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Abstract: Timing analysis is used to extract the timing properties of a system. Various
timing analysis techniques and tools have been developed over the past decades. However,
changes in hardware platform and software architecture introduced new challenges in
timing analysis techniques. In our research, we aim to develop a hybrid approach to
provide safe and precise timing analysis results. In this approach, we will divide the
original code into smaller code blocks, then construct a timing model based on the
information acquired by measuring the execution time of every individual block. This
process can introduce changes in the software architecture. In this paper we use a multi-
component benchmark to investigate the impact of software architecture on the timing
behaviour of a system.
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1 Introduction

Real-time embedded systems are widely adopted in
applications such as automotive, avionics and medical
care. Many of these systems are required to meet strict
deadlines. Therefore, obtaining the timing behaviour of
such systems at the early design stage plays a crucial
role in reducing the design cost and time-to-market.
Timing analysis is the process of deriving or estimating
the timing properties of a system. The ultimate goal of
timing analysis is to predict safe and precise execution
time bound[1]. Safe means the estimated time bound
must cover the WCET (Worst-Case Execution Time).
Precise means the estimated time bound is close to the
actual WCET value.

1.1 Challenges in Timing Analysis

Different timing analysis techniques and tools have
been developed over the past decades [2]. However, due
to the increase of performance requirements and the
intention of reducing the number of ECUs (Electronic
Control Unit) used in one system [3], processors with
more complex architecture components have taken over
in industry [4]. The interactions between different
tasks increases the complexity of timing analysis. The
changes in hardware platform and software architecture
introduced new challenges in timing analysis techniques.
The traditional static analysis can no longer handle the
analysis for complicated systems within a certain cost [5].
However, the lack of soundness creates hurdles when it
comes to adopt measurement-based approach for safety
critical systems [2].

1.2 Motivation

In our research, we are aiming to develop a hybrid
approach that can overcome the challenges in both static
and measurement-based approach. In this approach we
propose to divide the original code into smaller code
blocks then construct the complete timing model based
on the timing information of every code block. However,
subdividing the software into code blocks can be done
in different ways. Additionally, the organization of these
code blocks will change the software architecture of the
system. Therefore, in order to understand the impact
of software architecture on the execution time of a
system, we conducted this research in which we measured
the execution time of different software architectures
composed with the same components from a multi-
component benchmark [6].

1.3 Contributions

We created a multi-component powerwindow benchmark
for the purpose of this study. The benchmark contains
four main components including one driver-side window
and three passenger-side windows. It is included
in the TACLeBench [7] which is an available and
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Figure 1 The complete scope of the power window
Simulink model.

comprehensive benchmark suite aiming at timing
analysis. The detailed description about the benchmark
is given in Section 2.

In this paper we investigate the impact of
software architecture regarding to the end-to-end timing
behaviour of the power window system. Section 3
provides an overview of the case studies. The results
are elaborated and compared in Section 4 followed by
discussion in Section 5. The conclusion is covered in
Section 6

In Section 7 we propose a new hybrid timing
analysis methodology which is aiming to offer soundness,
flexibility and within a reasonable cost.

2 Powerwindow Benchmark

A power window is an automatic window which can be
raised and lowered by pressing a button or a switch
instead of a hand-turned crank handle. The complete
application of a power window in a car usually consists
of four windows which can be operated individually.
The three passenger-side windows can be operated by
the driver with higher priority. In addition to the basic
functions, the power window model used in this paper
also contains pinch force detection and end of the range
detection[8].

2.1 Power Window Model

Figure 1 elaborates the complete power window Simulink
model which consists of the driver-side window (DRV ),
front-passenger-side window (PSG Front), back-left-
passenger-side window (PSG BackL) and back-right-
passenger-side (PSG BackR). The outputs of the
driver-side debounce module are used as inputs by the
control exclusion module of the passenger-side windows.

Since the three passenger-side power windows are
identical, the front-passenger-side window is used for
demonstration in this paper (Figure 2). Compared with
the passenger-side power window, the driver-side power
window excludes the control exclusion module and
contains six more debounce circuits in the debounce
module.

Copyright c© 201X Inderscience Enterprises Ltd.
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Figure 2 The front-passenger-side power window
Simulink mode.

Debounce

When a push-button is pressed, it rebounds a bit
before settling. This mechanical reaction often generates
spurious inputs, for example, it may be read as multiple
quick presses in a short period by the program.
The debounce module (Debounce PSG Front) is
implemented to filter out these faulty inputs. The
debouncing function is triggered on the rising edge of
a pulse signal with a period of 10 ms. Any signal that
is shorter than 30 ms will not be forwarded to the
next module. The debounce module is trivial because it
guarantees the input only changes when the push-button
is definitely pressed or released.

Control Exclusion

The control exclusion module (ControlEx PSG Front)
is only included in the passenger-side windows. By using
basic logic gates, the control exclusion module assigns
higher priority to the driver when control inputs come
from driver and passenger simultaneously.

Power Window Control

As the last module of the power window, the power
window control module (PW PSG Front) takes the
control signals from the control exclusion module (up,
down) and the environment signals (theendofdetection,
currentsense) to control the motor and the safety
mechanism. Similar to the debounce module, the power
window control function is connected to a pulse signal
with a period of 50 ms and triggered on both the rising
and falling edges. The input signals the end of detection
and current sense are the feedback from the plant,
which is a part of the environment.

2.2 Benchmark Description

The benchmark was initially generated by Matlab
Embedded Coder from the Simulink model described in
Subsection 2.1[6]. Modifications were made to convert
the generated code to TACLeBench standards [7].

The input set was generated exclusively from the
model in such way we increased the flexibility of the
benchmark. Figure 3 illustrates the input set of the
front-passenger-side window. The inputs were generated
using Simulink Design Verifier with MC/DC (modified
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Figure 3 The front-passenger-side power window inputs.

condition/decision coverage) coverage objectives[9],
which is highly recommended for automotive.

The inputs were sampled every 5 ms, in totally
977 groups of inputs were included in the input
set. During this research the input set was used for
testing the front-passenger-side window as an individual
benchmark. When testing on the complete power
window benchmark, the Driver Up and Driver Down
were connected to the driver-side power window. The
cases covered by the input set include window position
control from the passenger, simultaneous control signals
from both the driver and the passenger, pinch detection,
and end of the range detection.

The benchmark is selected mainly due to the flexible
feature. The components of the benchmark can be easily
converted into different configurations. It changes the
software architecture but still preserves the functionality
of the system, which is optimal to serve the purpose of
our research.

3 Case Study

Figure 4 Experiment setup.

Figure 4 illustrates the experiment setup of this
study. The powerwindow benchmark was deployed
on the DVK90CAN1 development board which was
embedded with an 8-bit Atmel AT90CAN128 single-
core microprocessor. Due to the limited data memory of
the processor, we introduced a Xilinx Nexus 3 FPGA
to the setup. The inputs of the benchmark were sent
from the FPGA to the processor. A time stamp pin
was toggled before and after executing the benchmark
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Figure 5 The implementation of case study 1.

function. The execution time was acquired by measuring
the clock cycles between the time stamps. To assure the
accuracy of the measured execution time, the processor
was driven by the clock signal of the FPGA, in such
way the processor was guaranteed to be synchronized
with the FPGA. Eventually the results were sent through
serial port to be collected for further analysis.

Technically speaking, every component of the
benchmark can be considered as a periodic task. In this
case, each task is triggered every 5 ms. In the beginning
of each task, the processor reads the inputs from the
input set. Once the measurement starts, the inputs from
the FPGA also update every 5 ms. The update and read
processes are synchronized to guarantee the inputs used
by the benchmark is exactly the input we deployed on
the FPGA.

In this study, one complete execution of the input
set is considered as one test. The nth execution is
represented by test–n. In total, the input set was
executed 50 times consecutively in every case study.

During the case study we performed timing analysis
on the benchmark in four cases:

1. driver-side and passenger-side windows execute in
isolation as individual benchmarks.

2. four windows execute on one single-core processor
in sequential order with interactions.

3. four windows execute as independent tasks with
interactions under an operating system.

4. four windows execute as independent tasks with
interactions under an operating system with
different optimization levels.

Case study 1 was conducted to obtain the execution
time of every power window when they are executed
independently. The results of this case study were
used as reference through the subsequent case studies.
Case study 2 and 3 were designed to investigate the
impact of the software architecture on the execution
time when tasks are executed in sequential order and
as independent tasks with interactions respectively. Last
but not the least, case study 4 focused on the role
of compiler optimization in timing analysis when the
software architecture stays consistent.

Figure 6 The results of execution time of case study 1 of
PSG Front.

4 Results

The execution time of the benchmark was acquired using
measurement-based approach with the experiment setup
described in the previous section. The results of the case
studies are elaborated in this part of the paper.

4.1 Case Study 1

In case study 1 the driver-side window and passenger-
side windows were tested as individual benchmarks
(Figure 5). The benchmarks were executed consecutively
without resetting the board or reinitialization of the
power window function. The results of this case study
are used as the reference through the whole study.

As showed in Table 1, the BCET (Best-Case
Execution Time) of the driver-side window was reached
at 1189 cyc (148.625 µs), the WCET was at 1986
cyc (248.25 µs). The results of the three passenger-
side windows were identical, where the BCET and the
WCET reached 632 cyc (79 µs) and 977 cyc (122.125 µs)
respectively.

Figure 6:(a) shows the result of the first execution
(test–1) of the complete input set. Figure 6:(b) is the
result of the second execution (test–2) of the complete
input set. The BCETs for both tests were at 632
cyc, whilst the WCETs were at 958 in test–1 and
949 in test–2. The BCET occurred more frequently
than WCET. Although the case study was carried on
a very simple single-core processor without any non-
deterministic components such as cache and branch
prediction, test–1 and test–2 still showed different timing
behaviours. By subtracting the results of test-2 from
test-1, differences with the maximum magnitude at
approximate 250 cyc could be observed in Figure 6:(c).

During the experiment, the timing behaviour of the
benchmark started to repeat after 10 consecutive tests
(Figure 7). Identical execution time patterns occurred
in test-2 and test-12, and test-22. The observation was
consistent across all the tests except for test-1 (Figure
7:(a)).

An additional experiment was performed based on
the results of this case study. The benchmark was
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Figure 7 The comparison of execution time of case study
1 of PSG Front cross tests.

reinitialized before every test to ensure it had the same
initial state. The result can be seen in Figure 6:(d), in
this case, the benchmark showed exactly same timing
behaviours among the tests.

Table 1 The results of case 1.

Task BCET (cyc) BCET (µs) WCET (cyc) WCET (µs)

DRV 1189 148.625 1986 248.25

PSG Front 632 79 977 122.125

PSG BackL 632 79 977 122.125

PSG BackR 632 79 977 122.125

DRV: driver-side window; PSG: passenger-side window;
BackL: back-left; BackR: back-right; BCET: best-case
execution time; WCET: worst-case execution time; cyc:
system clock cycle

4.2 Case Study 2

DRV 

main()
Read

FPGA Input

TimeStamp

Execution Time

Read
PSG_Front 

main()

Execution Time

Read
PSG_BackL 

main()

Execution Time

Read
PSG_BackR 

main()

TimeStamp

Execution Time

DRV Inputs to PSG

TimeStamp TimeStamp TimeStamp TimeStamp TimeStamp TimeStamp

   

Figure 8 The implementation of case study 2.

In Case study 2 the four power windows were
organised in sequential order (Figure 8). Thus the
outputs from driver-side window were used by the
passenger-side windows as inputs. The purpose of this
case study is to investigate the impact on the execution
time when the tasks are in sequential order.

The BCET and the WCET of the driver-side window
showed the same results as in case study 1 (Table 2).
The WCETs of the passenger-side windows were 991 cyc
(123.875 µs), which were slightly higher compared with
the 977 cyc observed in case study 1.

Figure 9 is the comparison between case study 1
and case study 2, where the driver-side window revealed
identical timing behaviours in both case studies (Figure
9:(a)), whilst this observation did not hold for the

Table 2 The results of case 2.

Task BCET (cyc) BCET (µs) WCET (cyc) WCET (µs)

DRV 1189 148.625 1986 248.25

PSG Front 632 79 991 123.875

PSG BackL 632 79 991 123.875

PSG BackR 632 79 991 123.875

DRV: driver-side window; PSG: passenger-side window;
BackL: back-left; BackR: back-right; BCET: best-case
execution time; WCET: worst-case execution time; cyc:
system clock cycle
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Figure 9 The results of case study 2.

passenger-side windows. Differences occurred between
the test–1 in case study 2 and the test–1 in case study
1 of the passenger-side window (Figure 9:(b)).
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Figure 10 The debounced driver-side inputs for the
front-passenger-side power window.
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Figure 11 The results of PSG Front in case study 3.

To inspect the reason for the difference in the
measured WCETs of the passenger-side windows in case
study 1 and case study 2, we modified the experiment
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Table 3 The results of additional experiment in case
study 2.

Task BCET (cyc) BCET (µs) WCET (cyc) WCET (µs)

PSG Front 632 79 991 123.875

PSG BackL 632 79 991 123.875

PSG BackR 632 79 991 123.875

PSG: passenger-side window; BackL: back-left; BackR:
back-right; BCET: best-case execution time; WCET:
worst-case execution time; cyc: system clock cycle

with 2 major changes: first, an isolated passenger-
side window benchmark was used as in case study 1;
second, the input signals from the driver were debounced
before entering the passenger-side power window. The
debounced inputs are presented in Figure 10. The results
showed identical behaviour compared with case study 2
(Table 3; Figure 9:(c)).

4.3 Case Study 3
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Figure 12 The implementation of case study 3.

Case study 3 investigated the impact on the execution
time when tasks are executed independently with
interactions under an operating system. The OSEK [10]
operating system was employed to schedule the four
windows (Figure 12). The tasks were defined as non-
preemptable periodic tasks with a period of 5ms. All the
tasks were assigned the same priority level. The arrival of
the tasks was arranged such that the driver-side window
could be executed prior to the passenger-side windows,
which guaranteed the correctness of the inputs received
by the passenger-side windows.

Figure 11:(a) is the execution time of the front
passenger window in case study 2. The BCET and
WCET were 632 and 940 cyc accordingly. Figure 11:(b)
is the results of the same test in case study 3 where the
BCET and the WCET increased to 638 and 947 cyc.
By subtracting (a) from (b), the differences in execution
time between the tests can be seen in Figure 11:(c),
which is 6 or 7 cyc.

Additionally, we also tested non-preemptable tasks
with different priorities and preemptable tasks with
different priorities. The results were identical as
demonstrated in Figure 11. It can be seen in Table 4,

Table 4 The results of case 3.

Task BCET (cyc) BCET (µs) WCET (cyc) WCET (µs)

DRV 1195 149.375 1992 249

PSG Front 638 80.5 998 124.75

PSG BackL 638 80.5 998 124.75

PSG BackR 638 80.5 998 124.75

DRV: driver-side window; PSG: passenger-side window;
BackL: back-left; BackR: back-right; BCET: best-case
execution time; WCET: worst-case execution time; cyc:
system clock cycle

Figure 13 The histogram of execution times (from test–1
to test–50) of PSG Front in 3 case studies.

the WCETs increased by 7 cyc and the BCETs increased
by 6 cyc. The 3 passenger-side windows stayed identical
with each other.

Figure 13 illustrates the execution times of the front-
passenger-side window in histograms. It can be observed
that in case study 1 and 2, most of the execution
times were around 650 cyc and 750 cyc. Changes
could be observed in case study 3, where the execution
distribution moved slightly towards to the right. In
all three cases, a few outliers resulted in much higher
WCETs compared with the average execution time.

4.4 Case Study 4

In the above three case studies we used AVR Compiler
4.9.2 with optimization option -O1 as default settings. To
further investigate the role of compiler in timing analysis,
we designed case study 4.

In case study 4 we used AVR Compiler 4.9.2 at
different optimization levels including Optimize (-O1),
Optimize more (-O2), Optimize most (-O3), Optimize
for size (-Os).

Figure 14 is the differences in execution time under
different optimization options between case study 2 and
case study 3. The figure was obtained by subtracting
the results of case study 2 from case study 3. It can be
noticed that with the increase of the optimization level,
the gap reduced from 6 cyc or 7 cyc in -O1 to 2 cyc in
-O3 .

Table 5 indicates the results of PSG Front executing
as independent tasks with interactions (as in case study
3). The shortest BCET occurred at -O2 at 593 cyc, the
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Figure 14 The comparison of the execution time under
different optimization options between test–1 in
case study 2 and case study 3. -O1: Optimize;
-O2: Optimize more; -O3: Optimize most; -Os:
Optimize for size

Table 5 The results of case 4 (PSG Front).

Task BCET (cyc) BCET (µs) WCET (cyc) WCET (µs)

-O1 638 79.75 998 124.75

-O2 593 74.125 899 112.375

-O3 609 76.125 868 108.5

-Os 626 78.25 916 114.5

-O1: Optimize; -O2: Optimize more; -O3: Optimize
most; -Os: Optimize for size; BCET: best-case
execution time; WCET: worst-case execution time; cyc:
system clock cycle

longest WCET was 998 cyc at -O1. The biggest difference
between the shortest BCET and longest BCET was 45
cyc. The biggest difference between the shortest WCET
and longest WCET was 130 cyc.

5 Discussion

In case study 1 we observed that the execution time
of the system showed variations between different tests
and started to show repetitive behaviours every 10
consecutive tests. After an in-depth investigation, we
noticed the loop observed in this case study was due to
the initial state of local counter variables. The power
window model we used to create the benchmark consists
of state charts which are being triggered periodically.
The local counter variables are created to keep the
timing information for the state charts. Thus, it resulted
in history-dependent behaviour of the powerwindow
benchmark. Based on this study, we concluded the
execution time of such systems is not only dependent on
the inputs, but also on the precedent executions. In this
case, it was the value left in the counter variables after
the previous execution.

In the additional experiment the power window
showed exactly the same behaviours after the benchmark
was reinitialized before every test. This confirmed our
previous assumption. Therefore, in order to estimate

the execution time of a history-dependent system, it is
necessary to identify the variables which have impact on
the timing behaviour prior to the input generation.

In case study 2, after connecting the passenger-side
windows with the driver-side window, different timing
behaviours were observed in the passenger-side windows.
The additional experiment proved the differences were
due to the driver-side inputs first passing through the
debounce function in the driver-side window before
entering the passenger-side window. It indicates that the
test cases generated by Simulink Design Verifier were not
sufficient to reach the full coverage, especially the worst
case scenario. Special cautions should be given when
using Simulink to generate test cases for critical systems.
Not only the external inputs, but also the variables
which influence the execution time need to be included
in the input set. For a simple processor as AT90CAN128,
as long as the input is adequate, interactions between
sequential tasks will not affect the WCET.

Additional investigation showed that the increase
in the execution time in case study 3 was due to
the combination of the introduce of OSEK operating
system and the compiler. Because the OSEK operating
system was compiled together with the benchmark, the
compilation resulted in slight inconsistencies at assembly
level. For instance, the subroutine call compiled to
RCALL (relative call to subroutine) in case study 1 and
case study 2 was compiled to CALL in case study 3.
The former is a relative call to an address within PC
(program counter) - 2K + 1 and PC + 2K (words), the
latter calls to a subroutine within the entire program
memory [11]. Timing-wise RCALL takes 3 cyc to execute
whilst CALL requires 4 cyc. Hence, the change in the
execution time was the aftermath of the differences in
the assembly code.

The results in [6] showed more drastic increase in
the execution time when using OSEK operating system
compared with case study 3. There could be two reasons
behind this scenario. First is the change of the compiler.
In [6] all the other case studies used AVR Compiler
4.9.2, while in case study 3 AVR Compiler 4.3.3 was
used. Second, by repeating case study 3 with the new
experiment setup using AVR Compiler 4.3.3. We noticed
all the outliers in [6] were 1731 cyc higher compared
with the execution times at the same points obtained
using the new experiment setup. Compared with the
setup in [6], the setup of this study removed the serial
communication between processor and computer when
the power window reads the input signals. Therefore,
although in the previous experiment we did not include
the time for serial communication in the measurement,
it still introduced overhead in the results.

In case study 3, the reason that the results were
identical cross different settings of tasks was because
the tasks were released at the same time, consequently,
the low priority tasks were always scheduled to execute
after the high priority task. Thus, preemption did not
happen during the execution. To study the impact of the
preemption, the input set must be modified so that even
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after preemption, the inputs taken by the windows are
still consistent compared with the other case studies.

Case study 4 shows the impact of optimization option
on the execution time. The extra execution time was
introduced for the same reason as explained in the
previous text in all four optimization levels. The only
difference was with the increase of the optimization
level, the differences between the assembly code without
OSEK operating system and the assembly code with
OSEK operation system become more and more trifling.
In combination with case study 3, we conclude that in
order to assure the consistency between the behaviour of
the complete code and the behaviour of the combination
of the code blocks, it is necessary to analyse the timing
behaviour at assembly level.

6 Conclusion

The results of this research suggested that for a simple
real-time system running bare-metal on a processor
without complicated architecture components, it is safe
to analyse the timing behaviour of every component
individually. When provided with sufficient input set,
analysing components individually can reduce the
complexity of the analysis process whilst still yields
reliable results. Whereas an operating system is involved
or the size of the complete system is substantial,
some overhead may be introduced by the divergence at
assembly level. However, since the increase of the WCET
is rather small compared with the overall execution
time, this overhead can be compensated by adding a
safety margin to the results obtained from individual
component. Significantly, to estimate the overall WCET
of the complete system combined with operating system,
it is possible to perform timing analysis separately on
the functional system and the operating system. It will
not only reduce the complexity of the analysis, but also
save efforts spent in deriving the timing profile of the
operating system repetitively.

7 Future Work

7.1 A Hybrid Approach for Timing Analysis

For the future research, we propose a new hybrid
methodology for timing analysis (Figure 15). In step
1, we separate the complete C code into smaller
blocks using COBRA Block Generator which is a tool
developed to facilitate the process of generating a hybrid
block model and corresponding source files for time
measurements [12] by the IDLab in the University of
Antwerp. Indication flags are set in front of C blocks
before the compilation, so that the blocks can be traced
and reconstructed on assembly level. Every obtained
assembly block is correspondent to one C block at the C
code level.

Step 1

Step 2

C-code Asm-codeC-codeC-codeC-code

ASM Block 
1

Compiler

B1 start flag

C Block 1

C Block 2

C Block n

COBRA

Block 

Generator

B2 start flag

Bn start flag

ASM Block 
2

ASM Block 
n

B1 start flag

B2 start flag

Bn start flag

ASM Block 
1

ASM Block 
2

ASM Block 
n

TA1

TA4 TA5

TA6 TA9

TA2

TA7 TA8

TA3

Estimated 
Timing 

Information

Step 3

Inputs
ASM Block 
Execution

Inputs 
Generator

Processor 
State 

Initialisation

Tic Stamp Toc Stamp

Execution Time

TAC block

Figure 15 The proposed analysis methodology.

In step 2, the inputs generator creates inputs
accordingly for every C block. The created inputs will
be used in the processor state initialization process.
During the processor state initialization, the stack and
the registers of the processor will be adjusted so that the
created inputs will be passed on correctly to the assembly
block. After the processor is set to the desired state, the
timing measurement is performed on the assembly code.
The acquired execution times is then used to compose
timed automata for the C blocks.

In step 3, after all the blocks obtained in step
1 are converted into corresponding timed automata,
the timing model of the system can be constructed.
Eventually, the timing information will be retrieved and
analysed.

7.2 Motivation

Our previous results indicate that for measurement-
based timing analysis, the inputs are of uttermost
importance. However, a reliable and systematic input
generation approach is still in high demand. Case study
1 and case study 2 showed that during input generation,
crucial variable may be ignored during the process. Case
study 3 and case study 4 suggested one major impact
of software architecture on execution time is due to the
divergence in assembly code. Therefore, we propose this
methodology with two important features: first, dividing
the code into smaller code blocks for input generation;
second, performing timing analysis on the code blocks at
assembly level. The former is aiming to provide a higher
possibility to achieve the coverage of the worst-case
scenario. The latter intends to eliminate the differences
between the original code and the analysed code at
assembly level.
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7.3 Improvement

We expect that compared with the current
measurement-based approach, the proposed
methodology would be more reliable regarding to
the worst-case scenario coverage. Compared with the
traditional static approach, this approach should be
able to reduce the cost of constructing a timing model
for complicated systems especially under the boost of
processors with advanced features. In comparison with
the current state of the art hybrid approaches, the
proposed approach should bring 3 major improvements:
first, instead of executing the complete software using the
inputs generated for the complete system to collect the
timing information of one single block, this methodology
can generate inputs respectively for every C block and
perform measurement on every block independently;
second, by measuring at assembly level, the consistency
between the analysed code and the original code can be
satisfied; third, the COBRA Block Generator facilitates
block generation on different abstraction levels. As the
size of the block is adjustable, it is possible to decide
the granularity of the timing analysis. Thus gives the
opportunity to choose between the soundness of the
results and the cost of the analysis.
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