user-item interaction (𝑢, 𝑖) is part of the target dataset:

DCG(𝑢) =
∑
𝑖∈𝑟𝑢

𝑌𝑢,𝑖

log2(rank(𝑟𝑢 , 𝑖) + 1)

iDCG(𝑢) =
min(𝐾,|𝑌𝑢 |)∑

𝑗=1

1
log2(𝑗 + 1)

Where rank() is a function that returns the rank of recommended item 𝑖 in recommenda-
tion list 𝑟𝑢 and |𝑌𝑢 | are the number of targets in 𝑌 for user 𝑢. To compute the NDCG, we
compute

NDCG =
1
|𝑈 |

∑
𝑢∈𝑈

DCG(𝑢)
iDCG(𝑢)

The advantage of normalizing the DCG scores, is that it helps prevent users with more
targets to dominate the final score. Now each user’s score is proportional to the maximal
score they could have scored instead.

34 CHAPTER 2. EXPERIMENTATION FRAMEWORK

(Mean) Reciprocal Rank (MRR) Ranking metric, computed on a ranked top-k list,
which only counts the first hit in computing the metric value. Reciprocal rank uses a
different value-lowering score than NDCG, a hit at position 𝑛 gets a score of 1

𝑛 . The
Reciprocal Rank (RR) for a user is defined as follows:

RR(𝑢) = max
𝑖∈𝑟𝑢

𝑌𝑢,𝑖

rank(𝑟𝑢 , 𝑖)

The mean reciprocal rank then, is the average of the Reciprocal Rank over all users.

Calibrated Recall Accuracy metric, which computes which portion of the targets have
been recovered for each user by the recommender system. We use the calibrated variant
proposed by Steck [121], to avoid unfair low scores for users with more than 𝑘 targets
when evaluating a top-k list (𝑟𝑢).

CalibratedRecall(𝑢) =

∑
𝑖∈𝑟𝑢

𝑌𝑢,𝑖

min(|𝑌𝑢 |, 𝑘)

A global value is computed by taking the average over each user.

Coverage Fairness metric that is used to measure which fraction of the catalogue is rec-
ommended by an algorithm. High coverage is usually a desirable feature for production
algorithms, as otherwise many items get avoided by the algorithm.

coverage(𝑢) = |{𝑖 ∈ 𝐼 |(∃𝑢 ∈ 𝑈)[𝑖 ∈ 𝑟𝑢]}|
|𝐼 |

2.8 Pipelines

Bringing it all together, RecPack provides a PipelineBuilder class, which helps users to
perform the different steps of experimentation in the right order. It allows them to focus
on the choices and the experiment design, rather than the implementation details and
consistency.

A pipeline requires a chosen scenario applied to a dataset, a set of algorithms to evaluate
and their hyperparameter spaces to explore during optimisation, a set of metrics to
evaluate and a single optimisation metric, and optionally post-processing steps.

When run, the pipeline sequentially optimises and evaluates each algorithm, taking
care to that each result is comparable between algorithms, finally storing the results for
analysis.

In the example below, we run the pipeline for a selection of algorithms on the Adressa
Dataset.

2.8. PIPELINES 35

import datetime
from recpack.algorithms import BPRMF, ItemKNN, EASE
from recpack.datasets import Adressa
from recpack.pipelines import PipelineBuilder
from recpack.scenarios import Timed

Load Dataset
dataset = Adressa()
im = dataset.load()

Split data into training, validation and test dataset
scenario = Timed(

t=int(datetime.datetime(2017, 1, 7, 12).strftime("\%s")),
t_val=int(datetime.datetime(2017, 1, 6, 12).strftime("\%s")),
delta_out=12*3600,
validation=True

)
scenario.split(im)

Build the experimentation pipeline
builder = PipelineBuilder()
builder.set_data_from_scenario(scenario)

builder.add_algorithm(
algorithm = ’ItemKNN’,
grid = {’K’: [50, 100, 200]}

)
builder.add_algorithm(

algorithm = ’EASE’,
grid = {’l2’: [10, 100, 1000]}

)
builder.add_algorithm(

algorithm = ’BPRMF’,
grid={

’num_components’: [50,100,150],
’lambda_h’: [0, 0.001, 0.1],
’lambda_w’: [0, 0.00, 0.1]

}
)

builder.add_metric(’NDCGK’, K=10)
builder.add_metric(’CoverageK’, K=10)

builder.set_optimisation_metric(’NDCGK’, K=10)

pipeline = builder.build()

Run the pipeline
pipeline.run()

Get the results
pipeline.get_metrics(short=True)

36 CHAPTER 2. EXPERIMENTATION FRAMEWORK

2.9 Aligning experiments with production tasks

While offline experiments are rarely an exact oracle of online performance, researchers
and practitioners should be able to trust them to make valid comparisons, that allow us
to identify interesting options to try in production.

To be able to do this, we need to make sure that the offline experiments are similar in
setup to online experiments. This impacts the choices of preprocessing, scenario and
metrics we choose when setting up the experiment. In the following paragraphs, we give
an overview of the choices made in the experiments of this thesis, and why we make
them.

Preprocessing In preprocessing, it is important to match the online preprocessing when
running offline experiments. For example, in many of our online model training, we
remove users with too few interactions (< 5), because those don’t carry as much informa-
tion as longer histories, but can dominate the similarity computation because there are
so many of them. Further, we also remove items that have been visited too infrequently
(< 10 or < 50), as they would only inflate the model, without any significant impact on
the outcome of the recommendations. A final typical preprocessing we do is to remove
users with too many interactions (> 1000), as they are most likely bot users or website
auditors, that visit all of the pages, without preference. Using these users can negatively
impact models, as they contain no meaningful patterns in their histories.

Scenario The choice of how to split the training, validation and test data is aligned
with the context in which the recommendations are used. For example, if the use case
is a recommendation list on an article page, suggesting the next articles to read, then we
will use the Timed-Last-Item scenario, to incorporate the sequential nature, as well as
the temporal aspect, that training data is only available for the past. For lists on home
pages, we use the Timed scenario instead, as we might not know the user’s intent for
the session, but want to allow for a broad spectrum of relevant items if the users visit
them in the target period. In all of our experiments, we use scenarios that perform a
temporal split for training data, as that aligns with our online retraining policy. When
a single evaluation window does not contain enough data points to make a conclusive
comparison between algorithms, we use a sliding window approach [61], which gives us
more evaluation evidence for different periods.

Metrics In our choice of metrics, we try to find proxies for what we value in our online
results. As Click-Through-Rate(CTR) is our primary performance metric in online com-
parisons, we use NDCG and Recall as a proxy in our offline experiments. NDCG typically
is better aligned, because it takes into account the ranking of the recommendations, and
we know that users are sensitive to the order in which items were shown. Neither is
entirely aligned with the online metrics though, as we’ll see in Chapter 6, mostly due
to popularity bias in the collected data. An important argument to convince editors
to use personalisation is that we can cover more of the items they write than manual
selection could. And so we typically measure coverage to see if an algorithm is better at
covering the full catalogue. Finally, each online use case has a fixed amount of items (k)

2.10. CONCLUSION 37

that will be shown to a user, so we make sure to compute our metrics only on the top-k
recommendations, as anything below would not be exposed to the user.

2.10 Conclusion

In this chapter, we have presented an in-depth discussion of RecPack, the framework for
reproducible and reusable experimentation that we developed. We focus specifically on
"scenarios’, i.e., the way data is split for offline evaluation. RecPack presents a series of
novel recommendation scenarios that align with different online recommendation tasks.
We presented suggestions for best practices to get offline and online results to align.

38 CHAPTER 2. EXPERIMENTATION FRAMEWORK

Chapter 333
Scheduling on a Budget:

Avoiding Stale Recommendations with
Timely Updates

Recommendation systems usually create static models from historical data. Due to concept drift
and changes in the environment, such models are doomed to become stale, which causes their
performance to degrade. In live production environments, models are therefore typically retrained
at fixed time-intervals. Of course, every retraining comes at a significant computational cost,
making very frequent model updates unrealistic in practice. In some cases, the cost is worth it,
but in other cases an update could be redundant and the cost an unnecessary loss. The research
question then consists of finding an acceptable update schedule for your recommendation system,
given a limited budget. This chapter provides a pragmatic analysis of model staleness for a variety
of collaborative filtering algorithms in news and retail domains, where concept drift is a known
impediment. We highlight that the rate at which models become stale is highly dependent on the
environment they perform in and that this property can be derived from data. These findings
are corroborated by empirical observations from four large-scale online experiments. Instead of
retraining at regular intervals, we propose an adaptive scheduling method that aims to maximise
the accuracy of the recommendations within a fixed resource budget. Offline experiments show that
our proposed approach improves recommendation performance while keeping the cost constant.
Our findings can guide practitioners to spend their available resources more efficiently.1

1This chapter is based on our work “Scheduling on a Budget: Avoiding Stale Recommendations with Timely
Updates”. Robin Verachtert, Olivier Jeunen and Bart Goethals. In Machine Learning with Applications, Volume
11, 2023.

39

40 CHAPTER 3. SCHEDULING ON A BUDGET

3.1 Introduction

Recommendation systems are deployed in production environments where they help
users find relevant items in typically large catalogues. In modern-day settings, these
users generate millions of interactions every day. This continuous stream of information
creates two challenges for recommender systems: 1. the amount of data they need to
process calls for efficient algorithms that can keep up with these ever-growing data
streams, and 2. the dynamic nature of this data calls for frequent model updates [5, 40].
As time passes, new items become available, others disappear, interests of the global
population change, seasons make different items relevant, and interests of single users
also change over time. These changes are crucial for the recommendation system to take
into account.

Much research has concentrated on developing algorithms to better leverage large amounts
of data and achieve greater accuracy. Additional improvements also account for concept
drift in the data [24, 73].

Recommendation methods are usually evaluated by splitting the dataset into a static
training-, validation-, and test-set [25, 60]. While this is effective for evaluating the
quality of the models, it does not address the dynamic nature of the data, due to which
even the most accurate algorithms inevitably become stale.

Understanding how model staleness affects recommendation systems for specific en-
vironments is necessary to determine how frequently models should be updated [23].
Therefore, we first study how recommender systems are impacted by model staleness
as a result of concept drift in the environment. We study both the change that models
undergo as new data becomes available and the resulting performance degradation. Our
experiments in Figure 3.1 show that model staleness impacts quality very quickly in news
domains, due to rapidly changing content and user interests. After just a few hours, the
models will recommend mostly irrelevant items. In traditional retail settings, drift is
much less pronounced, and as a result, models remain useful for longer periods of time.

The straightforward solution to avoid model staleness is to retrain the model. To the
best of our knowledge, the natural question “When should the model be retrained?”,
remains unanswered in the scientific literature. In this chapter, we attempt to formulate
an answer to this often overlooked, yet important question.

A naïve answer is to continuously update the computed models. Once a model is trained
and deployed, a new training cycle begins that recomputes a model on the updated
dataset. In practice however, such a continuous training cycle incurs a significant cost of
computational resources. Therefore, the go-to approach is to schedule model updates at
regular intervals.

A more elegant solution is to create incremental models [5, 8, 62, 63, 132, 130]. Instead
of recomputing the model on the entire dataset, these models only process newly col-
lected data and update a previously computed model with this new information. These
methods have the advantage that the computational cost for each update is typically
much lower than when the model is retrained on the full, potentially huge dataset. Still,
the same research question holds, since even for incremental methods, a choice must be
made on when each update is scheduled. This can be continuous, immediately as new

3.1. INTRODUCTION 41

data arrives, or more typically as the cost of computational resources can be high, in
batches after a certain amount of time.

We challenge the implicit assumption made in regular interval scheduling that each
update results in a similar increase in accuracy. To illustrate this, imagine a local news
website. At night, much fewer interactions occur and usually no new articles become
available. As a result, we can safely state that any updates scheduled during the night
add very little to the quality of the model. Yet, they are roughly equal in cost to model
updates that are being computed at peak traffic hours (e.g. lunchtime) when drifting
user interests and new items significantly impact the model. A clear need arises for a
scheduling procedure that allows models to be trained at more opportune times. Such a
scheduling procedure would increase the online performance of the model over the entire
time period, whilst keeping computational costs constant. The day-and-night example
serves to illustrate this phenomenon, but it should be clear that a scheduling algorithm
that learns from the data is superior.

We posit that the goal of a scheduling procedure is to ensure that each update captures the
same amount of new information. As such, updates should be scheduled more frequently
in periods of high information gain, and less frequently in periods of lower gain. All
this should happen whilst keeping a fixed budget into account. As we do not know the
distribution of high-information periods over the next scheduling period, this adds a
non-trivial complexity to the problem.

To overcome these challenges, we propose novel methods for scheduling updates based
on summary statistics from previously observed batches of data. Our methods aim to
detect when model updates benefit the system the most, considering either the informa-
tional value of the data or changes in the projected output of the model. We show that
these methods improve on the widely used approach with regular intervals. Further-
more, our methods provide a solution to create an optimized schedule for a given budget,
which is a common concern for practitioners. So far we intentionally did not mention the
specific recommendation method used, as we wish to propose a method independent of
the specific algorithm used. After all, even complex systems often rely on basic building
blocks that need retraining.

The remainder of this chapter is organized as follows: In Section 3.2, we highlight related
work. In Section 3.3, we describe the methods used in the analysis of model staleness
in a recommendation context, and describe the scheduling methods. In Section 3.4, the
experimental results are presented and analysed. Finally, in Section 3.5, we present how
our work provides valuable insights and guidance for practitioners that need to balance
the trade-off between keeping a model up to date and the computational cost that comes
with it.

42 CHAPTER 3. SCHEDULING ON A BUDGET

3.2 Related Work

Detecting concept drift This is a well studied problem in a variety of applications [20,
40, 72, 103, 133, 136]. Its goal is to detect when the underlying distribution of incoming
observed data samples changes. Typically, these methods either: 1. measure changes
in performance, 2. inspect changing properties of the model, or 3. inspect changing
properties of the data [72].

Concept drift detection can be used to decide when to update a model, by simply cou-
pling the detection of change with the action of a model update. In an environment
where change is rapid, online performance measures, such as click-through-rate or of-
fline metrics, such as precision and recall, are not suitable for such purposes, because they
typically show high variance, and detecting changes in such metrics in short intervals is
prone to false positives. Depending on the sensitivity of the model it is likely to either
wait too long (for the confidence estimate to be smoothed by more samples), or act too
soon (as each sudden change in the target value due to variance is considered a detected
change in the underlying data).

The alternative of model introspection can provide a way forward in specific use-cases,
when the model can be efficiently inspected. However, a generally applicable solution
should preferably be model-agnostic. Because of these reasons, in this chapter we focus
on the properties of the data, as this seems to be the most interesting avenue to decide
on model updates in general yet highly dynamic recommendation scenarios.

Increasing the computational efficiency of model training In virtually all practical
recommendation applications, models that train faster are favourable. The reason for
this is two-fold: 1. New data can be incorporated more quickly to combat concept drift,
and 2. The cost of keeping the model up-to-date is reduced.

Different approaches to improve the computation time of models exist. A first class of
methods suggests a trade-off between the accuracy of the model and the computation
time. Approximate models explicitly trade the exactness of the model for improved
computational complexity [10, 79, 122]. Forgetting mechanisms reduce computational
complexity by reducing the amount of data used for training [131]. A second way to
reduce computational cost is to adopt models that can be updated incrementally, using
only the latest batch of information collected, rather than the complete historical data
set. Incremental methods either compute an exact model, which is interchangeable with
the traditional non-incremental one, while requiring less time to update [62, 132], or use
approximate methods [63, 140]. Although both of these approaches to reduce computa-
tional cost study the cost-accuracy trade-off, they still lack a method for scheduling the
updates. For example, in the extreme case where an update of the model is triggered with
every new transaction, the model would be continuously recomputed. This introduces
the high cost of a constantly running resource. More typically a fixed schedule is used,
such that models are updated at regular intervals. Alternatively, a fixed window size is
used, such that the model will be updated after a fixed number of transactions. In this
chapter, we challenge both the assumption that every update is equally valuable and the
assumption that every transaction carries the same amount of information.

3.3. METHODOLOGY 43

Model staleness In practical machine learning, model staleness is a fundamental pit-
fall that must be avoided to achieve satisfactory results consistently over time [23]. In
recommendation systems this notion is to the best of our knowledge under-explored.
Jambor et al. [56] describe an application of systems control theory to the problem of
updating the recommendation system. In their method, they make the assumption that
each transaction carries the same information value, which we challenge in this chapter.
In addition, the method relies on performance metrics to monitor the system, which
introduces large variance when looking at very fine grained control at the granularity of
minutes.

Zanardi and Capra [138] present an approach using feed-forward control system theory
to decide on updating a model. Based on the number of new users and items that have
arrived in the system, it decides when to retrain. This approach manages to avoid waiting
for the model to degrade by predicting the degradation based on summary statistics.
Contrary to the previous method, this method does not assume a linear relationship
between transactions and degradation, instead they assume a relationship between new
users and items arriving in the system. However, if known users behave differently, this
update strategy will not suggest a model update, and similarly, if no new items arrive,
the model will also not be retrained, while users’ interests in items might be changing.

Al-Ghossein et al. [5] use an adaptive windowing technique (ADWIN) to decide when
to update a Latent Dirichlet Allocation (LDA) topic model in production [20, 21]. Their
approach monitors the probability that a word occurs in a text, given the inferred LDA
model. When this probability shifts significantly, the older data is discarded, and the
model is updated using only the more recent data.

Our work differs from these approaches in that it is independent of a specific modelling
technique, handles changing behaviour of users, and additionally takes into account the
budget available for scheduling model updates, since that is often the variable that is
constrained in a real-world scenario.

3.3 Methodology

Throughout this chapter, we assume the user-item interaction data to be binary and posi-
tive only, as this encompasses the most commonly encountered use-cases in practice [129].
A dataset 𝒟 consists of user-item-timestamp triplets (𝑢, 𝑖, 𝑡) ∈ 𝑈 × 𝐼 ×N. We assume the
timestamp to be at the granularity of seconds. User-item interactions can make up vari-
ous different types of events (e.g. view, add-to-cart, click, purchase, . . .), we will refer to
them as “events” in general. A recommendation model 𝜙 maps a user representation to a
vector of recommendation scores: 𝜙 : 𝑈 → R|𝐼 | . For a user-item matrix 𝑿 ∈ R|𝑈 |×|𝐼 | , 𝜙(𝑿)
indicates a row-wise transformation from user histories to recommendation scores. For
simplicity and without the loss of generality, we do not consider more involved models
that take into account contextual features or the sequence of the user history.

44 CHAPTER 3. SCHEDULING ON A BUDGET

3.3.1 Measuring Model Staleness

We formalise the concept of “staleness” in two ways. First, a model is considered stale
if its prediction quality is worse than a more recently updated model. Second, a model
can be considered stale if its output is significantly different from that of a more recent
model.

Accuracy To measure changes in model quality over time, we calculate how accurate the
model still is. Calculating the recall metric for models for consecutive, non-overlapping
windows of 𝑤 seconds on the test data. We will refer to these batches of test data as slices.
As is typical in temporal evaluation, we split the data on timestamps 𝑇val and 𝑇0. The
user-item interactions with timestamp 𝑡 < 𝑇val are used for model training, those with
𝑇val ≤ 𝑡 < 𝑇0 for validation, and the remaining interactions with 𝑡 ≥ 𝑇0 make up the test
set.

We further divide the test data into 𝑛 slices. This allows us to gain a more fine-grained
view of model performance in the test set, since we can now obtain 𝑛 performance
estimates where 𝑇𝑠 = 𝑇0 + (𝑠 · w) and slice 𝑠 (0-indexed) consists of data 𝑇𝑠 ≤ 𝑡 < 𝑇𝑠+1.
Now, we evaluate the out-of-date model 𝜙0 trained on data up to 𝑇0 and the up-to-date
models 𝜙𝑖 trained on data up to𝑇𝑠 , and observe the impact of model recency on accuracy.
This evaluation method boils down to the SW-EVAL method presented by Jeunen et al.
[61], where we additionally evaluate stale models on every test slice.

A decrease in quality as the model grows older is a manifestation of model staleness.
The slope of the degradation dictates quickly we need to update the models for them to
remain up to date.

Output correlation Two models might attain the same level of recommendation accu-
racy in a very different manner (i.e. being correct on non-overlapping sets of users and
items). As such, one could argue in favour of focusing on the recommendations that
these models generate. That is, we now define model change as differences in model
output. To avoid biases present in real user histories, we choose to generate 𝑘 pseudo-
user histories using the following procedure. For each pseudo-user, we first generate
a uniformly distributed random integer 𝑁 between 𝑁𝑚𝑖𝑛 and 𝑁𝑚𝑎𝑥 , which defines the
number of items in this user’s history. Second, we generate this pseudo-user’s history by
sampling 𝑁 items from the dataset without replacement. During sampling each item is
given a uniform probability of getting chosen.
This produces a binary matrix 𝑿 ∈ N𝑘×|𝐼 | , where 𝑿𝑢𝑖 = 1 when the item 𝑖 was sampled
for the pseudo-user 𝑢. For example, when the dataset contains 5 items and we generate
𝑘 = 3 users with 𝑁𝑚𝑖𝑛 = 2 and 𝑁𝑚𝑎𝑥 = 4, we might get the following matrix.

𝑿 =

1 0 1 1 0
0 1 1 0 0
0 1 1 1 1

This matrix 𝑿 will be used as input to the recommendation models for which we want
to evaluate staleness.

3.3. METHODOLOGY 45

Let the updated model at slice 𝑠 be 𝜙𝑠 . For each slice, we compute recommendation
scores using an up-to-date model 𝜙𝑠 , and an outdated model 𝜙0. Let 𝑃 = 𝜙𝑠(𝑿) and
𝑄 = 𝜙0(𝑿). To calculate the change between models, we compute the correlation of the
recommendation ranking implied by these two output matrices. We use the Kendall-
Tau-b statistic [70] to account for ties in scores. This uses the number of concordant,
discordant and tied pairs in the models’ outputs. Intuitively, a high Kendall Tau value in a
comparison between two model outputs indicates that the models agree on the ranking
of most items, and therefore using them in the top-𝐾 recommendation scenarios would
result in similar outcomes. A low Kendall Tau value indicates that the updated model
disagrees with the ranking of the old model. So staleness occurs in 𝜙0, as using 𝜙𝑠 in
top-𝑁 recommendation results in significantly different recommendations.

For each row 𝑢 we consider all pairs of items (𝑖 , 𝑗) for which 𝑖 < 𝑗 and items 𝑖 and 𝑗 have
received a non-zero score in either 𝑃𝑟 or 𝑄𝑟 .

3.3.2 Estimating Information Gain

The basis of our scheduling method is that we estimate the amount of information gained
from events collected since the last update.

Number of events (EV) We assign an equal information value to each event collected
since the previous update. So we compute the amount of new information at time 𝑇𝑠
since the last update timestamp 𝑇𝑙 as

informationEV =
∑

(𝑢,𝑖,𝑡)∈𝐷:𝑇𝑙<𝑡≤𝑇𝑠

1 = |{(𝑢, 𝑖, 𝑡) ∈ 𝐷 |𝑇𝑙 < 𝑡 ≤ 𝑇𝑠}| (3.1)

Inverse predicted relevance (IPR) The assumption that each event contains the same
information for the recommender system is often an oversimplification. Unexpected
interactions are more valuable than expected ones because they indicate the inability
of the model to predict a user’s behaviour. To encode the informational value of an
event to the model, we propose to use the inverted normalised recommendation score.
High recommendation scores will give rise to lower information values and vice versa.
Intuitively, if the recommendation model already expected the new user-item interaction,
it holds less information than when it is unexpected. Formally, let 𝜙𝑡 : 𝑈 → R|𝐼 | be
the model deployed at time t, and let 𝜙𝑡(𝑢, 𝑖) ≡ [𝜙𝑡(𝑢)]𝑖 denote the 𝑖th output (i.e. the
recommendation score for item 𝑖). We additionally assume recommendation scores to
be normalised to the unit interval. Then, the information value collected at time 𝑇𝑠 since
the last update timestamp 𝑇𝑙 is computed as:

informationIPR =
∑

(𝑢,𝑖,𝑡)∈𝐷:𝑇𝑙<𝑡≤𝑇𝑠

1
𝜙𝑇𝑙 (𝑢, 𝑖)

(3.2)

Output correlation (CORR) Rather than estimate the value of an event, we can also
look at the effect the collected events had on a model. If a model computed with the new

46 CHAPTER 3. SCHEDULING ON A BUDGET

events would recommend significantly different items to similar users, we can surmise
that a large amount of information has been gathered. Conversely if the output is closely
correlated, we can assume that the new interactions did not carry much information. Let
𝑀𝑙 be the model computed at the time of the last update (𝑇𝑙), 𝑀𝑠 the model computed
at 𝑇𝑠 and 𝑈′ a fixed sample of users. We compute CORR = correlation(𝑀𝑙(𝑈′), 𝑀𝑠(𝑈′)),
as described in Section 3.3.1. Ideally we would like to compute the change of the model
deployed in production, however this would require updating that model, which is
exactly the action we are aiming to avoid doing unless necessary. Instead, we use a more
cost-efficient but less accurate proxy-model that can be updated frequently without high
cost. In our, experiments we use a “recently popular” model to compute correlations, but
more sophisticated, efficiently computable, models can be used in exactly the same way.

3.3.3 Scheduling Model Updates

At each discrete timestamp 𝑡, our scheduling method needs to decide whether or not to
schedule an update of the model. The scheduling method should most efficiently use
an allowed budget to update the model such that performance over the whole period is
maximized. For the first two methods EV and IPR, if the amount of collected information
since the last update at timestamp 𝑇𝑙 is above a threshold 𝛿, an update will be scheduled.
For CORR an update is scheduled once the model correlation falls below the threshold
𝛿.

The “optimal” value for 𝛿 yields the highest model accuracy, within a specified update
budget. As such, to find the optimal value for the threshold, our proposed methods
should disregard any values that would introduce too frequent updates.

The allowed update frequency 𝑓update depends on the available budget for model com-
putations and the computational complexity of the model 𝑚 used.

𝑓update =
budget

Δ𝑡 · cost(𝑚) .

Where budget
Δ𝑡 is the available budget for a certain period, and cost(𝑚) the monetary cost of

training the model once. Evidently, models that require more resources, can be updated
less frequently.

Using EV the value for 𝛿EV is the number of events before scheduling an update. Given
a requested number of updates, this can be computed exactly. If 𝑓EV is the average
frequency of events (events / day) and 𝑓update the requested update frequency (updates
/ day), then 𝛿EV is computed as:

𝛿EV =
information𝐸𝑉

update =
𝑓EV

𝑓update
(3.3)

For the two other methods, we cannot compute an exact value, and so offline optimisation
on a validation dataset is required. That is, for a range of values for 𝛿, we calculate the
number of updates that would have been scheduled by IPR or CORR. Then, we pick the
maximal value of 𝛿 that remains within the prespecified budget.

3.4. EXPERIMENTAL RESULTS 47

Dataset |D| |U| |I| Period
Adressa 2 532 729 228 462 2 790 7d
Globo.com 2 722 355 218 228 9 759 17d
Industry News 3 323 941 239 149 3 378 7d
CosmeticsShop 7 877 677 483 080 27 019 152d
Industry Retail 12 066 513 995 651 15 712 46d

Table 3.1: Properties for the datasets used in the offline experiments.

3.4 Experimental Results

3.4.1 Datasets

In order to validate the proposed methods in a variety of domains, we use publicly
available datasets for both news and retail use-cases, as well as two proprietary industrial
datasets. For the news use-case, we use the Adressa [46] and GLOBO [31] datasets and
the proprietary “News” dataset. For the retail use-case, we use the CosmeticsShop Kaggle
dataset, as well as the proprietary “Retail” dataset.2 3

As is common in the literature – we pruned users and items with very low numbers of
interactions from the dataset [14]. In doing so, we significantly decrease the computa-
tional complexity of model training without significantly impacting the results obtained.
As our experimental setup consists of an iterative model training and evaluation process,
this benefits the reproducibility of our work with reasonable computational resources.
We require users to have interacted with at least 3 items, and 10/50 interactions per item
for the news/retail datasets respectively.

Table 3.1 shows summary statistics of the pre-processed datasets. The news datasets
contain fewer items, and are collected over much shorter periods of time compared to
the retail datasets. The train-test timestamp 𝑇0 was kept constant per dataset for each
experiment. For Adressa and the proprietary News dataset, we used the last two days
of the data as test data. For Globo, we used the last five days. For CosmeticsShop we
used the final month as test data. For the proprietary Retail dataset, we used the last
two weeks. When evaluating algorithmic performance, we used sliding windows of
15 minutes for the news datasets, and 6 hours for the retail settings. This significantly
reduced granularity for retail datasets is justified by our findings that models for retail
take longer to change compared to news models.

2https://www.kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop
3https://rees46.com/

48 CHAPTER 3. SCHEDULING ON A BUDGET

Dataset Algorithm Runtime (s) Memory (GB) Monthly Cost (USD)

Adressa

ItemKNN 35 1 0.47
EASEr 44 1.2 0.60

Mult-VAE 2 120 3 695
BPR-MF 7 538 3 1 180

Globo

ItemKNN 34 3 0.46
EASEr 302 8 4.1

Mult-VAE 3 275 4 1 074
BPR-MF 7 627 3 1 080

CosmeticsShop

ItemKNN 94 11 2.6
EASEr 3 490 32 330

Mult-VAE 15 800 32 1 346
BPR-MF - > 60 -

Table 3.2: Computational requirements for public datasets and algorithms. Monthly
cost assumes computing the model every hour. If training takes longer than one hour
we make the assumption that training is only started once the previous model is done
computing. For Mult-VAE we used the default parameters for hidden and bottleneck
layer sizes (600 and 200). BPR-MF models were trained with embedding size = 100.
Mult-VAE and BPR-MF were both run for 50 epochs. The BPR-MF computation for
CosmeticsShop dataset ran out of memory on our testing machine with 60 GB RAM.

3.4.2 Recommendation Algorithms

Table 3.2 lists the recommendation algorithms we considered for comparison in our
offline experiments. Although we acknowledge that real-life industrial recommender
systems are much more complex than any of these algorithms, we do believe that they
are prototypical and can represent such systems for which the same principles of drift
and scheduling apply. The cost per update is the estimated cost in USD for training
the model once on a dedicated virtual machine (VM) on Google Cloud Services 4. The
approaches that benefit from dedicated GPUs (BPR-MF [107] and Mult-VAE [80]), were
given a single NVIDIA Tesla P100. The computation time was computed on a machine
with 14 virtual cores and 60 GB of RAM memory. As BPR-MF required more RAM than
available on the CosmeticsShop dataset in our test setup, it is left blank in Table 3.2. For
deep learning approaches, the introduction of a GPU increases costs dramatically, as well
as their relatively higher run times. These costs are based on the training times of these
models on the available data. In real world applications, the data available usually spans
a longer period, more users and more items than we have available in the offline datasets.
Because of this, we can expect practical estimates of the cost per update to be multiple
times higher than the values reported here. Nevertheless, our method is unaffected by
this scaling factor. By adjusting the cost estimate to the data at hand, we can still schedule
updates on a given budget. Parameters used in the experiments were tuned using grid
search on the validation set.

Because of the long training times for Mult-VAE and BPR-MF, our experiments that rely
on iterative model retraining to simulate online behaviour would require several weeks of
computation time. To improve reproducibility of the work whilst remaining relevant for

4https://cloud.google.com/products/calculator/

3.4. EXPERIMENTAL RESULTS 49

state-of-the-art methods, we therefore focus on two scalable and highly competitive item-
based collaborative filtering algorithms: Item-kNN and EASER. For a short description
of the models see Chapter 2.

We released all source code to reproduce the results on the public data presented through-
out the following sections.

3.4.3 Model Staleness

In this section we investigate why it is important to update recommendation models. First
we show that models grow stale when they are not updated. In a second experiment,
we show that (frequent) model updates mitigate model staleness and are necessary to
achieve adequate performance.

3.4.3.1 Existence of Model Staleness

We investigate the existence of model staleness by looking at how a models performance
evolves as it gets older and how much the output changes between models trained at
various points in the timeline. We follow the methodology defined in Section 3.3.1.

In Figure 3.1, we show how the accuracy of a model degrades over time for each of the
datasets. To reduce the variance, and impact of time of day in evaluation, we compute
the degradation for 12 different starting timestamps, each separated by one hour. As ex-
pected, models for news datasets suffer from staleness after only a couple of hours, while
models in retail contexts remain similarly performant for a longer time. Interestingly,
models on Globo and Adressa behave differently. On Adressa the degradation is much
stronger than for Globo. The rate of model staleness is specific to the dataset, and thus it
should be taken into account when choosing a training schedule in production.

To investigate the change in model output, we use 𝑁min = 4, 𝑁max = 10 such that
the sampled histories contain between 4 and 10 interactions and 𝑘 = 5 000 samples for
Adresssa, 𝑘 = 10 000 for Globo, and 𝑘 = 20 000 for CosmeticsShop.

The correlation results in Figure 3.2 extend the results of our analysis on accuracy. Based
on their output, the models for all datasets grow stale. However, this change is not
directly related to the chosen accuracy metrics. For example, a week-old ItemKNN
model for CosmeticsShop still has an accuracy of 95% compared to the up-to-date model,
despite their outputs only having a correlation of 0.7. Therefore, we remark that the
model changes faster than it becomes stale, and this change could affect metrics such
as diversity or fairness. This highlights that the number of required updates depends
strongly on the chosen success metric as well. In this chapter, we limit the scope of our
study to accuracy metrics.

Both decreases in accuracy and correlation of output between models confirm for recom-
mendation models that, if we want high performance, we need to make sure the model
is up-to-date [23].

50 CHAPTER 3. SCHEDULING ON A BUDGET

0 20 40
model age (hours)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
 o

f u
p-

to
-d

at
e

m
od

el
)

Adressa

0 20 40
model age (hours)

Globo

0 5 10
model age (days)

CosmeticsShop

Accuracy as age of model increases

ItemKNN EASE

Figure 3.1: The y-axis shows the accuracy of the model as a percentage of the accuracy
of the up to date model. Accuracy decreases much faster for news datasets, compared
to the mostly stable performance on the retail dataset, both for EASER (Dotted line) and
ItemKNN (full line) models. The shaded area shows the 90% confidence interval.

0 20 40
model age (hours)

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n
of

 o
ut

pu
t

Adressa

0 20 40
model age (hours)

Globo

0 5 10
model age (days)

CosmeticsShop

Correlation with an up-to-date model as age of model increases

ItemKNN EASE

Figure 3.2: The y-axis shows the correlation between the output of an out-of-date model,
and the up-to-date model. The x-axis shows the age of the out-of-date model. The shaded
area shows the 90% confidence interval.

3.4. EXPERIMENTAL RESULTS 51

3.4.3.2 Impact of model staleness on model performance

We investigate how scheduling can mitigate the staleness effect, by evaluating how well
a traditional regular interval scheduler mitigates the staleness of models. Specifically, we
vary the update frequency to investigate the benefit gained from more frequent updates,
as well as the costs associated with them.

Based on the results in Section 3.4.3.1, we expect more frequent updates to result in
higher accuracy. Figure 3.3 reflects this expectation. For both news datasets, infrequent
updates lead to lower performance than the more frequently updated models. However,
we do notice a diminishing return on the number of updates, illustrated by the sections
of the plots with zero gradient. For example, updating twice per hour (96 updates) to
three times per hour (144 updates) is not significant. Updating from a single update
every four hours, to two updates per hour does show a significant increase (𝑝 < 0.05) in
performance.

For the retail dataset, CosmeticsShop, the stable performance of out-of-date models
shown in Figure 3.2 suggests that the benefit of increased updates is low. This expectation
is confirmed here as well, as further increasing the number of updates past 14 for the
period of 14 days yields only minimal accuracy improvement.

For both retail and news datasets, there is a significant performance gap between the
ItemKNN results and the EASER accuracy scores. While it is not the goal of this chapter
to investigate the relative performance of these models, it is interesting to remark that
more complex models that have a higher accuracy, also require a higher computational
cost. Therefore, it is necessary to consider the estimated cost of each update in addition
to the number of times a model is updated.

Given the estimated costs per update in Table 3.2, the second row of plots in Figure 3.3
shows the cost associated with the updates and resulting model performance. Costs
scale linearly with the amount of updates, but vary strongly from model to model. For
example, computing the EASER model for CosmeticsShop once is more expensive than
computing the ItemKNN model 35 times. When deploying a recommender system in
production, it is necessary to take this cost into account. Neural network approaches are
popular in the literature, and, as we have shown, they often require high computation
costs to train. In many use-cases, simpler up-to-date models can perform better within
tight budget constraints. Additionally, if we can decrease the cost of a single model
computation, we can update more frequently and increase accuracy as a consequence.
This highlights the importance of incremental models.

Similarly, faster-to-compute approximate approaches can also increase accuracy com-
pared to their exact counterparts when the budget is constrained – despite losing accu-
racy in static evaluation scenarios. As an example, in their paper on “Markov Random
Fields for Collaborative Filtering”, Steck [122] reports that the approximate version of
the algorithm requires five times less computation time, while only losing 0.8% accuracy.
This means that the cost per update for the approximation is at least five times lower
than that of the exact model. As such, at constant cost, the approximate model can be
trained five times more often. This compensates the theoretical loss in accuracy in many
production settings. For the remainder of this chapter, we return to an abstract notion of
cost to focus on the impact of well-timed model updates on accuracy.

52 CHAPTER 3. SCHEDULING ON A BUDGET

0
50

100
150

200
Num

ber of m
odel updates

0.00

0.02

0.04

NDCG@10

adressa

0
50

100
150

200
Num

ber of m
odel updates

0.000

0.005

0.010

0.015

0.020

NDCG@10

globo

10
20

30
Num

ber of m
odel updates

0.00

0.02

0.04

0.06

0.08

NDCG@10

cosm
eticsshop

0.0
0.5

1.0
1.5

2.0
2.5

Cost

0.00

0.02

0.04

NDCG@10

0
5

10
15

Cost

0.000

0.005

0.010

0.015

0.020

NDCG@10

0
10

20
30

Cost

0.00

0.02

0.04

0.06

0.08

NDCG@10

Accuracy im
provem

ent as num
ber of updates and cost increases

Item
KNN

EASE

Figure
3.3:

The
y-axis

show
s

N
D

C
G

@
10

of
the

m
odel,the

x-axis
show

s
the

num
ber

of
tim

es
the

m
odelw

as
updated

and
the

cost
associated

w
ith

these
updates.

Sim
ilar

results
are

obtained
w

ith
Recall@

10,w
hich

w
e

om
ithere

for
brevity.

C
osts

for
Item

K
N

N
are

far
low

er,as
the

m
odeltrains

m
uch

faster,especially
w

hen
the

num
ber

ofitem
s

grow
s.

O
n

cosm
eticsshop

the
costdifference

betw
een

Item
K

N
N

and
EA

SE
isso

big,thatallItem
K

N
N

pointare
around

the
sam

e
(low

)cost.

3.4. EXPERIMENTAL RESULTS 53

3.4.4 Comparing Scheduling Methods

In order to evaluate which of the methods for estimating the information gain described
in Section 3.3.2 performs the best, we compare them for Item-kNN and EASER on all
datasets.

For each of our two types of datasets, we use two different update frequencies. For the
news datasets (evaluated over a period of 48 hours), we use schedules with 24 and 48
updates (𝑓𝑢𝑝𝑑𝑎𝑡𝑒 = 12/day and 24/day). For the retail dataset (evaluated over 14 days),
we use schedules with 7 and 14 updates (𝑓𝑢𝑝𝑑𝑎𝑡𝑒 = 0.5/day and 1/day). We choose these
numbers of updates, such that the amount of model updates does not yet counteract
staleness entirely, as visualised in Figure 3.3. Thus, leaving room for smarter scheduling
to make a measurable difference. Furthermore, these update frequencies are typical in
production settings.

In order to make results between schedulers comparable, we ensured that all schedulers
updated the model exactly as often as requested. Simulating a situation where the
threshold selection on the validation dataset results in exactly the same amount of updates
on the test dataset. To do this, we started by computing the threshold as defined in Section
3.3.3, and then slightly increased or decreased it until the right amount of updates are
scheduled during the test period.
While this procedure goes against good practices for optimising parameters, we show in
Figure 3.4 that given more data than available in the offline datasets, we would be able to
accurately estimate the correct threshold value that schedules exactly the right amount of
updates for a given frequency. We visualise how accurate our estimates of the thresholds
really are, by plotting the amount of updates scheduled by each of the methods, compared
to the amount requested. We only present the results for all schedulers for the Adressa
dataset, due to run-time constraints. Compared to the equal time schedule, which by
design schedules the right amount of updates, the fitted parameters mostly schedule the
expected amount of updates. The EV method is the strongest outlier, scheduling fewer
updates than expected. This is a direct consequence of the event frequency that changes
significantly throughout the dataset, showing that the EV method is more susceptible to
variations in amount of traffic than the other two. In order to validate that in practice the
right amount of updates would be scheduled, we also show the results on a real-world
news dataset. With two months of validation data and 14 days of test data, the results
confirm that given more data, the day-to-day variance is removed, such that in realistic
scenarios the expected amount of updates will be scheduled during the test period, and
our proposed methods compute the right thresholds. It is therefore an effect of the size
of the offline datasets, that we need to modify our thresholds after computing them on
the validation dataset to obtain a fair comparison.

The results of experiments comparing scheduling methods are presented in Tables 3.3
and 3.4.

Key empirical observations from these experiments are as follows:

For the large majority of settings, at least one of the proposed novel methods outperforms
the widely used “equal time” baseline. This confirms that smart scheduling regimes can
improve recommendation performance at constant cost.

The IPR method generalises the best to all datasets, either performing superior or close

54 CHAPTER 3. SCHEDULING ON A BUDGET

0 20 40 60 80 100 120 140
expected_cost

0

20

40

60

80

100

120

140
co

st
schedule_name

equal time
nr events
pop change
IPR EASEr
IPR ItemKNN

Schedule correctness - Adressa

0 100 200 300 400 500
expected cost

0

100

200

300

400

500

co
st

schedule_name
equal_time
nr_events

Schedule correctness - News dataset

Figure 3.4: The x-axis shows the number of updates requested during optimisation,
the y-axis shows the number of updates effectively scheduled during testing. The top
plot shows results for the Adressa dataset, using 2 days of validation data to select the
threshold parameters. The bottom plot presents the schedule correctness on the NEWS
dataset for the number of events scheduling threshold. We perform this only for this
schedule, as it is the one with the highest variance in the experiments on the small dataset.

3.4. EXPERIMENTAL RESULTS 55

ItemKNN
NDCG@10 Recall@10 NDCG@10 Recall@10

Number of updates 24 48

Adressa
equal time 3.60 6.82 3.78 7.21

EV 3.67 6.98 3.83 7.30
CORR 3.53 6.74 3.76 7.26

IPR 3.64 7.00 3.82 7.38
Globo

equal time 1.33 2.14 1.43 2.33
EV 1.36 2.21 1.44 2.35

CORR 1.36 2.21 1.44 2.35
IPR 1.38 2.23 1.45 2.36

Industry news dataset
equal time 3.79 7.00 4.04 7.49

EV 3.91 7.25 4.11 7.63
CORR 3.77 6.98 3.98 7.35

IPR 3.88 7.20 4.10 7.61

Number of updates 7 14

CosmeticsShop
equal time 5.81 8.13 5.87 8.21

EV 5.79 8.12 5.84 8.17
CORR 5.82 9.18 5.85 9.23

IPR 5.79 9.13 5.86 9.24
Industry retail dataset

equal time 12.17 15.63 12.22 15.69
EV 12.16 15.62 12.23 15.70

CORR 12.10 15.53 12.22 15.68
IPR 12.18 15.65 12.23 15.69

Table 3.3: The NDCG@10 and Recall@10 results in % with the ItemKNN algorithm for
all considered datasets. Experiments on news datasets were evaluated over a period of
48 hours, on retail datasets over a period of 14 days. The results for the best scheduling
methods are shown in bold per configuration.

56 CHAPTER 3. SCHEDULING ON A BUDGET

EASER

NDCG Recall NDCG Recall

Number of updates 24 48

Adressa
equal time 4.61 8.58 4.86 9.06

EV 4.69 8.77 4.92 9.20
CORR 4.65 8.78 4.91 9.29

IPR 4.73 8.93 4.96 9.40
Globo

equal time 1.92 3.18 2.03 3.38
EV 1.92 3.20 2.02 3.37

CORR 1.97 3.26 2.02 3.36
IPR 1.97 3.28 2.02 3.38

Industry news dataset
equal time 4.61 8.08 4.94 8.75

EV 4.77 8.41 5.04 8.94
CORR 4.55 7.97 4.83 8.51

IPR 4.73 8.32 5.01 8.89

Number of updates 7 14

CosmeticsShop
equal time 8.09 10.99 8.24 11.21

EV 8.03 10.94 8.20 11.15
CORR 8.12 12.32 8.25 12.53

IPR 8.10 12.31 8.25 12.55
Industry retail dataset

equal time 14.79 18.49 14.86 18.61
EV 14.78 18.49 14.87 18.62

CORR 14.71 18.38 14.86 18.61
IPR 14.79 18.50 14.87 18.63

Table 3.4: The NDCG@10 and Recall@10 results in % for EASER algorithm on all consid-
ered datasets. Experiments on news datasets were evaluated over a period of 48 hours,
on retail datasets over a period of 14 days. The results for the best scheduling methods
are shown in bold per configuration.

3.4. EXPERIMENTAL RESULTS 57

second. This confirms that the method is able to detect the right signals to decide on
updating the model, regardless of the context in which it is used.

Since both IPR and CORR improve over EV in some settings, we confirm our hypothesis
that not all events carry the same amount of information. Depending on the context, it
is necessary to take this into account to find the optimal schedule.

Each of the three methods is model-agnostic, and can be used with any model that
generates recommendation scores. The EV and CORR methods do not depend on the
deployed model for choosing their updates. IPR conversely does depend on the relevance
scores predicted by the recommendation model, but the results for ItemKNN and EASE
show that it generalises to different models.

Improvements with novel methods are most notable on the Recall@10 metric, rather than
on the NDCG@10 metric. This can be explained by the fact that new items typically get
recommended at the bottom of the top-𝐾. Recall is much more sensitive to these lower
ranked, but correct new items, compared to NDCG, which focuses on ranking the correct
items at the top of the list.

3.4.5 Online Experiments

In order to validate the offline results in this article, we also performed several online
experiments on both news and retail websites.

For the news use-case we got the opportunity to use a Dutch-language, local, newspaper
website. The staleness rates in the offline experiments showed patterns matching the
Adressa dataset, suggesting that models will grow stale quickly when not retrained.

For the retail use-case we used two very different online webshops. A “traditional”
retail webshop, showing similar staleness patterns as CosmeticsShop and a “flash” retail
webshop, where items are only available for a limited time, whose offline staleness
patterns showed behaviour between the news and retail datasets. Models do grow stale,
but not as quickly as they do for news.

Model staleness To confirm that the results for our model staleness hypotheses pre-
sented in Section 3.4.3.2 also hold in an online setting, we performed three randomised
controlled trials, colloquially known as an A/B-test, with control/treatment correspond-
ing to the same recommendation model updated at different intervals. In these trials, we
do not yet make use of the new scheduling methods we proposed, but instead use the
traditional fixed schedule.

In the first of these trials we verified that model staleness impacts performance quickly
in a fast moving news context, such that faster updates result in better performance. For
the control group, we updated the model every 30 minutes and the treatment group had
its model updated at an increased rate of once every 15 minutes. Based on our offline
experiments, we expected the treatment group to outperform the control group due to
the reduced staleness in the serving models. This was confirmed after a 2-week trial,
in which the treatment group showed a 2% relative increase in click-through-rate (CTR)
compared to the control group.

58 CHAPTER 3. SCHEDULING ON A BUDGET

In a second trial on the traditional webshop, we verified that fewer updates did not reduce
recommendation performance. For the control group in this trial the model is updated
every 3 hours, while for the treatment group it is updated once per day. We expected
no significant difference in CTR between the two groups, given the offline results. After
a trial that ran for 4 weeks with more than 1.5 million recommendation opportunities
for each of the groups, indeed no significant difference was found between the two
schedules. This is an important insight: indeed, reducing the number of model updates
by a factor of 8 implies reducing the computational costs for this model by a factor of 8.

The final trial was held on the flash-retail website. Our expectation was that increasing
the amount of model updates from 4 per day (control group) to 8 per day (treatment
group) would prove beneficial on both CTR and conversion. This was confirmed after
the 10-day trial, with the treatment group showing a significant improvement in both
CTR (+20%) and conversion (+25%) over the control group.

Smart scheduler To extend our evaluation of the smart scheduling methods proposed,
we performed two trials where a smart scheduling approach was compared to a baseline
fixed schedule approach. During these trials we opted to use the scheduler based on
the CORR information metric, computed on a “recently popular” model, for practical
reasons. While the IPR scheduler performed better in many of the offline settings, it was
much harder to integrate into the recommendation pipeline.

For the first trial, on the news website, we used the winning treatment from our previous
test (identifying model staleness) as the control group in this test. The models are updated
according to a fixed schedule, with an update every 15 minutes. The treatment group
used the CORR scheduler, whose threshold was fitted to schedule 48 updates per day
using a validation dataset. Note that the treatment will perform half as many updates as
the control group, which without the scheduler was significantly worse in the previous
test. This trial was carried out on 3 different lists of recommendations on the website,
each shown on different pages. After a trial of one week, no significant difference was
found between the two groups for two out of three lists. On one of the lists, the control
group performed significantly better than the treatment group, though the improvement
was small (< 1%) especially given that it required twice the cost. As such, this test
confirms that the CORR scheduler manages to schedule its updates at better timepoints,
so it requires only half of the updates—and half of the budget— to get the improved
performance we previously only found using 96 updates per day.

The second trial was held on the flash retail website. During this trial the control group
received recommendations from a model updated 8 times per day, and the models for the
treatment group were scheduled using the CORR scheduler whose threshold was fitted
to also schedule 8 models per day. Over the evaluation period of 2 weeks, the CORR
scheduler method showed a significant (𝑝 < 0.05) improvement of 2% in CTR (relative)
over the control group.

Given the positive online results of the CORR scheduler, and the better offline perfor-
mance of IPR, we are considering it future work to also implement the IPR scheduler
online, and verify its offline superiority over the popularity change scheduler in online
trials.

3.5. CONCLUSIONS 59

3.5 Conclusions

In this chapter we have demonstrated the effect of retraining and model staleness in
different environments and for a variety of collaborative filtering approaches, and we
have studied the cost-accuracy trade-off. Achieving higher accuracy requires increased
computational costs up to some asymptotic point, after which more updates have no
further benefit. In real world applications of recommendation systems we cannot ignore
this cost of computing models and therefore it is paramount to find an optimal balance
between cost and accuracy. Our results indicate the importance of models that can be
efficiently and incrementally trained for real-world applications – because they allow
frequent updates while keeping costs low.

We have proposed a generic method to create a smart schedule for retraining or updating
models, which results in higher accuracy than retraining at fixed intervals given the same
resources. Our scheduling approach uses a heuristic to comply to the budget constraint.
Applying this budget constraint to control methods and drift detection methods is an
interesting avenue to further improve the use of resources in practice.

In our experiments, we hinted at the fact that up-to-date models also have an impact
on other metrics, such as fairness or diversity. It remains interesting for future work to
investigate this impact thoroughly.

60 CHAPTER 3. SCHEDULING ON A BUDGET

Chapter 444
Are We Forgetting Something?

Correctly Evaluate a Recommender
System With an Optimal Training

Window

Recommender systems are deployed in dynamic environments with constantly changing interests
and availability of items, articles and products. The hyperparameter optimisation of such systems
usually happens on a static dataset, extracted from a live system Although it is well known that
the quality of a computed model highly depends on the quality of the data it was trained on,
this is largely neglected in these optimisations. For example, when concept drift occurs in the
data, the model is likely to learn patterns that are not aligned with the target prediction data.
Interestingly, most scientific articles on recommender systems typically perform their evaluation
on entire datasets, without considering their intrinsic quality or that of their parts. First, we show
that using only the more recent parts of a dataset can drastically improve the performance of a
recommendation system, and we pose that it should be a standard hyperparameter to be tuned prior
to evaluation and deployment. Second, we find that comparing the performance of well-known
baseline algorithms before and after optimising the training data window significantly changes
the performance ranking. 1

1This chapter is based on “Are we Forgetting Something? Correctly Evaluate a Recommender System With
an Optimal Training Window.” Robin Verachtert, Lien Michiels and Bart Goethals. In Proceedings of the
Perspectives on the Evaluation of Recommender Systems Workshop 2022.

61

62 CHAPTER 4. ARE WE FORGETTING SOMETHING?

4.1 Introduction

Recommendation systems are widely used to help users find the most relevant products
and articles from the large catalogues available on most websites, like news websites and
e-commerce shops. The environments in which they are deployed generate large volume
information streams on which the models need to be trained. Barring online learning
methods and incremental models, the usual approach is to take a static slice of this data
stream and train the model on this slice. Determining the optimal width of this slice is
a challenging engineering problem. Using too little data can cause the model to starve,
and not learn anything relevant. Using more data often results in longer training times,
and larger models that take longer to predict.

In academic research, however, this is usually not considered to be such an issue. The
typical datasets used for experimental evaluation are static, and they are almost always
used in their entirety. Important steps have been taken to correctly evaluate recommen-
dation techniques through temporal or leave-last-one-out splits [13, 61, 67, 84]. By using
all historic events to train models, however, these evaluations place an implicit trust on
the earliest interactions in the dataset to add useful information. Challenging this trust,
algorithms have been designed to diminish the impact of older interactions [22]. In the
evaluation of algorithms, we show that disregarding earlier interactions entirely during
training can significantly improve the performance of a recommender system in multiple
settings. Intuitively, this is true for a simple popularity baseline: Items that were popular
in the past week are more predictive of next week than items that were popular in the
past year [64]. But is this also true for more complex, personalised recommendation
algorithms?

In this chapter, we consider the maximum ‘age’ of an interaction, i.e. the time since it
occurred, used to build the model an additional hyperparameter during model training.
In the remainder of this chapter, we will refer to the maximal age of an event used in
training as the hyperparameter 𝛿𝑖𝑛 .

We investigate and answer the following three questions:

• RQ1: How does the optimisation of 𝛿𝑖𝑛 impact the individual performance of an algorithm?

• RQ2: Does the optimisation of 𝛿𝑖𝑛 change the relative performance between the algorithms?

• RQ3: How does the choice of 𝛿𝑖𝑛 impact secondary metrics such as run time and coverage
of the item catalogue?

Additionally, through our experiments we show that the optimal 𝛿𝑖𝑛 has a significant
impact on model accuracy across algorithms and datasets. The biggest improvements
are found for algorithms that are agnostic of time, especially when deployed in highly
dynamic environments such as online news. Our findings strengthen our conviction that
the hyperparameter 𝛿𝑖𝑛 is an important consideration when determining which model
performs best, both in future academic research and production settings. We leave a
comprehensive benchmark of algorithms with optimal values of hyperparameter 𝛿𝑖𝑛 to
future work.

In Section 4.2 we highlight relevant related work. Section 4.3 describes how 𝛿𝑖𝑛 should
be considered a hyperparameter, and how to set up an evaluation to mimic a real-world

4.2. RELATED WORK 63

scenario. Also in Section 4.3 we present the chosen algorithms, datasets and evaluation
metrics. Finally, Section 4.4 discusses the experimental results with regards to the three
research questions and presents the results from two trials on news websites confirming
our results. We also use our experiments to give suggestions for the selection of values
for 𝛿𝑖𝑛 .

4.2 Related Work

Research in data science has recognised that data drift is an import factor in training high
quality models for several decades [20, 40, 72, 133]. More specifically, Fan [36] raised
awareness for the issues associated with the blind usage of older data in the context
of binary classification. As they conclude: “[...] using old data unselectively is like
gambling”. When a dataset contains drift and an algorithm is not equipped to deal with
this drift, using only more recent data, i.e. explicitly defining 𝛿𝑖𝑛 , is a straightforward
way to avoid training poorly performing models [36].

Recommender systems are used in highly dynamic environments and so naturally have
to deal with data drift. We can distinguish between two research directions related
to handling data drift, i.e. measuring accuracy under data drift and recommendation
algorithms that perform well under data drift. Regarding the former, improved data
splitting techniques that better reflect realistic recommendation scenarios have been
proposed, e.g. timed splits [24, 98], a sequential last item prediction split [58] and
repeated time-aware splitting [61, 114]. In relation to the latter, a large amount of time-
and sequence-aware algorithms have been proposed over the years. For a comprehensive
overview we refer the interested reader to Campos et al. [24], Ludewig and Jannach [85],
Quadrana et al. [104] and Bogina et al. [22].

Relevant to our work, Vinagre and Jorge [131] summarised two generic methods for
dealing with concept drift in a data-stream. The first is to utilise a predetermined 𝛿𝑖𝑛 and
use it as a sliding window over the data. The second is to utilise fading factors such that
older interactions have less influence on the similarities. Ludmann [87] used a contextual
popularity algorithm, with 𝛿𝑖𝑛 equal to five minutes, thirty minutes and one hour, to
great success in the CLEF Initiative in 2017. Similarly Ji et al. [64] showed that computing
popularity using a small 𝛿𝑖𝑛 or using fading factors provided a much stronger baseline.
Jannach and Ludewig [57] and Jannach et al. [58] find similar indications that the recency
of training data is important in a retail context. Our work is inspired by these earlier
efforts and aims to further anchor and broaden their findings regarding popularity
and similarity-based algorithms to other types of recommendation algorithms, such
as time- and session-aware algorithms. Examples of such time-aware algorithms are
neighbourhood-based models that use fading factors [6, 76, 81, 83, 126, 135], similar to
Vinagre and Jorge [131]. More recently, we see sequence- and session-aware algorithms
that learn sequential models utilising the order in user histories. Examples of such
methods are STAN [42], Sequential Rules [57], VS-KNN [57], and GRU4Rec [53]. In the
wake of GRU4Rec, more and more deep learning approaches have been proposed that
incorporate sequential and/or temporal information. [e.g. 82, 84, 124].

Recent reproducibility studies have challenged the performance of these complex deep
learning methods in a variety of domains. In two recent works, Ferrari Dacrema et al.

64 CHAPTER 4. ARE WE FORGETTING SOMETHING?

[37, 38] found that “11 of the 12 reproducible neural approaches can be outperformed
by conceptually simple methods”, such as ItemKNN or UserKNN. Ludewig et al. [86]
investigated the performance of deep learning approaches compared to simpler baselines
in a session context. They found that “In the majority of the cases [...] it turned out that
simple techniques outperform recent neural approaches”. We follow their results, and
focus on simpler baselines in our experiments.

4.3 Methodology

4.3.1 Recommendation Scenario

In many real-world applications, recommendation systems are used to generate recom-
mendations for users while they are looking at other articles or products. In these use
cases, the interest of the user is often captured mostly by their most recent interactions. A
standard evaluation protocol to model this situation is to perform either leave-last-one-
out splits [13, 67, 84], or iterative revealing [86].

As highlighted in Chapter 2, Section 2.4, this scenario has leakage issues [65]. Instead
we follow the TimedLastItem scenario, which tackles these leakage issues, while main-
taining the sequential evaluation. Given the significant computational cost to running
our experiments, we use a single evaluation window and leave repeated evaluation as
suggested by Scheidt and Beel [114] for future work.

4.3.2 Datasets

For our experiments, we use five datasets, two from the news domain, and three from the
retail domain. We chose these two domains, because they are stereotypical real-world
recommendation use cases, and we expect the domains to exhibit different behavioural
patterns. News has a pronounced concept drift as articles become irrelevant quickly,
while in retail, product relevance is typically stable for a longer period. Intuitively we
expect this to result in retail datasets benefiting from larger 𝛿𝑖𝑛 values as they experience
weaker data drift, while performance on news datasets suffers more drastically when
𝛿𝑖𝑛 is too large. In our selection of datasets, we required them to be of sufficient size (>
1M interactions) and to contain timestamp information for the item view events, which
will be used to train models. For news, we use the Adressa dataset [46] as well as a
proprietary dataset, extracted from a live recommender system, which we’ll call NEWS.
Both of these datasets were collected over 7 days. In splitting these datasets, we used the
second to last day 12:00 to 23:59 as the source for the validation target dataset, and the
last day from 12:00 to 23:59 for the test target dataset. For retail, we use the Yoochoose
dataset from the Recsys Challenge in 2015 [17], the CosmeticsShop Kaggle dataset [69]
and a second proprietary dataset, extracted from a live recommender system, which we’ll
call RETAIL. All three of these datasets span a longer period than the two news datasets,
with CosmeticsShop collected over 152 days, Yoochoose over 182 days and RETAIL over
98 days. For the CosmeticsShop and Yoochoose datasets, we used validation and test
sets of 14 days, for the slightly shorter but denser RETAIL dataset we used consecutive

4.3. METHODOLOGY 65

Dataset |𝒟| |U| |I| Period Gini(item)
RETAIL 24 237 016 1 302 909 18 255 98d 0.70
Yoochoose 16 044 427 1 882 684 44 415 182d 0.76
Cosmetics 7 877 677 483 080 27 019 152d 0.60
NEWS 5 943 609 381 797 3 810 7d 0.87
Adressa 2 532 729 228 462 2 790 7d 0.92

Table 4.1: Properties for the datasets used in the offline experiments

7-day windows. By using proprietary datasets as well as public datasets, we can link the
offline experimentation results to our online trials.

The properties of the datasets can be found in Table 4.1. We report the number of events
(|𝒟|), number of users (|𝑈 |), number of items (|𝐼 |), the period during which data was
collected, and the Gini coefficient comparing visits per item [29]. The Gini coefficient is
a statistical measure of dispersion, and a high Gini coefficient indicates that a few items
have the most interactions, and all the others are interacted with much less frequently.
News datasets typically have a higher Gini coefficient, because every day only a few
articles are relevant for all users.

4.3.3 Algorithms

We selected a combination of time-agnostic baseline algorithms, sequence-aware algo-
rithms and a time-aware algorithm to compare the impact resulting from optimising 𝛿𝑖𝑛
for each of them.

• Popularity

• Item-kNN [32, 113]

• IKNN Ding (Item-kNN variant with time-decay) [33]

• IKNN Liu (Item-kNN variant with time-decay) [81]

• EASER [121]

• GRU4Rec [134]

• SR (Sequential Rules) [86]

For a short description of these algorithms, see Chapter 2, Section 2.5. An in-depth
discussion of the Item-kNN variants with time-decay, can also be found in Chapter 5.

66 CHAPTER 4. ARE WE FORGETTING SOMETHING?

4.3.4 Evaluation Metric(s)

We consider the problem of optimal ranking of items, also known as the Top-K recom-
mendation problem. We use Normalised Discounted Cumulative Gain (NDCG) [115],
Catalog Coverage (Coverage) [102], Recall [115] and Mean Reciprocal Rank (MRR) [32] as
metrics. The metrics were evaluated on the top K recommendations, with𝐾 ∈ [10, 20, 50].
The goal we set for our experiments is to generate an optimal ranking of items to be shown
to the user as a list of recommendations.

Our primary metric is NDCG. We choose this metric because it rewards models that
put the correct items higher in the list. Besides this primary metric, we also report the
coverage of the algorithms because the amount of items recommended is often seen as a
secondary goal for recommendation [43].

4.3.5 Parameter Optimisation

We determine the optimal hyperparameters for each algorithm and dataset combination
by performing a search over the hyperparameter space and evaluating performance on
the validation dataset.

Using a grid search, even one with coarse settings, would not be feasible given the large
amount of parameters for some of the algorithms, and the further addition of 𝛿𝑖𝑛 to be
inspected over a large range of potential values.

Rather than using a random search we utilised the Tree-structure Parzen Estimator [18]
as implemented in the Python hyperopt library2 [19]. While none of our hyperparameter
spaces contains dependent hyperparameters, the approach still manages to find optimal
hyperparameter combinations in fewer trials than a random search would.

We don’t set a fixed amount of trials but give each algorithm-dataset pair a fixed amount
of time to run trials in order to find the best parameters. All algorithms were given six
hours to find the optimal hyperparameters, however, only GRU4Rec was unable to find
convergence within this timeframe. All other methods converged much sooner, often
in less than two hours. This way all experiments can be run in under a week without
parallel computation on an 8-core virtual machine with 52 GB of RAM, and a single
NVIDIA Tesla T4 GPU. Due to insufficient RAM, we could not train the EASE algorithm
on Yoochoose and RETAIL datasets, and GRU4Rec on the RETAIL dataset.

In order to enable the exploration of more hyperparameters for GRU4Rec we did not train
it to full convergence during optimisation. This might lead to a loss of performance in the
optimisation results, however, the loss will be similar for every parameter combination
so we can find the optimal parameter combination while saving time on each trial. For
the final results on the test dataset, we train the GRU4Rec models for 20 epochs, resulting
in convergence.

2https://hyperopt.github.io/hyperopt/

4.4. RESULTS 67

4.4 Results

dataset RETAIL Yoochoose Cosmetics NEWS Adressa

EASER - - 389 3 3
GRU4Rec - 733 1562 9 121
ItemKNN 877 228 2368 2 5
Popularity 3 25 286 1 1
SR 2059 185 2976 3 18
IKNN Ding 530 214 2278 2 5
IKNN Liu 2139 280 1939 3 117

Table 4.2: Optimal 𝛿𝑖𝑛 values found during optimisation, rounded to the nearest hour.

In this Section we share the results of our experiments and answer the three research
questions. To enable reproduction and reuse of our experiments, we have made the code
repository public3.

4.4.1 RQ1: “How does the optimisation of 𝛿𝑖𝑛 impact the individual
performance of an algorithm?"

In Table 4.2 we present the optimal values for delta found during optimisation, and in
Table 4.3 we present the corresponding NDCG@10 values. We compute an NDCG value
for both the model trained on all training data (𝛿𝑖𝑛 = ∞) and on the optimised 𝛿𝑖𝑛 (𝛿𝑖𝑛 =

optim).

The optimal choice of 𝛿𝑖𝑛 depends on the combination of the dataset and the algorithm.

A popularity algorithm works best with only the most recent data. Its optimal training
window is on most datasets smaller than a day, with only CosmeticsShop exhibiting

3https://github.com/verachtertr/short-intent

dataset RETAIL Yoochoose Cosmetics NEWS Adressa
delta ∞ optim ∞ optim ∞ optim ∞ optim ∞ optim

EASER - - - - 4.8 4.6 2.0 5.5 0.8 7.0
GRU4Rec - - 13.6 13.6 3.3 2.9 3.7 3.2 4.0 3.9
ItemKNN 6.4 6.4 16.5 17.8 4.9 4.9 1.3 4.9 0.4 5.4
Popularity 0.7 0.8 0.4 1.1 0.9 1.1 1.0 4.8 0.4 12.6
SR 9.3 9.3 19.0 20.7 7.2 7.2 3.2 4.5 3.6 4.5
IKNN Ding 8.5 8.5 17.1 18.5 6.4 6.4 1.5 5.8 0.6 6.4
IKNN Liu 8.8 8.8 18.8 18.7 6.4 6.4 2.6 3.6 3.9 3.9

correlation 1.00 1.00 1.00 -0.43 -0.71

Table 4.3: NDCG@10 in % for optimised 𝛿𝑖𝑛 values and 𝛿𝑖𝑛 = ∞. At the bottom of the
table we report the correlation between the ranking of algorithms trained with 𝛿𝑖𝑛 = ∞
and the one with optimised 𝛿𝑖𝑛 .

68 CHAPTER 4. ARE WE FORGETTING SOMETHING?

stable enough behaviour for 10 days to be optimal. On the news datasets we find the
most drastic improvements, up to 30 times on the Adressa dataset. The extraordinary
performance of the Popularity algorithm on news datasets and Adressa in particular is
explained by the extreme popularity bias present in these datasets. In Table 4.1 you find
that for Adressa the Gini coefficient of the items is 0.92, and on the test dataset, the Gini
coefficient is even higher: 0.98. This indicates that almost all events happen on a very
small group of popular items.

On the news datasets, the relevance of recent data is reflected in the optimal 𝛿𝑖𝑛 values,
the time agnostic methods perform optimally using the last few hours to train. Only the
time-aware ItemKNN model (IKNN Liu) and GRU4Rec manage to use more than a day of
data without losing quality on the Adressa dataset. For both datasets, we see noticeable
improvements in performance for the time agnostic algorithms trained on only recent
data. For the NEWS dataset, with even more rapidly changing relevance, we see that all
algorithms, even the time-aware algorithm, perform optimally using only the last few
hours of data.

On the retail datasets, we see their stability reflected in the optimal 𝛿𝑖𝑛 values. Cosmet-
icsShop is a very stable dataset, and most algorithms perform optimally using almost all
of the data (The maximal value for 𝛿𝑖𝑛 is 124 · 24 = 2976 hours). For RETAIL, we note
that the optimal 𝛿𝑖𝑛 is usually smaller than on CosmeticsShop, but the performance gains
are minimal. This implies that we can build a good model using less data, but adding
the additional data does not hurt performance as much as it did in the news use case.
Yoochoose is the retail dataset where optimisation of 𝛿𝑖𝑛 has the largest impact. Most
algorithms perform best using somewhere around the last 10 days of data, only GRU4Rec
requires a month of data to get the best model.

The GRU4Rec algorithm shows the most inconsistent behaviour between validation and
testing data. The optimal values found during optimisation do not seem to translate to
optimal performance during testing. One possible reason for this, is that the model takes
much longer to train, and so far fewer parameter combinations could be checked.

Choosing 𝛿𝑖𝑛 right is important to get the optimal performance for an algorithm given a
dataset. In some cases, the dataset will be stable enough that using all data is optimal.
In others, however, it’s only the last few hours that hold relevant events to build a model
for the imminent future.

4.4.2 RQ2: "Does the optimisation of 𝛿𝑖𝑛 change the relative perfor-
mance between the algorithms?"

We compare how the rankings of algorithms sorted by NDCG change if we go from
𝛿𝑖𝑛 = ∞ to an optimised 𝛿𝑖𝑛 . For this comparison we use Kendall’s Tau correlation
between the two rankings of the algorithms [70]. We report these correlations at the
bottom of Table 4.3. On the two news datasets, we note a strong dissonance between the
rankings. Both have a correlation value below zero, indicating that the rankings have
drastically changed. When 𝛿𝑖𝑛 = ∞, the time- and sequence-aware approaches show
superior performance, however, this is no longer the case given an optimal 𝛿𝑖𝑛 . The
baseline methods surpass the deep learning methods and now perform the best.

4.4. RESULTS 69

dataset RETAIL Yoochoose Cosmetics NEWS Adressa
delta ∞ optim ∞ optim ∞ optim ∞ optim ∞ optim

EASER - - - - 60.9 56.8 34.1 24.8 23.2 13.9
GRU4Rec - - 71.5 52.8 70.0 66.8 41.0 18.5 34.5 32.7
ItemKNN 94.0 89.9 76.5 63.1 60.0 61.3 25.8 21.2 10.4 16.7
Popularity 0.2 0.1 0.1 0.1 0.2 0.2 3.7 1.5 1.9 0.9
SR 89.7 89.5 85.8 65.4 92.4 92.4 47.8 24.4 41.3 23.2
IKNN Ding 90.9 81.1 88.4 71.9 93.7 94.0 14.3 22.1 14.6 17.0
IKNN Liu 88.2 88.2 78.3 73.2 93.2 94.0 65.7 30.4 71.3 68.6

Table 4.4: Coverage@10 in % for optimised 𝛿𝑖𝑛 and using 𝛿𝑖𝑛 = ∞. Reducing 𝛿𝑖𝑛 usually
results in a lower coverage, as older items are no longer recommended.

For the retail datasets we don’t see this effect, either 𝛿𝑖𝑛 = ∞ is optimal (Cosmetic-
sShop and RETAIL), or the time agnostic algorithms were already outperforming the
deep learning methods, and their improvement only further established their rank (Yoo-
choose). There is however no guarantee that the rankings will always remain the same,
we can imagine that for some combinations of algorithms this ranking would change.
Especially when comparing time-aware models with time agnostic baselines. The time-
aware models will have a higher performance when using the whole datasets, and the
baselines manage to close the gap when their training window is optimised. We can see
this happen on Yoochoose, IKNN Ding’s performance almost matches that of IKNN Liu
with an optimised 𝛿𝑖𝑛 , when it was outperformed on the 𝛿𝑖𝑛 = ∞ setting.

In most scientific articles, the results would be compared using a 𝛿𝑖𝑛 = ∞ setting, and so
the time agnostic algorithms can be handily beaten by methods that do manage to take
into account the order and/or time of the interactions. However, simple baselines trained
on the more relevant - recent - part of the data, become much harder to improve on and
even perform best in some of our experiments. This highlights why it is so important to
optimise 𝛿𝑖𝑛 . If we do not, we risk making the wrong conclusions.

4.4.3 RQ3: How does the choice of 𝛿𝑖𝑛 impact secondary metrics such
as run time and coverage?

In Table 4.4 we present the Coverage@10 results for the algorithm-dataset pairs. We see
that in general coverage is lower for the optimal 𝛿𝑖𝑛 . This is to be expected, because one
of the side effects of using less data is that older articles have no events, and so will not
get recommended. Only for ItemKNN and IKNN Ding on Adressa do we see an inverse
effect: Shrinking the training window increased the number of items recommended.
This behaviour occurs when the historic data drowns more recent interactions, such that
even given the recent history of the user, the model still mostly recommends a select
group of older items. Reducing 𝛿𝑖𝑛 levels the playing field for the more recent items, and
so more of them can get recommended depending on the interests of the users.

A third metric impacted by the selection of 𝛿𝑖𝑛 is the run time of the algorithms. Training
a model on less data usually leads to lower training and prediction times. We compute
run time as the sum of training and prediction time, thus accounting for both slow
training and slow prediction. Both are impacted by the amount of data used and both

70 CHAPTER 4. ARE WE FORGETTING SOMETHING?

dataset RETAIL Yoochoose Cosmetics NEWS Adressa
delta ∞ optim ∞ optim ∞ optim ∞ optim ∞ optim

EASER - - - - 815 791 38 30 14 7
GRU4Rec - - 7233 2990 5649 3824 1850 451 809 699
ItemKNN 198 188 96 20 117 55 43 14 15 4
Popularity 33 28 32 27 12 10 17 15 6 6
SR 2504 538 953 94 959 722 572 26 158 26
IKNN Ding 174 126 105 52 116 82 33 16 14 4
IKNN Liu 194 67 100 57 128 87 44 16 19 11

Table 4.5: Runtimes (in seconds) for optimal and non optimised 𝛿𝑖𝑛 . Runtime is the sum
of training and prediction time. Decreasing 𝛿𝑖𝑛 also decreases the runtime, as less data
needs to be processed.

contribute to problematic situations in production settings. In Table 4.5, the run time
for the optimisation trials with optimal 𝛿𝑖𝑛 and maximal 𝛿𝑖𝑛 are reported. Using less
data leads to lower run times. For production settings, this is an important insight. For
example, on the Yoochoose dataset using the SR algorithm, there is a small increase in
performance when changing to an optimal 𝛿𝑖𝑛 but also a 10-time reduction in run time.
This means that models can be updated more frequently and with lower computational
cost.

This highlights a final reason why using less data should be considered. When using as
much data as is available, we not only risk lower performance, we are also incurring higher
computational costs and creating larger delays when building models and generating
recommendations.

4.4.4 Online Tests

Complementing the offline results, we also performed two online trials on different news
websites. The goal for these trials was to optimise recommendation boxes that serve a
list of popular items to the users. Before the use of an automated optimisation of 𝛿𝑖𝑛 ,
the training window was chosen manually by engineers with some input from editors.
By performing the optimisation of 𝛿𝑖𝑛 as suggested in this chapter, we found that the
original values were not optimal, and could be improved by using smaller 𝛿𝑖𝑛 values.

In a first test, using the website from which the NEWS dataset was extracted, the box
was found on the homepage. The manual setting was to train every three hours. Thus
𝛿𝑖𝑛 = 3ℎ was used as our control treatment. During the offline experiments, we found
that 𝛿𝑖𝑛 = 1ℎ performed optimally, and so for the test group we used this as the training
window. The results of the AB test showed that the optimised 𝛿𝑖𝑛 = 1ℎ training window
resulted in an improvement in CTR (on the box) of 7% during a period of three days.
After which we concluded the test, and enabled the new setting for all users. We could
use a short testing window thanks to high traffic; Three million recommendation lists
were generated for both groups combined. The 7% improvement we found online, is
similar to the 10% improvement we found offline.

4.5. CONCLUSION 71

In a second test on a different news website, we found an optimal window of 𝛿𝑖𝑛 = 2ℎ after
parameter tuning. In this more extensive test, we deployed a similar recommendation
list in multiple locations on the website to make sure the positive effects were consistent.
Furthermore, the test was run for two weeks to allow for variations between days. We
used two control groups, one with training window 𝛿𝑖𝑛 = 6ℎ, and a second with 𝛿𝑖𝑛 =

10ℎ. Depending on the location of the box we found an improvement in CTR of 7% to
8% over both control groups, which performed nearly identical.

Even though these experiments were only done using a popularity-based algorithm,
they show the value in optimising the 𝛿𝑖𝑛 parameter before deploying the algorithms
in a production setting. The improvements we find in our offline experiments for this
algorithm were reflected in our online experiments.

4.5 Conclusion

“Are we forgetting something?” we wrote in the title, and our answer is clearly: yes!
When training and evaluating recommender systems, we typically forget to take the
quality of the data into account, or even consider the use of only (the most) recent
parts of the given datasets. As we have presented in this chapter, the performance
of state-of-the-art algorithms drastically changes when training only on a recent part
of the data. Moreover, the performance ranking of state-of-the-art (both baseline and
neural) algorithms changes significantly when using the optimal training window size
𝛿𝑖𝑛 . We believe that we have clearly shown that the choice of the 𝛿𝑖𝑛 matters, both to
find the optimal performance of individual algorithms and to make a fair comparison
between algorithms. Optimising 𝛿𝑖𝑛 for each algorithm should be standard practice in the
evaluation of recommender systems. Not optimising 𝛿𝑖𝑛 will favour only the algorithms
that account for drift.

72 CHAPTER 4. ARE WE FORGETTING SOMETHING?

Chapter 555
A Unified Framework for Time-Aware

Item-Based Neighbourhood
Recommendation Methods

For recommender systems to thrive, they need to cope with dynamic environments. A prominent
challenge these systems face is that historical interactions can lose relevance. User interests
change; what they liked last year might no longer be interesting to them. The relevance of items
to the user base also changes, a news article published last week is likely no longer relevant to
the majority of the readers. Time-aware recommender systems (TARS) are developed to utilise
timestamps to generate better recommendations. Recently, time-aware user-based neighbourhood
(UserKNN) models have shown competitive performance in comparative studies, outperforming
various deep learning techniques. Unfortunately, UserKNN methods suffer from significant
challenges in production. Finding similar users is an expensive operation, and storing a full user-
user similarity matrix is usually not feasible. Item-based neighbourhood methods (ItemKNN)
are more efficient at predicting items and require less storage to store the model. Time-aware
ItemKNN methods exist; however, we find that they are usually not considered in recent studies.
In this chapter, we provide a unified framework for time-aware ItemKNN methods, allowing us
to identify and fill gaps in the literature. Further, we show that these models are competitive on
recent large-scale datasets. Finally, we make our code public, so researchers can easily reuse the
algorithms in their own baseline comparisons.

73

74 CHAPTER 5. TIME-AWARE ITEM-BASED NEIGHBOURHOOD MODELS

5.1 Introduction

Recommendation algorithms are used in highly dynamic environments, they need to
cope not just with new items and new users, but also with items that lose relevance, or
users developing new interests. Fortunately, we can provide these systems with times-
tamps for each interaction, thus allowing them to model which items are frequently
considered together [51, 135], which items are considered in a similar temporal con-
text [74] or which items usually follow after other items [57, 86].

In this endeavour, deep learning techniques have become the go-to solution [53, 78, 82,
137]. However, recent studies show that user- or session-based neighbourhood models,
which are comparatively simpler, perform on par with or outperform more complicated
deep learning techniques [38, 57, 75, 86].

Unfortunately, these user- or session-based models are often challenging to use in a real-
time recommendation system. Precomputing each user’s neighbourhood results in a
model that is too large in environments with hundreds of thousands of users. Efficient
methods exist to search for a user’s neighbours in real-time, through sampling [71], or
approximate nearest neighbour search [48]. However, for real-time recommendations,
response deadlines are usually so strict (<50ms) that even these more efficient methods
struggle to be fast enough.

Conversely, ItemKNN methods build a smaller model, as usually, the number of items
is far lower than the number of users. Prediction requires only a single vector-matrix
multiplication between the user’s history, and the stored similarity matrix, which can
be done near instantaneously. This makes them more usable in real-world production
scenarios.

In this chapter, we revisit the literature that describes time-aware ItemKNN methods, to
show their merit and competitiveness. These methods use timestamp information from
interactions to build a better model and to put more weight on recent user behaviour
during prediction. Even though these methods were proposed almost a decade ago, we
find that they show promising and competitive performance, making them interesting
approaches for use in production. We re-contextualise these historic methods by pro-
viding a generalised framework, that allows the identification of gaps in the literature.
We test the performance of both the historic methods and the unified framework on
newer large-scale datasets and demonstrate that they show competitive performance in
dynamic scenarios.

This chapter is structured as follows: In Section 5.2 we highlight relevant works in
context-aware, time-aware, and sequence-aware recommendation, and introduce the
various time-aware ItemKNN methods. In Section 5.3 we describe the generalisation of
the time-aware ItemKNN paradigm. Finally, in Section 5.4 we discuss the experimental
setup and results.

5.2. RELATED WORK 75

5.2 Related Work

Almost all online recommendation applications store the timestamp when a user interacts
with an item. The availability of this additional data allows algorithms to generate better
recommendations.

Context-aware methods use these timestamps to add context to both historical interac-
tions and recommendation targets, for example, considering the time of day [30, 141], the
day of the week [119] or seasons [52, 55] as context. For a full overview of context-aware
models using time as extra information, we refer the reader to the comprehensive survey
by Kulkarni and Rodd [74].

Another common approach focusses on the sequential information the timestamps imply,
i.e. one event happens after another [57, 86].

Time-aware algorithms use timestamps to account for the age of interaction or the time
between co-occurrences [22, 24]. A final way to use timestamps is to limit training data,
thus improving the quality of trained models (even if these do not take into account
timestamps or order themselves) [66, 127].

Multiple comparative studies of time- and sequence-aware models found that simple
methods such as Sequential Rules [86], Popularity [66], or Session-KNN [86] were strong
baselines, outperforming deep-learning methods. In Ludewig et al. [86] VS-KNN, a
session-based Nearest-Neighbour method, applying a decay to give more weight to
recent interactions when comparing two users, outperformed most other methods. This
idea is expanded in STAN, a Sequence- and Time-Aware Neighbourhood method [42].
Anelli et al. [6] also used a weighted userKNN method to achieve competitive results.

These recent comparative studies [85, 86] did not explore time-aware item-based nearest
neighbour approaches. However, the success of the userKNN variants leads us to believe
they too may achieve competitive results.

ItemKNN methods are despite their age still very popular, thanks to their competitive-
ness [85, 92], and computational efficiency [62]. Besides being more suitable for online
real-time recommendation than user-based methods, itemKNN methods also have an
advantage over many other methods such as embedding or factorization methods, in
that any new user interactions can immediately be used to give more accurate recom-
mendations.

To identify the existing related work on time-aware ItemKNN models, we started from
three surveys written by Campos et al. [24], Bogina et al. [22] and Vinagre and Jorge
[131]. For any work they cite that uses time-aware ItemKNN models, we also look in that
work’s citations. We continue this waterfall search, ending when all relevant mentioned
papers were already encountered.

76 CHAPTER 5. TIME-AWARE ITEM-BASED NEIGHBOURHOOD MODELS

D
in

g
20

05
[3

3]

Le
e

20
08

[7
6]

Li
u

20
10

[8
1]

Li
u

20
12

[8
3]

Va
z

20
13

[1
26

]

Xi
a

20
10

[1
35

]

H
er

m
an

n
20

10
[5

1]

Decay Function Linear ✓
Exponential ✓ ✓ ✓ ✓
Log ✓
Concave ✓

Decay Input Age of events ✓ ✓ ✓ ✓ ✓
Time between events ✓ ✓

Decay applied during training ✓ ✓ ✓ ✓ ✓ ✓
prediction ✓ ✓ ✓ ✓

Similarity Function Cosine ✓ ✓ ✓ ✓
Pearson ✓ ✓
Conditional Prob. ✓
Weighted Cooc. ✓ ✓

Table 5.1: Features discussed in time-aware ItemKNN works

We identified the works presented in Table 5.1 that incorporate temporal dynamics in
item-based nearest neighbour methods. In these works, we identify two classes of time-
aware ItemKNN models.
The first class uses algorithms that apply a decay factor on the interaction matrix, as
summarised by Vinagre and Jorge [131] (time-decay). These methods follow the heuristic
that newer data should be considered more relevant in building models and/or when
predicting the next items of interest [33, 76, 81, 83, 126].
The second class of algorithms looks at the distance in time between visits as additional
information (cooc-decay). When two items are visited further apart, they assume that
there is a weaker signal of relation than when they are visited closely together [51, 135].

We propose a unified framework for the time-decayed models and show that it is a
competitive algorithm, by comparing with strong baselines put forward in Ludewig and
Jannach [85] on large-scale datasets.

We find in our experiments that none of the cooc-decay methods is competitive with
the other methods tested, while the computation is also far less efficient, losing us
the advantage over the user-based approaches. Therefore, we focus on the time-decay
methods, ignoring cooc-decay methods, when constructing the framework in this paper.

5.3. METHODOLOGY 77

5.3 Methodology

We generalise the features present in Table 5.1 into a single framework that covers all of
their features except the option to decay time between interactions, analogous to Campos
et al. [24]. Given a set of users 𝑈 and a set of items 𝐼, the dataset is represented as
𝒟 = {(𝑢, 𝑖, 𝑡) : 𝑢 ∈ 𝑈, 𝑖 ∈ 𝐼 , 𝑡 ∈ N}, a set of user-item-time triples. 𝑋 is the matrix with
the last interaction timestamps: 𝑋𝑢𝑖 = max

𝑢,𝑖,𝑡∈𝒟𝑢𝑖

𝑡 if the user 𝑢 has interacted with the item

𝑖 otherwise it is 0. We define now as max(𝑋) + 1 to avoid 0 age, then 𝐴 contains the
time since the user last interacted with that item, 𝐴𝑢𝑖 = now − 𝑋𝑢𝑖 for each user-item
interaction in 𝒟.

Let 𝑠 : R|𝑈 | ×R|𝑈 | → R be the similarity function between two item vectors, Γ : N|𝑈 |×|𝐼 | →
R|𝑈 |×|𝐼 | a decay function, and 𝑊 = Γ(𝐴) the weighted interaction matrix. The similarity
matrix 𝑆 is computed such that the pairwise similarity between 𝑖 and 𝑗 is 𝑆(𝑖 , 𝑗) =

𝑠(𝑊𝑖 ,𝑊𝑗), where𝑊𝑖 and𝑊𝑗 are both columns of the𝑊 matrix.

Prediction for a user can be seen as the multiplication of the weighted user history vector,
with the computed similarity matrix pred(𝑢) = Γ′(𝐴𝑢)𝑆. Where Γ′ is a second decay
function, that does not have to be the same as the one used during training.

The methods presented in the literature differ in their choices of Γ, Γ′, and 𝑠, we next
discuss the available choices for these components.

5.3.1 Decay Functions

We identified four different decay functions used in the various time-aware algorithm
works. Although it is possible to define infinitely many decay functions, we believe this
selection covers all methods proposed in previous work.

• Exponential decay1: 𝑒−𝛼𝑥 with 𝛼 ∈ R+0
• Linear decay: max(0, 1 − 𝛼 𝑥

max(𝐴𝑢)) with 𝛼 ∈ [0, inf[

• Log decay: log𝛼((𝛼 − 1)(1 − 𝑥
max(𝐴𝑢)) + 1) + 1 with 𝛼 ∈ N+ \ {1}

• Concave decay: 1 − 𝛼1− 𝑥
max(𝐴𝑢) with 𝛼 ∈ [0, 1[

Where 𝑥, 𝑦 ∈ 𝐴𝑢 are ages of interactions, and 𝐴𝑢 is the row with all the ages of the
interactions for a user 𝑢.

To help intuition with the differences between decay functions, we plot them in Figure
5.1. Exponential decay is the steepest of the decay functions, after every 1/𝛼 seconds the
contribution of an event will be divided by 𝑒. Concave and logarithmic decay both result
in similar decay functions. For both, the decay starts slowly, and only the oldest events
are strongly decayed. Intuitively, this could benefit use-cases where events maintain

1Other formulations for exponential decay exist in the literature, such as 𝛼𝑥 [135], or 𝛼𝜆 𝑥𝜇 [125] these can be
changed into the formula used, by choosing the hyper-parameters 𝛼, 𝜆 and 𝜇 appropriately

78 CHAPTER 5. TIME-AWARE ITEM-BASED NEIGHBOURHOOD MODELS

0 500 1000 1500 2000 2500 3000 3500
age

0.0

0.2

0.4

0.6

0.8

1.0

de
ca

ye
d_

va
lu

e

exponential
linear
steeper_linear
concave
log

Figure 5.1: Example decay functions.

relevance for building a model, until at some point they become irrelevant quickly.
Depending on the value of 𝛼, linear decay can be steep or shallow. In the original paper
using linear decay [135], the authors specified a maximal value for 𝛼 of 1. However, in
our model, we allow 𝛼 > 1, labelled as the linear_steeper function in Figure 5.1. When
the decayed value goes below 0, the value is set to 0, and the interaction is effectively
forgotten.

5.3.2 Similarity Functions

A similarity function computes the similarity between two items based on the decayed
ages of interactions with these items. 𝑠 : R|𝑈 | ×R|𝑈 | → R. We use the following similarity
functions extracted from the related work.

Cosine Similarity computes the similarity as the cosine of the angle between the two
weighted vectors.

Sim(𝑖 , 𝑗) =

∑
𝑢∈𝑈

𝑊𝑢,𝑖𝑊𝑢,𝑗√ ∑
𝑢∈𝑈

𝑊2
𝑢,𝑖

√ ∑
𝑢∈𝑈

𝑊2
𝑢,𝑗

Pearson Correlation Accounts for biases in per item scores, assuming that scores dis-
similar from the average value for an item are more informative. It is usually used in
rating prediction tasks. Intuitively, we feel that this measure might not be well suited to
the temporal recommendation use-case, because it removes the decay effect and disre-
gards the assumption that items visited at a similar time are similar. Pearson Correlation
is computed as:

Sim(𝑖 , 𝑗) =

∑
𝑢∈𝑈

(𝑊𝑢,𝑖 −𝑊𝑖)(𝑊𝑢,𝑗 −𝑊𝑗)√ ∑
𝑢∈𝑈

(𝑊𝑢,𝑖 −𝑊𝑖)2
√ ∑

𝑢∈𝑈
(𝑊𝑢,𝑗 −𝑊𝑗)2

Where𝑊𝑖 is the average of all, non-zero, decayed ages of interactions with item 𝑖.

5.4. EXPERIMENTS 79

Dataset |𝒟| |U| |I| Period
Adressa [46] 2 532 729 228 462 2 790 7d
CosmeticsShop [69] 7 877 677 483 080 27 019 152d
Yoochoose [17] 16 044 427 1 882 684 44 415 182d
Amazon
Games [93]

385 543 42 480 14 817 6 928d

Amazon Toys &
Games [93]

1 531 360 172 606 69 716 6 939d

Table 5.2: Properties of datasets used in the experiments.

Conditional Probability (Inspired) Similarity Similarity is computed as:

Sim(𝑖 , 𝑗) =

∑
𝑢∈𝑈

𝑊𝑢,𝑖𝑊𝑢,𝑗

|𝑋𝑖 |

This formula follows the approach taken by Deshpande and Karypis [32] to compute
the similarity between items in a normalised interaction matrix. Although this does not
result in an actual probability, their and our results show that the formula has value on
non-binary matrices. This similarity will favour items that have recently been visited
frequently. We, therefore, expect it to perform well in datasets where the trendiness of
an item is an important factor.

5.4 Experiments

We largely follow the experimental design presented in Verachtert et al. [127]. Their
publicly available code2 formed the basis for our experiments. For clarity, we repeat the
most important concepts of the setup here.

5.4.1 Datasets

We use five large-scale public datasets, namely the news dataset Adressa [46] and the
retail data sets Cosmeticsshop [69], Yoochoose [17], Amazon Games and Amazon Toys
and Games [93].

We present the properties of these datasets in Table 5.2. Reporting the number of
interactions (|𝒟|), number of users (|𝑈 |), number of items (|𝐼 |) and the amount of time
during which data was collected. All three of the datasets contain more than 2.5 million
records, making them far larger than the datasets on which time-aware ItemKNN models
have been evaluated before. The news dataset spans only a week, but due to the typical
dramatic drift in news, this should be plenty of data to showcase the usefulness of the
decay functions. Retail datasets have been collected over multiple months or years,
allowing us to inspect the decay functions when the drift is slow or almost non-existent.

2https://github.com/verachtertr/short-intent

https://github.com/verachtertr/short-intent

80 CHAPTER 5. TIME-AWARE ITEM-BASED NEIGHBOURHOOD MODELS

5.4.2 Algorithms

In our experiments, we compare the five time-aware ItemKNN algorithms we identified
in the literature [33, 76, 81, 83, 126], the optimal version of our unified algorithm (UTARS
ItemKNN), and the best-performing personalised baselines presented in Verachtert et al.
[127]: Sequential Rules(SR) [85, 86], GRU4Rec [134] and EASER [121], as well as the
traditional ItemKNN algorithm [113, 32].

A detailed description of these algorithms can be found in Chapter 2, Section 2.5.

5.4.3 Evaluation metric(s)

To evaluate each algorithm’s quality, we compute their Normalised Discounted Cumu-
lative Gain and (Calibrated) Recall on the top-10 recommendations
(NDCG@10 and Recall@10) [115, 80].

Normalised Discounted Cumulative Gain (NDCG) Ranking metric, computed on a
ranked top-k list, that gives lower values to hits lower down in the ranking of recommen-
dations.

Calibrated Recall Accuracy metric, which computes the portion of the targets that have
been recovered for each user by the recommender system. We use the calibrated variant
proposed by Steck [121] instead of traditional Recall, to avoid unfair low scores for users
with more than 𝑘 targets when evaluating a top-k list (𝑟𝑢).

For the full description of each metric, see Chapter 2, Section 2.7.

5.4.4 Evaluation Scenarios

To investigate the performance of the algorithms in different settings, we look at two dif-
ferent evaluation scenarios. First, we use a timed-last-item scenario, which is a variation
of the traditional last-item splitting technique, which guarantees that training and eval-
uation datasets do not overlap in time, thus avoiding leakage [65]. The second scenario
we evaluate is a purely time-based split, where all of a user’s visits after a timestamp are
the target for prediction.

We presented the details of these scenarios in Chapter 2, Section 2.4.

The timed-leave-last-one-out scenario evaluates models on their ability to predict a single
item at the end of a user session, simulating recommendations on an item page. The
timed scenario focuses on retrieving all users’ interests given the historic data. This
scenario is more closely related to home-page recommendations. Users return and don’t
always have recent interactions, yet we still want to suggest them relevant articles or
products.

5.5. RESULTS 81

5.4.5 Parameter Optimisation

Non-time-aware baselines and cooc-decay methods were optimised using hyperopt3 [19],
following the methodology from Verachtert et al. [127]. Rather than using a random
search, this library uses a Tree-structure Parzen Estimator [18], which optimises the
explored parameters to promising areas of the parameter space.

To find the optimal UTARS settings, we performed a grid search over the various decay
functions Γ and Γ′, decay parameters 𝛼 and similarity measures 𝑠. While this takes much
longer than optimisation using hyperopt, we can be sure that all combinations are tried,
and thus better evaluate the quality of our framework.

When optimising the choice of Γ and Γ′ for the UTARS ItemKNN model, we only allow
configurations where the same decay type is used during training and prediction. The 𝛼
parameter can differ between training and prediction though. Making this simplification
was necessary to avoid exponential growth of the parameter space during optimisation.

The parameters for the original TARS ItemKNN models are similarly optimised via grid
search. The full grids can be found in our public repository4.

For none of the time-aware ItemKNN algorithms do we optimise 𝛿, the amount of
training data, as suggested by the experimental setup we follow [127]. We expect the
decay function to give the old data an appropriate weight, rather than requiring removal.

5.5 Results

5.5.1 Run Time

In Table 5.3, we present how long it takes to train each algorithm on the various datasets.
This training time is an important property when deciding which algorithm to use in a
production setting. Algorithms that require long training times introduce a larger com-
putational cost, that needs to be offset by significant improvements in recommendation
quality.

We train the models on a google cloud instance, with 8 cores and 50 GB of RAM, for the
gradient descent algorithm (GRU4Rec), an NVIDIA T4 GPU is used to speed up training.
We find that EASER fails to train a model on the Yoochoose and Amazon Toys & Games
datasets due to a shortage of memory. The large amount of items in these two datasets,
44 thousand and 69 thousand respectively, causes the dense similarity matrix to become
too large to keep in memory. The ItemKNN methods avoid these issues, by constructing
a sparse similarity matrix, only keeping the 𝐾 most similar items for each (center) item.

ItemKNN and the time-decay variants perform similarly, training their model in just a
few seconds. Sequential Rules and EASE take longer, but still usually remain under 15
minutes. The cooc-decay ItemKNN variants perform much worse comparatively and
take up to 100 times more training time, than the time-decay methods. In the next two

3https://hyperopt.github.io/hyperopt/
4https://anonymous.4open.science/r/TARSItemKNN-7A0A/algorithm_config.py

https://anonymous.4open.science/r/TARSItemKNN-7A0A/algorithm_config.py

82 CHAPTER 5. TIME-AWARE ITEM-BASED NEIGHBOURHOOD MODELS

Adressa Cosmetics-
Shop

Yoochoose Amazon
Games

Amazon
Toys &
Games

Ding 2005 2 20 17 2 9
Lee 2008 55 136 413 11 45
Liu 2010 2 13 15 1 2
Liu 2012 2 19 20 2 10
Vaz 2013 2 17 17 1 4
UTARS ItemKNN 2 14 15 1 2
ItemKNN 1 14 9 2 9
EASE 2 814 - 200 -
SR 107 365 1 029 18 102
GRU4Rec 1 350 16 119 18 150 379 3 369
Hermann 2010 243 5 371 20 728 303 5 174
Xia 2010 98 1 976 8 556 129 2 034

Table 5.3: Training times for each of the algorithms.

Γ Γ′ 𝑠

Adressa exponential,
𝛼 = 1

3∗3600

exponential,
𝛼 = 0

conditional prob.

Cosmeticsshop exponential,
𝛼 = 0

exponential,
𝛼 = 1

3600

cosine similarity

Yoochoose exponential,
𝛼 = 1

14∗24∗3600

exponential,
𝛼 = 1

3600

cosine similarity

Amazon Games linear,
𝛼 = 5

linear,
𝛼 = 1

conditional prob.

Amazon Toys &
Games

exponential,
𝛼 = 0

exponential,
𝛼 = 1

12·3600

cosine similarity

Table 5.4: Optimal parameters for the UTARS ItemKNN algorithm in leave-last-one-out
scenario.

sub-sections, which present the evaluation of the quality of the recommendations, we
also see that neither of these two algorithms makes up for the long training time by
outperforming the other algorithms in recommendation quality. GRU4Rec suffers from
similarly long training times, despite the availability of a GPU.

Due to the long training time of the cooc-decay methods on the Yoochoose dataset,
we decided to exclude these combinations from our experiments. We have sufficient
evidence from the other datasets to analyse their performance.

5.5. RESULTS 83

5.5.2 Leave-last-one-out scenario

The optimal settings for UTARS ItemKNN can be found in Table 5.4. For Adressa and
Amazon Games, we see that conditional probability is the best similarity metric, whereas
for the other retail datasets, it is the cosine similarity that performs best. Given the known
popularity bias in Adressa, it is likely that the conditional probability’s bias towards
recommending these popular articles gives it an edge in the evaluation. For Amazon
Games, there is a similar popularity bias for the recently popular games. The decay
parameters for Adressa, CosmeticsShop and Yoochoose are aligned with the optimal 𝛿
values found in Verachtert et al. [127]. For CosmeticsShop, none of the interactions is
given a lower weight, as no decay is applied during training. With Yoochoose, we see
that a half-life of two weeks performs optimally. This is clearly linked to the experiments
of Verachtert et al. [127] which found an optimal performance only using the most
recent 10 days for training non-time-aware models. The news dataset Adressa has an
even shorter optimal half-life of three hours, quickly reducing the relevance of older
interactions as the more recent ones are more important to recommend the immediate
future. During prediction, we do see an opposite pattern, Adressa histories are not
decayed, thus solely relying on the decay during prediction, to reduce the importance of
less relevant historical items. For the CosmeticsShop and Yoochoose datasets, the optimal
parameters conversely both have a strong decay (𝛼 = 1

3600), when predicting, we are best
to give only the user’s very recent interactions a high weight. These results clearly show
that it is important to decouple the decay parameters from training and prediction since
they serve different purposes. During training, the decay indicates the relevance of an
event to find similarities with other items, while during prediction, the decay matches
the interactions’ weights to their relevance for the intent of the user. On Amazon Games,
we see that the optimal decay is a linear decay, with the steepest decay (𝛼 = 5) during
training, this indicates that the dataset’s most relevant training data is the most recent
data. This makes sense, usually the most recent games are the ones that users are most
likely to purchase and review. On Amazon Toys & Games we see optimal settings that
are similar to CosmeticsShop and Yoochoose, only Γ′, the prediction decay function, is
slightly shallower, but given the longer period over which the dataset has been collected,
the resulting decay for most interactions is roughly the same.

Comparing the algorithm results in Table 5.5 and 5.6, we note that the optimal settings on
most retail datasets for UTARS correspond to the algorithm proposed by Liu et al. [81],
exponential decay with cosine similarity. The Sequential Rules algorithm outperforms
UTARS on CosmeticsShop and Yoochoose datasets in this scenario. On both Amazon
datasets SR is outperformed by the UTARS ItemKNN algorithm, indicating that the
reviews contain less sequential information, though on Amazon Games EASER trained
on recent data improves on UTARS ItemKNN.

For Adressa, the use of a conditional probability similarity function and exponential
decay result in a dramatic uplift compared to the other algorithms. Thanks to these
settings, the algorithm manages to recommend recently popular items to the right people,
strongly improving over the other baselines.

84 CHAPTER 5. TIME-AWARE ITEM-BASED NEIGHBOURHOOD MODELS

Adressa Cosmetics-
Shop

Yoochoose Amazon
Games

Amazon
Toys &
Games

Ding 2005 2.55 6.43 16.89 3.26 3.50
Lee 2008 1.40 5.01 17.10 3.06 2.85
Liu 2010 3.81 6.43 18.53 3.63 3.50
Liu 2012 0.60 4.87 16.59 3.17 2.84
Vaz 2013 2.15 5.89 17.16 1.74 1.59
GRU4Rec 3.87 3.30 13.61 1.54 0.50
EASER 8.69 4.60 - 4.03 -
SR 4.53 7.23 20.69 3.41 3.11
ItemKNN 5.40 4.90 17.84 3.31 2.86
UTARS ItemKNN 12.05 6.43 18.53 3.95 3.50
Hermann 2010 1.78 0.0 - 0.53 0.02
Xia 2010 0.44 0.29 - 1.58 1.04

Table 5.5: NDCG@10 results for the leave-last-one-out scenario. EASE could not be run
on the Yoochoose dataset due to memory constraints.

Adressa Cosmetics-
Shop

Yoochoose Amazon
Games

Amazon
Toys &
Games

Ding 2005 4.13 10.89 28.78 5.50 5.02
Lee 2008 2.65 8.90 29.39 5.11 4.26
Liu 2010 7.19 10.89 31.21 5.75 5.02
Liu 2012 1.14 8.56 28.40 5.26 4.21
Vaz2013 4.37 9.88 28.96 2.55 2.43
GRU4Rec 7.60 5.40 23.88 3.24 0.79
EASER 13.46 7.98 - 6.73 -
SR 9.15 12.00 32.61 5.60 4.33
ItemKNN 10.63 8.70 30.26 5.65 4.30
UTARS ItemKNN 20.24 10.89 31.21 6.63 5.02
Hermann 2010 3.32 0.01 - 1.23 0.04
Xia 2010 0.73 0.52 - 3.29 1.92

Table 5.6: Recall@10 results for the leave-last-one-out scenario. EASE could not be run
on the Yoochoose dataset due to memory constraints.

5.5. RESULTS 85

Γ Γ′ 𝑠

Adressa exponential,
𝛼 = 1

3600

exponential,
𝛼 = 1

12·3600

conditional prob.

Cosmeticsshop exponential,
𝛼 = 0

exponential,
𝛼 = 0

conditional prob.

Yoochoose concave,
𝛼 = 0.8

concave,
𝛼 = 0.5

cosine similarity

Amazon Games linear,
𝛼 = 5

linear,
𝛼 = 5

conditional prob.

Amazon Toys &
Games

linear,
𝛼 = 1

linear,
𝛼 = 5

conditional prob.

Table 5.7: Optimal parameters for the UTARS ItemKNN algorithm in the timed-split
scenario.

5.5.3 Timed split scenario

Comparing the optimal parameters for the timed scenario with the optimal parameters
for the leave-last-one-out scenario, we immediately see that exponential decay is less
prevalent than in the last-item scenario. On CosmeticsShop, disabling decay performs
optimally, while on Yoochoose the concave decay performs the best. Cosine similarity is
also outperformed by conditional probability on the CosmeticsShop dataset. For Adressa
we notice an even steeper training decay as well as now decaying user histories as well.
Given that the two tasks are significantly different, we see that through parameter tuning
we can adapt the model to be more suited for the task at hand. Contrasting to the
strong prediction decays for the leave-last-one-out scenario, we see here that putting
equal weight on historic interactions allows for a more personalised experience in the
retail datasets.

The results for the timed split scenario are found in Tables 5.8 and 5.9. Our unified
framework outperforms or matches the other TARS ItemKNN models, and it is the best-
performing algorithm on both Amazon Datasets. SR still outperforms the other methods
on CosmeticsShop and Yoochoose datasets but is outperformed by the UTARS ItemKNN
method on the Adressa dataset. The strong performance of Sequential Rules even on
the timed scenario is surprising, given that this algorithm only uses a user’s last seen
item to generate recommendations. We surmise that the algorithm is able to perform
so well on these retail datasets by correctly predicting items that often occur close to
the user’s last item. On the Yoochoose dataset, also ItemKNN baseline outperforms
the UTARS method. Note that this method was trained on an optimised window of
data, indicating that none of our decay functions was able to correctly account for the
type of drift present in this dataset for this particular scenario. Concave decay was the
optimal decay of the ones we investigated, but it seems to be not flexible enough to give
enough events equal weight before strongly discounting older interactions. A stepwise
or sigmoid decay might be worth looking into for this type of scenarios. As in the first
scenario, the cooc-decay methods are clearly outperformed. Despite the intuition that
we can find better similarities when considering the time between events, this does not
translate to better performance on any of the datasets.

86 CHAPTER 5. TIME-AWARE ITEM-BASED NEIGHBOURHOOD MODELS

Adressa Cosmetics-
Shop

Yoochoose Amazon
Games

Amazon
Toys &
Games

Ding 2005 1.53 4.28 9.18 2.46 1.07
Lee 2008 0.93 3.48 8.37 1.71 0.76
Liu 2010 3.04 3.49 8.81 1.80 0.77
Liu 2012 0.46 3.42 8.68 1.68 0.75
Vaz 2013 1.50 3.05 6.51 0.42 0.33
GRU4Rec 9.55 2.30 5.51 1.12 0.21
EASER 6.26 3.98 - 2.07 -
SR 6.32 7.25 18.52 1.81 0.60
ItemKNN 7.09 4.29 17.86 1.78 1.01
UTARS ItemKNN 18.48 4.46 10.73 2.94 1.08
Hermann 2010 1.50 0.09 - 0.53 0.01
Xia 2010 0.43 0.46 - 1.50 0.10

Table 5.8: NDCG@10 results for the timed split scenario. EASE could not be run on
the Yoochoose and Amazon Toys and Games datasets due to memory constraints. The
approaches proposed by Hermann [51] and Xia et al. [135] were not usable on the
CosmeticsShop and Yoochoose datasets due to run-time constraints.

Adressa Cosmetics-
Shop

Yoochoose Amazon
Games

Amazon
Toys &
Games

Ding 2005 2.02 5.56 13.36 3.71 1.55
Lee 2008 1.46 4.60 14.19 2.78 1.17
Liu 2010 4.64 4.57 13.55 3.02 1.19
Liu 2012 0.74 4.50 12.94 2.66 1.17
Vaz 2013 2.52 3.97 7.94 0.86 0.55
GRU4Rec 19.19 2.86 2.50 2.09 0.34
EASER 10.35 5.17 - 3.30 -
SR 11.24 11.97 32.69 3.06 0.85
ItemKNN 11.10 6.32 30.28 2.80 1.59
UTARS ItemKNN 24.38 5.72 15.05 4.88 1.72
Hermann 2010 3.06 0.01 - 0.53 0.01
Xia 2010 0.89 0.53 - 1.50 0.08

Table 5.9: Recall@10 results for the timed split scenario. EASE could not be run on
the Yoochoose and Amazon Toys and Games datasets due to memory constraints. The
approaches proposed by Hermann [51] and Xia et al. [135] were not usable on the
CosmeticsShop and Yoochoose datasets due to run-time constraints.

5.6. CONCLUSION 87

5.6 Conclusion

We have shown that the unified framework we propose helped to find settings that im-
prove on the known time-aware ItemKNN variants. The parameters can be tuned to
different tasks through optimisation, e.g., next-item-in-session prediction or homepage
recommendations. Thanks to the flexibility of the framework, the algorithm is competi-
tive on all datasets, usually ranking first or second among the methods tested. As such,
Time-Aware ItemKNN models are competitive with other baselines in the evaluation of
time-aware algorithms.

88 CHAPTER 5. TIME-AWARE ITEM-BASED NEIGHBOURHOOD MODELS

Chapter 666
The Impact of a Popularity Punishing

Parameter on ItemKNN
Recommendation Performance

Collaborative filtering techniques have a tendency to amplify popularity biases present in the train-
ing data if no countermeasures are taken. The ItemKNN algorithm with conditional probability-
inspired similarity function has a hyperparameter 𝛼 that allows one to counteract this popularity
bias. In this chapter, we perform a deep dive into the effects of this hyperparameter in both online
and offline experiments, with regard to both accuracy metrics and equality of exposure. Our
experiments show that the hyperparameter can indeed counteract popularity bias in a dataset. We
also find that there exists a trade-off between countering popularity bias and the quality of the
recommendations: Reducing popularity bias too much results in a decrease in click-through rate,
but some counteracting of popularity bias is required for optimal online performance. 1

1Chapter based on “The Impact of a Popularity Punishing Parameter on ItemKNN Recommendation Per-
formance”. Robin Verachtert, Lien Michiels, Jeroen Craps and Bart Goethals. Accepted at the European
Conference on Information Retrieval 2023.

89

90
CHAPTER 6. THE IMPACT OF A POPULARITY PUNISHING PARAMETER ON

ITEMKNN RECOMMENDATION PERFORMANCE

6.1 Introduction

Collaborative filtering algorithms are widely used for recommendation systems. To make
predictions of what users may like, they rely on past preferences for items expressed by
users. These preferences can, for example, be expressed by interacting with an item.
Collaborative filtering methods can suffer from a ‘rich get richer’ effect when they fail
to address the popularity bias in the data. For example, when some items are visited
more often by users, the recommendation algorithm is also more likely to recommend
them. This bias towards already popular items is generally considered undesirable, and
many solutions have been proposed to address this bias [e.g. 1, 89, 143]. Even some
of the earlier works on collaborative filtering were mindful of this inherent popularity
bias. When Deshpande and Karypis [32] proposed the ItemKNN algorithm, they added
a hyperparameter 𝛼 to their conditional probability-inspired similarity function with
the explicit purpose of discounting popular items that may otherwise dominate rec-
ommendations. Recent works have shown that despite advances in the field, ItemKNN
and other nearest neighbour-based methods are still competitive, provided they are well-
tuned [38, 37, 86, 127]. Because of their inherent scalability, they remain popular methods
in production environments.

In this chapter, we investigate how different values of the hyperparameter 𝛼 impact
performance and equality of exposure, as a measure of popularity bias, in both offline
and online experiments with ItemKNN on three news datasets.

We answer the following three research questions:

• RQ1: How does the hyperparameter 𝛼 impact the equality of exposure?

• RQ2: How does the hyperparameter 𝛼 impact accurracy and CTR results?

• RQ3: Do the offline and online results agree?

Our work is done in the context of the popular item-to-item recommendation paradigm,
recommending similar items in the context of another item, which we will refer to as
context item. We focus our work on the news domain, as they have a specific interest
in combatting popularity bias for ethical reasons, and, of course, because our partners
agreed to perform the online tests discussed in this chapter. All data processed in
these experiments was collected in accordance with GDPR: Users consented to receive
personalised recommendations, as well as to have their data analysed and to participate
in AB testing.

We find that the hyperparameter 𝛼 can be used to increase the equality of exposure.
Secondly, we find that it is necessary to seek a trade-off between equality of exposure and
recommendation quality. We leave a thorough investigation into this trade-off for future
work. Finally, we note that our offline and online results do not align due to the inherent
popularity bias persisted in the offline evaluation [16].

6.2. RELATED WORK 91

6.2 Related Work

Popularity bias has been extensively studied in the context of recommender sys-
tems [e.g. 1, 89, 143]. Although the effect of popularity bias on ItemKNN has been
studied [3], to the best of our knowledge, the impact of the hyperparameter 𝛼 on pop-
ularity bias has not. In the original work by Deshpande and Karypis [32], the impact
of 𝛼 is evaluated solely in terms of MRR and HitRate, both accuracy measures. Recent
work by Pellegrini et al. [99] suggests that not recommending popular items makes rec-
ommendations more personalised and can positively impact the recommender system’s
performance.

ItemKNN remains a popular and competitive baseline, despite recent advances in rec-
ommendation algorithms [38, 37, 86, 127].
Due to their scalability, neighbourhood-based methods such as ItemKNN remain a pop-
ular choice in production settings [12, 34, 71, 106]. Therefore, a thorough investigation of
how the popularity bias can be countered is of great practical relevance.

Offline and online results often do not correlate [16, 41, 110], although some works
have achieved success [45, 90]. Popularity bias is an important factor in this failure to
correlate and thus we investigate its impact in this chapter[16].

6.3 Experimental Setup

In this chapter, we focus on the item-to-item recommendation problem. The recommen-
dation system needs to recommend users new items while they are currently visiting an
item page on the website. The item the user is visiting is the only information the system
uses to generate recommendations.

The dataset 𝒟 consists of triplets (𝑢, 𝑖, 𝑡) where 𝑢 ∈ 𝑈 is the user, 𝑖 ∈ 𝐼 is the item, and
𝑡 ∈ N is the timestamp of when user 𝑢 interacted with item 𝑖. Then the recommendation
for user 𝑢 is a function: 𝜙(𝒟 𝑙

𝑢), where 𝒟𝑢 is the list of items that the user has seen and
𝒟 𝑙
𝑢 is the last item that the user has seen.

6.3.1 Algorithm

We use the ItemKNN algorithm, with the similarity between items computed using the
conditional probability-inspired similarity function, defined as

𝑠𝑖𝑚(𝑖 , 𝑗) = |{𝑢 |𝑖 , 𝑗 ∈ 𝒟𝑢}|
|{𝑢 |𝑖 ∈ 𝒟𝑢}| · |{𝑢 | 𝑗 ∈ 𝒟𝑢}|𝛼

Here, 𝑖 is a context item, 𝑗 is a target item and 𝛼 is a hyperparameter that punishes
popular items in the similarity computation [32].
Specific values for 𝛼 can be linked to other similarity measures. When 𝛼 = 1 it provides

92
CHAPTER 6. THE IMPACT OF A POPULARITY PUNISHING PARAMETER ON

ITEMKNN RECOMMENDATION PERFORMANCE

Website
Users

(per day)

Articles
read

(per day)
Clicks

(per day) |𝑈 | |𝐼 | |𝒟|
Gini

coeff.
NP1 300K 1M 25K 410 843 2 382 4 049 944 0.79
NP2 200K 800K 14K 234 839 2 404 2 852 956 0.77
NP3 1M 4M 160K 1 215 900 5 531 13 842 991 0.88

Table 6.1: Statistics of websites used in the online tests.

the same recommendations as the lift similarity measure. In the specific case of item-to-
item recommendations, 𝛼 = 0.5 leads to the same recommendations as cosine similarity.

6.3.2 Metrics

To evaluate the exposure of articles, we measure both the item-space coverage and
the Gini coefficient as suggested in previous works on evaluation [47, 26]. Coverage
computes the percentage of the available catalogue recommended at least once during
an experiment, while the Gini coefficient gives more insight into the recommendation
distribution by measuring the inequalities in the number of recommendations each item
in the catalogue receives. To evaluate the accuracy of the recommendations, we measured
normalised discounted cumulative gain (NDCG) [59], recall [47] and mean reciprocal
rank [47]. For brevity, we report only the NDCG results in this chapter. Both other
accuracy metrics support the same findings. In online trials, we evaluate the quality of
the recommendations by click-through rate (CTR).

6.3.3 Datasets

For our experiments, we use three different newspaper websites as our testing platforms,
referred to as NP1, NP2 and NP3. The statistics of online traffic and offline exports on
these websites can be found in Table 6.1. Offline datasets are constructed by selecting
events from an eight-day window on the website.

6.3.4 Offline experiments

In our offline experiments, we closely mimic the online setup. The first day of our eight-
day dataset is used to make sure that we always have a full day of training data when
training a model. The second day is used for optimising other hyperparameters than
𝛼. The last six days are used for evaluation. Models are trained, following the online
setting, on a single day of training data. During optimisation and evaluation, we expect
the model to predict a user’s last event between 10 AM and 2 PM on each day, using their
second to last event in that window as the context item. The measurements from each of
the six evaluation days are averaged and reported in this chapter.

As our online tests show three items to the user, we also evaluate the offline metrics on
the top three recommendations.

6.4. EXPERIMENTS 93

Coverage@3 (%) Gini coeff.
𝛼 0.0 0.2 0.5 0.7 1.0 0.0 0.2 0.5 0.7 1.0
NP1 71 87 94 97 95 0.91 0.89 0.83 0.79 0.76
NP2 57 78 93 94 94 0.92 0.90 0.83 0.78 0.76
NP3 78 94 97 100 99 0.91 0.90 0.80 0.70 0.70

Table 6.2: Coverage and Gini coefficient results for each of the hyperparameter configu-
rations in the online experiments.

We ran our experiments for 𝛼 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. For our online
tests, we selected 𝛼 ∈ {0, 0.2, 0.5, 0.7, 1}, as they resulted in different exposure distribu-
tions. For brevity, we only report results for these values of 𝛼.

6.3.5 Online Experiments

Recommendations were displayed in a horizontal list of three items, just after the end of
an article. The models for both the control and treatment groups are re-trained every 15
minutes, using a day of training data, following the results from Chapter 4. In order to
evaluate the impact of 𝛼 in a real and dynamic environment, we performed a sequence
of trials. In each of these trials, a control group of 75% of the users received recommen-
dations using 𝛼 = 0.5. The treatment group (25% of users) received recommendations
using a different 𝛼 ∈ {0, 0.2, 0.7, 1} for each trial period. As it is not possible to compare
the CTR between treatment groups, we instead use the lift in CTR for each treatment
group compared to the control group during each trial.

6.4 Experiments

6.4.1 RQ1: How Does the Hyperparameter 𝛼 Impact the Equality of
Exposure?

In Table 6.2 we show that increasing 𝛼 leads to higher coverage and to more equal expo-
sure between items. Increasing 𝛼 from 0.7 to 1.0 does lead to only minor improvements
in the Gini coefficient and to a reduction of coverage in two datasets.
In Figure 6.1 we look beyond the metrics and inspect how the 𝛼 hyperparameter impacts
how often items are recommended on the NP3 website. Items are sorted by popularity,
from most popular to least popular along the x-axis. When 𝛼 is 0, almost all recommen-
dations are from the most popular items. As the value of the hyperparameter increases,
more and more different items are recommended, until the distribution shifts when 𝛼 is
1, and mostly unpopular items are recommended. This insight explains the slight de-
crease in coverage for some of the datasets, and why the Gini coefficient did not decrease
further when increasing 𝛼 to the max. These distribution plots, also show that none of
the 𝛼 settings provides true equality of exposure, as the middle section of items is always
under-recommended, compared to popular or unpopular items depending on the value
of 𝛼.

94
CHAPTER 6. THE IMPACT OF A POPULARITY PUNISHING PARAMETER ON

ITEMKNN RECOMMENDATION PERFORMANCE

0 2000
Pop rank

101

102

103

104

105

Co
un

t

Alpha = 0

0 2000
Pop rank

102

103

104

105

Co
un

t

Alpha = 0.2

0 2000
Pop rank

103

104

105

Co
un

t

Alpha = 0.5

0 2000
Pop rank

104

105

Co
un

t

Alpha = 0.7

0 2000
Pop rank

102

103

104

105

Co
un

t

Alpha = 1

Figure 6.1: Number of times items are recommended on the NP3 website experiment,
ranked by popularity. The lowest rank is the most visited item.

NDCG@3 (%) CTR lift (%)
𝛼 0.0 0.2 0.5 0.7 1.0 0.0 0.2 0.5 0.7 1.0
NP1 8.52 9.15 7.68 5.27 0.70 -6.40 -4.05 0 -4.82 -21.26
NP2 5.54 6.43 6.41 4.47 1.07 -3.28 -1.28 0 -6.12 -26.45
NP3 6.44 7.02 6.48 4.16 0.40 -6.87 -3.91 0 -6.93 -31.60

Table 6.3: NDCG@3 (offline) results and CTR (online) results. CTR results are relative
performance compared to the control setting (𝛼 = 0.5).

6.4.2 RQ2: How Does the Hyperparameter 𝛼 Impact Accurracy and
CTR Results?

In Table 6.3, we show the NDCG@3 for each of the settings of 𝛼 in our offline tests and
the lift in CTR during the online tests.
In the offline experiments increasing the 𝛼 hyperparameter beyond 0.2 leads to a decrease
in performance. As less popular items are recommended, accuracy suffers. Online we
find a similar result, higher values of 𝛼 do not correlate with a higher CTR. However,
maximal online performance is reached with the control setting of 𝛼 = 0.5.

So, while a higher 𝛼 results in a higher coverage and a lower Gini coefficient, both the
click-through rate and the NDCG show a decrease in performance when we increase 𝛼
too much. In our news use-cases, exposure equality and countering popularity bias need
to be balanced with recommendation performance. Popular items are relevant to many
users, and so if we want to showcase more, less popular, items, we might need to accept
a performance decline.

6.4.3 RQ3: Do the Offline and Online Results Agree?

In the offline results, the optimal setting for all datasets is 𝛼 = 0.2. However, in our online
results, 𝛼 = 0.2 is not optimal, instead 𝛼 = 0.5 is the optimal setting.

Our datasets, like many news datasets, show an unbalanced reading behaviour, indicated

6.5. CONCLUSION 95

by the high Gini coefficient in Table 6.1. Users read the most popular items much more
often than the other items. This popularity bias leads to higher performance in offline
results for algorithms with more popularity bias (lower 𝛼). However, in the production
setting, recommending mostly popular items leads to recommending popular items not
related to the context item. Users looking for related articles do not click on these
popularity-based recommendations. These results follow the common finding, due to
popularity bias offline and online results do not align nicely. However, we can see the
value of the offline experimentation in the performance of the 𝛼 = 1 setting. The bad
offline performance is reflected in the online results.

6.5 Conclusion

We find that while the hyperparameter 𝛼 is able to counteract popularity bias, it is only
a proxy for true exposure equality. Therefore, further research is required on how to
combat the popularity bias of the ItemKNN algorithm. Secondly, we note that our offline
and online results do not align, due to the inherent popularity bias in typical offline
evaluation [16, 15, 139]. Our findings suggest that it is worthwhile to opt for suboptimal
offline test results in terms of accuracy, but with a lower Gini index. However, a trade-
off should be sought between fair exposure and user experience. We leave a thorough
investigation of this trade-off and a framework for determining the setting most likely to
perform best in online tests for future work. Finally, we note that our results are limited
to the news domain. We see no reason to believe that our findings will not generalize
to other domains, as they were not dependent on specific characteristics of the news
context.

96
CHAPTER 6. THE IMPACT OF A POPULARITY PUNISHING PARAMETER ON

ITEMKNN RECOMMENDATION PERFORMANCE

Chapter 777
Conclusions and Future Work

7.1 Conclusions

When we leave the controlled environment of experimentation and use recommender
systems in production environments, we encounter additional complexities, and known
problems become more difficult. One particularly interesting complication is the effect
of temporal dynamics. Recommendation systems by their very nature are exposed to
constantly changing environments and users. In this thesis, we investigated ways to
mitigate and exploit the impact of temporal dynamics on recommendation performance.
We found that ignoring the temporal dynamics results in poor performance, regardless
of the algorithm’s quality.

The presence of change in real-world applications forces practitioners to reason about
updating models, and when to do so. We find that scheduling the model updates based
on the amount of information collected since the last update is a more efficient method
than using the commonly used regular interval-based method. The smart scheduling
approaches maintain performance, while being significantly cheaper, or increase perfor-
mance for the same cost, depending on the availability of resources.

Further, we found that when computing models, it is vital to reason about how much data
is used to train the model. An immediate result of using less data is that it reduces training
time and costs, both of which are important functional requirements for a production
environment. The less obvious finding is that using less data also improves performance
drastically for many methods. This increase causes simple baseline methods like Item-
KNN and Popularity to outperform more complex deep learning methods when used
in dynamic environments. By using only recent data, we can teach these models with
limited capacity, about only the relevant information from the recent past.

The ideal situation, is obviously that the model can choose which events are relevant
and which are not. We addressed this desire by proposing a framework for time-aware
item-based nearest neighbour methods, which apply a decay function before computing
similarities. This approach still follows the heuristic that older data is less relevant
but keeps it in the model to provide additional information. We find that this indeed
improves normal ItemKNN methods, which are only trained on the most recent data.

Finally, we investigated how we can avoid popularity bias in the recommendations, and

97

98 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

the impact this has on users’ interactions with the recommendations. We performed
an extensive offline and online experiment that compared the impact we can have on
coverage, popularity bias, and recommendation quality when we punish popular items
in an item-based nearest neighbour approach. We find that punishing popular items
indeed improves recommendation quality, click-through rates, as well as the fairness of
exposure, though overdoing it results in catastrophic performance degradation.

7.2 Future Work

Long Term Interests In our work, we have focused on the “short-term” interests and
exploited recent interactions to predict the immediate next visited item(s). The goal
of personalisation, though, should be to also use the longer-term history of each user,
to provide an even more unique experience tailored to each individual. Of particular
interest in this area, is the recommendation of niche items to the users that are interested
in this topic. The challenge comes from the fact that these niche interests are usually less
represented in the dataset than popular topics, they have fewer articles, and finally, there
is usually more time between publications of the articles. All of these factors introduce
an extremely sparse pattern that is hard to surface by traditional collaborative filtering
means. Specific methods to look for these sparse patterns can help news publishers get
the right news to the right people.

Efficient algorithms Most companies that use recommender systems have a tight bud-
get to use to serve and train their recommendation models. So for them, the ability to
efficiently compute small models that still get high quality is an important asset. Recent
advances in deep learning often result in algorithms that are high in resources, training
time, and model size. Further research into algorithms that are both efficient to compute
and can be served with minimal resources will make advances available to small- and
medium-sized companies as well as the tech giants that are mostly served right now.

Scheduling Our scheduling systems were based on heuristics, which showed a corre-
lation with better scheduling moments. Approaching the scheduling problem from a
control systems angle could help further improve scheduling, and allow an even better
return on investment for companies in their recommendation models. We considered,
but never completed avenues using reinforcement learning (RL) and counterfactual rea-
soning, both of which seem suitable for application to the scheduling problem. Using
RL, the agent would have to decide on one of two actions (update or no update), and the
reward function is a combination of cost (negative) and performance (positive). Coun-
terfactual reasoning, then, would try to answer the question of what would happen if we
did schedule an update, or not.

Bibliography

[1] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. Controlling Pop-
ularity Bias in Learning-to-Rank Recommendation. In Proceedings of the Eleventh
ACM Conference on Recommender Systems, RecSys ’17, page 42–46, New York, NY,
USA, 2017. Association for Computing Machinery. ISBN 9781450346528. doi:
10.1145/3109859.3109912. 90, 91

[2] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. Controlling Pop-
ularity Bias in Learning-to-Rank Recommendation. In Proceedings of the Eleventh
ACM Conference on Recommender Systems, RecSys ’17, page 42–46, New York, NY,
USA, 2017. Association for Computing Machinery. ISBN 9781450346528. doi:
10.1145/3109859.3109912. URL https://doi.org/10.1145/3109859.3109912. 5

[3] Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher.
The Unfairness of Popularity Bias in Recommendation. CEUR Workshop Proceedings,
2440, 2019. URL https://ceur-ws.org/Vol-2440/paper4.pdf. 91

[4] Charu C. Aggarwal. Recommender Systems: The Textbook. Springer International
Publishing, Cham, 2016. ISBN 978-3-319-29659-3. doi: 10.1007/978-3-319-29659-3.
URL https://doi.org/10.1007/978-3-319-29659-3. 13, 29, 32

[5] Marie Al-Ghossein, Pierre-Alexandre Murena, Talel Abdessalem, Anthony Barré,
and Antoine Cornuéjols. Adaptive collaborative topic modeling for online rec-
ommendation. In Proceedings of the 12th ACM Conference on Recommender Sys-
tems, RecSys ’18, page 338–346, New York, NY, USA, 2018. Association for Com-
puting Machinery. ISBN 9781450359016. doi: 10.1145/3240323.3240363. URL
https://doi.org/10.1145/3240323.3240363. 40, 43

[6] Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Azzurra Ragone, and
Joseph Trotta. Local popularity and time in top-n recommendation. In Leif
Azzopardi, Benno Stein, Norbert Fuhr, Philipp Mayr, Claudia Hauff, and Djo-
erd Hiemstra, editors, Advances in Information Retrieval, pages 861–868, Cham,
2019. Springer International Publishing. ISBN 978-3-030-15712-8. doi: 10.1007/
978-3-030-15712-8_63. 63, 75

[7] Vito Walter Anelli, Alejandro Bellogin, Antonio Ferrara, Daniele Malitesta, Fe-
lice Antonio Merra, Claudio Pomo, Francesco Maria Donini, and Tommaso
Di Noia. Elliot: A comprehensive and rigorous framework for reproducible
recommender systems evaluation. In Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’21,
page 2405–2414, New York, NY, USA, 2021. Association for Computing Ma-
chinery. ISBN 9781450380379. doi: 10.1145/3404835.3463245. URL https:
//doi.org/10.1145/3404835.3463245. 12

99

https://doi.org/10.1145/3109859.3109912
https://ceur-ws.org/Vol-2440/paper4.pdf
https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1145/3240323.3240363
https://doi.org/10.1145/3404835.3463245
https://doi.org/10.1145/3404835.3463245

100 BIBLIOGRAPHY

[8] Susan C. Anyosa, João Vinagre, and Alípio M. Jorge. Incremental matrix co-
factorization for recommender systems with implicit feedback. In Companion
Proceedings of the The Web Conference 2018, WWW ’18, page 1413–1418, Republic
and Canton of Geneva, CHE, 2018. International World Wide Web Conferences
Steering Committee. ISBN 9781450356404. doi: 10.1145/3184558.3191585. URL
https://doi.org/10.1145/3184558.3191585. 40

[9] Imad Aouali, Amine Benhalloum, Martin Bompaire, Benjamin Heymann, Olivier
Jeunen, David Rohde, Otmane Sakhi, and Flavian Vasile. Offline Evaluation of
Reward-Optimizing Recommender Systems: The Case of Simulation, 2022. URL
https://arxiv.org/abs/2209.08642. 7

[10] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and An-
gela Y. Wu. An optimal algorithm for approximate nearest neighbor search-
ing fixed dimensions. J. ACM, 45(6):891–923, nov 1998. ISSN 0004-5411. doi:
10.1145/293347.293348. URL https://doi.org/10.1145/293347.293348. 42

[11] Maryam Aziz, Jesse Anderton, Kevin Jamieson, Alice Wang, Hugues Bouchard,
and Javed Aslam. Identifying new podcasts with high general appeal using a
pure exploration infinitely-armed bandit strategy. In Proceedings of the 16th ACM
Conference on Recommender Systems, RecSys ’22, page 134–144, New York, NY, USA,
2022. Association for Computing Machinery. ISBN 9781450392785. doi: 10.1145/
3523227.3546766. URL https://doi.org/10.1145/3523227.3546766. 3

[12] Riccardo Bambini, Paolo Cremonesi, and Roberto Turrin. A Recommender System
for an IPTV Service Provider: a Real Large-Scale Production Environment, pages 299–
331. Springer US, Boston, MA, 2011. ISBN 978-0-387-85820-3. doi: 10.1007/
978-0-387-85820-3_9. 91

[13] Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. A generic
coordinate descent framework for learning from implicit feedback. In Proceedings
of the 26th International Conference on World Wide Web, WWW ’17, page 1341–1350,
Republic and Canton of Geneva, CHE, 2017. International World Wide Web Con-
ferences Steering Committee. ISBN 9781450349130. doi: 10.1145/3038912.3052694.
URL https://doi.org/10.1145/3038912.3052694. 19, 62, 64

[14] Joeran Beel and Victor Brunel. Data pruning in recommender systems research:
Best-practice or malpractice? In 13th ACM Conference on Recommender Systems
(RecSys), 2019. 47

[15] Joeran Beel and Stefan Langer. A Comparison of Offline Evaluations, Online Evalu-
ations, and User Studies in the Context of Research-Paper Recommender Systems.
In Sarantos Kapidakis, Cezary Mazurek, and Marcin Werla, editors, Research and
Advanced Technology for Digital Libraries, pages 153–168, Cham, 2015. Springer Inter-
national Publishing. ISBN 978-3-319-24592-8. doi: 10.1007/978-3-319-24592-8_12.
95

[16] Joeran Beel, Marcel Genzmehr, Stefan Langer, Andreas Nürnberger, and Bela Gipp.
A Comparative Analysis of Offline and Online Evaluations and Discussion of Re-
search Paper Recommender System Evaluation. In Proceedings of the International
Workshop on Reproducibility and Replication in Recommender Systems Evaluation, Rep-
Sys ’13, page 7–14, New York, NY, USA, 2013. Association for Computing Machin-
ery. ISBN 9781450324656. doi: 10.1145/2532508.2532511. 90, 91, 95

https://doi.org/10.1145/3184558.3191585
https://arxiv.org/abs/2209.08642
https://doi.org/10.1145/293347.293348
https://doi.org/10.1145/3523227.3546766
https://doi.org/10.1145/3038912.3052694

BIBLIOGRAPHY 101

[17] David Ben-Shimon, Alexander Tsikinovsky, Michael Friedmann, Bracha Shapira,
Lior Rokach, and Johannes Hoerle. Recsys challenge 2015 and the yoochoose
dataset. In Proceedings of the 9th ACM Conference on Recommender Systems, RecSys ’15,
page 357–358, New York, NY, USA, 2015. Association for Computing Machinery.
ISBN 9781450336925. doi: 10.1145/2792838.2798723. URL https://doi.org/10.
1145/2792838.2798723. 15, 64, 79

[18] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for
hyper-parameter optimization. 24, 2011. URL https://proceedings.neurips.
cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf. 66, 81

[19] James Bergstra, Daniel Yamins, and David Cox. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures.
In Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th Interna-
tional Conference on Machine Learning, volume 28 of Proceedings of Machine Learning
Research, pages 115–123, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL
https://proceedings.mlr.press/v28/bergstra13.html. 66, 81

[20] Albert Bifet and Ricard Gavaldà. Learning from time-changing data with adaptive
windowing. In Proceedings of the 2007 SIAM International Conference on Data Mining
(SDM), pages 443–448, 2007. doi: 10.1137/1.9781611972771.42. URL https://
epubs.siam.org/doi/abs/10.1137/1.9781611972771.42. 42, 43, 63

[21] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. The
Journal of Machine Learning Research, 3(null):993–1022, March 2003. ISSN 1532-4435.
43

[22] Veronika Bogina, Tsvi Kuflik, Dietmar Jannach, Maria Bielikova, Michal Kompan,
and Christoph Trattner. Considering temporal aspects in recommender systems: a
survey. User Modeling and User-Adapted Interaction, pages 1–39, 2022. doi: 10.1007/
s11257-022-09335-w. 62, 63, 75

[23] Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and D. Sculley. The ml test
score: A rubric for ml production readiness and technical debt reduction. In 2017
IEEE International Conference on Big Data (Big Data), pages 1123–1132, 2017. doi:
10.1109/BigData.2017.8258038. 40, 43, 49

[24] Pedro G. Campos, Fernando Díez, and Iv´n Cantador. Time-aware recommender
systems: a comprehensive survey and analysis of existing evaluation protocols.
User Modeling and User-Adapted Interaction, 24(1-2):67–119, 2014. doi: 10.1007/
s11257-012-9136-x. URL https://doi.org/10.1007/s11257-012-9136-x. 21, 40,
63, 75, 77

[25] Rocío Cañamares, Pablo Castells, and Alistair Moffat. Offline evaluation options
for recommender systems. Information Retrieval Journal, 23(4):387–410, 2020. doi:
10.1007/s10791-020-09371-3. 40

[26] Pablo Castells, Neil Hurley, and Saúl Vargas. Novelty and Diversity in Recommender
Systems, pages 603–646. Springer US, New York, NY, 2022. ISBN 978-1-0716-2197-4.
doi: 10.1007/978-1-0716-2197-4_16. 92

[27] Huiyuan Chen, Yusan Lin, Menghai Pan, Lan Wang, Chin-Chia Michael Yeh, Xi-
aoting Li, Yan Zheng, Fei Wang, and Hao Yang. Denoising Self-Attentive Sequen-
tial Recommendation. In Proceedings of the 16th ACM Conference on Recommender

https://doi.org/10.1145/2792838.2798723
https://doi.org/10.1145/2792838.2798723
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.mlr.press/v28/bergstra13.html
https://epubs.siam.org/doi/abs/10.1137/1.9781611972771.42
https://epubs.siam.org/doi/abs/10.1137/1.9781611972771.42
https://doi.org/10.1007/s11257-012-9136-x

102 BIBLIOGRAPHY

Systems, RecSys ’22, page 92–101, New York, NY, USA, 2022. Association for Com-
puting Machinery. ISBN 9781450392785. doi: 10.1145/3523227.3546788. URL
https://doi.org/10.1145/3523227.3546788. 19

[28] Minmin Chen, Can Xu, Vince Gatto, Devanshu Jain, Aviral Kumar, and Ed Chi.
Off-policy actor-critic for recommender systems. In Proceedings of the 16th ACM
Conference on Recommender Systems, RecSys ’22, page 338–349, New York, NY, USA,
2022. Association for Computing Machinery. ISBN 9781450392785. doi: 10.1145/
3523227.3546758. URL https://doi.org/10.1145/3523227.3546758. 3

[29] Jin Yao Chin, Yile Chen, and Gao Cong. The datasets dilemma: How much do
we really know about recommendation datasets? In Proceedings of the Fifteenth
ACM International Conference on Web Search and Data Mining, WSDM ’22, page
141–149, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450391320. doi: 10.1145/3488560.3498519. URL https://doi.org/10.1145/
3488560.3498519. 65

[30] Toon De Pessemier, Tom Deryckere, and Luc Martens. Extending the Bayesian
Classifier to a Context-Aware Recommender System for Mobile Devices. In 2010
Fifth International Conference on Internet and Web Applications and Services, pages
242–247, 2010. doi: 10.1109/ICIW.2010.43. 75

[31] Gabriel de Souza Pereira Moreira, Felipe Ferreira, and Adilson Marques da Cunha.
News session-based recommendations using deep neural networks. In Proceedings
of the 3rd Workshop on Deep Learning for Recommender Systems, DLRS 2018, page
15–23, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450366175. doi: 10.1145/3270323.3270328. URL https://doi.org/10.1145/
3270323.3270328. 15, 47

[32] Mukund Deshpande and George Karypis. Item-based top-n recommendation al-
gorithms. ACM Transactions on Information Systems, 22(1):143–177, jan 2004. ISSN
1046-8188. doi: 10.1145/963770.963776. URL https://doi.org/10.1145/963770.
963776. 29, 30, 65, 66, 79, 80, 90, 91

[33] Yi Ding and Xue Li. Time weight collaborative filtering. In Proceedings of the 14th
ACM International Conference on Information and Knowledge Management, CIKM ’05,
page 485–492, New York, NY, USA, 2005. Association for Computing Machinery.
ISBN 1595931406. doi: 10.1145/1099554.1099689. URL https://doi.org/10.
1145/1099554.1099689. 31, 65, 76, 80

[34] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma,
Charles Sugnet, Mark Ulrich, and Jure Leskovec. Pixie: A System for Recom-
mending 3+ Billion Items to 200+ Million Users in Real-Time. In Proceedings of the
2018 World Wide Web Conference, WWW ’18, page 1775–1784, Republic and Can-
ton of Geneva, CHE, 2018. International World Wide Web Conferences Steering
Committee. ISBN 9781450356398. doi: 10.1145/3178876.3186183. 91

[35] Kim Falk. Practical Recommender Systems. Manning, 2019. ISBN 9781617292705.
URL https://www.manning.com/books/practical-recommender-systems. 13

[36] Wei Fan. Systematic data selection to mine concept-drifting data streams. In
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’04, page 128–137, New York, NY, USA, 2004. Association

https://doi.org/10.1145/3523227.3546788
https://doi.org/10.1145/3523227.3546758
https://doi.org/10.1145/3488560.3498519
https://doi.org/10.1145/3488560.3498519
https://doi.org/10.1145/3270323.3270328
https://doi.org/10.1145/3270323.3270328
https://doi.org/10.1145/963770.963776
https://doi.org/10.1145/963770.963776
https://doi.org/10.1145/1099554.1099689
https://doi.org/10.1145/1099554.1099689
https://www.manning.com/books/practical-recommender-systems

BIBLIOGRAPHY 103

for Computing Machinery. ISBN 1581138881. doi: 10.1145/1014052.1014069. URL
https://doi.org/10.1145/1014052.1014069. 63

[37] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. Are we really
making much progress? a worrying analysis of recent neural recommendation
approaches. In Proceedings of the 13th ACM Conference on Recommender Systems,
RecSys ’19, page 101–109, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450362436. doi: 10.1145/3298689.3347058. URL https:
//doi.org/10.1145/3298689.3347058. 64, 90, 91

[38] Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, and Dietmar Jannach.
A troubling analysis of reproducibility and progress in recommender systems
research. ACM Transactions on Information Systems, 39(2), jan 2021. ISSN 1046-8188.
doi: 10.1145/3434185. URL https://doi.org/10.1145/3434185. 64, 74, 90, 91

[39] Cédric Févotte and Jérôme Idier. Algorithms for Nonnegative Matrix Factorization
with the -Divergence. Neural Computation, 23(9):2421–2456, 09 2011. ISSN 0899-
7667. doi: 10.1162/NECO_a_00168. URL https://doi.org/10.1162/NECO_a_
00168. 29

[40] João Gama, Indrundefined Žliobaitundefined, Albert Bifet, Mykola Pechenizkiy,
and Abdelhamid Bouchachia. A survey on concept drift adaptation. ACM Com-
puting Surveys, 46(4), mar 2014. ISSN 0360-0300. doi: 10.1145/2523813. URL
https://doi.org/10.1145/2523813. 40, 42, 63

[41] Florent Garcin, Boi Faltings, Olivier Donatsch, Ayar Alazzawi, Christophe Bruttin,
and Amr Huber. Offline and Online Evaluation of News Recommender Systems
at Swissinfo.ch. In Proceedings of the 8th ACM Conference on Recommender Systems,
RecSys ’14, page 169–176, New York, NY, USA, 2014. Association for Computing
Machinery. ISBN 9781450326681. doi: 10.1145/2645710.2645745. 91

[42] Diksha Garg, Priyanka Gupta, Pankaj Malhotra, Lovekesh Vig, and Gautam Shroff.
Sequence and time aware neighborhood for session-based recommendations: Stan.
In Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR’19, page 1069–1072, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN 9781450361729. doi:
10.1145/3331184.3331322. URL https://doi.org/10.1145/3331184.3331322. 29,
63, 75

[43] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. Beyond accu-
racy: Evaluating recommender systems by coverage and serendipity. In Pro-
ceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, page
257–260, New York, NY, USA, 2010. Association for Computing Machinery. ISBN
9781605589060. doi: 10.1145/1864708.1864761. URL https://doi.org/10.1145/
1864708.1864761. 66

[44] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati,
Jaikit Savla, Varun Bhagwan, and Doug Sharp. E-commerce in your inbox: Product
recommendations at scale. In Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’15, page 1809–1818, New York,
NY, USA, 2015. Association for Computing Machinery. ISBN 9781450336642. doi:
10.1145/2783258.2788627. URL https://doi.org/10.1145/2783258.2788627. 29

https://doi.org/10.1145/1014052.1014069
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3434185
https://doi.org/10.1162/NECO_a_00168
https://doi.org/10.1162/NECO_a_00168
https://doi.org/10.1145/2523813
https://doi.org/10.1145/3331184.3331322
https://doi.org/10.1145/1864708.1864761
https://doi.org/10.1145/1864708.1864761
https://doi.org/10.1145/2783258.2788627

104 BIBLIOGRAPHY

[45] Alois Gruson, Praveen Chandar, Christophe Charbuillet, James McInerney, Saman-
tha Hansen, Damien Tardieu, and Ben Carterette. Offline Evaluation to Make De-
cisions About Playlist Recommendation Algorithms. In Proceedings of the Twelfth
ACM International Conference on Web Search and Data Mining, WSDM ’19, page
420–428, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450359405. doi: 10.1145/3289600.3291027. 91

[46] Jon Atle Gulla, Lemei Zhang, Peng Liu, Özlem Özgöbek, and Xiaomeng Su.
The adressa dataset for news recommendation. In Proceedings of the Interna-
tional Conference on Web Intelligence, WI ’17, page 1042–1048, New York, NY,
USA, 2017. Association for Computing Machinery. ISBN 9781450349512. doi:
10.1145/3106426.3109436. URL https://doi.org/10.1145/3106426.3109436. 12,
15, 47, 64, 79

[47] Asela Gunawardana, Guy Shani, and Sivan Yogev. Evaluating Recommender Systems,
pages 547–601. Springer US, New York, NY, 2022. ISBN 978-1-0716-2197-4. doi:
10.1007/978-1-0716-2197-4_15. 7, 92

[48] Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi, and Hong Zhang. Fast Ap-
proximate Nearest-Neighbor Search with k-Nearest Neighbor Graph. In Proceedings
of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume
Volume Two, ĲCAI’11, page 1312–1317. AAAI Press, 2011. ISBN 9781577355144. 74

[49] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding Structure
with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix
Decompositions. 2009. doi: 10.48550/ARXIV.0909.4061. URL https://arxiv.
org/abs/0909.4061. 23, 29

[50] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and
context. ACM Trans. Interact. Intell. Syst., 5(4), dec 2015. ISSN 2160-6455. doi:
10.1145/2827872. URL https://doi.org/10.1145/2827872. 12, 13, 15

[51] Christoph Hermann. Time-based recommendations for lecture materials. In
Jan Herrington and Craig Montgomerie, editors, Proceedings of EdMedia + In-
novate Learning 2010, pages 1028–1033, Toronto, Canada, June 2010. Associa-
tion for the Advancement of Computing in Education (AACE). URL https:
//www.learntechlib.org/p/34759. 31, 74, 76, 86

[52] Balázs Hidasi and Domonkos Tikk. Fast ALS-Based Tensor Factorization for
Context-Aware Recommendation from Implicit Feedback. In Peter A. Flach, Tĳl
De Bie, and Nello Cristianini, editors, Machine Learning and Knowledge Discovery in
Databases, pages 67–82, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN
978-3-642-33486-3. doi: 10.1007/978-3-642-33486-3_5. 75

[53] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
Session-based recommendations with recurrent neural networks. 2015. doi: 10.
48550/ARXIV.1511.06939. URL https://arxiv.org/abs/1511.06939. 29, 63, 74

[54] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In 2008 Eighth IEEE International Conference on Data Mining,
pages 263–272, 2008. doi: 10.1109/ICDM.2008.22. 29

https://doi.org/10.1145/3106426.3109436
https://arxiv.org/abs/0909.4061
https://arxiv.org/abs/0909.4061
https://doi.org/10.1145/2827872
https://www.learntechlib.org/p/34759
https://www.learntechlib.org/p/34759
https://arxiv.org/abs/1511.06939

BIBLIOGRAPHY 105

[55] P. Jain and C. S. Dixit. Recommendations with context aware framework using
particle swarm optimization and unsupervised learning. Journal of Intelligent &
Fuzzy Systems, 36(5):4479–4490, 2019. doi: 10.3233/JIFS-179001. 75

[56] Tamas Jambor, Jun Wang, and Neal Lathia. Using control theory for stable and
efficient recommender systems. In Proceedings of the 21st International Conference on
World Wide Web, WWW ’12, page 11–20, New York, NY, USA, 2012. Association for
Computing Machinery. ISBN 9781450312295. doi: 10.1145/2187836.2187839. URL
https://doi.org/10.1145/2187836.2187839. 43

[57] Dietmar Jannach and Malte Ludewig. When recurrent neural networks meet the
neighborhood for session-based recommendation. In Proceedings of the Eleventh
ACM Conference on Recommender Systems, RecSys ’17, page 306–310, New York,
NY, USA, 2017. Association for Computing Machinery. ISBN 9781450346528. doi:
10.1145/3109859.3109872. URL https://doi.org/10.1145/3109859.3109872. 63,
74, 75

[58] Dietmar Jannach, Malte Ludewig, and Lukas Lerche. Session-based item recom-
mendation in e-commerce: on short-term intents, reminders, trends and discounts.
User Modeling and User-Adapted Interaction, 27(3):351–392, 2017. 63

[59] Kalervo Järvelin and Jaana Kekäläinen. Cumulated Gain-Based Evaluation of IR
Techniques. ACM Trans. Inf. Syst., 20(4):422–446, oct 2002. ISSN 1046-8188. doi:
10.1145/582415.582418. 92

[60] Olivier Jeunen. Revisiting offline evaluation for implicit-feedback recommender
systems. In Proceedings of the 13th ACM Conference on Recommender Systems,
RecSys ’19, page 596–600, New York, NY, USA, 2019. Association for Com-
puting Machinery. ISBN 9781450362436. doi: 10.1145/3298689.3347069. URL
https://doi.org/10.1145/3298689.3347069. 40

[61] Olivier Jeunen, Koen Verstrepen, and Bart Goethals. Fair offline evaluation method-
ologies for implicit-feedback recommender systems with MNAR data. In Proceed-
ings of the ACM RecSys Workshop on Offline Evaluation for Recommender Systems,
REVEAL ’18, 2018. 21, 36, 44, 62, 63

[62] Olivier Jeunen, Koen Verstrepen, and Bart Goethals. Efficient similarity compu-
tation for collaborative filtering in dynamic environments. In Proceedings of the
13th ACM Conference on Recommender Systems, RecSys ’19, page 251–259, New York,
NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362436. doi:
10.1145/3298689.3347017. URL https://doi.org/10.1145/3298689.3347017. 40,
42, 75

[63] Olivier Jeunen, Jan Van Balen, and Bart Goethals. Embarrassingly shallow auto-
encoders for dynamic collaborative filtering. User Modeling and User-Adapted Inter-
action, 34:509–541, 2022. doi: 10.1007/s11257-021-09314-7. 40, 42

[64] Yitong Ji, Aixin Sun, Jie Zhang, and Chenliang Li. A re-visit of the popularity
baseline in recommender systems. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’20,
page 1749–1752, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450380164. doi: 10.1145/3397271.3401233. URL https://doi.org/10.
1145/3397271.3401233. 62, 63

https://doi.org/10.1145/2187836.2187839
https://doi.org/10.1145/3109859.3109872
https://doi.org/10.1145/3298689.3347069
https://doi.org/10.1145/3298689.3347017
https://doi.org/10.1145/3397271.3401233
https://doi.org/10.1145/3397271.3401233

106 BIBLIOGRAPHY

[65] Yitong Ji, Aixin Sun, Jie Zhang, and Chenliang Li. A critical study on data leakage in
recommender system offline evaluation. ACM Transactions on Information Systems,
oct 2022. ISSN 1046-8188. doi: 10.1145/3569930. URL https://doi.org/10.1145/
3569930. Just Accepted. 19, 23, 64, 80

[66] Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is Pessimism Provably Efficient for
Offline RL? In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pages 5084–5096. PMLR, 18–24 Jul 2021. URL https:
//proceedings.mlr.press/v139/jin21e.html. 75

[67] Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation.
In 2018 IEEE International Conference on Data Mining (ICDM), pages 197–206, 2018.
doi: 10.1109/ICDM.2018.00035. 13, 19, 62, 64

[68] Wang-Cheng Kang and Julian McAuley. Self-Attentive Sequential Recommenda-
tion. In 2018 IEEE International Conference on Data Mining (ICDM), pages 197–206,
2018. doi: 10.1109/ICDM.2018.00035. 19

[69] Michael Kechinov. Cosmeticsshop e-commerce dataset, 2020. URL https://www.
kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop. Ac-
cessed: 2022-07-26. 15, 64, 79

[70] M. G. Kendall. The treatment of ties in ranking problems. Biometrika, 33(3):239–251,
1945. 45, 68

[71] Barrie Kersbergen, Olivier Sprangers, and Sebastian Schelter. Serenade - Low-
Latency Session-Based Recommendation in e-Commerce at Scale. In Proceedings
of the 2022 International Conference on Management of Data, SIGMOD ’22, page
150–159, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450392495. doi: 10.1145/3514221.3517901. 5, 74, 91

[72] Ralf Klinkenberg and Ingrid Renz. Adaptive information filtering: Learning in the
presence of concept drifts. Learning for Text Categorization, pages 33–40, 1998. 42, 63

[73] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37, 2009. doi: 10.1109/MC.2009.263. 40

[74] Saurabh Kulkarni and Sunil F. Rodd. Context Aware Recommendation Systems: A
Review of the State of the Art Techniques. Computer Science Review, 37:100255, 2020.
ISSN 1574-0137. doi: https://doi.org/10.1016/j.cosrev.2020.100255. URL https:
//www.sciencedirect.com/science/article/pii/S1574013719301406. 74, 75

[75] Sara Latifi and Dietmar Jannach. Streaming Session-Based Recommendation:
When Graph Neural Networks Meet the Neighborhood. In Proceedings of the 16th
ACM Conference on Recommender Systems, RecSys ’22, page 420–426, New York,
NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392785. doi:
10.1145/3523227.3548485. 74

[76] Tong Queue Lee, Young Park, and Yong-Tae Park. A time-based approach to
effective recommender systems using implicit feedback. Expert Systems with Appli-
cations, 34(4):3055–3062, 2008. ISSN 0957-4174. doi: https://doi.org/10.1016/
j.eswa.2007.06.031. URL https://www.sciencedirect.com/science/article/
pii/S0957417407002357. 63, 76, 80

https://doi.org/10.1145/3569930
https://doi.org/10.1145/3569930
https://proceedings.mlr.press/v139/jin21e.html
https://proceedings.mlr.press/v139/jin21e.html
https://www.kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop
https://www.kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop
https://www.sciencedirect.com/science/article/pii/S1574013719301406
https://www.sciencedirect.com/science/article/pii/S1574013719301406
https://www.sciencedirect.com/science/article/pii/S0957417407002357
https://www.sciencedirect.com/science/article/pii/S0957417407002357

BIBLIOGRAPHY 107

[77] Jiacheng Li, Yujie Wang, and Julian McAuley. Time Interval Aware Self-Attention
for Sequential Recommendation. In Proceedings of the 13th International Conference
on Web Search and Data Mining, WSDM ’20, page 322–330, New York, NY, USA,
2020. Association for Computing Machinery. ISBN 9781450368223. doi: 10.1145/
3336191.3371786. URL https://doi.org/10.1145/3336191.3371786. 19

[78] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. Neural
Attentive Session-Based Recommendation. In Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management, CIKM ’17, page 1419–1428, New
York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450349185.
doi: 10.1145/3132847.3132926. 74

[79] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and Xuemin
Lin. Approximate nearest neighbor search on high dimensional data — experi-
ments, analyses, and improvement. IEEE Transactions on Knowledge and Data Engi-
neering, 32(8):1475–1488, 2020. doi: 10.1109/TKDE.2019.2909204. 42

[80] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. Vari-
ational autoencoders for collaborative filtering. In Proceedings of the 2018 World
Wide Web Conference, WWW ’18, page 689–698, Republic and Canton of Geneva,
CHE, 2018. International World Wide Web Conferences Steering Committee. ISBN
9781450356398. doi: 10.1145/3178876.3186150. URL https://doi.org/10.1145/
3178876.3186150. 13, 29, 31, 48, 80

[81] Nathan N. Liu, Min Zhao, Evan Xiang, and Qiang Yang. Online evolutionary
collaborative filtering. In Proceedings of the Fourth ACM Conference on Recommender
Systems, RecSys ’10, page 95–102, New York, NY, USA, 2010. Association for Com-
puting Machinery. ISBN 9781605589060. doi: 10.1145/1864708.1864729. URL
https://doi.org/10.1145/1864708.1864729. 29, 31, 63, 65, 76, 80, 83

[82] Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. Stamp: Short-term
attention/memory priority model for session-based recommendation. In Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge Discovery amp;
Data Mining, KDD ’18, page 1831–1839, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450355520. doi: 10.1145/3219819.3219950. URL
https://doi.org/10.1145/3219819.3219950. 63, 74

[83] Yue Liu, Zhe Xu, Binkai Shi, and Bofeng Zhang. Time-based k-nearest neighbor
collaborative filtering. In 2012 IEEE 12th International Conference on Computer and
Information Technology, pages 1061–1065, 2012. doi: 10.1109/CIT.2012.217. 31, 63,
76, 80

[84] Corentin Lonjarret, Roch Auburtin, Céline Robardet, and Marc Plantevit. Sequen-
tial recommendation with metric models based on frequent sequences. Data Mining
and Knowledge Discovery, 35(3):1087–1133, 2021. doi: 10.1007/s10618-021-00744-w.
19, 62, 63, 64

[85] Malte. Ludewig and Dietmar. Jannach. Evaluation of session-based recommenda-
tion algorithms. User Modeling and User-Adapted Interaction, 28(4):331–390, 2018.
doi: 10.1007/s11257-018-9209-6. 30, 63, 75, 76, 80

https://doi.org/10.1145/3336191.3371786
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1145/1864708.1864729
https://doi.org/10.1145/3219819.3219950

108 BIBLIOGRAPHY

[86] Malte Ludewig, Noemi Mauro, Sara Latifi, and Dietmar Jannach. Performance
comparison of neural and non-neural approaches to session-based recommen-
dation. In Proceedings of the 13th ACM Conference on Recommender Systems, Rec-
Sys ’19, page 462–466, New York, NY, USA, 2019. Association for Comput-
ing Machinery. ISBN 9781450362436. doi: 10.1145/3298689.3347041. URL
https://doi.org/10.1145/3298689.3347041. 30, 64, 65, 74, 75, 80, 90, 91

[87] Cornelius A. Ludmann. Recommending news articles in the clef news recommen-
dation evaluation lab with the data stream management system odysseus. In CLEF
(Working Notes), 2017. 63

[88] Rui Ma, Ning Liu, Jingsong Yuan, Huafeng Yang, and Jiandong Zhang. Caen:
A hierarchically attentive evolution network for item-attribute-change-aware rec-
ommendation in the growing e-commerce environment. In Proceedings of the 16th
ACM Conference on Recommender Systems, RecSys ’22, page 278–287, New York,
NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392785. doi:
10.1145/3523227.3546773. URL https://doi.org/10.1145/3523227.3546773. 3

[89] Masoud Mansoury, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad
Mobasher, and Robin Burke. Feedback Loop and Bias Amplification in Recom-
mender Systems. In Proceedings of the 29th ACM International Conference on Infor-
mation amp; Knowledge Management, CIKM ’20, page 2145–2148, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450368599. doi:
10.1145/3340531.3412152. 90, 91

[90] M. Jeffrey Mei, Cole Zuber, and Yasaman Khazaeni. A Lightweight Trans-
former for Next-Item Product Recommendation. In Proceedings of the 16th ACM
Conference on Recommender Systems, RecSys ’22, page 546–549, New York, NY,
USA, 2022. Association for Computing Machinery. ISBN 9781450392785. doi:
10.1145/3523227.3547491. 91

[91] Lien Michiels, Robin Verachtert, and Bart Goethals. Recpack: An(other) exper-
imentation toolkit for top-n recommendation using implicit feedback data. In
Proceedings of the 16th ACM Conference on Recommender Systems, RecSys ’22, page
648–651, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450392785. doi: 10.1145/3523227.3551472. URL https://doi.org/10.1145/
3523227.3551472. 11

[92] Gabriel De Souza P. Moreira, Dietmar Jannach, and Adilson Marques Da Cunha.
Contextual hybrid session-based news recommendation with recurrent neural net-
works. IEEE Access, 7:169185–169203, 2019. doi: 10.1109/ACCESS.2019.2954957.
30, 75

[93] Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using
distantly-labeled reviews and fine-grained aspects. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-ĲCNLP), pages 188–197,
Hong Kong, China, November 2019. Association for Computational Linguistics.
doi: 10.18653/v1/D19-1018. URL https://aclanthology.org/D19-1018. 13, 15,
79

https://doi.org/10.1145/3298689.3347041
https://doi.org/10.1145/3523227.3546773
https://doi.org/10.1145/3523227.3551472
https://doi.org/10.1145/3523227.3551472
https://aclanthology.org/D19-1018

BIBLIOGRAPHY 109

[94] Lin Ning, Steve Chien, Shuang Song, Mei Chen, Yunqi Xue, and Devora Berlowitz.
Eana: Reducing privacy risk on large-scale recommendation models. In Pro-
ceedings of the 16th ACM Conference on Recommender Systems, RecSys ’22, page
399–407, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450392785. doi: 10.1145/3523227.3546769. URL https://doi.org/10.1145/
3523227.3546769. 3

[95] Xia Ning and George Karypis. Slim: Sparse linear methods for top-n recommender
systems. In 2011 IEEE 11th International Conference on Data Mining, pages 497–506,
2011. doi: 10.1109/ICDM.2011.134. 29, 30

[96] Douglas W Oard, Jinmook Kim, et al. Implicit Feedback for Recommender Systems.
In Proceedings of the AAAI workshop on recommender systems, volume 83, pages 81–83.
Madison, WI, 1998. 4

[97] Zohreh Ovaisi, Shelby Heinecke, Jia Li, Yongfeng Zhang, Elena Zheleva, and Caim-
ing Xiong. Rgrecsys: A toolkit for robustness evaluation of recommender systems.
In Proceedings of the Fifteenth ACM International Conference on Web Search and Data
Mining, WSDM ’22, page 1597–1600, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450391320. doi: 10.1145/3488560.3502192. URL
https://doi.org/10.1145/3488560.3502192. 32

[98] Umberto Panniello, Michele Gorgoglione, and Cosimo Palmisano. Compar-
ing pre-filtering and post-filtering approach in a collaborative contextual rec-
ommender system: An application to e-commerce. In Tommaso Di Noia and
Francesco Buccafurri, editors, E-Commerce and Web Technologies, pages 348–359,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-03964-5. doi:
10.1007/978-3-642-03964-5_32. 21, 63

[99] Roberto Pellegrini, Wenjie Zhao, and Iain Murray. Don’t Recommend the Obvious:
Estimate Probability Ratios. In Proceedings of the 16th ACM Conference on Recom-
mender Systems, RecSys ’22, page 188–197, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450392785. doi: 10.1145/3523227.3546753.
91

[100] Roberto Pellegrini, Wenjie Zhao, and Iain Murray. Don’t recommend the obvious:
Estimate probability ratios. In Proceedings of the 16th ACM Conference on Recommender
Systems, RecSys ’22, page 188–197, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450392785. doi: 10.1145/3523227.3546753. URL
https://doi.org/10.1145/3523227.3546753. 3

[101] Ladislav Peska and Peter Vojtas. Off-line vs. on-line evaluation of recommender
systems in small e-commerce. In Proceedings of the 31st ACM Conference on Hypertext
and Social Media, HT ’20, page 291–300, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450370981. doi: 10.1145/3372923.3404781. URL
https://doi.org/10.1145/3372923.3404781. 3

[102] Shameem A. Puthiya Parambath, Nicolas Usunier, and Yves Grandvalet. A
coverage-based approach to recommendation diversity on similarity graph. In
Proceedings of the 10th ACM Conference on Recommender Systems, RecSys ’16, page
15–22, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450340359. doi: 10.1145/2959100.2959149. URL https://doi.org/10.1145/
2959100.2959149. 66

https://doi.org/10.1145/3523227.3546769
https://doi.org/10.1145/3523227.3546769
https://doi.org/10.1145/3488560.3502192
https://doi.org/10.1145/3523227.3546753
https://doi.org/10.1145/3372923.3404781
https://doi.org/10.1145/2959100.2959149
https://doi.org/10.1145/2959100.2959149

110 BIBLIOGRAPHY

[103] Abdulhakim A. Qahtan, Basma Alharbi, Suojin Wang, and Xiangliang Zhang. A
pca-based change detection framework for multidimensional data streams: Change
detection in multidimensional data streams. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’15, page
935–944, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450336642. doi: 10.1145/2783258.2783359. URL https://doi.org/10.1145/
2783258.2783359. 42

[104] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. Sequence-aware
recommender systems. ACM Computing Surveys, 51(4), July 2018. ISSN 0360-0300.
doi: 10.1145/3190616. URL https://doi.org/10.1145/3190616. 63

[105] Ahmed Rashed, Shereen Elsayed, and Lars Schmidt-Thieme. Context and
Attribute-Aware Sequential Recommendation via Cross-Attention. In Proceed-
ings of the 16th ACM Conference on Recommender Systems, RecSys ’22, page
71–80, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450392785. doi: 10.1145/3523227.3546777. URL https://doi.org/10.1145/
3523227.3546777. 19

[106] T. Rehorek, O. Biza, R. Bartyzal, P. Kordik, I. Povalyev, and O. Podstavek.
Comparing Offline and Online Evaluation Results of Recommender Systems.
In REVEAL ’18: Proceedings of the Workshop on Offline Evaluation for Recom-
mender Systems, 2018, 2018. URL https://users.fit.cvut.cz/~rehorto2/files/
comparing-offline-online.pdf. 91

[107] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09, page 452–461,
Arlington, Virginia, USA, 2009. AUAI Press. ISBN 9780974903958. doi: 10.5555/
1795114.1795167. 23, 29, 31, 48

[108] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor. Recommender
Systems Handbook. Springer US, Boston, MA, 2011. ISBN 978-0-387-85820-3. doi: 10.
1007/978-0-387-85820-3. URL https://doi.org/10.1007/978-0-387-85820-3.
32

[109] David Rohde, Stephen Bonner, Travis Dunlop, Flavian Vasile, and Alexandros
Karatzoglou. RecoGym: A Reinforcement Learning Environment for the Problem
of Product Recommendation in Online Advertising, 2018. URL https://arxiv.
org/abs/1808.00720. 7

[110] Marco Rossetti, Fabio Stella, and Markus Zanker. Contrasting Offline and Online
Results When Evaluating Recommendation Algorithms. In Proceedings of the 10th
ACM Conference on Recommender Systems, RecSys ’16, page 31–34, New York, NY,
USA, 2016. Association for Computing Machinery. ISBN 9781450340359. doi:
10.1145/2959100.2959176. 91

[111] Yuta Saito, Aihara Shunsuke, Matsutani Megumi, and Narita Yusuke. Open Bandit
Dataset and Pipeline: Towards Realistic and Reproducible Off-Policy Evaluation.
arXiv preprint arXiv:2008.07146, 2020. doi: 10.48550/ARXIV.2008.07146. 7

[112] Arindam Sarkar, Dipankar Das, Vivek Sembium, and Prakash Mandayam Comar.
Dual attentional higher order factorization machines. In Proceedings of the 16th

https://doi.org/10.1145/2783258.2783359
https://doi.org/10.1145/2783258.2783359
https://doi.org/10.1145/3190616
https://doi.org/10.1145/3523227.3546777
https://doi.org/10.1145/3523227.3546777
https://users.fit.cvut.cz/~rehorto2/files/comparing-offline-online.pdf
https://users.fit.cvut.cz/~rehorto2/files/comparing-offline-online.pdf
https://doi.org/10.1007/978-0-387-85820-3
https://arxiv.org/abs/1808.00720
https://arxiv.org/abs/1808.00720

BIBLIOGRAPHY 111

ACM Conference on Recommender Systems, RecSys ’22, page 378–388, New York,
NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392785. doi:
10.1145/3523227.3546789. URL https://doi.org/10.1145/3523227.3546789. 3

[113] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th In-
ternational Conference on World Wide Web, WWW ’01, page 285–295, New York,
NY, USA, 2001. Association for Computing Machinery. ISBN 1581133480. doi:
10.1145/371920.372071. URL https://doi.org/10.1145/371920.372071. 30, 65,
80

[114] Teresa Scheidt and Joeran Beel. Time-dependent evaluation of recommender sys-
tems. In Perspectives on the Evaluation of Recommender Systems Workshop (PERSPEC-
TIVES 2021), September 25th, 2021, co-located with the 15th ACM Conference on Recom-
mender Systems, 2021. 63, 64

[115] Guy Shani and Asela Gunawardana. Evaluating recommendation systems. In
Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor, editors, Rec-
ommender Systems Handbook, pages 257–297. Springer US, Boston, MA, 2011. ISBN
978-0-387-85820-3. doi: 10.1007/978-0-387-85820-3_8. URL https://doi.org/10.
1007/978-0-387-85820-3_8. 66, 80

[116] Ilya Shenbin, Anton Alekseev, Elena Tutubalina, Valentin Malykh, and Sergey I.
Nikolenko. RecVAE: A New Variational Autoencoder for Top-N Recommendations with
Implicit Feedback, page 528–536. Association for Computing Machinery, New York,
NY, USA, 2020. ISBN 9781450368223. URL https://doi.org/10.1145/3336191.
3371831. 29

[117] Pannaga Shivaswamy and Dario Garcia-Garcia. Adversary or friend? an adver-
sarial approach to improving recommender systems. In Proceedings of the 16th
ACM Conference on Recommender Systems, RecSys ’22, page 369–377, New York,
NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392785. doi:
10.1145/3523227.3546784. URL https://doi.org/10.1145/3523227.3546784. 3

[118] Ashudeep Singh and Thorsten Joachims. Fairness of Exposure in Rankings. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
amp; Data Mining, KDD ’18, page 2219–2228, New York, NY, USA, 2018. Association
for Computing Machinery. ISBN 9781450355520. doi: 10.1145/3219819.3220088.
URL https://doi.org/10.1145/3219819.3220088. 32

[119] Padipat Sitkrongwong, Saranya Maneeroj, Pannawit Samatthiyadikun, and At-
suhiro Takasu. Bayesian Probabilistic Model for Context-Aware Recommen-
dations. In Proceedings of the 17th International Conference on Information In-
tegration and Web-Based Applications amp; Services, iiWAS ’15, New York, NY,
USA, 2015. Association for Computing Machinery. ISBN 9781450334914. doi:
10.1145/2837185.2837223. URL https://doi.org/10.1145/2837185.2837223. 75

[120] Paschalia (Lia) Spyridou, Constantinos Djouvas, and Dimitra Milioni. Modeling
and validating a news recommender algorithm in a mainstream medium-sized
news organization: An experimental approach. Future Internet, 14(10), 2022. ISSN
1999-5903. doi: 10.3390/fi14100284. URL https://www.mdpi.com/1999-5903/14/
10/284. 3

https://doi.org/10.1145/3523227.3546789
https://doi.org/10.1145/371920.372071
https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.1145/3336191.3371831
https://doi.org/10.1145/3336191.3371831
https://doi.org/10.1145/3523227.3546784
https://doi.org/10.1145/3219819.3220088
https://doi.org/10.1145/2837185.2837223
https://www.mdpi.com/1999-5903/14/10/284
https://www.mdpi.com/1999-5903/14/10/284

112 BIBLIOGRAPHY

[121] Harald Steck. Embarrassingly shallow autoencoders for sparse data. In The World
Wide Web Conference, WWW ’19, page 3251–3257, New York, NY, USA, 2019. As-
sociation for Computing Machinery. ISBN 9781450366748. doi: 10.1145/3308558.
3313710. URL https://doi.org/10.1145/3308558.3313710. 29, 30, 34, 65, 80

[122] Harald Steck. Markov random fields for collaborative filtering. In Proceedings of
the 33rd International Conference on Neural Information Processing Systems, Red Hook,
NY, USA, 2019. Curran Associates Inc. doi: 10.5555/3454287.3454778. 42, 51

[123] Zhu Sun, Di Yu, Hui Fang, Jie Yang, Xinghua Qu, Jie Zhang, and Cong Geng. Are
We Evaluating Rigorously? Benchmarking Recommendation for Reproducible Evaluation
and Fair Comparison, page 23–32. Association for Computing Machinery, New York,
NY, USA, 2020. ISBN 9781450375832. URL https://doi.org/10.1145/3383313.
3412489. 12, 13

[124] Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via con-
volutional sequence embedding. In Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, WSDM ’18, page 565–573, New York,
NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355810. doi:
10.1145/3159652.3159656. URL https://doi.org/10.1145/3159652.3159656. 63

[125] Nam Khanh Tran, Andrea Ceroni, Nattiya Kanhabua, and Claudia Niederée. Time-
Travel Translator: Automatically Contextualizing News Articles. In Proceedings of
the 24th International Conference on World Wide Web, WWW ’15 Companion, page
247–250, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450334730. doi: 10.1145/2740908.2742841. URL https://doi.org/10.1145/
2740908.2742841. 77

[126] Paula Cristina Vaz, Ricardo Ribeiro, and David Martins de Matos. Understand-
ing the temporal dynamics of recommendations across different rating scales.
In Shlomo Berkovsky, Eelco Herder, Pasquale Lops, and Olga C. Santos, edi-
tors, Late-Breaking Results, Project Papers and Workshop Proceedings of the 21st Con-
ference on User Modeling, Adaptation, and Personalization., Rome, Italy, June 10-
14, 2013, volume 997 of CEUR Workshop Proceedings. CEUR-WS.org, 2013. URL
http://ceur-ws.org/Vol-997/umap2013_lbr_7.pdf. 31, 63, 76, 80

[127] Robin Verachtert, Lien Michiels, and Bart Goethals. Are We Forgetting Something?
Correctly Evaluate a Recommender System With an Optimal Training Window. In
Eva Zangerle, Christine Bauer, and Alain Said, editors, Proceedings of the Perspectives
on the Evaluation of Recommender Systems Workshop 2022, volume 3228, Seattle, WA,
USA, sep 2022. CEUR-WS.org. 21, 75, 79, 80, 81, 83, 90, 91

[128] Koen Verstrepen and Bart Goethals. Unifying nearest neighbors collaborative fil-
tering. In Proceedings of the 8th ACM Conference on Recommender Systems, Rec-
Sys ’14, page 177–184, New York, NY, USA, 2014. Association for Comput-
ing Machinery. ISBN 9781450326681. doi: 10.1145/2645710.2645731. URL
https://doi.org/10.1145/2645710.2645731. 29

[129] Koen Verstrepen, Kanishka Bhaduriy, Boris Cule, and Bart Goethals. Collaborative
filtering for binary, positiveonly data. SIGKDD Explorations Newsletter, 19(1):1–21,
sep 2017. ISSN 1931-0145. doi: 10.1145/3137597.3137599. URL https://doi.org/
10.1145/3137597.3137599. 43

https://doi.org/10.1145/3308558.3313710
https://doi.org/10.1145/3383313.3412489
https://doi.org/10.1145/3383313.3412489
https://doi.org/10.1145/3159652.3159656
https://doi.org/10.1145/2740908.2742841
https://doi.org/10.1145/2740908.2742841
http://ceur-ws.org/Vol-997/umap2013_lbr_7.pdf
https://doi.org/10.1145/2645710.2645731
https://doi.org/10.1145/3137597.3137599
https://doi.org/10.1145/3137597.3137599

BIBLIOGRAPHY 113

[130] João Vinagre, Alípio Mário Jorge, Marie Al-Ghossein, and Albert Bifet. ORSUM
- Workshop on Online Recommender Systems and User Modeling, page 619–620. Rec-
Sys ’20. Association for Computing Machinery, New York, NY, USA, 2020. ISBN
9781450375832. doi: 10.1145/3383313.3411531. URL https://doi.org/10.1145/
3383313.3411531. 40

[131] João Vinagre and Alípio Mário Jorge. Forgetting mechanisms for scalable collab-
orative filtering. Journal of the Brazilian Computer Society, 18(4):271–282, 2012. doi:
10.1007/s13173-012-0077-3. 42, 63, 75, 76

[132] João Vinagre, Alípio Mário Jorge, and João Gama. Fast incremental matrix factoriza-
tion for recommendation with positive-only feedback. In Vania Dimitrova, Tsvi Ku-
flik, David Chin, Francesco Ricci, Peter Dolog, and Geert-Jan Houben, editors, User
Modeling, Adaptation, and Personalization, pages 459–470, Cham, 2014. Springer Inter-
national Publishing. ISBN 978-3-319-08786-3. doi: 10.1007/978-3-319-08786-3_41.
40, 42

[133] Gerhard. Widmer and Miroslav. Kubat. Learning in the presence of concept
drift and hidden contexts. Machine Learning, 23(1):69–101, 1996. doi: 10.1023/A:
1018046501280. 42, 63

[134] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J. Smola, and How Jing.
Recurrent recommender networks. In Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining, WSDM ’17, page 495–503, New York,
NY, USA, 2017. Association for Computing Machinery. ISBN 9781450346757. doi:
10.1145/3018661.3018689. URL https://doi.org/10.1145/3018661.3018689. 30,
65, 80

[135] Chaolun Xia, Xiaohong Jiang, Sen Liu, Zhaobo Luo, and Zhang Yu. Dynamic
item-based recommendation algorithm with time decay. In 2010 Sixth International
Conference on Natural Computation, volume 1, pages 242–247, 2010. doi: 10.1109/
ICNC.2010.5582899. 31, 63, 74, 76, 77, 78, 86

[136] Shujian Yu and Zubin Abraham. Concept drift detection with hierarchical hy-
pothesis testing. In Proceedings of the 2017 SIAM International Conference on Data
Mining (SDM), pages 768–776, 2017. doi: 10.1137/1.9781611974973.86. URL
https://epubs.siam.org/doi/abs/10.1137/1.9781611974973.86. 42

[137] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M. Jose, and Xi-
angnan He. A simple convolutional generative network for next item recommen-
dation. In Proceedings of the Twelfth ACM International Conference on Web Search and
Data Mining, WSDM ’19, page 582–590, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450359405. doi: 10.1145/3289600.3290975. 74

[138] Valentina Zanardi and Licia Capra. Dynamic updating of online recommender
systems via feed-forward controllers. In Proceedings of the 6th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS
’11, page 11–19, New York, NY, USA, 2011. Association for Computing Ma-
chinery. ISBN 9781450305754. doi: 10.1145/1988008.1988011. URL https:
//doi.org/10.1145/1988008.1988011. 43

[139] Eva Zangerle and Christine Bauer. Evaluating Recommender Systems: Survey
and Framework. ACM Computing Surveys, 55(8), dec 2022. ISSN 0360-0300. doi:
10.1145/3556536. 6, 7, 95

https://doi.org/10.1145/3383313.3411531
https://doi.org/10.1145/3383313.3411531
https://doi.org/10.1145/3018661.3018689
https://epubs.siam.org/doi/abs/10.1137/1.9781611974973.86
https://doi.org/10.1145/1988008.1988011
https://doi.org/10.1145/1988008.1988011

114 BIBLIOGRAPHY

[140] Yang Zhang, Fuli Feng, Chenxu Wang, Xiangnan He, Meng Wang, Yan Li, and
Yongdong Zhang. How to retrain recommender system? a sequential meta-
learning method. In Proceedings of the 43rd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SIGIR ’20, page 1479–1488, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450380164. doi:
10.1145/3397271.3401167. URL https://doi.org/10.1145/3397271.3401167. 42

[141] Yin Zhang. GroRec: A Group-Centric Intelligent Recommender system integrating
social, mobile and big data technologies. IEEE Transactions on Services Computing,
9(5):786–795, 2016. doi: 10.1109/TSC.2016.2592520. 75

[142] Wayne Xin Zhao, Junhua Chen, Pengfei Wang, Qi Gu, and Ji-Rong Wen. Re-
visiting alternative experimental settings for evaluating top-n item recommen-
dation algorithms. In Proceedings of the 29th ACM International Conference on In-
formation & Knowledge Management, CIKM ’20, page 2329–2332, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450368599. doi:
10.1145/3340531.3412095. URL https://doi.org/10.1145/3340531.3412095. 12

[143] Ziwei Zhu, Yun He, Xing Zhao, and James Caverlee. Popularity Bias in Dy-
namic Recommendation. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery amp; Data Mining, KDD ’21, page 2439–2449, New York, NY,
USA, 2021. Association for Computing Machinery. ISBN 9781450383325. doi:
10.1145/3447548.3467376. 90, 91

https://doi.org/10.1145/3397271.3401167
https://doi.org/10.1145/3340531.3412095

Summary

In this thesis, we describe solutions to problems that arise naturally when using recom-
mender systems outside of the controlled environments common in academic research.

• In Chapter 2, we present how we set up controlled, offline experiments. In this, we
make sure to avoid common pitfalls in evaluation, such as leakage and parameter
optimisation on the test dataset. In this chapter, we use the library RecPack, as
the framework for this evaluation, providing us with the building blocks to easily,
quickly and faultlessly set up an experiment.

• In Chapter 3, we define and compare several methods to schedule model updates.
Production recommender systems need frequent updating of the recommendation
models to avoid staleness in the recommendations and to account for concept drift
in the data stream. We compare smart schedulers based on the number of events,
the unexpectedness of events, and the expected change in the model with the
baseline time-based scheduler. We find that the smart schedulers are able to make
a difference, allowing performance improvements, while not needing to increase
the costs for training models.

• In Chapter 4, we look further at the impact of temporal dynamics on model quality.
We show that the data used to train a recommendation model has a large impact on
the quality of the model. By using only recent data points to train algorithms, we
find that popularity becomes an almost unbeatable baseline in offline experiments.
Further, we find that other, simple methods, such as ItemKNN benefit strongly from
a reduction in training data, and can now outperform more advanced and expensive
neural networks. These findings show that even in offline experiments, we need to
take care to fully optimise our baselines in order to make fair comparisons.

• In Chapter 5, we continue the efforts from Chapter 4 to address the concept drift
when training models. Except that we don’t want to take the rough and indiscrim-
inate method of ignoring most of the available data. Instead, we analyse all known
methods for ItemKNN that include a time-decay factor and propose a framework
that generalises all of these methods and introduces additional, untried combina-
tions. We find that by applying the right decay, we can indeed improve on the
crude forgetting mechanism proposed earlier.

• Finally, in Chapter 6, we look at the impact on recommendation quality and user
engagement, when we show less popular items in a news context. We analyse the
discrepancies between offline and online results and find that the popularity bias
present in the data, also causes the evaluation to favour algorithms that recommend
more popular items, whereas online results show that users are more likely to click
on the recommendations when we punish popular items and show a more balanced
list.

115

116 BIBLIOGRAPHY

Samenvatting

In dit proefschrift beschrĳven we oplossingen voor problemen die op natuurlĳke wĳze
ontstaan bĳ het gebruik van recommender systemen buiten de gecontroleerde omgevin-
gen die gebruikelĳk zĳn in academisch onderzoek.

• In hoofdstuk 2 presenteren we hoe we gecontroleerde, offline experimenten opzetten.
Hierbĳ zorgen we ervoor dat veelvoorkomende valkuilen bĳ evaluatie, zoals lekk-
age en parameter optimalisatie op de test dataset, worden vermeden. In dit hoofd-
stuk gebruiken we de library RecPack, die ons de bouwstenen verschaft om een-
voudig, snel en foutloos een experiment op te zetten.

• In hoofdstuk 3 definiëren en vergelĳken we verschillende methoden voor het plan-
nen van model updates. Productie recommender systemen moeten regelmatig de
aanbevelingsmodellen bĳwerken, om te voorkomen dat de aanbevelingen star wor-
den en om rekening te houden met concept drift in de datastroom. Wĳ vergelĳken
slimme planners op basis van het aantal gebeurtenissen, de onverwachtheid van
gebeurtenissen en de verwachte verandering in het model met de basisplanner op
basis van tĳd. Wĳ vinden dat de slimme schedulers een verschil kunnen maken
en prestatieverbeteringen mogelĳk maken, terwĳl de kosten voor het trainen van
modellen niet verhoogd hoeven te worden.

• In hoofdstuk 4 kĳken we verder naar de invloed van tĳdsdynamiek op de kwaliteit
van het model. We laten zien dat de gegevens die gebruikt worden om een aan-
bevelingsmodel te trainen een grote invloed hebben op de kwaliteit van het model.
Door alleen recente datapunten te gebruiken om algoritmen te trainen, vinden we
dat populariteit een bĳna onverslaanbare baseline wordt in offline experimenten.
Verder stellen wĳ vast dat andere, eenvoudige methoden, zoals ItemKNN, sterk
profiteren van een vermindering van het aantal trainingsgegevens, en nu beter
kunnen presteren dan meer geavanceerde en dure neurale netwerken. Deze bevin-
dingen tonen aan dat wĳ zelfs in offline experimenten onze basislĳnen volledig
moeten optimaliseren om eerlĳke vergelĳkingen te kunnen maken.

• In hoofdstuk 5 zetten we de inspanningen uit hoofdstuk 4 voort om conceptdrift bĳ
het trainen van modellen aan te pakken. Alleen willen we niet de ruwe en onged-
ifferentieerde methode toepassen om de meeste beschikbare gegevens te negeren.
In plaats daarvan analyseren wĳ alle bekende methoden voor ItemKNN die een
time-decay factor bevatten en stellen wĳ een kader voor dat al deze methoden gen-
eraliseert en aanvullende, niet beproefde combinaties introduceert. Wĳ vinden dat
wĳ door de juiste decay toe te passen, het eerder voorgestelde ruwe vergeetmecha-
nisme inderdaad kunnen verbeteren.

• Tot slot kĳken we in hoofdstuk 6 naar het effect op de aanbevelingskwaliteit en de
betrokkenheid van gebruikers wanneer we minder populaire items tonen in een

117

118 BIBLIOGRAPHY

nieuwscontext. We analyseren de discrepanties tussen offline en online resultaten
en stellen vast dat de in de gegevens aanwezige populariteitsbias er ook toe leidt
dat de evaluatie algoritmen bevoordeelt die populairdere items aanbevelen, terwĳl
online resultaten aantonen dat gebruikers eerder geneigd zĳn op de aanbevelingen
te klikken wanneer we populaire items bestraffen en een evenwichtiger lĳst tonen.

	Introduction
	The Recommendation Problem
	Recommendations in Production
	Evaluation
	Online Evaluation
	Offline Evaluation

	Contributions

	Experimentation Framework
	Introduction
	Datasets
	Preprocessing
	Scenarios
	Weak Generalization
	Last Item
	Timed
	Timed Last Item
	Strong Generalization
	Strong Generalization Timed
	Strong Generalization Timed Last Item

	Algorithms
	Postprocessing
	Metrics
	Pipelines
	Aligning experiments with production tasks
	Conclusion

	Scheduling on a Budget: Avoiding Stale Recommendations with Timely Updates
	Introduction
	Related Work
	Methodology
	Measuring Model Staleness
	Estimating Information Gain
	Scheduling Model Updates

	Experimental Results
	Datasets
	Recommendation Algorithms
	Model Staleness
	Comparing Scheduling Methods
	Online Experiments

	Conclusions

	Are We Forgetting Something? Correctly Evaluate a Recommender System With an Optimal Training Window
	Introduction
	Related Work
	Methodology
	Recommendation Scenario
	Datasets
	Algorithms
	Evaluation Metric(s)
	Parameter Optimisation

	Results
	RQ1: ``How does the optimisation of in impact the individual performance of an algorithm?"
	RQ2: "Does the optimisation of in change the relative performance between the algorithms?"
	RQ3: How does the choice of in impact secondary metrics such as run time and coverage?
	Online Tests

	Conclusion

	A Unified Framework for Time-Aware Item-Based Neighbourhood Recommendation Methods
	Introduction
	Related Work
	Methodology
	Decay Functions
	Similarity Functions

	Experiments
	Datasets
	Algorithms
	Evaluation metric(s)
	Evaluation Scenarios
	Parameter Optimisation

	Results
	Run Time
	Leave-last-one-out scenario
	Timed split scenario

	Conclusion

	The Impact of a Popularity Punishing Parameter on ItemKNN Recommendation Performance
	Introduction
	Related Work
	Experimental Setup
	Algorithm
	Metrics
	Datasets
	Offline experiments
	Online Experiments

	Experiments
	RQ1: How Does the Hyperparameter Impact the Equality of Exposure?
	RQ2: How Does the Hyperparameter Impact Accurracy and CTR Results?
	RQ3: Do the Offline and Online Results Agree?

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

